WO2022137828A1 - Strain sensor - Google Patents
Strain sensor Download PDFInfo
- Publication number
- WO2022137828A1 WO2022137828A1 PCT/JP2021/040717 JP2021040717W WO2022137828A1 WO 2022137828 A1 WO2022137828 A1 WO 2022137828A1 JP 2021040717 W JP2021040717 W JP 2021040717W WO 2022137828 A1 WO2022137828 A1 WO 2022137828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- sensor
- substrate
- mold resin
- element group
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 131
- 239000011347 resin Substances 0.000 claims abstract description 75
- 229920005989 resin Polymers 0.000 claims abstract description 75
- 239000012790 adhesive layer Substances 0.000 claims description 40
- 238000009429 electrical wiring Methods 0.000 abstract description 4
- 238000006073 displacement reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
Definitions
- the present invention relates to a strain sensor, and more particularly to a strain sensor that detects strain when a force is applied to an object.
- Patent Document 1 discloses a mechanical quantity measuring device that measures strain in a specific direction with a small error.
- the ratio of the substrate thickness to the substrate length in the measuring direction is small, and the ratio of the substrate thickness to the substrate length in the direction perpendicular to the measuring direction is small. Is getting bigger.
- Patent Document 2 discloses a mechanical quantity measuring device that is not easily affected by noise even when circuit operating power is supplied by electromagnetic induction or microwave, and enables highly accurate measurement.
- the strain is measured by adhering the bonded portion to the object to be measured.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a distortion sensor having a configuration that makes it easy to detect distortion of an object.
- One aspect of the present invention is a strain sensor for detecting the strain of a strain-causing body, which is arranged on a package substrate, a base substrate having an electrical wiring portion, and a base substrate.
- a sensor substrate having a plurality of piezo resistance elements, a base substrate on a package substrate, and a mold resin covering the sensor substrate are provided, and the surface of the sensor substrate protrudes from the surface of the molding resin, and the surface of the mold resin and the sensor substrate.
- It is a strain sensor characterized in that the surface serves as a mounting surface for a strain-causing body.
- the surface of the sensor substrate protrudes from the surface of the mold resin, and the surface of the mold resin and the surface of the sensor substrate serve as the mounting surface for the strain-causing body, so that the surface of the sensor substrate is firmly fixed to the strain-causing body around the sensor substrate. At the same time, it makes it easier to detect the distortion from the strain-causing body.
- the sensor substrate may be provided separately from the mold resin. In this way, by providing the protruding sensor board and the sealing mold resin separately, the portion covered with the mold resin is fixed, and the sensor board makes it easier to detect distortion. ..
- the Young's modulus of the sensor substrate is preferably higher than the Young's modulus of the molded resin. Since the Young's modulus of the sensor substrate is higher than the Young's modulus of the mold resin, the mold resin is softer, so that when it is distorted, it moves together with the strain-causing body and becomes easily distorted.
- the longitudinal direction of the sensor substrate is preferably substantially parallel to the strain direction of the strain-causing body. In this way, the longitudinal direction of the sensor substrate is parallel to the strain direction of the strain-causing body, which makes it easier to detect the strain.
- an adhesive layer is provided between the surface of the mold resin and the strain-causing body. This allows the adhesive layer to fix the strain sensor on the surface of the mold resin when it is attached to the strain generator.
- an adhesive layer is provided between the surface of the mold resin and the strain-causing body, and between the surface of the sensor substrate and the strain-causing body, and the adhesive layer from the surface of the sensor substrate to the strain-causing body is provided.
- the thickness of the adhesive layer is preferably thinner than the thickness of the adhesive layer from the surface of the mold resin to the strain-causing body.
- a circuit board having a signal processing circuit for processing a signal output from the sensor board may be provided between the package board and the base board.
- the circuit board can also be protected by being sealed with the mold resin, and can be housed in one package including the circuit board, so that the installation space can be reduced.
- a distortion sensor having a configuration that makes it easy to detect distortion of an object.
- FIG. 1 is a perspective view illustrating the configuration of the strain sensor according to the present embodiment.
- FIG. 2 is a cross-sectional view illustrating the configuration of the strain sensor according to the present embodiment.
- FIG. 3 is an exploded perspective view illustrating the sensor substrate. Note that FIG. 1 shows a state in which the mold resin 40 is seen through. Further, in FIG. 2, the cross section taken along the line AA shown in FIG. 1 is shown. Further, FIG. 3A shows an exploded perspective view of the sensor substrate 30 from the front surface side, and FIG. 3B shows an exploded perspective view of the sensor substrate 30 from the back surface side.
- This embodiment is a strain sensor 1 for detecting the strain of a strain-causing body, and includes a package substrate 10, a base substrate 20, a sensor substrate 30, and a mold resin 40.
- the normal direction of the board mounting surface 10a of the package substrate 10 is the Z direction
- one of the directions orthogonal to the normal direction (Z direction) is the X direction
- the other one is the Y direction. do.
- the package substrate 10 is a portion that constitutes the appearance of the strain sensor 1 together with the mold resin 40, and is a substrate provided on the bottom surface side of the strain sensor 1.
- the size of the package substrate 10 in the plan view in the Z direction is about 2 mm (mm) in length ⁇ about 2 mm in width.
- the package substrate 10 has a substrate mounting surface 10a on which the base substrate 20 is mounted, and a pad surface 10b provided on the side opposite to the substrate mounting surface 10a.
- the pad portion 16 is provided on the extension surface of the substrate mounting surface 10a of the package substrate 10.
- a plurality of electrode terminals 11 are provided on the pad surface 10b of the package substrate 10 in order to obtain continuity with the outside.
- the electrode terminals 11 connect to and conduct with the outside (for example, the flexible substrate F (see FIG. 4 described later)).
- the base substrate 20 is arranged on the package substrate 10 (stacked in the Z direction).
- the base board 20 has a sensor mounting surface 20a on which the sensor board 30 is mounted. Further, the base substrate 20 has an electrical wiring unit 25 that is electrically connected to each of the plurality of piezo resistance elements 35 provided on the sensor substrate 30.
- the sensor board 30 is arranged on the base board 20 (stacked in the Z direction).
- the sensor substrate 30 has a displacement portion 31 and a piezo resistance element 35.
- the sensor substrate 30 has a substantially rectangular shape in a plan view in the Z direction, and a displacement portion 31 is provided at a central portion thereof.
- the displacement portion 31 is a portion that is displaced by receiving the strain of the strain-causing body 100, and is provided on the surface of the sensor substrate 30 on the base substrate 20 side.
- the piezo resistance element 35 is an element that electrically detects the amount of displacement of the displacement portion 31.
- a circuit board 50 may be provided between the package board 10 and the base board 20.
- the circuit board 50 has a signal processing circuit (signal processing IC) that processes the signal output from the sensor board 30.
- signal processing circuit signal processing IC
- the base board 20 and the circuit board 50 are conducted by the first bonding wire 61
- the circuit board 50 and the package board 10 are conducted by the second bonding wire 62.
- the mold resin 40 is a sealing resin that covers the base substrate 20 and the sensor substrate 30 on the package substrate 10.
- the mold resin 40 may be composed of only the resin, or may have a filler component made of an inorganic material or the like.
- the mold resin 40 is a part that constitutes the appearance of the strain sensor 1 together with the package substrate 10.
- the circuit board 50 is provided, the circuit board 50 is covered with the mold resin 40 together with the base board 20 and the sensor board 30.
- the surface 30a of the sensor substrate 30 protrudes from the surface 40a of the mold resin 40, and the surface 40a of the mold resin 40 and the surface 30a of the sensor substrate 30 cause strain. It is a mounting surface with the body 100 (see FIG. 4 described later). In this way, the surface 30a of the sensor substrate 30 protrudes from the surface 40a of the mold resin 40, and the surface 40a of the mold resin 40 and the surface 30a of the sensor substrate 30 serve as mounting surfaces for the strain-causing body 100. While firmly fixing to the strain-causing body 100 around 30, it is easy to detect the strain from the strain-causing body 100.
- the sensor substrate 30 is provided separately from the mold resin 40. As a result, the deformation of the sensor substrate 30 and the deformation of the mold resin 40 are less likely to interfere with each other, so that the sensor substrate 30 can easily detect distortion even if the portion covered with the mold resin 40 is fixed.
- the Young's modulus of the sensor substrate 30 is higher than the Young's modulus of the mold resin 40. Since the Young's modulus of the sensor substrate 30 is higher than the Young's modulus of the mold resin 40, the mold resin 40 becomes softer, and when the strain-causing body 100 is distorted, the mold resin 40 moves together. It becomes easy to be distorted, and it becomes easy to detect the distortion by the sensor board 30. Further, when the sensor substrate 30 is deformed according to the strain of the strain-causing body 100, the mold resin 40 is less likely to become a deformation resistance.
- the Young's modulus thereof is 100 GPa or more.
- the Young's modulus of the mold resin 40 is preferably 20 GPa or less, preferably 10 GPa or less. It is more preferable to have. In other words, the Young's modulus of the mold resin 40 is preferably 20% or less, and more preferably 10% or less, with respect to the Young's modulus of the sensor substrate 30.
- FIG. 4 is a cross-sectional view illustrating a state in which the strain sensor is attached to the strain-causing body.
- the strain sensor 1 according to the present embodiment is attached to the surface of the strain generating body 100 by, for example, an adhesive layer 80.
- the adhesive layer 80 is made of, for example, a resin-based material, and is provided between the surface 40a of the mold resin 40 and the strain-causing body 100. Since the area of the surface 40a of the mold resin 40 is larger than the area of the surface 30a of the sensor substrate 30, the strain sensor 1 is caused by being adhered to the strain generating body 100 by the adhesive layer 80 on the surface 40a. It will be possible to firmly fix it to 100.
- the longitudinal direction (for example, the X direction) of the sensor substrate 30 is substantially parallel to the strain direction SD of the strain generating body 100.
- the sensor substrate 30 is more likely to be distorted by the strain-causing body 100, and the strain sensor 1 is more likely to detect the strain.
- the adhesive layer 80 may be provided between the surface 30a of the sensor substrate 30 protruding from the surface 40a of the mold resin 40 and the strain-causing body 100.
- the portion of the adhesive layer 80 between the surface 30a of the sensor substrate 30 and the strain-causing body 100 is defined as the first portion 80a
- the portion between the surface 40a of the mold resin 40 and the strain-causing body 100 is defined as the second portion 80b.
- the thickness t1 of the first portion 80a is raised from the thickness t2 of the second portion 80b (the surface 40a of the mold resin 40). It is thinner than the thickness t2) of the adhesive layer 80 up to the strained body 100.
- the strain sensor 1 when the strain sensor 1 is attached to the strain generating body 100 by the adhesive layer 80, the functions of the adhesive layer 80 can be separated. That is, since the second portion 80b of the adhesive layer 80 located between the surface 40a of the mold resin 40 and the surface of the strain generating body 100 is relatively thick, the strain sensor 1 is surely used with respect to the strain generating body 100. Can be fixed. When the strain-causing body 100 is distorted, the relatively thick second portion 80b can absorb the strain and suppress peeling between the second portion 80b and the mold resin 40. Further, since the mold resin 40 has a Young's modulus lower than that of the sensor substrate 30, even if the strain from the strain-causing body 100 is transmitted to the mold resin 40, the mold resin 40 can absorb the strain.
- the first portion 80a of the adhesive layer 80 located between the surface 30a of the sensor substrate 30 and the surface of the strain generating body 100 is relatively thin, when the strain of the strain generating body 100 is transmitted to the sensor substrate 30. In addition, it is difficult to attenuate in the first portion 80a, and distortion is easily detected by the piezo resistance element 35 of the sensor substrate 30. Further, since the Young's modulus of the mold resin 40 located around the sensor substrate 30 is lower than that of the sensor substrate 30, the mold resin 40 is deformed against the deformation of the sensor substrate 30 according to the strain of the strain-causing body 100. It is difficult to become.
- the strain sensor 1 does not easily fall off when the strain-causing body 100 is distorted, and that the strain of the strain-causing body 100 is appropriately detected on the sensor substrate 30.
- the hardness of the adhesive layer 80 may be changed between the first portion 80a and the second portion 80b. In this case, it is preferable that the hardness of the adhesive layer 80 of the first portion 80a is harder than the hardness of the adhesive layer 80 of the second portion 80b. This makes it easier for the sensor substrate 30 to detect the strain of the strain-causing body 100 via the hard adhesive layer 80.
- the hardness of the adhesive layer 80 can be appropriately adjusted by changing its component, for example, by including a hard filler component in addition to the resin component.
- the same adhesive layer 80 for the first portion 80a and the second portion 80b it is preferable to use the same adhesive layer 80 for the first portion 80a and the second portion 80b.
- the hardness of the adhesive layer 80 is the same in the first portion 80a and the second portion 80b.
- the thickness t1 of the adhesive layer 80 of the first portion 80a is thinner than the thickness t2 of the adhesive layer 80 of the second portion 80b, the thickness t1 of the first portion 80a and the second portion 80b Even if the hardness of the adhesive layer 80 of both portions is the same, the cushioning action of the adhesive layer 80 is weak until the strain from the strain-causing body 100 is transmitted to the sensor substrate 30, and the strain is easily detected. ..
- the strain sensor 1 since the strain sensor 1 according to the present embodiment is a minute size (package substrate 10 size) of about 2 mm in each of the vertical and horizontal directions, the strain sensor 1 is attached to the strain generator 100 by a fastening member such as a bolt. It is difficult to fix, and adhesive fixing by the adhesive layer 80 is advantageous. A sufficient adhesive area is required for fixing the strain sensor 1 to the strain-causing body 100 by the adhesive layer 80. In the strain sensor 1 according to the present embodiment, even when the strain sensor 1 is fixed to the strain generator 100 by one kind of adhesive layer 80 which is advantageous in manufacturing, the strain sensor 1 is securely fixed to the strain generator 100. And high-sensitivity strain detection by the strain sensor 1 can be achieved at the same time.
- FIG. 5 is a schematic cross-sectional view illustrating the positional relationship between the displacement portion and the piezo resistance element.
- a seal 26 is provided between the base substrate 20 and the sensor substrate 30.
- the seal 26 is made of a metal such as gold or silver, and serves to support the sensor substrate 30 on the base substrate 20 and to make an electrical connection.
- a displacement portion 31 is provided in a region inside the seal 26 on the surface of the sensor substrate 30 on the side of the base substrate 20.
- a plurality of piezo resistance elements 35 are arranged inside the displacement portion 31.
- 6 to 8 are schematic views illustrating the layout of the piezo resistance element. 6 to 8, each (a) shows the layout of the piezo resistance element 35 in a plan view, and (b) shows the circuit diagram of the piezo resistance element 35.
- the sensor substrate 30 has a substantially rectangular shape in a plan view, and the displacement portion 31 is arranged in the central portion.
- the arrow shown indicates the distortion direction SD.
- distortion can be easily detected by making the longitudinal direction (for example, the X direction) substantially parallel to the distortion direction SD.
- FIGS. 6 (a) and 6 (b) show an example of forming a full bridge with a plurality of piezo resistance elements 35. Further, FIGS. 7 (a) and 7 (b), and FIGS. 8 (a) and 8 (b) show an example in which a half bridge is formed by a plurality of piezo resistance elements 35.
- the piezo resistance element 35 constitutes four element groups 35G (first element group 35G1, second element group 35G2, third element group 35G3, and fourth element group 35G4).
- Three piezo resistance elements 35 are provided in one element group 35G, each of which is arranged in parallel in the same direction and electrically connected in series.
- the first element group 35G1 is formed by connecting three piezo resistance elements 35 extending in the Y direction in series.
- the relative arrangement of the four element groups 35G on the sensor substrate 30 is as follows.
- the first element group 35G1 is arranged in the upper left
- the second element group 35G2 is arranged in the upper right
- the third element group 35G3 is arranged in the lower left
- the fourth element group 35G4 is arranged in the lower right.
- the piezo resistance elements 35 of the first element group 35G1 and the fourth element group 35G4 are arranged in a direction orthogonal to the strain direction SD, and the second element group 35G2 and the third element group 35G3 The piezo resistance element 35 is arranged in the distortion direction SD.
- the first element group 35G1 and the third element group 35G3 are electrically connected in series, and the second element group 35G2 and the fourth element group 35G4 are connected in series. Conducts.
- the first element group 35G1 and the third element group 35G3 and the second element group 35G2 and the fourth element group 35G4 conduct in parallel.
- the power supply voltage VDD between the first element group 35G1 and the second element group 35G2, and the ground potential GND between the third element group 35G3 and the fourth element group 35G4.
- the output potential V1 is between the first element group 35G1 and the third element group 35G3, and the output potential V2 is between the second element group 35G2 and the fourth element group 35G4.
- the piezo resistance element 35 of the first element group 35G1 is arranged in a direction orthogonal to the strain direction SD, and the second element group 35G2, the third element group 35G3, and the fourth element group 35G4 The piezo resistance element 35 is arranged in the distortion direction SD.
- the first element group 35G1 and the second element group 35G2 are electrically connected in series, and the third element group 35G3 and the fourth element group 35G4 are connected in series. Conducts.
- the second element group 35G2 side has the power supply voltage VDD, and the first element group 35G1 has the output potential V1.
- the fourth element group 35G4 side has the ground potential GND.
- the first element group 35G1 and the second element group 35G2 are reference resistances
- the third element group 35G3 and the fourth element group 35G4 are sensor resistances.
- the piezo resistance elements 35 of the first element group 35G1 and the second element group 35G2 are arranged in a direction orthogonal to the strain direction SD, and the third element group 35G3 and the fourth element group 35G4 are arranged.
- the piezo resistance element 35 is arranged in the distortion direction SD.
- the first element group 35G1 and the second element group 35G2 are electrically connected in series, and the third element group 35G3 and the fourth element group 35G4 are connected in series. Conducts.
- the second element group 35G2 side has the power supply voltage VDD, and the first element group 35G1 has the output potential V1.
- the fourth element group 35G4 side has the ground potential GND.
- the resistance values of the first element group 35G1 and the second element group 35G2 decrease with respect to the strain, and the resistance values of the third element group 35G3 and the fourth element group 35G4 increase. Therefore, in the half-bridge configuration shown in FIG. 8, the output value is larger than that in the half-bridge configuration shown in FIG. 7.
- FIG. 9 is a diagram showing the relationship between the exposure height of the sensor substrate in the strain sensor and the amount of sensor strain.
- the horizontal axis shows the exposure height (micrometer: ⁇ m) of the surface 30a of the sensor substrate 30 from the surface 40a of the mold resin 40
- the vertical axis shows the strain amount (microstrain: ⁇ st).
- the strain amount on the vertical axis is a simulation result of the strain amount of the sensor substrate 30 when 14.3 kilonewtons (kN) are added to the strain generator 100 in the X direction.
- 10 (a) to 10 (e) are schematic views illustrating an exposed state of the sensor substrate.
- the exposed state of the sensor substrate 30 shown in FIGS. 10A to 10E corresponds to the exposure height at the plot positions shown in FIGS. 9A to 9E.
- the exposed height of the sensor substrate 30 is set by changing the thickness of the mold resin 40 without changing the thickness of the sensor substrate 30. Further, the thickness of the adhesive layer 80 between the surface 40a of the mold resin 40 and the strain-causing body 100 is constant at 0.11 mm (mm).
- the amount of strain is 34.0 ⁇ st at the exposure height of -100 ⁇ m shown in FIGS. 9 (a) and 10 (a), and the strain is distorted at the exposure height of -50 ⁇ m shown in FIGS. 9 (b) and 10 (b).
- the amount of strain is 39.2 ⁇ st.
- the strain amount is 42.0 ⁇ st at the exposure height +50 ⁇ m shown in FIGS. 9 (d) and 10 (d), and the strain amount is 53 at the exposure height +100 ⁇ m shown in FIGS. 9 (e) and 10 (e). It is 0 ⁇ st.
- the amount of distortion increases as the exposure height of the surface 30a of the sensor substrate 30 from the surface 40a of the mold resin 40 increases (the detection sensitivity increases), and when the exposure height exceeds +50 ⁇ m, the amount of distortion further increases. (The detection sensitivity is higher).
- the thickness of the mold resin 40 is made too thin in order to increase the exposed height of the sensor substrate 30, the loop portion of the first bonding wire 61 and the like may be exposed from the mold resin 40. Therefore, it is desirable that the thickness of the mold resin 40 increases the exposed height of the sensor substrate 30 at a thickness at which the first bonding wire 61 is not exposed.
- the surface 30a of the sensor substrate 30 protrudes from the surface 40a of the mold resin 40, and the surface 40a of the mold resin 40 and the surface 30a of the sensor substrate 30 are the mounting surfaces of the strain-generating body 100.
- This makes it easier for the sensor board 30 to detect the strain from the strain-causing body 100 while firmly fixing it to the strain-causing body 100 around the sensor substrate 30. Therefore, it is possible to provide a strain sensor 1 having a configuration that makes it easy to detect the strain of the strain-causing body 100.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
This strain sensor makes it easy to detect strain in an object. One embodiment of this strain sensor detects strain in a strain body and comprises: a package substrate; a base substrate that is disposed on the package substrate and comprises an electrical wiring unit; a sensor substrate that is disposed on the base substrate and comprises a plurality of piezoresistance elements; and a mold resin that covers the base substrate and sensor substrate on the package substrate. The surface of the sensor substrate protrudes further than the surface of the mold resin, and the surfaces of the mold resin and sensor substrate are the surfaces that are attached to the strain body.
Description
本発明は、歪みセンサに関し、より詳しくは、対象物に力が印加された際の歪みを検知する歪みセンサに関するものである。
The present invention relates to a strain sensor, and more particularly to a strain sensor that detects strain when a force is applied to an object.
歪みセンサとして、特許文献1には、特定方向のひずみを少ない誤差で測定する力学量測定装置が開示される。この力学量測定装置では、半導体力学量測定装置のシリコン基板において、例えば、測定方向の基板長さに対する基板厚の比を小さく、測定方向に対して垂直な方向の基板長さに対する基板厚の比を大きくしている。
As a strain sensor, Patent Document 1 discloses a mechanical quantity measuring device that measures strain in a specific direction with a small error. In this dynamic quantity measuring device, in the silicon substrate of the semiconductor dynamic quantity measuring apparatus, for example, the ratio of the substrate thickness to the substrate length in the measuring direction is small, and the ratio of the substrate thickness to the substrate length in the direction perpendicular to the measuring direction is small. Is getting bigger.
また、特許文献2には、電磁誘導もしくはマイクロ波で回路動作電力を供給した場合でもノイズの影響を受けにくく、精度の高い測定を可能とした力学量測定装置が開示される。この力学量測定装置では、接着部を被測定物に接着することによってひずみの計測を計測している。
Further, Patent Document 2 discloses a mechanical quantity measuring device that is not easily affected by noise even when circuit operating power is supplied by electromagnetic induction or microwave, and enables highly accurate measurement. In this mechanical quantity measuring device, the strain is measured by adhering the bonded portion to the object to be measured.
対象物の微小な歪みを高精度に検知するためには、起歪体の歪みを効果的に歪みセンサへ伝える必要がある。対象物が小さくなるほど歪みセンサを取り付けるための領域が制限されることから、効果的に歪みを伝えることが困難となる。
In order to detect minute strains of an object with high accuracy, it is necessary to effectively transmit the strain of the strain-causing body to the strain sensor. As the object becomes smaller, the area for mounting the strain sensor is limited, so that it becomes difficult to effectively transmit the strain.
本発明はこのような実情に鑑みてなされたものであり、対象物の歪みを検知しやすい構成の歪みセンサを提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a distortion sensor having a configuration that makes it easy to detect distortion of an object.
本発明の一態様は、起歪体の歪みを検知する歪みセンサであって、パッケージ基板と、パッケージ基板の上に配置され、電気配線部を有するベース基板と、ベース基板の上に配置され、複数のピエゾ抵抗素子を有するセンサ基板と、パッケージ基板上のベース基板およびセンサ基板を覆うモールド樹脂と、を備え、センサ基板の表面がモール樹脂の表面よりも突出し、モールド樹脂の表面およびセンサ基板の表面が起歪体との取り付け面となる、ことを特徴とする歪みセンサである。
One aspect of the present invention is a strain sensor for detecting the strain of a strain-causing body, which is arranged on a package substrate, a base substrate having an electrical wiring portion, and a base substrate. A sensor substrate having a plurality of piezo resistance elements, a base substrate on a package substrate, and a mold resin covering the sensor substrate are provided, and the surface of the sensor substrate protrudes from the surface of the molding resin, and the surface of the mold resin and the sensor substrate. It is a strain sensor characterized in that the surface serves as a mounting surface for a strain-causing body.
このように、センサ基板の表面がモールド樹脂の表面よりも突出し、モールド樹脂の表面とセンサ基板の表面が起歪体との取り付け面となることによって、センサ基板の周辺でしっかり起歪体に固定しつつ、起歪体からの歪みを検知しやすくする。
In this way, the surface of the sensor substrate protrudes from the surface of the mold resin, and the surface of the mold resin and the surface of the sensor substrate serve as the mounting surface for the strain-causing body, so that the surface of the sensor substrate is firmly fixed to the strain-causing body around the sensor substrate. At the same time, it makes it easier to detect the distortion from the strain-causing body.
上記歪みセンサにおいて、センサ基板はモールド樹脂と別体に設けられていてもよい。このように、突出しているセンサ基板と封止しているモールド樹脂とが別体設けられていることで、モールド樹脂で覆われている部分は固定されて、センサ基板は歪みを検知しやすくする。
In the strain sensor, the sensor substrate may be provided separately from the mold resin. In this way, by providing the protruding sensor board and the sealing mold resin separately, the portion covered with the mold resin is fixed, and the sensor board makes it easier to detect distortion. ..
上記歪みセンサにおいて、センサ基板のヤング率は、モールド樹脂のヤング率よりも高いことが好ましい。センサ基板のヤング率の方がモールド樹脂のヤング率よりも高くなることで、モールド樹脂の方が柔らかいため歪んだ際に起歪体と一緒に動いて歪みやすくなる。
In the strain sensor, the Young's modulus of the sensor substrate is preferably higher than the Young's modulus of the molded resin. Since the Young's modulus of the sensor substrate is higher than the Young's modulus of the mold resin, the mold resin is softer, so that when it is distorted, it moves together with the strain-causing body and becomes easily distorted.
上記歪みセンサにおいて、センサ基板の長手方向は、起歪体の歪み方向と略平行であることが好ましい。このように、センサ基板の長手方向が起歪体の歪み方向と平行になることによってより歪みを検知しやすくする。
In the strain sensor, the longitudinal direction of the sensor substrate is preferably substantially parallel to the strain direction of the strain-causing body. In this way, the longitudinal direction of the sensor substrate is parallel to the strain direction of the strain-causing body, which makes it easier to detect the strain.
上記歪みセンサにおいて、モールド樹脂の表面と起歪体との間に接着剤層が設けられていることが好ましい。これにより、接着剤層によって歪みセンサを起歪体に取り付ける際にモールド樹脂の表面において固定できるようになる。
In the strain sensor, it is preferable that an adhesive layer is provided between the surface of the mold resin and the strain-causing body. This allows the adhesive layer to fix the strain sensor on the surface of the mold resin when it is attached to the strain generator.
上記歪みセンサにおいて、モールド樹脂の表面と起歪体との間、およびセンサ基板の表面と起歪体との間に接着剤層が設けられ、センサ基板の表面から起歪体までの接着剤層の厚さは、モールド樹脂の表面から起歪体までの接着剤層の厚さよりも薄いことが好ましい。これにより、接着剤層によって歪みセンサを起歪体に取り付ける際にモールド樹脂の表面とセンサ基板の表面とにおいて確実に固定できるとともに、センサ基板に歪みが伝わる際の接着剤層による減衰が抑制され、歪みを検知しやすくなる。
In the strain sensor, an adhesive layer is provided between the surface of the mold resin and the strain-causing body, and between the surface of the sensor substrate and the strain-causing body, and the adhesive layer from the surface of the sensor substrate to the strain-causing body is provided. The thickness of the adhesive layer is preferably thinner than the thickness of the adhesive layer from the surface of the mold resin to the strain-causing body. As a result, when the strain sensor is attached to the strain-causing body by the adhesive layer, it can be securely fixed between the surface of the mold resin and the surface of the sensor substrate, and the attenuation due to the adhesive layer when the strain is transmitted to the sensor substrate is suppressed. , It becomes easier to detect distortion.
上記歪みセンサにおいて、パッケージ基板とベース基板との間に、センサ基板から出力された信号を処理する信号処理回路を有する回路基板が設けられていてもよい。このように、回路基板もモールド樹脂によって封止されていることによって回路基板を保護することができるとともに、回路基板を含めて1つのパッケージに収容され、設置スペースを小さくすることができる。
In the distortion sensor, a circuit board having a signal processing circuit for processing a signal output from the sensor board may be provided between the package board and the base board. In this way, the circuit board can also be protected by being sealed with the mold resin, and can be housed in one package including the circuit board, so that the installation space can be reduced.
本発明によれば、対象物の歪みを検知しやすい構成の歪みセンサを提供することが可能となる。
According to the present invention, it is possible to provide a distortion sensor having a configuration that makes it easy to detect distortion of an object.
以下、本発明の実施の形態について添付図面を参照して詳細に説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the same members are designated by the same reference numerals, and the description of the members once described will be omitted as appropriate.
(歪みセンサの構成)
図1は、本実施形態に係る歪みセンサの構成を例示する斜視図である。
図2は、本実施形態に係る歪みセンサの構成を例示する断面図である。
図3は、センサ基板を例示する分解斜視図である。
なお、図1では、モールド樹脂40を透視した状態が示される。また、図2では、図1に示すA-A断面が示される。また、図3(a)にはセンサ基板30の表面側からの分解斜視図が示され、図3(b)にはセンサ基板30の裏面側からの分解斜視図が示される。 (Distortion sensor configuration)
FIG. 1 is a perspective view illustrating the configuration of the strain sensor according to the present embodiment.
FIG. 2 is a cross-sectional view illustrating the configuration of the strain sensor according to the present embodiment.
FIG. 3 is an exploded perspective view illustrating the sensor substrate.
Note that FIG. 1 shows a state in which themold resin 40 is seen through. Further, in FIG. 2, the cross section taken along the line AA shown in FIG. 1 is shown. Further, FIG. 3A shows an exploded perspective view of the sensor substrate 30 from the front surface side, and FIG. 3B shows an exploded perspective view of the sensor substrate 30 from the back surface side.
図1は、本実施形態に係る歪みセンサの構成を例示する斜視図である。
図2は、本実施形態に係る歪みセンサの構成を例示する断面図である。
図3は、センサ基板を例示する分解斜視図である。
なお、図1では、モールド樹脂40を透視した状態が示される。また、図2では、図1に示すA-A断面が示される。また、図3(a)にはセンサ基板30の表面側からの分解斜視図が示され、図3(b)にはセンサ基板30の裏面側からの分解斜視図が示される。 (Distortion sensor configuration)
FIG. 1 is a perspective view illustrating the configuration of the strain sensor according to the present embodiment.
FIG. 2 is a cross-sectional view illustrating the configuration of the strain sensor according to the present embodiment.
FIG. 3 is an exploded perspective view illustrating the sensor substrate.
Note that FIG. 1 shows a state in which the
本実施形態は、起歪体の歪みを検知する歪みセンサ1であって、パッケージ基板10と、ベース基板20と、センサ基板30と、モールド樹脂40とを備える。なお、実施形態の説明では、パッケージ基板10の基板実装面10aの法線方向をZ方向、法線方向(Z方向)に直交する方向の1つをX方向、他の1つをY方向とする。
This embodiment is a strain sensor 1 for detecting the strain of a strain-causing body, and includes a package substrate 10, a base substrate 20, a sensor substrate 30, and a mold resin 40. In the description of the embodiment, the normal direction of the board mounting surface 10a of the package substrate 10 is the Z direction, one of the directions orthogonal to the normal direction (Z direction) is the X direction, and the other one is the Y direction. do.
パッケージ基板10は、モールド樹脂40とともに歪みセンサ1の外観を構成する部分であり、歪みセンサ1における底面側に設けられる基板である。Z方向にみた平面視におけるパッケージ基板10の大きさは、縦約2ミリメートル(mm)×横約2mm程度である。
The package substrate 10 is a portion that constitutes the appearance of the strain sensor 1 together with the mold resin 40, and is a substrate provided on the bottom surface side of the strain sensor 1. The size of the package substrate 10 in the plan view in the Z direction is about 2 mm (mm) in length × about 2 mm in width.
パッケージ基板10は、ベース基板20を実装する基板実装面10aと、基板実装面10aとは反対側に設けられるパッド面10bと、を有する。パッケージ基板10における基板実装面10aの延長面上にはパッド部16が設けられる。パッケージ基板10のパッド面10bには、外部と導通を得るために複数の電極端子11が設けられる。この電極端子11によって外部(例えば、フレキシブル基板F(後述の図4参照))との接続および導通が行われる。
The package substrate 10 has a substrate mounting surface 10a on which the base substrate 20 is mounted, and a pad surface 10b provided on the side opposite to the substrate mounting surface 10a. The pad portion 16 is provided on the extension surface of the substrate mounting surface 10a of the package substrate 10. A plurality of electrode terminals 11 are provided on the pad surface 10b of the package substrate 10 in order to obtain continuity with the outside. The electrode terminals 11 connect to and conduct with the outside (for example, the flexible substrate F (see FIG. 4 described later)).
ベース基板20は、パッケージ基板10の上に配置される(Z方向に積層される)。ベース基板20は、センサ基板30を実装するセンサ実装面20aを有する。また、ベース基板20は、センサ基板30に設けられた複数のピエゾ抵抗素子35のそれぞれと電気的に接続する電気配線部25を有する。
The base substrate 20 is arranged on the package substrate 10 (stacked in the Z direction). The base board 20 has a sensor mounting surface 20a on which the sensor board 30 is mounted. Further, the base substrate 20 has an electrical wiring unit 25 that is electrically connected to each of the plurality of piezo resistance elements 35 provided on the sensor substrate 30.
センサ基板30は、ベース基板20の上に配置される(Z方向に積層される)。センサ基板30は、変位部31およびピエゾ抵抗素子35を有する。センサ基板30は、Z方向にみた平面視において略長方形となっており、中央部分に変位部31が設けられる。変位部31は、起歪体100の歪みを受けて変位する部分であり、センサ基板30のベース基板20側の面に設けられる。ピエゾ抵抗素子35は、変位部31の変位量を電気的に検出する素子である。
The sensor board 30 is arranged on the base board 20 (stacked in the Z direction). The sensor substrate 30 has a displacement portion 31 and a piezo resistance element 35. The sensor substrate 30 has a substantially rectangular shape in a plan view in the Z direction, and a displacement portion 31 is provided at a central portion thereof. The displacement portion 31 is a portion that is displaced by receiving the strain of the strain-causing body 100, and is provided on the surface of the sensor substrate 30 on the base substrate 20 side. The piezo resistance element 35 is an element that electrically detects the amount of displacement of the displacement portion 31.
パッケージ基板10とベース基板20との間には回路基板50が設けられていてもよい。回路基板50は、センサ基板30から出力された信号を処理する信号処理回路(信号処理用IC)を有する。回路基板50が設けられている場合、ベース基板20と回路基板50とが第1ボンディングワイヤ61によって導通し、回路基板50とパッケージ基板10とが第2ボンディングワイヤ62によって導通する状態となる。
A circuit board 50 may be provided between the package board 10 and the base board 20. The circuit board 50 has a signal processing circuit (signal processing IC) that processes the signal output from the sensor board 30. When the circuit board 50 is provided, the base board 20 and the circuit board 50 are conducted by the first bonding wire 61, and the circuit board 50 and the package board 10 are conducted by the second bonding wire 62.
モールド樹脂40は、パッケージ基板10上のベース基板20およびセンサ基板30を覆う封止樹脂である。モールド樹脂40は、樹脂のみから構成されていてもよいし、無機材料などからなるフィラー成分を有していてもよい。モールド樹脂40は、パッケージ基板10とともに歪みセンサ1の外観を構成する部分である。回路基板50が設けられている場合には、ベース基板20およびセンサ基板30とともに回路基板50もモールド樹脂40によって覆われる。
The mold resin 40 is a sealing resin that covers the base substrate 20 and the sensor substrate 30 on the package substrate 10. The mold resin 40 may be composed of only the resin, or may have a filler component made of an inorganic material or the like. The mold resin 40 is a part that constitutes the appearance of the strain sensor 1 together with the package substrate 10. When the circuit board 50 is provided, the circuit board 50 is covered with the mold resin 40 together with the base board 20 and the sensor board 30.
このような構成を備えた本実施形態に係る歪みセンサ1では、センサ基板30の表面30aがモールド樹脂40の表面40aよりも突出し、モールド樹脂40の表面40aおよびセンサ基板30の表面30aが起歪体100(後述の図4参照)との取り付け面となる。このように、センサ基板30の表面30aがモールド樹脂40の表面40aよりも突出し、モールド樹脂40の表面40aとセンサ基板30の表面30aが起歪体100との取り付け面となることによって、センサ基板30の周辺でしっかり起歪体100に固定しつつ、起歪体100からの歪みを検知しやすくする。
In the strain sensor 1 according to the present embodiment having such a configuration, the surface 30a of the sensor substrate 30 protrudes from the surface 40a of the mold resin 40, and the surface 40a of the mold resin 40 and the surface 30a of the sensor substrate 30 cause strain. It is a mounting surface with the body 100 (see FIG. 4 described later). In this way, the surface 30a of the sensor substrate 30 protrudes from the surface 40a of the mold resin 40, and the surface 40a of the mold resin 40 and the surface 30a of the sensor substrate 30 serve as mounting surfaces for the strain-causing body 100. While firmly fixing to the strain-causing body 100 around 30, it is easy to detect the strain from the strain-causing body 100.
また、本実施形態に係る歪みセンサ1において、センサ基板30はモールド樹脂40と別体に設けられていることが好ましい。これにより、センサ基板30の変形とモールド樹脂40の変形とが干渉しにくくなるため、モールド樹脂40で覆われている部分が固定されていても、センサ基板30は歪みを検知しやすくする。
Further, in the strain sensor 1 according to the present embodiment, it is preferable that the sensor substrate 30 is provided separately from the mold resin 40. As a result, the deformation of the sensor substrate 30 and the deformation of the mold resin 40 are less likely to interfere with each other, so that the sensor substrate 30 can easily detect distortion even if the portion covered with the mold resin 40 is fixed.
また、センサ基板30のヤング率は、モールド樹脂40のヤング率よりも高いことが好ましい。センサ基板30のヤング率の方がモールド樹脂40のヤング率よりも高くなることで、モールド樹脂40の方が柔らかいことになり、起歪体100が歪んだときにモールド樹脂40が一緒に動いて歪みやすくなり、センサ基板30で歪みを検知しやすくなる。また、センサ基板30が起歪体100の歪みに応じて変形する際に、モールド樹脂40が変形抵抗となることも生じにくくなる。ここで、センサ基板30がシリコンなどの半導体から構成されている場合には、そのヤング率は100GPa以上であることから、モールド樹脂40のヤング率は、20GPa以下であることが好ましく、10GPa以下であることがより好ましい。換言すれば、センサ基板30のヤング率に対して、モールド樹脂40のヤング率は、20%以下であることが好ましく、10%以下であることがより好ましい。
Further, it is preferable that the Young's modulus of the sensor substrate 30 is higher than the Young's modulus of the mold resin 40. Since the Young's modulus of the sensor substrate 30 is higher than the Young's modulus of the mold resin 40, the mold resin 40 becomes softer, and when the strain-causing body 100 is distorted, the mold resin 40 moves together. It becomes easy to be distorted, and it becomes easy to detect the distortion by the sensor board 30. Further, when the sensor substrate 30 is deformed according to the strain of the strain-causing body 100, the mold resin 40 is less likely to become a deformation resistance. Here, when the sensor substrate 30 is made of a semiconductor such as silicon, the Young's modulus thereof is 100 GPa or more. Therefore, the Young's modulus of the mold resin 40 is preferably 20 GPa or less, preferably 10 GPa or less. It is more preferable to have. In other words, the Young's modulus of the mold resin 40 is preferably 20% or less, and more preferably 10% or less, with respect to the Young's modulus of the sensor substrate 30.
(歪みセンサの起歪体への取り付け状態)
図4は、歪みセンサの起歪体への取り付け状態を例示する断面図である。
本実施形態に係る歪みセンサ1は、起歪体100の表面に例えば接着剤層80によって取り付けられる。接着剤層80は例えば樹脂系材料からなり、モールド樹脂40の表面40aと起歪体100との間に設けられる。モールド樹脂40の表面40aの面積は、センサ基板30の表面30aの面積よりも広いため、この表面40aで接着剤層80によって起歪体100と接着されることで、歪みセンサ1を起歪体100へしっかり固定できるようになる。 (Attachment state of strain sensor to strain generator)
FIG. 4 is a cross-sectional view illustrating a state in which the strain sensor is attached to the strain-causing body.
Thestrain sensor 1 according to the present embodiment is attached to the surface of the strain generating body 100 by, for example, an adhesive layer 80. The adhesive layer 80 is made of, for example, a resin-based material, and is provided between the surface 40a of the mold resin 40 and the strain-causing body 100. Since the area of the surface 40a of the mold resin 40 is larger than the area of the surface 30a of the sensor substrate 30, the strain sensor 1 is caused by being adhered to the strain generating body 100 by the adhesive layer 80 on the surface 40a. It will be possible to firmly fix it to 100.
図4は、歪みセンサの起歪体への取り付け状態を例示する断面図である。
本実施形態に係る歪みセンサ1は、起歪体100の表面に例えば接着剤層80によって取り付けられる。接着剤層80は例えば樹脂系材料からなり、モールド樹脂40の表面40aと起歪体100との間に設けられる。モールド樹脂40の表面40aの面積は、センサ基板30の表面30aの面積よりも広いため、この表面40aで接着剤層80によって起歪体100と接着されることで、歪みセンサ1を起歪体100へしっかり固定できるようになる。 (Attachment state of strain sensor to strain generator)
FIG. 4 is a cross-sectional view illustrating a state in which the strain sensor is attached to the strain-causing body.
The
本実施形態に係る歪みセンサ1において、センサ基板30の長手方向(例えば、X方向)は、起歪体100の歪み方向SDと略平行であることが好ましい。これにより、センサ基板30によって起歪体100の歪みを受けやすくなり、歪みセンサ1での歪み検知が行いやすくなる。
In the strain sensor 1 according to the present embodiment, it is preferable that the longitudinal direction (for example, the X direction) of the sensor substrate 30 is substantially parallel to the strain direction SD of the strain generating body 100. As a result, the sensor substrate 30 is more likely to be distorted by the strain-causing body 100, and the strain sensor 1 is more likely to detect the strain.
また、接着剤層80は、モールド樹脂40の表面40aから突出するセンサ基板30の表面30aと起歪体100との間に設けられていてもよい。接着剤層80におけるセンサ基板30の表面30aと起歪体100との間の部分を第1部分80a、モールド樹脂40の表面40aと起歪体100との間の部分を第2部分80bとして、第1部分80aの厚さt1(センサ基板30の表面30aから起歪体100までの接着剤層80の厚さt1)は、第2部分80bの厚さt2(モールド樹脂40の表面40aから起歪体100までの接着剤層80の厚さt2)よりも薄くなる。
Further, the adhesive layer 80 may be provided between the surface 30a of the sensor substrate 30 protruding from the surface 40a of the mold resin 40 and the strain-causing body 100. The portion of the adhesive layer 80 between the surface 30a of the sensor substrate 30 and the strain-causing body 100 is defined as the first portion 80a, and the portion between the surface 40a of the mold resin 40 and the strain-causing body 100 is defined as the second portion 80b. The thickness t1 of the first portion 80a (thickness t1 of the adhesive layer 80 from the surface 30a of the sensor substrate 30 to the strain generating body 100) is raised from the thickness t2 of the second portion 80b (the surface 40a of the mold resin 40). It is thinner than the thickness t2) of the adhesive layer 80 up to the strained body 100.
これにより、接着剤層80によって歪みセンサ1を起歪体100に取り付ける際に、接着剤層80の機能を分けることができる。すなわち、モールド樹脂40の表面40aと起歪体100の表面との間に位置する接着剤層80の第2部分80bは相対的に厚いため、歪みセンサ1を起歪体100に対して確実に固定することができる。起歪体100が歪んだ場合には、この相対的に厚い第2部分80bにより歪みを吸収し、第2部分80bとモールド樹脂40との間での剥離を抑制することができる。また、モールド樹脂40はセンサ基板30よりもヤング率が低いため、起歪体100からの歪みがモールド樹脂40に伝達されても、モールド樹脂40においてこの歪みを吸収することが可能である。
Thereby, when the strain sensor 1 is attached to the strain generating body 100 by the adhesive layer 80, the functions of the adhesive layer 80 can be separated. That is, since the second portion 80b of the adhesive layer 80 located between the surface 40a of the mold resin 40 and the surface of the strain generating body 100 is relatively thick, the strain sensor 1 is surely used with respect to the strain generating body 100. Can be fixed. When the strain-causing body 100 is distorted, the relatively thick second portion 80b can absorb the strain and suppress peeling between the second portion 80b and the mold resin 40. Further, since the mold resin 40 has a Young's modulus lower than that of the sensor substrate 30, even if the strain from the strain-causing body 100 is transmitted to the mold resin 40, the mold resin 40 can absorb the strain.
一方、センサ基板30の表面30aと起歪体100の表面との間に位置する接着剤層80の第1部分80aは相対的に薄いため、起歪体100の歪みがセンサ基板30に伝わる際に第1部分80aにおいて減衰しにくく、センサ基板30のピエゾ抵抗素子35で歪みを検知しやすくなる。また、センサ基板30よりもその周囲に位置するモールド樹脂40の方がヤング率が低いため、センサ基板30が起歪体100の歪みに応じて変形することに対して、モールド樹脂40は変形抵抗となりにくい。このように、接着剤層80の第1部分80aの厚さと第2部分80bの厚さと異ならせることにより、歪みセンサ1が小型化してその起歪体100への取付面積が小さくなっても、起歪体100が歪んだ際に歪みセンサ1が脱落しにくく、かつ、センサ基板30において起歪体100のその歪みを適切に検出することが実現されている。
On the other hand, since the first portion 80a of the adhesive layer 80 located between the surface 30a of the sensor substrate 30 and the surface of the strain generating body 100 is relatively thin, when the strain of the strain generating body 100 is transmitted to the sensor substrate 30. In addition, it is difficult to attenuate in the first portion 80a, and distortion is easily detected by the piezo resistance element 35 of the sensor substrate 30. Further, since the Young's modulus of the mold resin 40 located around the sensor substrate 30 is lower than that of the sensor substrate 30, the mold resin 40 is deformed against the deformation of the sensor substrate 30 according to the strain of the strain-causing body 100. It is difficult to become. In this way, by making the thickness of the first portion 80a and the thickness of the second portion 80b of the adhesive layer 80 different from each other, even if the strain sensor 1 is miniaturized and its attachment area to the strain generating body 100 is reduced. It is realized that the strain sensor 1 does not easily fall off when the strain-causing body 100 is distorted, and that the strain of the strain-causing body 100 is appropriately detected on the sensor substrate 30.
なお、第1部分80aと第2部分80bとで互いに接着剤層80の硬さを変えてもよい。この場合、第2部分80bの接着剤層80の硬さに比べ、第1部分80aの接着剤層80の硬さを固くするとよい。これにより、固い接着剤層80を介して起歪体100の歪みをセンサ基板30で検知しやすくなる。接着剤層80の硬さは、その成分を変更する、例えば樹脂成分に加えて硬質なフィラー成分を含有させることによって、適宜調整することが可能である。
The hardness of the adhesive layer 80 may be changed between the first portion 80a and the second portion 80b. In this case, it is preferable that the hardness of the adhesive layer 80 of the first portion 80a is harder than the hardness of the adhesive layer 80 of the second portion 80b. This makes it easier for the sensor substrate 30 to detect the strain of the strain-causing body 100 via the hard adhesive layer 80. The hardness of the adhesive layer 80 can be appropriately adjusted by changing its component, for example, by including a hard filler component in addition to the resin component.
一方、製造上の観点からは、第1部分80aと第2部分80bとで同じ接着剤層80を用いるほうが好ましい。この場合、第1部分80aと第2部分80bとで接着剤層80の硬さは同じになる。本実施形態では、第1部分80aの接着剤層80の厚さt1が、第2部分80bの接着剤層80の厚さt2よりも薄くなることから、第1部分80aおよび第2部分80bの両部分の接着剤層80の硬さが同じであっても、起歪体100からの歪みがセンサ基板30に伝わるまでの間で接着剤層80による緩衝作用が弱く、歪みを検知しやすくなる。
On the other hand, from the viewpoint of manufacturing, it is preferable to use the same adhesive layer 80 for the first portion 80a and the second portion 80b. In this case, the hardness of the adhesive layer 80 is the same in the first portion 80a and the second portion 80b. In the present embodiment, since the thickness t1 of the adhesive layer 80 of the first portion 80a is thinner than the thickness t2 of the adhesive layer 80 of the second portion 80b, the thickness t1 of the first portion 80a and the second portion 80b Even if the hardness of the adhesive layer 80 of both portions is the same, the cushioning action of the adhesive layer 80 is weak until the strain from the strain-causing body 100 is transmitted to the sensor substrate 30, and the strain is easily detected. ..
特に、本実施形態に係る歪みセンサ1は、平面視サイズ(パッケージ基板10サイズ)として縦横それぞれ2mm程度の微小なものであるため、歪みセンサ1を起歪体100にボルトのような締結部材によって固定することが困難であり、接着剤層80による接着固定が有利となる。接着剤層80による歪みセンサ1の起歪体100への固定では、十分な接着面積が必要となる。本実施形態に係る歪みセンサ1では、製造上有利となる一種類の接着剤層80によって歪みセンサ1を起歪体100に固定する場合でも、歪みセンサ1の起歪体100への確実な固定と、歪みセンサ1による高感度の歪み検知との両立を図ることができる。
In particular, since the strain sensor 1 according to the present embodiment is a minute size (package substrate 10 size) of about 2 mm in each of the vertical and horizontal directions, the strain sensor 1 is attached to the strain generator 100 by a fastening member such as a bolt. It is difficult to fix, and adhesive fixing by the adhesive layer 80 is advantageous. A sufficient adhesive area is required for fixing the strain sensor 1 to the strain-causing body 100 by the adhesive layer 80. In the strain sensor 1 according to the present embodiment, even when the strain sensor 1 is fixed to the strain generator 100 by one kind of adhesive layer 80 which is advantageous in manufacturing, the strain sensor 1 is securely fixed to the strain generator 100. And high-sensitivity strain detection by the strain sensor 1 can be achieved at the same time.
(ピエゾ抵抗素子のレイアウト例)
次に、本実施形態に係る歪みセンサ1で適用されるピエゾ抵抗素子35のレイアウト例について説明する。
図5は、変位部とピエゾ抵抗素子との位置関係を例示する模式断面図である。
ベース基板20とセンサ基板30との間にはシール26が設けられる。シール26は金や銀などの金属によって形成されており、センサ基板30をベース基板20上に支持するとともに電気的な接続を行う役目を果たす。センサ基板30におけるベース基板20側の面でシール26の内側の領域に変位部31が設けられる。歪みセンサ1では、複数のピエゾ抵抗素子35は変位部31の内側に配置される。 (Layout example of piezo resistance element)
Next, a layout example of thepiezo resistance element 35 applied to the strain sensor 1 according to the present embodiment will be described.
FIG. 5 is a schematic cross-sectional view illustrating the positional relationship between the displacement portion and the piezo resistance element.
Aseal 26 is provided between the base substrate 20 and the sensor substrate 30. The seal 26 is made of a metal such as gold or silver, and serves to support the sensor substrate 30 on the base substrate 20 and to make an electrical connection. A displacement portion 31 is provided in a region inside the seal 26 on the surface of the sensor substrate 30 on the side of the base substrate 20. In the strain sensor 1, a plurality of piezo resistance elements 35 are arranged inside the displacement portion 31.
次に、本実施形態に係る歪みセンサ1で適用されるピエゾ抵抗素子35のレイアウト例について説明する。
図5は、変位部とピエゾ抵抗素子との位置関係を例示する模式断面図である。
ベース基板20とセンサ基板30との間にはシール26が設けられる。シール26は金や銀などの金属によって形成されており、センサ基板30をベース基板20上に支持するとともに電気的な接続を行う役目を果たす。センサ基板30におけるベース基板20側の面でシール26の内側の領域に変位部31が設けられる。歪みセンサ1では、複数のピエゾ抵抗素子35は変位部31の内側に配置される。 (Layout example of piezo resistance element)
Next, a layout example of the
FIG. 5 is a schematic cross-sectional view illustrating the positional relationship between the displacement portion and the piezo resistance element.
A
図6から図8はピエゾ抵抗素子のレイアウトを例示する模式図である。
なお、図6から図8において、それぞれの(a)にはピエゾ抵抗素子35の平面視のレイアウトが示される、(b)にはピエゾ抵抗素子35の回路図が示される。 6 to 8 are schematic views illustrating the layout of the piezo resistance element.
6 to 8, each (a) shows the layout of thepiezo resistance element 35 in a plan view, and (b) shows the circuit diagram of the piezo resistance element 35.
なお、図6から図8において、それぞれの(a)にはピエゾ抵抗素子35の平面視のレイアウトが示される、(b)にはピエゾ抵抗素子35の回路図が示される。 6 to 8 are schematic views illustrating the layout of the piezo resistance element.
6 to 8, each (a) shows the layout of the
センサ基板30は、平面視において略長方形となっており、中央部分に変位部31が配置される。図示する矢印は歪み方向SDを示している。センサ基板30が略長方形の場合、長手方向(例えば、X方向)を歪み方向SDと略平行にすることで歪みを検知しやすくなる。
The sensor substrate 30 has a substantially rectangular shape in a plan view, and the displacement portion 31 is arranged in the central portion. The arrow shown indicates the distortion direction SD. When the sensor substrate 30 is substantially rectangular, distortion can be easily detected by making the longitudinal direction (for example, the X direction) substantially parallel to the distortion direction SD.
図6(a)および(b)には、複数のピエゾ抵抗素子35によってフルブリッジを構成する例が示される。また、図7(a)および(b)、図8(a)および(b)には複数のピエゾ抵抗素子35によってハーフブリッジを構成する例が示される。
6 (a) and 6 (b) show an example of forming a full bridge with a plurality of piezo resistance elements 35. Further, FIGS. 7 (a) and 7 (b), and FIGS. 8 (a) and 8 (b) show an example in which a half bridge is formed by a plurality of piezo resistance elements 35.
それぞれの例において、ピエゾ抵抗素子35によって4つの素子群35G(第1素子群35G1、第2素子群35G2、第3素子群35G3および第4素子群35G4)が構成される。1つの素子群35Gには3つのピエゾ抵抗素子35が設けられ、それぞれが同一方向に平行に配置され、電気的に直列に接続される。例えば、図6において、第1素子群35G1は、Y方向に延びる3つのピエゾ抵抗素子35が直列に接続されてなる。4つの素子群35Gのセンサ基板30上の相対配置は次のとおりである。すなわち、第1素子群35G1は左上に配置され、第2素子群35G2は右上に配置され、第3素子群35G3は左下に配置され、第4素子群35G4は右下に配置される。
In each example, the piezo resistance element 35 constitutes four element groups 35G (first element group 35G1, second element group 35G2, third element group 35G3, and fourth element group 35G4). Three piezo resistance elements 35 are provided in one element group 35G, each of which is arranged in parallel in the same direction and electrically connected in series. For example, in FIG. 6, the first element group 35G1 is formed by connecting three piezo resistance elements 35 extending in the Y direction in series. The relative arrangement of the four element groups 35G on the sensor substrate 30 is as follows. That is, the first element group 35G1 is arranged in the upper left, the second element group 35G2 is arranged in the upper right, the third element group 35G3 is arranged in the lower left, and the fourth element group 35G4 is arranged in the lower right.
図6(a)に示す例では、第1素子群35G1および第4素子群35G4のピエゾ抵抗素子35が歪み方向SDと直交する方向に配置され、第2素子群35G2および第3素子群35G3のピエゾ抵抗素子35が歪み方向SDに配置される。
In the example shown in FIG. 6A, the piezo resistance elements 35 of the first element group 35G1 and the fourth element group 35G4 are arranged in a direction orthogonal to the strain direction SD, and the second element group 35G2 and the third element group 35G3 The piezo resistance element 35 is arranged in the distortion direction SD.
図6(b)に示すように、フルブリッジを構成するため、第1素子群35G1と第3素子群35G3とが直列に導通し、第2素子群35G2と第4素子群35G4とが直列に導通する。第1素子群35G1および第3素子群35G3と、第2素子群35G2および第4素子群35G4とは並列に導通する。第1素子群35G1と第2素子群35G2との間が電源電圧VDD、第3素子群35G3と第4素子群35G4との間が接地電位GNDとなる。また、第1素子群35G1と第3素子群35G3との間が出力電位V1、第2素子群35G2と第4素子群35G4との間が出力電位V2となる。
As shown in FIG. 6B, in order to form a full bridge, the first element group 35G1 and the third element group 35G3 are electrically connected in series, and the second element group 35G2 and the fourth element group 35G4 are connected in series. Conducts. The first element group 35G1 and the third element group 35G3 and the second element group 35G2 and the fourth element group 35G4 conduct in parallel. The power supply voltage VDD between the first element group 35G1 and the second element group 35G2, and the ground potential GND between the third element group 35G3 and the fourth element group 35G4. Further, the output potential V1 is between the first element group 35G1 and the third element group 35G3, and the output potential V2 is between the second element group 35G2 and the fourth element group 35G4.
図7(a)に示す例では、第1素子群35G1のピエゾ抵抗素子35が歪み方向SDと直交する方向に配置され、第2素子群35G2、第3素子群35G3および第4素子群35G4のピエゾ抵抗素子35が歪み方向SDに配置される。
In the example shown in FIG. 7A, the piezo resistance element 35 of the first element group 35G1 is arranged in a direction orthogonal to the strain direction SD, and the second element group 35G2, the third element group 35G3, and the fourth element group 35G4 The piezo resistance element 35 is arranged in the distortion direction SD.
図7(b)に示すように、ハーフブリッジを構成するため、第1素子群35G1と第2素子群35G2とが直列に導通し、第3素子群35G3と第4素子群35G4とが直列に導通する。第1素子群35G1と第2素子群35G2との直列接続のうち第2素子群35G2側が電源電圧VDD、第1素子群35G1が出力電位V1となる。また、第3素子群35G3と第4素子群35G4との直列接続のうち第4素子群35G4側が接地電位GNDとなる。このハーフブリッジ構成では、第1素子群35G1および第2素子群35G2がリファレンス抵抗であり、第3素子群35G3および第4素子群35G4がセンサ抵抗である。
As shown in FIG. 7B, in order to form a half bridge, the first element group 35G1 and the second element group 35G2 are electrically connected in series, and the third element group 35G3 and the fourth element group 35G4 are connected in series. Conducts. Of the series connections of the first element group 35G1 and the second element group 35G2, the second element group 35G2 side has the power supply voltage VDD, and the first element group 35G1 has the output potential V1. Further, of the series connection between the third element group 35G3 and the fourth element group 35G4, the fourth element group 35G4 side has the ground potential GND. In this half-bridge configuration, the first element group 35G1 and the second element group 35G2 are reference resistances, and the third element group 35G3 and the fourth element group 35G4 are sensor resistances.
図8(a)に示す例では、第1素子群35G1および第2素子群35G2のピエゾ抵抗素子35が歪み方向SDと直交する方向に配置され、第3素子群35G3および第4素子群35G4のピエゾ抵抗素子35が歪み方向SDに配置される。
In the example shown in FIG. 8A, the piezo resistance elements 35 of the first element group 35G1 and the second element group 35G2 are arranged in a direction orthogonal to the strain direction SD, and the third element group 35G3 and the fourth element group 35G4 are arranged. The piezo resistance element 35 is arranged in the distortion direction SD.
図8(b)に示すように、ハーフブリッジを構成するため、第1素子群35G1と第2素子群35G2とが直列に導通し、第3素子群35G3と第4素子群35G4とが直列に導通する。第1素子群35G1と第2素子群35G2との直列接続のうち第2素子群35G2側が電源電圧VDD、第1素子群35G1が出力電位V1となる。また、第3素子群35G3と第4素子群35G4との直列接続のうち第4素子群35G4側が接地電位GNDとなる。このハーフブリッジ構成では、歪みに対して第1素子群35G1および第2素子群35G2の抵抗値が下がり、第3素子群35G3および第4素子群35G4の抵抗値が上がる。このため、図8に示すハーフブリッジ構成では、図7に示すハーフブリッジ構成よりも出力値が大きくなる。
As shown in FIG. 8B, in order to form a half bridge, the first element group 35G1 and the second element group 35G2 are electrically connected in series, and the third element group 35G3 and the fourth element group 35G4 are connected in series. Conducts. Of the series connections of the first element group 35G1 and the second element group 35G2, the second element group 35G2 side has the power supply voltage VDD, and the first element group 35G1 has the output potential V1. Further, of the series connection between the third element group 35G3 and the fourth element group 35G4, the fourth element group 35G4 side has the ground potential GND. In this half-bridge configuration, the resistance values of the first element group 35G1 and the second element group 35G2 decrease with respect to the strain, and the resistance values of the third element group 35G3 and the fourth element group 35G4 increase. Therefore, in the half-bridge configuration shown in FIG. 8, the output value is larger than that in the half-bridge configuration shown in FIG. 7.
(歪みセンサの特性)
次に、本実施形態に係る歪みセンサの特性について説明する。
図9は、歪みセンサにおけるセンサ基板の露出高さとセンサ歪み量との関係を示す図である。
図9における横軸はセンサ基板30の表面30aのモールド樹脂40の表面40aからの露出高さ(マイクロメートル:μm)を示し、縦軸は歪み量(マイクロストレイン:μst)を示している。縦軸の歪み量は、起歪体100にX方向に14.3キロニュートン(kN)を加えたときのセンサ基板30の歪み量のシミュレーション結果である。
図10(a)から(e)は、センサ基板の露出状態を例示する模式図である。
図10(a)から(e)に示すセンサ基板30の露出状態は、図9(a)から(e)に示すプロット位置での露出高さに対応している。 (Characteristics of distortion sensor)
Next, the characteristics of the strain sensor according to this embodiment will be described.
FIG. 9 is a diagram showing the relationship between the exposure height of the sensor substrate in the strain sensor and the amount of sensor strain.
In FIG. 9, the horizontal axis shows the exposure height (micrometer: μm) of thesurface 30a of the sensor substrate 30 from the surface 40a of the mold resin 40, and the vertical axis shows the strain amount (microstrain: μst). The strain amount on the vertical axis is a simulation result of the strain amount of the sensor substrate 30 when 14.3 kilonewtons (kN) are added to the strain generator 100 in the X direction.
10 (a) to 10 (e) are schematic views illustrating an exposed state of the sensor substrate.
The exposed state of thesensor substrate 30 shown in FIGS. 10A to 10E corresponds to the exposure height at the plot positions shown in FIGS. 9A to 9E.
次に、本実施形態に係る歪みセンサの特性について説明する。
図9は、歪みセンサにおけるセンサ基板の露出高さとセンサ歪み量との関係を示す図である。
図9における横軸はセンサ基板30の表面30aのモールド樹脂40の表面40aからの露出高さ(マイクロメートル:μm)を示し、縦軸は歪み量(マイクロストレイン:μst)を示している。縦軸の歪み量は、起歪体100にX方向に14.3キロニュートン(kN)を加えたときのセンサ基板30の歪み量のシミュレーション結果である。
図10(a)から(e)は、センサ基板の露出状態を例示する模式図である。
図10(a)から(e)に示すセンサ基板30の露出状態は、図9(a)から(e)に示すプロット位置での露出高さに対応している。 (Characteristics of distortion sensor)
Next, the characteristics of the strain sensor according to this embodiment will be described.
FIG. 9 is a diagram showing the relationship between the exposure height of the sensor substrate in the strain sensor and the amount of sensor strain.
In FIG. 9, the horizontal axis shows the exposure height (micrometer: μm) of the
10 (a) to 10 (e) are schematic views illustrating an exposed state of the sensor substrate.
The exposed state of the
ここで、センサ基板30の露出高さについては、センサ基板30の厚さを変えず、モールド樹脂40の厚さを変えることによって設定している。また、モールド樹脂40の表面40aと起歪体100との間の接着剤層80の厚さは0.11ミリメートル(mm)で一定としている。
Here, the exposed height of the sensor substrate 30 is set by changing the thickness of the mold resin 40 without changing the thickness of the sensor substrate 30. Further, the thickness of the adhesive layer 80 between the surface 40a of the mold resin 40 and the strain-causing body 100 is constant at 0.11 mm (mm).
シミュレーションの結果、図9(a)および図10(a)に示す露出高さ-100μmでは歪み量が34.0μst、図9(b)および図10(b)に示す露出高さ-50μmでは歪み量が36.9μst、図5(c)および図6(c)に示す露出高さ0μmでは歪み量が39.2μstである。
As a result of the simulation, the amount of strain is 34.0 μst at the exposure height of -100 μm shown in FIGS. 9 (a) and 10 (a), and the strain is distorted at the exposure height of -50 μm shown in FIGS. 9 (b) and 10 (b). When the amount is 36.9 μst and the exposure height shown in FIGS. 5 (c) and 6 (c) is 0 μm, the amount of strain is 39.2 μst.
また、図9(d)および図10(d)に示す露出高さ+50μmでは歪み量が42.0μst、図9(e)および図10(e)に示す露出高さ+100μmでは歪み量が53.0μstである。
Further, the strain amount is 42.0 μst at the exposure height +50 μm shown in FIGS. 9 (d) and 10 (d), and the strain amount is 53 at the exposure height +100 μm shown in FIGS. 9 (e) and 10 (e). It is 0 μst.
このように、センサ基板30の表面30aのモールド樹脂40の表面40aからの露出高さが増加するほど歪み量が増加し(検知感度が高まる)、露出高さ+50μmを越えるとより歪み量が増加する(検知感度がより高まる)ことが分かる。
As described above, the amount of distortion increases as the exposure height of the surface 30a of the sensor substrate 30 from the surface 40a of the mold resin 40 increases (the detection sensitivity increases), and when the exposure height exceeds +50 μm, the amount of distortion further increases. (The detection sensitivity is higher).
なお、センサ基板30の露出高さを増やすためにモールド樹脂40の厚さを薄くし過ぎると、第1ボンディングワイヤ61のループ部分などがモールド樹脂40から露出する可能性がある。したがって、モールド樹脂40の厚さは、第1ボンディングワイヤ61が露出しない厚さにおいてセンサ基板30の露出高さを高くすることが望ましい。
If the thickness of the mold resin 40 is made too thin in order to increase the exposed height of the sensor substrate 30, the loop portion of the first bonding wire 61 and the like may be exposed from the mold resin 40. Therefore, it is desirable that the thickness of the mold resin 40 increases the exposed height of the sensor substrate 30 at a thickness at which the first bonding wire 61 is not exposed.
このように、本実施形態によれば、センサ基板30の表面30aがモールド樹脂40の表面40aよりも突出し、モールド樹脂40の表面40aとセンサ基板30の表面30aが起歪体100との取り付け面となることによって、センサ基板30の周辺でしっかり起歪体100に固定しつつ、起歪体100からの歪みをセンサ基板30によって検知しやすくなる。したがって、起歪体100の歪みを検知しやすい構成の歪みセンサ1を提供することが可能となる。
As described above, according to the present embodiment, the surface 30a of the sensor substrate 30 protrudes from the surface 40a of the mold resin 40, and the surface 40a of the mold resin 40 and the surface 30a of the sensor substrate 30 are the mounting surfaces of the strain-generating body 100. This makes it easier for the sensor board 30 to detect the strain from the strain-causing body 100 while firmly fixing it to the strain-causing body 100 around the sensor substrate 30. Therefore, it is possible to provide a strain sensor 1 having a configuration that makes it easy to detect the strain of the strain-causing body 100.
なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の構成例の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
Although the present embodiment has been described above, the present invention is not limited to these examples. For example, a person skilled in the art appropriately adds, deletes, or changes the design of each of the above-described embodiments, or a combination of the features of the configuration examples of each embodiment as appropriate is also a gist of the present invention. Is included in the scope of the present invention as long as it is provided.
1…歪みセンサ
10…パッケージ基板
10a…基板実装面
10b…パッド面
11…電極端子
16…パッド部
20…ベース基板
20a…センサ実装面
25…電気配線部
26…シール
30…センサ基板
30a…表面
31…変位部
35…ピエゾ抵抗素子
35G…素子群
35G1…第1素子群
35G2…第2素子群
35G3…第3素子群
35G4…第4素子群
40…モールド樹脂
40a…表面
50…回路基板
61…第1ボンディングワイヤ
62…第2ボンディングワイヤ
80…接着剤層
80a…第1部分
80b…第2部分
100…起歪体
F…フレキシブル基板
GND…接地電位
SD…歪み方向
V1…出力電位
V2…出力電位
VDD…電源電圧
t1…第1部分の厚さ
t2…第2部分の厚さ 1 ...Distortion sensor 10 ... Package board 10a ... Board mounting surface 10b ... Pad surface 11 ... Electrode terminal 16 ... Pad part 20 ... Base board 20a ... Sensor mounting surface 25 ... Electrical wiring part 26 ... Seal 30 ... Sensor board 30a ... Surface 31 ... Displacement part 35 ... Piezo resistance element 35G ... Element group 35G1 ... First element group 35G2 ... Second element group 35G3 ... Third element group 35G4 ... Fourth element group 40 ... Mold resin 40a ... Surface 50 ... Circuit board 61 ... First 1 Bonding wire 62 ... Second bonding wire 80 ... Adhesive layer 80a ... First part 80b ... Second part 100 ... Distortion body F ... Flexible substrate GND ... Grounding potential SD ... Distortion direction V1 ... Output potential V2 ... Output potential VDD ... Power supply voltage t1 ... Thickness of the first part t2 ... Thickness of the second part
10…パッケージ基板
10a…基板実装面
10b…パッド面
11…電極端子
16…パッド部
20…ベース基板
20a…センサ実装面
25…電気配線部
26…シール
30…センサ基板
30a…表面
31…変位部
35…ピエゾ抵抗素子
35G…素子群
35G1…第1素子群
35G2…第2素子群
35G3…第3素子群
35G4…第4素子群
40…モールド樹脂
40a…表面
50…回路基板
61…第1ボンディングワイヤ
62…第2ボンディングワイヤ
80…接着剤層
80a…第1部分
80b…第2部分
100…起歪体
F…フレキシブル基板
GND…接地電位
SD…歪み方向
V1…出力電位
V2…出力電位
VDD…電源電圧
t1…第1部分の厚さ
t2…第2部分の厚さ 1 ...
Claims (7)
- 起歪体の歪みを検知する歪みセンサであって、
パッケージ基板と、
前記パッケージ基板の上に配置され、電気配線部を有するベース基板と、
前記ベース基板の上に配置され、複数のピエゾ抵抗素子を有するセンサ基板と、
前記パッケージ基板上の前記ベース基板および前記センサ基板を覆うモールド樹脂と、
を備え、
前記センサ基板の表面が前記モールド樹脂の表面よりも突出し、前記モールド樹脂の表面および前記センサ基板の表面が前記起歪体との取り付け面となる、ことを特徴とする歪みセンサ。 It is a strain sensor that detects the strain of the strain-causing body.
With the package board
A base board arranged on the package board and having an electric wiring part,
A sensor board arranged on the base board and having a plurality of piezo resistance elements,
A mold resin that covers the base substrate and the sensor substrate on the package substrate, and
Equipped with
A strain sensor characterized in that the surface of the sensor substrate protrudes from the surface of the mold resin, and the surface of the mold resin and the surface of the sensor substrate serve as a mounting surface for the strain-causing body. - 前記センサ基板は前記モールド樹脂と別体に設けられた、請求項1記載の歪みセンサ。 The strain sensor according to claim 1, wherein the sensor substrate is provided separately from the mold resin.
- 前記センサ基板のヤング率は、前記モールド樹脂のヤング率よりも高い、請求項1または請求項2に記載の歪みセンサ。 The strain sensor according to claim 1 or 2, wherein the Young's modulus of the sensor substrate is higher than the Young's modulus of the molded resin.
- 前記センサ基板の長手方向は、前記起歪体の歪み方向と略平行である、請求項1から請求項3のいずれか1項に記載の歪みセンサ。 The strain sensor according to any one of claims 1 to 3, wherein the longitudinal direction of the sensor substrate is substantially parallel to the strain direction of the strain-causing body.
- 前記モールド樹脂の表面と前記起歪体との間に接着剤層が設けられた、請求項1から請求項4のいずれか1項に記載の歪みセンサ。 The strain sensor according to any one of claims 1 to 4, wherein an adhesive layer is provided between the surface of the mold resin and the strain-causing body.
- 前記モールド樹脂の表面と前記起歪体との間、および前記センサ基板の表面と前記起歪体との間に接着剤層が設けられ、
前記センサ基板の表面から前記起歪体までの前記接着剤層の厚さは、前記モールド樹脂の表面から前記起歪体までの前記接着剤層の厚さよりも薄い、請求項1から請求項4のいずれか1項に記載の歪みセンサ。 An adhesive layer is provided between the surface of the mold resin and the strain-causing body, and between the surface of the sensor substrate and the strain-causing body.
Claims 1 to 4 that the thickness of the adhesive layer from the surface of the sensor substrate to the strain-causing body is thinner than the thickness of the adhesive layer from the surface of the mold resin to the strain-causing body. The strain sensor according to any one of the above items. - 前記パッケージ基板と前記ベース基板との間に、前記センサ基板から出力された信号を処理する信号処理回路を有する回路基板が設けられた、請求項1から請求項6のいずれか1項に記載の歪みセンサ。 The invention according to any one of claims 1 to 6, wherein a circuit board having a signal processing circuit for processing a signal output from the sensor board is provided between the package board and the base board. Distortion sensor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-211702 | 2020-12-21 | ||
JP2020211702A JP2024012731A (en) | 2020-12-21 | 2020-12-21 | strain sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137828A1 true WO2022137828A1 (en) | 2022-06-30 |
Family
ID=82157559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040717 WO2022137828A1 (en) | 2020-12-21 | 2021-11-05 | Strain sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024012731A (en) |
WO (1) | WO2022137828A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010073765A (en) * | 2008-09-17 | 2010-04-02 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
JP2011220865A (en) * | 2010-04-09 | 2011-11-04 | Alps Electric Co Ltd | Force sensor package and manufacturing method of the same |
US20170057810A1 (en) * | 2015-09-01 | 2017-03-02 | Apple Inc. | Strain Reduction and Sensing on Package Substrates |
US20190252556A1 (en) * | 2018-02-13 | 2019-08-15 | Stmicroelectronics S.R.L. | Load sensing devices, packages, and systems |
-
2020
- 2020-12-21 JP JP2020211702A patent/JP2024012731A/en active Pending
-
2021
- 2021-11-05 WO PCT/JP2021/040717 patent/WO2022137828A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010073765A (en) * | 2008-09-17 | 2010-04-02 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
JP2011220865A (en) * | 2010-04-09 | 2011-11-04 | Alps Electric Co Ltd | Force sensor package and manufacturing method of the same |
US20170057810A1 (en) * | 2015-09-01 | 2017-03-02 | Apple Inc. | Strain Reduction and Sensing on Package Substrates |
US20190252556A1 (en) * | 2018-02-13 | 2019-08-15 | Stmicroelectronics S.R.L. | Load sensing devices, packages, and systems |
Also Published As
Publication number | Publication date |
---|---|
JP2024012731A (en) | 2024-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6388887B1 (en) | Surface mount type package unit | |
JP5487672B2 (en) | Physical quantity sensor | |
US20100179430A1 (en) | Ultrasonic probe and method for manufacturing the same and ultrasonic diagnostic device | |
US20120133042A1 (en) | Mounting structure of chip and module using the same | |
JP5990933B2 (en) | Manufacturing method of pressure sensor package | |
JP2008039760A (en) | Pressure sensor | |
JP2006211468A (en) | Semiconductor sensor | |
JP4892781B2 (en) | Semiconductor physical quantity sensor | |
JP6293982B2 (en) | Mechanical quantity measuring device | |
US20230010130A1 (en) | Ultrasonic touch sensor | |
WO2022137828A1 (en) | Strain sensor | |
KR20040097929A (en) | Acceleration sensor device | |
JP2006078249A (en) | Capacity type semiconductor sensor | |
TWI693382B (en) | Force sensor | |
US20120206888A1 (en) | Sensor arrangement and chip comprising additional fixing pins | |
JPH07234244A (en) | Acceleration sensor | |
JP4706634B2 (en) | Semiconductor sensor and manufacturing method thereof | |
JP2010147227A (en) | Electronic device package | |
JP3528834B2 (en) | Acceleration sensor | |
CN114930138A (en) | Force sensor | |
WO2022163324A1 (en) | Strain sensor | |
JP7339619B2 (en) | load transducer | |
US20150082898A1 (en) | Strain sensor | |
JP4399545B2 (en) | Tactile sensor and multi-point tactile sensor | |
JP2015094646A (en) | Dynamic quantity measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21909982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21909982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |