WO2022130902A1 - Method for producing multilayer film and coating device - Google Patents

Method for producing multilayer film and coating device Download PDF

Info

Publication number
WO2022130902A1
WO2022130902A1 PCT/JP2021/042650 JP2021042650W WO2022130902A1 WO 2022130902 A1 WO2022130902 A1 WO 2022130902A1 JP 2021042650 W JP2021042650 W JP 2021042650W WO 2022130902 A1 WO2022130902 A1 WO 2022130902A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
coating
gas
coating device
film
Prior art date
Application number
PCT/JP2021/042650
Other languages
French (fr)
Japanese (ja)
Inventor
京久 内海
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022569805A priority Critical patent/JPWO2022130902A1/ja
Priority to CN202180083568.2A priority patent/CN116600905B/en
Publication of WO2022130902A1 publication Critical patent/WO2022130902A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials

Definitions

  • This disclosure relates to a method for manufacturing a multilayer film and a coating device.
  • Patent Document 1 includes an extrusion type coater head and a pair of gas ejection means for floating and guiding a web-shaped support on the upstream side and the downstream side of the coater head, and the coater head and a pair of gas ejection means.
  • a coating device characterized by coating on a support traveling in between.
  • Patent Document 2 includes a backup body that supports a traveling web and a die head that applies a coating liquid to the web on the backup body, and is provided on the surface of the backup body with respect to the web along the width direction of the web.
  • a plurality of air outlets are provided to discharge air
  • a blower is connected to each air outlet of the backup body via an air flow path
  • a control valve is provided in the air flow path on the inlet side of each air outlet.
  • the coating liquid is continuously extruded from the slot tip onto the surface of a flexible support that runs continuously along the back edge surface and the doctor edge surface, and the coating liquid is applied to the surface of the support.
  • a method for manufacturing a magnetic recording medium in which a magnetic coating liquid having a coating thickness of 4 ⁇ m or less is sequentially layered on a wet lower layer coating liquid previously coated by an extrusion type coating device.
  • the support is levitated by a pair of gas ejection means provided on the upstream side and the downstream side of the coater head, and the coater head runs between the coater head and the pair of gas ejection means. Apply the coating liquid to the support.
  • the support is not directly supported by the pressure of the gas discharged from the gas ejection means, and the coating liquid is applied to the support running in a flat state, so that the support is the coating liquid. It is easily affected by the discharge pressure, and wrinkles are likely to occur on the running film. Therefore, the uniformity of the film thickness distribution of the coating film formed on the support may decrease.
  • the web is supported by air discharged from the air outlet of the backup body at predetermined intervals from the backup body, and the die head is applied to the web running between the die head and the backup body. Apply the working liquid.
  • the direction of the pressure applied to the web by the air discharged from the air outlet at the coating point is opposite to the direction of the pressure applied to the web by the coating liquid discharged from the die head, and the die head and the backup body are in the opposite direction.
  • the web running between them is susceptible to the pressure of air and the pressure of the coating liquid acting in opposite directions as described above. Therefore, the uniformity of the film thickness distribution of the coating film formed on the web may decrease.
  • the support runs so as to be pressed against the back edge surface and the doctor edge surface, and the discharge pressure of the coating liquid is applied to the support running along the back edge surface and the doctor edge surface. It grows to apply the liquid.
  • the discharge pressure of the coating liquid increases, the uniformity of the film thickness distribution of the coating film formed on the support may decrease.
  • the disclosure includes the following aspects: ⁇ 1>
  • the base material containing the first surface and the second surface on the opposite side of the first surface is conveyed toward the coating device including the discharge portion for discharging the coating liquid, and the coating device is used.
  • the coating device is used while floating and transporting the base material toward the coating device with the first surface of the base material along a transport path that is convexly curved in a direction away from the coating device.
  • a method for producing a multilayer film which comprises applying the coating liquid to the first surface of the base material.
  • the floating transport of the base material is directed toward the first surface of the base material from a gas blowing portion arranged at least one of upstream and downstream of the discharge portion in the transport direction of the base material.
  • the method for producing a multilayer film according to ⁇ 1> which comprises blowing out the gas.
  • the method for producing a multilayer film according to ⁇ 2> which comprises controlling the floating amount of the base material by controlling the pressure of the gas blown out from the blowing portion.
  • the floating transfer of the base material brings out the first blowout portion that blows out the gas arranged upstream of the discharge portion and the gas arranged downstream of the discharge portion in the transport direction of the base material.
  • the gas is blown out from the second blowout portion toward the first surface of the base material, the pressure of the gas blown out from the first blowout portion, and the blowout from the second blowout portion.
  • the method for producing a multilayer film according to ⁇ 1> which comprises controlling the pressure of the gas independently of each other.
  • the pressure of the gas existing in the space between the base material and the first blowing portion is lower than the pressure of the gas existing in the space between the base material and the second blowing portion.
  • a coating device for applying a coating liquid to a substrate including a first surface being conveyed and a second surface on the opposite side of the first surface, wherein the first surface of the substrate is used.
  • a discharge portion that discharges the coating liquid toward the surface and at least one of the discharge portions upstream and downstream of the discharge portion in the transport direction of the base material, and the first base material is used to float the base material.
  • a coating device comprising at least one blowout portion, which blows gas toward a surface.
  • a method for producing a multilayer film capable of forming a coating film having a uniform film thickness distribution.
  • a coating device capable of forming a coating film having a uniform film thickness distribution.
  • FIG. 1 is a schematic side view for explaining a method for manufacturing a multilayer film according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic side view showing the tip of the coating device shown in FIG. 1 in an enlarged manner.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • process is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
  • solid content means a component other than a solvent.
  • the method for producing a multilayer film according to an embodiment of the present disclosure is a coating apparatus including a substrate including a first surface and a second surface on the opposite side of the first surface, and a discharge portion for discharging a coating liquid. (Hereinafter, may be referred to as a “transportation step”) and the above-mentioned base material along the conveying path curved in a convex direction above the coating device in a direction away from the coating device. Applying the coating liquid to the first surface of the base material using the coating device while floating and transporting the base material toward the coating device (hereinafter, "coating"). Sometimes referred to as "process”), including.
  • the phrase "above the coating device" used in describing the relationship between an object and the coating device refers to the relative position of the object with respect to the coating device.
  • the method for producing a multilayer film according to an embodiment of the present disclosure is directed away from the coating device above the coating device.
  • a coating liquid is applied to the first surface of the base material using the coating device while floating and transporting the base material toward the coating device along the transport path curved in a convex shape. Including applying. That is, the coating liquid discharged from the discharge portion of the coating device is applied to the first surface of the base material facing the discharge portion of the coating device, which is convexly curved in a direction away from the coating device by floating transfer.
  • the base material In the process of applying the coating liquid, the base material is convexly curved in the direction away from the coating device and floated and transported, so that the coating liquid can be applied to the base material with a low discharge pressure, and the base material has the discharge pressure of the coating liquid. It is also less susceptible. As a result, it is presumed that a coating film having a uniform film thickness distribution is formed.
  • Base material examples of the components of the base material include polymers and metals.
  • the polymer examples include polyethylene terephthalate, polyethylene naphthalate and triacetyl cellulose.
  • the substrate may contain one or more polymers.
  • the metal examples include iron, chromium, nickel, titanium, copper, aluminum, silver and gold.
  • the metal may be an alloy. Examples of alloys include stainless steel and Invar.
  • the substrate may contain one or more metals.
  • the substrate preferably comprises a polymer and more preferably comprises at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate and triacetyl cellulose.
  • the substrate preferably comprises a metal, more preferably comprising at least one selected from the group consisting of nickel, titanium, copper, aluminum, silver and gold, and the group consisting of copper and aluminum. It is more preferable to contain at least one selected from the above, and it is particularly preferable to contain aluminum.
  • the base material is preferably a film.
  • the film include a film containing the above-mentioned polymer and a film containing the above-mentioned metal.
  • Specific examples of the film containing the polymer include a polyethylene terephthalate film, a polyethylene naphthalate film, and a triacetyl cellulose film.
  • Specific examples of the film containing metal include a copper film and an aluminum film.
  • the base material may have high thermal conductivity.
  • Examples of the base material having high thermal conductivity include a base material having a thermal conductivity of 200 W / (m ⁇ K) or more.
  • the upper limit of the thermal conductivity of the substrate is not limited.
  • the thermal conductivity of the substrate may be 500 W / (m ⁇ K) or less.
  • the thermal conductivity of the substrate is measured using a laser flash method. First, the substrate is cut out at three locations along the width direction (specifically, at a position 5 mm from both ends in the width direction and the center portion in the width direction) at ⁇ 5 mm to 10 mm to obtain three measurement samples.
  • thermophysical property measuring device for example, LFA-502, Kyoto Denshi Kogyo Co., Ltd.
  • the arithmetic mean of the three measured values is taken as the thermal conductivity of the substrate.
  • the layer structure of the base material is not limited.
  • the base material may have a single-layer structure or a multi-layer structure.
  • the base material is preferably a long base material.
  • the length of the base material is preferably 10 m or more, more preferably 100 m or more, and particularly preferably 200 m or more.
  • the upper limit of the length of the substrate is not limited.
  • the upper limit of the length of the base material may be 1,000 m or 500 m.
  • the length of the substrate is usually in the range of 10 m to 1,000 m.
  • the "base material length" means the distance from one end of the base material to the other in the transport direction of the base material.
  • the width of the base material is not limited. From the viewpoint of productivity and wrinkle suppression, the width of the base material is preferably in the range of 100 mm to 1,800 mm, more preferably in the range of 300 mm to 1,600 mm, and 500 mm to 1,400 mm. It is particularly preferable that it is within the range.
  • the thickness of the base material is not limited. From the viewpoint of handleability, the thickness of the base material is preferably in the range of 3 ⁇ m to 50 ⁇ m, and more preferably in the range of 10 ⁇ m to 30 ⁇ m.
  • the substrate is transported using, for example, a known transport device.
  • the transport device may include a tension control mechanism that controls the tension of the base material.
  • Examples of the transfer device include a transfer roller and a transfer belt.
  • examples of the transfer device include a delivery device for sending out a base material and a winding device for winding up the base material.
  • the sending device and the winding device are also used, for example, as a roll-to-roll type transfer device.
  • the roll-to-roll type transport device is preferably used as a device for transporting a long base material.
  • the transport speed of the base material is preferably in the range of 1 m / min to 100 m / min.
  • the tension of the base material is preferably in the range of 30 N / m to 300 N / m, and more preferably in the range of 50 N / m to 200 N / m.
  • Tension control is performed using, for example, a known tension control device.
  • Tension control may be performed using a known transfer device including a tension control mechanism.
  • Examples of the transfer device including the tension control mechanism include a transfer device including a Tendency Drive Roller.
  • the tendency-driven roller is rotated by, for example, a frictional force or a magnetic force acting between a rotating shaft supporting the tendency-driven roller and the tendency-driven roller.
  • the axis of rotation is rotated by, for example, a motor.
  • the transport device including the tendency-driven roller can control the tension of the film according to the rotation speed of the rotating shaft, for example.
  • Techniques relating to tendency-driven rollers are described, for example, in Japanese Patent No. 4066904. The contents of the above documents are incorporated herein by reference. Tension control may be performed using dancer rollers. Tension control may be performed using a rotary draw control method.
  • the coating device includes a discharge unit that discharges the coating liquid.
  • the coating device may include a plurality of ejection portions.
  • Examples of the component of the discharge portion include metal.
  • Examples of the metal include stainless steel.
  • the discharge unit may include one or more discharge ports. Examples of the shape of the discharge port in a plan view include a circular shape, an elliptical shape, a polygonal shape, a linear shape, and an amorphous shape. From the viewpoint of making the film thickness distribution of the coating film uniform, it is preferable that the discharge portion includes a discharge port extending in the width direction of the base material.
  • the coating device preferably includes a blowout portion that blows out gas.
  • the coating device may include one or more outlets.
  • the blowout portion supplies gas between the substrate and the coating device.
  • the gas supplied between the base material and the coating device supports the base material in the coating step described later, and floats the base material from the coating device.
  • Examples of the component of the discharge portion include metal. Examples of the metal include stainless steel.
  • the outlet may include one or more outlets. Examples of the shape of the outlet in a plan view include a circle, an ellipse, a polygon, a linear shape, and an amorphous shape.
  • the blowout portion may include a space (that is, a flow path) through which the gas flows, which communicates with the discharge port.
  • the blowing portion may be a nozzle.
  • the blowout portion may be a porous body.
  • the coating device applies the coating liquid to the conveyed substrate.
  • the coating device that applies the coating liquid to the conveyed base material has a discharge portion that discharges the coating liquid toward the first surface of the base material and upstream and downstream of the discharge portion in the transport direction of the base material. It is preferable to include at least one blowing portion, which is arranged on at least one of the above and blows gas toward the first surface of the base material in order to float the base material.
  • a coating device capable of forming a coating film having a uniform film thickness distribution. It is preferable that the blowout portion is arranged upstream and downstream of the discharge portion in the transport direction of the base material, respectively.
  • a blowout portion arranged upstream of the discharge portion in the transport direction of the base material (hereinafter, may be referred to as a "first blowout portion") and a blowout portion arranged downstream of the discharge portion in the transport direction of the base material.
  • the portion (hereinafter, may be referred to as a “second blowout portion”) stabilizes the floating transport of the base material and improves the uniformity of the film thickness distribution of the coating film.
  • the first blowout portion may or may not be adjacent to the discharge portion.
  • the second ejection portion may or may not be adjacent to the ejection portion. It is preferable that the first blowing portion is adjacent to the discharging portion and the second blowing portion is adjacent to the discharging portion.
  • the coating device is floated and transported with the first surface of the substrate toward the coating device along a transport path that is convexly curved in a direction away from the coating device above the coating device. Use to apply the coating solution to the first surface of the substrate. According to the coating process as described above, a coating film having a uniform film thickness distribution is formed.
  • the floating amount of the base material is determined, for example, according to the coating conditions (for example, the type of coating liquid). From the viewpoint of stabilizing the floating transport and making the film thickness distribution of the coating film uniform, the floating amount of the base material is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more. The lower limit of the floating amount of the base material may be 50 ⁇ m or 100 ⁇ m.
  • the floating amount of the base material is preferably 1,000 ⁇ m or less, more preferably 500 ⁇ m or less, and 400 ⁇ m or less. Is particularly preferable.
  • the floating amount of the base material is preferably in the range of 10 ⁇ m to 1,000 ⁇ m, more preferably in the range of 20 ⁇ m to 500 ⁇ m, and particularly preferably in the range of 50 ⁇ m to 400 ⁇ m.
  • the "flying amount of the base material” means the shortest distance between the first surface of the base material and the surface of the discharge portion facing the first surface of the base material.
  • the floating amount of the base material is measured by using a laser displacement meter according to the following procedures (1) to (3).
  • the floating amount of the base material is measured under the condition excluding the influence of the coating liquid, that is, the condition that the coating liquid is not applied to the base material.
  • (1) Using a laser displacement meter arranged facing the ejection part of the coating device, the position of the surface of the ejection portion is detected, and then the ejection portion of the coating device and the laser are carried while floating and transporting the base material. The position of the second surface of the base material running between the displacement meter and the displacement meter is detected.
  • the distance D from the surface of the ejection portion to the second surface of the floating base material is measured.
  • the value obtained according to the following formula is regarded as the floating amount of the base material.
  • Formula: Floating amount of base material [Distance D]-[Thickness of base material]
  • the degree of bending of the base material in the coating process is represented by, for example, the radius of curvature.
  • the radius of curvature of the base material at the contact point between the base material and the coating liquid is preferably in the range of 50 mm to 1,000 mm, and in the range of 70 mm to 600 mm. It is more preferable that it is in the range of 100 mm to 300 mm, and it is particularly preferable that it is in the range of 100 mm to 300 mm.
  • the radius of curvature of the base material is measured under the condition excluding the influence of the coating liquid, that is, the condition that the coating liquid is not applied to the base material.
  • the method of ascending the base material is not limited.
  • Examples of the method of floating the base material include a method of supplying gas between the base material and the coating device.
  • the gas supplied between the substrate and the coating device supports the substrate and floats the substrate from the coating device.
  • the coating liquid can be applied to the base material at a lower discharge pressure, further improving the uniformity of the film thickness distribution of the coating film.
  • the type of gas is not limited. Examples of the gas include nitrogen and air.
  • the gas is preferably air.
  • the gas is supplied, for example, by a known method.
  • the gas may be supplied using a blower, a compressor or a container (eg, a cylinder) for storing the gas.
  • Gas pressure is not limited.
  • the pressure of the gas affects, for example, the amount of floating of the base material and the degree of bending of the base material.
  • the pressure of the gas existing in the space between the base material and the coating device (hereinafter, may be referred to as “P0”) shall be 10 Pa or more. Is preferable, 50 Pa or more is more preferable, and 100 Pa or more is particularly preferable.
  • the "gas existing in the space between the base material and the coating device" is not only the gas intentionally supplied between the base material and the coating device, but also the space between the base material and the coating device. Includes gases (eg, atmosphere) that are present due to unintentional factors.
  • P0 is preferably 150 Pa or more, and more preferably 200 Pa or more. The smaller the pressure fluctuation of the gas, the more uniform the film thickness distribution of the coating film is. From the viewpoint of reducing the pressure fluctuation of the gas, P0 is preferably 2,000 Pa or less, more preferably 1,600 Pa or less, and particularly preferably 1,300 Pa or less. The upper limit of P0 may be 1,000 Pa, 800 Pa or 500 Pa.
  • P0 is preferably in the range of 10 Pa to 2,000 Pa, more preferably in the range of 100 Pa to 1,600 Pa, and particularly preferably in the range of 150 Pa to 1,300 Pa. P0 is measured by inserting a metal tube connected to a manostar gauge into the space between the substrate and the coating device.
  • the floating transfer of the base material includes blowing the gas toward the first surface of the base material from the blowout portion arranged at least one of the upstream side and the downstream side of the discharge part in the transfer direction of the base material. Is preferable.
  • the gas blown from the blowout portion toward the first surface of the base material supports the base material and floats the base material from the coating device.
  • the method as described above stabilizes the floating transport of the base material and improves the uniformity of the film thickness distribution of the coating film. From the viewpoint of stabilizing the floating transport, it is preferable that the blowout portion is arranged upstream and downstream of the discharge portion in the transport direction of the base material, respectively.
  • the blowout portion may be a part of the coating device or an element independent of the coating device.
  • the blowout portion is preferably part of the coating device. Aspects of the blowout portion are described in the above-mentioned "Transport step" section.
  • the method for producing a multilayer film according to an embodiment of the present disclosure includes controlling the floating amount of the base material by controlling the pressure of the gas blown out from the blowing portion.
  • the pressure of the gas blown out from the blowout portion is controlled, for example, within the range of the pressure described above (that is, P0).
  • the levitation amount of the base material is controlled, for example, within the range of the levitation amount described above.
  • the floating transfer of the base material is performed from the first blowing portion that blows out the gas arranged upstream of the discharging portion and the second blowing portion that blows out the gas arranged downstream of the discharging portion in the transport direction of the base material.
  • the method as described above stabilizes the floating transport of the base material and improves the controllability of the degree of bending of the base material. As a result, the uniformity of the film thickness distribution of the coating film is improved.
  • the pressure of the gas existing in the space between the base material and the first blowing portion (hereinafter, may be referred to as “P1”) is the gas existing in the space between the base material and the second blowing portion. It may be the same as or different from the pressure of (hereinafter, may be referred to as “P2”).
  • the "gas existing in the space between the base material and the blowout portion” is not only the gas intentionally supplied between the base material and the blowout portion, but also the space between the base material and the blowout portion. Includes gases (eg, atmosphere) that are present due to unintentional factors.
  • P1 and P2 are controlled, for example, within the pressure range described above (ie, P0).
  • the ratio of P1 to P2 (that is, P1 / P2) is preferably 0.1 to 1.5, and more preferably 0.3 to 1. preferable.
  • P1 is preferably lower than P2.
  • the ratio of P1 to P2 (that is, P1 / P2) is preferably 0.1 or more and less than 1, more preferably 0.3 to 0.9, and 0.4 to 0.9. It is particularly preferably 0.8.
  • P1 is preferably 50 Pa or more lower than P2, and more preferably 100 Pa or more lower than P2.
  • P1 is preferably in the range of 10 Pa to 250 Pa
  • P2 is preferably in the range of 300 Pa to 500 Pa.
  • P1 is measured by inserting a metal tube connected to a manostar gauge into the space between the substrate and the first outlet.
  • P2 is measured by inserting a metal tube connected to a manostar gauge into the space between the substrate and the second outlet.
  • the coating method examples include a curtain coating method, a dip coating method, a spin coating method, a printing coating method, a spray coating method, a slot coating method, a roll coating method, a slide coating method, a blade coating method, a gravure coating method and a wire bar method. Can be mentioned.
  • the coating step it is preferable to apply the coating liquid by the slot coating method.
  • the coating liquid is discharged from a discharge portion including a discharge port extending in the width direction of the base material.
  • the thickness of the coating liquid applied to the base material (hereinafter, may be referred to as "thickness of liquid film”) is not limited.
  • the thickness of the liquid film may be in the range of 10 ⁇ m to 200 ⁇ m.
  • the thickness of the liquid film may be in the range of 20 ⁇ m to 100 ⁇ m.
  • the type of coating liquid is not limited.
  • the type of coating liquid is determined, for example, according to the use of the multilayer film.
  • the coating liquid is preferably a water-based coating liquid.
  • the "water-based coating liquid” means a coating liquid in which the solvent contained in the coating liquid is substantially water.
  • the solvent contained in the coating liquid is substantially water means that water occupies most of the solvent contained in the coating liquid.
  • the ratio of water to the solvent contained in the water-based coating liquid is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • Examples of the water contained in the water-based coating liquid include natural water, purified water, distilled water, ion-exchanged water, pure water and ultrapure water.
  • the water content in the water-based coating liquid is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total mass of the water-based coating liquid.
  • the water content in the water-based coating liquid is preferably less than 100% by mass, more preferably 80% by mass or less, based on the total mass of the water-based coating liquid.
  • the water-based coating liquid may contain particles.
  • the particles include inorganic particles, organic particles, and composite particles of an inorganic substance and an organic substance.
  • Examples of the inorganic particles include metal particles, semi-metal particles, metal compound particles, semi-metal compound particles, inorganic pigment particles, mineral particles and polycrystalline diamond particles.
  • Examples of the metal include alkali metals, alkaline earth metals, transition metals and alloys thereof.
  • Examples of metalloids include silicon.
  • Examples of metal compounds and metalloid compounds include oxides, hydroxides and nitrides.
  • Examples of the inorganic pigment include carbon black. Examples of minerals include mica.
  • organic particles examples include resin particles and organic pigment particles.
  • the composite particles of the inorganic substance and the organic substance for example, the composite particles in which the inorganic particles are dispersed in the matrix of the organic substance, the composite particles in which the periphery of the organic particles is coated with the inorganic substance, and the periphery of the inorganic particles are the organic substances. Examples thereof include composite particles coated with.
  • the particles may be surface-treated to impart dispersibility.
  • Composite particles may be formed by surface treatment.
  • the particle size, specific gravity and usage pattern of the particles are not limited.
  • the particle size, specific gravity, and usage pattern of the particles are determined, for example, according to the coating film formed by the coating liquid and the production conditions of the coating film.
  • the water-based coating liquid may contain one kind or two or more kinds of particles.
  • the content of particles in the water-based coating liquid is not limited.
  • the content of particles in the water-based coating liquid is determined, for example, according to the purpose of adding the particles, the coating film formed by the coating liquid, and the production conditions of the coating film.
  • the components of the water-based coating liquid include a binder component, a component that contributes to the dispersibility of particles, a polymerizable compound, a polymerization initiator, and a component for enhancing coating performance (for example, a surfactant).
  • the solid content concentration of the coating liquid is preferably less than 70% by mass, more preferably 30% by mass to 60% by mass.
  • the method for producing a multilayer film according to an embodiment of the present disclosure may include steps other than the above-mentioned steps, if necessary.
  • the method for producing a multilayer film according to an embodiment of the present disclosure may include drying the coating liquid after the coating step. That is, the coating liquid applied to the substrate may be dried.
  • the drying method include heating and blowing.
  • the temperature of the gas in the blast is preferably in the range of 25 ° C to 200 ° C, more preferably in the range of 30 ° C to 150 ° C.
  • the wind speed in blowing air is preferably 1.5 m / sec to 50 m / sec.
  • the drying device used for drying the coating liquid include an oven, a hot air blower, and an infrared heater.
  • the method for producing a multilayer film according to an embodiment of the present disclosure may include a step of cutting the multilayer film.
  • the width of the multilayer film can be adjusted by cutting the multilayer film.
  • Examples of the method for cutting the multilayer film include a method using a blade.
  • the method for producing a multilayer film according to one embodiment of the present disclosure is preferably carried out by a roll-to-roll method.
  • the method for producing a multilayer film carried out by the roll-to-roll method at least a transfer step and a coating step are carried out between the supply of the rolled film and the winding of the film.
  • FIG. 1 is a schematic side view for explaining a method for manufacturing a multilayer film according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged tip of the coating device shown in FIG. In FIG. 2, the direction X is orthogonal to the direction Y.
  • the manufacturing apparatus 100 shown in FIG. 1 includes a transfer roller 10, a transfer roller 11, a transfer roller 12, a transfer roller 13, a transfer roller 14, a transfer roller 15, a transfer roller 16, a transfer roller 17, a transfer roller 18, and a coating device 20.
  • the transfer roller 10, the transfer roller 11, the transfer roller 12, the transfer roller 13, the transfer roller 14, the transfer roller 15, the transfer roller 16, the transfer roller 17, and the transfer roller 18 transfer the film F while supporting the film F.
  • Each roller is rotatable.
  • the film F is a base material containing the first surface F1 and the second surface F2 on the opposite side of the first surface F1.
  • the coating device 20 applies the coating liquid to the conveyed film F.
  • the coating device 20 includes a discharge portion 21, a first blowout portion 22, and a second blowout portion 23.
  • the discharge unit 21 discharges the coating liquid L toward the first surface F1 of the film F.
  • the discharge unit 21 includes a discharge port 21a.
  • the discharge port 21a extends in the width direction of the film F, that is, in the direction orthogonal to the direction X and the direction Y.
  • the coating liquid L is supplied from a liquid feeding device (not shown) connected to the coating device 20, and is discharged through the discharge port 21a.
  • the first blowing portion 22 blows gas toward the first surface F1 of the film F.
  • the first blowing portion 22 is arranged upstream of the discharging portion 21 in the transport direction of the film F.
  • the first blowing portion 22 is adjacent to the discharging portion 21.
  • the first outlet 22 includes a plurality of outlets 22a. The gas is supplied from a compressor (not shown) connected to the coating device 20 and blown out through the outlet 22a.
  • the second blowing portion 23 blows gas toward the first surface F1 of the film F.
  • the second blowing portion 23 is arranged downstream of the discharging portion 21 in the transport direction of the base material F.
  • the second blowing portion 23 is adjacent to the discharging portion 21.
  • the second outlet 23 includes a plurality of outlets 23a. The gas is supplied from a compressor (not shown) connected to the coating device 20 and blown out through the outlet 23a.
  • the drying device 30 dries the coating liquid L coated on the film F.
  • the delivery device (not shown) supplies the film F from the roll film RF1.
  • the delivery device mounts the roll film RF1 along a rotation axis extending from the front to the back of FIG.
  • the winding device (not shown) winds the multilayer film containing the film F into a roll to form the roll film RF2.
  • the take-up device mounts the roll film RF2 along the rotation axis extending from the front to the back of FIG.
  • the method for manufacturing the multilayer film shown in FIG. 1 is carried out by a roll-to-roll method.
  • the film F sent out from the roll film RF1 includes a transfer roller 10, a transfer roller 11, a transfer roller 12, a transfer roller 13, a transfer roller 14, a coating device 20, a transfer roller 15, a drying device 30, a transfer roller 16, and a transfer roller 17. And, it passes through the transport roller 18 and is wound into a roll.
  • the film F sent out from the roll film RF1 is conveyed toward the coating device 20.
  • the film F that has reached the coating device 20 is levitated and transported along a transport path that is convexly curved in the direction Y away from the coating device 20 above the coating device 20.
  • the film F that is levitated and conveyed is supported by the gas that is blown out from the first blowout portion 22 and the second blowout portion 23.
  • the first surface F1 of the film F that is floated and conveyed faces the coating device 20.
  • the coating device 20 applies the coating liquid L to the first surface F1 of the film F which is floated and conveyed as described above.
  • the coating liquid L is applied to the first surface F1 of the film F which is convexly curved in the direction Y away from the coating device 20 by floating transfer. As shown in FIG. 2, the film F is floated and conveyed by being convexly curved in the direction Y away from the coating device 20 by the gas blown from the first blowing portion 22 and the second blowing portion 23.
  • the coating liquid L can be applied to the film F with a low discharge pressure. As a result, it is presumed that the uniformity of the distribution of the coating liquid L coated on the film F is improved, and a coating film having a uniform film thickness distribution is formed.
  • the coating liquid applied to the film F is dried in the drying device 30.
  • a multilayer film is formed by drying the coating liquid.
  • the multilayer film is wound into a roll using a winding device (not shown).
  • the multilayer film wound into a roll forms the roll film RF2.
  • Example 1 (Preparation of base material AL1) As the base material AL1, an aluminum film having a width of 220 mm, a thickness of 10 ⁇ m, a length of 300 m, and a thermal conductivity of 230 W / (m ⁇ K) was prepared. The base material AL1 is rolled into a roll to form a roll film.
  • the aqueous dispersion of Art Pearl J-7P was prepared by the following method. To 74 parts by mass of pure water, 3 parts by mass of Emarex 710 (Nippon Emulsion Co., Ltd., nonionic surfactant) and 3 parts by mass of sodium carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., Ltd.) were added. To the obtained aqueous solution, 20 parts by mass of Art Pearl J-7P (Negami Kogyo Co., Ltd., silica composite crosslinked acrylic resin fine particles) was added, and 10,000 rpm (revolutions per minute) was added using an ace homogenizer (Nissei Tokyo Office Co., Ltd.).
  • the coating liquid A was applied to the base material AL1 using a manufacturing apparatus including the components as shown in FIG. 1, and then the coating liquid was dried.
  • a multilayer film was obtained by the above procedure.
  • the transport speed of the film is 20 m / min. Specific manufacturing conditions are shown in Table 1.
  • Examples 2 to 7> A multilayer film was obtained by the same procedure as in Example 1 except that the production conditions were changed according to the description in Table 1.
  • discharge unit indicates a discharge unit that discharges the coating liquid.
  • blowout portion indicates a blowout portion that blows out a gas (specifically, air).
  • the blowing portion in Comparative Example 2 is a backup roller that blows out gas.
  • the shortest distance between the discharge part and the base material indicates the shortest distance between the discharge part and the base material being conveyed, which is measured under the condition that the coating liquid is not applied to the base material. Further, the "shortest distance between the ejection portion and the base material" according to Examples 1 to 7 corresponds to the floating amount of the base material described above.
  • the "shortest distance between the blowout portion and the base material” indicates the shortest distance between the blowout portion and the base material being conveyed, which is measured under the condition that the coating liquid is not applied to the base material.
  • “P0” indicates the pressure of the gas existing in the space between the base material and the blowout portion.
  • “P1” indicates the pressure of the gas existing in the space between the base material and the first blowing portion.
  • “P2” indicates the pressure of the gas existing in the space between the base material and the second blowing portion.
  • Table 1 shows that the uniformity of the film thickness distribution in Examples 1 to 7 is superior to that in Comparative Examples 1 and 2.
  • Comparative Example 1 with respect to Examples 1 to 7 it is considered that the uniformity of the film thickness distribution was lowered because the base material was not floated and conveyed by the gas.
  • Comparative Example 2 with respect to Examples 1 to 7 since the base material floated and conveyed between the backup roller for blowing gas and the coating device is convexly curved in the direction from the backup roller to the coating device. It is considered that the uniformity of the film thickness distribution has decreased.
  • Conveying roller 20 Coating device 21: Discharge unit 21a: Discharge port 22: First outlet 23: Second outlet 22a, 23a: Outlet 30: Drying device 100: Manufacturing device F: Film F1: First surface F2: Second surface RF1, RF2: Roll film

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present disclosure provides a method for producing a multilayer film, said method comprising: conveyance of a base material, which comprises a first surface and a second surface that is on the reverse side of the first surface, toward a coating device that comprises an ejection part which ejects a coating liquid; and application of the coating liquid to the first surface of the base material with use of the coating device, while floating and conveying the base material, in such a manner that the first surface of the base material faces the coating device, along a conveyance path that is curved above the coating device so as to protrude in the direction away from the coating device. The present disclosure also provides a coating device.

Description

多層フィルムの製造方法及び塗布装置Multilayer film manufacturing method and coating equipment
 本開示は、多層フィルムの製造方法及び塗布装置に関する。 This disclosure relates to a method for manufacturing a multilayer film and a coating device.
 下記特許文献1は、エクストルージョン型コーターヘッドと、上記コーターヘッドの上流側及び下流側にウェブ状の支持体を浮上させ案内する一対の気体噴出手段を備え、上記コーターヘッドと一対の気体噴出手段間に走行する支持体に塗布することを特徴とする塗布装置を開示している。 The following Patent Document 1 includes an extrusion type coater head and a pair of gas ejection means for floating and guiding a web-shaped support on the upstream side and the downstream side of the coater head, and the coater head and a pair of gas ejection means. Disclosed is a coating device characterized by coating on a support traveling in between.
 下記特許文献2は、走行するウェブを支持するバックアップ体と、バックアップ体上のウェブに対して塗工液を塗布するダイヘッドとを備え、バックアップ体表面に、ウェブの幅方向に沿ってウェブに対してエアを吐出する複数のエア吹出口が設けられ、バックアップ体の各エア吹出口に、エア流路を介してブロアを接続し、各エア吹出口の入口側のエア流路に制御弁を設けたことを特徴とする塗工装置を開示している。 The following Patent Document 2 includes a backup body that supports a traveling web and a die head that applies a coating liquid to the web on the backup body, and is provided on the surface of the backup body with respect to the web along the width direction of the web. A plurality of air outlets are provided to discharge air, a blower is connected to each air outlet of the backup body via an air flow path, and a control valve is provided in the air flow path on the inlet side of each air outlet. It discloses a coating device characterized by the fact that.
 下記特許文献3は、バックエッジ面及びドクターエッジ面に沿って連続的に走行する可撓性支持体の表面にスロット先端部から塗布液を連続的に押出して支持体表面に塗布液を塗布するエクストルージョン型塗布装置によって、予め塗布された湿潤状態の下層塗布液上に塗布厚みが4μm以下の磁性塗布液を逐次重層塗布する磁気記録媒体の製造方法を開示している。 In Patent Document 3 below, the coating liquid is continuously extruded from the slot tip onto the surface of a flexible support that runs continuously along the back edge surface and the doctor edge surface, and the coating liquid is applied to the surface of the support. Disclosed is a method for manufacturing a magnetic recording medium in which a magnetic coating liquid having a coating thickness of 4 μm or less is sequentially layered on a wet lower layer coating liquid previously coated by an extrusion type coating device.
特開2003-225604号公報Japanese Patent Application Laid-Open No. 2003-225604 特開2001-310148号公報Japanese Unexamined Patent Publication No. 2001-310148 特開平5-208165号公報Japanese Unexamined Patent Publication No. 5-208165
 上記特許文献1において、支持体は、コーターヘッドの上流側及び下流側に設けられた一対の気体噴出手段によって浮上され、そして、コーターヘッドは、コーターヘッドと一対の気体噴出手段との間を走行する支持体に塗布液を塗布する。しかしながら、塗布地点で支持体は気体噴出手段から吐出される気体の圧力によって直接支持されておらず、塗布液は平らな状態で走行する支持体に塗布されているため、支持体は塗布液の吐出圧力による影響を受けやすく、走行するフィルムにシワも発生しやすい。このため、支持体の上に形成された塗膜の膜厚分布の均一性が低下することがある。 In Patent Document 1, the support is levitated by a pair of gas ejection means provided on the upstream side and the downstream side of the coater head, and the coater head runs between the coater head and the pair of gas ejection means. Apply the coating liquid to the support. However, at the coating point, the support is not directly supported by the pressure of the gas discharged from the gas ejection means, and the coating liquid is applied to the support running in a flat state, so that the support is the coating liquid. It is easily affected by the discharge pressure, and wrinkles are likely to occur on the running film. Therefore, the uniformity of the film thickness distribution of the coating film formed on the support may decrease.
 上記特許文献2において、ウェブは、バックアップ体のエア吹出口から吐出されるエアによってバックアップ体から所定間隔をおいて支持され、そして、ダイヘッドは、ダイヘッドとバックアップ体との間を走行するウェブに塗工液を塗布する。しかしながら、塗布地点においてエア吹出口から吐出されるエアがウェブに与える圧力の方向は、ダイヘッドから吐出される塗工液がウェブに与える圧力の方向とは逆向きであり、ダイヘッドとバックアップ体との間を走行するウェブは、上記のような互いに逆向きに作用するエアの圧力及び塗工液の圧力の影響を受けやすい。このため、ウェブの上に形成された塗膜の膜厚分布の均一性が低下することがある。 In Patent Document 2, the web is supported by air discharged from the air outlet of the backup body at predetermined intervals from the backup body, and the die head is applied to the web running between the die head and the backup body. Apply the working liquid. However, the direction of the pressure applied to the web by the air discharged from the air outlet at the coating point is opposite to the direction of the pressure applied to the web by the coating liquid discharged from the die head, and the die head and the backup body are in the opposite direction. The web running between them is susceptible to the pressure of air and the pressure of the coating liquid acting in opposite directions as described above. Therefore, the uniformity of the film thickness distribution of the coating film formed on the web may decrease.
 上記特許文献3において、支持体は、バックエッジ面及びドクターエッジ面に押し付けられるように走行しており、塗布液の吐出圧力は、バックエッジ面及びドクターエッジ面に沿って走行する支持体に塗布液を塗布するために大きくなる。塗布液の吐出圧力が大きくなると、支持体の上に形成された塗膜の膜厚分布の均一性が低下することがある。 In Patent Document 3, the support runs so as to be pressed against the back edge surface and the doctor edge surface, and the discharge pressure of the coating liquid is applied to the support running along the back edge surface and the doctor edge surface. It grows to apply the liquid. When the discharge pressure of the coating liquid increases, the uniformity of the film thickness distribution of the coating film formed on the support may decrease.
 本開示の一態様は、均一な膜厚分布を有する塗膜を形成可能な、多層フィルムの製造方法を提供することを目的とする。
 本開示の他の一態様は、均一な膜厚分布を有する塗膜を形成可能な塗布装置を提供することを目的とする。
One aspect of the present disclosure is to provide a method for producing a multilayer film capable of forming a coating film having a uniform film thickness distribution.
Another aspect of the present disclosure is to provide a coating device capable of forming a coating film having a uniform film thickness distribution.
 本開示は、以下の態様を含む。
<1> 第1の面及び上記第1の面の反対側に第2の面を含む基材を、塗布液を吐出する吐出部を含む塗布装置に向かって搬送することと、上記塗布装置の上方で上記塗布装置から離れる方向へ凸状に湾曲した搬送経路に沿って、上記基材の上記第1の面を上記塗布装置に向けて上記基材を浮上搬送しながら、上記塗布装置を用いて上記基材の上記第1の面に対して上記塗布液を塗布することと、を含む、多層フィルムの製造方法。
<2> 上記基材の浮上搬送が、上記基材の搬送方向において上記吐出部よりも上流及び下流の少なくとも一方に配置された気体を吹き出す吹出部から上記基材の上記第1の面に向かって上記気体を吹き出すことを含む、<1>に記載の多層フィルムの製造方法。
<3> 上記吹出部から吹き出される上記気体の圧力を制御することで、上記基材の浮上量を制御することを含む、<2>に記載の多層フィルムの製造方法。
<4> 上記基材の浮上搬送が、上記基材の搬送方向において、上記吐出部よりも上流に配置された気体を吹き出す第1の吹出部及び上記吐出部よりも下流に配置された気体を吹き出す第2の吹出部から上記基材の上記第1の面に向かって気体を吹き出すことと、上記第1の吹出部から吹き出される上記気体の圧力及び上記第2の吹出部から吹き出される上記気体の圧力を互いに独立して制御することと、を含む、<1>に記載の多層フィルムの製造方法。
<5> 上記基材と上記第1の吹出部との間の空間に存在する気体の圧力が、上記基材と上記第2の吹出部との間の空間に存在する気体の圧力より低い、<4>に記載の多層フィルムの製造方法。
<6> 搬送されている第1の面及び上記第1の面の反対側に第2の面を含む基材に塗布液を塗布する塗布装置であって、上記基材の上記第1の面に向かって塗布液を吐出する吐出部と、上記基材の搬送方向において上記吐出部よりも上流及び下流の少なくとも一方に配置され、上記基材を浮上させるために上記基材の上記第1の面に向かって気体を吹き出す少なくとも1つの吹出部と、を含む、塗布装置。
The disclosure includes the following aspects:
<1> The base material containing the first surface and the second surface on the opposite side of the first surface is conveyed toward the coating device including the discharge portion for discharging the coating liquid, and the coating device is used. The coating device is used while floating and transporting the base material toward the coating device with the first surface of the base material along a transport path that is convexly curved in a direction away from the coating device. A method for producing a multilayer film, which comprises applying the coating liquid to the first surface of the base material.
<2> The floating transport of the base material is directed toward the first surface of the base material from a gas blowing portion arranged at least one of upstream and downstream of the discharge portion in the transport direction of the base material. The method for producing a multilayer film according to <1>, which comprises blowing out the gas.
<3> The method for producing a multilayer film according to <2>, which comprises controlling the floating amount of the base material by controlling the pressure of the gas blown out from the blowing portion.
<4> The floating transfer of the base material brings out the first blowout portion that blows out the gas arranged upstream of the discharge portion and the gas arranged downstream of the discharge portion in the transport direction of the base material. The gas is blown out from the second blowout portion toward the first surface of the base material, the pressure of the gas blown out from the first blowout portion, and the blowout from the second blowout portion. The method for producing a multilayer film according to <1>, which comprises controlling the pressure of the gas independently of each other.
<5> The pressure of the gas existing in the space between the base material and the first blowing portion is lower than the pressure of the gas existing in the space between the base material and the second blowing portion. The method for producing a multilayer film according to <4>.
<6> A coating device for applying a coating liquid to a substrate including a first surface being conveyed and a second surface on the opposite side of the first surface, wherein the first surface of the substrate is used. A discharge portion that discharges the coating liquid toward the surface and at least one of the discharge portions upstream and downstream of the discharge portion in the transport direction of the base material, and the first base material is used to float the base material. A coating device comprising at least one blowout portion, which blows gas toward a surface.
 本開示の一態様によれば、均一な膜厚分布を有する塗膜を形成可能な、多層フィルムの製造方法が提供される。
 本開示の他の一態様によれば、均一な膜厚分布を有する塗膜を形成可能な塗布装置が提供される。
According to one aspect of the present disclosure, there is provided a method for producing a multilayer film capable of forming a coating film having a uniform film thickness distribution.
According to another aspect of the present disclosure, there is provided a coating device capable of forming a coating film having a uniform film thickness distribution.
図1は、本開示のある実施形態に係る多層フィルムの製造方法を説明するための概略側面図である。FIG. 1 is a schematic side view for explaining a method for manufacturing a multilayer film according to an embodiment of the present disclosure. 図2は、図1に示される塗布装置の先端を拡大して示す概略側面図である。FIG. 2 is a schematic side view showing the tip of the coating device shown in FIG. 1 in an enlarged manner.
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されない。以下の実施形態は、本開示の目的の範囲内において適宜変更されてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail. The present disclosure is not limited to the following embodiments. The following embodiments may be modified as appropriate within the scope of the purposes of the present disclosure.
 本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素及び符号の説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。 When the embodiments of the present disclosure are described with reference to the drawings, the description of overlapping components and reference numerals may be omitted in the drawings. The components shown by the same reference numerals in the drawings mean that they are the same components. The dimensional ratio in the drawings does not necessarily represent the actual dimensional ratio.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present disclosure, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。 In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。 In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。 In this disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。 In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示において、「固形分」とは、溶剤以外の成分を意味する。 In the present disclosure, "solid content" means a component other than a solvent.
<多層フィルムの製造方法>
 本開示の一実施形態に係る多層フィルムの製造方法は、第1の面及び上記第1の面の反対側に第2の面を含む基材を、塗布液を吐出する吐出部を含む塗布装置に向かって搬送すること(以下、「搬送工程」という場合がある。)と、上記塗布装置の上方で上記塗布装置から離れる方向へ凸状に湾曲した搬送経路に沿って、上記基材の上記第1の面を上記塗布装置に向けて上記基材を浮上搬送しながら、上記塗布装置を用いて上記基材の上記第1の面に対して上記塗布液を塗布すること(以下、「塗布工程」という場合がある。)と、を含む。上記した一実施形態によれば、均一な膜厚分布を有する塗膜を形成可能な、多層フィルムの製造方法が提供される。本開示において、ある対象と塗布装置との関係を説明する際に使用される「塗布装置の上方」との句は、塗布装置に対するある対象の相対的位置を表す。
<Manufacturing method of multilayer film>
The method for producing a multilayer film according to an embodiment of the present disclosure is a coating apparatus including a substrate including a first surface and a second surface on the opposite side of the first surface, and a discharge portion for discharging a coating liquid. (Hereinafter, may be referred to as a “transportation step”) and the above-mentioned base material along the conveying path curved in a convex direction above the coating device in a direction away from the coating device. Applying the coating liquid to the first surface of the base material using the coating device while floating and transporting the base material toward the coating device (hereinafter, "coating"). Sometimes referred to as "process"), including. According to the above-described embodiment, there is provided a method for producing a multilayer film capable of forming a coating film having a uniform film thickness distribution. In the present disclosure, the phrase "above the coating device" used in describing the relationship between an object and the coating device refers to the relative position of the object with respect to the coating device.
 均一な膜厚分布を有する塗膜が形成される推定理由は、次のように考えられる。上記特許文献1、上記特許文献2及び上記特許文献3の各々に開示された方法に対して、本開示の一実施形態に係る多層フィルムの製造方法は、塗布装置の上方で塗布装置から離れる方向へ凸状に湾曲した搬送経路に沿って、基材の第1の面を塗布装置に向けて基材を浮上搬送しながら、塗布装置を用いて基材の第1の面に対して塗布液を塗布することを含む。つまり、塗布装置の吐出部から吐出された塗布液は、浮上搬送によって塗布装置から離れる方向へ凸状に湾曲した、塗布装置の吐出部に面する基材の第1の面に塗布される。塗布液の塗布過程において基材が塗布装置から離れる方向へ凸状に湾曲して浮上搬送されることで、低い吐出圧力で塗布液を基材に塗布でき、基材は塗布液の吐出圧力の影響も受けにくくなる。この結果、均一な膜厚分布を有する塗膜が形成されると推察される。 The presumed reason for forming a coating film with a uniform film thickness distribution is considered as follows. In contrast to the methods disclosed in Patent Document 1, Patent Document 2 and Patent Document 3, the method for producing a multilayer film according to an embodiment of the present disclosure is directed away from the coating device above the coating device. A coating liquid is applied to the first surface of the base material using the coating device while floating and transporting the base material toward the coating device along the transport path curved in a convex shape. Including applying. That is, the coating liquid discharged from the discharge portion of the coating device is applied to the first surface of the base material facing the discharge portion of the coating device, which is convexly curved in a direction away from the coating device by floating transfer. In the process of applying the coating liquid, the base material is convexly curved in the direction away from the coating device and floated and transported, so that the coating liquid can be applied to the base material with a low discharge pressure, and the base material has the discharge pressure of the coating liquid. It is also less susceptible. As a result, it is presumed that a coating film having a uniform film thickness distribution is formed.
 以下、多層フィルムの製造方法における各工程を具体的に説明する。 Hereinafter, each process in the method for manufacturing a multilayer film will be specifically described.
<<搬送工程>>
 搬送工程では、第1の面及び上記第1の面の反対側に第2の面を含む基材を、塗布液を吐出する吐出部を含む塗布装置に向かって搬送する。
<< Transfer process >>
In the transfer step, the base material containing the first surface and the second surface on the opposite side of the first surface is transferred toward the coating device including the discharge portion for discharging the coating liquid.
(基材)
 基材の成分としては、例えば、重合体及び金属が挙げられる。重合体としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート及びトリアセチルセルロースが挙げられる。基材は、1種又は2種以上の重合体を含んでもよい。金属としては、例えば、鉄、クロム、ニッケル、チタン、銅、アルミニウム、銀及び金が挙げられる。金属は、合金であってもよい。合金としては、例えば、ステンレス鋼及びインバーが挙げられる。基材は、1種又は2種以上の金属を含んでもよい。ある実施形態において、基材は、重合体を含むことが好ましく、ポリエチレンテレフタレート、ポリエチレンナフタレート及びトリアセチルセルロースからなる群より選択される少なくとも1種を含むことがより好ましい。ある実施形態において、基材は、金属を含むことが好ましく、ニッケル、チタン、銅、アルミニウム、銀及び金からなる群より選択される少なくとも1種を含むことがより好ましく、銅及びアルミニウムからなる群より選択される少なくとも1種を含むことが更に好ましく、アルミニウムを含むことが特に好ましい。
(Base material)
Examples of the components of the base material include polymers and metals. Examples of the polymer include polyethylene terephthalate, polyethylene naphthalate and triacetyl cellulose. The substrate may contain one or more polymers. Examples of the metal include iron, chromium, nickel, titanium, copper, aluminum, silver and gold. The metal may be an alloy. Examples of alloys include stainless steel and Invar. The substrate may contain one or more metals. In certain embodiments, the substrate preferably comprises a polymer and more preferably comprises at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate and triacetyl cellulose. In certain embodiments, the substrate preferably comprises a metal, more preferably comprising at least one selected from the group consisting of nickel, titanium, copper, aluminum, silver and gold, and the group consisting of copper and aluminum. It is more preferable to contain at least one selected from the above, and it is particularly preferable to contain aluminum.
 基材は、フィルムであることが好ましい。フィルムとしては、例えば、既述の重合体を含むフィルム及び既述の金属を含むフィルムが挙げられる。重合体を含むフィルムの具体例としては、ポリエチレンテレフタレート製フィルム、ポリエチレンナフタレート製フィルム及びトリアセチルセルロース製フィルムが挙げられる。金属を含むフィルムの具体例としては、銅製フィルム及びアルミニウム製フィルムが挙げられる。 The base material is preferably a film. Examples of the film include a film containing the above-mentioned polymer and a film containing the above-mentioned metal. Specific examples of the film containing the polymer include a polyethylene terephthalate film, a polyethylene naphthalate film, and a triacetyl cellulose film. Specific examples of the film containing metal include a copper film and an aluminum film.
 基材は、高い熱伝導性を有してもよい。高い熱伝導性を有する基材としては、例えば、200W/(m・K)以上の熱伝導率を有する基材が挙げられる。基材の熱伝導率の上限は、制限されない。基材の熱伝導率は、500W/(m・K)以下であってもよい。基材の熱伝導率は、レーザーフラッシュ法を用いて測定される。まず、基材を、幅方向に沿って3箇所(具体的には、幅方向の両端から5mmの位置と幅方向中央部)、φ5mm~10mmで切り出し、3つの測定試料を得る。レーザーフラッシュ法を適用した熱物性測定装置(例えば、LFA-502、京都電子工業株式会社)を用いて、各測定試料の熱伝導率を測定する。3つの測定値の算術平均を基材の熱伝導率とする。 The base material may have high thermal conductivity. Examples of the base material having high thermal conductivity include a base material having a thermal conductivity of 200 W / (m · K) or more. The upper limit of the thermal conductivity of the substrate is not limited. The thermal conductivity of the substrate may be 500 W / (m · K) or less. The thermal conductivity of the substrate is measured using a laser flash method. First, the substrate is cut out at three locations along the width direction (specifically, at a position 5 mm from both ends in the width direction and the center portion in the width direction) at φ5 mm to 10 mm to obtain three measurement samples. The thermal conductivity of each measurement sample is measured using a thermophysical property measuring device (for example, LFA-502, Kyoto Denshi Kogyo Co., Ltd.) to which the laser flash method is applied. The arithmetic mean of the three measured values is taken as the thermal conductivity of the substrate.
 基材の層構造は、制限されない。基材は、単層構造又は多層構造を有してもよい。 The layer structure of the base material is not limited. The base material may have a single-layer structure or a multi-layer structure.
 生産性の向上の観点から、基材は、長尺の基材であることが好ましい。基材の長さは、10m以上であることが好ましく、100m以上であることがより好ましく、200m以上であることが特に好ましい。基材の長さの上限は、制限されない。基材の長さの上限は、1,000m又は500mであってもよい。基材の長さは、通常、10m~1,000mの範囲内である。「基材の長さ」とは、基材の搬送方向における基材の端から端までの距離を意味する。 From the viewpoint of improving productivity, the base material is preferably a long base material. The length of the base material is preferably 10 m or more, more preferably 100 m or more, and particularly preferably 200 m or more. The upper limit of the length of the substrate is not limited. The upper limit of the length of the base material may be 1,000 m or 500 m. The length of the substrate is usually in the range of 10 m to 1,000 m. The "base material length" means the distance from one end of the base material to the other in the transport direction of the base material.
 基材の幅は、制限されない。生産性及びシワ抑制の観点から、基材の幅は、100mm~1,800mmの範囲内であることが好ましく、300mm~1,600mmの範囲内であることがより好ましく、500mm~1,400mmの範囲内であることが特に好ましい。 The width of the base material is not limited. From the viewpoint of productivity and wrinkle suppression, the width of the base material is preferably in the range of 100 mm to 1,800 mm, more preferably in the range of 300 mm to 1,600 mm, and 500 mm to 1,400 mm. It is particularly preferable that it is within the range.
 基材の厚さは、制限されない。取扱性の観点から、基材の厚さは、3μm~50μmの範囲内であることが好ましく、10μm~30μmの範囲内であることがより好ましい。 The thickness of the base material is not limited. From the viewpoint of handleability, the thickness of the base material is preferably in the range of 3 μm to 50 μm, and more preferably in the range of 10 μm to 30 μm.
(搬送)
 基材は、例えば、公知の搬送装置を用いて搬送される。搬送装置は、基材の張力を制御する張力制御機構を含んでもよい。搬送装置としては、例えば、搬送ローラー及び搬送ベルトが挙げられる。また、搬送装置としては、例えば、基材を送り出す送出装置及び基材を巻き取る巻取装置も挙げられる。送出装置及び巻取装置は、例えば、ロールツーロール(Roll to Roll)方式の搬送装置としても使用される。ロールツーロール方式の搬送装置は、長尺の基材を搬送する装置として好ましく使用される。
(Transport)
The substrate is transported using, for example, a known transport device. The transport device may include a tension control mechanism that controls the tension of the base material. Examples of the transfer device include a transfer roller and a transfer belt. Further, examples of the transfer device include a delivery device for sending out a base material and a winding device for winding up the base material. The sending device and the winding device are also used, for example, as a roll-to-roll type transfer device. The roll-to-roll type transport device is preferably used as a device for transporting a long base material.
 基材の搬送速度は、1m/分~100m/分の範囲内であることが好ましい。 The transport speed of the base material is preferably in the range of 1 m / min to 100 m / min.
 基材の張力は、30N/m~300N/mの範囲内であることが好ましく、50N/m~200N/mの範囲内であることがより好ましい。張力の制御は、例えば、公知の張力制御装置を用いて実施される。張力の制御は、張力制御機構を含む公知の搬送装置を用いて実施されてもよい。張力制御機構を含む搬送装置としては、例えば、テンデンシー駆動式ローラー(Tendency Drive Roller)を含む搬送装置が挙げられる。テンデンシー駆動式ローラーは、例えば、テンデンシー駆動式ローラーを支持する回転軸とテンデンシー駆動式ローラーとの間で作用する摩擦力又は磁力によって回転する。回転軸は、例えば、モーターによって回転される。つまり、回転軸を回転させる力がテンデンシー駆動式ローラーに伝達し、テンデンシー駆動式ローラーが回転する。テンデンシー駆動式ローラーを含む搬送装置は、例えば、回転軸の回転数に応じてフィルムの張力を制御できる。テンデンシー駆動式ローラーに関する技術は、例えば、特許第4066904号公報に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。張力の制御は、ダンサーローラーを用いて実施されてもよい。張力の制御は、回転ドロー制御方式を用いて実施されてもよい。 The tension of the base material is preferably in the range of 30 N / m to 300 N / m, and more preferably in the range of 50 N / m to 200 N / m. Tension control is performed using, for example, a known tension control device. Tension control may be performed using a known transfer device including a tension control mechanism. Examples of the transfer device including the tension control mechanism include a transfer device including a Tendency Drive Roller. The tendency-driven roller is rotated by, for example, a frictional force or a magnetic force acting between a rotating shaft supporting the tendency-driven roller and the tendency-driven roller. The axis of rotation is rotated by, for example, a motor. That is, the force for rotating the rotation shaft is transmitted to the tendency-driven roller, and the tendency-driven roller rotates. The transport device including the tendency-driven roller can control the tension of the film according to the rotation speed of the rotating shaft, for example. Techniques relating to tendency-driven rollers are described, for example, in Japanese Patent No. 4066904. The contents of the above documents are incorporated herein by reference. Tension control may be performed using dancer rollers. Tension control may be performed using a rotary draw control method.
(塗布装置)
 塗布装置は、塗布液を吐出する吐出部を含む。塗布装置は、複数の吐出部を含んでもよい。吐出部の成分としては、例えば、金属が挙げられる。金属としては、例えば、ステンレス鋼が挙げられる。吐出部が塗布液を吐出するという機能を有する限り、吐出部の構造は制限されない。吐出部は、1つ又は2つ以上の吐出口を含んでもよい。平面視における吐出口の形状としては、例えば、円形、楕円形、多角形、線形及び不定形が挙げられる。塗膜の膜厚分布の均一化という観点から、吐出部は、基材の幅方向にのびる吐出口を含むことが好ましい。
(Applying device)
The coating device includes a discharge unit that discharges the coating liquid. The coating device may include a plurality of ejection portions. Examples of the component of the discharge portion include metal. Examples of the metal include stainless steel. As long as the discharge portion has a function of discharging the coating liquid, the structure of the discharge portion is not limited. The discharge unit may include one or more discharge ports. Examples of the shape of the discharge port in a plan view include a circular shape, an elliptical shape, a polygonal shape, a linear shape, and an amorphous shape. From the viewpoint of making the film thickness distribution of the coating film uniform, it is preferable that the discharge portion includes a discharge port extending in the width direction of the base material.
 塗布装置は、気体を吹き出す吹出部を含むことが好ましい。塗布装置は、1つ又は2つ以上の吹出部を含んでもよい。吹出部は、基材と塗布装置との間に気体を供給する。基材と塗布装置との間に供給された気体は、後述する塗布工程において基材を支持し、塗布装置から基材を浮上させる。吐出部の成分としては、例えば、金属が挙げられる。金属としては、例えば、ステンレス鋼が挙げられる。吹出部が気体を吹き出すという機能を有する限り、吹出部の構造は制限されない。吹出部は、1つ又は2つ以上の吹出口を含んでもよい。平面視における吹出口の形状としては、例えば、円形、楕円形、多角形、線形及び不定形が挙げられる。吹出部は、吐出口に連通し、気体が流れる空間(すなわち、流路)を含んでもよい。吹出部は、ノズルであってもよい。吹出部は、多孔質体であってもよい。 The coating device preferably includes a blowout portion that blows out gas. The coating device may include one or more outlets. The blowout portion supplies gas between the substrate and the coating device. The gas supplied between the base material and the coating device supports the base material in the coating step described later, and floats the base material from the coating device. Examples of the component of the discharge portion include metal. Examples of the metal include stainless steel. As long as the blowout portion has the function of blowing out the gas, the structure of the blowout portion is not limited. The outlet may include one or more outlets. Examples of the shape of the outlet in a plan view include a circle, an ellipse, a polygon, a linear shape, and an amorphous shape. The blowout portion may include a space (that is, a flow path) through which the gas flows, which communicates with the discharge port. The blowing portion may be a nozzle. The blowout portion may be a porous body.
 後述のとおり、塗布装置は、搬送されている基材に塗布液を塗布する。搬送されている基材に塗布液を塗布する塗布装置は、基材の第1の面に向かって塗布液を吐出する吐出部と、上記基材の搬送方向において上記吐出部よりも上流及び下流の少なくとも一方に配置され、上記基材を浮上させるために上記基材の上記第1の面に向かって気体を吹き出す少なくとも1つの吹出部と、を含むことが好ましい。上記した実施形態によれば、均一な膜厚分布を有する塗膜を形成可能な塗布装置が提供される。吹出部は、基材の搬送方向において吐出部よりも上流及び下流にそれぞれ配置されていることが好ましい。基材の搬送方向において吐出部よりも上流に配置された吹出部(以下、「第1の吹出部」という場合がある。)及び基材の搬送方向において吐出部よりも下流に配置された吹出部(以下、「第2の吹出部」という場合がある。)は、基材の浮上搬送を安定化し、塗膜の膜厚分布の均一性を向上させる。第1の吹出部は、吐出部に隣接してもよく、又は吐出部に隣接していなくてもよい。第2の吹出部は、吐出部に隣接してもよく、又は吐出部に隣接していなくてもよい。第1の吹出部は吐出部に隣接し、かつ、第2の吹出部は吐出部に隣接していることが好ましい。 As will be described later, the coating device applies the coating liquid to the conveyed substrate. The coating device that applies the coating liquid to the conveyed base material has a discharge portion that discharges the coating liquid toward the first surface of the base material and upstream and downstream of the discharge portion in the transport direction of the base material. It is preferable to include at least one blowing portion, which is arranged on at least one of the above and blows gas toward the first surface of the base material in order to float the base material. According to the above-described embodiment, there is provided a coating device capable of forming a coating film having a uniform film thickness distribution. It is preferable that the blowout portion is arranged upstream and downstream of the discharge portion in the transport direction of the base material, respectively. A blowout portion arranged upstream of the discharge portion in the transport direction of the base material (hereinafter, may be referred to as a "first blowout portion") and a blowout portion arranged downstream of the discharge portion in the transport direction of the base material. The portion (hereinafter, may be referred to as a “second blowout portion”) stabilizes the floating transport of the base material and improves the uniformity of the film thickness distribution of the coating film. The first blowout portion may or may not be adjacent to the discharge portion. The second ejection portion may or may not be adjacent to the ejection portion. It is preferable that the first blowing portion is adjacent to the discharging portion and the second blowing portion is adjacent to the discharging portion.
<<塗布工程>>
 塗布工程では、塗布装置の上方で塗布装置から離れる方向へ凸状に湾曲した搬送経路に沿って、基材の第1の面を塗布装置に向けて基材を浮上搬送しながら、塗布装置を用いて基材の第1の面に対して塗布液を塗布する。上記のような塗布工程によれば、均一な膜厚分布を有する塗膜が形成される。
<< Coating process >>
In the coating step, the coating device is floated and transported with the first surface of the substrate toward the coating device along a transport path that is convexly curved in a direction away from the coating device above the coating device. Use to apply the coating solution to the first surface of the substrate. According to the coating process as described above, a coating film having a uniform film thickness distribution is formed.
(浮上搬送)
 塗布工程において、基材は、塗布装置の上方で浮上搬送される。すなわち、基材は、塗布装置に接触せずに搬送される。基材の浮上量は、例えば、塗布条件(例えば、塗布液の種類)に応じて決定される。浮上搬送の安定化及び塗膜の膜厚分布の均一化という観点から、基材の浮上量は、10μm以上であることが好ましく、20μm以上であることがより好ましい。基材の浮上量の下限は、50μm又は100μmであってもよい。塗布ビードが重力の影響を受けて不安定になることを未然に防ぐという観点から、基材の浮上量は、1,000μm以下であることが好ましく、500μm以下であることがより好ましく、400μm以下であることが特に好ましい。基材の浮上量は、10μm~1,000μmの範囲内であることが好ましく、20μm~500μmの範囲内であることがより好ましく、50μm~400μmの範囲内であることが特に好ましい。「基材の浮上量」とは、基材の第1の面と基材の第1の面に対向する吐出部の表面との最短距離を意味する。基材の浮上量は、レーザー変位計を用いて、以下に示す手順(1)~(3)に従って測定される。なお、基材の浮上量は、塗布液の影響を除外した条件、すなわち、基材に塗布液を塗布しない条件で測定される。
 (1)塗布装置の吐出部に対向して配置されたレーザー変位計を用いて、吐出部の表面の位置を検出し、次に、基材を浮上搬送しながら、塗布装置の吐出部とレーザー変位計との間を走行する基材の第2の面の位置を検出する。
 (2)上記(1)で得られた測定結果に基づいて、吐出部の表面から、浮上した基材の第2の面までの距離Dを測定する。
 (3)下記式に従って得られる値を、基材の浮上量とみなす。
  式:基材の浮上量=[距離D]-[基材の厚さ]
(Floating transport)
In the coating process, the substrate is floated and transported above the coating device. That is, the base material is conveyed without contacting the coating device. The floating amount of the base material is determined, for example, according to the coating conditions (for example, the type of coating liquid). From the viewpoint of stabilizing the floating transport and making the film thickness distribution of the coating film uniform, the floating amount of the base material is preferably 10 μm or more, and more preferably 20 μm or more. The lower limit of the floating amount of the base material may be 50 μm or 100 μm. From the viewpoint of preventing the coated bead from becoming unstable due to the influence of gravity, the floating amount of the base material is preferably 1,000 μm or less, more preferably 500 μm or less, and 400 μm or less. Is particularly preferable. The floating amount of the base material is preferably in the range of 10 μm to 1,000 μm, more preferably in the range of 20 μm to 500 μm, and particularly preferably in the range of 50 μm to 400 μm. The "flying amount of the base material" means the shortest distance between the first surface of the base material and the surface of the discharge portion facing the first surface of the base material. The floating amount of the base material is measured by using a laser displacement meter according to the following procedures (1) to (3). The floating amount of the base material is measured under the condition excluding the influence of the coating liquid, that is, the condition that the coating liquid is not applied to the base material.
(1) Using a laser displacement meter arranged facing the ejection part of the coating device, the position of the surface of the ejection portion is detected, and then the ejection portion of the coating device and the laser are carried while floating and transporting the base material. The position of the second surface of the base material running between the displacement meter and the displacement meter is detected.
(2) Based on the measurement result obtained in (1) above, the distance D from the surface of the ejection portion to the second surface of the floating base material is measured.
(3) The value obtained according to the following formula is regarded as the floating amount of the base material.
Formula: Floating amount of base material = [Distance D]-[Thickness of base material]
 塗布工程における基材の曲がり度合いは、例えば、曲率半径によって表される。曲がり度合いが大きいほど曲率半径は小さくなり、曲がり度合いが小さいほど曲率半径は大きくなる。塗膜の膜厚分布の均一化という観点から、基材と塗布液との接触地点における基材の曲率半径は、50mm~1,000mmの範囲内であることが好ましく、70mm~600mmの範囲内であることがより好ましく、100mm~300mmの範囲内であることが特に好ましい。基材の曲率半径は、塗布液の影響を除外した条件、すなわち、基材に塗布液を塗布しない条件で測定される。 The degree of bending of the base material in the coating process is represented by, for example, the radius of curvature. The larger the degree of bending, the smaller the radius of curvature, and the smaller the degree of bending, the larger the radius of curvature. From the viewpoint of making the film thickness distribution of the coating film uniform, the radius of curvature of the base material at the contact point between the base material and the coating liquid is preferably in the range of 50 mm to 1,000 mm, and in the range of 70 mm to 600 mm. It is more preferable that it is in the range of 100 mm to 300 mm, and it is particularly preferable that it is in the range of 100 mm to 300 mm. The radius of curvature of the base material is measured under the condition excluding the influence of the coating liquid, that is, the condition that the coating liquid is not applied to the base material.
 基材の浮上方法は、制限されない。基材の浮上方法としては、例えば、基材と塗布装置との間に気体を供給する方法が挙げられる。基材と塗布装置との間に供給された気体は、基材を支持し、塗布装置から基材を浮上させる。気体により基材が支持されると、より低い吐出圧力で塗布液を基材に塗布でき、塗膜の膜厚分布の均一性を更に向上させる。 The method of ascending the base material is not limited. Examples of the method of floating the base material include a method of supplying gas between the base material and the coating device. The gas supplied between the substrate and the coating device supports the substrate and floats the substrate from the coating device. When the base material is supported by the gas, the coating liquid can be applied to the base material at a lower discharge pressure, further improving the uniformity of the film thickness distribution of the coating film.
 気体の種類は、制限されない。気体としては、例えば、窒素及び空気が挙げられる。気体は、空気であることが好ましい。 The type of gas is not limited. Examples of the gas include nitrogen and air. The gas is preferably air.
 気体は、例えば、公知の方法によって供給される。気体は、送風機、圧縮機又は気体を貯蔵する容器(例えば、ボンベ)を用いて供給されてもよい。 The gas is supplied, for example, by a known method. The gas may be supplied using a blower, a compressor or a container (eg, a cylinder) for storing the gas.
 気体の圧力は、制限されない。気体の圧力は、例えば、基材の浮上量及び基材の曲がり度合いに影響を及ぼす。気体の圧力が大きいほど基材の浮上量は増大し、気体の圧力が小さいほど基材の浮上量は減少する。また、気体の圧力が大きいほど基材の曲がり度合いは大きくなり、気体の圧力が小さいほど基材の曲がり度合いは小さくなる。浮上搬送の安定化及び基材の湾曲化の観点から、基材と塗布装置との間の空間に存在する気体の圧力(以下、「P0」という場合がある。)は、10Pa以上であることが好ましく、50Pa以上であることがより好ましく、100Pa以上であることが特に好ましい。「基材と塗布装置との間の空間に存在する気体」は、基材と塗布装置との間に意図的に供給されている気体のみならず、基材と塗布装置との間の空間に非意図的な要因により存在する気体(例えば、大気)を含む。さらに、P0は、150Pa以上であることが好ましく、200Pa以上であることがより好ましい。気体の圧力変動が小さいほど、塗膜の膜厚分布の均一性が向上する。気体の圧力変動の低減の観点から、P0は、2,000Pa以下であることが好ましく、1,600Pa以下であることがより好ましく、1,300Pa以下であることが特に好ましい。P0の上限は、1,000Pa、800Pa又は500Paであってもよい。P0は、10Pa~2,000Paの範囲内であることが好ましく、100Pa~1,600Paの範囲内であることがより好ましく、150Pa~1,300Paの範囲内であることが特に好ましい。P0は、基材と塗布装置との間の空間にマノスターゲージに接続した金属チューブを挿入して測定される。 Gas pressure is not limited. The pressure of the gas affects, for example, the amount of floating of the base material and the degree of bending of the base material. The larger the gas pressure, the larger the floating amount of the base material, and the smaller the gas pressure, the smaller the floating amount of the base material. Further, the greater the pressure of the gas, the greater the degree of bending of the base material, and the smaller the pressure of the gas, the smaller the degree of bending of the base material. From the viewpoint of stabilizing floating transport and bending the base material, the pressure of the gas existing in the space between the base material and the coating device (hereinafter, may be referred to as “P0”) shall be 10 Pa or more. Is preferable, 50 Pa or more is more preferable, and 100 Pa or more is particularly preferable. The "gas existing in the space between the base material and the coating device" is not only the gas intentionally supplied between the base material and the coating device, but also the space between the base material and the coating device. Includes gases (eg, atmosphere) that are present due to unintentional factors. Further, P0 is preferably 150 Pa or more, and more preferably 200 Pa or more. The smaller the pressure fluctuation of the gas, the more uniform the film thickness distribution of the coating film is. From the viewpoint of reducing the pressure fluctuation of the gas, P0 is preferably 2,000 Pa or less, more preferably 1,600 Pa or less, and particularly preferably 1,300 Pa or less. The upper limit of P0 may be 1,000 Pa, 800 Pa or 500 Pa. P0 is preferably in the range of 10 Pa to 2,000 Pa, more preferably in the range of 100 Pa to 1,600 Pa, and particularly preferably in the range of 150 Pa to 1,300 Pa. P0 is measured by inserting a metal tube connected to a manostar gauge into the space between the substrate and the coating device.
 基材の浮上搬送は、基材の搬送方向において吐出部よりも上流及び下流の少なくとも一方に配置された気体を吹き出す吹出部から基材の第1の面に向かって気体を吹き出すことを含むことが好ましい。吹出部から基材の第1の面に向かって吹き出された気体は、基材を支持し、塗布装置から基材を浮上させる。上記のような方法は、基材の浮上搬送を安定化し、塗膜の膜厚分布の均一性を向上させる。浮上搬送の安定化の観点から、吹出部は、基材の搬送方向において吐出部よりも上流及び下流にそれぞれ配置されていることが好ましい。吹出部は、塗布装置の一部又は塗布装置とは独立した要素であってもよい。吹出部は、塗布装置の一部であることが好ましい。吹出部の態様は、上記「搬送工程」の項に記載されている。 The floating transfer of the base material includes blowing the gas toward the first surface of the base material from the blowout portion arranged at least one of the upstream side and the downstream side of the discharge part in the transfer direction of the base material. Is preferable. The gas blown from the blowout portion toward the first surface of the base material supports the base material and floats the base material from the coating device. The method as described above stabilizes the floating transport of the base material and improves the uniformity of the film thickness distribution of the coating film. From the viewpoint of stabilizing the floating transport, it is preferable that the blowout portion is arranged upstream and downstream of the discharge portion in the transport direction of the base material, respectively. The blowout portion may be a part of the coating device or an element independent of the coating device. The blowout portion is preferably part of the coating device. Aspects of the blowout portion are described in the above-mentioned "Transport step" section.
 本開示の一実施形態に係る多層フィルムの製造方法は、吹出部から吹き出される気体の圧力を制御することで、基材の浮上量を制御することを含むことが好ましい。吹出部から吹き出される気体の圧力は、例えば、既述した圧力(すなわち、P0)の範囲内で制御される。基材の浮上量は、例えば、既述した浮上量の範囲内で制御される。 It is preferable that the method for producing a multilayer film according to an embodiment of the present disclosure includes controlling the floating amount of the base material by controlling the pressure of the gas blown out from the blowing portion. The pressure of the gas blown out from the blowout portion is controlled, for example, within the range of the pressure described above (that is, P0). The levitation amount of the base material is controlled, for example, within the range of the levitation amount described above.
 基材の浮上搬送は、基材の搬送方向において、吐出部よりも上流に配置された気体を吹き出す第1の吹出部及び吐出部よりも下流に配置された気体を吹き出す第2の吹出部から基材の第1の面に向かって気体を吹き出すことと、第1の吹出部から吹き出される気体の圧力及び第2の吹出部から吹き出される気体の圧力を互いに独立して制御することと、を含むことが好ましい。上記のような方法は、基材の浮上搬送を安定化し、基材の曲がり度合いの制御性も向上させる。この結果、塗膜の膜厚分布の均一性は向上する。基材と第1の吹出部との間の空間に存在する気体の圧力(以下、「P1」という場合がある。)は、基材と第2の吹出部との間の空間に存在する気体の圧力(以下、「P2」という場合がある。)と同じであっても異なっていてもよい。「基材と吹出部との間の空間に存在する気体」は、基材と吹出部との間に意図的に供給されている気体のみならず、基材と吹出部との間の空間に非意図的な要因により存在する気体(例えば、大気)を含む。P1及びP2は、例えば、既述した圧力(すなわち、P0)の範囲内で制御される。塗膜の膜厚分布の均一化という観点から、P2に対するP1の比(すなわち、P1/P2)は、0.1~1.5であることが好ましく、0.3~1であることがより好ましい。P1は、P2より低いことが好ましい。P1がP2より低いと、基材の張力変動が塗膜の膜厚分布に及ぼす影響は小さくなり、塗膜の膜厚分布の均一性も向上する。上記のような観点から、P2に対するP1の比(すなわち、P1/P2)は、0.1以上1未満あることが好ましく、0.3~0.9であることがより好ましく、0.4~0.8であることが特に好ましい。P1は、P2より50Pa以上低いことが好ましく、P2より100Pa以上低いことがより好ましい。例えば、P1は、10Pa~250Paの範囲内であり、P2は、300Pa~500Paの範囲内であることが好ましい。P1は、基材と第1の吹出部との間の空間にマノスターゲージに接続した金属チューブを挿入して測定される。P2は、基材と第2の吹出部との間の空間にマノスターゲージに接続した金属チューブを挿入して測定される。 The floating transfer of the base material is performed from the first blowing portion that blows out the gas arranged upstream of the discharging portion and the second blowing portion that blows out the gas arranged downstream of the discharging portion in the transport direction of the base material. To control the pressure of the gas blown out from the first blowout portion and the pressure of the gas blown out from the second blowout portion independently of each other, and to blow out the gas toward the first surface of the base material. , Are preferably included. The method as described above stabilizes the floating transport of the base material and improves the controllability of the degree of bending of the base material. As a result, the uniformity of the film thickness distribution of the coating film is improved. The pressure of the gas existing in the space between the base material and the first blowing portion (hereinafter, may be referred to as “P1”) is the gas existing in the space between the base material and the second blowing portion. It may be the same as or different from the pressure of (hereinafter, may be referred to as “P2”). The "gas existing in the space between the base material and the blowout portion" is not only the gas intentionally supplied between the base material and the blowout portion, but also the space between the base material and the blowout portion. Includes gases (eg, atmosphere) that are present due to unintentional factors. P1 and P2 are controlled, for example, within the pressure range described above (ie, P0). From the viewpoint of making the film thickness distribution of the coating film uniform, the ratio of P1 to P2 (that is, P1 / P2) is preferably 0.1 to 1.5, and more preferably 0.3 to 1. preferable. P1 is preferably lower than P2. When P1 is lower than P2, the influence of the tension fluctuation of the base material on the film thickness distribution of the coating film is small, and the uniformity of the film thickness distribution of the coating film is also improved. From the above viewpoint, the ratio of P1 to P2 (that is, P1 / P2) is preferably 0.1 or more and less than 1, more preferably 0.3 to 0.9, and 0.4 to 0.9. It is particularly preferably 0.8. P1 is preferably 50 Pa or more lower than P2, and more preferably 100 Pa or more lower than P2. For example, P1 is preferably in the range of 10 Pa to 250 Pa, and P2 is preferably in the range of 300 Pa to 500 Pa. P1 is measured by inserting a metal tube connected to a manostar gauge into the space between the substrate and the first outlet. P2 is measured by inserting a metal tube connected to a manostar gauge into the space between the substrate and the second outlet.
(塗布)
 塗布方法としては、例えば、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法及びワイヤーバー法が挙げられる。塗布工程では、スロットコーティング法によって塗布液を塗布することが好ましい。スロットコーティング法では、例えば、基材の幅方向にのびる吐出口を含む吐出部から塗布液が吐出される。
(Application)
Examples of the coating method include a curtain coating method, a dip coating method, a spin coating method, a printing coating method, a spray coating method, a slot coating method, a roll coating method, a slide coating method, a blade coating method, a gravure coating method and a wire bar method. Can be mentioned. In the coating step, it is preferable to apply the coating liquid by the slot coating method. In the slot coating method, for example, the coating liquid is discharged from a discharge portion including a discharge port extending in the width direction of the base material.
 基材に塗布された塗布液の厚さ(以下、「液膜の厚さ」という場合がある。)は、制限されない。液膜の厚さは、10μm~200μmの範囲内であってもよい。液膜の厚さは、20μm~100μmの範囲内であってもよい。 The thickness of the coating liquid applied to the base material (hereinafter, may be referred to as "thickness of liquid film") is not limited. The thickness of the liquid film may be in the range of 10 μm to 200 μm. The thickness of the liquid film may be in the range of 20 μm to 100 μm.
(塗布液)
 塗布液の種類は、制限されない。塗布液の種類は、例えば、多層フィルムの用途に応じて決定される。塗布液は、水系塗布液であることが好ましい。「水系塗布液」とは、塗布液に含まれる溶剤が実質的に水である塗布液を意味する。「塗布液に含まれる溶剤が実質的に水である」とは、塗布液に含まれる溶剤の多くを水が占めることを意味する。水系塗布液に含まれる溶剤に占める水の割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であることが特に好ましい。
(Coating liquid)
The type of coating liquid is not limited. The type of coating liquid is determined, for example, according to the use of the multilayer film. The coating liquid is preferably a water-based coating liquid. The "water-based coating liquid" means a coating liquid in which the solvent contained in the coating liquid is substantially water. "The solvent contained in the coating liquid is substantially water" means that water occupies most of the solvent contained in the coating liquid. The ratio of water to the solvent contained in the water-based coating liquid is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 100% by mass.
 水系塗布液に含まれる水としては、例えば、天然水、精製水、蒸留水、イオン交換水、純水及び超純水が挙げられる。 Examples of the water contained in the water-based coating liquid include natural water, purified water, distilled water, ion-exchanged water, pure water and ultrapure water.
 水系塗布液における水の含有率は、水系塗布液の全質量に対して、40質量%以上であることが好ましく、50質量%以上であることがより好ましい。水系塗布液における水の含有率は、水系塗布液の全質量に対して、100質量%未満であることが好ましく、80質量%以下であることがより好ましい。 The water content in the water-based coating liquid is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total mass of the water-based coating liquid. The water content in the water-based coating liquid is preferably less than 100% by mass, more preferably 80% by mass or less, based on the total mass of the water-based coating liquid.
 水系塗布液は、粒子を含んでもよい。粒子としては、例えば、無機粒子、有機粒子及び無機物質と有機物質との複合粒子が挙げられる。 The water-based coating liquid may contain particles. Examples of the particles include inorganic particles, organic particles, and composite particles of an inorganic substance and an organic substance.
 無機粒子としては、例えば、金属の粒子、半金属の粒子、金属化合物の粒子、半金属化合物の粒子、無機顔料の粒子、鉱物の粒子及び多結晶ダイヤモンドの粒子が挙げられる。金属としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属及びこれらの合金が挙げられる。半金属としては、例えば、ケイ素が挙げられる。金属化合物及び半金属化合物としては、例えば、酸化物、水酸化物及び窒化物が挙げられる。無機顔料としては、例えば、カーボンブラックが挙げられる。鉱物としては、例えば、雲母が挙げられる。 Examples of the inorganic particles include metal particles, semi-metal particles, metal compound particles, semi-metal compound particles, inorganic pigment particles, mineral particles and polycrystalline diamond particles. Examples of the metal include alkali metals, alkaline earth metals, transition metals and alloys thereof. Examples of metalloids include silicon. Examples of metal compounds and metalloid compounds include oxides, hydroxides and nitrides. Examples of the inorganic pigment include carbon black. Examples of minerals include mica.
 有機粒子としては、例えば、樹脂の粒子及び有機顔料の粒子が挙げられる。 Examples of the organic particles include resin particles and organic pigment particles.
 無機物質と有機物質との複合粒子としては、例えば、有機物質によるマトリックス中に無機粒子が分散した複合粒子、有機粒子の周囲を無機物質にて被覆した複合粒子及び無機粒子の周囲を有機物質にて被覆した複合粒子が挙げられる。 As the composite particles of the inorganic substance and the organic substance, for example, the composite particles in which the inorganic particles are dispersed in the matrix of the organic substance, the composite particles in which the periphery of the organic particles is coated with the inorganic substance, and the periphery of the inorganic particles are the organic substances. Examples thereof include composite particles coated with.
 分散性の付与のために、粒子は、表面処理が施されていてもよい。表面処理によって複合粒子が形成されてもよい。 The particles may be surface-treated to impart dispersibility. Composite particles may be formed by surface treatment.
 粒子の粒径、比重及び使用形態は、制限されない。粒子の粒径、比重及び使用形態は、例えば、塗布液によって形成される塗膜及び塗膜の製造条件に応じて決定される。 The particle size, specific gravity and usage pattern of the particles are not limited. The particle size, specific gravity, and usage pattern of the particles are determined, for example, according to the coating film formed by the coating liquid and the production conditions of the coating film.
 水系塗布液は、1種又は2種以上の粒子を含んでもよい。 The water-based coating liquid may contain one kind or two or more kinds of particles.
 水系塗布液における粒子の含有率は、制限されない。水系塗布液における粒子の含有率は、例えば、粒子の添加目的、塗布液によって形成される塗膜及び塗膜の製造条件に応じて決定される。 The content of particles in the water-based coating liquid is not limited. The content of particles in the water-based coating liquid is determined, for example, according to the purpose of adding the particles, the coating film formed by the coating liquid, and the production conditions of the coating film.
 水系塗布液の成分としては、例えば、バインダー成分、粒子の分散性に寄与する成分、重合性化合物、重合開始剤及び塗布性能を高めるための成分(例えば、界面活性剤)も挙げられる。 Examples of the components of the water-based coating liquid include a binder component, a component that contributes to the dispersibility of particles, a polymerizable compound, a polymerization initiator, and a component for enhancing coating performance (for example, a surfactant).
 塗布液の固形分濃度は、70質量%未満であることが好ましく、30質量%~60質量%であることがより好ましい。 The solid content concentration of the coating liquid is preferably less than 70% by mass, more preferably 30% by mass to 60% by mass.
<<他の工程>>
 本開示の一実施形態に係る多層フィルムの製造方法は、必要に応じて、上記した工程以外の工程を含んでもよい。
<< Other processes >>
The method for producing a multilayer film according to an embodiment of the present disclosure may include steps other than the above-mentioned steps, if necessary.
(乾燥工程)
 本開示の一実施形態に係る多層フィルムの製造方法は、塗布工程の後に、塗布液を乾燥することを含んでもよい。すなわち、基材に塗布された塗布液は、乾燥されてもよい。乾燥方法としては、例えば、加熱及び送風が挙げられる。送風における気体の温度は、25℃~200℃の範囲内であることが好ましく、30℃~150℃の範囲内であることがより好ましい。送風における風速は、1.5m/秒~50m/秒であることが好ましい。塗布液の乾燥に使用される乾燥装置としては、例えば、オーブン、温風機及び赤外線ヒーターが挙げられる。
(Drying process)
The method for producing a multilayer film according to an embodiment of the present disclosure may include drying the coating liquid after the coating step. That is, the coating liquid applied to the substrate may be dried. Examples of the drying method include heating and blowing. The temperature of the gas in the blast is preferably in the range of 25 ° C to 200 ° C, more preferably in the range of 30 ° C to 150 ° C. The wind speed in blowing air is preferably 1.5 m / sec to 50 m / sec. Examples of the drying device used for drying the coating liquid include an oven, a hot air blower, and an infrared heater.
(多層フィルムの切断工程)
 本開示の一実施形態に係る多層フィルムの製造方法は、多層フィルムを切断する工程を含んでもよい。多層フィルムを切断することで、多層フィルムの幅を調節できる。多層フィルムの切断方法としては、例えば、刃物を用いる方法が挙げられる。
(Multilayer film cutting process)
The method for producing a multilayer film according to an embodiment of the present disclosure may include a step of cutting the multilayer film. The width of the multilayer film can be adjusted by cutting the multilayer film. Examples of the method for cutting the multilayer film include a method using a blade.
<<生産方式>>
 生産性の向上の観点から、本開示の一実施形態に係る多層フィルムの製造方法は、ロールツーロール方式によって実施されることが好ましい。ロールツーロール方式によって実施される多層フィルムの製造方法では、ロール状に巻かれたフィルムの供給からフィルムの巻き取りまでの間に少なくとも搬送工程及び塗布工程が実施される。
<< Production method >>
From the viewpoint of improving productivity, the method for producing a multilayer film according to one embodiment of the present disclosure is preferably carried out by a roll-to-roll method. In the method for producing a multilayer film carried out by the roll-to-roll method, at least a transfer step and a coating step are carried out between the supply of the rolled film and the winding of the film.
 次に、図1及び図2を参照して、多層フィルムの製造方法の一例を説明する。図1は、本開示のある実施形態に係る多層フィルムの製造方法を説明するための概略側面図である。図2は、図1に示される塗布装置の先端を拡大して示す概略断面図である。図2において、方向Xは、方向Yと直交している。 Next, an example of a method for manufacturing a multilayer film will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic side view for explaining a method for manufacturing a multilayer film according to an embodiment of the present disclosure. FIG. 2 is a schematic cross-sectional view showing an enlarged tip of the coating device shown in FIG. In FIG. 2, the direction X is orthogonal to the direction Y.
 図1に示される製造装置100は、搬送ローラー10、搬送ローラー11、搬送ローラー12、搬送ローラー13、搬送ローラー14、搬送ローラー15、搬送ローラー16、搬送ローラー17、搬送ローラー18、塗布装置20、乾燥装置30、送出装置(図示省略)及び巻取装置(図示省略)を含む。 The manufacturing apparatus 100 shown in FIG. 1 includes a transfer roller 10, a transfer roller 11, a transfer roller 12, a transfer roller 13, a transfer roller 14, a transfer roller 15, a transfer roller 16, a transfer roller 17, a transfer roller 18, and a coating device 20. Includes a drying device 30, a sending device (not shown) and a winding device (not shown).
 搬送ローラー10、搬送ローラー11、搬送ローラー12、搬送ローラー13、搬送ローラー14、搬送ローラー15、搬送ローラー16、搬送ローラー17及び搬送ローラー18は、フィルムFを支持しながらフィルムFを搬送する。各ローラーは、回転可能である。フィルムFは、第1の面F1及び第1の面F1の反対側に第2の面F2を含む基材である。 The transfer roller 10, the transfer roller 11, the transfer roller 12, the transfer roller 13, the transfer roller 14, the transfer roller 15, the transfer roller 16, the transfer roller 17, and the transfer roller 18 transfer the film F while supporting the film F. Each roller is rotatable. The film F is a base material containing the first surface F1 and the second surface F2 on the opposite side of the first surface F1.
 塗布装置20は、搬送されているフィルムFに塗布液を塗布する。塗布装置20は、吐出部21と、第1の吹出部22と、第2の吹出部23と、を含む。 The coating device 20 applies the coating liquid to the conveyed film F. The coating device 20 includes a discharge portion 21, a first blowout portion 22, and a second blowout portion 23.
 吐出部21は、フィルムFの第1の面F1に向かって塗布液Lを吐出する。吐出部21は、吐出口21aを含む。吐出口21aは、フィルムFの幅方向、すなわち、方向X及び方向Yに直交する方向にのびている。塗布液Lは、塗布装置20に接続された送液装置(図示省略)から供給され、吐出口21aを通じて吐出される。 The discharge unit 21 discharges the coating liquid L toward the first surface F1 of the film F. The discharge unit 21 includes a discharge port 21a. The discharge port 21a extends in the width direction of the film F, that is, in the direction orthogonal to the direction X and the direction Y. The coating liquid L is supplied from a liquid feeding device (not shown) connected to the coating device 20, and is discharged through the discharge port 21a.
 第1の吹出部22は、フィルムFの第1の面F1に向かって気体を吹き出す。第1の吹出部22は、フィルムFの搬送方向において吐出部21よりも上流に配置されている。第1の吹出部22は、吐出部21に隣接している。第1の吹出部22は、複数の吹出口22aを含む。気体は、塗布装置20に接続された圧縮機(図示省略)から供給され、吹出口22aを通じて吹き出される。 The first blowing portion 22 blows gas toward the first surface F1 of the film F. The first blowing portion 22 is arranged upstream of the discharging portion 21 in the transport direction of the film F. The first blowing portion 22 is adjacent to the discharging portion 21. The first outlet 22 includes a plurality of outlets 22a. The gas is supplied from a compressor (not shown) connected to the coating device 20 and blown out through the outlet 22a.
 第2の吹出部23は、フィルムFの第1の面F1に向かって気体を吹き出す。第2の吹出部23は、基材Fの搬送方向において吐出部21よりも下流に配置されている。第2の吹出部23は、吐出部21に隣接している。第2の吹出部23は、複数の吹出口23aを含む。気体は、塗布装置20に接続された圧縮機(図示省略)から供給され、吹出口23aを通じて吹き出される。 The second blowing portion 23 blows gas toward the first surface F1 of the film F. The second blowing portion 23 is arranged downstream of the discharging portion 21 in the transport direction of the base material F. The second blowing portion 23 is adjacent to the discharging portion 21. The second outlet 23 includes a plurality of outlets 23a. The gas is supplied from a compressor (not shown) connected to the coating device 20 and blown out through the outlet 23a.
 乾燥装置30は、フィルムFに塗布された塗布液Lを乾燥する。 The drying device 30 dries the coating liquid L coated on the film F.
 送出装置(図示省略)は、ロールフィルムRF1からフィルムFを供給する。送出装置は、図1の手前から奥へのびる回転軸に沿ってロールフィルムRF1を搭載している。 The delivery device (not shown) supplies the film F from the roll film RF1. The delivery device mounts the roll film RF1 along a rotation axis extending from the front to the back of FIG.
 巻取装置(図示省略)は、フィルムFを含む多層フィルムをロール状に巻き取ることでロールフィルムRF2を形成する。巻取装置は、図1の手前から奥へのびる回転軸に沿ってロールフィルムRF2を搭載する。 The winding device (not shown) winds the multilayer film containing the film F into a roll to form the roll film RF2. The take-up device mounts the roll film RF2 along the rotation axis extending from the front to the back of FIG.
 図1に示される多層フィルムの製造方法は、ロールツーロール方式によって実施される。ロールフィルムRF1から送り出されたフィルムFは、搬送ローラー10、搬送ローラー11、搬送ローラー12、搬送ローラー13、搬送ローラー14、塗布装置20、搬送ローラー15、乾燥装置30、搬送ローラー16、搬送ローラー17及び搬送ローラー18を通過し、ロール状に巻き取られる。 The method for manufacturing the multilayer film shown in FIG. 1 is carried out by a roll-to-roll method. The film F sent out from the roll film RF1 includes a transfer roller 10, a transfer roller 11, a transfer roller 12, a transfer roller 13, a transfer roller 14, a coating device 20, a transfer roller 15, a drying device 30, a transfer roller 16, and a transfer roller 17. And, it passes through the transport roller 18 and is wound into a roll.
 図1に示されるように、ロールフィルムRF1から送り出されたフィルムFは、塗布装置20に向かって搬送される。図2に示されるように、塗布装置20に到達したフィルムFは、塗布装置20の上方で塗布装置20から離れる方向Yへ凸状に湾曲した搬送経路に沿って浮上搬送されている。浮上搬送されるフィルムFは、第1の吹出部22及び第2の吹出部23から吹き出される気体によって支持されている。浮上搬送されているフィルムFの第1の面F1は、塗布装置20を向いている。塗布装置20は、上記のように浮上搬送されているフィルムFの第1の面F1に対して塗布液Lを塗布する。塗布液Lは、浮上搬送によって塗布装置20から離れる方向Yへ凸状に湾曲したフィルムFの第1の面F1に塗布される。図2に示されるように、第1の吹出部22及び第2の吹出部23から吹き出される気体によって塗布装置20から離れる方向Yへ凸状に湾曲してフィルムFが浮上搬送されることで、低い吐出圧力で塗布液LをフィルムFに塗布できる。この結果、フィルムFに塗布された塗布液Lの分布の均一性が向上し、均一な膜厚分布を有する塗膜が形成されると推察される。 As shown in FIG. 1, the film F sent out from the roll film RF1 is conveyed toward the coating device 20. As shown in FIG. 2, the film F that has reached the coating device 20 is levitated and transported along a transport path that is convexly curved in the direction Y away from the coating device 20 above the coating device 20. The film F that is levitated and conveyed is supported by the gas that is blown out from the first blowout portion 22 and the second blowout portion 23. The first surface F1 of the film F that is floated and conveyed faces the coating device 20. The coating device 20 applies the coating liquid L to the first surface F1 of the film F which is floated and conveyed as described above. The coating liquid L is applied to the first surface F1 of the film F which is convexly curved in the direction Y away from the coating device 20 by floating transfer. As shown in FIG. 2, the film F is floated and conveyed by being convexly curved in the direction Y away from the coating device 20 by the gas blown from the first blowing portion 22 and the second blowing portion 23. The coating liquid L can be applied to the film F with a low discharge pressure. As a result, it is presumed that the uniformity of the distribution of the coating liquid L coated on the film F is improved, and a coating film having a uniform film thickness distribution is formed.
 フィルムFに塗布された塗布液は、乾燥装置30の中で乾燥される。塗布液の乾燥によって多層フィルムが形成される。多層フィルムは、巻取装置(図示省略)を用いてロール状に巻き取られる。ロール状に巻き取られた多層フィルムは、ロールフィルムRF2を形成する。 The coating liquid applied to the film F is dried in the drying device 30. A multilayer film is formed by drying the coating liquid. The multilayer film is wound into a roll using a winding device (not shown). The multilayer film wound into a roll forms the roll film RF2.
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in detail by way of examples. However, the present disclosure is not limited to the following examples.
<実施例1>
(基材AL1の準備)
 基材AL1として、220mmの幅、10μmの厚さ、300mの長さ及び230W/(m・K)の熱伝導率を有するアルミニウム製フィルムを準備した。基材AL1は、ロール状に巻かれてロールフィルムを形成している。
<Example 1>
(Preparation of base material AL1)
As the base material AL1, an aluminum film having a width of 220 mm, a thickness of 10 μm, a length of 300 m, and a thermal conductivity of 230 W / (m · K) was prepared. The base material AL1 is rolled into a roll to form a roll film.
(塗布液Aの準備)
 以下の成分を混合し、塗布液Aを調製した。
・ポリビニルアルコール(CKS-50、ケン化度:99モル%、重合度:300、日本合成化学工業株式会社):58質量部
・セロゲンPR(第一工業製薬株式会社):24質量部
・界面活性剤(日本エマルジョン株式会社、エマレックス710):5質量部
・アートパール(登録商標)J-7Pの水分散物:913質量部
(Preparation of coating liquid A)
The following components were mixed to prepare a coating liquid A.
-Polyvinyl alcohol (CKS-50, degree of saponification: 99 mol%, degree of polymerization: 300, Nippon Synthetic Chemical Industry Co., Ltd.): 58 parts by mass-Serogen PR (Daiichi Kogyo Seiyaku Co., Ltd.): 24 parts by mass-Surfactant Agent (Nippon Emulsion Co., Ltd., Emarex 710): 5 parts by mass, Art Pearl (registered trademark) J-7P aqueous dispersion: 913 parts by mass
 アートパールJ-7Pの水分散物は、以下の方法によって調製された。74質量部の純水に、3質量部のエマレックス710(日本エマルジョン株式会社、ノニオン界面活性剤)と、3質量部のカルボキシメチルセルロースナトリウム(第一工業製薬株式会社)と、を添加した。得られた水溶液に、20質量部のアートパールJ-7P(根上工業株式会社、シリカ複合架橋アクリル樹脂微粒子)を加え、エースホモジナイザー(株式会社日本精機製作所)を用いて10,000rpm(revolutions per minute、以下同じ。)で15分間分散し、アートパールJ-7Pの水分散物を得た(粒子濃度:20質量%)。得られた水分散物中のシリカ複合架橋アクリル樹脂微粒子の真比重は1.20であり、上記微粒子の平均粒径は6.5μmである。 The aqueous dispersion of Art Pearl J-7P was prepared by the following method. To 74 parts by mass of pure water, 3 parts by mass of Emarex 710 (Nippon Emulsion Co., Ltd., nonionic surfactant) and 3 parts by mass of sodium carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., Ltd.) were added. To the obtained aqueous solution, 20 parts by mass of Art Pearl J-7P (Negami Kogyo Co., Ltd., silica composite crosslinked acrylic resin fine particles) was added, and 10,000 rpm (revolutions per minute) was added using an ace homogenizer (Nissei Tokyo Office Co., Ltd.). , The same applies hereinafter) for 15 minutes to obtain an aqueous dispersion of Artpearl J-7P (particle concentration: 20% by mass). The true specific gravity of the silica composite crosslinked acrylic resin fine particles in the obtained aqueous dispersion is 1.20, and the average particle size of the fine particles is 6.5 μm.
(多層フィルムの製造)
 図1に示されるような構成要素を含む製造装置を用いて、基材AL1に塗布液Aを塗布し、次に、塗布液を乾燥した。以上の手順によって、多層フィルムを得た。フィルムの搬送速度は、20m/分である。具体的な製造条件を表1に示す。
(Manufacturing of multilayer film)
The coating liquid A was applied to the base material AL1 using a manufacturing apparatus including the components as shown in FIG. 1, and then the coating liquid was dried. A multilayer film was obtained by the above procedure. The transport speed of the film is 20 m / min. Specific manufacturing conditions are shown in Table 1.
<実施例2~7>
 表1の記載に従って製造条件を変更したこと以外は、実施例1と同様の手順によって多層フィルムを得た。
<Examples 2 to 7>
A multilayer film was obtained by the same procedure as in Example 1 except that the production conditions were changed according to the description in Table 1.
<比較例1>
 特開平5-208165号公報の図1に示されるような塗布装置を用いて基材AL1に塗布液Aを塗布し、次に、塗布液を乾燥した。以上の手順によって、多層フィルムを得た。フィルムの搬送速度は、20m/分である。具体的な製造条件を表1に示す。
<Comparative Example 1>
The coating liquid A was applied to the base material AL1 using a coating apparatus as shown in FIG. 1 of JP-A-5-208165, and then the coating liquid was dried. A multilayer film was obtained by the above procedure. The transport speed of the film is 20 m / min. Specific manufacturing conditions are shown in Table 1.
<比較例2>
 特開2001-310148号公報の図1に示されるような態様によって、空気を吹き出す吹出部として使用されるバックアップローラーと塗布装置との間を走行する基材AL1に塗布液Aを塗布し、次に、塗布液を乾燥した。以上の手順によって、多層フィルムを得た。フィルムの搬送速度は、20m/分である。具体的な製造条件を表1に示す。
<Comparative Example 2>
According to the embodiment shown in FIG. 1 of JP-A-2001-310148, the coating liquid A is applied to the base material AL1 running between the backup roller used as the blowing portion for blowing air and the coating device, and then the coating liquid A is applied. The coating liquid was dried. A multilayer film was obtained by the above procedure. The transport speed of the film is 20 m / min. Specific manufacturing conditions are shown in Table 1.
<評価>
(膜厚分布)
 膜厚測定器(SI-T90、株式会社キーエンス)を用いて、多層フィルムの長手方向における塗膜の厚みを5mmおきに10か所で測定した。塗膜の膜厚分布Tを算出し、以下の基準に従って評価した。評価結果を表1に示す。
 A:T≦1%
 B:1%<T<2%
 C:2%≦T<5%
 D:5%≦T
<Evaluation>
(Film thickness distribution)
Using a film thickness measuring instrument (SI-T90, KEYENCE CORPORATION), the thickness of the coating film in the longitudinal direction of the multilayer film was measured at 10 points every 5 mm. The film thickness distribution T of the coating film was calculated and evaluated according to the following criteria. The evaluation results are shown in Table 1.
A: T ≤ 1%
B: 1% <T <2%
C: 2% ≤ T <5%
D: 5% ≤ T
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載された項目の説明を以下に示す。
 「吐出部」は、塗布液を吐出する吐出部を示す。
 「吹出部」は、気体(具体的には空気)を吹き出す吹出部を示す。なお、比較例2における吹出部は、気体を吹き出すバックアップローラーである。
 「吐出部と基材との最短距離」は、基材に塗布液を塗布しない条件で測定された、吐出部と搬送されている基材との最短距離を示す。また、実施例1~7に関する「吐出部と基材との最短距離」は、既述した基材の浮上量に対応する。
 「吹出部と基材との最短距離」は、基材に塗布液を塗布しない条件で測定された、吹出部と搬送されている基材との最短距離を示す。
 「P0」は、基材と吹出部との間の空間に存在する気体の圧力を示す。
 「P1」は、基材と第1の吹出部との間の空間に存在する気体の圧力を示す。
 「P2」は、基材と第2の吹出部との間の空間に存在する気体の圧力を示す。
A description of the items listed in Table 1 is shown below.
“Discharge unit” indicates a discharge unit that discharges the coating liquid.
The “blowout portion” indicates a blowout portion that blows out a gas (specifically, air). The blowing portion in Comparative Example 2 is a backup roller that blows out gas.
"The shortest distance between the discharge part and the base material" indicates the shortest distance between the discharge part and the base material being conveyed, which is measured under the condition that the coating liquid is not applied to the base material. Further, the "shortest distance between the ejection portion and the base material" according to Examples 1 to 7 corresponds to the floating amount of the base material described above.
The "shortest distance between the blowout portion and the base material" indicates the shortest distance between the blowout portion and the base material being conveyed, which is measured under the condition that the coating liquid is not applied to the base material.
“P0” indicates the pressure of the gas existing in the space between the base material and the blowout portion.
“P1” indicates the pressure of the gas existing in the space between the base material and the first blowing portion.
“P2” indicates the pressure of the gas existing in the space between the base material and the second blowing portion.
 表1は、比較例1~2における膜厚分布に比べて、実施例1~7における膜厚分布の均一性が優れていることを示す。実施例1~7に対して比較例1では、基材が気体によって浮上搬送されていないため、膜厚分布の均一性は低下したと考えられる。実施例1~7に対して比較例2では、気体を吹き出すバックアップローラーと塗布装置との間で浮上搬送される基材がバックアップローラーから塗布装置に向かう方向へ凸状に湾曲しているため、膜厚分布の均一性は低下したと考えられる。 Table 1 shows that the uniformity of the film thickness distribution in Examples 1 to 7 is superior to that in Comparative Examples 1 and 2. In Comparative Example 1 with respect to Examples 1 to 7, it is considered that the uniformity of the film thickness distribution was lowered because the base material was not floated and conveyed by the gas. In Comparative Example 2 with respect to Examples 1 to 7, since the base material floated and conveyed between the backup roller for blowing gas and the coating device is convexly curved in the direction from the backup roller to the coating device. It is considered that the uniformity of the film thickness distribution has decreased.
 2020年12月17日に出願された日本国特許出願2020-209440号の開示は、参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2020-209440 filed on December 17, 2020 is incorporated herein by reference. All documents, patent applications and technical standards described herein are to the same extent as if it were specifically and individually stated that the individual documents, patent applications and technical standards are incorporated by reference. Incorporated by reference in the book.
 10、11、12、13、14、15、16、17,18:搬送ローラー
 20:塗布装置
 21:吐出部
 21a:吐出口
 22:第1の吹出部
 23:第2の吹出部
 22a、23a:吹出口
 30:乾燥装置
 100:製造装置
 F:フィルム
 F1:第1の面
 F2:第2の面
 RF1、RF2:ロールフィルム
10, 11, 12, 13, 14, 15, 16, 17, 18: Conveying roller 20: Coating device 21: Discharge unit 21a: Discharge port 22: First outlet 23: Second outlet 22a, 23a: Outlet 30: Drying device 100: Manufacturing device F: Film F1: First surface F2: Second surface RF1, RF2: Roll film

Claims (6)

  1.  第1の面及び前記第1の面の反対側に第2の面を含む基材を、塗布液を吐出する吐出部を含む塗布装置に向かって搬送することと、
     前記塗布装置の上方で前記塗布装置から離れる方向へ凸状に湾曲した搬送経路に沿って、前記基材の前記第1の面を前記塗布装置に向けて前記基材を浮上搬送しながら、前記塗布装置を用いて前記基材の前記第1の面に対して前記塗布液を塗布することと、を含む、
     多層フィルムの製造方法。
    To convey the base material containing the first surface and the second surface on the opposite side of the first surface toward the coating device including the discharge portion for discharging the coating liquid.
    The base material is floated and transported with the first surface of the base material directed toward the coating device along a transport path that is convexly curved in a direction away from the coating device above the coating device. The present invention comprises applying the coating liquid to the first surface of the substrate using a coating apparatus.
    A method for manufacturing a multilayer film.
  2.  前記基材の浮上搬送が、前記基材の搬送方向において前記吐出部よりも上流及び下流の少なくとも一方に配置された気体を吹き出す吹出部から前記基材の前記第1の面に向かって前記気体を吹き出すことを含む、請求項1に記載の多層フィルムの製造方法。 The floating transport of the base material is such that the gas is directed toward the first surface of the base material from a blowout portion that blows out a gas arranged at least one of upstream and downstream of the discharge portion in the transport direction of the base material. The method for producing a multilayer film according to claim 1, which comprises blowing out.
  3.  前記吹出部から吹き出される前記気体の圧力を制御することで、前記基材の浮上量を制御することを含む、請求項2に記載の多層フィルムの製造方法。 The method for producing a multilayer film according to claim 2, wherein the floating amount of the base material is controlled by controlling the pressure of the gas blown out from the blowing portion.
  4.  前記基材の浮上搬送が、前記基材の搬送方向において、前記吐出部よりも上流に配置された気体を吹き出す第1の吹出部及び前記吐出部よりも下流に配置された気体を吹き出す第2の吹出部から前記基材の前記第1の面に向かって気体を吹き出すことと、前記第1の吹出部から吹き出される前記気体の圧力及び前記第2の吹出部から吹き出される前記気体の圧力を互いに独立して制御することと、を含む、請求項1に記載の多層フィルムの製造方法。 The floating transport of the base material blows out a first blowout portion that blows out a gas arranged upstream of the discharge portion and a second blowout portion of a gas arranged downstream of the discharge portion in the transport direction of the base material. The gas is blown from the blowing portion toward the first surface of the base material, the pressure of the gas blown from the first blowing portion, and the pressure of the gas blown from the second blowing portion. The method for producing a multilayer film according to claim 1, wherein the pressure is controlled independently of each other.
  5.  前記基材と前記第1の吹出部との間の空間に存在する気体の圧力が、前記基材と前記第2の吹出部との間の空間に存在する気体の圧力より低い、請求項4に記載の多層フィルムの製造方法。 4. The pressure of the gas existing in the space between the base material and the first blowing portion is lower than the pressure of the gas existing in the space between the base material and the second blowing portion. The method for producing a multilayer film according to the above.
  6.  搬送されている第1の面及び前記第1の面の反対側に第2の面を含む基材に塗布液を塗布する塗布装置であって、
     前記基材の前記第1の面に向かって塗布液を吐出する吐出部と、
     前記基材の搬送方向において前記吐出部よりも上流及び下流の少なくとも一方に配置され、前記基材を浮上させるために前記基材の前記第1の面に向かって気体を吹き出す少なくとも1つの吹出部と、を含む、
     塗布装置。
    A coating device for applying a coating liquid to a substrate including a first surface being conveyed and a second surface on the opposite side of the first surface.
    A discharge portion that discharges the coating liquid toward the first surface of the base material,
    At least one blowout portion that is arranged at least one of upstream and downstream of the discharge portion in the transport direction of the base material and blows gas toward the first surface of the base material in order to levitate the base material. And, including,
    Coating device.
PCT/JP2021/042650 2020-12-17 2021-11-19 Method for producing multilayer film and coating device WO2022130902A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022569805A JPWO2022130902A1 (en) 2020-12-17 2021-11-19
CN202180083568.2A CN116600905B (en) 2020-12-17 2021-11-19 Method for producing multilayer film and coating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209440 2020-12-17
JP2020-209440 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022130902A1 true WO2022130902A1 (en) 2022-06-23

Family

ID=82058759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042650 WO2022130902A1 (en) 2020-12-17 2021-11-19 Method for producing multilayer film and coating device

Country Status (3)

Country Link
JP (1) JPWO2022130902A1 (en)
CN (1) CN116600905B (en)
WO (1) WO2022130902A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258369A (en) * 1990-03-07 1991-11-18 Matsushita Electric Ind Co Ltd Coating applicator
JP2013094731A (en) * 2011-10-31 2013-05-20 Fujifilm Corp Coating apparatus
JP2017047339A (en) * 2015-08-31 2017-03-09 東レ株式会社 Coating apparatus
JP2020160240A (en) * 2019-03-26 2020-10-01 日本ゼオン株式会社 Method and device for manufacturing optical film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822411B2 (en) * 1989-02-16 1996-03-06 富士写真フイルム株式会社 Coating device
JPH057816A (en) * 1991-06-28 1993-01-19 Konica Corp Web coating device
JPH10263453A (en) * 1997-03-21 1998-10-06 Sony Corp Film formation and manufacture of magnetic recording medium and device used therefor
JP2003225604A (en) * 2002-02-07 2003-08-12 Toppan Printing Co Ltd Coating apparatus
JP2004000906A (en) * 2002-02-26 2004-01-08 Konica Minolta Holdings Inc Coating method, coated product and ink jet recording medium
JP2005046724A (en) * 2003-07-28 2005-02-24 Fuji Photo Film Co Ltd Coating method and coating apparatus
WO2006003876A1 (en) * 2004-06-30 2006-01-12 Hirata Corporation Base plate coating device
KR101431280B1 (en) * 2005-12-06 2014-08-20 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Production process, transfer apparatus, functional film having hardcoat layer, and functional film having antireflection layer
JP2009213976A (en) * 2008-03-07 2009-09-24 Fujifilm Corp Coating apparatus
JP2014079708A (en) * 2012-10-17 2014-05-08 Tokyo Ohka Kogyo Co Ltd Double-side coating device
JP5809186B2 (en) * 2013-03-29 2015-11-10 富士フイルム株式会社 Multilayer film manufacturing method
JP6229931B2 (en) * 2013-09-17 2017-11-15 株式会社リコー Method for producing electrophotographic photosensitive member
JP6737649B2 (en) * 2016-07-04 2020-08-12 株式会社Screenホールディングス Coating device and coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258369A (en) * 1990-03-07 1991-11-18 Matsushita Electric Ind Co Ltd Coating applicator
JP2013094731A (en) * 2011-10-31 2013-05-20 Fujifilm Corp Coating apparatus
JP2017047339A (en) * 2015-08-31 2017-03-09 東レ株式会社 Coating apparatus
JP2020160240A (en) * 2019-03-26 2020-10-01 日本ゼオン株式会社 Method and device for manufacturing optical film

Also Published As

Publication number Publication date
CN116600905A (en) 2023-08-15
CN116600905B (en) 2024-10-29
JPWO2022130902A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US7080465B2 (en) Method of manufacturing inkjet recording sheet and drying apparatus for application film
JPH07185437A (en) Coating and coating device
CN111479634B (en) Coating device
WO2022130902A1 (en) Method for producing multilayer film and coating device
JP2008296153A (en) Liquid coating device
JP4760271B2 (en) Coating / drying equipment and coating / drying method
JP2004019958A (en) Drying equipment, drying method, and manufacturing device and manufacturing method of magnetic recording medium
JP5194939B2 (en) Metal oxide thin film forming apparatus and method for producing sheet with metal oxide thin film
WO2022118637A1 (en) Method for producing multilayer film
JP2001113216A (en) Coating product, coating production apparatus, and coating production method
JP2014226620A (en) Method for forming thin film and thin film
WO2023145842A1 (en) Drying device and drying method
WO2022131272A1 (en) Method for producing multilayer body
JP2007260591A (en) Coating method, coating apparatus, and method for producing resin sheet
WO2022131271A1 (en) Method for manufacturing layered body
JP2005254087A (en) Method for simultaneously coating many layers
WO2023176200A1 (en) Coating device and method for manufacturing web equipped with coating film
CN221387242U (en) Novel coating device
JP4743482B2 (en) Coating liquid coating method and coating apparatus
JP5899916B2 (en) Thin film formation method
JP2005046751A (en) Drying device and drying method
JP2006247574A (en) Method and apparatus for manufacturing recording sheet
JP4264887B2 (en) Application method
JP2006136840A (en) Slide type curtain application device, slide hopper type application device, and application method using them
JP2013116460A (en) Coating device and method for manufacturing coated material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569805

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180083568.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906265

Country of ref document: EP

Kind code of ref document: A1