WO2022039081A1 - Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same - Google Patents

Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same Download PDF

Info

Publication number
WO2022039081A1
WO2022039081A1 PCT/JP2021/029609 JP2021029609W WO2022039081A1 WO 2022039081 A1 WO2022039081 A1 WO 2022039081A1 JP 2021029609 W JP2021029609 W JP 2021029609W WO 2022039081 A1 WO2022039081 A1 WO 2022039081A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrochemical element
composition
weight
electrochemical
Prior art date
Application number
PCT/JP2021/029609
Other languages
French (fr)
Japanese (ja)
Inventor
修志 西村
秀治 岩崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2022039081A1 publication Critical patent/WO2022039081A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an additive for an electrochemical element positive electrode made of a porous carbon material and a composition for an electrochemical element positive electrode containing the additive.
  • the present invention also relates to an electrochemical device having a positive electrode manufactured by using the composition for a positive electrode of an electrochemical device.
  • Lithium-ion secondary batteries which are small and lightweight, have high energy density, and can be repeatedly charged and discharged, is rapidly expanding by taking advantage of their characteristics.
  • Lithium-ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density. With the expansion and development of applications, these electrochemical devices are required to be further improved such as lower resistance, higher capacity, and improvement of mechanical properties and productivity.
  • Electrochemical elements such as lithium-ion secondary batteries are being developed for the purpose of increasing the capacity, and in particular, the positive electrode material has a great influence on the capacity (miniaturization) of the battery, so the capacity and high performance are increased.
  • a positive electrode for a lithium ion secondary battery which is excellent in short-time output characteristics at a low temperature, is studied.
  • Patent Document 2 in a lithium ion secondary battery using a manganese-based positive electrode active material, a lithium secondary battery in which manganese ions are adsorbed and trapped in activated carbon is studied.
  • Patent Documents 3 and 4 a lithium ion secondary battery capable of reducing a decrease in battery capacity by removing water in the battery with a water adsorbent is studied.
  • an object of the present invention includes an additive for an electrochemical element positive electrode capable of improving the conductivity of the positive electrode, reducing the electrode resistance, and suppressing the decrease in the discharge capacity when repeatedly charging and discharging.
  • the present invention provides a composition for a positive electrode of an electrochemical element.
  • Still another object of the present invention is to provide an electrochemical device having a positive electrode produced by using the above composition and having excellent battery characteristics.
  • the present invention includes the following aspects.
  • the specific surface area by the BET method is 2500 to 3300 m 2 / g, and the fineness represented by the following formula (1) when measured in the range of the pore radius of 0.5 to 2.5 nm by the steam adsorption method.
  • An additive for the positive electrode of an electrochemical element containing a porous carbon material having a minimum pore radius frequency distribution of 1 or more. Pore radius frequency distribution ⁇ V / ⁇ Log r (1) (In formula (1), V is the pore volume (cc / g) and r is the pore radius ( ⁇ ).) [2]
  • the composition for an electrochemical element positive electrode having a content of 10% by weight or less based on the total weight of the positive electrode active material.
  • the electrochemical element for the positive electrode of the electrochemical element according to [4] further comprising a binder in an amount of 0.5 to 10% by weight based on the total solid content of the composition for the positive electrode of the electrochemical element. Composition for positive electrode.
  • the electrochemical device according to [7] which operates at 2V to 5V.
  • an electrochemical element positive electrode additive and an electrochemical element containing the same can reduce the electrode resistance by improving the conductivity of the positive electrode and suppress the decrease in the discharge capacity when repeatedly charging and discharging.
  • a composition for a positive electrode can be provided. Further, it is possible to provide an electrochemical device having a positive electrode manufactured by using the above composition and having excellent battery characteristics.
  • the additive for the positive electrode of the electrochemical element of the present invention has a specific surface area of 2500 to 3300 m 2 / g by the BET method, and the pore radius is measured in the range of 0.5 to 2.5 nm by the steam adsorption method. It contains a porous carbon material having a minimum value of the pore radius frequency distribution represented by the formula (1) of 1 or more.
  • the porous carbon material used in the present invention has a specific surface area of 2500 to 3300 m 2 / g according to the BET method.
  • the specific surface area is smaller than the above lower limit, the electrolyte in the electrolytic solution cannot be sufficiently retained, and the resistance does not decrease sufficiently.
  • the lower limit of the specific surface area needs to be 2500 m 2 / g or more, preferably 2550 m 2 / g or more, and more preferably 2600 m 2 / g or more.
  • the upper limit of the specific surface area needs to be 3300 m 2 / g or less, preferably 3200 m 2 / g or less, more preferably 3100 m 2 / g or less, and more preferably 3000 m 2 / g or less.
  • the specific surface area is, for example, the lower limit or higher and the upper limit or lower by appropriately adjusting the type of the raw material of the porous carbon material; the activation conditions (atmosphere, temperature, time, etc.) in the method for producing the porous carbon material described later. Can be adjusted to.
  • the porous carbon material used in the present invention has the minimum value of the pore radius frequency distribution represented by the following formula (1) when the pore radius is measured in the range of 0.5 to 2.5 nm by the steam adsorption method. Is 1 or more.
  • Pore radius frequency distribution ⁇ V / ⁇ Log r (1)
  • r represents the pore radius ( ⁇ )
  • V represents the pore volume (cc / g)
  • the formula (1) is a graph in which the logarithm of r is taken on the horizontal axis and the cumulative pore volume is taken on the vertical axis. Represents the inclination in. That is, the higher the numerical value of the pore radius frequency distribution represented by the equation (1), the narrower the pore distribution in the range.
  • the pore distribution having a pore radius of 0.5 to 2.5 nm is narrow, the expansion and / or contraction of the electrode when the battery is repeatedly charged and discharged can be suppressed, and the expansion and / or expansion of the electrode can be suppressed. Alternatively, the decrease in discharge capacity caused by shrinkage can be suppressed.
  • the reason for this is not limited to the following, but can be considered as follows. Due to the narrow pore distribution in the pore radius range of 0.5 to 2.5 nm, when Li ions are adsorbed, they can be released again without suppressing the diffusion of Li ions.
  • the pores in this range correspond to the size of heavy metal ions, the shuttle reaction caused by the heavy metal ions eluted in the electrolytic solution can be suppressed by adsorbing and retaining the heavy metals in the pores. can.
  • the minimum value of the pore radius frequency distribution represented by the above formula (1) needs to be 1 or more, preferably 1.3 or more, and more preferably 1.8 or more.
  • the upper limit of the minimum value of the pore radius frequency distribution is not particularly limited, but is usually 5 or less.
  • the carbon material having such a pore distribution can be adjusted by adjusting the activation conditions according to the appropriate raw material.
  • the porous carbon material used in the present invention has a large pore volume in the range of 0.5 to 2.5 nm, so that the electrolyte elutes from the positive electrode while maintaining the electrolyte in the vicinity of the positive electrode active material.
  • the metal can be immobilized on the surface of the carbon material.
  • the pore volume in the range of the pore radius of 0.5 to 2.5 nm is preferably 0.6 cm 3 / g or more, and more preferably 1.1 cm 3 / g or more.
  • the upper limit of the pore volume in the range of the pore radius of 0.5 to 2.5 nm is not particularly limited, but is usually 4.0 cm 3 / g or less.
  • the pore volume in the range of the pore radius of 0.5 to 2.5 nm is, for example, the type of the raw material of the porous carbon material in the method for producing the porous carbon material described later; activation conditions (atmosphere, temperature, time, etc.). Etc. can be adjusted to be equal to or higher than the lower limit.
  • the pore volume having a pore radius in the range of 0.5 to 2.5 nm can be measured, for example, by pore distribution analysis by the DFT method by nitrogen adsorption measurement.
  • the heavy metal compound contained in the ash of the porous carbon material used in the present invention may diffuse in the positive electrode and precipitate during discharge, so a smaller content is preferable.
  • the ash content is preferably 0.5% by weight or less, more preferably 0.48% by weight or less, further preferably 0.46% by weight or less, and 0.43% by weight or less. Is even more preferable, and 0.38% by weight or less is particularly preferable.
  • the lower limit of the ash content is not particularly limited and may be 0% by weight or more.
  • the ash content can be determined by measuring the ignition residue, for example, by the method described in Examples described later.
  • Examples of the ash content that can be contained in the porous carbon material include nickel, iron, calcium, magnesium, and aluminum.
  • nickel is preferably 100 ppm or less, more preferably 80 ppm or less.
  • iron is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the ash content can also be determined by, for example, IPC emission spectroscopic analysis. The ash content is adjusted to the above range by appropriately adjusting the type of the raw material of the porous carbon material; the cleaning conditions (type of acid, concentration, time, number of times, etc.) in the method for producing the porous carbon material described later, for example. be able to.
  • the oxygen content in the porous carbon material used in the present invention is low, the carbon material tends to aggregate due to a difference in dispersibility with the active material when adjusting the electrode slurry, and it becomes difficult to obtain a stable slurry.
  • the oxygen content in the porous carbon material is preferably 0.5% by weight or more, more preferably 0.6% by weight or more, still more preferably 0.7% by weight or more.
  • oxygen in the porous carbon material becomes the starting point of decomposition of the electrolytic solution when the battery is charged and discharged, it is preferable that the oxygen content is low.
  • the oxygen content in the porous carbon material is preferably 3.0% by weight or less, more preferably 2.8% by weight or less, and further preferably 2.6% by weight or less.
  • the oxygen content in the porous carbon material is, for example, the lower limit thereof by appropriately adjusting the type of the raw material of the porous carbon material in the method for producing the porous carbon material described later; the activation conditions (atmosphere, temperature, time, etc.). The above and the above upper limit can be adjusted.
  • the oxygen content can be determined by, for example, elemental analysis, fluorescent X-ray analysis, or the like.
  • the porous carbon material used in the present invention preferably has an average particle size of 2 ⁇ m to 20 ⁇ m, more preferably 2.3 ⁇ m to 18 ⁇ m, and 2.5 ⁇ m to 14 ⁇ m, which is determined by the laser scattering method. Is even more preferable. If it is within the above range, good coatability can be obtained, which is preferable. Particles that are too large may be unfavorable because they may hinder conductivity in the positive electrode, and particles that are too small are not only economically unfavorable, but also contain fine powder and cannot be suppressed by a binder or the like. It may be unfavorable because it may easily be released from the inside of the electrode and may cause deterioration of battery performance such as a short circuit.
  • the average particle size is adjusted to the lower limit or higher and the upper limit or lower by appropriately adjusting the conditions of the raw material of the porous carbon material in the method for producing the porous carbon material described later; can do.
  • the raw materials for the porous carbon material used in the present invention include coconut shells, palm coconuts, fruit seeds, sawdust, eucalyptus, pine and other plant-based materials, coal-based materials, and petroleum. Examples thereof include coke-based coke and carbonized products having a carbonized pitch, phenol resin, vinyl chloride resin, vinylidene chloride resin and the like.
  • the shape and size of the raw material are not particularly limited, but crushed, granular, or columnar materials having a size of about 1 mm to 10 mm are generally used, but granular or powdered materials can also be used.
  • a carbonized material as a raw material after molding by adding a binder to tar, pitch, phenol resin or the like.
  • the shape of these molded bodies can be any shape such as granular, powdery, honeycomb or fibrous.
  • These raw materials are carbides in which the total content of alkali metals such as sodium, potassium and calcium and alkaline earth metals contained when heated and carbonized at 600 ° C. in an inert gas is 0.5% by weight or less. It is preferable to use.
  • the inert gas here means a gas such as nitrogen, argon, and helium.
  • the total content of alkali metals and alkali metals in the raw materials can be determined by the fluorescent X-ray method after heating and ashing the raw materials heated and carbonized at 600 ° C. in the above-mentioned inert gas at 850 ° C. in a muffle furnace. ..
  • the raw material preferably has a total content of alkali metals and alkaline earth metals of 0.01% by mass or more. As a result, it is easy to appropriately have pores in the first activation.
  • the above-mentioned raw material is preferably activated to obtain a porous carbon material, but in order to obtain the porous carbon material from the raw material, preferably, the above-mentioned carbide having a small amount of alkali metals is used as carbon dioxide gas. It is primarily activated at a temperature of 600 to 1200 ° C. in an atmosphere containing 2% by volume or less of water vapor and 2% by volume or more of carbon monoxide gas as the main component.
  • the fact that the carbon dioxide gas is the main component means that the carbon dioxide gas is the main component among the gases having an activating ability, and it is not possible to dilute the carbon dioxide gas with an inert gas such as nitrogen or argon. There is no problem.
  • the inert gas may occupy 50% by volume or more of the atmosphere at the time of activation.
  • the total amount of gas having an activating ability is preferably 20% by volume or more, more preferably 30% by volume or more, still more preferably 40% by volume or more in the atmosphere at the time of activation.
  • the activation time of the primary activation is not particularly limited, but when a raw material having a particle size of 3 mm or more is used, the uniformity of the pores is impaired if it is performed in a very short time, so that it is more than 1 hour or more. It is preferable to activate for 1.5 hours or more, and it is preferable to activate for 1.5 hours or more regardless of the particle size. Usually, it is carried out in about 50 hours.
  • the activation temperature is preferably 800 ° C to 1100 ° C.
  • a porous carbon material having a uniform pore size, a large specific surface area, and excellent adsorption of small molecule substances such as nitrogen can be produced. be able to.
  • carbon dioxide gas is similarly used. It is activated at a temperature of 600 to 1200 ° C.
  • the weight loss due to activation of the raw material is 5 to 50%, preferably 10 to 10 to.
  • the primary activation is performed again at a temperature of 600 to 1200 ° C. in an atmosphere containing carbon dioxide gas as a main component, water vapor of 2% by volume or less, and carbon monoxide gas of 2% by volume or more.
  • the raw material carbonaceous material after the primary activation it is preferable to wash the raw material carbonaceous material after the primary activation to reduce alkali metals and / or alkaline earth metals.
  • the washing can be performed by immersing the activated carbon obtained after the primary activation in a washing liquid containing an acid.
  • an acid inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid and carbonic acid, or organic acids such as formic acid and acetic acid are suitable. It is generally used in an aqueous solution, the concentration of which is usually 1 to 30% by weight.
  • the cleaning effect can be further enhanced by removing salts and acids remaining in the raw material by washing with water or warm water after pickling, and at the same time, corrosion of the device and waste gas when shifting to the later activation process. It is also suitable in terms of processing. In that case, the amount of water is not particularly limited, but it is practical to carry out the process at 10 to 50 times the weight of the raw material carbonaceous material.
  • the atmosphere for cleaning is not particularly limited, and may be appropriately selected depending on the method used for cleaning. In the present invention, cleaning is usually carried out in an air atmosphere.
  • the raw carbonaceous material that has been washed is secondarily activated. It is preferable to perform secondary activation after drying, but it is also possible to omit drying and immediately put it in an activation furnace for activation.
  • the drying conditions here may be the same as those for drying the porous carbonaceous material described later.
  • the secondary activation temperature is 600 to 1200 ° C, preferably 800 to 1100 ° C. Further, if the activation time is too short, activation spots occur inside and outside the particles and the uniformity of the pores is impaired. Therefore, when the particle size of the raw material is less than 1 mm, it is 30 minutes or more after reaching a predetermined temperature and 3 mm or more. It is preferably activated for 1 hour or more, and preferably for 1.5 to 30 hours regardless of the particle size.
  • the maximum activation time is not particularly limited from the viewpoint of the performance of the porous carbon material, but it is preferably carried out within 30 hours from the viewpoint of industry.
  • the activation furnace may be of any type as long as the reaction is uniformly carried out, and various types can be used.
  • a flow furnace, a multi-stage furnace, a rotary furnace and the like are suitable.
  • the activation method may be either a batch method or a continuous method. Further, the conditions for the primary activation and the conditions for the secondary activation may be the same.
  • Further cleaning may be performed after the secondary activation, in which case the cleaning can be performed in the same manner as the cleaning after the primary activation.
  • the porous carbon material thus obtained is then pulverized.
  • the pulverization method is not particularly limited, but a known pulverization method such as a ball mill, a roll mill or a jet mill, or a combination thereof can be adopted.
  • the porous carbon material obtained by pulverization may be classified and used. For example, by excluding particles having a particle diameter of 1 ⁇ m or less, it becomes possible to obtain porous carbon material particles having a narrow particle size distribution width. By removing such fine particles, it is possible to reduce the amount of binder in the electrode configuration.
  • the classification method is not particularly limited, and examples thereof include classification using a sieve, wet classification, and dry classification.
  • the wet classifier include a classifier using principles such as gravity classification, inertial classification, hydraulic classification, and centrifugal classification.
  • the dry classifier include classifiers that utilize principles such as sedimentation classification, mechanical classification, and centrifugal classification. From the viewpoint of economy, it is preferable to use a dry classifier.
  • the obtained porous carbon material may be dried. Drying is an operation for removing the moisture or the like adsorbed on the porous carbon material. For example, by heating the porous carbon material, the moisture or the like adsorbed on the porous carbon material can be removed. can. In addition to or instead of heating, drying can be performed by means such as depressurization, decompression heating, and freezing to remove water and the like adsorbed on the porous carbon material.
  • the drying temperature is preferably 100 to 330 ° C., more preferably 110 to 300 ° C., and further preferably 120 to 250 ° C. from the viewpoint of removing water adsorbed on the porous carbon material. preferable.
  • the drying time depends on the drying temperature to be adopted, but from the viewpoint of removing the water adsorbed on the porous carbon material, it is preferably 0.1 hours or more, more preferably 0.5 hours or more, still more preferably 1. It's more than an hour. Further, from the viewpoint of economic efficiency, it is preferably 24 hours or less, more preferably 12 hours or less, still more preferably 6 hours or less.
  • Drying can be performed under normal pressure or reduced pressure atmosphere.
  • the drying is carried out at normal pressure, it is preferably carried out in an atmosphere of an inert gas such as nitrogen gas or argon gas or in an air atmosphere having a dew point of ⁇ 20 ° C. or lower.
  • porous carbon material obtained as described above can be preferably used as an additive for the positive electrode of an electrochemical device of the present invention.
  • composition for positive electrode of electrochemical device contains the above-mentioned additive for a positive electrode of an electrochemical element and a positive electrode active material. Further, the composition for a positive electrode of an electrochemical device of the present invention may optionally contain other components other than the above.
  • the content of the additive for the positive electrode of the electrochemical element is preferably 10% by weight or less, more preferably 8% by weight or less, still more preferably 6% by weight or less, based on the total weight of the positive electrode active material. This is because if the content of the additive for the positive electrode of the electrochemical device is large, the weight of the positive electrode active material is relatively reduced, so that the capacity may be reduced. Further, if the content of the additive for the positive electrode of the electrochemical element is small, the effect of reducing the electrode resistance, which is the object of the present invention, and suppressing the electrode expansion during repeated charging and discharging may be insufficient, so that the weight is 0.5. % Or more is preferable, and 1% by weight or more is more preferable.
  • the mixing ratio of the additive for the positive electrode of the electrochemical device and the positive electrode active material described later may be 1:99 to 10:90 in terms of weight ratio.
  • the mixing ratio of the electrochemical device positive electrode additive and the positive electrode active material is included in this range, excellent output characteristics and capacity characteristics can be obtained.
  • the positive electrode active material to be blended in the composition for the positive electrode of the electrochemical element is not particularly limited, and a known positive electrode active material can be used.
  • a known positive electrode active material can be used.
  • lithium-containing cobalt oxide LiCoO 2
  • lithium-containing nickel oxide LiNiO 2
  • Co-Ni-Mn lithium as the positive electrode active material.
  • Containing composite oxides such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 etc .
  • Lithium-containing composite oxides of Ni—Co—Al such as LiNi 0.8 Co 0.1 Al 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc. can be used. preferable.
  • the particle size of the positive electrode active material is not particularly limited, and can be the same as that of the conventionally used positive electrode active material. Usually, the range of 0.1 ⁇ m to 40 ⁇ m, more preferably 0.5 ⁇ m to 20 ⁇ m is used.
  • the content of the positive electrode active material is preferably 35 to 95% by weight, more preferably 40 to 90% by weight, based on the total solid content of the composition. good.
  • the composition for a positive electrode of an electrochemical device of the present invention may contain a solvent.
  • a solvent for example, an organic solvent can be used, and among them, a polar organic solvent capable of dissolving the binder described later is preferable.
  • the organic solvent acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, N, N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, ethylenediamine and the like can be used.
  • NMP N-methylpyrrolidone
  • These organic solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably in the range of 1 to 80% by weight, more preferably 5 to 70% by weight, still more preferably 10 to 60% by weight, in the composition for the positive electrode of the electrochemical element. Is the amount.
  • the positive electrode active material, the additive for the electrochemical element positive electrode, and other components contained therein can be uniformly dispersed, which is preferable.
  • the composition for a positive electrode of an electrochemical element of the present invention preferably contains a binder for satisfactorily adhering positive electrode active material particles to each other and satisfactorily adhering positive electrode active material to a current current collector.
  • binders include, for example, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene.
  • the content of the binder is preferably 0.5 to 10% by weight with respect to the total weight of the solid content in the composition for the positive electrode of the electrochemical element. It is more preferably 7% by weight.
  • the content of the binder is within the above range, it is easy to suppress the breakage of the electrode due to the expansion and contraction of the active material during charging and discharging while suppressing the increase in electrical resistance.
  • the composition for a positive electrode of an electrochemical element of the present invention may further contain a conductive material in order to further enhance the conductivity of the positive electrode formed on the current collector.
  • a conductive material any electronically conductive material that does not cause a chemical change can be used in the electrochemical element to be constructed.
  • Specific examples of conductive materials include carbon-based substances such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber, metal powder such as copper, nickel, aluminum, and silver, and metal fiber.
  • one kind or a mixture of two or more kinds of conductive materials such as a polyphenylene derivative may be used.
  • the content of the conductive material is preferably 1 to 10% by weight with respect to the total solid content of the composition for the positive electrode of the electrochemical element, and is preferably 1 to 7% by weight. % Is more preferable.
  • the electric capacity of the electrode material can be suitably drawn out without significantly reducing the battery capacity of the positive electrode and by reducing the resistance.
  • the method for producing the composition for the positive electrode of the electrochemical element of the present invention can be produced by mixing the above-mentioned additive for the positive electrode of the electrochemical element, the positive electrode active material, and if necessary, a solvent and other components.
  • the mixing method is not particularly limited, and for example, a general mixing device such as a disper, a mill, or a kneader can be used. For example, it is preferable to stir for 20 minutes or more and 120 minutes or less.
  • the mixing temperature is not particularly limited, and is, for example, in the range of 0 ° C to 160 ° C, more preferably in the range of 20 ° C to 80 ° C.
  • a temperature that is too low is not preferable because the viscosity is high and coating may not be possible, and a temperature that is too high is not preferable from the viewpoint of safety and equipment operability such as volatilization of organic solvent and accompanying viscosity change. be.
  • Such a composition for a positive electrode of an electrochemical device according to an embodiment of the present invention can be usefully used for an electrochemical device.
  • the present invention also includes an electrochemical device having a positive electrode manufactured by using the above-mentioned composition for an electrochemical device positive electrode.
  • the electrochemical element of the present invention can improve the conductivity of the positive electrode, reduce the electrode resistance, and suppress the electrode expansion during repeated charging and discharging. can.
  • the electrochemical element of the present invention preferably operates at 2V to 5V, and examples thereof include a lithium ion secondary battery and a capacitor.
  • the electrochemical element of the present invention is a lithium ion secondary battery
  • the lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode is produced by using the composition for a positive electrode of an electrochemical element of the present invention, and includes a current collector and a positive electrode active material layer.
  • the positive electrode active material layer is formed by applying the composition for an electrochemical element positive electrode of the present invention to the current collector.
  • the method for applying the composition for the positive electrode of the electrochemical device on the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the composition for the positive electrode of the electrochemical device may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the composition film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode active material layer obtained by drying.
  • a material having electrical conductivity and having electrochemical durability is used as the current collector to which the composition for the positive electrode of the electrochemical element is applied.
  • a current collector made of aluminum or an aluminum alloy can be used as the current collector.
  • aluminum and an aluminum alloy may be used in combination, or different types of aluminum alloys may be used in combination.
  • Aluminum and aluminum alloys are excellent current collector materials because they have heat resistance and are electrochemically stable.
  • the method for drying the composition for the positive electrode of the electrochemical element on the current collector is not particularly limited, and a known method can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, infrared rays or an electron beam. A drying method by irradiation such as is mentioned.
  • the drying step at the time of producing the positive electrode, and the current collector (for example, aluminum foil) is not affected and the area is not affected. It is preferable to perform drying within a range in which water adsorbed on the surfaces of the positive electrode active material and the porous carbon material can be volatilized. It is preferably carried out at a drying temperature of 70 to 200 ° C., more preferably 100 ° C. or higher and 160 ° C. or lower under atmospheric pressure or reduced pressure in the range of 20 minutes to 24 hours, preferably 1 hour to 12 hours.
  • the positive electrode active material layer may be pressure-treated by using a die press or a roll press.
  • the pressure treatment can improve the adhesion between the positive electrode active material layer and the current collector.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer contains a negative electrode active material.
  • the process of manufacturing a negative electrode is a process widely known in the art.
  • the negative electrode active material includes a substance capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, a lithium metal alloy, a lithium-doped and de-doped substance, or a transition metal oxide. ..
  • crystalline carbon As a substance capable of reversibly intercalating / deintercalating the above lithium ions, crystalline carbon, amorphous carbon, or both of them may be used.
  • the crystalline carbon include graphite such as amorphous, plate-like, scaly, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon. Examples include carbon, mesophase-pitch carbide, and calcined coke.
  • an alloy of lithium and a metal selected from the group consisting of Na, K, Mg, Ca, Sr, Si, Sb, In, Zn, Ge, Al and Sn may be used. ..
  • Examples of the substance that can be doped and dedoped with lithium include alloys such as Si and SiMg, SiO x (0 ⁇ x ⁇ 2), Sn, SnO 2 and the like.
  • the content of the negative electrode active material in the negative electrode active material layer may be 70% by weight to 100% by weight with respect to the total weight of the negative electrode active material layer.
  • the negative electrode active material layer may be composed of only the negative electrode active material.
  • the negative electrode active material layer may also contain a binder, and may optionally further contain a conductive material.
  • the content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight with respect to the total weight of the negative electrode active material layer.
  • 90% by weight to 98% by weight of the negative electrode active material, 1% by weight to 10% by weight of the binder, and 1% by weight to 10% by weight of the conductive material may be used.
  • the binder plays a role of adhering the negative electrode active material particles to each other well and also adhering the negative electrode active material to the current current collector.
  • a water-insoluble binder, a water-soluble binder, or a combination thereof may be used as the binder.
  • water-insoluble binder examples include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, and polyamideimide. Polyimide or a combination thereof can be mentioned.
  • water-soluble binder examples include styrene-butadiene rubber, realized styrene-butadiene rubber, polyvinyl alcohol, cellulose, sodium polyacrylate, propylene and an olefin copolymer having 2 to 8 carbon atoms, (meth) acrylic acid and (meth) acrylic acid. Meta) A copolymer of acrylic acid alkyl ester or a combination thereof can be mentioned.
  • a cellulosic compound capable of imparting viscosity may be further used as a thickener.
  • the cellulosic compound include carboxymethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose and alkali metal salts thereof, and the content of such a thickener used is 0.1 part by weight to 100 parts by weight with respect to 100 parts by weight of the binder. It may be a department.
  • the above-mentioned conductive material is used for imparting conductivity to an electrode, and any electronic conductive material that does not cause a chemical change can be used in a constituent battery, and an example thereof.
  • carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber; metal powder such as copper, nickel, aluminum, silver or metal-based material such as metal fiber; polyphenylene derivative, etc.
  • Conductive polymers; or conductive materials containing mixtures thereof may be used.
  • the current collector is selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and a combination thereof. You may use the one.
  • the electrolyte preferably contains at least a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent acts as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or non-protonic solvent may be used.
  • the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylmethylcarbonate.
  • EMC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • ester solvent n-methyl acetate, n-ethyl acetate, n-propyl acetate and the like may be used.
  • Dimethylacetate, methylpropionate, ethylpropionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone and the like may be used.
  • ether dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like may be used, and as the ketone solvent, cyclohexanone and the like may be used.
  • the alcohol-based solvent ethyl alcohol, isopropyl alcohol or the like may be used, and as the non-protonic solvent, R-CN (R is a linear or branched form having 2 to 20 carbon atoms).
  • a ring-structured hydrocarbon group which may contain a double bond, an aromatic ring or an ether bond
  • amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, etc. May be used.
  • the above-mentioned non-aqueous organic solvent may be used alone or in combination of two or more kinds, or the mixing ratio when two or more kinds are mixed and used may be appropriately adjusted according to the target battery performance. good.
  • the lithium salt is dissolved in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium ion secondary battery and promote the movement of lithium ions between the positive electrode and the negative electrode. It is a substance that plays a role.
  • Typical examples of such lithium salts are, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 .
  • LiC 4 F 9 SO 3 LiClO 4 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl , LiI and LiB (C 2 O 4 ) 2 (lithium bisoxalatoborate (LiBOB)) and the like. These may be used alone or in admixture of two or more.
  • the concentration of the lithium salt is preferably used in the range of 0.1 to 2.0 M.
  • the concentration of the lithium salt is less than 0.1 M, the conductivity of the electrolyte tends to be low and the electrolyte performance tends to deteriorate, and if it exceeds 2.0 M, the viscosity of the electrolyte increases and the mobility of lithium ions Tends to decrease.
  • the electrolyte may further contain a vinylene carbonate or an ethylene carbonate compound as a life improving agent in order to improve the battery life.
  • Typical examples of the ethylene carbonate-based compound include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, and fluoroethylene carbonate.
  • the amount used may be appropriately adjusted.
  • a separator may be present between the positive electrode and the negative electrode.
  • a separator polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film having two or more layers thereof may be used, and a polyethylene / polypropylene two-layer separator, a polyethylene / polypropylene / polyethylene three-layer separator, or a polypropylene / A mixed multilayer film such as a polyethylene / polypropylene three-layer separator may be used.
  • the amount of adsorption (v) actually measured at a predetermined relative pressure ( p / p 0 ) at a liquid nitrogen temperature by the multipoint method by nitrogen adsorption is substituted to obtain vm, and the following equation is obtained.
  • the specific surface area of the sample (SSA: unit is m 2 / g) was calculated.
  • v m is the adsorption amount (cm 3 / g) required to form a single molecule layer on the sample surface
  • v is the measured adsorption amount (cm 3 / g)
  • p 0 is the saturated vapor pressure.
  • p is the absolute pressure
  • c is the constant (reflecting the heat of adsorption)
  • N is the Avogadro number 6.022 ⁇ 10 23
  • a (nm 2 ) is the area occupied by the adsorbent molecule on the sample surface (molecular occupied cross-sectional area).
  • the amount of nitrogen adsorbed on the carbon material at the liquid nitrogen temperature was measured as follows. A carbon material as a measurement sample is filled in a sample tube, the sample tube is cooled to -196 ° C., the pressure is reduced once, and then nitrogen (purity 99.999%) is adsorbed on the measurement sample at a desired relative pressure. rice field. The amount of nitrogen adsorbed on the sample when the equilibrium pressure was reached at each desired relative pressure was defined as the adsorbed gas amount v.
  • the adsorption isotherm of water vapor was measured using a Bell Soap 28SA type measuring instrument manufactured by Nippon Bell Co., Ltd.
  • the carbon material as the measurement sample was filled in the sample tube, the sample tube was once depressurized at 25 ° C., and then saturated water vapor was adsorbed on the measurement sample at a desired relative pressure.
  • the pore radius frequency distribution represented by the above formula (1) was calculated in the range where the pore radius of the porous carbon material was 0.5 to 2.5 nm.
  • the average particle size (particle size distribution) of the plant-derived raw material and the carbon material was measured by the following method.
  • the sample was put into an aqueous solution containing 5% by weight of a surfactant (“Toriton X100” manufactured by Wako Pure Chemical Industries, Ltd.), treated with an ultrasonic cleaner for 10 minutes or more, and dispersed in the aqueous solution.
  • the particle size distribution was measured using this dispersion.
  • the particle size distribution measurement was performed using a particle size / particle size distribution measuring device (“Microtrack MT3300EXII” manufactured by Microtrack Bell Co., Ltd.).
  • D50 is a particle size having a cumulative volume of 50%, and this value was used as the average particle size.
  • the alumina crucible containing the sample was placed in an electric furnace, and with dry air introduced into the electric furnace at 20 L / min, the temperature was raised to 200 ° C in 1 hour and then to 700 ° C over 2 hours. It was kept at 700 ° C. for 14 hours and incinerated. After the completion of ashing, the mixture was allowed to cool in a desiccator containing silica gel, the weight of the crucible + ash was accurately weighed to 0.1 mg, and the ash content was calculated from the following formula.
  • composition for positive electrode of lithium ion secondary battery 30 parts by weight of N-methylpyrrolidone solution in which 3 parts by weight of polyfluorinated vinylidene (KF polymer 7200 manufactured by Kureha Co., Ltd.) is dissolved, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Nippon Kagaku Kogyo Co., Ltd.) , "Celseed C-5H") 93 parts by weight, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., "Denka Black”) 2 parts by weight as a conductive material, 2 parts by weight of carbon material produced in Examples and Comparative Examples described later.
  • KF polymer 7200 manufactured by Kureha Co., Ltd. LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd., "Denka Black
  • the above composition for a positive electrode of a lithium ion secondary battery is coated on an aluminum foil (“1N30-H”, manufactured by Fuji Kako Paper) of a current collector using a bar coater (“T101”, manufactured by Matsuo Sangyo). After primary drying at 80 ° C. for 30 minutes in a hot air dryer (manufactured by Yamato Kagaku), rolling treatment was performed using a roll press (manufactured by Hosen). Then, after punching as a positive electrode for a lithium ion secondary battery ( ⁇ 14 mm), a positive electrode for a lithium ion secondary battery was produced by secondary drying under a reduced pressure condition at 120 ° C. for 3 hours.
  • the positive electrode for the lithium ion secondary battery was transferred to a glove box (manufactured by Miwa Seisakusho) in an argon gas atmosphere.
  • a laminated body made of a metallic lithium foil (thickness 0.2 mm, ⁇ 16 mm) was used as the negative electrode active material layer, and a stainless steel foil (thickness 0.2 mm, ⁇ 17 mm) was used as the current collector.
  • a polypropylene-based solvent (Celguard # 2400, manufactured by Polypore) is used as a separator, and the electrolyte is lithium hexafluorophosphate (LiPF 6 ) in ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in vinylene carbonate (VC).
  • LiPF 6 lithium hexafluorophosphate
  • EMC ethylmethyl carbonate
  • VC vinylene carbonate
  • Example 1 Carbides obtained by carbonizing coconut shells having a total content of alkali metals and alkaline earth metals of 0.01% by weight or more and 0.5% by weight or less at 600 ° C. are crushed to a size of 1 to 3 mm.
  • Table 1 a batch-type flow activator with an inner diameter of 50 mm is used as a raw material, and the atmosphere is such that carbon dioxide gas is the main component, water vapor is 2% by volume or less, and carbon monoxide gas is 2% by volume or more.
  • pickling with hydrochloric acid concentration: 0.5 regulation, diluted solution: ion-exchanged water
  • Example 2 to 3 Comparative Examples 1 to 3
  • the same conditions as in Example 1 were carried out except that the activation conditions were changed to the conditions shown in Table 1 below (primary activation and secondary activation were performed under the same conditions, respectively). rice field).
  • the capacity (mAh / g) at this time was taken as the charge capacity.
  • dedoping was performed at a rate of 70 mA / g with respect to the weight of the active material until it reached 2.5 V with respect to the lithium potential, and the capacity discharged at this time was defined as the discharge capacity.
  • the charge / discharge efficiency (initial charge / discharge efficiency) was defined as the percentage of discharge capacity / charge capacity, and was used as an index of the utilization efficiency of lithium ions in the battery.
  • the irreversible capacity was calculated by subtracting the discharge capacity from the charge capacity. Further, charging / discharging was repeated 100 times under the same conditions, and the value obtained by dividing the discharge capacity obtained at the time of the 100th charging / discharging by the initial capacity was defined as the capacity retention rate.
  • the coin cell having the above configuration was charged at a rate of 70 mA / g with respect to the weight of the active material, and was doped until it reached 1 mV with respect to the lithium potential. Further, a constant voltage of 1 mV was applied to the lithium potential for 8 hours. Then, the electric discharge was performed at a rate of 70 mA / g with respect to the weight of the active material until it reached 2.5 V with respect to the lithium potential. After repeating this charge / discharge cycle 5 times, the coin cell was disassembled in a glove box under an argon atmosphere to take out the negative electrode, and the taken out negative electrode was washed with diethyl carbonate and then dried.
  • the negative electrode thickness (D) after drying was measured, and the ratio to the negative electrode thickness (C) measured before charging / discharging [percentage of "thickness (D) / thickness (C)"] was determined and used as the electrode expansion rate.
  • the negative electrode thickness (C) and the negative electrode thickness (D) are the negative electrode thicknesses obtained by measuring the total thickness of the mixture layer and the aluminum foil at several points and subtracting the aluminum foil thickness from each total thickness. It is an average value.
  • Table 2 shows the results obtained by the above measurements.
  • the examples showed lower impedance than the comparative examples, and had a high capacity retention rate after being charged and discharged 100 times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention pertains to an additive for a positive electrode of an electrochemical device including a porous carbon material which has a specific surface area of 2500-3300 m2/g, as measured by the BET method, and in which the minimum value for pore radius frequency distribution, represented by formula 1 below, is 1 or more when the pore radius is measured as being in the range of 0.5-2.5 nm by a water-vapor adsorption method. Formula 1: Pore radius frequency distribution=ΔV/ΔLog r (In formula 1, "V" represents pore volume (cc/g) and "r" represents pore radius (Å).)

Description

電気化学素子用正極添加剤、電気化学素子正極用組成物、電気化学素子用正極およびこれを含む電気化学素子Positive electrode additive for electrochemical element, composition for positive electrode of electrochemical element, positive electrode for electrochemical element and electrochemical element containing the same
 本特許出願は日本国特許出願第2020-137301号(出願日:2020年8月17日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、多孔質炭素材料からなる電気化学素子正極用添加剤およびそれを含む電気化学素子正極用組成物に関する。また、本発明は前記電気化学素子正極用組成物を用いて作製された正極を有する電気化学素子に関する。
This patent application claims priority under the Paris Convention for Japanese Patent Application No. 2020-137301 (filed on August 17, 2020), which is hereby referred to in its entirety. It shall be incorporated into the book.
The present invention relates to an additive for an electrochemical element positive electrode made of a porous carbon material and a composition for an electrochemical element positive electrode containing the additive. The present invention also relates to an electrochemical device having a positive electrode manufactured by using the composition for a positive electrode of an electrochemical device.
 小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能なリチウムイオン二次電池などの電気化学素子は、その特性を活かして急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから携帯電話やノート型パーソナルコンピュータ、電気自動車などの分野で利用されている。これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。 The demand for electrochemical elements such as lithium-ion secondary batteries, which are small and lightweight, have high energy density, and can be repeatedly charged and discharged, is rapidly expanding by taking advantage of their characteristics. Lithium-ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density. With the expansion and development of applications, these electrochemical devices are required to be further improved such as lower resistance, higher capacity, and improvement of mechanical properties and productivity.
 リチウムイオン二次電池などの電気化学素子は、高容量化を目的として開発が進められており、特に正極材料は、電池の容量(小型化)に大きく影響するため、その高容量化、高性能化が急がれている。例えば、特許文献1では、低温での短時間出力特性に優れたリチウムイオン二次電池用正極が検討されている。また、特許文献2では、マンガン系正極活物質を用いたリチウムイオン二次電池において、マンガンイオンを活性炭に吸着トラップさせたリチウム二次電池が検討されている。 Electrochemical elements such as lithium-ion secondary batteries are being developed for the purpose of increasing the capacity, and in particular, the positive electrode material has a great influence on the capacity (miniaturization) of the battery, so the capacity and high performance are increased. There is an urgent need to change. For example, in Patent Document 1, a positive electrode for a lithium ion secondary battery, which is excellent in short-time output characteristics at a low temperature, is studied. Further, in Patent Document 2, in a lithium ion secondary battery using a manganese-based positive electrode active material, a lithium secondary battery in which manganese ions are adsorbed and trapped in activated carbon is studied.
 また、特許文献3および4では、電池内の水分を水分吸着剤を用いて除去することで、電池容量の減少を低減することができるリチウムイオン二次電池が検討されている。 Further, in Patent Documents 3 and 4, a lithium ion secondary battery capable of reducing a decrease in battery capacity by removing water in the battery with a water adsorbent is studied.
特許第4964404号公報Japanese Patent No. 4964404 特開2012-059690号公報Japanese Unexamined Patent Publication No. 2012-059690 特開2001-126766号公報Japanese Unexamined Patent Publication No. 2001-126766 特開2014-26819号公報Japanese Unexamined Patent Publication No. 2014-26819
 一方、上記の高容量、高出力特性に加えて、リチウムイオン二次電池ではサイクル耐久性が求められる需要も顕在している。例えば、車載用リチウムイオン二次電池は大型で且つ高価であることから使用途中での交換が困難であるため、少なくとも自動車と同じ耐久性が必要であり、充放電を繰り返しても放電容量が落ちにくい、高いサイクル耐久性が求められている。 On the other hand, in addition to the above-mentioned high capacity and high output characteristics, there is also a growing demand for cycle durability in lithium-ion secondary batteries. For example, an in-vehicle lithium-ion secondary battery is large and expensive, so it is difficult to replace it during use. Therefore, it must have at least the same durability as an automobile, and the discharge capacity drops even after repeated charging and discharging. Difficult, high cycle durability is required.
 上記課題に鑑み本発明の目的は、正極の導電性を改善し、電極抵抗を低下させ、かつ繰り返し充放電を行った際の放電容量低下を抑制できる電気化学素子正極用添加剤およびそれを含む電気化学素子正極用組成物を提供することである。 In view of the above problems, an object of the present invention includes an additive for an electrochemical element positive electrode capable of improving the conductivity of the positive electrode, reducing the electrode resistance, and suppressing the decrease in the discharge capacity when repeatedly charging and discharging. The present invention provides a composition for a positive electrode of an electrochemical element.
 本発明のさらに他の目的としては、前記組成物を用いて作製された正極を有する、電池特性に優れた電気化学素子を提供することである。 Still another object of the present invention is to provide an electrochemical device having a positive electrode produced by using the above composition and having excellent battery characteristics.
 本発明者らが鋭意検討した結果、特定の多孔質炭素材料からなる電気化学素子正極用添加剤によって、上記課題を解決できることを見出し、本発明に至った。
 すなわち、本発明は、以下の態様を包含する。
As a result of diligent studies by the present inventors, it has been found that the above-mentioned problems can be solved by an additive for a positive electrode of an electrochemical element made of a specific porous carbon material, and the present invention has been reached.
That is, the present invention includes the following aspects.
[1] BET法による比表面積が2500~3300m/gであり、水蒸気吸着法によって細孔半径が0.5~2.5nmの範囲で測定した際の下記式(1)で表される細孔半径頻度分布の最小値が1以上である多孔質炭素材料を含む電気化学素子正極用添加剤。
 細孔半径頻度分布=ΔV/ΔLog r (1)
(式(1)中、Vは細孔容積(cc/g)、rは細孔半径(Å)である。)
[2] [1]に記載の電気化学素子正極用添加剤であって、前記多孔質炭素材料の灰分が0.5重量%以下である、電気化学素子正極用添加剤。
[3] [1]または[2]に記載の電気化学素子正極用添加剤であって、前記多孔質炭素材料の平均粒径が2μm~20μmである、電気化学素子正極用添加剤。
[4] [1]~[3]のいずれかに記載の電気化学素子正極用添加剤、および正極活物質を含む電気化学素子正極用組成物であって、前記電気化学素子正極用添加剤の含有量は、前記正極活物質の全体重量に対して10重量%以下である、電気化学素子正極用組成物。
[5] [4]に記載の電気化学素子正極用組成物であって、さらにバインダーを電気化学素子正極用組成物の固形分全体重量に対して0.5~10重量%含む、電気化学素子正極用組成物。
[6] [4]又は[5]に記載の電気化学素子正極用組成物であって、さらに導電材を電気化学素子正極用組成物の固形分全体重量に対して1~10重量%含む、電気化学素子正極用組成物。
[7] [4]~[6]のいずれかに記載の電気化学素子正極用組成物を用いて作製された正極を有する電気化学素子。
[8] 2V~5Vで作動することを特徴とする、[7]に記載の電気化学素子。
[9] [4]~[6]のいずれかに記載の電気化学素子正極用組成物を用いて作製された正極を有するリチウムイオン二次電池。
[1] The specific surface area by the BET method is 2500 to 3300 m 2 / g, and the fineness represented by the following formula (1) when measured in the range of the pore radius of 0.5 to 2.5 nm by the steam adsorption method. An additive for the positive electrode of an electrochemical element containing a porous carbon material having a minimum pore radius frequency distribution of 1 or more.
Pore radius frequency distribution = ΔV / ΔLog r (1)
(In formula (1), V is the pore volume (cc / g) and r is the pore radius (Å).)
[2] The additive for the positive electrode of an electrochemical element according to [1], wherein the ash content of the porous carbon material is 0.5% by weight or less.
[3] The additive for an electrochemical element positive electrode according to [1] or [2], wherein the porous carbon material has an average particle size of 2 μm to 20 μm.
[4] The composition for an electrochemical element positive electrode containing the electrochemical element positive electrode additive according to any one of [1] to [3] and the positive electrode active material, and the electrochemical element positive electrode additive. The composition for an electrochemical element positive electrode having a content of 10% by weight or less based on the total weight of the positive electrode active material.
[5] The electrochemical element for the positive electrode of the electrochemical element according to [4], further comprising a binder in an amount of 0.5 to 10% by weight based on the total solid content of the composition for the positive electrode of the electrochemical element. Composition for positive electrode.
[6] The composition for an electrochemical element positive electrode according to [4] or [5], further comprising a conductive material in an amount of 1 to 10% by weight based on the total solid content of the composition for an electrochemical element positive electrode. Composition for positive electrode of electrochemical element.
[7] An electrochemical device having a positive electrode produced by using the composition for a positive electrode of an electrochemical device according to any one of [4] to [6].
[8] The electrochemical device according to [7], which operates at 2V to 5V.
[9] A lithium ion secondary battery having a positive electrode produced by using the composition for an electrochemical element positive electrode according to any one of [4] to [6].
 本発明によれば、正極の導電性を改善することで電極抵抗を低下させ、かつ繰り返し充放電を行った際の放電容量低下を抑制できる電気化学素子正極用添加剤およびそれを含む電気化学素子正極用組成物を提供することができる。また、前記組成物を用いて作製された正極を有する、電池特性に優れた電気化学素子を提供することができる。 According to the present invention, an electrochemical element positive electrode additive and an electrochemical element containing the same can reduce the electrode resistance by improving the conductivity of the positive electrode and suppress the decrease in the discharge capacity when repeatedly charging and discharging. A composition for a positive electrode can be provided. Further, it is possible to provide an electrochemical device having a positive electrode manufactured by using the above composition and having excellent battery characteristics.
 以下、本発明の一実施形態を詳細に説明する。ただし、これは例示として提示されるものであり、これによって本発明は制限されず、本発明は特許請求の範囲により定義される。 Hereinafter, an embodiment of the present invention will be described in detail. However, this is presented as an example, which does not limit the invention and the invention is defined by the claims.
[電気化学素子正極用添加剤]
 本発明の電気化学素子正極用添加剤は、BET法による比表面積が2500~3300m/gであり、水蒸気吸着法によって細孔半径が0.5~2.5nmの範囲で測定した際の前記式(1)で表される細孔半径頻度分布の最小値が1以上である多孔質炭素材料を含むものである。このような特定の細孔を有する多孔質炭素材料を電気化学素子正極用添加剤として適用することにより、電極抵抗が低下し、かつ繰り返し充放電させることによる電池容量の低下を有効に抑制できる。
[Additives for positive electrodes of electrochemical devices]
The additive for the positive electrode of the electrochemical element of the present invention has a specific surface area of 2500 to 3300 m 2 / g by the BET method, and the pore radius is measured in the range of 0.5 to 2.5 nm by the steam adsorption method. It contains a porous carbon material having a minimum value of the pore radius frequency distribution represented by the formula (1) of 1 or more. By applying such a porous carbon material having specific pores as an additive for the positive electrode of an electrochemical element, it is possible to effectively suppress a decrease in electrode resistance and a decrease in battery capacity due to repeated charging and discharging.
(多孔質炭素材料)
 本発明に用いられる多孔質炭素材料は、BET法による比表面積が2500~3300m/gである。比表面積が上記下限より小さい場合、電解液中の電解質を十分保持できず、抵抗が十分に低下しない。この観点から、比表面積の下限は2500m/g以上であることが必要であり、2550m/g以上が好ましく、2600m/g以上がより好ましい。一方、比表面積が上記上限より大きい場合、機械強度が低下し、電池内で粉化したり、充放電中に電極内から遊離し、短絡する等電池性能の低下起因となる。この観点から、比表面積の上限は3300m/g以下であることが必要であり、3200m/g以下が好ましく、3100m/g以下がより好ましく、3000m/g以下がより好ましい。比表面積は、例えば後述する多孔質炭素材料の製造方法における、多孔質炭素材料の原料の種類;賦活条件(雰囲気、温度、時間等)等を適宜調整することによって、前記下限以上および前記上限以下に調整することができる。
(Porous carbon material)
The porous carbon material used in the present invention has a specific surface area of 2500 to 3300 m 2 / g according to the BET method. When the specific surface area is smaller than the above lower limit, the electrolyte in the electrolytic solution cannot be sufficiently retained, and the resistance does not decrease sufficiently. From this viewpoint, the lower limit of the specific surface area needs to be 2500 m 2 / g or more, preferably 2550 m 2 / g or more, and more preferably 2600 m 2 / g or more. On the other hand, if the specific surface area is larger than the above upper limit, the mechanical strength is lowered, which causes deterioration of battery performance such as powdering in the battery, release from the electrode during charging / discharging, and short circuit. From this viewpoint, the upper limit of the specific surface area needs to be 3300 m 2 / g or less, preferably 3200 m 2 / g or less, more preferably 3100 m 2 / g or less, and more preferably 3000 m 2 / g or less. The specific surface area is, for example, the lower limit or higher and the upper limit or lower by appropriately adjusting the type of the raw material of the porous carbon material; the activation conditions (atmosphere, temperature, time, etc.) in the method for producing the porous carbon material described later. Can be adjusted to.
 本発明に用いられる多孔質炭素材料は、水蒸気吸着法により細孔半径が0.5~2.5nmの範囲で測定した際の下記式(1)で表される細孔半径頻度分布の最小値が1以上である。
 細孔半径頻度分布=ΔV/ΔLog r (1) 
 ここで、rは細孔半径(Å)、Vは細孔容積(cc/g)を表し、式(1)は、横軸にrの対数を、縦軸に累積細孔容積をとったグラフにおける傾きを表す。つまり、式(1)で表される細孔半径頻度分布の数値が高いほど当該範囲の細孔分布が狭いことを意味する。そして、細孔半径が0.5~2.5nmの細孔分布が狭いことによって、電池を繰り返し充放電を行った際の電極の膨張および/または収縮を抑えることができ、電極の膨張および/または収縮によって起きる放電容量低下を抑制できる。この理由は下記に限定されるものではないが、以下のように考えられる。
 細孔半径が0.5~2.5nmの範囲の細孔分布が狭いことによって、Liイオンを吸着した際に、Liイオンの拡散を抑制することなく、再び放出することができる。また、当該範囲の細孔は重金属イオンのサイズに相当しているため、電解液中に溶出した重金属イオンに起因するシャトル反応を、細孔内に重金属を吸着および保持することで抑制することができる。これらの結果、電池を繰り返し充放電した際の電極の膨張および/または収縮を抑えることができ、電極の膨張および/または収縮によって起きる放電容量低下、および金属イオンに由来する電極劣化を抑制できる。これらの理由から、上記式(1)で表される細孔半径頻度分布の最小値は1以上である必要があり、好ましくは1.3以上、より好ましくは1.8以上である。また、細孔半径頻度分布の最小値の上限は特に限定されるものではないが、通常5以下である。
 このような細孔分布を有する炭素材料は、適切な原料に合わせた賦活条件を整えることによって調整することができる。
The porous carbon material used in the present invention has the minimum value of the pore radius frequency distribution represented by the following formula (1) when the pore radius is measured in the range of 0.5 to 2.5 nm by the steam adsorption method. Is 1 or more.
Pore radius frequency distribution = ΔV / ΔLog r (1)
Here, r represents the pore radius (Å), V represents the pore volume (cc / g), and the formula (1) is a graph in which the logarithm of r is taken on the horizontal axis and the cumulative pore volume is taken on the vertical axis. Represents the inclination in. That is, the higher the numerical value of the pore radius frequency distribution represented by the equation (1), the narrower the pore distribution in the range. Since the pore distribution having a pore radius of 0.5 to 2.5 nm is narrow, the expansion and / or contraction of the electrode when the battery is repeatedly charged and discharged can be suppressed, and the expansion and / or expansion of the electrode can be suppressed. Alternatively, the decrease in discharge capacity caused by shrinkage can be suppressed. The reason for this is not limited to the following, but can be considered as follows.
Due to the narrow pore distribution in the pore radius range of 0.5 to 2.5 nm, when Li ions are adsorbed, they can be released again without suppressing the diffusion of Li ions. Further, since the pores in this range correspond to the size of heavy metal ions, the shuttle reaction caused by the heavy metal ions eluted in the electrolytic solution can be suppressed by adsorbing and retaining the heavy metals in the pores. can. As a result, it is possible to suppress the expansion and / or contraction of the electrode when the battery is repeatedly charged and discharged, and it is possible to suppress the decrease in discharge capacity caused by the expansion and / or contraction of the electrode and the deterioration of the electrode due to metal ions. For these reasons, the minimum value of the pore radius frequency distribution represented by the above formula (1) needs to be 1 or more, preferably 1.3 or more, and more preferably 1.8 or more. Further, the upper limit of the minimum value of the pore radius frequency distribution is not particularly limited, but is usually 5 or less.
The carbon material having such a pore distribution can be adjusted by adjusting the activation conditions according to the appropriate raw material.
 また、本発明に用いられる多孔質炭素材料は、細孔半径が0.5~2.5nmの範囲の細孔容積が大きいことによって、電解質を正極活物質近傍に維持しつつ、正極から溶出する金属を炭素材料表面に固定化することができる。この観点から、細孔半径が0.5~2.5nmの範囲の細孔容積は0.6cm/g以上が好ましく、1.1cm/g以上がより好ましい。細孔半径が0.5~2.5nmの範囲の細孔容積の上限値は特に限定されるものではないが、通常4.0cm/g以下である。細孔半径が0.5~2.5nmの範囲の細孔容積は、例えば後述する多孔質炭素材料の製造方法における、多孔質炭素材料の原料の種類;賦活条件(雰囲気、温度、時間等)等を適宜調整することによって、前記下限以上に調整することができる。細孔半径が0.5~2.5nmの範囲の細孔容積は、例えば窒素吸着測定によるDFT法による細孔分布解析によって測定することができる。 Further, the porous carbon material used in the present invention has a large pore volume in the range of 0.5 to 2.5 nm, so that the electrolyte elutes from the positive electrode while maintaining the electrolyte in the vicinity of the positive electrode active material. The metal can be immobilized on the surface of the carbon material. From this viewpoint, the pore volume in the range of the pore radius of 0.5 to 2.5 nm is preferably 0.6 cm 3 / g or more, and more preferably 1.1 cm 3 / g or more. The upper limit of the pore volume in the range of the pore radius of 0.5 to 2.5 nm is not particularly limited, but is usually 4.0 cm 3 / g or less. The pore volume in the range of the pore radius of 0.5 to 2.5 nm is, for example, the type of the raw material of the porous carbon material in the method for producing the porous carbon material described later; activation conditions (atmosphere, temperature, time, etc.). Etc. can be adjusted to be equal to or higher than the lower limit. The pore volume having a pore radius in the range of 0.5 to 2.5 nm can be measured, for example, by pore distribution analysis by the DFT method by nitrogen adsorption measurement.
 本発明に用いられる多孔質炭素材料の灰分に含まれる重金属化合物は、正極内で拡散、放電時に析出する可能性があるため含有量は少ないほど好ましい。この観点から、灰分は0.5重量%以下であることが好ましく、0.48重量%以下であることがより好ましく、0.46重量%以下であることがさらに好ましく、0.43重量%以下がよりさらに好ましく、0.38重量%以下が特に好ましい。灰分の下限値は特に限定されず、0重量%以上であればよい。灰分は、強熱残分を測定することによって求めることができ、例えば後述の実施例に記載の方法によって求めることができる。多孔質炭素材料に含まれうる灰分としては、ニッケル、鉄、カルシウム、マグネシウム、アルミニウムなどが挙げられる。特に、ニッケルは100ppm以下であることが好ましく、より好ましくは80ppm以下である。また、鉄は、100ppm以下であることが好ましく、より好ましくは50ppm以下である。上記灰分は例えばIPC発光分光分析法等によっても求めることができる。灰分は、例えば後述する多孔質炭素材料の製造方法における、多孔質炭素材料の原料の種類;洗浄条件(酸の種類、濃度、時間、回数等)等を適宜調整することによって前記範囲に調整することができる。 The heavy metal compound contained in the ash of the porous carbon material used in the present invention may diffuse in the positive electrode and precipitate during discharge, so a smaller content is preferable. From this viewpoint, the ash content is preferably 0.5% by weight or less, more preferably 0.48% by weight or less, further preferably 0.46% by weight or less, and 0.43% by weight or less. Is even more preferable, and 0.38% by weight or less is particularly preferable. The lower limit of the ash content is not particularly limited and may be 0% by weight or more. The ash content can be determined by measuring the ignition residue, for example, by the method described in Examples described later. Examples of the ash content that can be contained in the porous carbon material include nickel, iron, calcium, magnesium, and aluminum. In particular, nickel is preferably 100 ppm or less, more preferably 80 ppm or less. Further, iron is preferably 100 ppm or less, more preferably 50 ppm or less. The ash content can also be determined by, for example, IPC emission spectroscopic analysis. The ash content is adjusted to the above range by appropriately adjusting the type of the raw material of the porous carbon material; the cleaning conditions (type of acid, concentration, time, number of times, etc.) in the method for producing the porous carbon material described later, for example. be able to.
 本発明に用いられる多孔質炭素材料中の酸素含量が少ない場合、電極スラリー調整時に、活物質との分散性差が生まれることで炭素材料が凝集しやすくなり、安定したスラリーが得られにくくなる。この観点から、多孔質炭素材料中の酸素含量は0.5重量%以上が好ましく、0.6重量%以上がより好ましく、0.7重量%以上がさらに好ましい。また、多孔質炭素材料中の酸素は、電池を充放電した時に電解液の分解起点になるため、酸素含量が少ない方が好ましい。この観点から、多孔質炭素材料中の酸素含量は3.0重量%以下であることが好ましく、2.8重量%以下であることがより好ましく、2.6重量%以下であることがさらに好ましい。多孔質炭素材料中の酸素含量は、例えば後述する多孔質炭素材料の製造方法における多孔質炭素材料の原料の種類;賦活条件(雰囲気、温度、時間等)等を適宜調整することによって、前記下限以上および前記上限以下に調整することができる。酸素含量は、例えば元素分析、蛍光X線分析等によって求めることができる。 When the oxygen content in the porous carbon material used in the present invention is low, the carbon material tends to aggregate due to a difference in dispersibility with the active material when adjusting the electrode slurry, and it becomes difficult to obtain a stable slurry. From this viewpoint, the oxygen content in the porous carbon material is preferably 0.5% by weight or more, more preferably 0.6% by weight or more, still more preferably 0.7% by weight or more. Further, since oxygen in the porous carbon material becomes the starting point of decomposition of the electrolytic solution when the battery is charged and discharged, it is preferable that the oxygen content is low. From this viewpoint, the oxygen content in the porous carbon material is preferably 3.0% by weight or less, more preferably 2.8% by weight or less, and further preferably 2.6% by weight or less. .. The oxygen content in the porous carbon material is, for example, the lower limit thereof by appropriately adjusting the type of the raw material of the porous carbon material in the method for producing the porous carbon material described later; the activation conditions (atmosphere, temperature, time, etc.). The above and the above upper limit can be adjusted. The oxygen content can be determined by, for example, elemental analysis, fluorescent X-ray analysis, or the like.
 本発明に用いられる多孔質炭素材料は、レーザー散乱法で求められる平均粒径が2μm~20μmであることが好ましく、2.3μm~18μmであることがより好ましく、2.5μm~14μmであることがさらに好ましい。上記範囲にあると良好な塗工性が得られるため好ましい。大きすぎる粒子は、正極内での導電性を阻害することがあるため好ましくないことがあり、小さすぎる粒径は、経済的に好ましくないだけでなく、微粉を含むため、バインダー等で抑えきれないことがあり、電極内から遊離しやすく、短絡等電池性能の低下起因となりえるため好ましくないことがある。平均粒径は例えば後述する多孔質炭素材料の製造方法における多孔質炭素材料の原料の種類;粉砕工程および/または分級工程の条件等を適宜調整することによって、前記下限以上および前記上限以下に調整することができる。 The porous carbon material used in the present invention preferably has an average particle size of 2 μm to 20 μm, more preferably 2.3 μm to 18 μm, and 2.5 μm to 14 μm, which is determined by the laser scattering method. Is even more preferable. If it is within the above range, good coatability can be obtained, which is preferable. Particles that are too large may be unfavorable because they may hinder conductivity in the positive electrode, and particles that are too small are not only economically unfavorable, but also contain fine powder and cannot be suppressed by a binder or the like. It may be unfavorable because it may easily be released from the inside of the electrode and may cause deterioration of battery performance such as a short circuit. The average particle size is adjusted to the lower limit or higher and the upper limit or lower by appropriately adjusting the conditions of the raw material of the porous carbon material in the method for producing the porous carbon material described later; can do.
(多孔質炭素材料の製造方法)
 本発明で使用する多孔質炭素材料の原料(以下、単に原料と記載することもある)としては、椰子殻、パーム椰子、果実の種、鋸屑、ユーカリ、松などの植物系、石炭系、石油系のコークスおよびそれらを炭化したピッチの炭化物、フェノール樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂などをあげることができる。なお、原料の形状、サイズは特に限定されないが、1mm~10mm程度の破砕状、顆粒状、もしくは円柱状のものが一般的であるが、粒状、粉末状のものも使用することができる。また、タール、ピッチ、フェノール樹脂などにバインダーを加えて成型した後、炭化したものを原料として使用することもできる。それらの成型体の形状は、粒状、粉末状、ハニカム状または繊維状など任意の形状とすることができる。
(Manufacturing method of porous carbon material)
The raw materials for the porous carbon material used in the present invention (hereinafter, may be simply referred to as raw materials) include coconut shells, palm coconuts, fruit seeds, sawdust, eucalyptus, pine and other plant-based materials, coal-based materials, and petroleum. Examples thereof include coke-based coke and carbonized products having a carbonized pitch, phenol resin, vinyl chloride resin, vinylidene chloride resin and the like. The shape and size of the raw material are not particularly limited, but crushed, granular, or columnar materials having a size of about 1 mm to 10 mm are generally used, but granular or powdered materials can also be used. Further, it is also possible to use a carbonized material as a raw material after molding by adding a binder to tar, pitch, phenol resin or the like. The shape of these molded bodies can be any shape such as granular, powdery, honeycomb or fibrous.
 これらの原料は、不活性ガス中600℃で加熱炭化したときに含まれるナトリウム、カリウム、カルシウムなどのアルカリ金属類およびアルカリ土類金属類の合計の含有率が0.5重量%以下である炭化物を使用するのが好ましい。ここでいう不活性ガスとは、窒素、アルゴン、ヘリウムなどのガスをいう。原料中のアルカリ金属類およびアルカリ金属類の合計の含有率は、上記した不活性ガス中600℃で加熱炭化した原料をマッフル炉中850℃で加熱灰化し、蛍光X線法によって求めることができる。また、上記原料は、アルカリ金属類およびアルカリ土類金属類の合計の含有率が0.01質量%以上であることが好ましい。それにより、1回目の賦活において、細孔を適度に有するものとしやすい。 These raw materials are carbides in which the total content of alkali metals such as sodium, potassium and calcium and alkaline earth metals contained when heated and carbonized at 600 ° C. in an inert gas is 0.5% by weight or less. It is preferable to use. The inert gas here means a gas such as nitrogen, argon, and helium. The total content of alkali metals and alkali metals in the raw materials can be determined by the fluorescent X-ray method after heating and ashing the raw materials heated and carbonized at 600 ° C. in the above-mentioned inert gas at 850 ° C. in a muffle furnace. .. Further, the raw material preferably has a total content of alkali metals and alkaline earth metals of 0.01% by mass or more. As a result, it is easy to appropriately have pores in the first activation.
 本発明において、好ましくは上記のような原料を賦活して多孔質炭素材料とするが、原料から多孔質炭素材料を得るためには、好ましくは前記したアルカリ金属類の少ない炭化物を、炭酸ガスを主成分とし、水蒸気が2容量%以下、かつ一酸化炭素ガスが2容量%以上の雰囲気下において、600~1200℃の温度で一次賦活する。なお、ここで炭酸ガスが主成分であるとは、賦活能力を有するガスのうち、炭酸ガスが主成分となるという意味であり、窒素、アルゴンなどの不活性ガスで炭酸ガスを希釈することは差し支えない。例えば、不活性ガスが賦活時の雰囲気の50容量%以上を占めていてもよい。なお、賦活しやすい点から、賦活時の雰囲気中、賦活能力を有するガスが、合計で好ましくは20容量%以上、より好ましくは30容量%以上、さらに好ましくは40容量%以上含まれる。一次賦活の賦活時間については特に限定されるものではないが、3mm以上の粒径の原料を使用する場合、あまり短時間で行うと細孔の均一性が損なわれるため、少なくとも1時間以上、より好ましくは1.5時間以上賦活を行うのが好ましく、粒径の如何を問わず1.5時間以上賦活を行うのが好ましい。通常、50時間程度までで実施される。なお、賦活温度は、好適には800℃~1100℃である。 In the present invention, the above-mentioned raw material is preferably activated to obtain a porous carbon material, but in order to obtain the porous carbon material from the raw material, preferably, the above-mentioned carbide having a small amount of alkali metals is used as carbon dioxide gas. It is primarily activated at a temperature of 600 to 1200 ° C. in an atmosphere containing 2% by volume or less of water vapor and 2% by volume or more of carbon monoxide gas as the main component. Here, the fact that the carbon dioxide gas is the main component means that the carbon dioxide gas is the main component among the gases having an activating ability, and it is not possible to dilute the carbon dioxide gas with an inert gas such as nitrogen or argon. There is no problem. For example, the inert gas may occupy 50% by volume or more of the atmosphere at the time of activation. From the viewpoint of easy activation, the total amount of gas having an activating ability is preferably 20% by volume or more, more preferably 30% by volume or more, still more preferably 40% by volume or more in the atmosphere at the time of activation. The activation time of the primary activation is not particularly limited, but when a raw material having a particle size of 3 mm or more is used, the uniformity of the pores is impaired if it is performed in a very short time, so that it is more than 1 hour or more. It is preferable to activate for 1.5 hours or more, and it is preferable to activate for 1.5 hours or more regardless of the particle size. Usually, it is carried out in about 50 hours. The activation temperature is preferably 800 ° C to 1100 ° C.
 本発明によれば、原料をこのような特殊な雰囲気下で一次賦活することによって、細孔径が揃い、比表面積が大きく、窒素などの小分子物質の吸着に優れた多孔質炭素材料を製造することができる。不活性ガス中600℃で加熱炭化したときの炭化物中に含まれるアルカリ金属類およびアルカリ土類金属類の合計含有率が0.5重量%以上の原料を使用する場合は、同様に炭酸ガスを主成分とし、水蒸気が2容量%以下でかつ一酸化炭素ガスを2容量%以上含む雰囲気中において600~1200℃の温度で賦活し、原料の賦活による減量が5~50%、好ましくは10~30%に達した時点で、酸および水で洗浄してアルカリ金属類およびアルカリ土類金属類の合計の含有率を0.5重量%以下とし、乾燥後もしくは水分を含んだまま賦活炉に入れ、しかる後、再度炭酸ガスを主成分とし、水蒸気が2容量%以下でかつ一酸化炭素ガスを2容量%以上含む雰囲気中において600~1200℃の温度で一次賦活を行う。 According to the present invention, by primary activating the raw material in such a special atmosphere, a porous carbon material having a uniform pore size, a large specific surface area, and excellent adsorption of small molecule substances such as nitrogen can be produced. be able to. When using a raw material in which the total content of alkali metals and alkaline earth metals contained in the carbides when heated and carbonized at 600 ° C in an inert gas is 0.5% by weight or more, carbon dioxide gas is similarly used. It is activated at a temperature of 600 to 1200 ° C. in an atmosphere containing 2% by volume or less of water vapor and 2% by volume or more of carbon monoxide gas as the main component, and the weight loss due to activation of the raw material is 5 to 50%, preferably 10 to 10 to. When it reaches 30%, wash it with acid and water to reduce the total content of alkali metals and alkaline earth metals to 0.5% by weight or less, and put it in the activation furnace after drying or with water contained. After that, the primary activation is performed again at a temperature of 600 to 1200 ° C. in an atmosphere containing carbon dioxide gas as a main component, water vapor of 2% by volume or less, and carbon monoxide gas of 2% by volume or more.
 一次賦活後の原料炭素質材料を洗浄して、アルカリ金属類及び/又はアルカリ土類金属類の低減を行うことが好ましい。洗浄は、一次賦活後に得られた活性炭を、酸を含む洗浄液に浸漬することによって行うことができる。酸としては、塩酸、硫酸、硝酸、リン酸、フッ酸、炭酸などの無機系の酸、あるいは蟻酸、酢酸などの有機酸が好適である。一般的には水溶液で使用され、その濃度は通常1~30重量%で実施される。また、酸洗浄後に水洗もしくは温水洗により、原料中に残留する塩類や酸を除去することで更に洗浄効果を高めることができ、同時に、後の賦活工程に移行する場合に装置の腐食や廃ガス処理の点でも好適である。その場合の水量については特に限定されないが、原料炭素質材料に対して10~50重量倍で行うのが実用的である。なお、洗浄を行う雰囲気は特に限定されず、洗浄に使用する方法に応じて適宜選択してよい。本発明において洗浄は、通常、大気雰囲気中で実施する。 It is preferable to wash the raw material carbonaceous material after the primary activation to reduce alkali metals and / or alkaline earth metals. The washing can be performed by immersing the activated carbon obtained after the primary activation in a washing liquid containing an acid. As the acid, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid and carbonic acid, or organic acids such as formic acid and acetic acid are suitable. It is generally used in an aqueous solution, the concentration of which is usually 1 to 30% by weight. In addition, the cleaning effect can be further enhanced by removing salts and acids remaining in the raw material by washing with water or warm water after pickling, and at the same time, corrosion of the device and waste gas when shifting to the later activation process. It is also suitable in terms of processing. In that case, the amount of water is not particularly limited, but it is practical to carry out the process at 10 to 50 times the weight of the raw material carbonaceous material. The atmosphere for cleaning is not particularly limited, and may be appropriately selected depending on the method used for cleaning. In the present invention, cleaning is usually carried out in an air atmosphere.
 洗浄を終えた原料炭素質材料は、二次賦活を行う。乾燥した後に二次賦活するのが好ましいが、乾燥を省略し、直ちに賦活炉に投入して賦活することも可能である。なお、ここでの乾燥条件は、後述する多孔炭素質材料の乾燥と同様の条件とすればよい。本発明の二次賦活工程において、酸化性ガスとして炭酸ガスを使用し、一酸化炭素ガスを2容量%以上含み、水蒸気を2容量%以下とする雰囲気にすることが重要であるが、窒素、アルゴンなどの不活性ガスで炭酸ガスを希釈することは差し支えない。 The raw carbonaceous material that has been washed is secondarily activated. It is preferable to perform secondary activation after drying, but it is also possible to omit drying and immediately put it in an activation furnace for activation. The drying conditions here may be the same as those for drying the porous carbonaceous material described later. In the secondary activation step of the present invention, it is important to use carbon dioxide gas as the oxidizing gas, to have an atmosphere containing 2% by volume or more of carbon monoxide gas and 2% by volume or less of water vapor. It is permissible to dilute the carbon dioxide with an inert gas such as argon.
 二次賦活温度は、600~1200℃、好ましくは800~1100℃である。また、賦活時間が短すぎると粒子の内外で賦活斑を生じ細孔の均一性が損なわれるため、原料の粒径が1mm未満の場合、所定の温度に達した後30分以上、3mm以上では1時間以上賦活するのが好ましく、粒径の如何を問わず1.5~30時間賦活するのが好ましい。なお、最長賦活時間は、多孔質炭素材料の性能の面からは特に限定する必要はないが、工業的な面からは30時間以内で実施するのが好ましい。賦活炉は均一に反応が行われるものであればよく、種々の形式のものを使用することができる。通常は流動炉、多段炉、回転炉などが好適である。賦活方式はバッチ式、連続式の何れでもよい。また、一次賦活の条件と二次賦活の条件を同様のものとしてもよい。 The secondary activation temperature is 600 to 1200 ° C, preferably 800 to 1100 ° C. Further, if the activation time is too short, activation spots occur inside and outside the particles and the uniformity of the pores is impaired. Therefore, when the particle size of the raw material is less than 1 mm, it is 30 minutes or more after reaching a predetermined temperature and 3 mm or more. It is preferably activated for 1 hour or more, and preferably for 1.5 to 30 hours regardless of the particle size. The maximum activation time is not particularly limited from the viewpoint of the performance of the porous carbon material, but it is preferably carried out within 30 hours from the viewpoint of industry. The activation furnace may be of any type as long as the reaction is uniformly carried out, and various types can be used. Usually, a flow furnace, a multi-stage furnace, a rotary furnace and the like are suitable. The activation method may be either a batch method or a continuous method. Further, the conditions for the primary activation and the conditions for the secondary activation may be the same.
 二次賦活後にさらに洗浄をおこなってもよく、その場合、一次賦活後の洗浄と同様に行うことができる。 Further cleaning may be performed after the secondary activation, in which case the cleaning can be performed in the same manner as the cleaning after the primary activation.
 このようにして得られた多孔質炭素材料を次に粉砕することが好ましい。粉砕方法としては特に制限されないが、ボールミル、ロールミルもしくはジェットミル等の公知の粉砕方法、またはこれらの組み合わせを採用することができる。 It is preferable that the porous carbon material thus obtained is then pulverized. The pulverization method is not particularly limited, but a known pulverization method such as a ball mill, a roll mill or a jet mill, or a combination thereof can be adopted.
 本発明において、粉砕して得られた多孔質炭素材料を分級して使用してもよい。例えば、粒子径が1μm以下の粒子を除くことにより狭い粒度分布幅を有する多孔質炭素材料粒子を得ることが可能となる。このような微粒子除去により、電極構成時のバインダー量を少なくすることが可能となる。分級方法は、特に制限されないが、例えば篩を用いた分級、湿式分級、乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。経済性の観点から、乾式分級装置を用いることが好ましい。 In the present invention, the porous carbon material obtained by pulverization may be classified and used. For example, by excluding particles having a particle diameter of 1 μm or less, it becomes possible to obtain porous carbon material particles having a narrow particle size distribution width. By removing such fine particles, it is possible to reduce the amount of binder in the electrode configuration. The classification method is not particularly limited, and examples thereof include classification using a sieve, wet classification, and dry classification. Examples of the wet classifier include a classifier using principles such as gravity classification, inertial classification, hydraulic classification, and centrifugal classification. Examples of the dry classifier include classifiers that utilize principles such as sedimentation classification, mechanical classification, and centrifugal classification. From the viewpoint of economy, it is preferable to use a dry classifier.
 得られた多孔質炭素材料を乾燥してもよい。乾燥は、多孔質炭素材料に吸着している水分等を除去するための操作であり、例えば多孔質炭素材料を加熱することにより、多孔質炭素材料に吸着している水分等を除去することができる。加熱に加えて、または、加熱に代えて、例えば減圧、減圧加熱、凍結などの手段により乾燥を行い、多孔質炭素材料に吸着している水分等を除去することができる。 The obtained porous carbon material may be dried. Drying is an operation for removing the moisture or the like adsorbed on the porous carbon material. For example, by heating the porous carbon material, the moisture or the like adsorbed on the porous carbon material can be removed. can. In addition to or instead of heating, drying can be performed by means such as depressurization, decompression heating, and freezing to remove water and the like adsorbed on the porous carbon material.
 乾燥温度は、多孔質炭素材料に吸着している水分の除去の観点から、100~330℃であることが好ましく、110~300℃であることがより好ましく、120~250℃であることがさらに好ましい。 The drying temperature is preferably 100 to 330 ° C., more preferably 110 to 300 ° C., and further preferably 120 to 250 ° C. from the viewpoint of removing water adsorbed on the porous carbon material. preferable.
 乾燥時間は、採用する乾燥温度にもよるが、多孔質炭素材料に吸着している水分の除去の観点から、好ましくは0.1時間以上、より好ましくは0.5時間以上、さらに好ましくは1時間以上である。また、経済性の観点から、好ましくは24時間以下、より好ましくは12時間以下、さらに好ましくは6時間以下である。 The drying time depends on the drying temperature to be adopted, but from the viewpoint of removing the water adsorbed on the porous carbon material, it is preferably 0.1 hours or more, more preferably 0.5 hours or more, still more preferably 1. It's more than an hour. Further, from the viewpoint of economic efficiency, it is preferably 24 hours or less, more preferably 12 hours or less, still more preferably 6 hours or less.
 乾燥を、常圧または減圧雰囲気下で行うことが可能である。乾燥を常圧で行う場合、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下または露点-20℃以下の空気雰囲気下で行うことが好ましい。 Drying can be performed under normal pressure or reduced pressure atmosphere. When the drying is carried out at normal pressure, it is preferably carried out in an atmosphere of an inert gas such as nitrogen gas or argon gas or in an air atmosphere having a dew point of −20 ° C. or lower.
 上述のようにして得られた多孔質炭素材料は、本発明の電気化学素子正極用添加剤として好ましく用いることができる。 The porous carbon material obtained as described above can be preferably used as an additive for the positive electrode of an electrochemical device of the present invention.
[電気化学素子正極用組成物]
 本発明の電気化学素子正極用組成物は、上述した電気化学素子正極用添加剤および正極活物質を含む。また、本発明の電気化学素子正極用組成物は、任意で上記以外のその他の成分を含有してもよい。
[Composition for positive electrode of electrochemical device]
The composition for a positive electrode of an electrochemical element of the present invention contains the above-mentioned additive for a positive electrode of an electrochemical element and a positive electrode active material. Further, the composition for a positive electrode of an electrochemical device of the present invention may optionally contain other components other than the above.
 電気化学素子正極用添加剤の含有量は、正極活物質の全体重量に対して10重量%以下であることが好ましく、8重量%以下がより好ましく、6重量%以下がさらに好ましい。これは、電気化学素子正極用添加剤の含有量が多いと、相対的に正極活物質の重量が低減することで容量が低下することがあるためである。また、電気化学素子正極用添加剤の含有量が少ないと本発明の目的である電極抵抗低下、および繰り返し充放電時の電極膨張抑制の効果が不十分となることがあるため、0.5重量%以上が好ましく、1重量%以上がより好ましい。 The content of the additive for the positive electrode of the electrochemical element is preferably 10% by weight or less, more preferably 8% by weight or less, still more preferably 6% by weight or less, based on the total weight of the positive electrode active material. This is because if the content of the additive for the positive electrode of the electrochemical device is large, the weight of the positive electrode active material is relatively reduced, so that the capacity may be reduced. Further, if the content of the additive for the positive electrode of the electrochemical element is small, the effect of reducing the electrode resistance, which is the object of the present invention, and suppressing the electrode expansion during repeated charging and discharging may be insufficient, so that the weight is 0.5. % Or more is preferable, and 1% by weight or more is more preferable.
 また、電気化学素子正極用添加剤と後述する正極活物質との混合比率は、重量比で1:99~10:90であってもよい。電気化学素子正極用添加剤と正極活物質の混合比率がこの範囲に含まれる場合、出力特性および容量特性の双方が優れたものが得られる。 Further, the mixing ratio of the additive for the positive electrode of the electrochemical device and the positive electrode active material described later may be 1:99 to 10:90 in terms of weight ratio. When the mixing ratio of the electrochemical device positive electrode additive and the positive electrode active material is included in this range, excellent output characteristics and capacity characteristics can be obtained.
(正極活物質)
 電気化学素子正極用組成物に配合する正極活物質としては、特に限定されることなく、既知の正極活物質を用いることができる。例えば、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等の金属酸化物、硫黄、ニトロキシルラジカルを有する化合物やポリマー、オキシラジカルを有する化合物やポリマー、窒素ラジカルを有する化合物やポリマー、フルバレン骨格を有する化合物やポリマー等の有機ラジカルが挙げられる。
(Positive electrode active material)
The positive electrode active material to be blended in the composition for the positive electrode of the electrochemical element is not particularly limited, and a known positive electrode active material can be used. For example, lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co-Ni-Mn lithium-containing composite oxide, Ni-Mn-Al. Lithium-containing composite oxide, Ni-Co-Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type lithium manganese phosphate (LiMnPO 4 ), Li 1 + x Mn 2-x O 4 (0) Metals such as Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 and LiNi 0.5 Mn 1.5 O 4 represented by <X <2). Examples thereof include organic radicals such as oxides, sulfur, compounds and polymers having a nitroxyl radical, compounds and polymers having an oxyradic, compounds and polymers having a nitrogen radical, and compounds and polymers having a fluvalene skeleton.
 これらは1種単独で、または、2種以上を組み合わせて用いることができる。そして上述した中でも、二次電池の電池容量などを向上させる観点からは、正極活物質としてリチウム含有コバルト酸化物(LiCoO);リチウム含有ニッケル酸化物(LiNiO);Co-Ni-Mnのリチウム含有複合酸化物、例えば、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.1Mn0.1など;Ni-Co-Alのリチウム含有複合酸化物、例えばLiNi0.8Co0.1Al0.1、LiNi0.8Co0.15Al0.05などを用いることが好ましい。 These can be used alone or in combination of two or more. Among the above, from the viewpoint of improving the battery capacity of the secondary battery, lithium-containing cobalt oxide (LiCoO 2 ); lithium-containing nickel oxide (LiNiO 2 ); and Co-Ni-Mn lithium as the positive electrode active material. Containing composite oxides, such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 etc .; Lithium-containing composite oxides of Ni—Co—Al, such as LiNi 0.8 Co 0.1 Al 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc. can be used. preferable.
 なお、正極活物質の粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。通常、0.1μm~40μmの範囲、より好ましくは、0.5μm~20μmが使用される。 The particle size of the positive electrode active material is not particularly limited, and can be the same as that of the conventionally used positive electrode active material. Usually, the range of 0.1 μm to 40 μm, more preferably 0.5 μm to 20 μm is used.
 本発明の電気化学素子正極用組成物において、正極活物質の含有量は、組成物の固形分全体重量に対して好ましくは35~95重量%、より好ましくは40~90重量%であってもよい。 In the composition for a positive electrode of an electrochemical element of the present invention, the content of the positive electrode active material is preferably 35 to 95% by weight, more preferably 40 to 90% by weight, based on the total solid content of the composition. good.
(溶媒)
 本発明の電気化学素子正極用組成物は、溶媒を含有してもよい。溶媒としては、例えば、有機溶媒を用いることができ、中でも後述するバインダーを溶解可能な極性有機溶媒が好ましい。具体的には、有機溶媒としては、アセトニトリル、N-メチルピロリドン、アセチルピリジン、シクロペンタノン、N,N-ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミンなどを用いることができる。これらの中でも、取扱い易さ、安全性、合成の容易さなどの観点から、N-メチルピロリドン(NMP)が最も好ましい。なお、これらの有機溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。
(solvent)
The composition for a positive electrode of an electrochemical device of the present invention may contain a solvent. As the solvent, for example, an organic solvent can be used, and among them, a polar organic solvent capable of dissolving the binder described later is preferable. Specifically, as the organic solvent, acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, N, N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, ethylenediamine and the like can be used. can. Among these, N-methylpyrrolidone (NMP) is most preferable from the viewpoint of ease of handling, safety, and ease of synthesis. These organic solvents may be used alone or in combination of two or more.
 前記溶媒の使用量としては、電気化学素子正極用組成物中の固形分濃度が、好ましくは1~80重量%、より好ましくは5~70重量%、さらに好ましくは10~60重量%の範囲となる量である。固形分濃度を上記範囲とすることにより、正極活物質、電気化学素子正極用添加剤および含有するその他の成分を均一に分散させることができるため、好適である。 The amount of the solvent used is preferably in the range of 1 to 80% by weight, more preferably 5 to 70% by weight, still more preferably 10 to 60% by weight, in the composition for the positive electrode of the electrochemical element. Is the amount. By setting the solid content concentration in the above range, the positive electrode active material, the additive for the electrochemical element positive electrode, and other components contained therein can be uniformly dispersed, which is preferable.
(バインダー)
 本発明の電気化学素子正極用組成物は、正極活物質粒子を互いに良好に付着させ、また正極活物質を電流集電体に良好に付着させるためのバインダーを含有することが好ましい。バインダーの例としては、例えばポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、ポリ塩化ビニル、カルボキシル化されたポリ塩化ビニル、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、スチレン-ブタジエンラバー、アクリレイテッドスチレン-ブタジエンラバー、エポキシ樹脂、ナイロンなどを使用してもよいが、これらに限定されない。これらは単独で使用しても、2種以上を混合して使用しても構わない。
 本発明の電気化学素子正極用組成物において、上記バインダーの含有量は、電気化学素子正極用組成物中の固形分全体重量に対して0.5~10重量%であることが好ましく、1~7重量%であることがより好ましい。バインダーの含有量が上記範囲内であると、電気抵抗の上昇を抑えつつ、充放電時の活物質の膨張収縮による電極の破断を抑制しやすい。
(binder)
The composition for a positive electrode of an electrochemical element of the present invention preferably contains a binder for satisfactorily adhering positive electrode active material particles to each other and satisfactorily adhering positive electrode active material to a current current collector. Examples of binders include, for example, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene. , Polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, realized styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but the present invention is not limited thereto. These may be used alone or in combination of two or more.
In the composition for the positive electrode of the electrochemical element of the present invention, the content of the binder is preferably 0.5 to 10% by weight with respect to the total weight of the solid content in the composition for the positive electrode of the electrochemical element. It is more preferably 7% by weight. When the content of the binder is within the above range, it is easy to suppress the breakage of the electrode due to the expansion and contraction of the active material during charging and discharging while suppressing the increase in electrical resistance.
(導電材)
 本発明の電気化学素子正極用組成物は、集電体上に形成される正極の導電性をより高めるため、導電材をさらに含有してもよい。導電材としては、構成される電気化学素子において、化学変化を招かない電子伝導性材料であれば如何なるものでも使用可能である。導電材の具体的な例として、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの炭素系物質、銅、ニッケル、アルミニウム、銀などの金属粉末、金属繊維などを使用してもよく、また、ポリフェニレン誘導体などの導電性材料を1種または2種以上を混合して使用してもよい。
 本発明の電気化学素子正極用組成物において、上記導電材の含有量は、電気化学素子正極用組成物の固形分全体重量に対して1~10重量%であることが好ましく、1~7重量%であることがより好ましい。導電材の含有量が上記範囲内であると、正極の電池容量を著しく低下させることなく、また抵抗の低下により電極材料の電気容量を好適に引き出すことができる。
(Conductive material)
The composition for a positive electrode of an electrochemical element of the present invention may further contain a conductive material in order to further enhance the conductivity of the positive electrode formed on the current collector. As the conductive material, any electronically conductive material that does not cause a chemical change can be used in the electrochemical element to be constructed. Specific examples of conductive materials include carbon-based substances such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber, metal powder such as copper, nickel, aluminum, and silver, and metal fiber. Alternatively, one kind or a mixture of two or more kinds of conductive materials such as a polyphenylene derivative may be used.
In the composition for the positive electrode of the electrochemical element of the present invention, the content of the conductive material is preferably 1 to 10% by weight with respect to the total solid content of the composition for the positive electrode of the electrochemical element, and is preferably 1 to 7% by weight. % Is more preferable. When the content of the conductive material is within the above range, the electric capacity of the electrode material can be suitably drawn out without significantly reducing the battery capacity of the positive electrode and by reducing the resistance.
(電気化学素子正極用組成物の製造方法)
 本発明の電気化学素子正極用組成物の製造方法としては、上述の電気化学素子正極用添加剤、正極活物質、および必要に応じ溶媒やその他の成分を混合することによって製造できる。混合方法には特に制限は無く、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。例えば、20分以上120分以下撹拌することが好ましい。
(Manufacturing method of composition for electrochemical device positive electrode)
The method for producing the composition for the positive electrode of the electrochemical element of the present invention can be produced by mixing the above-mentioned additive for the positive electrode of the electrochemical element, the positive electrode active material, and if necessary, a solvent and other components. The mixing method is not particularly limited, and for example, a general mixing device such as a disper, a mill, or a kneader can be used. For example, it is preferable to stir for 20 minutes or more and 120 minutes or less.
 混合する温度としても特に制限されるものではなく、例えば、0℃~160℃の範囲、より好ましくは、20℃~80℃の範囲で行われる。低すぎる温度は粘度が高く、塗工することが出来なくなることがあるため好ましくなく、高すぎる温度では、有機溶媒の揮発、付随する粘度変化など安全性、機器操作性の観点から好ましくないことがある。 The mixing temperature is not particularly limited, and is, for example, in the range of 0 ° C to 160 ° C, more preferably in the range of 20 ° C to 80 ° C. A temperature that is too low is not preferable because the viscosity is high and coating may not be possible, and a temperature that is too high is not preferable from the viewpoint of safety and equipment operability such as volatilization of organic solvent and accompanying viscosity change. be.
[電気化学素子]
 このような本発明の一実施形態による電気化学素子正極用組成物は、電気化学素子に有用に使用され得る。本発明はまた上述の電気化学素子正極用組成物を用いて作製された正極を有する電気化学素子も含む。本発明の電気化学素子は、上述の電気化学素子正極用添加剤を含有することにより、正極の導電性が改善され、電極抵抗を低下させることができ、かつ繰り返し充放電時の電極膨張を抑制できる。本発明の電気化学素子は、2V~5Vで作動するものが好ましく、その例としてリチウムイオン二次電池またはキャパシタ等が挙げられる。
[Electrochemical element]
Such a composition for a positive electrode of an electrochemical device according to an embodiment of the present invention can be usefully used for an electrochemical device. The present invention also includes an electrochemical device having a positive electrode manufactured by using the above-mentioned composition for an electrochemical device positive electrode. By containing the above-mentioned additive for the positive electrode of the electrochemical element, the electrochemical element of the present invention can improve the conductivity of the positive electrode, reduce the electrode resistance, and suppress the electrode expansion during repeated charging and discharging. can. The electrochemical element of the present invention preferably operates at 2V to 5V, and examples thereof include a lithium ion secondary battery and a capacitor.
 例えば、本発明の電気化学素子がリチウムイオン二次電池である場合、前記リチウムイオン二次電池は、正極、負極および電解質を含む。 For example, when the electrochemical element of the present invention is a lithium ion secondary battery, the lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte.
(正極)
 上記正極は、本発明の電気化学素子正極用組成物を用いて作製されたものであって、集電体と正極活物質層を含む。上記正極活物質層は、本発明の電気化学素子正極用組成物を上記集電体に塗布して形成される。
(Positive electrode)
The positive electrode is produced by using the composition for a positive electrode of an electrochemical element of the present invention, and includes a current collector and a positive electrode active material layer. The positive electrode active material layer is formed by applying the composition for an electrochemical element positive electrode of the present invention to the current collector.
 上記電気化学素子正極用組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、電気化学素子正極用組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上の組成物膜の厚みは、乾燥して得られる正極活物質層の厚みに応じて適宜に設定しうる。 The method for applying the composition for the positive electrode of the electrochemical device on the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the composition for the positive electrode of the electrochemical device may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the composition film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode active material layer obtained by drying.
 電気化学素子正極用組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、アルミニウムまたはアルミニウム合金からなる集電体を用い得る。この際、アルミニウムとアルミニウム合金とを組み合わせて用いてもよく、種類が異なるアルミニウム合金を組み合わせて用いてもよい。アルミニウムおよびアルミニウム合金は耐熱性を有し、電気化学的に安定であるため、優れた集電体材料である。 As the current collector to which the composition for the positive electrode of the electrochemical element is applied, a material having electrical conductivity and having electrochemical durability is used. Specifically, as the current collector, a current collector made of aluminum or an aluminum alloy can be used. At this time, aluminum and an aluminum alloy may be used in combination, or different types of aluminum alloys may be used in combination. Aluminum and aluminum alloys are excellent current collector materials because they have heat resistance and are electrochemically stable.
 集電体上の電気化学素子正極用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の電気化学素子正極用組成物を乾燥することで、集電体上に正極活物質層を形成し、集電体と正極活物質層とを備える正極を得ることができる。 The method for drying the composition for the positive electrode of the electrochemical element on the current collector is not particularly limited, and a known method can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, infrared rays or an electron beam. A drying method by irradiation such as is mentioned. By drying the composition for the positive electrode of the electrochemical element on the current collector in this way, it is possible to form a positive electrode active material layer on the current collector and obtain a positive electrode having the current collector and the positive electrode active material layer. can.
 特に、添加した多孔質炭素材料の金属捕捉力を維持するために、正極製造時の乾燥工程を十分に行うことが好ましく、集電体(例えば、アルミニウム箔)が影響を受けない範囲、かつ、正極活物質および多孔質炭素材料表面に吸着した水が揮散できる範囲で乾燥を行うことが好ましい。好ましくは、乾燥温度70~200℃、より好ましくは100℃以上160℃以下で大気圧下、もしくは減圧下に、20分~24時間、好ましくは1時間から12時間の範囲で実施される。 In particular, in order to maintain the metal trapping power of the added porous carbon material, it is preferable to sufficiently perform the drying step at the time of producing the positive electrode, and the current collector (for example, aluminum foil) is not affected and the area is not affected. It is preferable to perform drying within a range in which water adsorbed on the surfaces of the positive electrode active material and the porous carbon material can be volatilized. It is preferably carried out at a drying temperature of 70 to 200 ° C., more preferably 100 ° C. or higher and 160 ° C. or lower under atmospheric pressure or reduced pressure in the range of 20 minutes to 24 hours, preferably 1 hour to 12 hours.
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、正極活物質層に加圧処理を施してもよい。加圧処理により、正極活物質層と集電体との密着性を向上させることができる。 After the drying step, the positive electrode active material layer may be pressure-treated by using a die press or a roll press. The pressure treatment can improve the adhesion between the positive electrode active material layer and the current collector.
(負極)
 上記負極は、集電体および上記集電体の上に形成された負極活物質層を含み、上記負極活物質層は負極活物質を含む。負極を製造する工程は、当該分野に広く知られた工程である。
(Negative electrode)
The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer contains a negative electrode active material. The process of manufacturing a negative electrode is a process widely known in the art.
 上記負極活物質は、リチウムイオンを可逆的にインターカレーション/デインターカレーションすることができる物質、リチウム金属、リチウム金属の合金、リチウムにドープおよび脱ドープ可能な物質または遷移金属酸化物を含む。 The negative electrode active material includes a substance capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, a lithium metal alloy, a lithium-doped and de-doped substance, or a transition metal oxide. ..
 上記リチウムイオンを可逆的にインターカレーション/デインターカレーションすることができる物質としては、結晶質炭素、非晶質炭素またはこれらを共に使用してもよい。上記結晶質炭素の例としては、無定形、板状、鱗片状、球状または繊維状の天然黒鉛または人造黒鉛のような黒鉛が挙げられ、上記非晶質炭素の例としては、ソフトカーボンまたはハードカーボン、メソフェーズピッチ炭化物、焼成されたコークスなどが挙げられる。 As a substance capable of reversibly intercalating / deintercalating the above lithium ions, crystalline carbon, amorphous carbon, or both of them may be used. Examples of the crystalline carbon include graphite such as amorphous, plate-like, scaly, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon. Examples include carbon, mesophase-pitch carbide, and calcined coke.
 上記リチウム金属の合金としては、リチウムとNa、K、Mg、Ca、Sr、Si、Sb、In、Zn、Ge、AlおよびSnからなる群より選択される金属との合金が使用されてもよい。 As the alloy of the lithium metal, an alloy of lithium and a metal selected from the group consisting of Na, K, Mg, Ca, Sr, Si, Sb, In, Zn, Ge, Al and Sn may be used. ..
 上記リチウムにドープおよび脱ドープ可能な物質としては、Si、SiMgなどの合金、SiO(0<x<2)、Sn、SnOなどがあげられる。 Examples of the substance that can be doped and dedoped with lithium include alloys such as Si and SiMg, SiO x (0 <x <2), Sn, SnO 2 and the like.
 上記負極活物質層で負極活物質の含有量は、負極活物質層全体重量に対して70重量%~100重量%であってもよい。負極活物質層は、負極活物質のみからなるものであってもよい。 The content of the negative electrode active material in the negative electrode active material layer may be 70% by weight to 100% by weight with respect to the total weight of the negative electrode active material layer. The negative electrode active material layer may be composed of only the negative electrode active material.
 上記負極活物質層はまたバインダーを含んでもよく、選択的に導電材をさらに含んでもよい。上記負極活物質層でバインダーの含有量は、負極活物質層全体重量に対して1重量%~5重量%であってもよい。また導電材をさらに含む場合には、負極活物質を90重量%~98重量%、バインダーを1重量%~10重量%、導電材を1重量%~10重量%使用してもよい。 The negative electrode active material layer may also contain a binder, and may optionally further contain a conductive material. The content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight with respect to the total weight of the negative electrode active material layer. When the conductive material is further contained, 90% by weight to 98% by weight of the negative electrode active material, 1% by weight to 10% by weight of the binder, and 1% by weight to 10% by weight of the conductive material may be used.
 上記バインダーは、負極活物質粒子を互いに良好に付着させ、また負極活物質を電流集電体に良好に付着させる役割を果たす。上記バインダーとしては、非水溶性バインダー、水溶性バインダーまたはこれらの組み合わせを使用してもよい。 The binder plays a role of adhering the negative electrode active material particles to each other well and also adhering the negative electrode active material to the current current collector. As the binder, a water-insoluble binder, a water-soluble binder, or a combination thereof may be used.
 上記非水溶性バインダーとしては、ポリ塩化ビニル、カルボキシル化されたポリ塩化ビニル、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリイミドまたはこれらの組み合わせが挙げられる。 Examples of the water-insoluble binder include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, and polyamideimide. Polyimide or a combination thereof can be mentioned.
 上記水溶性バインダーとしては、スチレン-ブタジエンラバー、アクリレイテッドスチレン-ブタジエンラバー、ポリビニルアルコール、セルロース、ポリアクリル酸ナトリウム、プロピレンと炭素数が2~8のオレフィン共重合体、(メタ)アクリル酸と(メタ)アクリル酸アルキルエステルの共重合体またはこれらの組み合わせが挙げられる。 Examples of the water-soluble binder include styrene-butadiene rubber, realized styrene-butadiene rubber, polyvinyl alcohol, cellulose, sodium polyacrylate, propylene and an olefin copolymer having 2 to 8 carbon atoms, (meth) acrylic acid and (meth) acrylic acid. Meta) A copolymer of acrylic acid alkyl ester or a combination thereof can be mentioned.
 上記負極バインダーとして水溶性バインダーを使用する場合、粘性を付与することができるセルロース系化合物を増粘剤としてさらに使用してもよい。このセルロース系化合物としては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロースおよびそのアルカリ金属塩などがあげられ、このような増粘剤使用含量は、バインダー100重量部に対して0.1重量部~100重量部であってもよい。 When a water-soluble binder is used as the negative electrode binder, a cellulosic compound capable of imparting viscosity may be further used as a thickener. Examples of the cellulosic compound include carboxymethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose and alkali metal salts thereof, and the content of such a thickener used is 0.1 part by weight to 100 parts by weight with respect to 100 parts by weight of the binder. It may be a department.
 上記導電材は、電極に導電性を付与するために使用されるものであって、構成される電池において、化学変化を招かない電子伝導性材料であれば如何なるものでも使用可能であり、その例として、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの炭素系物質;銅、ニッケル、アルミニウム、銀などの金属粉末または金属繊維などの金属系物質;ポリフェニレン誘導体などの導電性ポリマー;またはこれらの混合物を含む導電性材料を使用してもよい。 The above-mentioned conductive material is used for imparting conductivity to an electrode, and any electronic conductive material that does not cause a chemical change can be used in a constituent battery, and an example thereof. As carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber; metal powder such as copper, nickel, aluminum, silver or metal-based material such as metal fiber; polyphenylene derivative, etc. Conductive polymers; or conductive materials containing mixtures thereof may be used.
 上記集電体としては、銅箔、ニッケル箔、ステレンス鋼箔、チタニウム箔、ニッケル発泡体、銅発泡体、伝導性金属がコーティングされたポリマー基材、およびこれらの組み合わせからなる群より選択されるものを使用してもよい。 The current collector is selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and a combination thereof. You may use the one.
(電解質)
 上記電解質は、非水性有機溶媒とリチウム塩を少なくとも含むものが好ましい。
(Electrolytes)
The electrolyte preferably contains at least a non-aqueous organic solvent and a lithium salt.
 上記非水性有機溶媒は、電池の電気化学的反応に関与するイオンが移動することができる媒質の役割を果たす。 The non-aqueous organic solvent acts as a medium through which ions involved in the electrochemical reaction of the battery can move.
 非水性有機溶媒としては、カーボネート系、エステル系、エーテル系、ケトン系、アルコール系、または非陽子性溶媒を使用してもよい。上記カーボネート系溶媒としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、メチルエチルカーボネート(MEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などが使用されてもよく、上記エステル系溶媒としては、n-メチルアセテート、n-エチルアセテート、n-プロピルアセテート、ジメチルアセテート、メチルプロピオネート、エチルプロピオネート、γ-ブチロラクトン、デカノライド、バレロラクトン、メバロノラクトン、カプロラクトンなどが使用されてもよい。上記エーテルとしては、ジブチルエーテル、テトラグライム、ジグライム、ジメトキシエタン、2-メチルテトラヒドロフラン、テトラヒドロフランなどが使用されてもよく、上記ケトン系溶媒としては、シクロヘキサノンなどが使用されてもよい。また、上記アルコール系溶媒としては、エチルアルコール、イソプロピルアルコールなどが使用されてもよく、上記非陽子性溶媒としては、R-CN(Rは、炭素数2~20の直鎖状、分枝状、または環構造の炭化水素基であり、二重結合、芳香環またはエーテル結合を含んでもよい)などのニトリル類、ジメチルホルムアミドなどのアミド類、1,3-ジオキソランなどのジオキソラン類、スルホラン類などが使用されてもよい。 As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or non-protonic solvent may be used. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylmethylcarbonate. (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like may be used, and as the ester solvent, n-methyl acetate, n-ethyl acetate, n-propyl acetate and the like may be used. , Dimethylacetate, methylpropionate, ethylpropionate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone and the like may be used. As the ether, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like may be used, and as the ketone solvent, cyclohexanone and the like may be used. Further, as the alcohol-based solvent, ethyl alcohol, isopropyl alcohol or the like may be used, and as the non-protonic solvent, R-CN (R is a linear or branched form having 2 to 20 carbon atoms). , Or a ring-structured hydrocarbon group, which may contain a double bond, an aromatic ring or an ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, etc. May be used.
 上記非水性有機溶媒は、単独でまたは2種以上を混合して使用してもよく、2種以上混合して使用する場合の混合比率は目的とする電池性能に応じて適切に調節してもよい。 The above-mentioned non-aqueous organic solvent may be used alone or in combination of two or more kinds, or the mixing ratio when two or more kinds are mixed and used may be appropriately adjusted according to the target battery performance. good.
 また、上記カーボネート系溶媒の場合、環状カーボネートと鎖状カーボネートを混合して使用することがよい。この場合、環状カーボネートと鎖状カーボネートは、1:1~1:9の体積比で混合して使用すると電解液の性能がより優位に示され得る。 Further, in the case of the above-mentioned carbonate-based solvent, it is preferable to use a mixture of cyclic carbonate and chain carbonate. In this case, when the cyclic carbonate and the chain carbonate are mixed and used in a volume ratio of 1: 1 to 1: 9, the performance of the electrolytic solution can be shown more predominantly.
 上記リチウム塩は、有機溶媒に溶解され、電池内でリチウムイオンの供給源として作用して基本的なリチウムイオン二次電池の作動を可能にし、正極と負極の間のリチウムイオンの移動を促進する役割を果たす物質である。このようなリチウム塩の代表的な例としては、例えばLiPF、LiBF、LiSbF、LiAsF、LiCFSO、LiN(SO、Li(CFSON、LiCSO、LiClO、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y+1SO)(ここで、xおよびyは、自然数である)、LiCl、LiIおよびLiB(C(リチウムビスオキサラトボレート(LiBOB))などが挙げられる。これらは単独でまたは2種以上を混合して使用してもよい。リチウム塩の濃度は、0.1~2.0Mの範囲内で使用することがよい。リチウム塩の濃度が0.1M未満であれば、電解質の電導度が低くなって電解質性能が低下する傾向があり、2.0Mを超える場合には電解質の粘度が増加してリチウムイオンの移動性が減少する傾向がある。 The lithium salt is dissolved in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium ion secondary battery and promote the movement of lithium ions between the positive electrode and the negative electrode. It is a substance that plays a role. Typical examples of such lithium salts are, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 . N, LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl , LiI and LiB (C 2 O 4 ) 2 (lithium bisoxalatoborate (LiBOB)) and the like. These may be used alone or in admixture of two or more. The concentration of the lithium salt is preferably used in the range of 0.1 to 2.0 M. If the concentration of the lithium salt is less than 0.1 M, the conductivity of the electrolyte tends to be low and the electrolyte performance tends to deteriorate, and if it exceeds 2.0 M, the viscosity of the electrolyte increases and the mobility of lithium ions Tends to decrease.
 上記電解質は、電池寿命を向上させるためにビニレンカーボネートまたはエチレンカーボネート系化合物を寿命向上剤としてさらに含んでもよい。 The electrolyte may further contain a vinylene carbonate or an ethylene carbonate compound as a life improving agent in order to improve the battery life.
 上記エチレンカーボネート系化合物の代表的な例としては、ジフルオロエチレンカーボネート、クロロエチレンカーボネート、ジクロロエチレンカーボネート、ブロモエチレンカーボネート、ジブロモエチレンカーボネート、ニトロエチレンカーボネート、シアノエチレンカーボネートまたはフルオロエチレンカーボネートなどが挙げられる。このような寿命向上剤をさらに使用する場合、その使用量は適切に調節してもよい。 Typical examples of the ethylene carbonate-based compound include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, and fluoroethylene carbonate. When such a life-improving agent is further used, the amount used may be appropriately adjusted.
 本発明のリチウムイオン二次電池において、正極と負極の間にセパレータが存在してもよい。このようなセパレータとしては、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデンまたはこれらの2層以上の多層膜が使用されてもよく、ポリエチレン/ポリプロピレンの2層セパレータ、ポリエチレン/ポリプロピレン/ポリエチレンの3層セパレータ、ポリプロピレン/ポリエチレン/ポリプロピレンの3層セパレータなどのような混合多層膜が使用されてもよい。 In the lithium ion secondary battery of the present invention, a separator may be present between the positive electrode and the negative electrode. As such a separator, polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film having two or more layers thereof may be used, and a polyethylene / polypropylene two-layer separator, a polyethylene / polypropylene / polyethylene three-layer separator, or a polypropylene / A mixed multilayer film such as a polyethylene / polypropylene three-layer separator may be used.
 以下、実施例および比較例を説明する。ただし、下記の実施例は一実施例に過ぎず、本発明の思想は下記の実施例に限定されない。 Hereinafter, examples and comparative examples will be described. However, the following examples are only one example, and the idea of the present invention is not limited to the following examples.
(窒素吸着BET法による比表面積)
 以下にBETの式から誘導された近似式を記す。
Figure JPOXMLDOC01-appb-M000001
(Specific surface area by nitrogen adsorption BET method)
The approximate expression derived from the BET equation is described below.
Figure JPOXMLDOC01-appb-M000001
 上記の近似式を用いて、液体窒素温度における、窒素吸着による多点法により所定の相対圧(p/p)における実測される吸着量(v)を代入してvを求め、次式により試料の比表面積(SSA:単位はm/g)を計算した。
Figure JPOXMLDOC01-appb-M000002
Using the above approximate expression, the amount of adsorption (v) actually measured at a predetermined relative pressure ( p / p 0 ) at a liquid nitrogen temperature by the multipoint method by nitrogen adsorption is substituted to obtain vm, and the following equation is obtained. The specific surface area of the sample (SSA: unit is m 2 / g) was calculated.
Figure JPOXMLDOC01-appb-M000002
 上記の式中、vは試料表面に単分子層を形成するに必要な吸着量(cm/g)、vは実測される吸着量(cm/g)、pは飽和蒸気圧、pは絶対圧、cは定数(吸着熱を反映)、Nはアボガドロ数6.022×1023、a(nm)は吸着質分子が試料表面で占める面積(分子占有断面積)である。 In the above formula, v m is the adsorption amount (cm 3 / g) required to form a single molecule layer on the sample surface, v is the measured adsorption amount (cm 3 / g), and p 0 is the saturated vapor pressure. p is the absolute pressure, c is the constant (reflecting the heat of adsorption), N is the Avogadro number 6.022 × 10 23 , and a (nm 2 ) is the area occupied by the adsorbent molecule on the sample surface (molecular occupied cross-sectional area).
 具体的には、カンタクローム社製「Autosorb-iQ-MP」を用いて、以下のようにして液体窒素温度における炭素材料への窒素の吸着量を測定した。測定試料である炭素材料を試料管に充填し、試料管を-196℃に冷却した状態で、一旦減圧し、その後所望の相対圧にて測定試料に窒素(純度99.999%)を吸着させた。各所望の相対圧にて平衡圧に達した時の試料に吸着した窒素量を吸着ガス量vとした。 Specifically, using "Autosorb-iQ-MP" manufactured by Kantachrome, the amount of nitrogen adsorbed on the carbon material at the liquid nitrogen temperature was measured as follows. A carbon material as a measurement sample is filled in a sample tube, the sample tube is cooled to -196 ° C., the pressure is reduced once, and then nitrogen (purity 99.999%) is adsorbed on the measurement sample at a desired relative pressure. rice field. The amount of nitrogen adsorbed on the sample when the equilibrium pressure was reached at each desired relative pressure was defined as the adsorbed gas amount v.
(細孔半径頻度分布)
 日本ベル株式会社製、ベルソープ28SA 型測定器を用いて、水蒸気の吸着等温線を測定した。測定試料である炭素材料を試料管に充填し、試料管を25℃下、一旦減圧し、その後所望の相対圧にて測定試料に飽和水蒸気を吸着させた。得られた吸着等温線に基づいて多孔質炭素材料の細孔半径が0.5~2.5nmの範囲において前記式(1)によって表される細孔半径頻度分布を算出した。
(Pore radius frequency distribution)
The adsorption isotherm of water vapor was measured using a Bell Soap 28SA type measuring instrument manufactured by Nippon Bell Co., Ltd. The carbon material as the measurement sample was filled in the sample tube, the sample tube was once depressurized at 25 ° C., and then saturated water vapor was adsorbed on the measurement sample at a desired relative pressure. Based on the obtained adsorption isotherm, the pore radius frequency distribution represented by the above formula (1) was calculated in the range where the pore radius of the porous carbon material was 0.5 to 2.5 nm.
(レーザー散乱法による平均粒径)
 植物由来の原料および炭素材料の平均粒径(粒度分布)は、以下の方法により測定した。試料を界面活性剤(和光純薬工業株式会社製「ToritonX100」)が5重量%含まれた水溶液に投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。粒度分布測定は、粒子径・粒度分布測定装置(マイクロトラック・ベル株式会社製「マイクロトラックMT3300EXII」)を用いて行った。D50は、累積体積が50%となる粒子径であり、この値を平均粒径として用いた。
(Average particle size by laser scattering method)
The average particle size (particle size distribution) of the plant-derived raw material and the carbon material was measured by the following method. The sample was put into an aqueous solution containing 5% by weight of a surfactant (“Toriton X100” manufactured by Wako Pure Chemical Industries, Ltd.), treated with an ultrasonic cleaner for 10 minutes or more, and dispersed in the aqueous solution. The particle size distribution was measured using this dispersion. The particle size distribution measurement was performed using a particle size / particle size distribution measuring device (“Microtrack MT3300EXII” manufactured by Microtrack Bell Co., Ltd.). D50 is a particle size having a cumulative volume of 50%, and this value was used as the average particle size.
(灰分の測定方法)
 900℃で空焼きし、シリカゲルを入れたデシケータ中で放冷したアルミナるつぼの重量を測定する。120℃に調節した恒温乾燥器で8~10時間真空乾燥後、乾燥剤としてシリカゲルを入れたデシケータ中で放冷した炭素材料を容積50mlのアルミナるつぼに20g入れ、るつぼ+炭素材料重量を0.1mgまで正確に量り取った。試料を入れたアルミナるつぼを電気炉に入れ、電気炉内に乾燥空気を20L/分で導入した状態で、1時間で200℃まで昇温し、更に2時間かけて700℃に昇温し、700℃にて14時間保持し、灰化した。灰化終了後、シリカゲルを入れたデシケータ中で放冷し、るつぼ+灰の重量を0.1mgまで正確に量り取り、次式から灰分を算出した。
Figure JPOXMLDOC01-appb-M000003
(Measurement method of ash content)
Weigh the alumina crucible that has been air-baked at 900 ° C. and allowed to cool in a desiccator containing silica gel. After vacuum drying in a constant temperature dryer adjusted to 120 ° C. for 8 to 10 hours, 20 g of the carbon material allowed to cool in a desiccator containing silica gel as a desiccant was placed in an alumina crucible having a volume of 50 ml, and the weight of the crucible + carbon material was reduced to 0. Accurately weighed up to 1 mg. The alumina crucible containing the sample was placed in an electric furnace, and with dry air introduced into the electric furnace at 20 L / min, the temperature was raised to 200 ° C in 1 hour and then to 700 ° C over 2 hours. It was kept at 700 ° C. for 14 hours and incinerated. After the completion of ashing, the mixture was allowed to cool in a desiccator containing silica gel, the weight of the crucible + ash was accurately weighed to 0.1 mg, and the ash content was calculated from the following formula.
Figure JPOXMLDOC01-appb-M000003
(リチウムイオン二次電池正極用組成物)
 ポリフッ化ビニリデン(株式会社クレハ製 KFポリマー 7200)3重量部を溶解したN-メチルピロリドン溶液30重量部、正極活物質としてLiNi1/3Co1/3Mn1/3(日本化学工業社製、「セルシードC-5H」)93重量部、導電材としてアセチレンブラック(電気化学工業社製、「デンカブラック」)2重量部、後述する実施例および比較例にて作製した炭素材料2重量部を加えて混合し、組成物の固形分濃度が50重量%になるように、N-メチルピロリドンを適宜添加しながら、プライミクス社製ホモミクサー(4500rpm)で攪拌分散して、リチウムイオン二次電池正極用組成物を得た。
(Composition for positive electrode of lithium ion secondary battery)
30 parts by weight of N-methylpyrrolidone solution in which 3 parts by weight of polyfluorinated vinylidene (KF polymer 7200 manufactured by Kureha Co., Ltd.) is dissolved, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Nippon Kagaku Kogyo Co., Ltd.) , "Celseed C-5H") 93 parts by weight, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., "Denka Black") 2 parts by weight as a conductive material, 2 parts by weight of carbon material produced in Examples and Comparative Examples described later. And mixed, stirring and dispersing with a homomixer (4500 rpm) manufactured by Primix Co., Ltd. while appropriately adding N-methylpyrrolidone so that the solid content concentration of the composition becomes 50% by weight, and the positive electrode of the lithium ion secondary battery. The composition for use was obtained.
(リチウムイオン二次電池用正極)
 上記リチウムイオン二次電池正極用組成物を、バーコーター(「T101」、松尾産業製)を用いて集電体のアルミニウム箔(「1N30-H」、富士加工紙製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、リチウムイオン二次電池用正極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によって、リチウムイオン二次電池用正極を作製した。この時の含水量は、作製し、乾燥した電極(φ14mm)を取り、カールフィッシャー(三菱化学アナリテック社製)にて、250℃に加熱し、窒素気流下に水分量を測定し、含水量が20ppm以下になるように管理し、添加した炭素材料が吸水以外の作用を発揮できるようにした。
(Positive electrode for lithium-ion secondary battery)
The above composition for a positive electrode of a lithium ion secondary battery is coated on an aluminum foil (“1N30-H”, manufactured by Fuji Kako Paper) of a current collector using a bar coater (“T101”, manufactured by Matsuo Sangyo). After primary drying at 80 ° C. for 30 minutes in a hot air dryer (manufactured by Yamato Kagaku), rolling treatment was performed using a roll press (manufactured by Hosen). Then, after punching as a positive electrode for a lithium ion secondary battery (φ14 mm), a positive electrode for a lithium ion secondary battery was produced by secondary drying under a reduced pressure condition at 120 ° C. for 3 hours. For the water content at this time, take a prepared and dried electrode (φ14 mm), heat it to 250 ° C with a Karl Fischer (manufactured by Mitsubishi Chemical Analytech), measure the water content under a nitrogen stream, and measure the water content. Was controlled to be 20 ppm or less so that the added carbon material could exert an action other than water absorption.
(リチウムイオン二次電池の作製)
 上記リチウムイオン二次電池用正極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。負極には、負極活物質層として金属リチウム箔(厚さ0.2mm、φ16mm)、集電体としてステレンス鋼箔(厚さ0.2mm、φ17mm)からなる積層体を用いた。また、セパレータとしてポリプロピレン系(セルガード#2400、ポリポア製)を使用して、電解質は六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7体積%、VC2重量%)を用いて注入し、コイン型のリチウムイオン二次電池(2032タイプ)を作製した。
(Manufacturing of lithium-ion secondary battery)
The positive electrode for the lithium ion secondary battery was transferred to a glove box (manufactured by Miwa Seisakusho) in an argon gas atmosphere. For the negative electrode, a laminated body made of a metallic lithium foil (thickness 0.2 mm, φ16 mm) was used as the negative electrode active material layer, and a stainless steel foil (thickness 0.2 mm, φ17 mm) was used as the current collector. In addition, a polypropylene-based solvent (Celguard # 2400, manufactured by Polypore) is used as a separator, and the electrolyte is lithium hexafluorophosphate (LiPF 6 ) in ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in vinylene carbonate (VC). A coin-type lithium ion secondary battery (2032 type) was prepared by injecting using a mixed solvent system (1M-LiPF 6 , EC / EMC = 3/7% by volume, VC2% by weight) to which the above was added.
[実施例1]
 アルカリ金属類およびアルカリ土類金属類の合計含有率が0.01重量%以上0.5重量%以下のヤシ殻を600℃で炭化した炭化物を粒径1~3mmの大きさに破砕したものを原料とし、内径50mmのバッチ式流動賦活炉を用いて、下記表1に示すように、炭酸ガスを主成分とし、水蒸気が2容量%以下、かつ一酸化炭素ガスを2容量%以上の雰囲気下において、900℃で賦活した。その後、塩酸(濃度:0.5規定、希釈液:イオン交換水)を用いて、温度85℃で30分酸洗した後、残留した酸を除去するため、イオン交換水で十分に水洗、80℃、3時間乾燥した後、下記表1に示す条件(一次賦活)と同条件にて、二次賦活を実施した。この粒状多孔質炭素材料を平均粒径が6μmになるように微粉砕して得た多孔質炭素材料の各種物性を測定した。
[Example 1]
Carbides obtained by carbonizing coconut shells having a total content of alkali metals and alkaline earth metals of 0.01% by weight or more and 0.5% by weight or less at 600 ° C. are crushed to a size of 1 to 3 mm. As shown in Table 1 below, a batch-type flow activator with an inner diameter of 50 mm is used as a raw material, and the atmosphere is such that carbon dioxide gas is the main component, water vapor is 2% by volume or less, and carbon monoxide gas is 2% by volume or more. Was activated at 900 ° C. Then, pickling with hydrochloric acid (concentration: 0.5 regulation, diluted solution: ion-exchanged water) at a temperature of 85 ° C. for 30 minutes, and then thoroughly washing with ion-exchanged water to remove residual acid, 80. After drying at ° C. for 3 hours, secondary activation was carried out under the same conditions as those shown in Table 1 below (primary activation). Various physical properties of the porous carbon material obtained by finely grinding this granular porous carbon material so that the average particle size became 6 μm were measured.
[実施例2~3、比較例1~3]
 各実施例2~3および比較例1~3において、賦活条件を下記表1に示す条件に変更した以外は、実施例1と同様に実施した(それぞれ一次賦活と二次賦活は同条件で行った)。
[Examples 2 to 3, Comparative Examples 1 to 3]
In each of Examples 2 to 3 and Comparative Examples 1 to 3, the same conditions as in Example 1 were carried out except that the activation conditions were changed to the conditions shown in Table 1 below (primary activation and secondary activation were performed under the same conditions, respectively). rice field).
[比較例4]
 100g(乾燥固形分重量で100重量部)の松のおが屑(水分率48重量%)と、97.8g〔乾燥固形分重量(濃度100重量%)で160重量部〕のリン酸水溶液(濃度85重量%)とを混合した〔リン酸とおが屑との重量比(リン酸/おが屑)=1.6〕。混合物を、175℃に設定した循環式乾燥機で攪拌しながら加熱した。
 得られた混合物をロータリーキルンに投入し、空気下に300℃まで4℃/分で昇温し、3時間保持することにより酸化を行った。
 次いで、流通ガスを空気から窒素に切り替え、窒素下に500℃まで4℃/分で昇温し、2時間保持することにより賦活を行った。
 賦活後のペレットを水で洗浄し、乾燥することにより、活性炭を得た。得られた活性炭をボールミル粉砕機によって、平均粒径を5.6μmとした。比較例4で得られた多孔質炭素材料の各種物性を測定した。測定結果を表1に示す。
[Comparative Example 4]
100 g (100 parts by weight of dry solid content) of pine shavings (48% by weight) and 97.8 g [160 parts by weight of dry solid content (concentration 100% by weight)] phosphoric acid aqueous solution (concentration 85) Weight%) was mixed [weight ratio of phosphoric acid to shavings (phosphoric acid / shavings) = 1.6]. The mixture was heated with stirring in a circulation dryer set at 175 ° C.
The obtained mixture was put into a rotary kiln, heated to 300 ° C. in air at 4 ° C./min, and kept for 3 hours for oxidation.
Next, the circulating gas was switched from air to nitrogen, the temperature was raised to 500 ° C. at 4 ° C./min under nitrogen, and the gas was kept for 2 hours for activation.
Activated carbon was obtained by washing the activated pellets with water and drying them. The obtained activated carbon was subjected to a ball mill crusher to have an average particle size of 5.6 μm. Various physical properties of the porous carbon material obtained in Comparative Example 4 were measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例4~6および比較例5~8]
(正極適用におけるリチウムイオン二次電池の初回充放電容量・効率の測定)
 実施例1~3および比較例1~4で得た多孔質炭素材料を使用して、上述の記載に従って、リチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて、充放電試験を行った。リチウムのドーピングは、活物質重量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量(mAh/g)を充電容量とした。次いで、活物質重量に対し70mA/gの速度で、リチウム電位に対して2.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量とした。放電容量/充電容量の百分率を充放電効率(初回充放電効率)とし、電池内におけるリチウムイオンの利用効率の指標とした。また、充電容量から放電容量を差し引くことによって、不可逆容量を算出した。更に、同条件で100回充放電を繰り返し行い、100回目の充放電時に得られた放電容量を初期容量で除した値を容量維持率とした。
[Examples 4 to 6 and Comparative Examples 5 to 8]
(Measurement of initial charge / discharge capacity / efficiency of lithium-ion secondary battery when applying positive electrode)
Using the porous carbon materials obtained in Examples 1 to 3 and Comparative Examples 1 to 4, lithium ion secondary batteries were prepared according to the above description. The obtained lithium ion secondary battery was subjected to a charge / discharge test using a charge / discharge test device (“TOSCAT” manufactured by Toyo System Co., Ltd.). Lithium was doped at a rate of 70 mA / g relative to the weight of the active material and doped until it reached 1 mV with respect to the lithium potential. Further, a constant voltage of 1 mV was applied to the lithium potential for 8 hours to complete the doping. The capacity (mAh / g) at this time was taken as the charge capacity. Next, dedoping was performed at a rate of 70 mA / g with respect to the weight of the active material until it reached 2.5 V with respect to the lithium potential, and the capacity discharged at this time was defined as the discharge capacity. The charge / discharge efficiency (initial charge / discharge efficiency) was defined as the percentage of discharge capacity / charge capacity, and was used as an index of the utilization efficiency of lithium ions in the battery. In addition, the irreversible capacity was calculated by subtracting the discharge capacity from the charge capacity. Further, charging / discharging was repeated 100 times under the same conditions, and the value obtained by dividing the discharge capacity obtained at the time of the 100th charging / discharging by the initial capacity was defined as the capacity retention rate.
(インピーダンスの測定)
 上記で作製した電極を用いて、電気化学測定装置(ソーラトロン社製「1255WB型高性能電気化学測定システム」)を用い、25℃で、0Vを中心に10mVの振幅を与え、周波数10mHz~1MHzの周波数で定電圧交流インピーダンスを測定し、周波数1kHzにおける実部抵抗をインピーダンス抵抗とした。
(Measurement of impedance)
Using the electrode produced above, using an electrochemical measuring device (“1255WB type high-performance electrochemical measuring system” manufactured by Solartron), an amplitude of 10 mV centered on 0 V is applied at 25 ° C, and a frequency of 10 MHz to 1 MHz is applied. The constant voltage AC impedance was measured at the frequency, and the real resistance at a frequency of 1 kHz was taken as the impedance resistance.
(電極膨張率の測定)
 上記構成のコインセルについて、充電は、活物質重量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を8時間印加した。次いで、活物質重量に対し70mA/gの速度で、リチウム電位に対して2.5Vになるまで放電を行った。この充放電サイクルを5回繰り返した後、アルゴン雰囲気下のグローブボックス内でコインセルを分解して負極を取り出し、取り出した負極をジエチルカーボネートで洗浄後、乾燥した。乾燥後の負極厚み(D)を測定し、充放電前に測定した負極厚み(C)との比〔「厚み(D)/厚み(C)」の百分率〕を求め、電極膨張率とした。なお、負極厚み(C)および負極厚み(D)はそれぞれ、合剤層とアルミニウム箔との合計厚みを数か所測定し、各合計厚みからアルミニウム箔厚みを減算することにより求めた負極厚みの平均値である。
(Measurement of electrode expansion rate)
The coin cell having the above configuration was charged at a rate of 70 mA / g with respect to the weight of the active material, and was doped until it reached 1 mV with respect to the lithium potential. Further, a constant voltage of 1 mV was applied to the lithium potential for 8 hours. Then, the electric discharge was performed at a rate of 70 mA / g with respect to the weight of the active material until it reached 2.5 V with respect to the lithium potential. After repeating this charge / discharge cycle 5 times, the coin cell was disassembled in a glove box under an argon atmosphere to take out the negative electrode, and the taken out negative electrode was washed with diethyl carbonate and then dried. The negative electrode thickness (D) after drying was measured, and the ratio to the negative electrode thickness (C) measured before charging / discharging [percentage of "thickness (D) / thickness (C)"] was determined and used as the electrode expansion rate. The negative electrode thickness (C) and the negative electrode thickness (D) are the negative electrode thicknesses obtained by measuring the total thickness of the mixture layer and the aluminum foil at several points and subtracting the aluminum foil thickness from each total thickness. It is an average value.
 以上の測定により得られた結果を表2に示す。 Table 2 shows the results obtained by the above measurements.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示されるように、比較例と比べて実施例は、低いインピーダンスを示し、100回充放電を行った後の容量維持率が高いものであった。 As shown in Table 2, the examples showed lower impedance than the comparative examples, and had a high capacity retention rate after being charged and discharged 100 times.

Claims (9)

  1.  BET法による比表面積が2500~3300m/gであり、水蒸気吸着法によって細孔半径が0.5~2.5nmの範囲で測定した際の下記式(1)で表される細孔半径頻度分布の最小値が1以上である多孔質炭素材料を含む電気化学素子正極用添加剤。
    細孔半径頻度分布=ΔV/ΔLog r (1) 
    (式(1)中、Vは細孔容積(cc/g)、rは細孔半径(Å)である。)
    The specific surface area by the BET method is 2500 to 3300 m 2 / g, and the pore radius frequency represented by the following formula (1) when measured in the range of 0.5 to 2.5 nm by the water vapor adsorption method. An additive for the positive electrode of an electrochemical element containing a porous carbon material having a minimum distribution value of 1 or more.
    Pore radius frequency distribution = ΔV / ΔLog r (1)
    (In formula (1), V is the pore volume (cc / g) and r is the pore radius (Å).)
  2.  請求項1に記載の電気化学素子正極用添加剤であって、前記多孔質炭素材料の灰分が0.5重量%以下である、電気化学素子正極用添加剤。 The additive for the positive electrode of an electrochemical element according to claim 1, wherein the ash content of the porous carbon material is 0.5% by weight or less.
  3.  請求項1または2に記載の電気化学素子正極用添加剤であって、前記多孔質炭素材料の平均粒径が2μm~20μmである、電気化学素子正極用添加剤。 The additive for an electrochemical element positive electrode according to claim 1 or 2, wherein the porous carbon material has an average particle size of 2 μm to 20 μm.
  4.  請求項1~3のいずれかに記載の電気化学素子正極用添加剤、および正極活物質を含む電気化学素子正極用組成物であって、前記電気化学素子正極用添加剤の含有量は、前記正極活物質の全体重量に対して10重量%以下である、電気化学素子正極用組成物。 The composition for an electrochemical element positive electrode containing the electrochemical element positive electrode additive according to any one of claims 1 to 3 and the positive electrode active material, and the content of the electrochemical element positive electrode additive is described above. A composition for a positive electrode of an electrochemical element, which is 10% by weight or less based on the total weight of the positive electrode active material.
  5.  請求項4に記載の電気化学素子正極用組成物であって、さらにバインダーを電気化学素子正極用組成物の固形分全体重量に対して0.5~10重量%含む、電気化学素子正極用組成物。 The composition for an electrochemical element positive electrode according to claim 4, further comprising a binder in an amount of 0.5 to 10% by weight based on the total solid content weight of the electrochemical element positive electrode composition. thing.
  6.  請求項4または5に記載の電気化学素子正極用組成物であって、さらに導電材を電気化学素子正極用組成物の固形分全体重量に対して1~10重量%含む、電気化学素子正極用組成物。 The composition for an electrochemical element positive electrode according to claim 4 or 5, further comprising a conductive material in an amount of 1 to 10% by weight based on the total solid content of the composition for an electrochemical element positive electrode, for an electrochemical element positive electrode. Composition.
  7.  請求項4~6のいずれかに記載の電気化学素子正極用組成物を用いて作製された正極を有する電気化学素子。 An electrochemical device having a positive electrode produced by using the composition for a positive electrode of an electrochemical device according to any one of claims 4 to 6.
  8.  2V~5Vで作動することを特徴とする、請求項7に記載の電気化学素子。 The electrochemical device according to claim 7, wherein the electrochemical device operates at 2V to 5V.
  9.  請求項4~6のいずれかに記載の電気化学素子正極用組成物を用いて作製された正極を有するリチウムイオン二次電池。 A lithium ion secondary battery having a positive electrode produced by using the composition for an electrochemical element positive electrode according to any one of claims 4 to 6.
PCT/JP2021/029609 2020-08-17 2021-08-11 Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same WO2022039081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-137301 2020-08-17
JP2020137301A JP2023130538A (en) 2020-08-17 2020-08-17 Positive electrode additive for electrochemical element, composition for electrochemical element positive electrode, positive electrode for electrochemical element, and electrochemical element containing the same

Publications (1)

Publication Number Publication Date
WO2022039081A1 true WO2022039081A1 (en) 2022-02-24

Family

ID=80322818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029609 WO2022039081A1 (en) 2020-08-17 2021-08-11 Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same

Country Status (2)

Country Link
JP (1) JP2023130538A (en)
WO (1) WO2022039081A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240407A (en) * 1999-12-24 2001-09-04 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2007317582A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Energy storing device
JP2008270427A (en) * 2007-04-18 2008-11-06 Cataler Corp Carbon material for power storage device electrode, and manufacturing method thereof
WO2016006237A1 (en) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Capacitor
WO2016075916A1 (en) * 2014-11-13 2016-05-19 株式会社Gsユアサ Sulfur-carbon composite, nonaqueous electrolyte cell having electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240407A (en) * 1999-12-24 2001-09-04 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2007317582A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Energy storing device
JP2008270427A (en) * 2007-04-18 2008-11-06 Cataler Corp Carbon material for power storage device electrode, and manufacturing method thereof
WO2016006237A1 (en) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Capacitor
WO2016075916A1 (en) * 2014-11-13 2016-05-19 株式会社Gsユアサ Sulfur-carbon composite, nonaqueous electrolyte cell having electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite

Also Published As

Publication number Publication date
JP2023130538A (en) 2023-09-21

Similar Documents

Publication Publication Date Title
EP3457474B1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
CN109314228B (en) Sulfur-carbon composite and lithium-sulfur battery comprising same
TWI496333B (en) Use of expanded graphite in lithium/sulphur batteries
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
JP2010517218A (en) Positive electrode active material and secondary battery including the same
TWI644859B (en) Manufacturing method of carbonaceous material for non-aqueous electrolyte secondary battery
WO2018110263A1 (en) Composite graphite particles, method for producing same, and use thereof
KR100758383B1 (en) Sulfur electrode coated with carbon for using in the li/s secondary battery
Chen et al. Practical evaluation of prelithiation strategies for next‐generation lithium‐ion batteries
JP7165913B2 (en) Non-aqueous electrolyte secondary battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP6759583B2 (en) Composite active material for lithium secondary battery and its manufacturing method, lithium secondary battery
JP2015130324A (en) Nonaqueous electrolyte secondary battery
JP2003263982A (en) Manufacturing method of graphite particle and negative electrode material for lithium ion secondary battery
EP3312909A1 (en) Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures
WO2021221129A1 (en) Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same
JP2001126762A (en) Nonaqueous electrolyte secondary battery
KR101044577B1 (en) Lithium Secondary Battery
WO2022168847A1 (en) Positive electrode additive for nonaqueous electrolyte secondary battery, positive electrode active material composition for nonaqueous electrolyte secondary battery containing said additive, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with same
WO2022039081A1 (en) Additive for positive electrode of electrochemical device, composition for positive electrode of electrochemical device, positive electrode for electrochemical device, and electrochemical device including same
WO2021215397A1 (en) Carbonaceous material, method for producing same, and electrochemical device
WO2021187367A1 (en) Additive for electrochemical element positive electrode, composition for electrochemical element positive electrode including said additive, and electrochemical element
CN116417617B (en) Positive electrode material, positive electrode sheet, sodium ion secondary battery and electricity utilization device
JPH09199126A (en) Nonaqueous electrolyte secondary battery and manufacture of its negative electrode
WO2022255359A1 (en) Porous carbon for positive electrode additive for non-aqueous electrolyte secondary battery, positive electrode additive for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production method for porous carbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP