WO2022131170A1 - 異常検出装置、異常検出方法、異常検出プログラム、ベアリングの異常検出システム - Google Patents
異常検出装置、異常検出方法、異常検出プログラム、ベアリングの異常検出システム Download PDFInfo
- Publication number
- WO2022131170A1 WO2022131170A1 PCT/JP2021/045659 JP2021045659W WO2022131170A1 WO 2022131170 A1 WO2022131170 A1 WO 2022131170A1 JP 2021045659 W JP2021045659 W JP 2021045659W WO 2022131170 A1 WO2022131170 A1 WO 2022131170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality
- signal
- frequency
- data
- bearing
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 47
- 238000012545 processing Methods 0.000 claims abstract description 43
- 238000005096 rolling process Methods 0.000 claims abstract description 39
- 230000002159 abnormal effect Effects 0.000 claims abstract description 16
- 230000005856 abnormality Effects 0.000 claims description 150
- 238000004891 communication Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 12
- 230000010365 information processing Effects 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 7
- 238000010606 normalization Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/52—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C41/00—Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the abnormality determination unit 340 detects the state of the object to be measured (bearing 250) based on the processed data processed by the data processing unit 330. More specifically, the abnormality determination unit 340 determines whether or not the state of the measurement object is abnormal, detects a sign of abnormality of the measurement object, and the like.
- the notification generation unit 350 generates a notification indicating an abnormality or a sign of an abnormality when the abnormality determination unit 340 detects an abnormality or a sign of the abnormality.
- the outer ring 251 is damaged by detecting a sign before the outer ring 251 is damaged and notifying the user. You can prevent it from entering.
- the information processing device 300 of the present embodiment includes an input device 31, an output device 32, a drive device 33, an auxiliary storage device 34, a memory device 35, an arithmetic processing device 36, and an interface device 37, which are connected to each other by a bus B, respectively. It is a computer including, and is an example of an abnormality detection device.
- the abnormality detection program that realizes the communication unit 310, the data acquisition unit 320, the data processing unit 330, the abnormality determination unit 340, and the notification generation unit 350 is at least a part of various programs that control the information processing device 300.
- the abnormality detection program is provided, for example, by distributing the storage medium 38, downloading from the network, or the like.
- the storage medium 38 on which the abnormality detection program is recorded includes various types of storage media such as a storage medium for optically, electrically or magnetically recording information, a semiconductor memory for electrically recording information such as a ROM and a flash memory, and the like.
- a storage medium can be used.
- the abnormality detection program is installed in the auxiliary storage device 34 from the storage medium 38 via the drive device 33.
- the abnormality detection program downloaded from the network is installed in the auxiliary storage device 34 via the interface device 37.
- FIG. 3 is a first flowchart illustrating the processing of the information processing apparatus of the first embodiment.
- the process shown in FIG. 3 is mainly the process of the data processing unit 330.
- the process of FIG. 3 is executed every time the communication unit 310 receives digital data.
- the data processing unit 330 calculates the frequency at which the power becomes the maximum value and the maximum value from the acquired waveform data in the frequency region, and sets that frequency as the frequency of the passing vibration of the rolling element 252 (step S302).
- the waveform of the frequency of the passing vibration of the rolling element 252 may be referred to as a basic waveform, and the waveform data showing the basic waveform may be referred to as the basic waveform data.
- the passing vibration of the rolling element 252 refers to the vibration of the outer ring 251 generated when the rolling element 252 passes through the portion of the outer ring 251 to which the strain gauge 210 is attached.
- the data processing unit 330 performs inverse FFT on each of the extracted frequency components, converts the waveform data in the frequency domain into waveform data in the time domain, and calculates the effective value of the amplitude of each waveform data in the time domain. (Step S304).
- the data processing unit 330 stores the feature amount calculated in step S305 in the storage unit 360 (step S307), and ends the process.
- the feature amount group stored in the storage unit 360 during the collection period may be referred to as normal data.
- step S306 of FIG. 3 the abnormality determination unit 340 of the present embodiment reads normal data from the storage unit 360 and extracts normalization parameters when the collection period has elapsed (step S401).
- the abnormality determination unit 340 normalizes the evaluation data using the normalization parameters used for normalizing the normal data (step S402).
- the abnormality determination unit 340 has a data density in the vicinity of the evaluation data normalized in step S402 and a data density in the vicinity of the normal data normalized in step S401 on the space using the feature amount as the coordinate value.
- the ratio of is calculated (step S403).
- the ratio of data density is defined as the degree of abnormality.
- the degree of abnormality is a value that is an index for determining whether or not the state of the bearing 250 is abnormal.
- the abnormality determination unit 340 determines whether or not the condition that "the degree of abnormality exceeds a certain threshold value and the frequency exceeds a predetermined value" is satisfied (step S404).
- the threshold value of the degree of abnormality and a predetermined value may be set in advance. Details of steps S403 and S404 will be described later.
- step S404 If the condition is satisfied in step S404, the abnormality determination unit 340 determines that the state of the bearing 250 is an abnormal state, the notification generation unit 350 generates a notification indicating an abnormality, and the communication unit 310 transmits the notification ( Step S405), the process is terminated.
- the notification of the present embodiment may be, for example, a message indicating that an abnormality has occurred in the bearing 250, and in that case, for example, the notification is displayed on a display or the like connected to the information processing apparatus 300. You may. Further, the notification of the present embodiment may be an alarm or the like indicating that the bearing 250 is in an abnormal state, and this alarm may be output to the sensor board 200. The sensor board 200 may receive this alarm and notify the alarm to, for example, a higher-level device of the bearing 250.
- step S404 if the condition that "the degree of abnormality exceeds a certain threshold value and the frequency exceeds a predetermined value" is not satisfied, the abnormality determination unit 340 determines that it is normal (step S406) and performs processing. finish. In the present embodiment, even when the abnormality determination unit 340 determines that the abnormality is normal, the notification generation unit 350 may generate and output a notification indicating the normality.
- the abnormality determination by the abnormality determination unit 340 will be further described with reference to FIGS. 5 and 6.
- FIG. 5 is the first diagram illustrating the abnormality determination by the abnormality determination unit.
- the case where the post-normalized evaluation data is normal data is shown.
- the normalized data after normalization and the evaluation data after normalization are referred to as normalized data after normalization and evaluation data after normalization.
- the anomaly determination unit 340 calculates the density of the data arranged in the vicinity of the normalized evaluation data 52 in the feature quantity space (example; number of neighborhoods 3).
- the region R including three surrounding data is specified centering on the normalized evaluation data 52.
- a region R including three post-normalized normal data 51a, 51b, 51c arranged near the post-normalized evaluation data 52 is specified.
- the number of neighborhoods is not limited to 3.
- the abnormality determination unit 340 identifies the regions R1, R2, and R3 including the normalized normal data 51a, 51b, and 51c, respectively.
- the abnormality determination unit 340 calculates the data density in the region R and the data density of the normalized normal data in each of the regions R1, R2, and R3. Specifically, the abnormality determination unit 340 may use the number of normalized normal data in the regions R, R1, R2, and R3 as the data density.
- the abnormality determination unit 340 calculates the ratio between the data density of the region R and the average data density of the regions R1, R2, and R3 as the degree of abnormality.
- the digital data when the normalized evaluation data 52 is acquired is the normal data acquired when the bearing 250 is in a normal state.
- the abnormality determination unit 340 specifies the region R and the regions R4, R5, and R6 including the normalized normal data 51d, 51e, and 51f, respectively. Then, the abnormality determination unit 340 calculates the ratio between the data density of the region R and the average data density of the regions R4, R5, and R6 as the degree of abnormality.
- the digital data when the normalized evaluation data 52 is acquired can be said to be the abnormal data acquired when the bearing 250 is in an abnormal state.
- the abnormality determination unit 340 of the present embodiment detects an abnormality in the bearing 250 when the normalized evaluation data 52 becomes abnormality data a plurality of times. good.
- the bearing 250 anomalies can be detected.
- the influence of the temperature characteristic of the strain gauge 210 can be reduced, and the abnormality of the bearing 250 can be detected only by the strain.
- the abnormality determination unit 340 of the present embodiment detects the abnormality of the bearing 250 when the abnormality degree exceeds the threshold value, but the abnormality determination unit 340 detects a sign of abnormality according to the abnormality degree. It may be detected.
- the abnormality determination unit 340 detects a sign of abnormality before the degree of abnormality reaches the threshold value, and generates a notification to the notification generation unit 350 indicating that there is a sign of abnormality. You may let me. This notification may be transmitted to the outside by the communication unit 310.
- the second embodiment will be described below with reference to the drawings.
- the second embodiment is different from the first embodiment in that the function of the information processing apparatus 300 is realized by a semiconductor integrated circuit. Therefore, in the description of the second embodiment, the reference numerals used in the description of the first embodiment are given to those having the same functional configuration as that of the first embodiment, and the description thereof will be omitted.
- the abnormality detection device 400 of the present embodiment includes a communication circuit 410, a data acquisition circuit 420, a data processing circuit 430, an abnormality determination circuit 440, a notification output circuit 450, and a storage device 460.
- the communication circuit 410 communicates with the sensor board 200.
- the data acquisition circuit 420 realizes the function of the data acquisition unit 320.
- the data processing circuit 430 realizes the function of the data processing unit 330.
- the abnormality determination circuit 440 realizes the function of the abnormality determination unit 340.
- the notification output circuit 450 realizes the function of the notification generation unit 350.
- the storage device 460 corresponds to the storage unit 360.
- the abnormality detection device 400 includes, but is not limited to, the storage device 460.
- the abnormality detection device 400 does not have to have the storage device 460.
- the storage device 460 is mounted outside the abnormality detection device 400 and becomes a data processing circuit 430 and an abnormality determination circuit 440. All you have to do is connect.
- the abnormality detection device 400 by setting the function of the information processing device 300 to the abnormality detection device 400 which is an integrated circuit, for example, the abnormality detection device 400 can be mounted on the sensor board 200.
- the information processing device 300 for detecting the abnormality of the object to be measured it is not necessary to arrange the information processing device 300 for detecting the abnormality of the object to be measured, and in particular, the bearing 250, the sensor board 200, and the abnormality detecting device 400 are provided inside the host device. It can be built in.
- the third embodiment will be described below with reference to the drawings.
- the third embodiment is different from the second embodiment in that the sensor substrate is included in the abnormality detection device shown in the second embodiment. Therefore, in the following description of the third embodiment, the differences from the second embodiment will be described, and the functional configuration similar to that of the second embodiment will be described with reference to the reference numerals used in the description of the second embodiment. Is given, and the description is omitted.
- FIG. 8 is a diagram showing an abnormality detection device according to a third embodiment.
- the abnormality detection device 400A of the present embodiment includes a strain gauge 210, an amplifier 220, an ADC 230, a data acquisition circuit 420, a data processing circuit 430, an abnormality determination circuit 440, and a notification output circuit 450. Further, the abnormality detection device 400A of the present embodiment is connected to a storage device 460 in which data is written by the data processing circuit 430 and the data is read out by the abnormality determination circuit 440.
- the rolling element 252 in the measurement object can be rolled by simply attaching the abnormality detection device 400A to the outer ring of the measurement object. Abnormal vibration caused by motion can be detected.
- the abnormality detection device 400A of the present embodiment does not include the bearing 250, the abnormality detection device 400A may include the bearing 250.
- the present invention has been described above based on each embodiment, the present invention is not limited to the requirements shown in the above embodiments. With respect to these points, the gist of the present invention can be changed to the extent that the gist of the present invention is not impaired, and can be appropriately determined according to the application form thereof.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Rolling Contact Bearings (AREA)
Abstract
転動体の通過振動を捉えた信号を取得するデータ取得部と、前記信号を用いて、前記転動体の通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出するデータ処理部と、前記特徴量に基づき、前記転動体を含む測定対象物の状態が異常であるか否かを判定する異常判定部と、を有する異常検出装置である。
Description
本発明は、異常検出装置、異常検出方法、異常検出プログラム、ベアリングの異常検出システムに関する。
従来から、ベアリング等の測定対象物に取り付けてられたひずみゲージにより観測される観測波形に基づき、転動体の内輪(回転輪)の回転数、ラジアル荷重を算出することで、ベアリングの状態を監視する技術が知られている。
上述した従来の技術では、観測波形の周期や振幅が既知である。また、従来の技術では、例えば、観測波形の周期や振幅に不規則な変動やノイズを含む異常振動波形であった場合に、転動体の剥離や保持器の破損等の転がり軸受の異常な振動と誤検出する。このため、従来の技術では、観測波形の周期や振幅が未知である場合や、回転速度が変動する場合等には、ひずみゲージによる測定対象物の異常を検出することが困難である。
開示の技術は、上記事情に鑑みてなされたものであり、測定対象物の異常を検出することを目的としている。
開示の技術は、転動体(252)の通過振動を捉えた信号を取得するデータ取得部(320)と、
前記信号を用いて、前記転動体(252)の通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出するデータ処理部(330)と、
前記特徴量に基づき、前記転動体(252)を含む測定対象物(250)の状態が異常であるか否かを判定する異常判定部(340)と、を有する異常検出装置(300)である。
前記信号を用いて、前記転動体(252)の通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出するデータ処理部(330)と、
前記特徴量に基づき、前記転動体(252)を含む測定対象物(250)の状態が異常であるか否かを判定する異常判定部(340)と、を有する異常検出装置(300)である。
測定対象物の異常を検出できる。
(第一の実施形態)
以下に図面を参照して、第一の実施形態について説明する。図1は、第一の実施形態の異常検出システムのシステム構成の一例を示す図である。
以下に図面を参照して、第一の実施形態について説明する。図1は、第一の実施形態の異常検出システムのシステム構成の一例を示す図である。
本実施形態の異常検出システム100は、センサ基板200と、情報処理装置(異常検出装置)300と、を有し、センサ基板200と情報処理装置300とは、無線通信等によって通信を行う。尚、センサ基板200と情報処理装置300との通信方法は、無線通信に限定されず、有線通信であってもよい。センサ基板200と情報処理装置300とは、通信が可能であれば、どのような方法で接続されてもよい。また、無線通信を行う場合には、センサ基板200に別途電源が供給されてもよい。
本実施形態のセンサ基板200には、例えば、ひずみゲージ210、アンプ220、ADC(Analog-to-Digital Converter)230、通信回路240が実装されている。
尚、本実施形態では、ひずみゲージ210が実装された基板と、アンプ220、ADC(Analog-to-Digital Converter)230、通信回路240とが実装された基板とが、別々の基板であってもよい。
ひずみゲージ210は、例えば、ベアリング250に設けられる。ベアリング250は、例えば、外輪(固定輪)251と、複数の転動体252と、内輪(回転輪)253とを有し、複数の転動体252は、外輪251と内輪253との間に転動自在に配設されている。
ひずみゲージ210は、外輪251に取り付けられる。また、ひずみゲージ210は、転動体252がひずみゲージ210が設けられた位置を通過する際に、外輪251に生じるひずみを検出し、ひずみに応じた抵抗値の変化を示すアナログデータ(波形データ)を出力する。尚、図1の例では、ひずみゲージ210は外輪251に取り付けられるものとしたが、ひずみゲージ210は、外輪251以外に取り付けられていてもよい。
つまり、ひずみゲージ210は、ひずみを測定する測定対象物にひずみが生じると、ひずみに応じたアナログデータ(波形データ)を出力する。本実施形態では、ベアリング250は、ひずみゲージ210による測定対象物の一例である。本実施形態の測定対象物は、例えば、転動体が固定された部材上で自在に転動する構造を有するものであればよく、ベアリングに限定されない。
また、本実施形態では、測定対象物のひずみを検出する手段の一例として、ひずみゲージ210を用いるが、ひずみの検出は、ひずみゲージ210以外の手段によって行われてもよい。
アンプ220は、ひずみゲージ210から出力されるアナログデータを増幅させる。ADC230は、増幅させたアナログデータをデジタルデータに変換する。通信回路240は、ADC230から出力されるデジタルデータを、情報処理装置300へ送信する。
情報処理装置300は、通信部310、データ取得部320、データ処理部330、異常判定部340、通知生成部350、記憶部360を有する。
尚、通信部310、データ取得部320、データ処理部330、異常判定部340は、情報処理装置300の演算処理装置がメモリ装置に格納された異常検出プログラムを読み出して実行することで実現される。また、記憶部360は、例えば、情報処理装置300が有する補助記憶装置等によって実現される。情報処理装置300のハードウェア構成の詳細は後述する。
通信部310は、センサ基板200を含む外部の装置と通信を行う。具体的には、通信部310は、センサ基板200から送信されるデジタルデータを受信する。尚、通信部310は、予め設定された周期で、間欠的に、センサ基板200からデジタルデータを受信してもよい。また、通信部310は、異常判定部340により、転動体252の回転の異常が検出された場合、通知生成部350で生成された通知を外部の装置へ送信する。
データ取得部320は、通信部310が受信したデジタルデータを取得する。尚、データ取得部320が取得するデジタルデータは、転動体の通過振動を捉えた時系列信号である。
データ処理部330は、記憶部360に格納されたデジタルデータに対し、異常判定部340による異常判定を行うための処理を行い、処理が施された後のデータを記憶部360に格納する。以下の説明では、デジタルデータに対してデータ処理部330の処理を行った後のデータを、処理済みデータと呼ぶ場合がある。
異常判定部340は、データ処理部330による処理が施された処理済みデータに基づき、測定対象物(ベアリング250)の状態を検出する。より具体的には、異常判定部340は、測定対象物の状態が異常であるか否かの判定や、測定対象物の異常の予兆の検出等を行う。
尚、本実施形態におけるベアリング250の異常とは、例えば、ベアリング250の損傷(転動体、外輪、内輪を含む)、グリスの劣化、異物混入による回転の不具合等である。
例えば、ベアリング250の外輪251に傷が入ると、転動体252の通過振動の高調波成分の振幅値が増加する。本実施形態では、例えば、転動体252の通過振動の高調波成分の振幅値の変化を、外輪251に傷が入る前の予兆として検出してもよい。
通知生成部350は、異常判定部340により、異常や異常の予兆が検出された場合に、その旨を示す通知を生成する。
本実施形態では、例えば、転動体252の通過振動の高調波成分の振幅値の変化に基づき、外輪251に傷が入る前の予兆を検出し、ユーザに通知することで、外輪251に傷が入ることを未然に防ぐことができる。
記憶部360は、データ処理部330による処理済みデータが格納される。
次に、図2を参照して、本実施形態の情報処理装置300のハードウェア構成について説明する。図2は、第一の実施形態の情報処理装置のハードウェア構成の一例を示す図である。
本実施形態の情報処理装置300は、それぞれバスBで相互に接続されている入力装置31、出力装置32、ドライブ装置33、補助記憶装置34、メモリ装置35、演算処理装置36及びインターフェース装置37を含むコンピュータであり、異常検出装置の一例である。
入力装置31は、各種の情報の入力を行うための装置であり、例えばタッチパネル等により実現される。出力装置32は、各種の情報の出力を行うためものであり、例えばディスプレイ等により実現される。インターフェース装置37は、ネットワークに接続する為に用いられる。
通信部310、データ取得部320、データ処理部330、異常判定部340,通知生成部350を実現させる異常検出プログラムは、情報処理装置300を制御する各種プログラムの少なくとも一部である。異常検出プログラムは、例えば、記憶媒体38の配布やネットワークからのダウンロード等によって提供される。異常検出プログラムを記録した記憶媒体38は、情報を光学的、電気的或いは磁気的に記録する記憶媒体、ROM、フラッシュメモリ等の様に情報を電気的に記録する半導体メモリ等、様々なタイプの記憶媒体を用いることができる。
また、異常検出プログラムは、異常検出プログラムを記録した記憶媒体38がドライブ装置33にセットされると、記憶媒体38からドライブ装置33を介して補助記憶装置34にインストールされる。ネットワークからダウンロードされた異常検出プログラムは、インターフェース装置37を介して補助記憶装置34にインストールされる。
記憶部360を実現する補助記憶装置34は、情報処理装置300にインストールされた異常検出プログラムを格納すると共に、情報処理装置300による各種の必要なファイル、データ等を格納する。メモリ装置35は、情報処理装置300の起動時に補助記憶装置34から異常検出プログラムを読み出して格納する。そして、演算処理装置36はメモリ装置35に格納された異常検出プログラムに従って、後述するような各種処理を実現している。
次に、図3を参照して、本実施形態の情報処理装置300の処理について説明する。図3は、第一の実施形態の情報処理装置の処理を説明する第一のフローチャートである。図3に示す処理は、主にデータ処理部330の処理である。図3の処理は、通信部310がデジタルデータを受信する度に実行される。
本実施形態のデータ処理部330は、データ取得部320が取得したデジタルデータに対し、高速フーリエ変換処理(FFT;fast Fourier transform)を実行し、周波数領域の波形データを取得する(ステップS301)。
続いて、データ処理部330は、取得した周波数領域の波形データから、パワーが極大値かつ最大値となる周波数を算出し、その周波数を転動体252の通過振動の周波数とする(ステップS302)。以下の説明では、転動体252の通過振動の周波数の波形を基本波形と呼び、基本波形を示す波形データを基本波形データと呼ぶ場合がある。また、転動体252の通過振動とは、転動体252が、外輪251においてひずみゲージ210が取り付けられた箇所を通過する際に生じる外輪251の振動を示す。
続いて、データ処理部330は、基本波形の周波数の+10%から-10%までの範囲の周波数成分を抽出する。また、データ処理部330は、転動体252の通過振動のN次高調波成分のそれぞれについて、周波数の+10%から-10%までの範囲の周波数成分を抽出する(ステップS303)。尚、本実施形態では、基本波形の周波数は、N=1のときであり、N次高調波とは、N=2~5の周波数の高調波とした。ただし、Nの値は、これに限定されるものではない。
続いて、データ処理部330は、抽出した各周波数成分に対して逆FFTを行って、周波数領域の波形データを時間領域の波形データとし、各波形データの時間領域における振幅の実効値を算出する(ステップS304)。
具体的には、データ処理部330は、基本波形の周波数を中心とした+10%から-10%までの範囲の周波数成分に対し、逆FFTを行った結果の波形データの振幅の実効値を算出する。また、データ処理部330は、N次高調波成分(N=2~5)を中心とした+10%から-10%までの範囲の周波数成分に対し、逆FFTを行った結果の波形データの振幅の実効値を算出する。
続いて、データ処理部330は、ステップS304において、転動体252のN次高調波成分(N=2~5)に基づき算出されたそれぞれの振幅の実効値を、基本波形データに基づき算出された振幅の実効値で除算した値を算出し、この値を特徴量とする(ステップS305)。
言い換えれば、データ処理部330は、基本波形データに基づき算出された振幅の実効値と、N次高調波成分に基づき算出されたそれぞれの振幅の実効値との比率を、特徴量として算出する。本実施形態の特徴量とは、転動体252の回転の状態を示す値であり、言い換えれば、ベアリング250(測定対象物)の状態を示す値である。
続いて、データ処理部330は、正常データの収集期間が経過したか否かを判定する(ステップS306)。
収集期間とは、ベアリング250が正常な状態で動作していると推定される期間であり、正常データとは、収集期間中に取得されたデジタルデータから算出された特徴量である。
本実施形態の収集期間とは、例えば、ベアリング250の工場出荷時から所定の期間であってもよいし、ベアリング250の稼働時間が所定時間に到達するまでの期間であってもよい。本実施形態の収集期間は、任意に設定が可能であってもよい。
ステップS306において、収集期間が経過していない場合、データ処理部330は、ステップS305で算出した特徴量を記憶部360に保存し(ステップS307)、処理を終了する。以下の説明では、収集期間に記憶部360に保存された特徴量群を、正常データと呼ぶ場合がある。
本実施形態の正常データには、N=2と対応する特徴量群と、N=3と対応する特徴量群と、N=4と対応する特徴量群と、N=5と対応する特徴量群とが含まれる。
ステップS306において、収集期間が経過している場合、情報処理装置300は、異常判定部340により、ステップS305で算出した特徴量を用いた異常判定処理を行い(ステップS308)、処理を終了する。
以下に、図4を参照して、本実施形態の異常判定部340の処理について説明する。図4は、第一の実施形態の情報処理装置の処理を説明する第二のフローチャートである。図4に示す処理は、主に、異常判定部340の処理である。
本実施形態の異常判定部340は、図3のステップS306において、収集期間が経過している場合、記憶部360から正常データを読み出し、正規化パラメータを抽出する(ステップS401)。
具体的には、異常判定部340は、正常データに含まれるN=2と対応する特徴量群と、N=3と対応する特徴量群と、N=4と対応する特徴量群と、N=5と対応する特徴量群と、のそれぞれについて、平均値と分散と算出する。
続いて、異常判定部340は、正常データの正規化に用いた正規化パラメータを用いて、評価データを正規化する(ステップS402)。評価データとは、収集期間が経過した後に、データ取得部320が取得したデジタルデータに基づき、データ処理部330が算出したN=2~5のそれぞれと対応する特徴量である。
ステップS402において、また、異常判定部340は、ステップS402において、この評価データを、ステップS402で用いた正規化パラメータ(平均値と分散)を用いて正規化し、後述する特徴量空間における座標を示す値とする。
続いて、異常判定部340は、特徴量を座標値とした空間上における、ステップS402で正規化された評価データの近傍のデータ密度と、ステップS401で正規化された正常データの近傍のデータ密度の比を算出する(ステップS403)。本実施形態では、データ密度の比を異常度とする。異常度とは、ベアリング250の状態が異常であるか否かを判定する際の指標なる値である。
続いて、異常判定部340は、「異常度がある閾値を超え、且つ、その頻度が所定の値を超えた」、という条件を満たすか否かを判定する(ステップS404)。尚、異常度の閾値や、所定の値は、予め設定されていてもよい。ステップS403、ステップS404の詳細は後述する。
ステップS404において、条件を満たす場合、異常判定部340は、ベアリング250の状態が異常な状態と判定し、通知生成部350により、異常を示す通知を生成し、通信部310により通知を送信し(ステップS405)、処理を終了する。
本実施形態の通知は、例えば、ベアリング250に異常が生じていることを示すメッセージ等であってもよく、その場合には、例えば、情報処理装置300と接続されたディスプレイ等に通知を表示させてもよい。また、本実施形態の通知は、ベアリング250が異常な状態であることを示す警報等であってもよく、この警報は、センサ基板200に対して出力されてもよい。センサ基板200は、この警報を受け付けて、例えば、ベアリング250の上位装置等にも警報を通知してもよい。
ステップS404において、「異常度がある閾値を超え、且つ、その頻度が所定の値を超えた」、という条件を満たさない場合、異常判定部340は、正常と判定し(ステップS406)、処理を終了する。尚、本実施形態では、異常判定部340により、正常と判定された場合も、正常であることを示す通知を通知生成部350により生成して出力してもよい。
以下に、図5及び図6を参照して、異常判定部340による異常判定ついて、さらに説明する。尚、本実施形態では、特徴量空間は、N次高調波成分(N=2~5)に応じた4次元で表現されるものであるが、図5及び図6の説明では、理解を容易にするため、特徴量空間を2次元の空間として説明する。
図5は、異常判定部による異常判定について説明する第一の図である。図5の例では、横軸をN=2と対応した特徴量とし、縦軸をN=3と対応した特徴量としており、正規化後評価データが正常なデータである場合を示している。
図5において、点群51は、ステップS401で正規化された正常データを示す。また、点52は、N=2と対応する正規化後の正常データと、N=3と対応する正規化後の正常データとを用いて、正規化した評価データを示す。以下の図5及び図6の説明では、正規化後の正常データと、正規化後の評価データを、正規化後正常データと、正規化後評価データと呼ぶ。
異常判定部340は、特徴量空間において、正規化後評価データ52の近傍に配置されたデータの密度を算出する(例;近傍数3)。本実施形態では、近傍数を3つとしているため、正規化後評価データ52を中心に、周囲のデータが3つ含まれる領域Rが特定される。図5の例では、正規化後評価データ52の近くに配置された3つの正規化後正常データ51a、51b、51cを含む領域Rが特定される。尚、近傍数は、3に限定されない。
また、異常判定部340は、正規化後正常データ51a、51b、51cのそれぞれを含む領域R1、R2、R3を特定する。
そして、異常判定部340は、領域Rにおけるデータ密度と、領域R1、R2、R3のそれぞれにおける正規化後正常データのデータ密度とを算出する。具体的には、異常判定部340は、領域R、R1、R2、R3内の正規化後正常データの個数をデータ密度としてもよい。
次に、異常判定部340は、領域Rのデータ密度と、領域R1、R2、R3の平均データ密度との比率を、異常度として算出する。
図5の例では、正規化後評価データ52を取得したときのデジタルデータは、ベアリング250が正常な状態において取得された正常時のデータと言える。
図6は、異常判定部による異常判定について説明する第二の図である。図6では、横軸をN=2と対応した特徴量とし、縦軸をN=3と対応した特徴量としており、正規化後評価データが異常なデータである場合を示している。
図6の例では、異常判定部340は、領域Rと、正規化後正常データ51d、51e、51fのそれぞれを含む領域R4、R5、R6を特定する。そして、異常判定部340は、領域Rのデータ密度と、領域R4、R5、R6の平均データ密度との比率を、異常度として算出する。
図6の例では、正規化後評価データ52を取得したときのデジタルデータは、ベアリング250が異常な状態において取得された異常時のデータと言える。
本実施形態の異常判定部340は、例えば、図6に示すように、正規化後評価データ52が異常のデータとなることが、複数回続いた場合に、ベアリング250の異常を検出してもよい。
このように、本実施形態によれば、ベアリング250の定常状態における内輪253の回転数や、観測波形の周期及び振幅等が未知である場合や、回転速度が変動する場合であっても、ベアリング250の異常を検出することができる。
また、本実施形態では、ひずみゲージ210から出力される信号から、転動体252の通過振動を示す周波数の振幅と、この周波数のN次高調波成分の振幅との比率によって示される特徴量に基づき、ベアリング250の異常を検出する。
このため、本実施形態では、ひずみゲージ210の温度特性の影響を低減し、ひずみのみで、ベアリング250の異常を検出することができる。
また、本実施形態では、ベアリングの異常の有無を検出する際に、測定対象物となるベアリング毎に、正常データを収集し、収集した正常データを基準とする。そして、本実施形態では、特徴量空間上で、測定対象のベアリングの正常データのデータ密度に着目し異常度を算出している。このため、本実施形態では、異常を検出する条件が一定であれば、ベアリングの機種が異なっても、ベアリングの種類によって事前に基準値を設定する必要がない。
さらに、本実施形態の異常判定部340は、異常度が閾値を超えた場合に、ベアリング250の異常を検出するものとしたが、異常判定部340は、異常度に応じて、異常の予兆を検出してもよい。
具体的には、例えば、異常判定部340は、異常度が閾値に到達する前の段階で、異常の予兆を検出し、通知生成部350に対し、異常の予兆があることを示す通知を生成させてもよい。この通知は、通信部310によって、外部へ送信されてもよい。
(第二の実施形態)
以下に図面を参照して、第二の実施形態について説明する。第二の実施形態は、情報処理装置300の機能を、半導体集積回路によって実現した点が、第一の実施形態と相違する。よって、第二の実施形態の説明では、第一の実施形態と同様の機能構成を有するものには、第一の実施形態の説明で用いた符号を付与し、その説明を省略する。
以下に図面を参照して、第二の実施形態について説明する。第二の実施形態は、情報処理装置300の機能を、半導体集積回路によって実現した点が、第一の実施形態と相違する。よって、第二の実施形態の説明では、第一の実施形態と同様の機能構成を有するものには、第一の実施形態の説明で用いた符号を付与し、その説明を省略する。
図7は、第二の実施形態の異常検出システムのシステム構成の一例を示す図である。本実施形態の異常検出システム100Aは、センサ基板200と、異常検出装置400とを含む。異常検出システム100Aにおいて、異常検出装置400は、情報処理装置300の各部の機能を有する回路を1つに認めた、用途特定向け集積回路(ASIC;application specific integrated circuit)である。
本実施形態の異常検出装置400は、通信回路410、データ取得回路420、データ処理回路430、異常判定回路440、通知出力回路450、記憶装置460を有する。
通信回路410は、センサ基板200と通信を行う。データ取得回路420は、データ取得部320の機能を実現する。データ処理回路430は、データ処理部330の機能を実現する。異常判定回路440は、異常判定部340の機能を実現する。通知出力回路450は、通知生成部350の機能を実現する。記憶装置460は、記憶部360に対応する。
尚、異常検出装置400は、記憶装置460を含むものとしたが、これに限定されない。異常検出装置400は、記憶装置460を有していなくてもよく、その場合には、記憶装置460は、異常検出装置400の外部に実装されて、データ処理回路430と異常判定回路440とに接続されればよい。
本実施形態では、このように、情報処理装置300の機能を集積回路である異常検出装置400とすることで、例えば、センサ基板200上に、異常検出装置400を実装することができる。
したがって、本実施形態では、測定対象物の異常を検知するための情報処理装置300を配置する必要がなく、特に、上位装置の内部に、ベアリング250と、センサ基板200と異常検出装置400とを内蔵させることができる。
(第三の実施形態)
以下に図面を参照して、第三の実施形態について説明する。第三の実施形態では、第二の実施形態に示す異常検出装置にセンサ基板を含めた点が、第二の実施形態と相違する。よって、以下の第三の実施形態の説明では、第二の実施形態との相違点について説明し、第二の実施形態と同様の機能構成については、第二の実施形態の説明で用いた符号を付与し、説明を省略する。
以下に図面を参照して、第三の実施形態について説明する。第三の実施形態では、第二の実施形態に示す異常検出装置にセンサ基板を含めた点が、第二の実施形態と相違する。よって、以下の第三の実施形態の説明では、第二の実施形態との相違点について説明し、第二の実施形態と同様の機能構成については、第二の実施形態の説明で用いた符号を付与し、説明を省略する。
図8は、第三の実施形態の異常検出装置を示す図である。本実施形態の異常検出装置400Aは、ひずみゲージ210、アンプ220、ADC230、データ取得回路420、データ処理回路430、異常判定回路440、通知出力回路450を有する。また、本実施形態の異常検出装置400Aは、データ処理回路430によってデータが書き込まれ、異常判定回路440によってデータが読み出される記憶装置460が接続される。
本実施形態では、このように、異常検出装置400Aにひずみゲージ210を含む構成とすることで、異常検出装置400Aを測定対象物の外輪に取り付けるだけで、この測定対象物における転動体252の転動によって生じる振動の異常を検出することができる。
また、本実施形態の異常検出装置400Aは、ベアリング250を含んでいないが、異常検出装置400Aには、ベアリング250が含まれてもよい。
以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
また、本国際出願は、2020年12月18日に出願された日本国特許出願2020-210611に基づく優先権を主張するものであり、日本国特許出願2020-210611の全内容を本国際出願に援用する。
100、100A 異常検出システム、200 センサ基板,210 ひずみゲージ,220 アンプ,230 ADC,240 通信回路,300 情報処理装置,310 通信部,320 データ取得部,330 データ処理部,340 異常判定部,350 通知生成部,360 記憶部,400、400A 異常検出装置
Claims (10)
- 転動体の通過振動を捉えた信号を取得するデータ取得部と、
前記信号を用いて、前記転動体の通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出するデータ処理部と、
前記特徴量に基づき、前記転動体を含む測定対象物の状態が異常であるか否かを判定する異常判定部と、を有する異常検出装置。 - 前記データ処理部は、
前記信号を高速フーリエ変換により、周波数領域の信号に変換し、
前記転動体の通過振動を示す周波数を含む所定範囲の周波数成分と、前記通過振動を示す周波数のN次高調波を含む所定範囲の周波数成分とを抽出し、
抽出した周波数成分の信号を逆高速フーリエ変換により時間領域の信号に変換し、
前記時間領域に変換された前記通過振動を示す周波数の振幅の実効値と、前記時間領域に変換された前記N次高調波の振幅の実効値との比率を算出する、請求項1記載の異常検出装置。 - 前記転動体の通過振動によって生じるひずみを検出し、アナログデータを出力するひずみセンサと、
前記アナログデータを増幅するアンプと、
前記アンプから出力されたアナログデータを前記信号に変換する変換器と、
前記信号を前記データ取得部へ送信する通信回路と、が実装されたセンサ基板を含む、請求項1記載の異常検出装置。 - 前記異常判定部により、前記測定対象物の異常が検出された場合に、前記異常を示す通知を生成する通知生成部を有する、請求項1記載の異常検出装置。
- 異常検出装置による異常検出方法であって、前記異常検出装置が、
転動体の通過振動を捉えた信号を取得し、
前記信号を用いて、前記転動体の通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出し、
前記特徴量に基づき、前記転動体を含む測定対象物の状態が異常であるか否かを判定する、異常検出方法。 - 転動体の通過振動を捉えた信号を取得し、
前記信号を用いて、前記転動体の通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出し、
前記特徴量に基づき、前記転動体を含む測定対象物の状態が異常であるか否かを判定する、処理をコンピュータに実行させる、異常検出プログラム。 - ベアリングと、
前記ベアリングの通過振動によって生じるひずみを検出し、アナログデータを出力する、前記ベアリングに取り付けられたひずみセンサと、
前記アナログデータを増幅するアンプと、
前記アンプから出力されたアナログデータをデジタルデータに変換する変換器と、
前記デジタルデータを用いて、前記ベアリングの通過振動を示す周波数の振幅と、前記通過振動を示す周波数のN次高調波の信号成分の振幅と、の比率を示す特徴量を算出するデータ処理部と、
前記特徴量に基づき、前記ベアリングの状態が異常であるか否かを判定する異常判定部と、を有するベアリングの異常検出システム。 - 前記データ処理部は、
前記デジタルデータを高速フーリエ変換により、周波数領域のデジタルデータに変換し、
前記ベアリングの通過振動を示す周波数を含む所定範囲の周波数成分と、前記通過振動を示す周波数のN次高調波を含む所定範囲の周波数成分とを抽出し、
抽出した周波数成分のデジタルデータを逆高速フーリエ変換により時間領域のデジタルデータに変換し、
前記時間領域に変換された前記通過振動を示す周波数の振幅の実効値と、前記時間領域に変換された前記N次高調波の振幅の実効値との比率を算出する、請求項7記載のベアリングの異常検出システム。 - 前記異常判定部により、前記ベアリングの異常が検出された場合に、前記異常を示す通知を生成する通知生成部を有する、請求項7記載のベアリングの異常検出システム。
- 前記ベアリングの通過振動による信号は、前記ひずみセンサによるひずみのみを検出する、請求項7記載のベアリングの異常検出システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-210611 | 2020-12-18 | ||
JP2020210611A JP2022097177A (ja) | 2020-12-18 | 2020-12-18 | 異常検出装置、異常検出方法、異常検出プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022131170A1 true WO2022131170A1 (ja) | 2022-06-23 |
Family
ID=82057800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/045659 WO2022131170A1 (ja) | 2020-12-18 | 2021-12-10 | 異常検出装置、異常検出方法、異常検出プログラム、ベアリングの異常検出システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022097177A (ja) |
WO (1) | WO2022131170A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11173956A (ja) * | 1997-12-15 | 1999-07-02 | Omron Corp | 品質判定方法および装置 |
JP2020056801A (ja) * | 2020-01-10 | 2020-04-09 | 中国電力株式会社 | 計測診断装置、及び計測診断方法 |
US20200225117A1 (en) * | 2019-01-15 | 2020-07-16 | Computational Systems, Inc. | Bearing and Fault Frequency Identification From Vibration Spectral Plots |
-
2020
- 2020-12-18 JP JP2020210611A patent/JP2022097177A/ja active Pending
-
2021
- 2021-12-10 WO PCT/JP2021/045659 patent/WO2022131170A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11173956A (ja) * | 1997-12-15 | 1999-07-02 | Omron Corp | 品質判定方法および装置 |
US20200225117A1 (en) * | 2019-01-15 | 2020-07-16 | Computational Systems, Inc. | Bearing and Fault Frequency Identification From Vibration Spectral Plots |
JP2020056801A (ja) * | 2020-01-10 | 2020-04-09 | 中国電力株式会社 | 計測診断装置、及び計測診断方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022097177A (ja) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6183346B2 (ja) | 異常診断装置、軸受、回転装置、産業機械及び車両 | |
WO2018142986A1 (ja) | 状態監視システムおよび風力発電装置 | |
US9791856B2 (en) | Fault frequency set detection system and method | |
JP2013221877A (ja) | 異常検査方法および異常検査装置 | |
US8315826B2 (en) | Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system | |
CN112161806B (zh) | 风机的故障监测方法和故障监测装置 | |
JP6558131B2 (ja) | 異常診断装置、軸受、機械装置及び車両 | |
JP2018155494A (ja) | 軸受異常診断システム及び軸受異常診断方法 | |
US11555757B2 (en) | Monitoring device, monitoring method, method of creating shaft vibration determination model, and program | |
TWI660256B (zh) | 旋轉機的狀態監視系統、旋轉機的狀態監視方法以及記錄媒體 | |
JP2017026421A (ja) | 軸受異常診断装置 | |
US20140058615A1 (en) | Fleet anomaly detection system and method | |
US20130151199A1 (en) | Systems and methods for use in monitoring an industrial facility | |
JP2023026787A (ja) | 機械設備の振動監視装置 | |
JP2009133810A (ja) | 振動監視装置 | |
WO2022131170A1 (ja) | 異常検出装置、異常検出方法、異常検出プログラム、ベアリングの異常検出システム | |
JP2695366B2 (ja) | 低速回転機械の異常診断方法 | |
JP6897064B2 (ja) | 軸受異常診断方法および診断システム | |
JP2022097178A (ja) | ベアリングの異常検出システム | |
KR101752298B1 (ko) | 회전익 진동 기반 건전성 감시 장치 및 이를 이용하는 감시 방법 | |
JP2023092125A (ja) | 外乱検出装置、外乱検出方法 | |
JP2023101111A (ja) | 外乱検出システム | |
JP2023101112A (ja) | 外乱検出システム | |
JP2023092124A (ja) | 外乱検出装置、外乱検出方法 | |
JP2021011371A (ja) | 診断装置、診断システムおよび診断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21906532 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21906532 Country of ref document: EP Kind code of ref document: A1 |