WO2022176073A1 - Production planning support system - Google Patents

Production planning support system Download PDF

Info

Publication number
WO2022176073A1
WO2022176073A1 PCT/JP2021/005976 JP2021005976W WO2022176073A1 WO 2022176073 A1 WO2022176073 A1 WO 2022176073A1 JP 2021005976 W JP2021005976 W JP 2021005976W WO 2022176073 A1 WO2022176073 A1 WO 2022176073A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
delivery
production
information
production plan
Prior art date
Application number
PCT/JP2021/005976
Other languages
French (fr)
Japanese (ja)
Inventor
明 岸田
知章 掛田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/005976 priority Critical patent/WO2022176073A1/en
Publication of WO2022176073A1 publication Critical patent/WO2022176073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism

Definitions

  • the present invention relates to a production planning support system that generates information for performing production planning consisting of multiple steps related to design, procurement, and manufacturing processes.
  • the present invention relates to planning production plans related to procurement and manufacturing from the design process in the manufacturing industry.
  • Existing systems for planning production include Material Requirement Step S Planning (MRP) and Advanced Planning and Step Scheduling (AP Step S).
  • MRP Material Requirement Step S Planning
  • AP Step S Advanced Planning and Step Scheduling
  • Patent Document 1 the entire process is based on the cost of procuring ahead of the delivery date on the standard schedule and the cost of procuring after the delivery date on the standard schedule.
  • a production planning system is disclosed that minimizes the expected cost of production.
  • Patent Document 2 by performing statistical processing from the manufacturing performance information of the process, the probability distribution of the required time for each component is calculated, the probability of delay with respect to the delivery date of the component is calculated, and the manufacturing delay is predicted at the manufacturing order stage.
  • a delivery date management support system is disclosed.
  • Patent Document 1 aims for optimization by comparing the costs associated with delaying procured items and the costs associated with bringing forward the delivery date of procured items. For example, if there are resource constraints due to delays in processes related to in-house production, it is not possible to deal with cases where moving forward a process leads to a shortage of resources for another process.
  • the present invention is an invention for solving the above-mentioned problems, and is a production planning support system that can realize reliable customer delivery by creating a production plan with a low risk of delivery delay in product production planning. intended to provide
  • the production planning support system of the present invention includes order information, procurement information, constraint information, resource information, warehouse information, supplier information, bill of materials information, past production plan information, past production results. Based on the information in the database containing information, analyze the conditions that cause delays in each process of the product and delays in delivery, and calculate the expected value of the conditional delay probability and delay days for each production condition related to the process.
  • a process delay analysis unit as analysis information; a plurality of candidates for the production plan of the product; and the expected value of the number of days of delay, calculate the expected value of the probability of delay in delivery and the number of days of delay in delivery for each product in the production plan candidate, and add up the expected value of the probability of delay in delivery and the number of days of delay in delivery of each product.
  • a production plan creating unit that calculates a delivery delay evaluation index for the production plan candidate, and adopts a production plan candidate having a small delivery delay evaluation index among the production plan candidates. Characterized by Other aspects of the present invention are described in embodiments below.
  • FIG. 1 is a diagram showing the basic configuration of a production planning support system according to an embodiment
  • FIG. 4 is a flowchart showing production plan calculation processing according to the first embodiment
  • It is a figure which shows the example of the past production plan information.
  • It is a figure which shows the example of past production performance information.
  • It is a figure which shows the example of the analysis information which the process delay analysis part analyzed.
  • It is a figure which shows the example of order reception information.
  • constraint condition information It is a figure which shows the example of component information.
  • FIG. 4 is a diagram showing an example of production plan candidate 1 first created by a production plan creation/optimization unit;
  • FIG. 4 is a diagram showing an example of production plan candidate 1 first created by a production plan creation/optimization unit;
  • FIG. 4 is a diagram showing an example of production plan candidate 1 first created by a production plan creation/optimization unit;
  • FIG. 4 is a diagram showing an example of production plan candidate 1 first created by a production plan
  • FIG. 10 is a diagram showing a calculation example of conditional delay probability and expected value of delay days for each process;
  • FIG. 10 is a diagram showing a calculation example of a conditional delay probability and an expected value of delay days for each delivery destination;
  • FIG. 10 is a diagram showing an example of a delivery delay evaluation index for each delivery destination and an overall delivery delay evaluation index;
  • FIG. 10 is a diagram showing a delivery delay probability weighting factor and an expected delivery delay days value weighting factor, which are weighting parameters for the delivery delay probability and expected delivery delay days value set for each delivery destination, which are set in the evaluation parameter input section; .
  • This is an example of production plan candidates calculated by the production plan creation/optimization department. It is an example of another candidate for the production plan calculated by the production plan creation/optimization department.
  • FIG. 11 is a flow chart showing production plan calculation processing in consideration of rescheduling when a delivery delay occurs, according to the second embodiment;
  • FIG. It is a figure which shows the example of order reception information. It is a figure which shows the example of customer information. It is a figure which shows the example of procurement information.
  • FIG. 4 is a diagram showing an example of delay prediction information for each process related to work stored in analysis information;
  • FIG. 10 is a diagram showing an example of delay prediction information of each supplier regarding parts stored in analysis information;
  • FIG. 4 is a diagram showing an initial production plan calculated by a production plan creation/optimization unit;
  • FIG. 18B is a diagram showing an example of a delayed process list in the production plan of FIG. 18A; It is a figure which shows the result of having registered the production plan of FIG. 18A in the production plan list
  • FIG. 19B is a diagram showing the results of rescheduling indexes related to the production plan of FIG. 19A;
  • FIG. 22 is a diagram showing a result of additionally registering candidates for the new production plan in FIG. 21; It is a figure which shows the example of the production plan in the precondition of process delay.
  • FIG. 1 is a diagram showing an example of the basic configuration of a production planning support system 200 according to an embodiment of the invention.
  • the production planning support system 200 has a storage unit 100 (database), a processing unit 120, a communication I/F 130, a display unit 140, and an input unit 150, and is connected to the network NW via the communication I/F 130.
  • the storage unit 100 contains order information 101, production plan information 102, actual production information 103, procurement information 104, constraint information 105, resource information 106, warehouse information 107, supplier information 108, bill of materials information 109, analysis information 110.
  • the processing unit 120 includes a process delay analysis unit 111, a process delay prediction unit 112, a production plan creation/optimization unit 113, an external input/output unit 114, a production plan risk visualization unit 115, an evaluation parameter input unit 116, and the like. Note that the process delay prediction unit 112 and the production plan creation/optimization unit 113 may be combined into a production plan creation unit.
  • the external input/output unit 114 stores various information necessary for production planning in the storage unit 100 .
  • Order information 101 stores order information from customers.
  • the procurement information 104 stores procurement information such as which part was ordered from which supplier and when it was delivered.
  • the constraint information 105 stores constraint information regarding each process, such as the precedence-successor relationship between processes, and the resources and locations such as which machines and people are used by the processes.
  • the resource information 106 stores information about how many resources such as people and machines required for production are held.
  • the warehouse information 107 stores the size of the space in the warehouse, information on the weight that can be loaded, and information on the performance and schedule of parts and products stored in the warehouse.
  • the supplier information 108 stores information about suppliers who place orders for parts.
  • the parts list information 109 stores information on the parts that make up each product and the process for manufacturing the parts.
  • the production plan information 102 stores information on the production plan created by the production plan creation/optimization unit 113 .
  • the actual production information 103 stores information on the actual production performed based on the production plan.
  • the analysis information 110 stores information analyzed by the process delay analysis unit 111 .
  • the production plan list 117 and the delayed process list 118 will be described later.
  • the process delay analysis unit 111 collects order information 101, procurement information 104, constraint information 105, resource information 106, supplier information 108, and parts list information 109, and compares the production plan information 102 with the actual production information 103. , statistically analyze the conditions that cause delays in each process and delivery delays, and calculate the expected value of the conditional delay probability and delay days for each production condition related to processes such as products, business partners, parts, and manufacturing quantities, Information is stored in analysis information 110 .
  • the delay probability for the delivery date of parts is used.
  • the delay probability and the delay time may vary depending on the difference in workers and the difference in machinery and equipment. Allowing for changing expectations.
  • the process delay prediction unit 112 uses information about a process and production conditions related to the process, such as products, suppliers, parts, and production quantities, as input values to calculate a conditional delay probability and an expected value of delay days that match the production conditions. , from the analysis information 110 .
  • the process delay prediction unit 112 passes the acquired expected value of the delay probability with conditions and the number of delay days to the production planning/optimization unit 113 as a return value.
  • the production plan creation/optimization unit 113 determines when and how to execute which process from order information 101, procurement information 104, constraint information 105, resource information 106, supplier information 108, and parts list information 109. Create production plan candidates. As for the production plan candidates, each production process is assembled so that each product ordered by the customer in the order information 101 meets the delivery date.
  • the production plan creation/optimization unit 113 inputs information on each process and production conditions for each process to the process delay prediction unit 112 for all the processes that constitute the created production plan candidate, and determines the conditional delay of the process. Receive expected values for probabilities and days late. Based on the expected value of the conditional delay probability and the number of delay days for each process, the production planning/optimization unit 113 calculates the predicted value of the delivery delay probability and the number of days of delay for each product in the production plan candidate. .
  • the production plan creation/optimization unit 113 acquires evaluation weighting parameters for the delivery delay probability and the delivery delay days from the evaluation parameter input unit 116 . If the contract with the customer regarding damages for late delivery is determined by whether or not the delivery is delayed, this weighting parameter should be set to a large value for the weighting parameter regarding the probability of delivery delay, and the damage according to the number of days of delivery delay If it is money, the weighting parameter for the evaluation of the number of days of delivery delay is set to a large value, so that the difference in contract conditions for each customer can be reflected in the delivery delay evaluation index. In addition, the difference in the amount of damage caused by delayed delivery for each customer can be dealt with by adjusting the value of the weighting parameter for each customer.
  • the production plan creation/optimization unit 113 multiplies and totals the weighting parameters by the delivery delay probability and delivery delay days of each product to calculate the delivery delay evaluation index for the production plan candidate.
  • the production plan creation/optimization unit 113 creates candidates for a different production plan under the same input information conditions, and calculates the delivery delay evaluation index by the same method as before.
  • the delivery delay evaluation index of the previous production plan candidate and the new production plan candidate are compared, and the production plan candidate with the smaller delivery delay evaluation index is adopted.
  • the production plan candidate with the smallest delivery delay evaluation index is adopted as the optimum production plan.
  • the production plan creation/optimization unit 113 records the optimized production plan in the production plan information 102, and outputs information on the production plan from the external input/output unit 114 to the outside.
  • the external input/output unit 114 stores various information necessary for the production plan in the storage unit 100, and outputs the information on the production plan to the outside via the network NW.
  • the production planning risk visualization unit 115 visualizes the process on the screen of the display unit 140 so that a process with a large delivery delay evaluation index and a process with a small delivery delay evaluation index can be distinguished.
  • the evaluation parameter input unit 116 acquires, via the input unit 150, evaluation weighting parameters for the delivery delay probability and the delivery delay days, as described above.
  • FIG. 2 is a flow chart showing the production plan calculation process S100 according to the first embodiment. Flowcharts are described with reference to FIGS. 3-12D.
  • step S101 the process delay analysis unit 111 collects each information stored in the storage unit 100 shown in FIG. Analytical information 110 is generated which consists of expected values of delay probability and delay days.
  • FIG. 3 is an excerpt of an example of past production plan information 102.
  • Figure 4. It is an excerpt of an example of past production performance information 103.
  • FIG. The manufacturing number in FIGS. 3 and 4 is an abbreviation for manufacturing number, which is an individual identification number for each product.
  • FIG. 5 is a diagram showing an example of analysis information 110 analyzed by the process delay analysis unit 111.
  • the process delay analysis unit 111 sets production conditions for each worker, product, part, and process, and records and stores in the analysis information 110 the conditional delay probability and the expected delay days value for each production condition.
  • FIG. 5 for worker A, product 1, and process 2, it can be seen that the delay probability and the expected value of delay days are not "0".
  • conditional delay probability and the expected number of delay days are adopted.
  • conditional delay probabilities related to production conditions it is possible to take into account that even for the same process of the same product, the expected delay probability and delay time will change due to differences in workers and machinery.
  • the past production plan information 102 shown in FIG. September 6th, and September 8th.
  • the worker B, the product 1, and the process 2 have four days of September 2nd, September 4th, September 6th, and September 8th. According to it, no delay occurred.
  • the delay probability is 0 and the expected number of delay days is 0.
  • step S102 the production plan creation/optimization unit 113, from each input information of the received order information 101, the constraint information 105, the resource information 106, the warehouse information 107, the supplier information 108, and the parts list information 109, Create a production plan.
  • FIG. 6 is an example of the order information 101. It stores the order date received from the customer, the scheduled delivery date, the production start possible date, and the production completion deadline date.
  • FIG. 7 shows an example of the constraint information 105, which defines order constraints between processes when producing the product 1, workers who can be in charge of production, standard man-hours, and information on machinery and equipment to be used.
  • Process 2 is performed for Product 1 after Process 1, from the "Worker” column, either Worker A or Worker B can handle From the column, it can be seen that the standard man-hour is 1 day, and from the "Machine Equipment” column, no machinery is used.
  • FIG. 8 is a diagram showing the parts table information 109, which indicates whether each product is produced from parts and processes.
  • FIG. 1 is composed of part 1, and it can be seen from the "process" column that product 1 is produced from process 1 and process 2, which require part 1.
  • Fig. 9 is a diagram showing the warehouse information 107, which consists of the stock quantity of each part and the empty space indicating how many spaces there are for each part on each shelf in each warehouse. As shown in FIG. 9, since the inventory of part 1 exists, in producing the product 1, the part 1 can be allocated from the inventory without placing an order with the supplier.
  • FIG. 10A shows candidates 1 (production plans P11 and P11A) of the production plan first created by the production plan creation/optimization unit 113 based on the information stored in the storage unit 100 shown in FIG. Worker A plans to carry out Process 1 on October 2nd and Process 2 on October 3rd for products destined for Company A, while for products destined for Company B, Process 1 is scheduled to be carried out by worker B on October 3, and process 2 is to be carried out by worker B on October 4. It can be seen that this production plan candidate 1 maintains consistency with the information in FIGS. For ease of viewing, unlike FIG. 3, FIG. 10A shows the order of production steps in chronological order for each product.
  • step S103 the production plan creation/optimization unit 113 inputs the information of each process in the production plan candidate of FIG. Get the conditional delay probability and expected days delay. If the delivery destination in FIG. 10A is company A, product 1, process 1, and worker A, both the conditional delay probability of the process and the expected value of delay days are 0 from FIG. Similarly, FIG. 10B (production plan P11B) is obtained by calculating conditional delay probabilities and delay days expected values for other processes from FIG.
  • step S104 the production planning/optimization unit 113 calculates the delivery delay probability and the expected value of the number of days of delay for each product from the conditional delay probability and the expected value of the number of days of delay of each process.
  • FIG. 10C production plan P11C describes the calculation result. From FIG. 10B, regarding the product for which the delivery destination is Company A, the only process in which the conditional delay probability of the process is not 0 is process 2, and there is no subsequent process to process 2. Therefore, the delivery delay probability and the number of delivery delay days The expected value is 0.25 for each. On the other hand, regarding the product to be delivered to company B, the conditional delay probability of each process is 0, so the delivery delay probability and the expected value of delivery delay days are also 0. Details of FIG. 10D ((production plan P11D) will be described later.
  • the production planning/optimization unit 113 calculates a delivery delay evaluation index from the delivery delay probability, the expected value of the number of days of delivery delay, and the weighting coefficient of the probability of delivery delay and the expected value of the number of days of delivery delay.
  • FIG. 11 shows a weighting parameter 119 for the delivery delay probability and the expected delivery delay days set for each delivery destination set in the evaluation parameter input unit 116, which is a delivery delay probability weighting coefficient and a delivery delay days expected value weighting.
  • FIG. 4 is a diagram showing coefficients; In the example of FIG. 11, the same value is set for both company A and company B, which are delivery destinations, but it can be set for each delivery destination.
  • the process delay probability weighting factor and the process delay days expected value weighting factor are weighting factors when calculating the evaluation index of the process delay risk, and the process delay warning criterion warns a process with high delay risk. Parameters for display will be described later.
  • a delivery delay evaluation index of a certain product for a certain delivery destination is calculated by the formula (1).
  • Delivery delay evaluation index delivery delay probability weighting coefficient ⁇ product delivery delay probability + expected delivery delay days weighting coefficient ⁇ expected delivery delay days of product (1)
  • the overall delivery delay evaluation index related to the production plan candidate is calculated by the formula (2) as the total value of the delivery delay evaluation indices of all the products to be produced.
  • Overall delivery delay evaluation index ⁇ delivery delay evaluation index for all products to be produced (2)
  • the delivery delay probability weighting coefficient and the delivery delay days expected value weighting coefficient are all 0.5, and the delivery delay probability and delivery delay days expected value for each delivery destination are the values shown in FIG.
  • the delivery delay evaluation index for each destination and the overall delivery delay evaluation index have values shown in FIG. 10D (production plan P11D).
  • step S105 the production plan creation/optimization unit 113 determines whether or not there is another production plan candidate. If there is no candidate that satisfies (step S105, No), candidate 1 is regarded as the optimum production plan, and the process ends.
  • step S105 If another production plan candidate exists (step S105, Yes), the production plan creation/optimization unit 113 sets this new candidate as candidate 2 in step S106.
  • the production plan creation/optimization unit 113 generates another production plan candidate by changing the process sequence of the production plan candidate 1 created in step S102.
  • steps S106, S107, and S108 the production plan creation/optimization unit 113 executes the same processes as in steps S102, S103, and S104 for candidate 2 of the production plan. Calculate the delay metrics.
  • step S109 the production plan creation/optimization unit 113 compares the overall delivery delay evaluation index of the production plan candidates 1 and 2, and resets the production plan candidate with the smaller value as the production plan candidate 1. , the process returns to step S105.
  • the production plan with the smallest overall delivery delay evaluation index is selected.
  • FIG. 12A is an example of a production plan candidate (production plan P12) calculated by the production plan creation/optimization unit 113.
  • FIG. 12B is an example of another candidate (production plan P13) for the production plan calculated by the production plan creation/optimization unit 113 .
  • FIG. 12C is an example of another production plan candidate (production plan P14) calculated by the production plan creation/optimization unit 113 .
  • FIGS. 12A, 12B, and 12C are production plan candidates in this embodiment calculated by the production plan creation/optimization unit 113 in the processing from step S105 to step S109. 12C, which has the smallest overall delivery delay evaluation index, is selected as the production plan from among the production plans of FIGS. 12A to 12C and the production plan candidates of FIG.
  • the production planning support system 200 can create a production plan that minimizes the risk of product delivery delays.
  • step S103 of FIG. 2 the information of the process in the production plan candidate is input to the process delay prediction unit 112, and the conditional delay probability and the expected number of delay days of the process matching the input information are calculated. is obtained, a machine learning method such as a neural network may be used to obtain the conditional delay probability and the expected value of the number of delay days for a process similar to the input information.
  • a machine learning method such as a neural network may be used to obtain the conditional delay probability and the expected value of the number of delay days for a process similar to the input information.
  • a production plan that can be rescheduled when a delivery delay occurs is selected. can do.
  • FIG. 13 is a flowchart showing a production plan calculation process S200 that takes rescheduling into account when a delivery delay occurs, according to the second embodiment. This flow chart will be described in detail below with reference to FIGS. 7 to 9 and 14 to 23.
  • FIG. 13 is a flowchart showing a production plan calculation process S200 that takes rescheduling into account when a delivery delay occurs, according to the second embodiment. This flow chart will be described in detail below with reference to FIGS. 7 to 9 and 14 to 23.
  • FIG. 13 is a flowchart showing a production plan calculation process S200 that takes rescheduling into account when a delivery delay occurs, according to the second embodiment. This flow chart will be described in detail below with reference to FIGS. 7 to 9 and 14 to 23.
  • FIG. 13 is a flowchart showing a production plan calculation process S200 that takes rescheduling into account when a delivery delay occurs, according to the second embodiment. This flow chart will be described in detail below with reference to FIGS.
  • FIG. 14 is a diagram showing an example of the order information 101.
  • the scheduled delivery dates for Product 2, Product 3, and Product 4 are November 5th.
  • Constraint condition information 105 regarding product 2, product 3, and product 4 is shown in FIG. 7
  • parts table information 109 is shown in FIG. 8, and warehouse information 107 is shown in FIG.
  • FIG. 15 is a diagram showing an example of supplier information 108.
  • the supplier information 108 describes the supplier of the parts, the handling parts, the address of the supplier, and the like.
  • FIG. 16 is a diagram showing an example of the procurement information 104. As shown in FIG. The procurement information 104 describes the order dates, delivery schedules, and the like of parts 2, 3, and 4.
  • Products 2, 3, and 4 of the order information 101 in FIG. 14 require parts 1, 2, 3, and 4 from the parts list information 109 in FIG. Also, from the warehouse information 107 in FIG. 9, it can be seen that since parts 1 and 2 are in stock, they can be used for production, and part 3 is out of stock.
  • the fact that the part 2 is not shown in FIG. 9 means that it is a part that cannot be stored in a warehouse, that is, a part that needs to be manufactured immediately after delivery. Therefore, in this embodiment, it is necessary to order the parts 2 and 3 in order to produce the product.
  • step S201 the processing unit 120 performs each process from step S101 to step S109 in the production plan calculation process shown in FIG. create a production plan that
  • FIG. 17A is a diagram showing an example of delay prediction information 110a for each process related to work stored in analysis information 110.
  • each condition related to work includes combinations of workers, machinery, products, parts, and processes, and the delay probability and the expected delay days value for each combination are calculated. For example, in the case of "worker A, machine C, product 2, part 2, process 1", the delay probability is 0 and the expected number of delay days is 0, indicating that no delay will occur.
  • FIG. 17B is a diagram showing an example of delay prediction information 110b for each supplier regarding parts stored in analysis information 110.
  • FIG. FIG. 17B was calculated by the process delay analysis unit 111 by statistically analyzing the procurement information 104 of FIG.
  • FIG. 18A is a diagram showing the initial production plan P21 calculated by the production plan creation/optimization unit 113.
  • FIG. FIG. 18B is a diagram showing an example of the delayed process list 118 in the production plan of FIG. 18A.
  • the date on which the part is registered means the timing when the part was delivered and became available for production.
  • FIG. 19A is a diagram showing the result (production plan list 117a) of registering the production plan P21 of FIG. 18A in the production plan list 117.
  • FIG. 19A At the time of processing in step S202, the initial value of 0 is set for the rescheduling index in FIG. 19A because the value is updated as a result of the subsequent processing.
  • step S203 for each process of the production plan newly registered in the production plan list 117, from the analysis information 110, the process whose conditional delay probability is not 0 is extracted, and the delayed process Stored in list 118 along with the conditional delay probability and expected delay days.
  • Fig. 18A shows the delivery delay probability, the expected value of the number of days of delivery delay, etc., but does not show the probability of delay and the expected value of the number of days of delay for each process.
  • the probabilities of delay and expected days of delay for each step are determined in view of FIGS. 17A and 17B. From the delay prediction information 110a of each process related to the work in FIG. 17A, all the conditional delay probabilities that the work of each process will be delayed are 0. On the other hand, from the delay prediction information 110b of each supplier related to the parts of FIG. has a probability of 0.5 that is delayed, there is a risk that only process 1 of product 2 using part 2 will be delayed.
  • the production planning/optimization unit 113 registers delay processes with conditional delay probabilities other than 0 and related information for identifying the processes in the delay process list 118 .
  • FIG. 18B is the delayed process list 118 in the production plan of FIG. 18A, and stores information on delivery destinations, products, and dates as information for specifying delayed processes. It also stores the conditional delay probability that the process will be delayed, the expected value of the number of delay days, and the No. which means the line number.
  • the production plan creation/optimization unit 113 selects one process from the delay process list 118, and assumes that it is delayed by the number of delay days expected value, and then prepares the production plan. recreate.
  • FIG. 18B only Process 1 of Product 2 with Company C as the delivery destination is registered in the delayed process list 118, so this process is set to be delayed by one day.
  • the expected number of days of delay is 0.5 days, but in this embodiment, since the minimum unit of the process is 1 day, the number after the decimal point is rounded up and the number of days of delay is set to 1 day. .
  • step S205 the production plan creation/optimization unit 113 assumes the process delay of step S204, that is, the delivery destination is Company C, the process 1 of the product 2 is delayed by one day, and the process is delayed on November 3rd.
  • the processing from step S102 to step S109 is executed to calculate the production plan and the overall delivery delay evaluation index.
  • FIG. 20 shows the calculation result of step S205 in this precondition.
  • the production plan creation/optimization unit 113 calculates the updated value of the rescheduling index from the following formula (3) and adds it to the rescheduling index in the production plan list.
  • the reason why the conditional delay probability of the process selected in step S204 is multiplied in the equation (3) is to consider the likelihood of delay occurring in the process of step S204.
  • Updated value of rescheduling index Overall delivery delay evaluation index calculated in step S205 ⁇ Conditional delay probability of the process selected in step S204 (3)
  • the overall delivery delay evaluation index is 2.0 from FIG. 20, and the conditional delay probability of the process is 0.5 from FIG. 18B, so the updated rescheduling index is 1.0. .
  • This value is added to the rescheduling index of the production plan registered in the production plan list 117 in step S202.
  • FIG. 19B shows the result (production plan list 117b) of adding the updated value of the rescheduling index to the rescheduling index.
  • step S207 the production planning/optimization unit 113 determines whether or not there is an unselected process in the delayed process list. If there is an unselected process (step S207, Yes), the process returns to step S204. If there is no unselected process (step S207, No), the process proceeds to step S208.
  • step S208 the process proceeds to step S208.
  • FIG. 18B only one process is delayed, so the process proceeds to step S208.
  • the updated value of the rescheduling index for each process is added to the rescheduling index. Become.
  • the production plan creation/optimization unit 113 selects a production plan that is not registered in the production plan list 117 and that has the same value as the overall delivery delay evaluation index of the production plan calculated in step S201.
  • FIG. 21 shows a candidate for a new production plan P23 different from that in FIG. 18A, in which only the delivery timing of part 3 of product 3 is different from that in FIG. 18A. It should be noted that the bold line frame in the table of FIG. 21 is the changed part.
  • step S209 the production plan creation/optimization unit 113 determines whether or not there is a new production plan candidate as a result of the search, and if a new production plan candidate is found (step S209, Yes), The process proceeds to step S210. On the other hand, when there is no new production plan candidate (step S209, No), the production plan creation/optimization unit 113 proceeds to step S211.
  • step S210 the production plan creation/optimization unit 113 additionally registers the new production plan candidate found in step S208 in the production plan list 117, and then returns to the process of step S203.
  • FIG. 19C is a diagram showing the result (production plan list 117c) of additionally registering candidates for the new production plan P23 of FIG.
  • the rescheduling index of the new production plan No. 2 is set to 0, which is the initial value.
  • the production plan creation/optimization unit 113 performs the processes from step S203 to step S207 for the new production plan candidate in step S208.
  • the processing result of step S203 is the same as in FIG. 18A, and the processing result of steps S204 and S205 for the new production plan candidate of step S208 is shown in production plan P24 of FIG.
  • the candidate for the new production plan P23 in step S208 is that the delivery date of part 3 is one day earlier than that in FIG. be. Therefore, in the production plan P24 of FIG. 22, the overall delivery delay evaluation index is 0 when process 1 is delayed.
  • the production plan P23 of FIG. 21 is compared with the production plan P24 of the calculation result of step S205 of FIG.
  • Company C/Product 2 is scheduled for November 3 and November 4 with a one-day delay
  • Company D/Product 3 is scheduled for November 2nd by worker A. Therefore, the schedule is shifted one day earlier to November 2nd and November 3rd
  • Company E's product 4 is scheduled in the same way as in FIG.
  • the delivery delay probability of company C/product 2, company D/product 3, and company E/product 4 is 0, and the expected value of days of delivery delay is 0.
  • the delivery delay evaluation index is set to 0, and the overall delivery delay evaluation index is set to 0.
  • the thick-line frames in the table of FIG. 22 indicate the changed parts from FIG.
  • the updated value of the rescheduling index is the conditional delay probability of the process from FIG.
  • the value is 0. Therefore, as a result of performing the processing from step S203 to step S207, the value of the rescheduling index of the candidate for the production plan P23 in FIG. 21 remains 0, and the value of the production plan list is not updated from FIG. 19C.
  • step S208 since there is no other production plan candidate, the process proceeds to step S211 in the determination process of step S209.
  • step S211 the production plan creation/optimization unit 113 selects the production plan with the smallest rescheduling index from the production plan list 117.
  • the production plan list 117 is shown in FIG. 19C, so the production plan No. 2 in FIG. is calculated as a possible production plan.
  • the production plan risk visualization unit 115 displays a warning on a display device such as a display for processes that are greater than the process delay warning standard specified in the evaluation parameter input unit 116.
  • the process delay warning criterion is calculated from the following equation (4).
  • Process delay warning criteria process delay probability weighting coefficient x process delay probability + expected number of days of process delay weighting factor x expected number of days of process delay (4)
  • FIG. 23 is a diagram showing the result (screen 141) of the warning displayed on the display unit by the production risk visualization unit.
  • the process 1 of the product 2 is displayed as a warning with a solid line frame as a process with a high possibility of being delayed.
  • the process that can be replaced is displayed with a dotted line frame.
  • the production planning support system 200 makes it easy for the user to understand which process has a high delay risk and how to deal with the delay.
  • the delivery delay probability, the expected value of delivery delay days, the delivery delay evaluation index, and the overall delivery delay evaluation index are changed from the information in the production plan list 117 to the values when the processes are rearranged, that is, the values shown in FIG. is doing.
  • the production planning support system 200 can calculate a production plan that can be rescheduled when a delivery delay occurs. Provides functions for grasping and responding to processes.
  • Embodiment 3 In the production planning calculation methods based on Embodiments 1 and 2, calculations are performed for all combinations of process sequences, combinations of resources, etc. Therefore, as the number of products and processes increases, the amount of calculation can be very large and the computation time can be very long.
  • production plans for a plurality of products are originally created at the same time. , is characterized by creating a production plan with a low risk of delay in delivery.
  • FIG. 24 is a flowchart showing production plan calculation processing S300 according to the third embodiment.
  • the process delay analysis unit 111 collects each piece of information stored in the storage unit 100 shown in FIG. .
  • step S ⁇ b>302 the production plan creation/optimization unit 113 creates a production plan for each product to be produced, and calculates the delivery delay probability of each product from the analysis information 110 .
  • the production plan creation/optimization unit 113 sorts the products in descending order of the delivery delay probability.
  • the production plan creation/optimization unit 113 creates a production plan for the product with the highest delivery delay probability under the conditions of the input information.
  • the production plan first, the product with the highest delivery delay probability is created under conditions that allow free use of resources and process schedules, so the production plan with the lowest delivery delay probability is created. be able to.
  • step S305 the production plan creation/optimization unit 113 checks whether the upper limit for creating the production plan for each product set by the external input/output unit 114 has been reached. If not (step S305, No), the process proceeds to step S306.
  • step S306 the production plan creation/optimization unit 113 creates a production plan for the product with the second highest probability of delivery delay within the range of resources and process schedules not used in step S304. After creating the production plan, the production plan creation/optimization unit 113 returns to the process of step S305, and repeats the process of step S306 as long as the upper limit for creating the production plan for each product is not exceeded.
  • step S305 When the upper limit for creating a production plan for a single product has been exceeded by repeated processing (step S305, Yes), the production plan creation/optimization unit 113 advances the process to step S307.
  • step S307 the production plan creation/optimization unit 113 performs the following operations for all remaining products for which production plans have not been created, under the conditions of resources and process schedules not used in steps S304 to S306. The processes from step S102 to step S109 are executed to create a production plan.
  • the probability of delay in delivery and the number of days are used as evaluation values, but the risk of delay is evaluated in consideration of the penalty amount for delay in delivery.
  • the production planning support system 200 of the present embodiment includes history information related to past production plans for design work, procurement work, and manufacturing work; Constraints on production, including the dependency relationship that indicates the preceding-succeeding relationship between each process and the upper limit number of human resources and machinery that can be used at a certain time, and the history of process delays in part or all of each process,
  • Constraints on production including the dependency relationship that indicates the preceding-succeeding relationship between each process and the upper limit number of human resources and machinery that can be used at a certain time, and the history of process delays in part or all of each process,
  • the storage unit 100 which stores the history of delivery delays of products produced in each process, history information related to production plans accumulated in the storage unit 100 and information related to process delays or parts delivery delays from suppliers
  • a process delay analysis unit 111 that calculates the conditional delay probability and the expected value of the delay time for each production condition in each process from history information, and the execution order and execution timing of each process based on the constraint conditions.
  • a process delay prediction unit 112 that calculates the expected value of the number of delivery delay days, an evaluation parameter input unit 116 that sets a weighting parameter for a delivery delay evaluation index related to the delivery date, a weighting parameter, the probability of product delivery delay occurring, and delivery a production planning/optimizing unit 113 that calculates a delivery delay evaluation index from the expected value of the delay days and creates a process sequence that minimizes the delivery delay evaluation index from among the combinations of selectable process sequences; have.
  • the risk of process delay occurrence is predicted from history information of past process delays, and while observing resource constraints such as facilities and personnel and execution order constraints between processes, Based on the delay risk, it is possible to formulate a production plan to minimize the risk of product delivery delay and to consider rescheduling when a delay occurs.
  • the process delay analysis unit 111 analyzes process delays such as differences in parts suppliers, customers, part types, etc., differences in design personnel, manufacturing personnel, and procurement personnel, differences in manufacturing order, design of order quantity, and part delivery. occurrence probability and delay time can be evaluated.
  • the production plan creation/optimization unit 113 refers to the delay evaluation result described above, calculates a delivery delay prediction in the created production plan, and selects the most delayed delivery from among various production plan candidates. A low-risk production plan can be selected and output.
  • the production planning support system 200 of the present embodiment it is possible to achieve reliable customer delivery by creating a production plan with a low risk of delay in delivery in the production planning of products.
  • the storage unit 101 Order information 102 Production plan information 103 Actual production information 104 Procurement information 105 Constraint information 106 Resource information 107 Warehouse information 108 Supplier information 109 Parts list information 110 Analysis information 110a Delay forecast information for each process 110b Delay forecast information for each supplier 111 process delay analysis unit 112 process delay prediction unit (production plan creation unit) 113 Production Planning and Optimization Department (Production Planning Department) 114 external input/output unit 115 production planning risk visualization unit 116 evaluation parameter input unit 117 production planning list 118 delay process list 120 processing unit 130 communication I/F 140 display unit 150 input unit 200 production planning support system NW network S100, S200, S300 production planning calculation processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

This production planning support system (200) has a step delay analyzing unit (111) that analyzes conditions under which delays in the various steps of producing a product and delays in delivery occur and calculates an expected value of a conditional delay probability and number of delay days for each production condition relating to the steps to generate analyzed information, and a production plan creation/optimization unit (113) that creates a plurality of production plan candidates for the product, calculates, relating to all the steps constituting the production plan candidates, a delivery delay probability and number of delivery delay days of each product in the product plan candidates on the basis of the expected value of the conditional delay probability and the number of delay days based on the analyzed information, adds the delivery delay probability and the number of delay days of the products to calculate a delivery delay assessment index relating to the production plan candidates, and, among the product plan candidates, adopts the product plan candidates having the lowest delivery delay assessment index.

Description

生産計画支援システムProduction planning support system
 本発明は、設計、調達、製造のプロセスに関する複数の工程からなる生産計画を行うための情報を生成する生産計画支援システムに関するものである。 The present invention relates to a production planning support system that generates information for performing production planning consisting of multiple steps related to design, procurement, and manufacturing processes.
 本発明は、製造業における設計工程から調達、製造に関する生産計画の立案に関するものである。生産計画立案する既存の仕組みとして、Material RequirementステップS Planning(MRP)やAdvanced Planning and ステップScheduling(APステップS)といったものが存在し、これらは受注情報、需要予測や、リードタイム、設備の負荷等を考慮して資源調達計画や生産計画を行う。ただし、これらの仕組みは、生産計画の一部である工程や調達部品が遅延することは前提としていない。 The present invention relates to planning production plans related to procurement and manufacturing from the design process in the manufacturing industry. Existing systems for planning production include Material Requirement Step S Planning (MRP) and Advanced Planning and Step Scheduling (AP Step S). Consider resource procurement plans and production plans. However, these mechanisms are not premised on delays in the processes and procured parts that are part of the production plan.
 一方、特許文献1では、標準日程における納期に対して前倒しで調達される際にかかるコストと、標準日程における納期に対して遅延して調達される際にかかるコストと、に基づいて工程の全体のコストの期待値が最小となるような、生産計画システムが開示されている。 On the other hand, in Patent Document 1, the entire process is based on the cost of procuring ahead of the delivery date on the standard schedule and the cost of procuring after the delivery date on the standard schedule. A production planning system is disclosed that minimizes the expected cost of production.
 また、特許文献2では、工程の製造実績情報から統計処理を行うことにより、部材ごとの所要時間の確率分布を算出し、部材の納期に対する遅延確率を算出し、製造指令段階で製造遅延を予測できるようにした納期管理支援システムが開示されている。 In addition, in Patent Document 2, by performing statistical processing from the manufacturing performance information of the process, the probability distribution of the required time for each component is calculated, the probability of delay with respect to the delivery date of the component is calculated, and the manufacturing delay is predicted at the manufacturing order stage. A delivery date management support system is disclosed.
特開2012―181626号公報JP 2012-181626 A 特開2005―071136号公報JP-A-2005-071136
 しかしながら、特許文献1に開示された生産管理システムは、調達品の遅延に伴うコストと調達品の納期の前倒しに伴うコストを比較して最適化を図るものであるため、工程の単純な前倒しを実施することがないケース、例えば、内製に関する工程の遅延対策で資源制約がある場合は、ある工程を前倒しすると別工程の資源が足りなくなるといったケースには対応できない。 However, the production management system disclosed in Patent Document 1 aims for optimization by comparing the costs associated with delaying procured items and the costs associated with bringing forward the delivery date of procured items. For example, if there are resource constraints due to delays in processes related to in-house production, it is not possible to deal with cases where moving forward a process leads to a shortage of resources for another process.
 また、特許文献2に開示された納期管理支援システムは、工程の遅延を予測することはできるが、予測結果をもとに、生産計画を立案しているわけではない。 In addition, although the delivery date management support system disclosed in Patent Document 2 can predict process delays, it does not formulate production plans based on the prediction results.
 本発明は、前記の課題を解決するための発明であって、製品の生産計画において、納品遅延リスクの低い生産計画を作成することで、確実な顧客納品を実現することができる生産計画支援システムを提供することを目的とする。 The present invention is an invention for solving the above-mentioned problems, and is a production planning support system that can realize reliable customer delivery by creating a production plan with a low risk of delivery delay in product production planning. intended to provide
 前記目的を達成するため、本発明の生産計画支援システムは、受注情報、調達情報、制約条件情報、資源情報、倉庫情報、取引先情報、部品表情報、過去の生産計画情報、過去の生産実績情報と、を含むデータベースの情報に基づき、製品の各工程の遅延と納品の遅延が発生する条件を分析し、工程に関する生産条件ごとに、条件付きの遅延確率と遅延日数の期待値を算出して、分析情報とする工程遅延分析部と、前記製品の生産計画の候補を複数作成し、前記生産計画の候補を構成する全ての工程に関して、前記分析情報を基づく各工程の条件付きの遅延確率と遅延日数の期待値を元に、前記生産計画の候補における各製品の納品遅延確率と納品遅延日数の期待値を算出し、各製品の前記納品遅延確率と前記納品遅延日数の期待値を合算することで、前記生産計画の候補に関する納品遅延評価指標を算出し、前記生産計画の候補のうち、前記納品遅延評価指標が小さい生産計画の候補を採用する生産計画作成部と、を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。 In order to achieve the above object, the production planning support system of the present invention includes order information, procurement information, constraint information, resource information, warehouse information, supplier information, bill of materials information, past production plan information, past production results. Based on the information in the database containing information, analyze the conditions that cause delays in each process of the product and delays in delivery, and calculate the expected value of the conditional delay probability and delay days for each production condition related to the process. a process delay analysis unit as analysis information; a plurality of candidates for the production plan of the product; and the expected value of the number of days of delay, calculate the expected value of the probability of delay in delivery and the number of days of delay in delivery for each product in the production plan candidate, and add up the expected value of the probability of delay in delivery and the number of days of delay in delivery of each product. and a production plan creating unit that calculates a delivery delay evaluation index for the production plan candidate, and adopts a production plan candidate having a small delivery delay evaluation index among the production plan candidates. Characterized by Other aspects of the present invention are described in embodiments below.
 本発明によれば、製品の生産計画において、納品遅延リスクの低い生産計画を作成することで、確実な顧客納品を実現することができる。 According to the present invention, it is possible to achieve reliable customer delivery by creating a production plan with low delivery delay risk in the production plan of the product.
実施形態に係る生産計画支援システムの基本構成を示す図である。1 is a diagram showing the basic configuration of a production planning support system according to an embodiment; FIG. 実施形態1に係る生産計画算出処理を示すフローチャートである。4 is a flowchart showing production plan calculation processing according to the first embodiment; 過去の生産計画情報の例を示す図である。It is a figure which shows the example of the past production plan information. 過去の生産実績情報の例を示す図である。It is a figure which shows the example of past production performance information. 工程遅延分析部が分析した分析情報の例を示す図である。It is a figure which shows the example of the analysis information which the process delay analysis part analyzed. 受注情報の例を示す図である。It is a figure which shows the example of order reception information. 制約条件情報の例を示す図である。It is a figure which shows the example of constraint condition information. 部品情報の例を示す図である。It is a figure which shows the example of component information. 倉庫情報の例を示す図である。It is a figure which shows the example of warehouse information. 生産計画作成・最適化部が最初に作成した生産計画の候補1の例を示す図である。FIG. 4 is a diagram showing an example of production plan candidate 1 first created by a production plan creation/optimization unit; 工程ごとの条件付きの遅延確率、遅延日数期待値の計算例を示す図である。FIG. 10 is a diagram showing a calculation example of conditional delay probability and expected value of delay days for each process; 納品先ごとの条件付きの遅延確率、遅延日数期待値の計算例を示す図である。FIG. 10 is a diagram showing a calculation example of a conditional delay probability and an expected value of delay days for each delivery destination; 納品先ごとの納品遅延評価指標と全体納品遅延評価指標の例を示す図である。FIG. 10 is a diagram showing an example of a delivery delay evaluation index for each delivery destination and an overall delivery delay evaluation index; 評価パラメータ入力部で設定された、納入先ごとに設定される納品遅延確率と納品遅延日数期待値の重みづけパラメータである、納品遅延確率重み係数と納品遅延日数期待値重み係数を示す図である。FIG. 10 is a diagram showing a delivery delay probability weighting factor and an expected delivery delay days value weighting factor, which are weighting parameters for the delivery delay probability and expected delivery delay days value set for each delivery destination, which are set in the evaluation parameter input section; . 生産計画作成・最適化部が算出した生産計画の候補の例である。This is an example of production plan candidates calculated by the production plan creation/optimization department. 生産計画作成・最適化部が算出した生産計画の他の候補の例である。It is an example of another candidate for the production plan calculated by the production plan creation/optimization department. 生産計画作成・最適化部が算出した生産計画の別の候補の例である。It is an example of another candidate for the production plan calculated by the production plan creation/optimization department. 実施形態2に係る、納品遅延が発生した際にリスケジュールを考慮した生産計画算出処理を示すフローチャートである。FIG. 11 is a flow chart showing production plan calculation processing in consideration of rescheduling when a delivery delay occurs, according to the second embodiment; FIG. 受注情報の例を示す図である。It is a figure which shows the example of order reception information. 取引先情報の例を示す図である。It is a figure which shows the example of customer information. 調達情報の例を示す図である。It is a figure which shows the example of procurement information. 分析情報に記憶された作業に関する各工程の遅延予測情報の例を示す図である。FIG. 4 is a diagram showing an example of delay prediction information for each process related to work stored in analysis information; 分析情報に記憶された部品に関する各取引先の遅延予測情報の例を示す図である。FIG. 10 is a diagram showing an example of delay prediction information of each supplier regarding parts stored in analysis information; 生産計画作成・最適化部が算出した、当初の生産計画を示す図である。FIG. 4 is a diagram showing an initial production plan calculated by a production plan creation/optimization unit; 図18Aの生産計画における遅延工程リストの例を示す図である。FIG. 18B is a diagram showing an example of a delayed process list in the production plan of FIG. 18A; 図18Aの生産計画を生産計画リストに登録した結果を示す図である。It is a figure which shows the result of having registered the production plan of FIG. 18A in the production plan list|wrist. 図19Aの生産計画に係るリスケジュール指標の結果を示す図ある。FIG. 19B is a diagram showing the results of rescheduling indexes related to the production plan of FIG. 19A; 図21の新しい生産計画の候補を追加登録した結果を示す図である。FIG. 22 is a diagram showing a result of additionally registering candidates for the new production plan in FIG. 21; 工程遅延の前提条件における生産計画の例を示す図である。It is a figure which shows the example of the production plan in the precondition of process delay. 図18Aとは別の新しい生産計画の候補で、製品3の部品3が納品されるタイミングだけが異なるケースの例を示す図である。FIG. 18B is a diagram showing an example of a new production plan candidate different from that in FIG. 18A , in which only the delivery timing of the part 3 of the product 3 is different. 図21の生産計画の見直しを実施した例を示す図である。21. It is a figure which shows the example which implemented the review of the production plan of FIG. 生産リスク可視化部が表示部に警告表示した結果を示す図である。It is a figure which shows the result of the production risk visualization part which displayed the warning on the display part. 実施形態3に係る生産計画算出処理を示すフローチャートである。14 is a flow chart showing production plan calculation processing according to the third embodiment.
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
<実施形態1>
 図1は、本発明の実施形態に係る生産計画支援システム200の基本構成の例を示す図である。生産計画支援システム200は、記憶部100(データベース)、処理部120、通信I/F130、表示部140、入力部150を有し、通信I/F130を介してネットワークNWと接続されている。記憶部100には、受注情報101、生産計画情報102、生産実績情報103、調達情報104、制約条件情報105、資源情報106、倉庫情報107、取引先情報108、部品表情報109、分析情報110、生産計画リスト117、遅延工程リスト118等が記憶されている。処理部120は、工程遅延分析部111、工程遅延予測部112、生産計画作成・最適化部113、外部入出力部114、生産計画リスク可視化部115、評価パラメータ入力部116等を有する。なお、工程遅延予測部112、生産計画作成・最適化部113をまとめて、生産計画作成部としてもよい。
Embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
<Embodiment 1>
FIG. 1 is a diagram showing an example of the basic configuration of a production planning support system 200 according to an embodiment of the invention. The production planning support system 200 has a storage unit 100 (database), a processing unit 120, a communication I/F 130, a display unit 140, and an input unit 150, and is connected to the network NW via the communication I/F 130. The storage unit 100 contains order information 101, production plan information 102, actual production information 103, procurement information 104, constraint information 105, resource information 106, warehouse information 107, supplier information 108, bill of materials information 109, analysis information 110. , a production plan list 117, a delayed process list 118, and the like are stored. The processing unit 120 includes a process delay analysis unit 111, a process delay prediction unit 112, a production plan creation/optimization unit 113, an external input/output unit 114, a production plan risk visualization unit 115, an evaluation parameter input unit 116, and the like. Note that the process delay prediction unit 112 and the production plan creation/optimization unit 113 may be combined into a production plan creation unit.
(記憶部100(データベース))
 外部入出力部114は、生産計画に必要な各種情報を、記憶部100に格納する。受注情報101には、顧客からの受注情報が格納される。調達情報104には、どの部品をどの取引先に発注し、いつ納品されたかといった調達情が格納される。制約条件情報105には、工程間の先行後続関係や、工程がどの機械や人といった資源や場所を使用するのか、といった各工程に関する制約条件の情報を格納される。資源情報106には、人や機械といった生産に必要となる資源をどれくらい保有しているかといった情報が格納される。倉庫情報107には、倉庫のスペースの大きさや積載可能な重量情報や倉庫に格納される部品や製品の実績と予定の情報が格納される。取引先情報108には、部品を発注する取引先の情報が格納される。部品表情報109には、各製品を構成する部品と、部品を製造する際の工程の情報が格納される。
(Storage unit 100 (database))
The external input/output unit 114 stores various information necessary for production planning in the storage unit 100 . Order information 101 stores order information from customers. The procurement information 104 stores procurement information such as which part was ordered from which supplier and when it was delivered. The constraint information 105 stores constraint information regarding each process, such as the precedence-successor relationship between processes, and the resources and locations such as which machines and people are used by the processes. The resource information 106 stores information about how many resources such as people and machines required for production are held. The warehouse information 107 stores the size of the space in the warehouse, information on the weight that can be loaded, and information on the performance and schedule of parts and products stored in the warehouse. The supplier information 108 stores information about suppliers who place orders for parts. The parts list information 109 stores information on the parts that make up each product and the process for manufacturing the parts.
 生産計画情報102には、生産計画作成・最適化部113が作成する生産計画の情報が格納される。生産実績情報103には、生産計画に基づき実行された生産実績の情報が格納される。分析情報110には、工程遅延分析部111が分析した情報が格納される。生産計画リスト117、遅延工程リスト118については、後記する。 The production plan information 102 stores information on the production plan created by the production plan creation/optimization unit 113 . The actual production information 103 stores information on the actual production performed based on the production plan. The analysis information 110 stores information analyzed by the process delay analysis unit 111 . The production plan list 117 and the delayed process list 118 will be described later.
(処理部120)
 工程遅延分析部111は、受注情報101、調達情報104、制約条件情報105、資源情報106、取引先情報108、部品表情報109を収集し、生産計画情報102と生産実績情報103とを比較し、各工程の遅延と納品の遅延が発生する条件を統計分析し、製品、取引先、部品、製造数量といった工程に関する生産条件ごとに、条件付きの遅延確率と遅延日数の期待値を算出し、分析情報110に情報を格納する。
(Processing unit 120)
The process delay analysis unit 111 collects order information 101, procurement information 104, constraint information 105, resource information 106, supplier information 108, and parts list information 109, and compares the production plan information 102 with the actual production information 103. , statistically analyze the conditions that cause delays in each process and delivery delays, and calculate the expected value of the conditional delay probability and delay days for each production condition related to processes such as products, business partners, parts, and manufacturing quantities, Information is stored in analysis information 110 .
 特許文献2において、部材の納期に対する遅延確率を用いている。これに対し、本実施形態においては、生産条件に関する条件付きの遅延確率にすることで、同じ製品の同じ工程であっても、作業者の違いや機械設備の違いによって、遅延確率や遅延時間の期待が変わることを考慮できるようにしている。 In Patent Document 2, the delay probability for the delivery date of parts is used. On the other hand, in the present embodiment, by setting the delay probability with conditions related to the production conditions, even in the same process of the same product, the delay probability and the delay time may vary depending on the difference in workers and the difference in machinery and equipment. Allowing for changing expectations.
 工程遅延予測部112は、工程と、製品、取引先、部品、製造数量といったその工程に関する生産条件の情報を入力値として、その生産条件と合致する条件付きの遅延確率と遅延日数の期待値を、分析情報110から取得する。工程遅延予測部112は、取得した条件付きの遅延確率と遅延日数の期待値を、生産計画作成・最適化部113に、戻り値として渡す。 The process delay prediction unit 112 uses information about a process and production conditions related to the process, such as products, suppliers, parts, and production quantities, as input values to calculate a conditional delay probability and an expected value of delay days that match the production conditions. , from the analysis information 110 . The process delay prediction unit 112 passes the acquired expected value of the delay probability with conditions and the number of delay days to the production planning/optimization unit 113 as a return value.
 生産計画作成・最適化部113は、受注情報101、調達情報104、制約条件情報105、資源情報106、取引先情報108、部品表情報109から、いつどの工程をどのように実行するかを定める生産計画の候補を作成する。生産計画の候補は、受注情報101にある顧客から注文を受けた各製品が納期を満たすよう、各生産工程が組立される。 The production plan creation/optimization unit 113 determines when and how to execute which process from order information 101, procurement information 104, constraint information 105, resource information 106, supplier information 108, and parts list information 109. Create production plan candidates. As for the production plan candidates, each production process is assembled so that each product ordered by the customer in the order information 101 meets the delivery date.
 生産計画作成・最適化部113は、作成した生産計画の候補を構成する全て工程に関して、各工程と各工程に関する生産条件の情報を工程遅延予測部112に入力し、その工程の条件付きの遅延確率と遅延日数の期待値を受け取る。これら各工程の条件付きの遅延確率と遅延日数の期待値を元に、生産計画作成・最適化部113は、生産計画の候補における各製品の納品遅延確率と納品遅延日数の予測値を算出する。 The production plan creation/optimization unit 113 inputs information on each process and production conditions for each process to the process delay prediction unit 112 for all the processes that constitute the created production plan candidate, and determines the conditional delay of the process. Receive expected values for probabilities and days late. Based on the expected value of the conditional delay probability and the number of delay days for each process, the production planning/optimization unit 113 calculates the predicted value of the delivery delay probability and the number of days of delay for each product in the production plan candidate. .
 生産計画作成・最適化部113は、評価パラメータ入力部116から、納品遅延確率及び納品遅延日数に関する評価の重みづけパラメータを取得する。この重みづけパラメータは、顧客との納品遅延の損害金に関する契約が、納品遅延が発生したかしないかで決まる場合は、納品遅延確率に関する重みづけパラメータを大きな値にし、納品遅延日数に応じた損害金であるならば、納品遅延日数に関する評価の重みづけパラメータを大きな値に設定することで、顧客ごとの契約条件の違いを、納品遅延評価指標に反映できるようにしている。また、顧客ごとによる納品遅延の損害金額の違いも、重みづけパラメータの値を、顧客ごとに調整することで対応できるようにしている。 The production plan creation/optimization unit 113 acquires evaluation weighting parameters for the delivery delay probability and the delivery delay days from the evaluation parameter input unit 116 . If the contract with the customer regarding damages for late delivery is determined by whether or not the delivery is delayed, this weighting parameter should be set to a large value for the weighting parameter regarding the probability of delivery delay, and the damage according to the number of days of delivery delay If it is money, the weighting parameter for the evaluation of the number of days of delivery delay is set to a large value, so that the difference in contract conditions for each customer can be reflected in the delivery delay evaluation index. In addition, the difference in the amount of damage caused by delayed delivery for each customer can be dealt with by adjusting the value of the weighting parameter for each customer.
 生産計画作成・最適化部113は、この重みづけパラメータと、各製品の納品遅延確率及び納品遅延日数を掛け合わせ合算することで、生産計画の候補に関する納品遅延評価指標を算出する。 The production plan creation/optimization unit 113 multiplies and totals the weighting parameters by the delivery delay probability and delivery delay days of each product to calculate the delivery delay evaluation index for the production plan candidate.
 続いて、生産計画作成・最適化部113は、同一の入力情報の条件下で先ほどとは異なる生産計画の候補を作成し、先ほどと同様な方法で納品遅延評価指標を算出する。前回の生産計画の候補と、新しい生産計画の候補の納品遅延評価指標を比較し、納品遅延評価指標の小さい生産計画の候補を採用する。この操作を、生産計画の候補がなくなるまで繰り返すことで、納品遅延評価指標が最も小さい生産計画の候補を、最適な生産計画として採用する。生産計画作成・最適化部113は、最適化した生産計画を生産計画情報102に記録するとともに、外部入出力部114から生産計画の情報を外部に出力する。 Next, the production plan creation/optimization unit 113 creates candidates for a different production plan under the same input information conditions, and calculates the delivery delay evaluation index by the same method as before. The delivery delay evaluation index of the previous production plan candidate and the new production plan candidate are compared, and the production plan candidate with the smaller delivery delay evaluation index is adopted. By repeating this operation until there are no production plan candidates, the production plan candidate with the smallest delivery delay evaluation index is adopted as the optimum production plan. The production plan creation/optimization unit 113 records the optimized production plan in the production plan information 102, and outputs information on the production plan from the external input/output unit 114 to the outside.
 外部入出力部114は、前記したように、生産計画に必要な各種情報を、記憶部100に格納するとともに、生産計画の情報を、ネットワークNWを介して外部に出力する。 As described above, the external input/output unit 114 stores various information necessary for the production plan in the storage unit 100, and outputs the information on the production plan to the outside via the network NW.
 生産計画リスク可視化部115は、納品遅延評価指標が大きい工程と、納品遅延評価指標が小さい工程を判別できるように、表示部140の画面に可視化する。 The production planning risk visualization unit 115 visualizes the process on the screen of the display unit 140 so that a process with a large delivery delay evaluation index and a process with a small delivery delay evaluation index can be distinguished.
 評価パラメータ入力部116は、入力部150を介して、前記したように、納品遅延確率及び納品遅延日数に関する評価の重みづけパラメータを取得する。 The evaluation parameter input unit 116 acquires, via the input unit 150, evaluation weighting parameters for the delivery delay probability and the delivery delay days, as described above.
 以下、生産計画支援システム200の処理の詳細を説明する。
 図2は、実施形態1に係る生産計画算出処理S100を示すフローチャートである。フローチャートを、図3~図12Dを参照して説明する。
Details of the processing of the production planning support system 200 will be described below.
FIG. 2 is a flow chart showing the production plan calculation process S100 according to the first embodiment. Flowcharts are described with reference to FIGS. 3-12D.
 ステップS101において、工程遅延分析部111が、図1に記載の記憶部100に格納される各情報を収集し、その各情報を統計解析することで、各工程の生産条件ごとに、条件付きの遅延確率と遅延日数の期待値からなる分析情報110を生成する。 In step S101, the process delay analysis unit 111 collects each information stored in the storage unit 100 shown in FIG. Analytical information 110 is generated which consists of expected values of delay probability and delay days.
 図3は、過去の生産計画情報102の例の抜粋である。図4は。過去の生産実績情報103の例の抜粋である。図3と図4における製番は製造番号の略称で、製品ごとの個体識別番号である。図5は、工程遅延分析部111が分析した分析情報110の例を示す図である。この例では、工程遅延分析部111が、生産条件を作業者、製品、部品、工程ごととし、この生産条件ごとに条件付きの遅延確率と遅延日数期待値を分析情報110に記録・格納している。図5によれば、作業者A、製品1、工程2において、遅延確率、遅延日数期待値が「0」でないことがわかる。 FIG. 3 is an excerpt of an example of past production plan information 102. Figure 4. It is an excerpt of an example of past production performance information 103. FIG. The manufacturing number in FIGS. 3 and 4 is an abbreviation for manufacturing number, which is an individual identification number for each product. FIG. 5 is a diagram showing an example of analysis information 110 analyzed by the process delay analysis unit 111. As shown in FIG. In this example, the process delay analysis unit 111 sets production conditions for each worker, product, part, and process, and records and stores in the analysis information 110 the conditional delay probability and the expected delay days value for each production condition. there is According to FIG. 5, for worker A, product 1, and process 2, it can be seen that the delay probability and the expected value of delay days are not "0".
 ここで、前記したように、本実施形態では、条件付きの遅延確率、遅延日数期待値を採用している。生産条件に関する条件付きの遅延確率にすることで、同じ製品の同じ工程であっても、作業者の違いや機械設備の違いによって、遅延確率や遅延時間の期待が変わることを考慮できる。図3、図4の例で求め方を説明すると、図3の過去の生産計画情報102の例の場合、作業者A、製品1、工程2の工程は、9月2日、9月4日、9月6日、9月8日の4日間ある。しかし、図4の過去の生産実績情報103によれば、遅延が発生し、9月9日に、1日追加されている。この場合、図5の作業者A、製品1、工程2の工程において、遅延確率は1回/4回=0.25、遅延日数期待値は、1日/4日=0.25となる。一方、作業者B、製品1、工程2の工程は、9月2日、9月4日、9月6日、9月8日の4日間あるが、図4の過去の生産実績情報103によれば、遅延が発生していない。この場合、図5の作業者B、製品1、工程2の工程において、遅延確率は0、遅延日数期待値は0となる。 Here, as described above, in this embodiment, the conditional delay probability and the expected number of delay days are adopted. By using conditional delay probabilities related to production conditions, it is possible to take into account that even for the same process of the same product, the expected delay probability and delay time will change due to differences in workers and machinery. 3 and 4, in the case of the past production plan information 102 shown in FIG. , September 6th, and September 8th. However, according to the past production record information 103 in FIG. 4, a delay occurred and one day was added on September 9th. In this case, in the process of worker A, product 1, and process 2 in FIG. 5, the delay probability is 1/4 times=0.25, and the expected number of delay days is 1 day/4 days=0.25. On the other hand, the worker B, the product 1, and the process 2 have four days of September 2nd, September 4th, September 6th, and September 8th. According to it, no delay occurred. In this case, in the process of worker B, product 1, and process 2 in FIG. 5, the delay probability is 0 and the expected number of delay days is 0.
 図2に戻り、ステップS102において、生産計画作成・最適化部113は、受注情報101、制約条件情報105、資源情報106、倉庫情報107、取引先情報108、部品表情報109の各入力情報から生産計画を作成する。 Returning to FIG. 2, in step S102, the production plan creation/optimization unit 113, from each input information of the received order information 101, the constraint information 105, the resource information 106, the warehouse information 107, the supplier information 108, and the parts list information 109, Create a production plan.
 図6は、受注情報101の例である。顧客から受け付ける発注日、納入予定日と、生産可能になる生産開始可能日と生産完了期限日が格納されている。図7は、制約条件情報105の例であり、製品1を生産する際の各工程間の順序制約や、生産担当できる作業者、標準工数や使用する機械設備の情報が定義されている。図7において、「先行工程」の欄から、製品1は工程1の後、工程2が実施され、「作業者」の欄から、作業者Aか作業者Bが対応でき、「標準工数」の欄から、標準工数が1日で、「機械設備」の欄から、機械設備は使用しないことがわかる。 FIG. 6 is an example of the order information 101. It stores the order date received from the customer, the scheduled delivery date, the production start possible date, and the production completion deadline date. FIG. 7 shows an example of the constraint information 105, which defines order constraints between processes when producing the product 1, workers who can be in charge of production, standard man-hours, and information on machinery and equipment to be used. In FIG. 7, from the "Preceding Process" column, Process 2 is performed for Product 1 after Process 1, from the "Worker" column, either Worker A or Worker B can handle From the column, it can be seen that the standard man-hour is 1 day, and from the "Machine Equipment" column, no machinery is used.
 図8は、部品表情報109を示す図であり、各製品の部品と工程から生産されるかを示しており、図8において、「部品階層1」と「部品階層2」の欄から、製品1は部品1から構成され、「工程」の欄から、製品1は、部品1を必要とする工程1と、工程2とから生産されることがわかる。 FIG. 8 is a diagram showing the parts table information 109, which indicates whether each product is produced from parts and processes. In FIG. 1 is composed of part 1, and it can be seen from the "process" column that product 1 is produced from process 1 and process 2, which require part 1.
 図9は、倉庫情報107を示す図であり、各倉庫における各棚において、各部品の在庫数量と、各部品を置くスペースが何個分あるかを示す空きスペースから構成されている。図9から部品1の在庫が存在しているため、製品1を生産するにあたり、部品1は取引先に発注せず在庫から割り当てできる。  Fig. 9 is a diagram showing the warehouse information 107, which consists of the stock quantity of each part and the empty space indicating how many spaces there are for each part on each shelf in each warehouse. As shown in FIG. 9, since the inventory of part 1 exists, in producing the product 1, the part 1 can be allocated from the inventory without placing an order with the supplier.
 図10Aは、生産計画作成・最適化部113が、図1に記載の記憶部100に格納される各情報に基づき、最初に作成した生産計画の候補1(生産計画P11,P11A)である。納入先がA社向けの製品は、10月2日に工程1を、10月3日に工程2をそれぞれ作業者Aが実施する計画で、一方、納入先がB社向けの製品は、工程1を10月3日に、工程2を10月4日に作業者Bが実施する計画となっている。この生産計画の候補1は、図5、図6、図7の情報と整合性を保っていることがわかる。なお、見やすさのため、図3とは異なり、図10Aは製品ごとの時系列での生産工程順で示している。 FIG. 10A shows candidates 1 (production plans P11 and P11A) of the production plan first created by the production plan creation/optimization unit 113 based on the information stored in the storage unit 100 shown in FIG. Worker A plans to carry out Process 1 on October 2nd and Process 2 on October 3rd for products destined for Company A, while for products destined for Company B, Process 1 is scheduled to be carried out by worker B on October 3, and process 2 is to be carried out by worker B on October 4. It can be seen that this production plan candidate 1 maintains consistency with the information in FIGS. For ease of viewing, unlike FIG. 3, FIG. 10A shows the order of production steps in chronological order for each product.
 図2に戻り、ステップS103において、生産計画作成・最適化部113は、図10Aの生産計画の候補における各工程の情報を工程遅延予測部112に入力し、入力された情報と合致する工程の条件付きの遅延確率と遅延日数期待値を取得する。図10Aの納入先がA社、製品1、工程1、作業者Aの場合、図5から工程の条件付きの遅延確率、遅延日数期待値ともに0となる。同様に、図5から、他の工程についても条件付きの遅延確率、遅延日数期待値を算出したものが、図10B(生産計画P11B)である。 Returning to FIG. 2, in step S103, the production plan creation/optimization unit 113 inputs the information of each process in the production plan candidate of FIG. Get the conditional delay probability and expected days delay. If the delivery destination in FIG. 10A is company A, product 1, process 1, and worker A, both the conditional delay probability of the process and the expected value of delay days are 0 from FIG. Similarly, FIG. 10B (production plan P11B) is obtained by calculating conditional delay probabilities and delay days expected values for other processes from FIG.
 ステップS104において、各工程の条件付きの遅延確率と遅延日数期待値から、生産計画作成・最適化部113は、各製品の納品遅延確率と納品遅延日数期待値を算出する。図10C(生産計画P11C)は、その算出結果を記載したものである。図10Bから、納入先がA社向けの製品に関しては、工程の条件付きの遅延確率が0でない工程は工程2のみであり、工程2の後続工程が存在しないため、納品遅延確率と納品遅延日数期待値は、それぞれ0.25となる。一方納入先がB社向けの製品に関しては、各工程の条件付きの遅延確率が0のため、納品遅延確率と納品遅延日数期待値も0となる。図10D((生産計画P11D)の詳細は後記する。 In step S104, the production planning/optimization unit 113 calculates the delivery delay probability and the expected value of the number of days of delay for each product from the conditional delay probability and the expected value of the number of days of delay of each process. FIG. 10C (production plan P11C) describes the calculation result. From FIG. 10B, regarding the product for which the delivery destination is Company A, the only process in which the conditional delay probability of the process is not 0 is process 2, and there is no subsequent process to process 2. Therefore, the delivery delay probability and the number of delivery delay days The expected value is 0.25 for each. On the other hand, regarding the product to be delivered to company B, the conditional delay probability of each process is 0, so the delivery delay probability and the expected value of delivery delay days are also 0. Details of FIG. 10D ((production plan P11D) will be described later.
 続いて、生産計画作成・最適化部113は、納品遅延確率と納品遅延日数期待値と、納品遅延確率重み係数と納品遅延日数期待値重み係数から、納品遅延評価指標を算出する。 Subsequently, the production planning/optimization unit 113 calculates a delivery delay evaluation index from the delivery delay probability, the expected value of the number of days of delivery delay, and the weighting coefficient of the probability of delivery delay and the expected value of the number of days of delivery delay.
 図11は、評価パラメータ入力部116で設定された、納入先ごとに設定される納品遅延確率と納品遅延日数期待値の重みづけパラメータ119である、納品遅延確率重み係数と納品遅延日数期待値重み係数を示す図である。図11の例では、納入先であるA社とB社どちらも同じ値が設定されているが、納入先ごとに設定することができる。 FIG. 11 shows a weighting parameter 119 for the delivery delay probability and the expected delivery delay days set for each delivery destination set in the evaluation parameter input unit 116, which is a delivery delay probability weighting coefficient and a delivery delay days expected value weighting. FIG. 4 is a diagram showing coefficients; In the example of FIG. 11, the same value is set for both company A and company B, which are delivery destinations, but it can be set for each delivery destination.
 なお、図11における、工程遅延確率重み係数と工程遅延日数期待値重み係数は、工程遅延リスクの評価指標を算出するときの重み係数であり、工程遅延警告基準は、遅延リスクが高い工程を警告表示するためのパラメータであるが、これらについては後述する。 In FIG. 11, the process delay probability weighting factor and the process delay days expected value weighting factor are weighting factors when calculating the evaluation index of the process delay risk, and the process delay warning criterion warns a process with high delay risk. Parameters for display will be described later.
 本実施形態で導入した納入遅延評価指標について説明する。
 ある納入先に対する、ある製品の納入遅延評価指標は、(1)式で算出される。
 納品遅延評価指標=納品遅延確率重み係数×製品の納品遅延確率
   +納品遅延日数期待値重み係数×製品の納品遅延日数期待値
                           ・・・(1)
The delivery delay evaluation index introduced in this embodiment will be described.
A delivery delay evaluation index of a certain product for a certain delivery destination is calculated by the formula (1).
Delivery delay evaluation index = delivery delay probability weighting coefficient × product delivery delay probability + expected delivery delay days weighting coefficient × expected delivery delay days of product (1)
 また、生産計画の候補に関する全体納品遅延評価指標は、生産対象となる製品全ての納品遅延評価指標の合算値として、(2)式で算出される。
 全体納品遅延評価指標=Σ生産対象の全製品 納品遅延評価指標 ・・・(2)
Further, the overall delivery delay evaluation index related to the production plan candidate is calculated by the formula (2) as the total value of the delivery delay evaluation indices of all the products to be produced.
Overall delivery delay evaluation index = Σ delivery delay evaluation index for all products to be produced (2)
 図11の例では、納品遅延確率重み係数と納品遅延日数期待値重み係数が全て0.5であり、納入先ごとの納品遅延確率と納品遅延日数期待値が図10Cの値であるため、納入先ごとの納品遅延評価指標と全体納品遅延評価指標は、図10D(生産計画P11D)に示す値となる。 In the example of FIG. 11, the delivery delay probability weighting coefficient and the delivery delay days expected value weighting coefficient are all 0.5, and the delivery delay probability and delivery delay days expected value for each delivery destination are the values shown in FIG. The delivery delay evaluation index for each destination and the overall delivery delay evaluation index have values shown in FIG. 10D (production plan P11D).
 図2に戻り、ステップS105において、生産計画作成・最適化部113は、別の生産計画の候補が存在するか否かを判定し、収集した受注情報101や制約条件情報105といった各情報と条件を満たす候補が存在しない場合(ステップS105,No)、候補1を最適な生産計画として処理を終了する。 Returning to FIG. 2, in step S105, the production plan creation/optimization unit 113 determines whether or not there is another production plan candidate. If there is no candidate that satisfies (step S105, No), candidate 1 is regarded as the optimum production plan, and the process ends.
 別の生産計画の候補が存在する場合(ステップS105,Yes)、生産計画作成・最適化部113は、ステップS106において、この新しい候補を、候補2に設定する。生産計画作成・最適化部113は、ステップS102で作成したから生産計画の候補1の工程順序を変更することで、別の生産計画の候補を生成する。 If another production plan candidate exists (step S105, Yes), the production plan creation/optimization unit 113 sets this new candidate as candidate 2 in step S106. The production plan creation/optimization unit 113 generates another production plan candidate by changing the process sequence of the production plan candidate 1 created in step S102.
 ステップS106、ステップS107、ステップS108において、生産計画作成・最適化部113は、生産計画の候補2に対して、ステップS102、ステップS103、ステップS104と同様の処理を実行し、候補2における全体納品遅延評価指標を算出する。 In steps S106, S107, and S108, the production plan creation/optimization unit 113 executes the same processes as in steps S102, S103, and S104 for candidate 2 of the production plan. Calculate the delay metrics.
 ステップS109において、生産計画作成・最適化部113は、生産計画の候補1と候補2の全体納品遅延評価指標を比較し、値が小さい生産計画の候補を、生産計画の候補1に再設定し、ステップS105に戻る。 In step S109, the production plan creation/optimization unit 113 compares the overall delivery delay evaluation index of the production plan candidates 1 and 2, and resets the production plan candidate with the smaller value as the production plan candidate 1. , the process returns to step S105.
 ステップS105からステップS109を、生産計画の候補がなくなるまで繰り返し実行することで、全体納品遅延評価指標が最も小さい生産計画が選択される。 By repeatedly executing steps S105 to S109 until there are no production plan candidates, the production plan with the smallest overall delivery delay evaluation index is selected.
 図12Aは、生産計画作成・最適化部113が算出した生産計画の候補(生産計画P12)の例である。図12Bは、生産計画作成・最適化部113が算出した生産計画の他の候補(生産計画P13)の例である。図12Cは、生産計画作成・最適化部113が算出した生産計画の別の候補(生産計画P14)の例である。 FIG. 12A is an example of a production plan candidate (production plan P12) calculated by the production plan creation/optimization unit 113. FIG. FIG. 12B is an example of another candidate (production plan P13) for the production plan calculated by the production plan creation/optimization unit 113 . FIG. 12C is an example of another production plan candidate (production plan P14) calculated by the production plan creation/optimization unit 113 .
 図12A、図12B、図12Cは、ステップS105からステップS109の処理において、生産計画作成・最適化部113が算出する本実施形態での生産計画の候補である。図12A~図12Cの生産計画と、図10の生産計画の候補の中から、全体納品遅延評価指標が一番小さい図12Cが、生産計画として選択される。 FIGS. 12A, 12B, and 12C are production plan candidates in this embodiment calculated by the production plan creation/optimization unit 113 in the processing from step S105 to step S109. 12C, which has the smallest overall delivery delay evaluation index, is selected as the production plan from among the production plans of FIGS. 12A to 12C and the production plan candidates of FIG.
 以上の手続きにより、生産計画支援システム200は、製品の納品遅延リスクを最小化する生産計画を作成することができる。 Through the above procedures, the production planning support system 200 can create a production plan that minimizes the risk of product delivery delays.
 なお、本実施形態では、図2のステップS103において、生産計画の候補における工程の情報を工程遅延予測部112に入力し、入力した情報と合致する工程の条件付きの遅延確率と遅延日数期待値を取得しているが、ニューラルネットワークといった機械学習の方法を用いて、入力情報と類似した工程の条件付きの遅延確率と遅延日数期待値を取得してもよい。 In this embodiment, in step S103 of FIG. 2, the information of the process in the production plan candidate is input to the process delay prediction unit 112, and the conditional delay probability and the expected number of delay days of the process matching the input information are calculated. is obtained, a machine learning method such as a neural network may be used to obtain the conditional delay probability and the expected value of the number of delay days for a process similar to the input information.
<実施形態2>
 実施形態2では、実施形態1の方法に基づき作成した製品の納品遅延リスクを最小化する生産計画の工程順序が複数存在する場合、納品遅延が発生した際にリスケジュールが可能な生産計画を選択することができる。
<Embodiment 2>
In the second embodiment, when there are multiple production plan process sequences that minimize the risk of product delivery delays created based on the method of the first embodiment, a production plan that can be rescheduled when a delivery delay occurs is selected. can do.
 図13は、実施形態2に係る、納品遅延が発生した際にリスケジュールを考慮した生産計画算出処理S200を示すフローチャートである。以下、このフローチャートを、図7~図9、図14~図23を参照して、詳細に説明する。 FIG. 13 is a flowchart showing a production plan calculation process S200 that takes rescheduling into account when a delivery delay occurs, according to the second embodiment. This flow chart will be described in detail below with reference to FIGS. 7 to 9 and 14 to 23. FIG.
 図14は、受注情報101の例を示す図である。製品2、製品3、製品4の納入予定日は、いずれも11月5日である。製品2、製品3、製品4に関する制約条件情報105は図7に、部品表情報109は図8に、倉庫情報107は図9に示す。 FIG. 14 is a diagram showing an example of the order information 101. FIG. The scheduled delivery dates for Product 2, Product 3, and Product 4 are November 5th. Constraint condition information 105 regarding product 2, product 3, and product 4 is shown in FIG. 7, parts table information 109 is shown in FIG. 8, and warehouse information 107 is shown in FIG.
 図15は、取引先情報108の例を示す図である。取引先情報108には、部品の取引先、取扱部品、取引先住所等が記載されている。図16は、調達情報104の例を示す図である。調達情報104には、部品2、部品3、部品4の発注日、納品予定等が記載されている。 FIG. 15 is a diagram showing an example of supplier information 108. FIG. The supplier information 108 describes the supplier of the parts, the handling parts, the address of the supplier, and the like. FIG. 16 is a diagram showing an example of the procurement information 104. As shown in FIG. The procurement information 104 describes the order dates, delivery schedules, and the like of parts 2, 3, and 4. FIG.
 図14の受注情報101の製品2、製品3、製品4は、図8の部品表情報109から、部品1、部品2、部品3、部品4を必要とする。また、図9の倉庫情報107から、部品1と部品2は在庫があるので、それを生産に使用すればよく、部品3は在庫がないことがわかる。なお、部品2が図9に記載がないのは、倉庫に保管できない部品、つまり納品したらすぐに製造着手する必要がある部品であることを意味している。したがって、本実施形態例では、製品を生産するにあたり部品2と部品3を発注する必要がある。 Products 2, 3, and 4 of the order information 101 in FIG. 14 require parts 1, 2, 3, and 4 from the parts list information 109 in FIG. Also, from the warehouse information 107 in FIG. 9, it can be seen that since parts 1 and 2 are in stock, they can be used for production, and part 3 is out of stock. The fact that the part 2 is not shown in FIG. 9 means that it is a part that cannot be stored in a warehouse, that is, a part that needs to be manufactured immediately after delivery. Therefore, in this embodiment, it is necessary to order the parts 2 and 3 in order to produce the product.
 図13に戻り、ステップS201において、処理部120は、図2に記載の生産計画算出処理におけるステップS101からステップS109の各処理を実施し、製品の納品遅延リスクである全体納品遅延評価指標を最小化する生産計画を作成する。 Returning to FIG. 13, in step S201, the processing unit 120 performs each process from step S101 to step S109 in the production plan calculation process shown in FIG. create a production plan that
 図17Aは、分析情報110に記憶された作業に関する各工程の遅延予測情報110aの例を示す図である。作業に関する各条件には、図17Aに示すように、作業者、機械設備、製品、部品、工程の組合せがあり、各組合せによる遅延確率および遅延日数期待値が算出される。例えば、「作業者A、機械C、製品2、部品2、工程1」の場合には、遅延確率が0、遅延日数期待値が0であり、遅延が発生しないことがわかる。 FIG. 17A is a diagram showing an example of delay prediction information 110a for each process related to work stored in analysis information 110. FIG. As shown in FIG. 17A, each condition related to work includes combinations of workers, machinery, products, parts, and processes, and the delay probability and the expected delay days value for each combination are calculated. For example, in the case of "worker A, machine C, product 2, part 2, process 1", the delay probability is 0 and the expected number of delay days is 0, indicating that no delay will occur.
 図17Bは、分析情報110に記憶された部品に関する各取引先の遅延予測情報110bの例を示す図である。図17Bは、工程遅延分析部111が図16の調達情報104から統計解析して算出した。図17Bにおいて、部品2、X社の場合、遅延確率が0.5、遅延日数期待値が0.5であるのは、図16において、4回の取引のうち2回遅れており、遅延確率は2/4=0.5であり、延べ4日の納期に対し2日の遅れを生じているため、遅延日数期待値は2/4=0.5となる。 FIG. 17B is a diagram showing an example of delay prediction information 110b for each supplier regarding parts stored in analysis information 110. FIG. FIG. 17B was calculated by the process delay analysis unit 111 by statistically analyzing the procurement information 104 of FIG. In FIG. 17B, in the case of part 2 and company X, the delay probability is 0.5 and the delay days expected value is 0.5. is 2/4=0.5, and since there is a delay of 2 days with respect to the delivery date of 4 days in total, the expected value of delay days is 2/4=0.5.
 図18Aは、生産計画作成・最適化部113が算出した、当初の生産計画P21を示す図である。図18Bは、図18Aの生産計画における遅延工程リスト118の例を示す図である。ここでは、図18Aの生産計画P21を、図17Aと図17Bの遅延予測情報から、製品の納品遅延リスクを最小化する方法について説明する。なお、図18Aにおいて、部品が登録されている日付は、部品が納品され生産に使用可能となったタイミングを意味している。 FIG. 18A is a diagram showing the initial production plan P21 calculated by the production plan creation/optimization unit 113. FIG. FIG. 18B is a diagram showing an example of the delayed process list 118 in the production plan of FIG. 18A. Here, a method for minimizing the delivery delay risk of the product based on the production plan P21 in FIG. 18A and the delay prediction information in FIGS. 17A and 17B will be described. In FIG. 18A, the date on which the part is registered means the timing when the part was delivered and became available for production.
 図13に戻り、ステップS202の処理では、ステップS201で算出した生産計画と全体納品遅延評価指標を、生産計画リスト117に登録する。図19Aは、図18Aの生産計画P21を、生産計画リスト117に登録した結果(生産計画リスト117a)を示す図である。ステップS202の処理時点では、図19Aのリスケジュール指標は、後続処理を実施した結果、値が更新されるため、初期値の0が設定されている。 Returning to FIG. 13, in the process of step S202, the production plan and the overall delivery delay evaluation index calculated in step S201 are registered in the production plan list 117. FIG. 19A is a diagram showing the result (production plan list 117a) of registering the production plan P21 of FIG. 18A in the production plan list 117. FIG. At the time of processing in step S202, the initial value of 0 is set for the rescheduling index in FIG. 19A because the value is updated as a result of the subsequent processing.
 図13に戻り、ステップS203の処理では、生産計画リスト117に新規に登録された生産計画の各工程に関して、分析情報110から、工程の条件付きの遅延確率が0でない工程を抽出し、遅延工程リスト118に、条件付きの遅延確率と遅延日数期待値とともに格納する。 Returning to FIG. 13, in the process of step S203, for each process of the production plan newly registered in the production plan list 117, from the analysis information 110, the process whose conditional delay probability is not 0 is extracted, and the delayed process Stored in list 118 along with the conditional delay probability and expected delay days.
 図18Aには、納品遅延確率、納品遅延日数期待値等が記載されているが、各工程の遅延確率および遅延日数期待値が示されていない。各工程の遅延確率および遅延日数期待値は、図17Aおよび図17Bを考慮して判断される。図17Aの作業に関する各工程の遅延予測情報110aから各工程の作業が遅れる条件付きの遅延確率は全て0であり、一方、図17Bの部品に関する各取引先の遅延予測情報110bから部品2のみ納品が遅延する確率が0.5であるため、部品2を使用する製品2の工程1のみ遅延するリスクがある。 Fig. 18A shows the delivery delay probability, the expected value of the number of days of delivery delay, etc., but does not show the probability of delay and the expected value of the number of days of delay for each process. The probabilities of delay and expected days of delay for each step are determined in view of FIGS. 17A and 17B. From the delay prediction information 110a of each process related to the work in FIG. 17A, all the conditional delay probabilities that the work of each process will be delayed are 0. On the other hand, from the delay prediction information 110b of each supplier related to the parts of FIG. has a probability of 0.5 that is delayed, there is a risk that only process 1 of product 2 using part 2 will be delayed.
 生産計画作成・最適化部113は、条件付きの遅延確率が0でない遅延工程と、その工程を特定するための関連情報を、遅延工程リスト118に登録する。図18Bは、図18Aの生産計画における遅延工程リスト118であり、遅延工程を特定する情報として、納入先と製品、日付の情報を格納している。また、その工程が遅れる条件付きの遅延確率と遅延日数期待値、行番を意味するNo.を格納している。 The production planning/optimization unit 113 registers delay processes with conditional delay probabilities other than 0 and related information for identifying the processes in the delay process list 118 . FIG. 18B is the delayed process list 118 in the production plan of FIG. 18A, and stores information on delivery destinations, products, and dates as information for specifying delayed processes. It also stores the conditional delay probability that the process will be delayed, the expected value of the number of delay days, and the No. which means the line number.
 図13に戻り、ステップS204とステップS205の処理で、生産計画作成・最適化部113は、遅延工程リスト118から工程を1つ選択し、遅延日数期待値分遅延したと仮定して生産計画を作成し直す。本実施形態例では、図18Bから、遅延工程は、納入先がC社、製品2の工程1のみが遅延工程リスト118に登録されているため、この工程が1日遅延したと設定する。ここで、図18Bでは、遅延日数期待値が0.5日であるが、本実施形態例では1日単位の工程を最小単位としているため、小数点以下を切り上げし、遅延日数を1日としている。 Returning to FIG. 13, in the processes of steps S204 and S205, the production plan creation/optimization unit 113 selects one process from the delay process list 118, and assumes that it is delayed by the number of delay days expected value, and then prepares the production plan. recreate. In this embodiment, as shown in FIG. 18B, only Process 1 of Product 2 with Company C as the delivery destination is registered in the delayed process list 118, so this process is set to be delayed by one day. Here, in FIG. 18B, the expected number of days of delay is 0.5 days, but in this embodiment, since the minimum unit of the process is 1 day, the number after the decimal point is rounded up and the number of days of delay is set to 1 day. .
 ステップS205の処理で、生産計画作成・最適化部113は、ステップS204の工程遅延を前提として、すなわち、納入先がC社、製品2の工程1が1日遅延し、11月3日に遅延したことを前提に、ステップS102からステップS109の処理を実行し、生産計画と全体納品遅延評価指標を算出する。図20はこの前提条件におけるステップS205の算出結果である。 In the process of step S205, the production plan creation/optimization unit 113 assumes the process delay of step S204, that is, the delivery destination is Company C, the process 1 of the product 2 is delayed by one day, and the process is delayed on November 3rd. On the premise that it has been completed, the processing from step S102 to step S109 is executed to calculate the production plan and the overall delivery delay evaluation index. FIG. 20 shows the calculation result of step S205 in this precondition.
 図18Aの当初の生産計画P21と、図20のステップS205の算出結果の生産計画P22とを比較する。図20の生産計画P22の場合、C社・製品2は、1日ずれて11月3日、11月4日に計画され、D社・製品3は、作業者Aの関係から、1日ずれて11月4日、11月5日に計画され、E社・製品4は、作業者Aの関係から、工程2が1日ずれて11月5日に計画される。その結果として、D社・製品3およびE社・製品4の納品遅延確率が1、納品遅延日数期待値が1となる。これにより、納品遅延評価指標はそれぞれ1となり、全体納品遅延評価指標が2.0となる。なお、図20の表中の太線の枠は、図18Aからの変更箇所を示している。 Compare the initial production plan P21 in FIG. 18A with the production plan P22 calculated in step S205 in FIG. In the case of production plan P22 in FIG. 20, company C/product 2 is scheduled for November 3 and November 4 with a one-day delay, and company D/product 3 is delayed by one day due to worker A's relationship. For Company E, Product 4, Process 2 is scheduled for November 5 with a shift of one day due to Worker A's relationship. As a result, the delivery delay probability of company D/product 3 and company E/product 4 is 1, and the expected value of the number of delivery delay days is 1. As a result, the delivery delay evaluation index becomes 1, and the overall delivery delay evaluation index becomes 2.0. In addition, the thick-line frame in the table of FIG. 20 indicates the changed part from FIG. 18A.
 ステップS206の処理で、生産計画作成・最適化部113は、リスケジュール指標の更新値を以下の(3)式から算出し、生産計画リストのリスケジュール指標に加算する。ここで、(3)式で、ステップS204で選択した工程の条件付きの遅延確率を乗算している理由は、ステップS204の工程の遅延の発生しやすさを考慮するためである。 In the process of step S206, the production plan creation/optimization unit 113 calculates the updated value of the rescheduling index from the following formula (3) and adds it to the rescheduling index in the production plan list. Here, the reason why the conditional delay probability of the process selected in step S204 is multiplied in the equation (3) is to consider the likelihood of delay occurring in the process of step S204.
 リスケジュール指標の更新値
    =ステップS205で算出した全体納品遅延評価指標
    ×ステップS204で選択した工程の条件付きの遅延確率
                           ・・・(3)
Updated value of rescheduling index=Overall delivery delay evaluation index calculated in step S205×Conditional delay probability of the process selected in step S204 (3)
 本実施形態例では、図20から全体納品遅延評価指標は2.0であり、図18Bから工程の条件付きの遅延確率は0.5のため、リスケジュール指標の更新値は1.0となる。この値を、ステップS202で生産計画リスト117に登録した生産計画のリスケジュール指標に加算する。図19Bは、リスケジュール指標の更新値を、リスケジュール指標に加算した結果(生産計画リスト117b)である。 In this embodiment, the overall delivery delay evaluation index is 2.0 from FIG. 20, and the conditional delay probability of the process is 0.5 from FIG. 18B, so the updated rescheduling index is 1.0. . This value is added to the rescheduling index of the production plan registered in the production plan list 117 in step S202. FIG. 19B shows the result (production plan list 117b) of adding the updated value of the rescheduling index to the rescheduling index.
 ステップS207の処理で、生産計画作成・最適化部113は、遅延工程リストの中に、未選択の工程があるか否かを判定する。未選択の工程がある場合(ステップS207,Yes)、ステップS204の処理に戻る。未選択の工程が存在しない場合(ステップS207,No)、ステップS208に進む。ここでは、図18Bに示す通り、遅延する工程は1つだけなので、ステップS208の処理に進む。本実施形態例では、遅延工程リストに登録された工程は1つのみであるが、複数の工程がある場合は、各工程のリスケジュール指標の更新値が、リスケジュール指標に加算されることになる。 In the process of step S207, the production planning/optimization unit 113 determines whether or not there is an unselected process in the delayed process list. If there is an unselected process (step S207, Yes), the process returns to step S204. If there is no unselected process (step S207, No), the process proceeds to step S208. Here, as shown in FIG. 18B, only one process is delayed, so the process proceeds to step S208. In this embodiment, only one process is registered in the delayed process list, but if there are multiple processes, the updated value of the rescheduling index for each process is added to the rescheduling index. Become.
 ステップS208の処理では、生産計画作成・最適化部113は、生産計画リスト117に登録されていない生産計画で、かつ、ステップS201で算出した生産計画の全体納品遅延評価指標が同じ値になる生産計画を探索する。図21は、図18Aとは別の新しい生産計画P23の候補で、図18Aとは製品3の部品3が納品されるタイミングだけが異なるケースである。なお、図21の表中の太線枠が変更箇所である。 In the process of step S208, the production plan creation/optimization unit 113 selects a production plan that is not registered in the production plan list 117 and that has the same value as the overall delivery delay evaluation index of the production plan calculated in step S201. Explore plans. FIG. 21 shows a candidate for a new production plan P23 different from that in FIG. 18A, in which only the delivery timing of part 3 of product 3 is different from that in FIG. 18A. It should be noted that the bold line frame in the table of FIG. 21 is the changed part.
 ステップS209の処理で、生産計画作成・最適化部113は、探索した結果、新しい生産計画の候補があるか否かを判定し、新しい生産計画の候補が見つかった場合(ステップS209,Yes)、ステップS210の処理に進む。一方、生産計画作成・最適化部113は、新しい生産計画の候補がない場合(ステップS209,No)、ステップS211に進む。 In the process of step S209, the production plan creation/optimization unit 113 determines whether or not there is a new production plan candidate as a result of the search, and if a new production plan candidate is found (step S209, Yes), The process proceeds to step S210. On the other hand, when there is no new production plan candidate (step S209, No), the production plan creation/optimization unit 113 proceeds to step S211.
 ステップS210の処理で、生産計画作成・最適化部113は、ステップS208で探索した新しい生産計画の候補を、生産計画リスト117に追加登録した上、ステップS203の処理に戻る。図19Cは、図21の新しい生産計画P23の候補を追加登録した結果(生産計画リスト117c)を示す図である。ステップS202と同様に、No.2の新しい生産計画のリスケジュール指標には初期値の0が設定されている。 In the process of step S210, the production plan creation/optimization unit 113 additionally registers the new production plan candidate found in step S208 in the production plan list 117, and then returns to the process of step S203. FIG. 19C is a diagram showing the result (production plan list 117c) of additionally registering candidates for the new production plan P23 of FIG. As in step S202, the rescheduling index of the new production plan No. 2 is set to 0, which is the initial value.
 ステップS208の新しい生産計画の候補に対して、生産計画作成・最適化部113は、ステップS203からステップS207の処理を実施する。ステップS203の処理結果は、図18Aと同じであり、ステップS208の新しい生産計画の候補に対するステップS204とステップS205の処理結果を、図22の生産計画P24に示す。ステップS208の新しい生産計画P23の候補は、図21に示す通り、部品3の納品日が図18Aと比較して1日早いため、製品2の工程1と、製品3の工程1が交換可能である。このため、図22の生産計画P24では、工程1が遅延したときの全体納品遅延評価指標が0となる。 The production plan creation/optimization unit 113 performs the processes from step S203 to step S207 for the new production plan candidate in step S208. The processing result of step S203 is the same as in FIG. 18A, and the processing result of steps S204 and S205 for the new production plan candidate of step S208 is shown in production plan P24 of FIG. As shown in FIG. 21, the candidate for the new production plan P23 in step S208 is that the delivery date of part 3 is one day earlier than that in FIG. be. Therefore, in the production plan P24 of FIG. 22, the overall delivery delay evaluation index is 0 when process 1 is delayed.
 すなわち、図21の生産計画P23と、図22のステップS205の算出結果の生産計画P24とを比較する。図22の生産計画P24の場合、C社・製品2は、1日ずれて11月3日、11月4日に計画され、D社・製品3は、作業者Aが11月2日に作業ができるから、1日前にずれて11月2日、11月3日に計画され、E社・製品4は、図21と同様に計画される。その結果として、C社・製品2、D社・製品3およびE社・製品4の納品遅延確率が0、納品遅延日数期待値が0となる。これにより、納品遅延評価指標はそれぞれ0となり、全体納品遅延評価指標が0となる。なお、図22の表中の太線の枠は、図21からの変更箇所を示している。 That is, the production plan P23 of FIG. 21 is compared with the production plan P24 of the calculation result of step S205 of FIG. In the case of the production plan P24 in FIG. 22, Company C/Product 2 is scheduled for November 3 and November 4 with a one-day delay, and Company D/Product 3 is scheduled for November 2nd by worker A. Therefore, the schedule is shifted one day earlier to November 2nd and November 3rd, and Company E's product 4 is scheduled in the same way as in FIG. As a result, the delivery delay probability of company C/product 2, company D/product 3, and company E/product 4 is 0, and the expected value of days of delivery delay is 0. As a result, the delivery delay evaluation index is set to 0, and the overall delivery delay evaluation index is set to 0. In addition, the thick-line frames in the table of FIG. 22 indicate the changed parts from FIG.
 リスケジュール指標の更新値は、図21の生産計画P23の候補に関する遅延工程リストが図18Bから工程の条件付きの遅延確率は0.5で、一方、全体納品遅延評価指標は0であるため、ステップS206の計算を実行すると、0の値になる。したがって、ステップS203からステップS207の処理を実施した結果、図21の生産計画P23の候補のリスケジュール指標の値は0のままで、生産計画リストは図19Cから値が更新されない。 The updated value of the rescheduling index is the conditional delay probability of the process from FIG. When the calculation of step S206 is performed, the value is 0. Therefore, as a result of performing the processing from step S203 to step S207, the value of the rescheduling index of the candidate for the production plan P23 in FIG. 21 remains 0, and the value of the production plan list is not updated from FIG. 19C.
 続いて、ステップS208,ステップS209の処理に進む。本実施形態例では、他の生産計画の候補が存在しないため、ステップS209の判定処理で、ステップS211に進む。 Then, the process proceeds to steps S208 and S209. In this embodiment, since there is no other production plan candidate, the process proceeds to step S211 in the determination process of step S209.
 ステップS211の処理において、生産計画作成・最適化部113は、生産計画リスト117の中から、リスケジュール指標が最も小さい生産計画を選択する。ステップS201からステップS211までの一連の処理を実施した結果、生産計画リスト117は、図19Cなので、リスケジュール指標の小さい図19CのNo.2の生産計画が、納品遅延が発生した際にリスケジュールが可能な生産計画として算出される。 In the process of step S211, the production plan creation/optimization unit 113 selects the production plan with the smallest rescheduling index from the production plan list 117. As a result of performing a series of processes from step S201 to step S211, the production plan list 117 is shown in FIG. 19C, so the production plan No. 2 in FIG. is calculated as a possible production plan.
 生産計画リスク可視化部115は、分析情報110、生産計画リスト117の各情報から、評価パラメータ入力部116で指定した工程遅延警告基準より大きい工程を、ディスプレイ等の表示機器に警告表示する。なお、工程遅延警告基準は、下記(4)式から算出される。 From the analysis information 110 and the production plan list 117, the production plan risk visualization unit 115 displays a warning on a display device such as a display for processes that are greater than the process delay warning standard specified in the evaluation parameter input unit 116. Note that the process delay warning criterion is calculated from the following equation (4).
 工程遅延警告基準
    =工程遅延確率重み係数×工程遅延確率
    +工程遅延日数期待値重み係数×工程遅延日数期待値
                           ・・・(4)
Process delay warning criteria = process delay probability weighting coefficient x process delay probability + expected number of days of process delay weighting factor x expected number of days of process delay (4)
 図23は、生産リスク可視化部が表示部に警告表示した結果(画面141)を示す図である。本実施形態例では、図10の評価パラメータ入力部116の設定値と、図17の分析情報から、製品2の工程1を工程遅延する可能性が高い工程として、実線枠として警告表示している。また、工程1が遅延したとき、工程を入れ替え可能な工程を点線枠で表示している。このような表示により、生産計画支援システム200は、利用者がどの工程が、遅延リスクが高いのか、遅延時の対応をわかりやすくしている。また、納品遅延確率、納品遅延日数期待値、納品遅延評価指標、全体納品遅延評価指標は、生産計画リスト117の情報から、工程を組み替えた時の値、すなわち図22の値に変更して表示している。 FIG. 23 is a diagram showing the result (screen 141) of the warning displayed on the display unit by the production risk visualization unit. In this embodiment, based on the setting values of the evaluation parameter input section 116 of FIG. 10 and the analysis information of FIG. 17, the process 1 of the product 2 is displayed as a warning with a solid line frame as a process with a high possibility of being delayed. . In addition, when the process 1 is delayed, the process that can be replaced is displayed with a dotted line frame. With such a display, the production planning support system 200 makes it easy for the user to understand which process has a high delay risk and how to deal with the delay. In addition, the delivery delay probability, the expected value of delivery delay days, the delivery delay evaluation index, and the overall delivery delay evaluation index are changed from the information in the production plan list 117 to the values when the processes are rearranged, that is, the values shown in FIG. is doing.
 以上の手続きにより、本実施形態に係る生産計画支援システム200は、納品遅延が発生した際にリスケジュールが可能な生産計画を算出することができる、また、生産計画リスク可視化により、遅延リスクの高い工程の把握と対応をするための機能を提供する。 With the above procedure, the production planning support system 200 according to the present embodiment can calculate a production plan that can be rescheduled when a delivery delay occurs. Provides functions for grasping and responding to processes.
<実施形態3>
 実施形態1および実施形態2に基づく生産計画の算出方法では、工程順序、資源の組合せ等に関して、すべての組合せに対して計算を実行するため、製品の数や工程の数が増加すると、計算量が膨大になり計算時間も大幅に長くなる場合がある。実施形態3では、本来複数の製品の生産計画を同時に作成するのに対して、製品単体の納品遅延リスク高いものから順に生産計画を作成し、資源等を割り当てすることで、計算量を減らしつつ、納品遅延リスクの低い生産計画を作成することを特徴とする。
<Embodiment 3>
In the production planning calculation methods based on Embodiments 1 and 2, calculations are performed for all combinations of process sequences, combinations of resources, etc. Therefore, as the number of products and processes increases, the amount of calculation can be very large and the computation time can be very long. In the third embodiment, production plans for a plurality of products are originally created at the same time. , is characterized by creating a production plan with a low risk of delay in delivery.
 図24は、実施形態3に係る生産計画算出処理S300を示すフローチャートである。
 ステップS301において、工程遅延分析部111が、図1に記載の記憶部100に格納される各情報を収集し、統計解析を行い、生産条件における工程遅延の予測情報を、分析情報110に格納する。
FIG. 24 is a flowchart showing production plan calculation processing S300 according to the third embodiment.
In step S301, the process delay analysis unit 111 collects each piece of information stored in the storage unit 100 shown in FIG. .
 ステップS302の処理で、生産計画作成・最適化部113は、生産する製品単体ごとに生産計画を作成し、分析情報110から各製品単体の納品遅延確率を算出する。
 ステップS303の処理で、生産計画作成・最適化部113は、納品遅延確率の高い製品順に、降順ソートする。
In step S<b>302 , the production plan creation/optimization unit 113 creates a production plan for each product to be produced, and calculates the delivery delay probability of each product from the analysis information 110 .
In the process of step S303, the production plan creation/optimization unit 113 sorts the products in descending order of the delivery delay probability.
 ステップS304の処理で、生産計画作成・最適化部113は、入力情報の条件下で、一番納品遅延確率の高い製品に関する生産計画を作成する。最初に生産計画を作成するにあたり、一番納品遅延確率の高い製品は、資源や工程の日程を自由に利用できる条件で生産計画が作成されるため、納品遅延確率が最も低い生産計画を作成することができる。 In the process of step S304, the production plan creation/optimization unit 113 creates a production plan for the product with the highest delivery delay probability under the conditions of the input information. When creating the production plan first, the product with the highest delivery delay probability is created under conditions that allow free use of resources and process schedules, so the production plan with the lowest delivery delay probability is created. be able to.
 続いて、ステップS305の処理で、生産計画作成・最適化部113は、外部入出力部114から設定される、製品単体で生産計画を作成する上限値に達していないかを確認し、達していない場合(ステップS305,No)、ステップS306の処理に進む。 Subsequently, in the process of step S305, the production plan creation/optimization unit 113 checks whether the upper limit for creating the production plan for each product set by the external input/output unit 114 has been reached. If not (step S305, No), the process proceeds to step S306.
 ステップS306の処理では、生産計画作成・最適化部113は、2番目に納品遅延確率の高い製品に関して、ステップS304で使用されていない資源や工程の日程の範囲で、生産計画を作成する。作成後、生産計画作成・最適化部113は、ステップS305の処理に戻り、製品単体で生産計画を作成する上限値を超えない限り、ステップS306の処理を、繰り返し実施する。 In the process of step S306, the production plan creation/optimization unit 113 creates a production plan for the product with the second highest probability of delivery delay within the range of resources and process schedules not used in step S304. After creating the production plan, the production plan creation/optimization unit 113 returns to the process of step S305, and repeats the process of step S306 as long as the upper limit for creating the production plan for each product is not exceeded.
 繰り返し処理を実施し、製品単体で生産計画を作成する上限値を超えた場合(ステップS305,Yes)、生産計画作成・最適化部113は、ステップS307に処理を進める。ステップS307では、生産計画作成・最適化部113は、残りの生産計画を作成していない製品全てに関して、ステップS304からステップS306で使用されていない資源や工程の日程の条件下で、図2のステップS102からステップS109の処理を実行し、生産計画を作成する。 When the upper limit for creating a production plan for a single product has been exceeded by repeated processing (step S305, Yes), the production plan creation/optimization unit 113 advances the process to step S307. In step S307, the production plan creation/optimization unit 113 performs the following operations for all remaining products for which production plans have not been created, under the conditions of resources and process schedules not used in steps S304 to S306. The processes from step S102 to step S109 are executed to create a production plan.
 製品単体で生産計画を作成する上限値を、計算機で実行可能な数に制限することで、計算時間を抑えつつ、納品遅延リスクの低い生産計画を作成することができる。 By limiting the upper limit for creating a production plan for a single product to the number that can be executed by a computer, it is possible to create a production plan with a low risk of delivery delays while reducing the calculation time.
 なお、本実施形態においては、納期遅延の確率や日数(納期遅延確率、納期遅延日数井期待値)を評価値に利用したが、納品遅延時のペナルティ金額を考慮して、遅延リスクを評価してもよい。 In this embodiment, the probability of delay in delivery and the number of days (probability of delay in delivery, expected number of days in delay in delivery) are used as evaluation values, but the risk of delay is evaluated in consideration of the penalty amount for delay in delivery. may
 本実施形態の生産計画支援システム200は、過去の設計業務、調達業務、製造業務の生産計画に関する履歴情報と、設計、調達、製造の各工程で必要となる人材資源および機械設備に関する情報と、各工程間の先行後続関係を示す依存関係および人材資源や機械設備のある時間で使用可能な上限数を含む生産に関する制約条件と、各工程の一部もしくはすべての工程遅延が発生した履歴と、各工程により生産される製品の納品遅延の履歴が蓄積されている記憶部100に対して、記憶部100に蓄積されている生産計画に関する履歴情報と、工程遅延あるいは取引先からの部品納品遅延に関する履歴情報とから、生産の各工程における生産条件下ごとの条件付きの遅延確率と遅延時間の期待値を算出する工程遅延分析部111と、制約条件の元、各工程の実行順序と実行タイミングを組み替え、この生産計画における各工程、各生産条件と合致、もしくは類似した、条件付きの遅延確率と遅延時間の期待値を履歴情報から取得し、これらの値から製品の納品遅延が発生する確率と納品遅延日数の期待値を算出する工程遅延予測部112と、納期に関する納品遅延評価指標の重みづけパラメータを設定する評価パラメータ入力部116と、重みづけパラメータと製品の納品遅延が発生する確率と納品遅延日数の期待値から納品遅延評価指標を算出し、選択可能な工程順序の組合せの中から、納品遅延評価指標が最小となるような工程順序を作成する生産計画作成・最適化部113とを有する。 The production planning support system 200 of the present embodiment includes history information related to past production plans for design work, procurement work, and manufacturing work; Constraints on production, including the dependency relationship that indicates the preceding-succeeding relationship between each process and the upper limit number of human resources and machinery that can be used at a certain time, and the history of process delays in part or all of each process, For the storage unit 100, which stores the history of delivery delays of products produced in each process, history information related to production plans accumulated in the storage unit 100 and information related to process delays or parts delivery delays from suppliers A process delay analysis unit 111 that calculates the conditional delay probability and the expected value of the delay time for each production condition in each process from history information, and the execution order and execution timing of each process based on the constraint conditions. Recombination, each process in this production plan, the expected value of delay probability and delay time with conditions that match or are similar to each production condition are obtained from history information, and the probability of product delivery delay occurring from these values A process delay prediction unit 112 that calculates the expected value of the number of delivery delay days, an evaluation parameter input unit 116 that sets a weighting parameter for a delivery delay evaluation index related to the delivery date, a weighting parameter, the probability of product delivery delay occurring, and delivery a production planning/optimizing unit 113 that calculates a delivery delay evaluation index from the expected value of the delay days and creates a process sequence that minimizes the delivery delay evaluation index from among the combinations of selectable process sequences; have.
 本実施形態によれば、生産計画において、過去の工程遅延の履歴情報から工程遅延の発生リスクを予測し、設備や人といった資源の制約や、工程間の実行順序制約を守りながら、各工程の遅延リスクに基づき、製品の納品遅延リスクの最小化と、遅延が発生した際のリスケジュールを考慮するよう生産計画を立案することができる。 According to this embodiment, in production planning, the risk of process delay occurrence is predicted from history information of past process delays, and while observing resource constraints such as facilities and personnel and execution order constraints between processes, Based on the delay risk, it is possible to formulate a production plan to minimize the risk of product delivery delay and to consider rescheduling when a delay occurs.
 工程遅延分析部111は、部品の取引先や顧客、部品種別等の違い、設計担当者や製造担当者、調達担当者の違い、製造順序の違いや、受注量の設計や部品納品といった工程遅延の発生確率と遅延時間を評価することができる。 The process delay analysis unit 111 analyzes process delays such as differences in parts suppliers, customers, part types, etc., differences in design personnel, manufacturing personnel, and procurement personnel, differences in manufacturing order, design of order quantity, and part delivery. occurrence probability and delay time can be evaluated.
 生産計画作成・最適化部113は、生産計画を作成するにあたり、前記の遅延評価結果を参照し、作成した生産計画における納品遅延予測を算出し、様々な生産計画の候補の中から最も納品遅延リスクの低い生産計画を選択し、これを出力することができる。 When creating a production plan, the production plan creation/optimization unit 113 refers to the delay evaluation result described above, calculates a delivery delay prediction in the created production plan, and selects the most delayed delivery from among various production plan candidates. A low-risk production plan can be selected and output.
 本実施形態の生産計画支援システム200によれば、製品の生産計画において、納品遅延リスクの低い生産計画を作成することで、確実な顧客納品を実現することができる。 According to the production planning support system 200 of the present embodiment, it is possible to achieve reliable customer delivery by creating a production plan with a low risk of delay in delivery in the production planning of products.
 100  記憶部(データベース)
 101  受注情報
 102  生産計画情報
 103  生産実績情報
 104  調達情報
 105  制約条件情報
 106  資源情報
 107  倉庫情報
 108  取引先情報
 109  部品表情報
 110  分析情報
 110a  各工程の遅延予測情報
 110b  各取引先の遅延予測情報
 111  工程遅延分析部
 112  工程遅延予測部(生産計画作成部)
 113  生産計画作成・最適化部(生産計画作成部)
 114  外部入出力部
 115  生産計画リスク可視化部
 116  評価パラメータ入力部
 117  生産計画リスト
 118  遅延工程リスト
 120  処理部
 130  通信I/F
 140  表示部
 150  入力部
 200  生産計画支援システム
 NW  ネットワーク
 S100,S200,S300  生産計画算出処理
100 storage unit (database)
101 Order information 102 Production plan information 103 Actual production information 104 Procurement information 105 Constraint information 106 Resource information 107 Warehouse information 108 Supplier information 109 Parts list information 110 Analysis information 110a Delay forecast information for each process 110b Delay forecast information for each supplier 111 process delay analysis unit 112 process delay prediction unit (production plan creation unit)
113 Production Planning and Optimization Department (Production Planning Department)
114 external input/output unit 115 production planning risk visualization unit 116 evaluation parameter input unit 117 production planning list 118 delay process list 120 processing unit 130 communication I/F
140 display unit 150 input unit 200 production planning support system NW network S100, S200, S300 production planning calculation processing

Claims (5)

  1.  受注情報、調達情報、制約条件情報、資源情報、倉庫情報、取引先情報、部品表情報、過去の生産計画情報、過去の生産実績情報と、を含むデータベースの情報に基づき、製品の各工程の遅延と納品の遅延が発生する条件を分析し、工程に関する生産条件ごとに、条件付きの遅延確率と遅延日数の期待値を算出して、分析情報とする工程遅延分析部と、
     前記製品の生産計画の候補を複数作成し、前記生産計画の候補を構成する全ての工程に関して、前記分析情報を基づく各工程の条件付きの遅延確率と遅延日数の期待値を元に、前記生産計画の候補における各製品の納品遅延確率と納品遅延日数の期待値を算出し、各製品の前記納品遅延確率と前記納品遅延日数の期待値を合算することで、前記生産計画の候補に関する納品遅延評価指標を算出し、前記生産計画の候補のうち、前記納品遅延評価指標が小さい生産計画の候補を採用する生産計画作成部と、を有する
     ことを特徴とする生産計画支援システム。
    Based on database information including order information, procurement information, constraint information, resource information, warehouse information, supplier information, parts list information, past production plan information, and past production performance information, each process of the product A process delay analysis unit that analyzes the conditions that cause delays and delivery delays, calculates the expected value of the conditional delay probability and delay days for each production condition related to the process, and uses it as analysis information;
    A plurality of production plan candidates for the product are created, and for all the processes that constitute the production plan candidates, the production is performed based on the conditional delay probability of each process based on the analysis information and the expected value of the number of delay days. By calculating the expected value of the delivery delay probability and the delivery delay days of each product in the plan candidate, and adding the delivery delay probability and the delivery delay days expected value of each product, the delivery delay related to the production plan candidate A production planning support system, comprising: a production planning unit that calculates an evaluation index and adopts a production planning candidate with a small delivery delay evaluation index from among the production planning candidates.
  2.  前記生産計画作成部は、前記納品遅延評価指標が最小となるような工程順序の候補が複数存在する場合、前記遅延確率が0でない工程の遅延を模擬し、遅延が発生すると模擬された工程と、別の工程とを入れ替え可能性を評価し、遅延確率のある工程とそれ以外の工程を交換できるような工程順序を作成する
     ことを特徴とする請求項1に記載の生産計画支援システム。
    When there are a plurality of candidates for the process order that minimize the delivery delay evaluation index, the production planning unit simulates the delay of the process whose delay probability is not 0, and simulates the process that is simulated to cause a delay. 2. The production planning support system according to claim 1, wherein the possibility of replacing a process with another process is evaluated, and a process sequence is created so that a process having a delay probability and another process can be replaced.
  3.  前記生産計画作成部は、前記納品遅延確率が高い製品の生産計画を、優先的に生産計画に割り当てする
     ことを特徴とする請求項1に記載の生産計画支援システム。
    2. The production planning support system according to claim 1, wherein the production planning unit preferentially allocates the production plan for the product with the high delivery delay probability to the production plan.
  4.  前記生産計画支援システムは、さらに、
     前記製品の納品遅延確率及び納品遅延日数期待値に関する評価の重み係数を入力する評価パラメータ入力部を有し、
     前記納品遅延評価指標は、式(1)で算出される
     ことを特徴とする請求項1に記載の生産計画支援システム。
    式(1)
     納品遅延評価指標=納品遅延確率重み係数×製品の納品遅延確率
       +納品遅延日数期待値重み係数×製品の納品遅延日数期待値
    The production planning support system further comprises
    an evaluation parameter input unit for inputting an evaluation weighting factor for the delivery delay probability of the product and the expected value of delivery delay days;
    2. The production planning support system according to claim 1, wherein the delivery delay evaluation index is calculated by formula (1).
    Formula (1)
    Delivery delay evaluation index = delivery delay probability weighting coefficient × product delivery delay probability + expected delivery delay days weighting coefficient × expected delivery delay days of product
  5.  過去の設計業務、調達業務、製造業務の生産計画に関する履歴情報と、設計、調達、製造の各工程で必要となる人材資源および機械設備に関する情報と、前記各工程間の先行後続関係を示す依存関係および人材資源や機械設備のある時間で使用可能な上限数を含む生産に関する制約条件と、前記各工程の一部もしくはすべての工程遅延が発生した履歴と、前記各工程により生産される製品の納品遅延の履歴が蓄積されている記憶部に対して、前記記憶部に蓄積されている生産計画に関する履歴情報と、工程遅延あるいは取引先からの部品納品遅延に関する履歴情報とから、生産の各工程における生産条件下ごとの条件付きの遅延確率と遅延時間の期待値を算出する工程遅延分析部と、
     制約条件の元、前記各工程の実行順序と実行タイミングを組み替え、この生産計画における各工程、各生産条件と合致、もしくは類似した、条件付きの遅延確率と遅延時間の期待値を前記履歴情報から取得し、これらの値から製品の納品遅延が発生する確率と納品遅延日数の期待値を算出する工程遅延予測部と、
     納期に関する納品遅延評価指標の重みづけパラメータを設定する評価パラメータ入力部と、
     前記重みづけパラメータと製品の前記納品遅延が発生する確率と前記納品遅延日数の期待値から納品遅延評価指標を算出し、選択可能な工程順序の組合せの中から、前記納品遅延評価指標が最小となるような工程順序を作成する生産計画作成・最適化部とを有する
     ことを特徴とする生産計画支援システム。
    History information related to production plans for past design, procurement, and manufacturing operations; information related to human resources and machinery required in each process of design, procurement, and manufacturing; Constraints on production, including relationships and upper limits on the number of human resources and machinery that can be used at any given time, history of process delays in some or all of the above-mentioned processes, and the number of products produced by each of the above processes For a storage unit in which the history of delivery delays is accumulated, each process of production is processed based on the history information on the production plan accumulated in the storage unit and the history information on process delays or parts delivery delays from business partners. A process delay analysis unit that calculates the conditional delay probability and the expected value of the delay time for each production condition in
    Based on the constraint conditions, the execution order and execution timing of each process are rearranged, and each process and each production condition in this production plan are matched or similar, and the expected value of delay probability and delay time with conditions is obtained from the history information. a process delay prediction unit that obtains and calculates the expected value of the probability of product delivery delays and the number of delivery delay days from these values;
    an evaluation parameter input unit for setting a weighting parameter for a delivery delay evaluation index related to the delivery date;
    A delivery delay evaluation index is calculated from the weighting parameter, the probability of occurrence of the delivery delay of the product, and the expected value of the delivery delay days, and the delivery delay evaluation index is selected from among the combinations of selectable process orders. A production planning support system characterized by having a production planning/optimization section that creates a process sequence such that:
PCT/JP2021/005976 2021-02-17 2021-02-17 Production planning support system WO2022176073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005976 WO2022176073A1 (en) 2021-02-17 2021-02-17 Production planning support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005976 WO2022176073A1 (en) 2021-02-17 2021-02-17 Production planning support system

Publications (1)

Publication Number Publication Date
WO2022176073A1 true WO2022176073A1 (en) 2022-08-25

Family

ID=82930353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005976 WO2022176073A1 (en) 2021-02-17 2021-02-17 Production planning support system

Country Status (1)

Country Link
WO (1) WO2022176073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744954A (en) * 2024-02-19 2024-03-22 江苏中天互联科技有限公司 Intelligent scheduling method and related equipment based on identification analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071136A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Delivery time management support system, its program, recording medium recording its program and delivery time management method for product
JP2010140145A (en) * 2008-12-10 2010-06-24 Hitachi Ltd Project management support device
JP2012181626A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Production planning system and production planning method
JP2015088141A (en) * 2013-11-01 2015-05-07 日立Geニュークリア・エナジー株式会社 Process planning assistance apparatus and process planning assistance method
JP2018206181A (en) * 2017-06-07 2018-12-27 株式会社日立製作所 Business management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071136A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Delivery time management support system, its program, recording medium recording its program and delivery time management method for product
JP2010140145A (en) * 2008-12-10 2010-06-24 Hitachi Ltd Project management support device
JP2012181626A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Production planning system and production planning method
JP2015088141A (en) * 2013-11-01 2015-05-07 日立Geニュークリア・エナジー株式会社 Process planning assistance apparatus and process planning assistance method
JP2018206181A (en) * 2017-06-07 2018-12-27 株式会社日立製作所 Business management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744954A (en) * 2024-02-19 2024-03-22 江苏中天互联科技有限公司 Intelligent scheduling method and related equipment based on identification analysis
CN117744954B (en) * 2024-02-19 2024-05-07 江苏中天互联科技有限公司 Intelligent scheduling method and related equipment based on identification analysis

Similar Documents

Publication Publication Date Title
Mourtzis et al. A toolbox for the design, planning and operation of manufacturing networks in a mass customisation environment
Vieira et al. Rescheduling manufacturing systems: a framework of strategies, policies, and methods
Pfeiffer et al. Stability-oriented evaluation of rescheduling strategies, by using simulation
Hans Resource loading by branch-and-price techniques
JP2012247964A (en) Progress management apparatus and progress management program
Aydilek et al. Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times
Muñoz et al. Supply chain planning and scheduling integration using Lagrangian decomposition in a knowledge management environment
WO2022176073A1 (en) Production planning support system
Fani et al. A Simulation Optimization Tool For The Metal Accessory Suppliers In The Fashion Industry: A Case Study.
Prakash et al. Effects of inventory classifications on CONWIP system: a case study
Thörnblad On the optimization of schedules of a multitask production cell
Roux et al. Multicriteria approach to rank scheduling strategies
Takeda-Berger et al. Reactive production scheduling approach based on inventory availability
JP7495209B2 (en) Management index evaluation device, management index evaluation method, and program
Dolgui et al. Optimization of supply chain planning under uncertainty
JP6695298B2 (en) Order control device
Leißau et al. Backward-Oriented Decision and Planning Approaches in Production Scenarios: A Systematic Literature Review and Potential Solution Approach
Ould-Louly et al. Supply planning optimization under uncertainties
Suryadi et al. Evaluating Location Alternatives for a New Manufacturing Plant using Weighted Sum Model Method
Şehitoğlu et al. DIVIDE-AND-CONQUER: A SYSTEMATIC APPROACH FOR SUBCONTRACTOR SELECTION IN DEFENSE INDUSTRY PROJECTS.
Sahin et al. The first function of engineering management: Planning
Choi et al. Determination of integrated risk degrees in product development project
Mohring Performance Analysis and Capacity Planning of Multi-stage Stochastic Order Fulfilment Systems with Levelled Order Release and Order Deadlines
Reşat Design and analysis of bi-objective flexible job shop scheduling problem: A case study in construction equipment manufacturing industry
Βαρλάς Supply chain stochastic modeling: analysis, design and optimization of flows in supply networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP