WO2022019307A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2022019307A1
WO2022019307A1 PCT/JP2021/027180 JP2021027180W WO2022019307A1 WO 2022019307 A1 WO2022019307 A1 WO 2022019307A1 JP 2021027180 W JP2021027180 W JP 2021027180W WO 2022019307 A1 WO2022019307 A1 WO 2022019307A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
light
conversion element
conversion unit
lens
Prior art date
Application number
PCT/JP2021/027180
Other languages
French (fr)
Japanese (ja)
Inventor
祥二 川人
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2022538024A priority Critical patent/JPWO2022019307A1/ja
Publication of WO2022019307A1 publication Critical patent/WO2022019307A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photoelectric conversion element.
  • the spectrum of sunlight has a large intensity drop near the wavelength of 940 nm due to the influence of absorption by water vapor. Imaging devices such as TOF cameras reduce the influence of sunlight by using this wavelength band.
  • Silicon is often used as a material for constituting an image pickup device.
  • the light absorption coefficient of silicon is about 1/10 of visible light in the wavelength band of 940 nm. That is, the light absorption efficiency is low.
  • the thickness (x) of the photoelectric conversion unit included in the image pickup apparatus is 5 ⁇ 10 -4 cm (5 ⁇ m). This thickness is that of a typical CMOS image sensor.
  • the light absorption coefficient ( ⁇ ) of silicon in the wavelength band of 940 nm is 250 cm -1.
  • Absorbance in silicon is proportional to the distance (optical path length) that light travels inside silicon. Then, even if the light absorption coefficient ( ⁇ ) is low, the amount of light absorbed by the silicon can be increased by ensuring a sufficient optical path length in the photoelectric conversion unit.
  • the elements disclosed in Patent Documents 1 and 2 have a structure in which light that has passed through the photoelectric conversion unit is returned to the photoelectric conversion unit again. The optical path length obtained by these structures is longer than that in the case of passing through the photoelectric conversion unit only once.
  • the present invention provides a photoelectric conversion element capable of increasing the sensitivity.
  • the photoelectric conversion element has a photoelectric conversion unit that receives light to generate a charge, a charge storage detection unit that stores the charge received from the photoelectric conversion unit, and a first surface side of the photoelectric conversion unit. It has a first reflective layer provided in the above and includes an opening for receiving light, and a second reflective layer provided on the second surface side of the photoelectric conversion unit which is opposite to the first surface.
  • Light that includes a light confinement unit that confine light in the photoelectric conversion unit and a first lens arranged on the first surface side so that the light reciprocates in the photoelectric conversion unit, and determines the traveling direction of the light in the photoelectric conversion unit.
  • the light direction changing unit comprises a direction changing unit, and the optical direction changing unit is arranged outside the region sandwiched between the first surface and the second surface, and is arranged between the first surface and the second surface. Each time the light is repeatedly reflected, the light is advanced in a direction away from the optical axis of the first lens.
  • this photoelectric conversion element In this photoelectric conversion element, light is reflected a plurality of times between the first reflection layer and the second reflection layer. A photoelectric conversion unit exists between the first reflective layer and the second reflective layer. That is, the light reciprocates a plurality of times in the photoelectric conversion unit. Then, since the optical path length of the light in the photoelectric conversion unit is extended, it becomes possible for the photoelectric conversion unit to sufficiently absorb the light. As a result, the sensitivity can be increased.
  • the line segment indicating the surface that receives light is the first curved portion and the line segment farther from the optical axis than the first curved portion.
  • the curvature of the second curved portion may be smaller than the curvature of the first curved portion, including the curved portion of 2. According to this configuration, each time the light is repeatedly reflected between the first surface and the second surface, light traveling in a direction away from the optical axis of the first lens can be generated.
  • the line segment indicating the surface that receives light may include a portion defined as an arc. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the line segment indicating the surface that receives light may include a portion defined as a parabola. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the line segment indicating the surface that receives light is the first straight line portion and the first straight line portion that is farther from the optical axis than the first straight line portion.
  • the second tilt angle between the virtual reference axis and the second straight section including the two straight sections and orthogonal to the optical axis is the first tilt between the virtual reference axis and the first straight section. It may be larger than the corner. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the shape of the first lens may be a shape symmetrical with respect to the optical axis. According to this configuration, the traveling direction of light when the photoelectric conversion unit is viewed in a plane can be made radial.
  • the shape of the first lens may be a shape in which the cross-sectional shape is stretched in a direction orthogonal to the optical axis. According to this configuration, the traveling direction of light when the photoelectric conversion unit is viewed in a plane can be set in a desired direction.
  • the optical direction conversion unit may further include a second lens arranged between the first lens and the first surface in addition to the first lens. Also with this configuration, in the light incident on the photoelectric conversion unit from the opening of the first reflective layer, the component of the light emitted again from the opening can be reduced. Therefore, the sensitivity can be further increased.
  • the line segment indicating the surface that receives light is the third curved portion and the third curved portion farther from the optical axis than the third curved portion.
  • the curvature of the fourth curved portion may be smaller than the curvature of the third curved portion, including the curved portion of 4. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the line segment indicating the surface that receives light may include a portion defined as an arc. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the line segment indicating the surface that receives light may include a portion defined as a parabola. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the line segment indicating the surface that receives light is the third straight line portion and the third straight line portion farther from the optical axis than the third straight line portion.
  • the fourth tilt angle between the virtual reference axis perpendicular to the optical axis and the fourth straight section, including the four straight sections, is the third tilt between the virtual reference axis and the third straight section. It may be larger than the corner. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
  • the optical direction conversion unit may include a reflection unit arranged on the second surface side. Also with this configuration, in the light incident on the photoelectric conversion unit from the opening of the first reflecting layer, the component of the light emitted again from the opening can be reduced. Therefore, the sensitivity can be further increased.
  • the light confinement portion further has a first partition wall portion surrounding the photoelectric conversion portion, and one end surface of the first partition wall portion cooperates with the first reflection layer to perform photoelectric printing.
  • the other end surface of the first partition wall portion may be flush with the second surface of the photoelectric conversion unit so as to sandwich a part of the conversion unit. According to this configuration, light can be better confined in the photoelectric conversion unit.
  • the light confinement portion further has a second partition wall portion surrounding the photoelectric conversion portion, and one end surface of the second partition wall portion is flush with the first surface of the photoelectric conversion portion.
  • the other end face of the second partition wall portion may cooperate with the second reflective layer to sandwich a part of the photoelectric conversion portion.
  • the light confinement portion further has a third partition wall portion surrounding the photoelectric conversion portion, and one end surface of the third partition wall portion is flush with the first surface of the photoelectric conversion portion.
  • the other end face of the third partition wall portion may be flush with the second surface of the photoelectric conversion portion.
  • the photoelectric conversion unit may include a portion overlapping with the opening of the first reflection layer, and the charge accumulation detection unit may not include a portion overlapping with the opening of the first reflection layer.
  • the optical confinement portion is a pixel region having a photoelectric conversion region including a pn junction portion formed by the photoelectric conversion portion and a charge storage detection region including a charge storage detection portion when viewed from the incident direction of light.
  • an outer partition wall portion surrounding the photoelectric conversion region and the charge accumulation detection region may be included so as to confine the light incident from the opening.
  • one end surface of the outer partition wall portion is in contact with the semiconductor region constituting the pn junction, and the other end surface of the outer partition wall portion is flush with the second surface of the photoelectric conversion portion. May be good.
  • one end surface of the outer partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the outer partition wall portion is in contact with the semiconductor region constituting the pn junction. May be good.
  • one end surface of the outer partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the outer partition wall portion is the second surface and surface of the photoelectric conversion portion. It may be one.
  • the light confinement portion is provided between the photoelectric conversion region and the charge accumulation detection region when viewed from the incident direction of light, and the inner partition wall optically separates the charge accumulation detection region from the photoelectric conversion region. May include parts.
  • one end surface of the inner partition wall portion is in contact with the semiconductor region constituting the pn junction, and the other end surface of the inner partition wall portion is flush with the second surface of the photoelectric conversion portion. May be good.
  • one end surface of the inner partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the inner partition wall portion is in contact with the semiconductor region constituting the pn junction. May be good.
  • one end surface of the inner partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the inner partition wall portion is the second surface and surface of the photoelectric conversion portion. It may be one.
  • a photoelectric conversion element capable of increasing sensitivity is provided.
  • FIG. 1 is a cross-sectional view of the photoelectric conversion element of the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view showing DTI, which is the first configuration shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing DTI, which is the second configuration.
  • FIG. 4 is an enlarged cross-sectional view showing DTI, which is the third configuration.
  • 5 (a) is a contour diagram showing the shape of the lens main surface of the outer lens
  • FIG. 5 (b) is a cross-sectional shape of the outer lens in the XX'cross section shown in FIG. 5 (a).
  • (C) is a cross-sectional shape of the outer lens in the YY'cross section shown in FIG. 5 (a).
  • FIG. 5 (a) is a contour diagram showing the shape of the lens main surface of the outer lens
  • FIG. 5 (b) is a cross-sectional shape of the outer lens in the XX'cross section shown in FIG. 5 (a).
  • FIG. 6 is a cross-sectional view for explaining the confinement of light in the photoelectric conversion element.
  • FIG. 7 is a perspective view showing the shape of the outer lens and the formed light irradiation region.
  • FIG. 8 is a diagram for explaining the shape of the outer lens of the modified example 1.
  • FIG. 9 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 1 is applied.
  • FIG. 10 is a diagram for explaining the shape of the outer lens of the modified example 2.
  • FIG. 11 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 2 is applied.
  • FIG. 12 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 3 is applied.
  • FIG. 13 is a diagram for explaining the shape of the outer lens of the modified example 4.
  • FIG. 9 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 1 is applied.
  • FIG. 10 is a diagram for explaining the shape of the outer lens of the modified example 2.
  • FIG. 14 is a diagram showing a photoelectric conversion element to which the outer lens of the modified example 4 is applied.
  • FIG. 15 is a cross-sectional view of the photoelectric conversion element of the second embodiment.
  • FIG. 16 is a cross-sectional view of the photoelectric conversion element of the third embodiment.
  • FIG. 17 is a cross-sectional view of the photoelectric conversion element of the fourth embodiment.
  • FIG. 18 is a cross-sectional view of the photoelectric conversion element of the fifth embodiment.
  • FIG. 19 is a cross-sectional view of the photoelectric conversion element of the sixth embodiment.
  • FIG. 20 is a perspective view showing the shape of the outer lens included in the photoelectric conversion element of the seventh embodiment and the formed light irradiation region.
  • FIG. 21 (a) and 21 (c) are views showing the cross-sectional shape of the outer lens of another shape in the seventh embodiment
  • FIG. 21 (b) is a diagram showing the outer lens of another shape in the seventh embodiment. It is a figure which shows the irradiation area of the light formed by.
  • 22 (a) is a contour diagram showing the shape of the lens main surface of the outer lens of the eighth embodiment
  • FIG. 22 (b) is a cross-sectional shape of the outer lens in the X1-X1'cross section and the X2-X2' cross section
  • FIG. 22 (c) shows the cross-sectional shape of the outer lens in Y1-Y1'cross-section and Y2-Y2'.
  • FIG. 23 is a diagram showing a light irradiation region formed by a modification of the outer lens of the eighth embodiment.
  • FIG. 24 is a cross-sectional view of the photoelectric conversion element of the ninth embodiment.
  • FIG. 25 (a) is a cross-sectional view showing a first step for manufacturing the photoelectric conversion element of the ninth embodiment, and
  • FIG. 25 (b) is a cross-sectional view showing the second step.
  • FIG. 26A is a cross-sectional view showing a third step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 26B is a cross-sectional view showing the fourth step.
  • 27 (a) is a cross-sectional view showing a fifth step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG.
  • FIG. 27 (b) is a cross-sectional view showing the sixth step.
  • FIG. 28 (a) is a cross-sectional view showing a seventh step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 28 (b) is a cross-sectional view showing the eighth step.
  • FIG. 29 (a) is a cross-sectional view showing a first step in another method for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 29 (b) is a cross-sectional view showing the second step.
  • FIG. 30A is a cross-sectional view showing a third step in another method for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 30B is a cross-sectional view showing the fourth step.
  • FIG. 30A is a cross-sectional view showing a third step in another method for manufacturing the photoelectric conversion element of the ninth embodiment
  • FIG. 30B is a cross-sectional view showing the fourth step.
  • FIG. 31 is a cross-sectional view showing a fifth step in another method for manufacturing the photoelectric conversion element of the ninth embodiment.
  • FIG. 32 is a cross-sectional view of the photoelectric conversion element of the tenth embodiment.
  • FIG. 33 is a plan view of the photoelectric conversion element of the eleventh embodiment.
  • FIG. 34 is a plan view showing the structure of the photoelectric conversion element of the eleventh embodiment and the formed light irradiation region.
  • FIG. 35 is a plan view showing a first arrangement example of the photoelectric conversion element of the eleventh embodiment.
  • FIG. 36 is a plan view showing a second arrangement example of the photoelectric conversion element of the eleventh embodiment.
  • FIG. 37 is a plan view showing the structure of the photoelectric conversion element of the eleventh embodiment and the formed light irradiation region.
  • FIG. 38 is a plan view of the photoelectric conversion element of the twelfth embodiment.
  • FIG. 39 is a plan view showing the structure of the photoelectric conversion element of the twelfth embodiment and the formed light irradiation region.
  • FIG. 40 is a diagram illustrating the analysis model used in Calculation Examples 1, 2, and 3.
  • FIG. 41 is a perspective view of the outer lens used in Calculation Example 1.
  • FIG. 42 is a perspective view of the outer lens used in Calculation Example 2.
  • FIG. 43 is a perspective view of the outer lens used in Calculation Example 3.
  • FIG. 44 is a first contour diagram showing the result of calculation example 1.
  • FIG. 45 is a second contour diagram showing the result of calculation example 1.
  • FIG. 46 is a first contour diagram showing the result of calculation example 2.
  • FIG. 45 is a second contour diagram showing the result of calculation example 1.
  • FIG. 47 is a second contour diagram showing the result of calculation example 2.
  • FIG. 48 is a diagram showing light rays according to the result of calculation example 2.
  • FIG. 49 is another diagram showing a light ray according to the result of the calculation example 2.
  • FIG. 50 is a first contour diagram showing the result of calculation example 3.
  • FIG. 51 is a diagram showing light rays based on the result of calculation example 3.
  • FIG. 52 is another diagram showing a light ray according to the result of the calculation example 3.
  • FIG. 53 (a) is a second contour diagram of the calculation example 3, and FIG. 53 (b) is a third contour diagram of the calculation example 3.
  • FIG. 54 (a) is a fourth contour diagram of Calculation Example 3, and FIG. 54 (b) is a fifth contour diagram of Calculation Example 3.
  • FIG. 55 (a) is a sixth contour diagram of Calculation Example 3, and
  • FIG. 55 (b) is a seventh contour diagram of Calculation Example 3.
  • the photoelectric conversion element 1 shown in FIG. 1 is a so-called back-illuminated pixel.
  • the photoelectric conversion element 1 includes an outer lens 10 (first lens, optical direction conversion unit 60), a main spacer 20, a photoelectric conversion unit 30, a wiring unit 40, and a light confinement unit 50.
  • the outer lens 10 determines the direction of the light R incident on the photoelectric conversion unit 30 together with the main spacer 20. That is, the outer lens 10 constitutes the optical direction conversion unit 60 together with the main spacer 20.
  • the outer lens 10 has a lens incident surface 11 and a lens emitting surface 12.
  • the main spacer 20 determines the distance from the outer lens 10 to the photoelectric conversion unit 30.
  • the main spacer 20 has a spacer incident surface 21 and a spacer emitting surface 22.
  • the incident position and angle of light incident on the photoelectric conversion unit 30 are important. These incident positions and angles are determined according to the shape and characteristics (refractive index) of the optical component through which light passes.
  • the outer lens 10 and the main spacer 20 correspond to this. That is, the photoelectric conversion element 1 has an optical direction conversion unit 60 composed of an outer lens 10 and a main spacer 20. That is, the optical direction conversion unit 60 is configured to guide light to the photoelectric conversion unit 30 so as to cause multiple reflections. Since the optical direction conversion unit 60 is configured to guide light to the photoelectric conversion unit 30, it is arranged outside the photoelectric conversion unit 30.
  • the photoelectric conversion unit 30 absorbs light R.
  • the photoelectric conversion unit 30 generates an electric charge according to the absorbed light R.
  • the photoelectric conversion unit 30 has a back surface 30B (first surface) and a front surface 30F (second surface).
  • the photoelectric conversion unit 30 has a p + type first semiconductor region 31, a p-type second semiconductor region 32, an n-type third semiconductor region 33, and a p + type fourth semiconductor region 34.
  • the first semiconductor region 31 constitutes the back surface 30B of the photoelectric conversion unit 30.
  • the first semiconductor region 31 is in contact with the second semiconductor region 32.
  • the second semiconductor region 32 is in contact with the first semiconductor region 31, the third semiconductor region 33, and the fourth semiconductor region 34, respectively.
  • the third semiconductor region 33 is in contact with the second semiconductor region 32 and the fourth semiconductor region 34.
  • the second semiconductor region 32 and the third semiconductor region 33 form a pn junction and function as a photodiode. That is, the photoelectric conversion unit 30 made of silicon that absorbs light R includes a photodiode.
  • the structure of the photodiode is preferably an embedded photodiode, but it may be a light receiving element such as a photogate.
  • the fourth semiconductor region 34 constitutes the surface 30F of the photoelectric conversion unit 30.
  • the fourth semiconductor region 34 is in contact with the second semiconductor region 32 and the third semiconductor region 33. Further, the fourth semiconductor region 34 is in contact with the back surface 40B of the wiring portion 40.
  • the light confinement portion 50 includes a back surface side reflection layer 50B (first reflection layer), a front surface side reflection layer 50F (second reflection layer), an antireflection layer 51, and a DTI 52 (Deep Trench Isolation, first partition wall). Part) and.
  • the antireflection layer 51 is formed on the back surface 30B of the photoelectric conversion unit 30.
  • the antireflection layer 51 is composed of, for example, silicon oxide (SiO 2 ) and silicon nitride (SiN).
  • the antireflection layer 51 covers the entire pixel area defined by the DTI 52.
  • the back surface side reflective layer 50B and the front surface side reflective layer 50F are made of metal. That is, the back surface side reflective layer 50B and the front surface side reflective layer 50F are metal layers.
  • the back surface side reflective layer 50B and the front surface side reflective layer 50F are made of, for example, aluminum (Al), copper (Cu), or tungsten (W).
  • the back surface side reflective layer 50B is formed on the antireflection layer 51.
  • the back surface side reflective layer 50B includes an incident opening 50B1 and a boundary opening 50B2.
  • the incident aperture 50B1 intersects the optical axis Z.
  • the position of the boundary opening 50B2 corresponds to the position of the DTI 52.
  • the antireflection layer 51 is exposed through the incident opening 50B1 and the boundary opening 50B2.
  • the antireflection layer 51 contacts the main spacer 20 via the incident opening 50B1 and the boundary opening 50B2.
  • the surface-side reflective layer 50F is formed inside the wiring portion 40.
  • the DTI 52 optically partitions the adjacent photoelectric conversion elements 1.
  • a substance having a refractive index smaller than that of silicon (refractive index 3.64 @ 940 nm) is embedded in a trench formed in a silicon substrate constituting the photoelectric conversion unit 30.
  • the substance having a small refractive index include SiO 2 (refractive index of about 1.45).
  • the DTI 52 surrounds the third semiconductor region 33.
  • the width from one DTI 52 to the other DTI 52 is larger than the width of the third semiconductor region 33.
  • FIG. 2 is an enlarged view of one DTI 52.
  • the DTI 52 is formed in the second semiconductor region 32 and the fourth semiconductor region 34.
  • the surface side end surface 52s of the DTI 52 is in contact with the wiring portion 40.
  • the DTI 52 penetrates the fourth semiconductor region 34.
  • An electrode 43p is provided at a portion of the wiring portion 40 in contact with the surface side end surface 52s.
  • the electrode 43p electrically connects the DTI 52 to the surface reflective layer 50F.
  • the DTI 52 extends from the front surface of the second semiconductor region 32 (front surface 30F of the photoelectric conversion unit 30) toward the back surface of the second semiconductor region 32 (back surface 30B of the photoelectric conversion unit 30).
  • the DTI 52 having such a structure is formed by processing from the surface 30F of the photoelectric conversion unit 30.
  • the back surface side end surface 52t of the DTI 52 is located in the second semiconductor region 32. A part of the second semiconductor region 32 exists between the back surface side end surface 52t and the first semiconductor region 31. That is, the DTI 52 does not penetrate the second semiconductor region 32.
  • the DTI 52 is not limited to the configuration shown in FIG.
  • the DTI 52 has three configurations including the first configuration shown in FIG. 2 in the relationship between the back surface side end surface 52t and the back surface 30B of the photoelectric conversion unit 30 and the relationship between the front surface side end surface 52s and the front surface 30F of the photoelectric conversion unit 30. Can be adopted.
  • FIG. 3 is an enlarged view of the DTI 52A (third partition wall portion) having the second configuration.
  • the DTI 52A, the back surface side end surface 52t is flush with the back surface 30B of the photoelectric conversion unit 30, and the front surface side end surface 52s is flush with the surface 30F of the photoelectric conversion unit 30. That is, the DTI 52A penetrates the photoelectric conversion unit 30.
  • the back surface side end surface 52t is in contact with the antireflection layer 51.
  • the back surface side reflective layer 50B is not provided in a small area above the back surface side end surface 52t. That is, the back surface side reflective layer 50B has a boundary opening 50B2 which is a gap.
  • the front end surface 52s is electrically connected to the electrode 43p exposed on the back surface 40B of the wiring portion 40.
  • the DTI 52A optically separates the inside of the photoelectric conversion unit 30. Therefore, the second configuration, DTI52A, is advantageous in that it enhances the light absorption efficiency. Further, the DTI 52A electrically separates the inside of the photoelectric conversion unit 30. That is, the DTI 52A blocks the transfer of charge.
  • FIG. 4 is an enlarged view of the DTI 52B (second partition wall portion) having the third configuration.
  • the back surface side end surface 52t is flush with the back surface 30B of the photoelectric conversion unit 30.
  • the back surface side end surface 52t comes into contact with the antireflection layer 51.
  • the surface side end surface 52s is not flush with the surface 30F of the photoelectric conversion unit 30.
  • the front end surface 52s is separated from the surface 30F of the photoelectric conversion unit 30. That is, the DTI 52B does not penetrate the photoelectric conversion unit 30.
  • Such a DTI 52B is formed by processing from the back surface 30B of the photoelectric conversion unit 30.
  • the surface side end surface 52s is in contact with the second semiconductor region 32 of the photoelectric conversion unit 30. Then, the second semiconductor region 32 of the photoelectric conversion unit 30 is not separated below the surface side end surface 52s. A part 32s of the second semiconductor region 32 can be used as a charge transfer path. That is, the region (32s) that the DTI 52B does not penetrate can be used for transferring the charge to the charge storage detection unit 70 (see FIG. 33) via the MOS transistor structure. It should be noted that light R may leak from the region where the DTI 52B does not penetrate. In this case, measures for leakage of light R may be taken as appropriate.
  • the wiring portion 40 has a back surface 40B and a front surface 40F.
  • the wiring unit 40 has a first wiring layer 41, a second wiring layer 42, electrodes 43 and 43p, and a silicon oxide region 44.
  • the silicon oxide region 44 constitutes the back surface 40B of the wiring portion 40 and the front surface 40F of the wiring portion 40.
  • the first wiring layer 41, the second wiring layer 42, and the electrodes 43, 43p are embedded in the silicon oxide region 44. Further, the surface-side reflective layer 50F is also embedded in the silicon oxide region 44.
  • the first wiring layer 41 is electrically connected to the second wiring layer 42 via the electrode 43.
  • the lens incident surface 11 of the outer lens 10 has a different curvature depending on the location. That is, the lens incident surface 11 is not a curved surface having a constant curvature.
  • the line segment indicating the surface that receives light is the first curved portion and the optical axis Z rather than the first curved portion.
  • the curvature of the second curved portion includes the second curved portion far from the curve portion and is smaller than the curvature of the first curved portion. For example, as shown in FIG.
  • the first region L5a corresponds to the first curved portion
  • the second region L5b corresponds to the second curved portion.
  • the curvature of the second region L5b is smaller than the curvature of the first region L5a.
  • FIG. 5A is a contour line view of the lens incident surface 11 in a plan view.
  • the outer lens 10 has a rotationally symmetric shape centered on the optical axis Z.
  • 5 (b) and 5 (c) are cross-sectional views showing the positions of the contour lines.
  • the cross section 10a in FIG. 5 (b) corresponds to the X1-X1'cross section in FIG. 5 (a).
  • the cross section 10b of FIG. 5B corresponds to the X2-X2'cross section of FIG. 5A.
  • the cross section 10c of FIG. 5 (c) corresponds to the Y1-Y1'cross section of FIG. 5 (a).
  • FIG. 5 (c) corresponds to the Y2-Y2'cross section in FIG. 5 (a).
  • the axes of FIGS. 5 (b) and 5 (c) indicate the positions of the contour lines of FIG. 5 (a).
  • the numbers on the axes of FIGS. 5 (b) and 5 (c) correspond to the numbers attached to the contour lines of FIG. 5 (a).
  • the region surrounded by the contour lines (11) is defined as the first region L5a
  • the region surrounded by the contour lines (1) to the contour lines (6) is defined as the second region L5b. May be good.
  • the first region L5a intersects the optical axis Z.
  • the second region L5b surrounds the first region L5a.
  • the outer lens 10 having such a shape has a plurality of focal positions.
  • the position of the focal point FP1 at the top of the outer lens 10 (first region L5a) is higher than the position of the focal point F2 at the peripheral portion of the outer lens 10 (second region L5b).
  • the focal length at the top of the outer lens 10 is shorter than the focal length at the periphery of the outer lens 10.
  • the state of light absorption in the photoelectric conversion element 1 will be described with reference to FIGS. 6 and 7. It is assumed that the lights R6a and R6b are parallel lights. The directions of the light R6a and R6b are parallel to the optical axis Z.
  • the shape of the outer lens 10 which is a microlens is a conical shape with rounded vertices.
  • the light R6a and R6b that have passed through the outer lens 10 are incident on the photoelectric conversion unit 30 from the incident aperture 50B1.
  • the reflected light becomes donut-shaped (ring-shaped) in the surface-side reflective layer 50F.
  • the diameter of the ring is expanded near the surface, and the ring shape becomes thinner once.
  • the reflection is repeated between the front surface side reflection layer 50F and the back surface side reflection layer 50B.
  • the optical R6a and R6b continue to be absorbed by the photoelectric conversion unit 30, so that the photoelectric conversion continues.
  • the state of the light R6a incident on the second region L5b on the lens incident surface 11 will be described with reference to FIG.
  • the traveling direction of the light R6a changes.
  • the change in the traveling direction is based on the incident angle of the light R6a with respect to the lens incident surface 11. Further, the change in the traveling direction is also based on the difference in the refractive index between the refractive index of air and the refractive index of the outer lens 10.
  • the light R6a is incident on the main spacer 20 from the lens emitting surface 12.
  • the refractive index of the outer lens 10 is the same as the refractive index of the main spacer 20.
  • the traveling direction of the light R6a does not change.
  • the light R6a passes through the incident opening 50B1 of the back surface side reflective layer 50B and then passes through the antireflection layer 51. After that, the light R6a is incident on the photoelectric conversion unit 30.
  • the refractive index of the first semiconductor region 31 of the photoelectric conversion unit 30 does not match the refractive index of the main spacer 20. Therefore, the traveling direction of the light R6a changes when it is incident on the photoelectric conversion unit 30.
  • the light R6a incident on the photoelectric conversion unit 30 passes through the first semiconductor region 31, the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34.
  • the refractive index (3.64) of the photoelectric conversion unit 30 is different from the refractive index (1.45) of the silicon oxide region 44 of the wiring unit 40. Therefore, upon incident incident on the wiring portion 40, the traveling direction of the light R6a changes according to the difference in the refractive index.
  • the light R6a incident on the wiring portion 40 reaches the surface-side reflective layer 50F.
  • the position where the light R6a is incident on the surface-side reflective layer 50F is away from the optical axis Z.
  • the light R6a is reflected by the surface-side reflective layer 50F.
  • the traveling direction of the light R6a after reflection depends on the angle of incidence of the light R6a on the surface side reflection layer 50F.
  • the reflected light R6a is incident on the photoelectric conversion unit 30 from the wiring unit 40.
  • the light R6a travels straight in the photoelectric conversion unit 30.
  • the light R6a reaches the back surface side reflective layer 50B. That is, the light R6a reflected by the surface-side reflective layer 50F does not return to the incident opening 50B1.
  • the light R6a reflected by the back surface side reflection layer 50B passes through the photoelectric conversion unit 30 again and then reaches the front surface side reflection layer 50F. After that, the light R6a approaches the DTI 52 while reciprocating between the back surface side reflective layer 50B and the front surface side reflective layer 50F.
  • the light R6a that has reached the DTI 52 is reflected by the DTI 52. After that, the light R6a reciprocates between the back surface side reflective layer 50B and the front surface side reflective layer 50F, and is separated from the DTI 52. Finally, the component of the light R6a that was not absorbed by the photoelectric conversion unit 30 reaches from the photoelectric conversion unit 30 to the main spacer 20 via the incident opening 50B1.
  • the ratio of the thickness of the photoelectric conversion unit 30 to the pixel size (width of the light receiving region) is shown as 1: 2.
  • the thickness of the photoelectric conversion unit 30 is 5 ⁇ m
  • the pixel size (width of the light receiving region) is 10 ⁇ m.
  • the light R6a passes through the photoelectric conversion unit 30 eight times.
  • the optical path length of the optical R6a is 40.8 ⁇ m.
  • the absorption length of light having a wavelength of 940 nm is about 40 ⁇ m. That is, if there is no loss due to reflection, the quantum efficiency can be increased to about 64%.
  • the state of the light R6b incident on the first region L5a on the lens incident surface 11 will be described.
  • the light R6b also enters the photoelectric conversion unit 30 from the incident opening 50B1 in the same manner as the light R6b incident on the first region L5a.
  • the optical R6b reciprocates the photoelectric conversion unit 30 a plurality of times.
  • the incident angle when the light R6b first enters the surface-side reflective layer 50F after passing through the incident opening 50B1 is smaller than that in the first example.
  • the number of times the light R6b is reflected by the photoelectric conversion unit 30 is 22 times.
  • the number of round trips of the photoelectric conversion unit 30 of the optical R6b is larger than the number of round trips of the optical R6a of the first example.
  • the optical path length of the photoelectric conversion unit 30 in the second example is about 110 ⁇ m. If there is no loss due to reflection, the quantum efficiency can be increased to about 94%.
  • the quantum efficiency of the photoelectric conversion element 1 can be increased to about 80%.
  • FIG. 7 is a perspective view illustrating the second example by another expression.
  • FIG. 7 illustrates a ray of one light R7a.
  • the outer lens 10 has a symmetrical shape around the optical axis Z. Then, when the light R7a incident on the same position along the optical axis Z reaches the surface-side reflective layer 50F, it is incident on the position equidistant from the optical axis Z. In other words, the position incident on the surface-side reflective layer 50F is a circle centered on the optical axis Z. Since the incident angles of the light R7a are equal to each other at each position, the directions from the front surface side reflection layer 50F to the back surface side reflection layer 50B are also equivalent.
  • the position of being incident on the surface-side reflective layer 50F again is a similar circle.
  • the radius of the position where the light R7a is incident on the surface side reflective layer 50F for the second time is the radius of the position where the light R7a is incident on the surface side reflective layer 50F for the first time. Greater than the radius of the incident position.
  • the positions where the light R7a is incident on the surface-side reflective layer 50F draw concentric circles.
  • changing the traveling direction of the light R7a so that it is incident on the surface-side reflective layer 50F at a position equidistant from the optical axis Z is referred to as “light molding”.
  • the light source of the TOF camera which measures the distance by irradiating the object with light and measuring the flight time while the light is reflected by the object and returns, measures the distance outdoors in the presence of sunlight.
  • laser light in the 940 nm band in which the spectral intensity of sunlight is relatively low due to absorption of water vapor in the atmosphere, is often used.
  • the absorption coefficient of silicon which is a semiconductor, is sufficiently large for light in this wavelength band. Therefore, it was not possible to increase the quantum efficiency in the photoelectric conversion layer of about several ⁇ m to about 10 ⁇ m of the conventional CMOS image sensor. Therefore, it cannot be said that sufficient sensitivity for outdoor distance measurement has been achieved.
  • the photoelectric conversion element 1 reflects light R a plurality of times between the back surface side reflection layer 50B and the front surface side reflection layer 50F.
  • a photoelectric conversion unit 30 exists between the back surface side reflection layer 50B and the front surface side reflection layer 50F. That is, the light R reciprocates the photoelectric conversion unit 30 a plurality of times. Then, since the optical path length of the light R in the photoelectric conversion unit 30 is extended, it becomes possible for the photoelectric conversion unit 30 to sufficiently absorb the light R. As a result, the sensitivity can be increased.
  • the photoelectric conversion element 1 of the first embodiment reflects light R a plurality of times between the front surface side reflection layer 50F and the back surface side reflection layer 50B provided with the incident opening 50B1.
  • the distribution of the light intensity in the surface-side reflective layer 50F can be made annular (doughnut-shaped). According to this intensity distribution, most of the light R is projected onto the back surface side reflective layer 50B.
  • the combination of the outer lens 10 of the first embodiment, which has a large curvature at the top and a small curvature at the side, and the main spacer 20 arranged between the outer lens 10 and the photoelectric conversion unit 30, is annular. It is possible to obtain the distribution of light intensity. As a result, according to the photoelectric conversion element 1 of the present embodiment, sufficient sensitivity can be achieved for distance measurement outdoors.
  • the refraction angle from the main spacer 20 to the photoelectric conversion unit 30 for causing multiple reflections inside the photoelectric conversion unit 30 made of silicon and the incident position with respect to the incident opening 50B1 are the incident angles of the light incident on the outer lens 10. It is directly determined by the inclination of the reflecting surface on the incident surface.
  • the reflective surface is a surface perpendicular to the normal of the surface of the outer lens 10.
  • the surface that receives light has a condition that causes multiple reflection even when the line segment indicating the surface includes a plurality of straight lines.
  • the line segment indicating the surface of the outer lens 10 that receives light is a curve, and there is a condition that causes multiple reflection even if the curvature of the curve is the same. That is, the outer lens constituting the optical direction conversion unit is not limited to the outer lens 10 of the first embodiment.
  • the outer lens cooperates with other optical components to emit light in a direction away from the optical axis Z each time light is repeatedly reflected between the back surface 30B of the photoelectric conversion unit 30 and the front surface 30F of the photoelectric conversion unit 30.
  • a configuration may be adopted in which the traveling direction of the light can be changed so that the light travels.
  • the outer lenses of Modifications 1 to 4 are adopted, the light parallel to the optical axis Z incident on the outer lens is reflected by the surface-side reflective layer 50F after passing through the incident aperture 50B1, and further the incident aperture. It is reflected by the back surface side reflective layer 50B around 50B1. That is, the optical direction changing unit including the outer lens can generate multiple reflections.
  • multiplex means at least two or more reflections.
  • the outer lens 10S1 of the modification 1 will be described with reference to FIGS. 8 and 9.
  • the outer lens 10S1 has a composite conical shape.
  • the compound conical shape refers to a multi-stage shape having inclinations of a plurality of angles. That is, in the cross-sectional shape of the outer lens 10S1 of the first modification, the tilt angle increases as the distance from the optical axis Z increases.
  • the tilt angle here means the angle of the contour line with respect to the virtual reference axis ZA orthogonal to the optical axis Z in the cross-sectional shape of the outer lens 10S1 including the optical axis Z.
  • the tilt angle is more preferably a finite angle.
  • the outer lens 10S1 shown in FIGS. 8 and 9 is an example of an outer lens having a composite conical shape. Therefore, the specific numerical values are not limited to the examples shown in FIGS. 8 and 9 and the specific numerical values described below. Specific numerical values may be appropriately set according to the specific configuration of the photoelectric conversion element 1S1.
  • FIG. 8 is a schematic diagram for explaining the composite conical shape.
  • the line segment C1 shown in FIG. 8 indicates a surface that receives light in the cross-sectional shape of the outer lens 10S1 of the first modification.
  • the line segment C1 has a first straight line portion C1a, a second straight line portion C1b, and a third straight line portion C1c between the apex C1t and the end point C1e.
  • the first straight line portion C1a includes the apex C1t.
  • the third straight line portion C1c includes the endpoint C1e.
  • the second straight line portion C1b is arranged between the first straight line portion C1a and the third straight line portion C1c. That is, the second straight line portion C1b connects the first straight line portion C1a to the third straight line portion C1c.
  • the first straight line portion C1a has a first inclination angle A1a.
  • the inclination angle is an angle between the virtual reference axis ZA orthogonal to the optical axis Z and the first straight line portion C1a.
  • the second straight line portion C1b has a second tilt angle A1b and the third straight line portion C1c has a third tilt angle A1c.
  • the second tilt angle A1b is larger than the first tilt angle A1a.
  • the third tilt angle A1c is larger than the second tilt angle A1b.
  • FIG. 9 is a cross-sectional view showing a main part of the photoelectric conversion element 1S1 provided with the outer lens 10S1 having the composite conical shape described with reference to FIG.
  • the photoelectric conversion element 1S1 includes an outer lens 10S1, a main spacer 20, and a photoelectric conversion unit 30.
  • FIG. 9 illustrates a light ray indicating the light incident on the outer lens 10S1.
  • the angles of the normal line N on the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A2a, A2b, and A2c, respectively.
  • the following can be exemplified as the numerical values of each angle.
  • Angle A2a 20 °
  • Angle A2b 30 °
  • Angle A2c 40 °
  • the light incident from the vicinity of the optical axis Z of the outer lens 10S1 is reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B. That is, the light incident from the vicinity of the optical axis Z is not emitted from the incident opening 50B1 to the outside of the photoelectric conversion unit 30 due to the first reflection by the surface-side reflective layer 50F. Similarly, the light incident from the end portion of the outer lens 10S1 is also reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B.
  • the photoelectric conversion element 1S1 provided with the outer lens 10S1 of the modification 1 can also suitably confine the light in the photoelectric conversion unit 30.
  • the outer lens 10S2 of the modification 2 will be described with reference to FIGS. 10 and 11.
  • the portion that receives light in the cross-sectional shape showing the contour of the outer lens 10S2 includes a curved portion.
  • the curve is an arc.
  • the entire portion of the cross-sectional shape showing the contour of the outer lens 10S2 that receives light exhibits a shape in which the curve is copied with the optical axis Z as the axis of symmetry. Part of the curve does not have to include the axis of the arc parallel to the optical axis Z.
  • the line segment C2 shown in FIG. 10 shows a surface that receives light in the cross-sectional shape including the optical axis Z in the outer lens 10S2 of the modification 2.
  • the line segment C2 indicating the surface that receives light includes a portion defined as an arc. More specifically, the line segment C2 corresponds to a part CA1 of the arc CA.
  • the arc CA has a virtual reference axis ZA parallel to the optical axis Z.
  • the virtual reference axis ZA and the optical axis Z are separated from each other in a direction orthogonal to the optical axis Z.
  • Such a line segment C2 has one value as the curvature, and in this respect, it differs from the outer lens 10 of the embodiment shown by the curve including a plurality of curvatures.
  • FIG. 11 is a cross-sectional view showing a main part of the photoelectric conversion element 1S2 provided with the outer lens 10S2 described with reference to FIG.
  • the photoelectric conversion element 1S2 includes an outer lens 10S2, a main spacer 20, and a photoelectric conversion unit 30.
  • FIG. 11 shows a light ray indicating the light incident on the outer lens 10S2 as in FIG. 9.
  • the angles of the normal line N of the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A3a, A3b, A3c, A3d, and A3e, respectively.
  • the following can be exemplified as the numerical values of each angle.
  • Angle A3a 20 °
  • Angle A3b 25 °
  • Angle A3c 30 °
  • Angle A3d 35 °
  • Angle A3e 40 °
  • Light incident from the vicinity of the optical axis Z of the outer lens 10S2 (for example, optical Lar) is reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B. That is, the light incident from the vicinity of the optical axis Z of the outer lens 10S2 is not emitted from the incident aperture 50B1 to the outside of the photoelectric conversion unit 30.
  • the light incident from the end of the outer lens 10S2 (for example, light Lbr, Lbl) is also reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B.
  • the photoelectric conversion element 1S2 provided with the outer lens 10S2 of the modification 2 can also suitably confine the light in the photoelectric conversion unit 30.
  • the right end Er of the lens on the right side of the paper surface and the left end El of the lens on the left side of the paper surface are defined.
  • Light Lbr is incident on Er at the right end of the lens.
  • Light Lbl is incident on the left end El of the lens. It is assumed that the light Lbr and Lbl are parallel to the optical axis Z. Further, the light Lar is incident on a position slightly to the right of the optical axis Z.
  • the light Lbr is incident on the photoelectric conversion unit 30 at the position Lbrp1. Then, the light Lbr is reflected by the front surface side reflection layer 50F and then incident on the position Lbrp2 on the back surface side reflection layer 50B. Further, the light Lbl is incident on the photoelectric conversion unit 30 at the position Lblp1. Then, the light Lbl is reflected by the front surface side reflection layer 50F and then incident on the position Lblp2 on the back surface side reflection layer 50B. Further, the optical Lar is incident on the photoelectric conversion unit 30 at the position Larp1. Then, the light Lar is reflected by the front surface side reflection layer 50F and then incident on the position Larp 2 on the back surface side reflection layer 50B.
  • the distance from the optical axis Z to the position Lblp1 and the distance from the optical axis Z to the position Lbrp2 is larger than the distance from the optical axis Z to the position Lblp1. big. Further, comparing the distance from the optical axis Z to the position Lblp1 and the distance from the optical axis Z to the position Larp2, the distance from the optical axis Z to the position Larp2 is larger than the distance from the optical axis Z to the position Lblp1. .. Then, the incident opening 50B1 is provided so as to pass through the position Lbrp1 and the position Lblp1.
  • the opening end of the incident aperture 50B1 is determined by the position (position Lbrp1, Lblp1) where the light Lbr and Lbl incident on the position far from the optical axis Z are incident on the photoelectric conversion unit 30. There is.
  • the inclination of the tangent line of the lens surface with respect to the light Lar and Lbr in the outer lens 10S2, the refractive index of the lens material of the outer lens 10S2, and the thickness of the main spacer 20 are on the right side of the light Lbr and the optical axis Z on the outermost periphery of the right lens.
  • the back surface side reflective layer 50B constituting the first reflective layer is provided from the left end of the pixel to the position between the position Lbrp2 (or the position Larp2) and the position Lblp1.
  • Another part of the back surface side reflective layer 50B constituting the first reflective layer is provided on the opposite side of this and the optical axis Z as an axis target.
  • FIG. 12 is a cross-sectional view showing a main part of the photoelectric conversion element 1S3 provided with the outer lens 10S3 whose opening end of the incident aperture 50B1 is determined by another factor.
  • the photoelectric conversion element 1S3 includes an outer lens 10S3, a main spacer 20, and a photoelectric conversion unit 30.
  • FIG. 12 shows a light ray indicating light incident on the outer lens 10S3 as in FIG. 9.
  • the angles of the normal line N on the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A4a and A4b, respectively.
  • the following can be exemplified as the numerical values of each angle.
  • Angle A4a 20 °
  • Angle A4b 55 °
  • the radius t5 of the arc that defines the outer lens is 10.5 ⁇ m.
  • the deviation between the arc axis ZB and the optical axis Z t6 3.7 ⁇ m.
  • the width of the back surface reflective layer t7 2.9 ⁇ m.
  • the diameter of the incident opening t8 4.2 ⁇ m.
  • the outer lens 10S2 of the second modification was determined by the position where the light Lbr and Lbl incident on the position where the incident aperture 50B1 is far from the optical axis Z are incident on the photoelectric conversion unit 30.
  • the incident aperture 50B1 is determined by the position where the light Lar incident on the optical axis Z is incident on the photoelectric conversion unit 30.
  • the light Lbr is incident on the photoelectric conversion unit 30 at the position Lbrp1. Then, the light Lbr is reflected by the front surface side reflection layer 50F and then incident on the position Lbrp2 on the back surface side reflection layer 50B. Further, the optical Lar is incident on the photoelectric conversion unit 30 at the position Larp1. Then, the light Lar is reflected by the front surface side reflection layer 50F and then incident on the position Larp 2 on the back surface side reflection layer 50B.
  • the distance from the optical axis Z to the position Larp1 and the distance from the optical axis Z to the position Lbrp2 is larger than the distance from the optical axis Z to the position Larp1.
  • the incident opening 50B1 is provided so that its end portion passes between the position Lbrp2 and the position Larp1.
  • the optical Lbr on the outermost periphery (right side) of the lens is incident on silicon (photoelectric conversion unit 30), it is reflected once by the second reflective layer (front surface side reflective layer 50F), and is reflected once by the first reflective layer (back surface side reflection).
  • the position Lbrp2 where the second reflection is performed on the layer 50B) is located on the right side of the optical axis Z and at a position farther from the optical axis Z than the position where the optical Lar substantially overlapping the optical axis Z is incident on the silicon (photoelectric conversion unit 30).
  • a first reflective layer (reflective layer 50B on the back surface side) is provided from the left end of the pixel to a position between the position Lbrp2 and the position Larp1.
  • a first reflective layer (reflective layer 50B on the back surface side) is also provided on the side opposite to the optical axis Z.
  • the line segment C4 indicating the portion that receives light in the cross-sectional shape showing the contour of the outer lens 10S4 of the modified example 4 may include a portion defined as a parabolic CB. That is, the cross-sectional shape showing the outline of the outer lens 10S4 may be a shape in which a part of the parabola CB having an axis parallel to the optical axis Z is copied with the optical axis Z as the axis of symmetry.
  • the partial CB1 of the parabola CB may not include the axis ZB of the parabola CB parallel to the optical axis Z. If it is permissible to generate light that does not reflect multiple times to some extent, the axis ZC of the parabola CB parallel to the optical axis Z may be included.
  • FIG. 14 is a cross-sectional view showing a main part of a photoelectric conversion element 1S4 provided with an outer lens 10S4 including a line segment C4 defined as a parabolic CB.
  • the photoelectric conversion element 1S4 includes an outer lens 10S4, a main spacer 20, and a photoelectric conversion unit 30.
  • FIG. 14 shows a light ray indicating light incident on the outer lens 10S4 as in FIG. 9.
  • the angles of the normal line N on the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A5a, A5b, A5c, A5d, and A5e, respectively.
  • the following can be exemplified as the numerical values of each angle.
  • Angle A5a 20 °
  • Angle A5b 25 °
  • Angle A5c 30 °
  • Angle A5d 35 °
  • Angle A5e 40 °
  • the photoelectric conversion element 1S4 provided with the outer lens 10S4 of the modification 4 can also suitably confine the light in the photoelectric conversion unit 30.
  • the photoelectric conversion element 1A of the second embodiment includes an outer lens 10A, a main spacer 20A, an inner lens 61A (second lens, optical direction conversion unit 60A), an inner spacer 62A, and the like.
  • a photoelectric conversion unit 30A and a wiring unit 40A are provided.
  • the photoelectric conversion element 1A of the second embodiment has a DTI 52A (see FIG. 3) having a second configuration.
  • the photoelectric conversion element 1A differs from the photoelectric conversion element 1 of the first embodiment in the configuration of the outer lens 10A.
  • the photoelectric conversion element 1A is different from the photoelectric conversion element 1 of the first embodiment in that the inner lens 61A and the inner spacer 62A are further provided.
  • the photoelectric conversion element 1A includes an inner lens 61A that the photoelectric conversion element 1 of the first embodiment does not have.
  • the inner lens 61A has a shape corresponding to the outer lens 10 of the first embodiment. That is, the photoelectric conversion element 1A of the second embodiment adopts a double microlens structure including an outer lens 10A and an inner lens 61A.
  • a spherical microlens is adopted as the outer lens 10A for capturing light R, and a microlens having a conical shape with rounded vertices is adopted as the inner lens 61A. That is, in the second embodiment, the components that guide the light to the photoelectric conversion unit 30A are the outer lens 10A, the main spacer 20A, the inner lens 61A, and the inner spacer 62A. These optical components constitute the optical direction conversion unit 60A in the second embodiment.
  • the photoelectric conversion element 1A guides the light R first reflected by the front surface side reflection layer 50F to the back surface side reflection layer 50B. Since the photoelectric conversion unit 30A and the wiring unit 40A are the same as the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted.
  • the outer lens 10A, the inner lens 61A, and the inner spacer 62A will be described in detail.
  • the outer lens 10A of the second embodiment has a spherical lens incident surface 11A.
  • the focal point of the outer lens 10A is set inside the photoelectric conversion unit 30A.
  • the positional relationship between the outer lens 10A and the inner lens 61A can be adjusted by the main spacer 20A.
  • the inner lens 61A includes an optical axis Z.
  • the optical axis of the inner lens 61A coincides with the optical axis of the outer lens 10A.
  • all the light rays of the light R passing through the outer lens 10A intersect with the light incident surface of the inner lens 61A.
  • the photoelectric conversion element 1A of the second embodiment includes an outer lens 10A and an inner lens 61A.
  • the inner lens 61A exhibits the same function as the outer lens 10 of the first embodiment. That is, as the shape of the inner lens 61A, the shape of the outer lens 10 of the first embodiment may be adopted. Further, as the shape of the inner lens 61A, any one of the outer lenses 10S1 to 10S4 of the modified examples 1 to 4 may be adopted.
  • the inner spacer 62A adjusts the positional relationship between the inner lens 61A and the photoelectric conversion unit 30A.
  • the refractive index (n2) of the inner lens 61A and the inner spacer 62A is larger than the refractive index (n1) of the outer lens 10A.
  • the refractive index of the outer lens 10A is smaller than the refractive index of the inner lens 61A.
  • the refractive index (n2) of the inner lens 61A and the inner spacer 62A is larger than the refractive index (n1) of the main spacer 20A (n2> n1).
  • the range of the refractive index of the outer lens 10A is about 1.55 to 1.6.
  • the refractive index of the inner lens 61A is about 2.0.
  • the inner lens 61A and the inner spacer 62A are arranged between the main spacer 20A and the photoelectric conversion unit 30A.
  • the back surface of the inner spacer 62A is in contact with the back surface side reflective layer 50B and the antireflection layer 51.
  • An inner lens 61A is provided on the main surface of the inner spacer 62A.
  • the inner lens 61A and the inner spacer 62A are an integral part.
  • the main surface of the inner lens 61A and the main surface of the inner spacer 62A are in contact with the main spacer 20A.
  • the main spacer 20A may be omitted.
  • the photoelectric conversion element 1A of the second embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • the spot diameter SD of the light R becomes smaller at the incident opening 50B1 of the back surface side reflection layer 50B.
  • the incident angle of the light R becomes large. Since the photoelectric conversion element 1A realizes the small spot diameter SD as described above, the light R is not irradiated from the main spacer 20A side to the back surface side reflective layer 50B even if the incident angle of the light R is large. Therefore, the photoelectric conversion element 1A of the second embodiment is advantageous in increasing the sensitivity because the loss of light R is suppressed.
  • the photoelectric conversion element 1A of the second embodiment can reduce the spot diameter SD of the light R in the incident opening 50B1 as compared with the photoelectric conversion element 1 of the first embodiment. According to this aspect, even when the incident angle of the light R changes, the light R can be surely passed through the incident opening 50B1. In other words, it is possible to suppress a state in which the light R that has passed through the inner lens 61A does not enter the photoelectric conversion unit 30A by reaching the back surface side reflective layer 50B. Therefore, since all the incident light R is guided to the photoelectric conversion unit 30A, it is possible to suppress a decrease in sensitivity due to a change in the incident angle.
  • the area of the incident opening 50B1 may be reduced. According to this configuration, it is possible to suitably suppress the light R reciprocating inside the photoelectric conversion unit 30A from exiting from the incident opening 50B1 to the inner spacer 62A again. Therefore, the light R can be better confined in the photoelectric conversion unit 30A.
  • the photoelectric conversion element 1 of the first embodiment may be further provided with an inner lens 61B.
  • the photoelectric conversion element 1B of the third embodiment includes an outer lens 10B, a main spacer 20B, an inner lens 61B, an inner spacer 62B, a photoelectric conversion unit 30B1, and a wiring unit 40B1. Be prepared.
  • the outer lens 10B, the main spacer 20B, the inner lens 61B, and the inner spacer 62B constitute the optical direction conversion unit 60B.
  • the photoelectric conversion element 1B of the third embodiment has a DTI 52 (see FIG. 2) which is the first configuration.
  • the outer lens 10B, the main spacer 20B, the photoelectric conversion unit 30B1 and the wiring unit 40B1 are the same as the outer lens 10, the main spacer 20, the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted. do.
  • the inner lens 61B and the inner spacer 62B will be described in detail.
  • the main surface of the inner lens 61B is spherical.
  • the photoelectric conversion element 1B includes an outer lens 10B and an inner lens 61B.
  • the refractive index (n2) of the inner lens 61B and the inner spacer 62B is larger than the refractive index (n1) of the outer lens 10B and the main spacer 20B (n2> n1).
  • the photoelectric conversion element 1B of the third embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • the photoelectric conversion element 1A of the second embodiment includes an outer lens 10A and an inner lens 61A.
  • the photoelectric conversion element 1B of the third embodiment includes an outer lens 10B and an inner lens 61B.
  • the photoelectric conversion element 1B may include an outer lens 10A and an inner lens 61B. That is, the photoelectric conversion element 1A of the third embodiment may adopt the shape of the outer lens 10 of the first embodiment as the shape of the outer lens. Further, as the shape of the outer lens, any one of the outer lenses 10S1 to 10S4 of the modified examples 1 to 4 may be adopted. Further, the shape of the outer lens 10 of the first embodiment may be adopted as the shape of the inner lens. Further, as the shape of the inner lens, any one of the outer lenses 10S1 to 10S4 of the modified examples 1 to 4 may be adopted.
  • the refractive index (n2) of the inner lens 61B is larger than the refractive index (n1) of the outer lens 10B.
  • This relationship of refractive index may be reversed. That is, the refractive index (n2) of the inner lens 61C may be smaller than the refractive index (n1) of the outer lens 10C, as in the photoelectric conversion element 1C of the fourth embodiment shown in FIG.
  • the photoelectric conversion element 1C of the fourth embodiment is a configuration example in which the refractive index (n2) of the inner lens 61C is smaller than the refractive index (n1) of the outer lens 10C (n2 ⁇ n1).
  • the photoelectric conversion element 1C of the fourth embodiment includes an outer lens 10C, a main spacer 20C, an inner lens 61C, an inner spacer 62C, a photoelectric conversion unit 30C, and a wiring unit 40C.
  • the outer lens 10C, the main spacer 20C, the inner lens 61C, and the inner spacer 62C constitute the optical direction conversion unit 60C. Since the outer lens 10C, the main spacer 20C, the photoelectric conversion unit 30C and the wiring unit 40C are the same as the outer lens 10, the main spacer 20, the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted. do.
  • the inner lens 61C is a concave lens.
  • the photoelectric conversion element 1C of the fourth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • the light R is formed by an outer lens or an inner lens. More specifically, the light R was molded before reaching the surface reflective layer 50F. That is, the molding of the light R is completed before the light R is incident on the photoelectric conversion unit 30, and all the light R reflected for the first time by the front surface side reflection layer 50F reaches the back surface side reflection layer 50B.
  • the molding of the optical R is not limited to this configuration. Specifically, the molding of the light R may be performed at the time of the first reflection.
  • the photoelectric conversion element 1D of the fifth embodiment includes a mirror 63 (reflecting portion) having a convex shape instead of the outer lens 10.
  • the photoelectric conversion element 1D of the fifth embodiment includes an outer lens 10D, a main spacer 20D, a photoelectric conversion unit 30D, a wiring unit 40D, and a light confinement unit 50D.
  • the main spacer 20D sets the distance from the outer lens 10D to the photoelectric conversion unit 30D to a predetermined value. As a result, the focal point of the outer lens 10D is located inside the photoelectric conversion unit 30D. Since the photoelectric conversion unit 30D and the wiring unit 40D are the same as the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted.
  • the mirror 63 has the same function as the outer lens 10 of the first embodiment.
  • the outer lens 10D, the main spacer 20D, and the mirror 63 constitute the optical direction conversion unit 60D.
  • the mirror 63 is provided at a position intersecting the optical axis Z.
  • the mirror 63 is tilted with respect to a direction parallel to the optical axis Z. That is, a slope is formed on the surface of the mirror 63, which is a reflector. For example, if the direction facing the optical axis Z is inward and the opposite direction is outward, the mirror 63 is outward. It can be said that the main surface of the mirror 63 is a conical surface.
  • the normal of the mirror 63 has a predetermined angle other than 0 degrees with respect to the optical axis Z.
  • the mirror 63 is integrated with the surface-side reflective layer 50FD.
  • the mirror 63 is embedded in the wiring portion 40D.
  • the mirror 63 may be said to be a convex portion in which a part of the surface-side reflective layer 50FD is projected in a conical shape.
  • the reflected light R is focused on the optical axis Z. Then, the light R again exits from the photoelectric conversion unit 30D through the incident opening 50B1.
  • the incident angle of the light R is different from the incident angle on the reflecting surface perpendicular to the optical axis Z. More specifically, as the angle of incidence increases, so does the angle of reflection. That is, the traveling direction of the light R is more outwardly biased. As a result, the reflected light R is not focused on one point on the optical axis Z. The reflected light R is focused on the circumference centered on the optical axis Z. Then, all the reflected light R reaches the back surface side reflection layer 50B, and then reciprocates between the back surface side reflection layer 50B and the front surface side reflection layer 50FD.
  • the photoelectric conversion element 1D of the fifth embodiment is formed by adding a dedicated process to the mirror 63.
  • the mirror 63 is formed so that the reflection angle increases the number of reflections.
  • the photoelectric conversion element 1D of the fifth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • FIG. 19 shows a photoelectric conversion element 1E of a sixth embodiment having another reflection structure instead of the mirror 63 of the fifth embodiment.
  • the photoelectric conversion element 1E of the sixth embodiment pseudo-realizes the mirror 63 of the fifth embodiment by using a part of the wiring layer used for the image sensor and the integrated circuit.
  • the photoelectric conversion element 1E of the sixth embodiment includes an outer lens 10E, a main spacer 20E, a photoelectric conversion unit 30E, a wiring unit 40E, and a light confinement unit 50E.
  • the outer lens 10E, the main spacer 20E, and the pseudo mirror structure 64 constitute the optical direction conversion unit 60E. Since the photoelectric conversion unit 30E and the wiring unit 40E are the same as the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted.
  • the pseudo mirror structure 64 is a pseudo reflection structure composed of the silicon oxide region 44 in the wiring portion 40E and the wiring layers 45a, 45b, 45c, 45d.
  • the pseudo mirror structure 64 is a laminated structure of the silicon oxide region 44 and the wiring layers 45a, 45b, 45c, 45d.
  • the widths of the wiring layers 45a, 45b, 45c, and 45d increase from the back surface side to the front surface side along the optical axis Z.
  • the wiring layer 45d arranged on the front surface 40F side of the wiring portion 40E is wider than the wiring layer 45a arranged on the back surface 40B side of the wiring portion 40E. Both ends of the wiring layers 45a, 45b, 45c, and 45d are in contact with the silicon oxide region 44.
  • the wiring layers 45a, 45b, 45c, 45d used as the pseudo mirror structure 64 are physically separated from the wiring layers 41, 42 used for electrical connection.
  • the light R passes through the silicon oxide region 44, but does not pass through the wiring layers 45a, 45b, 45c, and 45d. According to such a configuration, the light R can reach the surface 40F side of the wiring portion 40E.
  • the arrangement of the wiring layers 45a, 45b, 45c, and 45d can be said to be stepped. When the size of one step of this staircase structure is sufficiently small with respect to the wavelength of the light R, it can be approximated as a reflecting surface at the angle of the slope.
  • the photoelectric conversion element 1E of the sixth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • the outer lens 10 of the first embodiment had the same cross-sectional shape including the optical axis Z.
  • the outer lens 10 is a rotating body in which a predetermined cross-sectional shape is rotated around the optical axis Z.
  • the outer lens 10 is not limited to such a rotating body.
  • the cylindrical outer lens 10F shown in FIGS. 20 and 21 can be mentioned.
  • the light R is incident on the photoelectric conversion unit 30 from the incident opening 50B1.
  • the light R reaching the surface-side reflective layer 50F irradiates the two elongated cigar-shaped regions.
  • the reflected light becomes thinner near the front surface and is reflected by the back surface side reflective layer 50B. After that, the reflection is repeated between the front surface side reflection layer 50F and the back surface side reflection layer 50B while expanding the diameters of the major axis and the minor axis. As a result, as long as the light R stays in the photoelectric conversion unit 30 made of silicon, the light R is absorbed by the photoelectric conversion unit 30 and the photoelectric conversion continues.
  • the outer lens 10F of FIG. 20 has a predetermined cross-sectional shape extended along the sweep axis SL orthogonal to the optical axis Z.
  • a three-dimensional shape can also be referred to as a cylindrical type.
  • the cross-sectional shape of the outer lens 10F orthogonal to the sweep axis SL is the same at every place.
  • the cross-sectional shape orthogonal to the sweep axis SL may be, for example, the same as the cross section of the outer lens 10 of the first embodiment, and the cross-sectional shape orthogonal to the sweep axis KL may be a substantially trapezoidal shape. good.
  • the outer lens 10F of FIG. 21 has a first region L14a and a second region L14b.
  • the second curvature of the second region L14b is smaller than the first curvature of the first region L14a.
  • the first region L5a is surrounded by the second region L5b in an annular shape.
  • the first region L14a is sandwiched by the second region L14b. More specifically, the second region L14b sandwiches the first region L14a along the axis KL orthogonal to both the optical axis Z and the sweep axis SL.
  • the surface-side reflective layer 50F is irradiated with light R in an elliptical shape.
  • the long axis direction of the elliptical irradiation region IR is along the direction of the sweep axis SL.
  • the minor axis direction of the elliptical irradiation region IR is along the direction of the axis KL.
  • the pair of irradiation regions IR are line-symmetrical with the sweep axis SL in between. That is, a pair of irradiation region IRs corresponding to each other are formed with the sweep axis SL interposed therebetween.
  • the irradiation region IR gradually moves away from the optical axis Z while expanding the length of the short axis and the length of the long axis. As a result, the optical path length of the light R in the photoelectric conversion unit 30F1 can be sufficiently secured.
  • the outer lens 10G shown in FIG. 22 reflects light R multiple times by forming a substantially triangular shape (see FIG. 22B) whose curvature changes smoothly in the vertical direction (direction of the sweep axis SL).
  • the outer lens 10G reduces the component of light reflected in the horizontal direction by making the cross-sectional shape in the horizontal direction (direction of the axis KL) a substantially spherical shape (see FIG. 22C).
  • FIG. 22A is a contour diagram of the outer lens 10G in a plan view.
  • 22 (b) and 22 (c) are cross-sectional views showing the positions of the contour lines.
  • the cross section 15a in FIG. 22B corresponds to the X1-X1'cross section in FIG. 5A.
  • the cross section 15b in FIG. 22B corresponds to the X2-X2'cross section in FIG. 22A.
  • the cross section 15c in FIG. 22 (c) corresponds to the cross section Y1-Y1'in FIG. 22 (a).
  • the cross section 15d in FIG. 22 (c) corresponds to the cross section Y2-Y2'in FIG. 22 (a).
  • the axes of FIGS. 22 (b) and 22 (c) indicate the positions of the contour lines of FIG. 22 (a).
  • the region surrounded by the contour lines (8) corresponds to the first region L15a.
  • the second region L15b is formed so as to sandwich the first region L15a along the sweep axi
  • FIG. 23 schematically shows the irradiation region IR of the light R formed by the outer lens 10G in a plan view.
  • the first reflected light has a spot shape (see IR1).
  • the spot-shaped light component is absorbed by one round trip inside the photoelectric conversion unit 30. After that, the light R exits from the photoelectric conversion unit 30, so that a loss occurs.
  • the light component that becomes a loss is relatively sufficiently small in view of the entire light incident on the photoelectric conversion unit 30.
  • the photoelectric conversion element 1 of the first embodiment is a so-called back-illuminated type.
  • the outer lens 10 used in the photoelectric conversion element 1 of the first embodiment may be used in the surface-illuminated photoelectric conversion element 1H as shown in FIG. 24. That is, even in the surface-illuminated photoelectric conversion element 1H, it is possible to increase the quantum efficiency by adopting the outer lens.
  • the photoelectric conversion element 1H of the ninth embodiment includes an outer lens 10H, a main spacer 20H, a photoelectric conversion unit 30H, a wiring unit 40H, an optical confinement unit 50H, a support substrate 71H, and the like.
  • the outer lens 10H, the main spacer 20H, and the wiring unit 40H constitute an optical direction conversion unit 60H.
  • the photoelectric conversion element 1H is different from the photoelectric conversion element 1 of the first embodiment in the arrangement of the photoelectric conversion unit 30H and the wiring unit 40H. Further, the photoelectric conversion element 1H is different from the photoelectric conversion element 1 of the first embodiment in that the support substrate 71H is provided.
  • the photoelectric conversion element 1H is provided with a wiring portion 40H between the main spacer 20H and the photoelectric conversion portion 30H.
  • the photoelectric conversion element 1H of the ninth embodiment has a DTI 52 (see FIG. 2) which is the first configuration.
  • the surface 40F of the wiring portion 40H is in contact with the main spacer 20H.
  • the back surface 40B of the wiring unit 40H is in contact with the antireflection layer 51 provided on the back surface 30B of the photoelectric conversion unit 30H.
  • the light R is transmitted through the light transmission region 46H near the optical axis Z. Therefore, the first wiring layer 41 and the second wiring layer 42 that do not allow light R to pass through are not formed in the light transmission region 46H.
  • the back surface 40B of the wiring portion 40 to the front surface 40F of the wiring portion 40 are integrally formed of silicon oxide.
  • the surface-side reflective layer 50F is embedded in the wiring portion 40H closest to the photoelectric conversion portion 30H.
  • the surface-side reflective layer 50F has an incident opening 50F1 provided in a portion constituting the light transmission region 46H.
  • the photoelectric conversion element 1H of the ninth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • an intermediate wafer is first prepared by a step of forming a standard surface-illuminated image pickup apparatus.
  • the intermediate wafer is thinned, leaving a low concentration layer for the photodiode (second semiconductor region 32) and a p + layer for the electrodes (fourth semiconductor region 34).
  • the back surface side reflective layer 50B is formed.
  • the support substrate is bonded from the back surface.
  • a lens unit including the outer lens 10G is formed.
  • the photoelectric conversion element 1H having a structure in which light R is multiple-reflected inside the photoelectric conversion unit 30 made of silicon is obtained.
  • a method of manufacturing the image pickup apparatus 101 will be described in more detail.
  • FIG. 25A shows a state immediately after the step of forming the CMOS (CIS step) is completed.
  • the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34 constituting the wiring unit 40H and the photoelectric conversion unit 30H are shown.
  • a semiconductor layer to be later a second semiconductor region 32 is provided on the semiconductor region 31S.
  • the thickness of the semiconductor layer is, for example, 20 ⁇ m.
  • the third semiconductor region 33 and the fourth semiconductor region 34 are provided on the semiconductor layer, respectively.
  • a step of forming the DTI 52 is performed.
  • the DTI 52 is formed between the fourth semiconductor regions 34 formed adjacent to each other.
  • the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34 constituting the photoelectric conversion unit 30H are formed, respectively.
  • the wiring portion 40H is formed.
  • the thickness of the wiring portion 40H is, for example, 5 ⁇ m.
  • the first support substrate 81 is bonded.
  • the first support substrate 81 is adhered to the surface 40F of the wiring portion 40.
  • the thickness of the first semiconductor region 31 may be 1 ⁇ m or more and 2 ⁇ m or less. Further, the thickness of the first semiconductor region 31 may be 3 ⁇ m or more and 5 ⁇ m or less.
  • the back surface side reflective layer 50B is provided.
  • the back surface side reflective layer 50B may be an aluminum layer.
  • the second support substrate 82 is bonded.
  • the second support substrate 82 is adhered to the back surface side reflective layer 50B.
  • the second support substrate 82 is turned over so as to be located on the lower side. Subsequently, the first support substrate 81 is removed.
  • the lens unit 83 is formed in the wiring portion 40H.
  • the lens unit 83 is a combination of a plurality of outer lenses 10H.
  • the wafer is housed in the package 84.
  • the back surface of the second support substrate 82 is fixed to the bottom surface of the package 84.
  • the wire 85 is bonded to the electrode pad 45 provided in the peripheral portion of the wiring portion 40H.
  • the opening of the package 84 is closed by a plate 86 that is transparent to the light R.
  • the image pickup apparatus 101 including a plurality of photoelectric conversion elements 1H can be manufactured by a simpler process.
  • the intermediate wafer 104 includes a semiconductor substrate 87a, a semiconductor layer 87b including a second semiconductor region 32, a third semiconductor region 33, and a fourth semiconductor region 34, and a wiring portion 40H.
  • a DTI 52 is formed on the semiconductor layer 87b.
  • a surface-side reflective layer 50F is formed on the wiring portion 40H.
  • the manufacturing process up to this point may be referred to as, for example, a "pre-process”.
  • the semiconductor substrate 87a is thinned. Specifically, the thickness of the semiconductor substrate 87a is reduced from 750 ⁇ m to 200 ⁇ m. That is, the entire semiconductor substrate 87a is thinned.
  • the region L22a provided with the structure constituting the photoelectric conversion element 1H is thinned.
  • the thickness of the portion corresponding to the region L22a is reduced from 200 ⁇ m to about 21 ⁇ m or more and 25 ⁇ m.
  • an etching process can be adopted as a step of partially scraping the semiconductor substrate 87a. The thinned portion becomes the first semiconductor region 31.
  • the back surface side reflective layer 50B is formed.
  • the back surface side reflective layer 50B is an aluminum film formed by a sputtering method.
  • a lens unit 83H including a plurality of outer lenses 10H is formed on the surface 40F of the wiring portion 40H.
  • it is mounted in the package 84.
  • the specific procedure of the step shown in FIG. 30 (b) and the step shown in FIG. 31 may be the same as the steps shown in FIGS. 28 (a) and 28 (b) described above.
  • the photoelectric conversion element 1A of the second embodiment is also a so-called back-illuminated type.
  • the inner lens 61A adopted for the photoelectric conversion element 1A of the second embodiment may be adopted for the surface-illuminated photoelectric conversion element 1K as shown in FIG. 32. That is, the photoelectric conversion element 1K of the tenth embodiment includes an outer lens 10K and an inner lens 61K.
  • the photoelectric conversion element 1K of the tenth embodiment includes an outer lens 10K, a main spacer 20K, an inner lens 61K, an inner spacer 62K, a wiring portion 40K, a photoelectric conversion portion 30K, an optical confinement portion 50K, and a support substrate. It has 71K and. Of these, the outer lens 10K, the main spacer 20K, the inner lens 61K, the inner spacer 62K, and the wiring portion 40K constitute an optical direction conversion portion 60K.
  • the photoelectric conversion element 1K is different from the photoelectric conversion element 1A of the second embodiment in the arrangement of the photoelectric conversion unit 30K and the wiring unit 40K. Further, the photoelectric conversion element 1K is different from the photoelectric conversion element 1A of the second embodiment in that the support substrate 71K is provided.
  • the photoelectric conversion element 1K of the tenth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
  • FIG. 33 is a plan view of the photoelectric conversion element 1T of the eleventh embodiment.
  • the eleventh embodiment particular attention is paid to the DTI structure 55T.
  • the DTI structure 55T shown in FIG. 33 is intended to further enhance the absorption of light R that contributes to the generation of electric charges in the photoelectric conversion unit 30.
  • the pixel area 90T surrounded by the DTI structure 55T corresponds to one pixel.
  • the pixel region 90T includes a photoelectric conversion region 91T and a charge accumulation detection region 92T.
  • the planar shape of the photoelectric conversion region 91T is a regular octagon.
  • the planar shape of the charge accumulation detection region 92T is a square.
  • One side of the photoelectric conversion region 91T, which is a regular octagon, protrudes outward, and the protruding portion is the charge accumulation detection region 92T.
  • the length of one side of the charge accumulation detection region 92T is equal to the length of one side of the photoelectric conversion region 91T.
  • the photoelectric conversion region 91T includes a photodiode formed by a second semiconductor region 32 and a third semiconductor region 33 (see FIG. 1). Further, the center of the photoelectric conversion region 91T coincides with the center of the incident aperture 50B1.
  • the shape of the incident opening 50B1 may be a regular octagon.
  • the planar shape of the photoelectric conversion region 91T may be similar to the planar shape of the incident opening 50B1.
  • the charge accumulation detection area 92T includes a plurality of charge accumulation detection units 70. More specifically, all of the plurality of charge accumulation detection units 70 are arranged in the charge accumulation detection region 92T, and are not arranged in the photoelectric conversion detection region 91.
  • the plurality of charge storage detection units 70 are connected to a photodiode formed by the second semiconductor region 32 and the third semiconductor region 33. The charge generated by the photoelectric conversion unit 30 is distributed to the charge accumulation detection unit 70 at predetermined timing intervals.
  • FIG. 34 shows a plan-viewed photoelectric conversion element 1T shown in FIG. 33 overlaid with an irradiation region IR of light R in the surface-side reflective layer 50F shown in FIG. 7.
  • the photoelectric conversion element 1T of the eleventh embodiment includes an outer lens.
  • the photoelectric conversion element 1T of the eleventh embodiment may include another optical molding component (inner lens 61A or the like) included in the photoelectric conversion element 1A or the like. That is, the photoelectric conversion element 1T of the eleventh embodiment may have a configuration in which the light R is formed concentrically.
  • the light R is irradiated to a plurality of annular regions centered on the optical axis Z, and gradually spreads outward. Since the photoelectric conversion region 91T is a regular octagon, the distance from the optical axis Z to the DTI structure 55T is equal in eight directions. That is, the progress of light R is not hindered in a specific direction. As a result, the light R that repeats reflection can be suitably absorbed by the photoelectric conversion unit 30T.
  • the charge when the light R is incident on the charge storage detection unit 70, the charge may be generated in the charge storage detection unit 70 as well. Since the charge storage detection unit 70 stores the charges distributed based on a predetermined rule, the stored charges without following the rules are noise.
  • the charge accumulation detection region 92T is arranged so as to be adjacent to the photoelectric conversion region 91T. According to this arrangement, the charge accumulation detection unit 70 is sufficiently separated from the optical axis Z. As a result, the light R is repeatedly reflected and sufficiently absorbed until it reaches the charge accumulation detection region 92T. Therefore, the light R incident on the charge accumulation detection region 92T can be substantially ignored.
  • the DTI structure 55T is not shown at the boundary between the photoelectric conversion region 91T and the charge accumulation detection region 92T.
  • the charge accumulation detection region 92T is optically separated from the photoelectric conversion region 91T and needs to be electrically connected. Therefore, for example, a DTI 52B having a third structure shown in FIG. 4 may be provided at the boundary between the photoelectric conversion region 91T and the charge accumulation detection region 92T. According to this arrangement, the light R moving from the photoelectric conversion region 91T to the charge accumulation detection region 92T can be further reduced, and the light R can be confined in the photoelectric conversion region 91T.
  • the DTI 52B casts a shadow on the charge accumulation detection region 92T, it is possible to make it difficult for the light R to hit the PN junction constituting the charge accumulation detection region 92T. As a result, the parasitic sensitivity of the charge accumulation detection unit 70 can be reduced.
  • DTI52A having a second structure may be adopted as the partition wall surrounding the photoelectric conversion region 91T.
  • the DTI 52A having the second structure may be adopted as the partition wall surrounding the charge accumulation detection region 92T. According to the DTI 52A having the second structure, the photoelectric conversion elements 1T adjacent to each other can be reliably separated optically and electrically.
  • an image pickup device 101T in which a plurality of photoelectric conversion elements 1T are arranged in a grid pattern can be configured.
  • the grid-like arrangement means a state in which a plurality of photoelectric conversion elements 1T are arranged along axes orthogonal to each other.
  • the three sides constituting the charge accumulation detection region 92T are the photoelectric conversion regions 91T of each photoelectric conversion element 1T adjacent to the photoelectric conversion element 1T in the vertical, horizontal, and diagonal directions. It touches each side.
  • the intervals (pitch) of the photoelectric conversion elements 1T along the horizontal direction can be made equal.
  • the intervals (pitch) of the photoelectric conversion elements 1T along the vertical direction can be made equal.
  • the image pickup apparatus 101T provided with the photoelectric conversion element 1T of the eleventh embodiment includes an outer lens 10T that causes multiple reflection of light in the photoelectric conversion unit 30T.
  • the distance from the incident opening 50B1 of the back surface side reflective layer 50B to the charge accumulation detection unit 70 is the longest. Further, the DTI structure 55T reduces the volume around which the light R wraps around. Therefore, the DTI structure 55T can satisfactorily reduce the parasitic sensitivity caused by the non-demodulation component light directly incident on the charge accumulation detection region 92T. As a result, the photoelectric conversion element 1T of the eleventh embodiment can exhibit high quantum efficiency with respect to near-infrared light.
  • FIG. 36 Another arrangement as shown in FIG. 36 can be adopted.
  • the arrangement shown in FIG. 36 is a staggered arrangement. Further, it can be said that the arrangement shown in FIG. 36 is a so-called honeycomb structure arrangement.
  • the photoelectric conversion element 1T is arranged with a pitch (P) in the horizontal direction
  • the photoelectric conversion element 1T adjacent in the vertical direction is arranged at a position 1 ⁇ 2 of a certain pitch (P). With such an arrangement, horizontal and vertical resolution can be increased.
  • the photoelectric conversion element 1T may include an outer lens having the shape shown in FIG. 22.
  • FIG. 37 is a plan-viewed photoelectric conversion element 1T shown in FIG. 33 overlaid with an irradiation region IR of light R in the surface-side reflective layer 50F shown in FIG. 23.
  • the sweep axis SL of the outer lens is arranged so as to be parallel to the axis connecting the photoelectric conversion region 91T and the charge accumulation detection region 92T. Then, the irradiation region IR of the light R does not proceed from the incident opening 50B1 toward the charge accumulation detection region 92T. Therefore, it is possible to suitably suppress the generation of noise due to the incident light R on the charge accumulation detection region 92T.
  • the DTI structure 55T forming the regular octagonal photoelectric conversion region 91T is exemplified.
  • the shape of the photoelectric conversion region 91T is not limited to a regular octagon.
  • the photoelectric conversion region 91R may be rectangular.
  • FIG. 38 is a plan view of a TOF type photoelectric conversion element 1R having 4 taps and 1 drain.
  • the irradiation region IR shown in FIG. 21B is superimposed on the photoelectric conversion element 1R of FIG. 38.
  • a shadow is created by the DTI structure 55R in order to reduce the sensitivity of parasitism to the charge accumulation detection unit 70.
  • the outer lens 10F shown in the seventh embodiment causes the reflected light to travel in a direction orthogonal to the direction of the charge accumulation detection unit 70. As a result, since the light R is confined in the photoelectric conversion unit 30, it is suppressed that the light R is directly incident on the charge accumulation detection region 92R.
  • the shape of the pixel region 90R is substantially rectangular in a plan view.
  • the pixel region 90R has a rectangular photoelectric conversion region 91R and a rectangular charge storage detection region 92R.
  • DTI52A is adopted as the four partition walls surrounding the pixel region 90R.
  • a DTI 52B having a third structure shown in FIG. 4 may be provided between the DTI 52A partitioning the pixel region 90R.
  • a photodiode formed by the second semiconductor region 32 and the third semiconductor region 33 is arranged in the photoelectric conversion region 91R. Further, in the illustration of FIG. 38, a pair of drains 72 are arranged in the photoelectric conversion region 91R. The other charge accumulation detection unit 70 is arranged in the charge accumulation detection region 92R.
  • the photoelectric conversion element 1R adopts the optical molding component of the seventh embodiment.
  • the molded light repeatedly reflects along a predetermined axis KL.
  • the axis KL is orthogonal to the direction in which the photoelectric conversion region 91R and the charge accumulation detection region 92R are arranged in the example of FIG. 38. Therefore, the outer lens 10P is arranged so that the direction in which the photoelectric conversion region 91R and the charge accumulation detection region 92R are lined up coincides with the sweep axis SL.
  • the region where the molded light is incident is aligned in a direction orthogonal to the direction in which the photoelectric conversion region 91R and the charge accumulation detection region 92R are aligned.
  • the photoelectric conversion region 91R may be rectangular.
  • the analysis model used in the simulation will be described with reference to FIG. 40.
  • the analysis model 103P includes an outer lens 10P.
  • the analysis model 103M includes an outer lens 10M.
  • the analysis model 103N includes an outer lens 10N.
  • three outer lenses 10P, 10M, and 10N are superimposed and shown.
  • the configurations of the main spacer 20 and the photoelectric conversion unit 30 are the same in Calculation Examples 1 to 4.
  • FIG. 41 is a perspective view of the outer lens 10P used in the calculation example 1.
  • Lens diameter 8.4 ⁇ m
  • Lens thickness 5.0 ⁇ m
  • Base thickness 0.8 ⁇ m Offset: 1
  • FIG. 42 is a perspective view of the outer lens 10M used in Calculation Example 2.
  • Lens diameter 8.4 ⁇ m
  • Lens thickness 5.0 ⁇ m
  • Base thickness 0.8 ⁇ m
  • Offset 1000
  • FIG. 43 is a perspective view of the outer lens 10N used in the calculation example 3.
  • the lens thickness of the outer lens 10N is different from the lens thickness of the outer lens 10M.
  • the parameters of the other outer lens 10N are the same as the parameters of the outer lens 10M.
  • the refractive index of the outer lenses 10P, 10M, and 10N was 1.58.
  • the first layer L1 corresponds to the main spacer 20.
  • the details of the first layer L1 and the second layer L2 are as follows.
  • First layer L1 Microlens material, refractive index (1.54 to 1.58)
  • Second layer L2 Dielectric multilayer film (material: silicon nitride, silicon oxide), refractive index (1.46 to 1.92)
  • the third layer L3 corresponds to the photoelectric conversion unit 30.
  • the details of the third layer L3 are as follows.
  • Third layer L3 Material / Silicon (Si), Refractive index (automatic setting)
  • FIG. 44 and 45 are contour diagrams of the distribution of light intensity.
  • the region A37a had the strongest light intensity, and the light intensity decreased as the region A37b was approached.
  • the region having strong light intensity was generated in the region A38a near the center and the region A38b near the periphery. That is, it was found that the outer lens 10P does not have an annular shape in the light intensity distribution. According to such a distribution, the light R irradiating the region A38a near the center is reflected by the surface-side reflective layer 50F and then exits from the photoelectric conversion unit 30 through the incident opening 50B1 (see FIG. 1). It ends up. That is, of the incident light R, a light component that does not generate an electric charge is generated in the photoelectric conversion unit 30.
  • FIG. 46 and 47 are contour diagrams of the distribution of light intensity.
  • the region A39a had the strongest strength, and the strength decreased as the region A39b was approached.
  • the light intensity of the region A40a near the center was weak, gradually increased toward the outside, reached the maximum value in the region A40b, and then decreased.
  • the outer lens 10M has an annular shape in the light intensity distribution. According to such a distribution, for example, when the light radiated to the region A40b is reflected by the front surface side reflection layer 50F, it does not exit from the photoelectric conversion unit 30 through the incident opening 50B1 but toward the back surface side reflection layer 50B. move on. Therefore, it was found that the outer lens 10M can change the traveling direction so as to suitably confine the light R in the photoelectric conversion unit 30.
  • FIG. 49 illustrates only one of the light rays shown in FIG. 48.
  • the light ray L41a indicates incident light.
  • the light ray L41c indicates refracted light.
  • the cause of the spread of the light R is that the intersection L41p of the optical axis Z of the outer lens 10M and the light rays L41a and L41c is located on the surface of the third layer L3. ..
  • FIG. 52 illustrates only one of the light rays shown in FIG. 51.
  • the light ray L45a indicates incident light.
  • the light ray L45c indicates refracted light.
  • the cause of the distribution of the light R is that the intersection L45p of the optical axis Z of the outer lens 10N and the light ray L45c is located inside the third layer L3.
  • FIG. 53, 54 and 55 are contour diagrams of light intensity at different cross-sectional positions.
  • the light intensity distribution was annular in each cross section.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

This photoelectric conversion element 1 comprises: a photoelectric conversion unit 30 that receives light and generates an electrical charge; an electrical charge accumulation detector 70 that accumulates electric charges received from the photoelectric conversion unit 30; an optical confinement unit 50 having a back-surface-side reflection layer 50B and a front-surface-side reflection layer 50F provided on the photoelectric conversion unit 30, the optical confinement unit 50 confining light in the photoelectric conversion unit 30 so that the light reciprocates in the photoelectric conversion unit 30; and a light direction conversion unit 60 including an outer lens 10 positioned on the back-surface-side-reflection-layer 50B side, the light direction conversion unit 60 determining the direction in which the light in the photoelectric conversion unit 30 advances. The light direction conversion unit 60 is positioned on the outer side of a region sandwiched by the back-surface-side reflection layer 50B and the front-surface-side reflection layer 50F, and causes light to advance in a direction away from the optical axis Z of the outer lens 10 each time reflection of the light between the back-surface-side reflection layer 50B and the front-surface-side reflection layer 50F is repeated.

Description

光電変換素子Photoelectric conversion element
 本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.
 太陽光のスペクトルは、水蒸気による吸収の影響により940nmの波長付近に大きな強度の落ち込みを有する。TOFカメラといった撮像装置は、この波長帯域を利用することにより、太陽光の影響を軽減している。撮像装置を構成する材料としてシリコンがよく用いられている。シリコンの光吸収係数は、940nmの波長帯域において可視光の1/10程度である。つまり、光の吸収効率が低い。例えば、撮像装置が備える光電変換部の厚さ(x)を、5×10-4cm(5μm)であるとする。この厚さは、一般的なCMOSイメージセンサのものである。そして、波長帯域が940nmにおけるシリコンの光吸収係数(α)を250cm-1であるとする。式(1)によれば、仮定した光電変換部の厚さ(x=5×10-4cm)及び光吸収係数(α=250cm-1)から得られる光吸収率(B)は、11.8%である。
Figure JPOXMLDOC01-appb-M000001
The spectrum of sunlight has a large intensity drop near the wavelength of 940 nm due to the influence of absorption by water vapor. Imaging devices such as TOF cameras reduce the influence of sunlight by using this wavelength band. Silicon is often used as a material for constituting an image pickup device. The light absorption coefficient of silicon is about 1/10 of visible light in the wavelength band of 940 nm. That is, the light absorption efficiency is low. For example, it is assumed that the thickness (x) of the photoelectric conversion unit included in the image pickup apparatus is 5 × 10 -4 cm (5 μm). This thickness is that of a typical CMOS image sensor. Then, it is assumed that the light absorption coefficient (α) of silicon in the wavelength band of 940 nm is 250 cm -1. According to the equation (1), the light absorption rate (B) obtained from the assumed thickness of the photoelectric conversion unit (x = 5 × 10 -4 cm) and the light absorption coefficient (α = 250 cm -1) is 11. It is 8%.
Figure JPOXMLDOC01-appb-M000001
特表2018-525837号公報Special Table 2018-525837 特開2019-114642号公報Japanese Unexamined Patent Publication No. 2019-114642
 シリコンにおける吸光度は、シリコンの内部において光が進んだ距離(光路長)に比例する。そうすると、光吸収係数(α)は低くとも、光電変換部において十分な光路長を確保することにより、シリコンに吸収される光を増やすことができる。例えば、特許文献1、2に開示された素子は、光電変換部を通過した光を再び光電変換部に戻す構造を有する。これらの構造によって得られる光路長は、光電変換部を一度だけ通過する場合に比べると長くなる。しかし、当該技術分野にあっては、光電変換素子を備える撮像装置のさらなる高感度化が望まれていた。 Absorbance in silicon is proportional to the distance (optical path length) that light travels inside silicon. Then, even if the light absorption coefficient (α) is low, the amount of light absorbed by the silicon can be increased by ensuring a sufficient optical path length in the photoelectric conversion unit. For example, the elements disclosed in Patent Documents 1 and 2 have a structure in which light that has passed through the photoelectric conversion unit is returned to the photoelectric conversion unit again. The optical path length obtained by these structures is longer than that in the case of passing through the photoelectric conversion unit only once. However, in the art, it has been desired to further increase the sensitivity of an image pickup apparatus provided with a photoelectric conversion element.
 そこで、本発明は、感度を高めることが可能な光電変換素子を提供する。 Therefore, the present invention provides a photoelectric conversion element capable of increasing the sensitivity.
 本発明の一形態である光電変換素子は、光を受けて電荷を発生させる光電変換部と、光電変換部から受けた電荷を蓄積する電荷蓄積検出部と、光電変換部の第1の面側に設けられると共に光を受け入れる開口を含む第1の反射層、及び、第1の面とは逆側である光電変換部の第2の面側に設けられた第2の反射層を有し、光が光電変換部において往復するように、光を光電変換部に閉じ込める光閉じ込め部と、第1の面側に配置された第1のレンズを含み、光電変換部における光の進行方向を決める光方向変換部と、を備え、光方向変換部は、第1の面と第2の面とに挟まれた領域の外側に配置されて、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に光を進行させる。 The photoelectric conversion element according to the present invention has a photoelectric conversion unit that receives light to generate a charge, a charge storage detection unit that stores the charge received from the photoelectric conversion unit, and a first surface side of the photoelectric conversion unit. It has a first reflective layer provided in the above and includes an opening for receiving light, and a second reflective layer provided on the second surface side of the photoelectric conversion unit which is opposite to the first surface. Light that includes a light confinement unit that confine light in the photoelectric conversion unit and a first lens arranged on the first surface side so that the light reciprocates in the photoelectric conversion unit, and determines the traveling direction of the light in the photoelectric conversion unit. The light direction changing unit comprises a direction changing unit, and the optical direction changing unit is arranged outside the region sandwiched between the first surface and the second surface, and is arranged between the first surface and the second surface. Each time the light is repeatedly reflected, the light is advanced in a direction away from the optical axis of the first lens.
 この光電変換素子では、第1の反射層と第2の反射層との間で複数回の光の反射が生じる。第1の反射層と第2の反射層との間には光電変換部が存在する。つまり、光は光電変換部を複数回往復する。そうすると、光電変換部における光の光路長が伸びるので、光電変換部に光を十分に吸収させることが可能になる。その結果、感度を高めることができる。 In this photoelectric conversion element, light is reflected a plurality of times between the first reflection layer and the second reflection layer. A photoelectric conversion unit exists between the first reflective layer and the second reflective layer. That is, the light reciprocates a plurality of times in the photoelectric conversion unit. Then, since the optical path length of the light in the photoelectric conversion unit is extended, it becomes possible for the photoelectric conversion unit to sufficiently absorb the light. As a result, the sensitivity can be increased.
 一形態の光電変換素子では、第1のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、第1の曲線部と、第1の曲線部よりも光軸から遠い第2の曲線部とを含み、第2の曲線部の曲率は、第1の曲線部の曲率よりも小さくてもよい。この構成によれば、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives light is the first curved portion and the line segment farther from the optical axis than the first curved portion. The curvature of the second curved portion may be smaller than the curvature of the first curved portion, including the curved portion of 2. According to this configuration, each time the light is repeatedly reflected between the first surface and the second surface, light traveling in a direction away from the optical axis of the first lens can be generated.
 一形態の光電変換素子では、第1のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、円弧として規定される部分を含んでもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives light may include a portion defined as an arc. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、第1のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、放物線として規定される部分を含んでもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives light may include a portion defined as a parabola. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、第1のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、第1の直線部と、第1の直線部よりも光軸から遠い第2の直線部とを含み、光軸に直交する仮想基準軸線と第2の直線部との間の第2の傾斜角は、仮想基準軸線と第1の直線部との間の第1の傾斜角よりも大きくてもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives light is the first straight line portion and the first straight line portion that is farther from the optical axis than the first straight line portion. The second tilt angle between the virtual reference axis and the second straight section including the two straight sections and orthogonal to the optical axis is the first tilt between the virtual reference axis and the first straight section. It may be larger than the corner. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、第1のレンズの形状は、光軸を中心とした回転対称の形状であってもよい。この構成によれば、光電変換部を平面視したときの光の進行方向を放射状とすることができる。 In one form of photoelectric conversion element, the shape of the first lens may be a shape symmetrical with respect to the optical axis. According to this configuration, the traveling direction of light when the photoelectric conversion unit is viewed in a plane can be made radial.
 一形態の光電変換素子では、第1のレンズの形状は、断面形状を光軸に直交する方向に引き延ばした形状であってもよい。この構成によれば、光電変換部を平面視したときの光の進行方向を所望の方向に設定することができる。 In one form of photoelectric conversion element, the shape of the first lens may be a shape in which the cross-sectional shape is stretched in a direction orthogonal to the optical axis. According to this configuration, the traveling direction of light when the photoelectric conversion unit is viewed in a plane can be set in a desired direction.
 一形態の光電変換素子では、光方向変換部は、第1のレンズに加えて、さらに、第1のレンズと第1の面との間に配置された第2のレンズを含んでもよい。この構成によっても、第1の反射層の開口から光電変換部に入射した光において、当該開口から再び出て行く光の成分を低減することができる。従って、さらに感度を高めることができる。 In one form of photoelectric conversion element, the optical direction conversion unit may further include a second lens arranged between the first lens and the first surface in addition to the first lens. Also with this configuration, in the light incident on the photoelectric conversion unit from the opening of the first reflective layer, the component of the light emitted again from the opening can be reduced. Therefore, the sensitivity can be further increased.
 一形態の光電変換素子では、第2のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、第3の曲線部と、第3の曲線部よりも光軸から遠い第4の曲線部とを含み、第4の曲線部の曲率は、第3の曲線部の曲率よりも小さくてもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives light is the third curved portion and the third curved portion farther from the optical axis than the third curved portion. The curvature of the fourth curved portion may be smaller than the curvature of the third curved portion, including the curved portion of 4. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、第2のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、円弧として規定される部分を含んでもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives light may include a portion defined as an arc. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、第2のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、放物線として規定される部分を含んでもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives light may include a portion defined as a parabola. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、第2のレンズにおける光軸を含む断面形状において、光を受け入れる面を示す線分は、第3の直線部と、第3の直線部よりも光軸から遠い第4の直線部とを含み、光軸に直交する仮想基準軸線と第4の直線部との間の第4の傾斜角は、仮想基準軸線と第3の直線部との間の第3の傾斜角よりも大きくてもよい。この構成によっても、第1の面と第2の面との間での光の反射が繰り返されるごとに第1のレンズの光軸から離れる方向に進行する光を生じさせることができる。 In one form of photoelectric conversion element, in the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives light is the third straight line portion and the third straight line portion farther from the optical axis than the third straight line portion. The fourth tilt angle between the virtual reference axis perpendicular to the optical axis and the fourth straight section, including the four straight sections, is the third tilt between the virtual reference axis and the third straight section. It may be larger than the corner. Also with this configuration, it is possible to generate light traveling in a direction away from the optical axis of the first lens each time the reflection of light between the first surface and the second surface is repeated.
 一形態の光電変換素子では、光方向変換部は、第2の面側に配置された反射部を含んでもよい。この構成によっても、第1の反射層の開口から光電変換部に入射した光において、当該開口から再び出て行く光の成分を低減することができる。従って、さらに感度を高めることができる。 In one form of photoelectric conversion element, the optical direction conversion unit may include a reflection unit arranged on the second surface side. Also with this configuration, in the light incident on the photoelectric conversion unit from the opening of the first reflecting layer, the component of the light emitted again from the opening can be reduced. Therefore, the sensitivity can be further increased.
 一形態の光電変換素子において、光閉じ込め部は、光電変換部を囲む第1の隔壁部をさらに有し、第1の隔壁部の一方の端面は、第1の反射層と協働して光電変換部の一部を挟み、第1の隔壁部の他方の端面は、光電変換部の第2の面と面一であってもよい。この構成によれば、光電変換部に光をさらに良好に閉じ込めることができる。 In one form of photoelectric conversion element, the light confinement portion further has a first partition wall portion surrounding the photoelectric conversion portion, and one end surface of the first partition wall portion cooperates with the first reflection layer to perform photoelectric printing. The other end surface of the first partition wall portion may be flush with the second surface of the photoelectric conversion unit so as to sandwich a part of the conversion unit. According to this configuration, light can be better confined in the photoelectric conversion unit.
 一形態の光電変換素子において、光閉じ込め部は、光電変換部を囲む第2の隔壁部をさらに有し、第2の隔壁部の一方の端面は、光電変換部の第1の面と面一であり、第2の隔壁部の他方の端面は、第2の反射層と協働して光電変換部の一部を挟んでもよい。この構成によれば、光電変換部に光をさらに良好に閉じ込めると共に光電変換部で生じた電荷を取り出す経路を設けることもできる。 In one form of the photoelectric conversion element, the light confinement portion further has a second partition wall portion surrounding the photoelectric conversion portion, and one end surface of the second partition wall portion is flush with the first surface of the photoelectric conversion portion. The other end face of the second partition wall portion may cooperate with the second reflective layer to sandwich a part of the photoelectric conversion portion. According to this configuration, it is possible to better confine the light in the photoelectric conversion unit and provide a path for taking out the electric charge generated in the photoelectric conversion unit.
 一形態の光電変換素子において、光閉じ込め部は、光電変換部を囲む第3の隔壁部をさらに有し、第3の隔壁部の一方の端面は、光電変換部の第1の面と面一であり、第3の隔壁部の他方の端面は、光電変換部の第2の面と面一であってもよい。この構成によれば、光電変換部に光を確実に閉じ込めることができる。 In one form of the photoelectric conversion element, the light confinement portion further has a third partition wall portion surrounding the photoelectric conversion portion, and one end surface of the third partition wall portion is flush with the first surface of the photoelectric conversion portion. The other end face of the third partition wall portion may be flush with the second surface of the photoelectric conversion portion. According to this configuration, light can be reliably confined in the photoelectric conversion unit.
 一形態の光電変換素子において、光電変換部は、第1の反射層の開口と重複する部分を含み、電荷蓄積検出部は、第1の反射層の開口と重複する部分を含まなくてよい。 In one form of the photoelectric conversion element, the photoelectric conversion unit may include a portion overlapping with the opening of the first reflection layer, and the charge accumulation detection unit may not include a portion overlapping with the opening of the first reflection layer.
 一形態の光電変換素子において、光閉じ込め部は、光の入射方向から見て光電変換部が構成するpn接合部を含む光電変換領域と電荷蓄積検出部を含む電荷蓄積検出領域とを有する画素領域に、開口から入射した光を閉じ込めるように光電変換領域及び電荷蓄積検出領域を囲む外隔壁部を含んでもよい。 In one form of the photoelectric conversion element, the optical confinement portion is a pixel region having a photoelectric conversion region including a pn junction portion formed by the photoelectric conversion portion and a charge storage detection region including a charge storage detection portion when viewed from the incident direction of light. In addition, an outer partition wall portion surrounding the photoelectric conversion region and the charge accumulation detection region may be included so as to confine the light incident from the opening.
 一形態の光電変換素子において、外隔壁部の一方の端面は、pn接合を構成する半導体領域に接し、外隔壁部の他方の端面は、光電変換部の第2の面と面一であってもよい。 In one form of the photoelectric conversion element, one end surface of the outer partition wall portion is in contact with the semiconductor region constituting the pn junction, and the other end surface of the outer partition wall portion is flush with the second surface of the photoelectric conversion portion. May be good.
 一形態の光電変換素子において、外隔壁部の一方の端面は、光電変換部の第1の面と面一であり、外隔壁部の他方の端面は、pn接合を構成する半導体領域に接してもよい。 In one form of the photoelectric conversion element, one end surface of the outer partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the outer partition wall portion is in contact with the semiconductor region constituting the pn junction. May be good.
 一形態の光電変換素子において、外隔壁部の一方の端面は、光電変換部の第1の面と面一であり、外隔壁部の他方の端面は、光電変換部の第2の面と面一であってもよい。 In one form of the photoelectric conversion element, one end surface of the outer partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the outer partition wall portion is the second surface and surface of the photoelectric conversion portion. It may be one.
 一形態の光電変換素子において、光閉じ込め部は、光の入射方向から見て光電変換領域と電荷蓄積検出領域との間に設けられ、電荷蓄積検出領域を光電変換領域から光学的に隔てる内隔壁部を含んでもよい。 In one form of the photoelectric conversion element, the light confinement portion is provided between the photoelectric conversion region and the charge accumulation detection region when viewed from the incident direction of light, and the inner partition wall optically separates the charge accumulation detection region from the photoelectric conversion region. May include parts.
 一形態の光電変換素子において、内隔壁部の一方の端面は、pn接合を構成する半導体領域に接し、内隔壁部の他方の端面は、光電変換部の第2の面と面一であってもよい。 In one form of the photoelectric conversion element, one end surface of the inner partition wall portion is in contact with the semiconductor region constituting the pn junction, and the other end surface of the inner partition wall portion is flush with the second surface of the photoelectric conversion portion. May be good.
 一形態の光電変換素子において、内隔壁部の一方の端面は、光電変換部の第1の面と面一であり、内隔壁部の他方の端面は、pn接合を構成する半導体領域に接してもよい。 In one form of the photoelectric conversion element, one end surface of the inner partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the inner partition wall portion is in contact with the semiconductor region constituting the pn junction. May be good.
 一形態の光電変換素子において、内隔壁部の一方の端面は、光電変換部の第1の面と面一であり、内隔壁部の他方の端面は、光電変換部の第2の面と面一であってもよい。 In one form of the photoelectric conversion element, one end surface of the inner partition wall portion is flush with the first surface of the photoelectric conversion portion, and the other end surface of the inner partition wall portion is the second surface and surface of the photoelectric conversion portion. It may be one.
 本発明によれば、感度を高めることが可能な光電変換素子が提供される。 According to the present invention, a photoelectric conversion element capable of increasing sensitivity is provided.
図1は、第1実施形態の光電変換素子の断面図である。FIG. 1 is a cross-sectional view of the photoelectric conversion element of the first embodiment. 図2は、図1に示す第1の構成であるDTIを拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing DTI, which is the first configuration shown in FIG. 図3は、第2の構成であるDTIを拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view showing DTI, which is the second configuration. 図4は、第3の構成であるDTIを拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing DTI, which is the third configuration. 図5(a)はアウターレンズのレンズ主面の形状を示す等高線図であり、図5(b)は図5(a)に示すX-X’断面におけるアウターレンズの断面形状であり、図5(c)は図5(a)に示すY-Y’断面におけるアウターレンズの断面形状である。5 (a) is a contour diagram showing the shape of the lens main surface of the outer lens, and FIG. 5 (b) is a cross-sectional shape of the outer lens in the XX'cross section shown in FIG. 5 (a). (C) is a cross-sectional shape of the outer lens in the YY'cross section shown in FIG. 5 (a). 図6は、光電変換素子における光の閉じ込めを説明するための断面図である。FIG. 6 is a cross-sectional view for explaining the confinement of light in the photoelectric conversion element. 図7は、アウターレンズの形状と成形された光の照射領域とを示す斜視図である。FIG. 7 is a perspective view showing the shape of the outer lens and the formed light irradiation region. 図8は、変形例1のアウターレンズの形状を説明するための図である。FIG. 8 is a diagram for explaining the shape of the outer lens of the modified example 1. 図9は、変形例1のアウターレンズを適用した光電変換素子を示す図である。FIG. 9 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 1 is applied. 図10は、変形例2のアウターレンズの形状を説明するための図である。FIG. 10 is a diagram for explaining the shape of the outer lens of the modified example 2. 図11は、変形例2のアウターレンズを適用した光電変換素子を示す図である。FIG. 11 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 2 is applied. 図12は、変形例3のアウターレンズを適用した光電変換素子を示す図である。FIG. 12 is a diagram showing a photoelectric conversion element to which the outer lens of Modification 3 is applied. 図13は、変形例4のアウターレンズの形状を説明するための図である。FIG. 13 is a diagram for explaining the shape of the outer lens of the modified example 4. 図14は、変形例4のアウターレンズを適用した光電変換素子を示す図である。FIG. 14 is a diagram showing a photoelectric conversion element to which the outer lens of the modified example 4 is applied. 図15は、第2実施形態の光電変換素子の断面図である。FIG. 15 is a cross-sectional view of the photoelectric conversion element of the second embodiment. 図16は、第3実施形態の光電変換素子の断面図である。FIG. 16 is a cross-sectional view of the photoelectric conversion element of the third embodiment. 図17は、第4実施形態の光電変換素子の断面図である。FIG. 17 is a cross-sectional view of the photoelectric conversion element of the fourth embodiment. 図18は、第5実施形態の光電変換素子の断面図である。FIG. 18 is a cross-sectional view of the photoelectric conversion element of the fifth embodiment. 図19は、第6実施形態の光電変換素子の断面図である。FIG. 19 is a cross-sectional view of the photoelectric conversion element of the sixth embodiment. 図20は、第7実施形態の光電変換素子が備えるアウターレンズの形状と成形された光の照射領域とを示す斜視図である。FIG. 20 is a perspective view showing the shape of the outer lens included in the photoelectric conversion element of the seventh embodiment and the formed light irradiation region. 図21(a)及び図21(c)は第7実施形態における別の形状のアウターレンズの断面形状を示す図であり、図21(b)は、第7実施形態における別の形状のアウターレンズによって成形された光の照射領域を示す図である。21 (a) and 21 (c) are views showing the cross-sectional shape of the outer lens of another shape in the seventh embodiment, and FIG. 21 (b) is a diagram showing the outer lens of another shape in the seventh embodiment. It is a figure which shows the irradiation area of the light formed by. 図22(a)は第8実施形態のアウターレンズのレンズ主面の形状を示す等高線図であり、図22(b)はX1-X1’断面及びX2-X2’断面におけるアウターレンズの断面形状であり、図22(c)はY1-Y1’断面及びY2-Y2’におけるアウターレンズの断面形状である。22 (a) is a contour diagram showing the shape of the lens main surface of the outer lens of the eighth embodiment, and FIG. 22 (b) is a cross-sectional shape of the outer lens in the X1-X1'cross section and the X2-X2' cross section. FIG. 22 (c) shows the cross-sectional shape of the outer lens in Y1-Y1'cross-section and Y2-Y2'. 図23は、第8実施形態のアウターレンズの変形例によって成形された光の照射領域を示す図である。FIG. 23 is a diagram showing a light irradiation region formed by a modification of the outer lens of the eighth embodiment. 図24は、第9実施形態の光電変換素子の断面図である。FIG. 24 is a cross-sectional view of the photoelectric conversion element of the ninth embodiment. 図25(a)は第9実施形態の光電変換素子を製造するための第1工程を示す断面図であり、図25(b)は第2工程を示す断面図である。FIG. 25 (a) is a cross-sectional view showing a first step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 25 (b) is a cross-sectional view showing the second step. 図26(a)は第9実施形態の光電変換素子を製造するための第3工程を示す断面図であり、図26(b)は第4工程を示す断面図である。FIG. 26A is a cross-sectional view showing a third step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 26B is a cross-sectional view showing the fourth step. 図27(a)は第9実施形態の光電変換素子を製造するための第5工程を示す断面図であり、図27(b)は第6工程を示す断面図である。27 (a) is a cross-sectional view showing a fifth step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 27 (b) is a cross-sectional view showing the sixth step. 図28(a)は第9実施形態の光電変換素子を製造するための第7工程を示す断面図であり、図28(b)は第8工程を示す断面図である。FIG. 28 (a) is a cross-sectional view showing a seventh step for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 28 (b) is a cross-sectional view showing the eighth step. 図29(a)は第9実施形態の光電変換素子を製造するための別の方法における第1工程を示す断面図であり、図29(b)は第2工程を示す断面図である。FIG. 29 (a) is a cross-sectional view showing a first step in another method for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 29 (b) is a cross-sectional view showing the second step. 図30(a)は第9実施形態の光電変換素子を製造するための別の方法における第3工程を示す断面図であり、図30(b)は第4工程を示す断面図である。FIG. 30A is a cross-sectional view showing a third step in another method for manufacturing the photoelectric conversion element of the ninth embodiment, and FIG. 30B is a cross-sectional view showing the fourth step. 図31は第9実施形態の光電変換素子を製造するための別の方法における第5工程を示す断面図である。FIG. 31 is a cross-sectional view showing a fifth step in another method for manufacturing the photoelectric conversion element of the ninth embodiment. 図32は、第10実施形態の光電変換素子の断面図である。FIG. 32 is a cross-sectional view of the photoelectric conversion element of the tenth embodiment. 図33は、第11実施形態の光電変換素子の平面図である。FIG. 33 is a plan view of the photoelectric conversion element of the eleventh embodiment. 図34は第11実施形態の光電変換素子の構造と成形された光の照射領域とを示す平面図である。FIG. 34 is a plan view showing the structure of the photoelectric conversion element of the eleventh embodiment and the formed light irradiation region. 図35は、第11実施形態の光電変換素子の第1の配列例を示す平面図である。FIG. 35 is a plan view showing a first arrangement example of the photoelectric conversion element of the eleventh embodiment. 図36は、第11実施形態の光電変換素子の第2の配列例を示す平面図である。FIG. 36 is a plan view showing a second arrangement example of the photoelectric conversion element of the eleventh embodiment. 図37は第11実施形態の光電変換素子の構造と成形された光の照射領域とを示す平面図である。FIG. 37 is a plan view showing the structure of the photoelectric conversion element of the eleventh embodiment and the formed light irradiation region. 図38は、第12実施形態の光電変換素子の平面図である。FIG. 38 is a plan view of the photoelectric conversion element of the twelfth embodiment. 図39は、第12実施形態の光電変換素子の構造と成形された光の照射領域とを示す平面図である。FIG. 39 is a plan view showing the structure of the photoelectric conversion element of the twelfth embodiment and the formed light irradiation region. 図40は、計算例1、2、3に用いた解析モデルを説明する図である。FIG. 40 is a diagram illustrating the analysis model used in Calculation Examples 1, 2, and 3. 図41は、計算例1に用いたアウターレンズの斜視図である。FIG. 41 is a perspective view of the outer lens used in Calculation Example 1. 図42は、計算例2に用いたアウターレンズの斜視図である。FIG. 42 is a perspective view of the outer lens used in Calculation Example 2. 図43は、計算例3に用いたアウターレンズの斜視図である。FIG. 43 is a perspective view of the outer lens used in Calculation Example 3. 図44は、計算例1の結果を示す第1のコンター図である。FIG. 44 is a first contour diagram showing the result of calculation example 1. 図45は、計算例1の結果を示す第2のコンター図である。FIG. 45 is a second contour diagram showing the result of calculation example 1. 図46は、計算例2の結果を示す第1のコンター図である。FIG. 46 is a first contour diagram showing the result of calculation example 2. 図47は、計算例2の結果を示す第2のコンター図である。FIG. 47 is a second contour diagram showing the result of calculation example 2. 図48は、計算例2の結果による光線を示す図である。FIG. 48 is a diagram showing light rays according to the result of calculation example 2. 図49は、計算例2の結果による光線を示す別の図である。FIG. 49 is another diagram showing a light ray according to the result of the calculation example 2. 図50は、計算例3の結果を示す第1のコンター図である。FIG. 50 is a first contour diagram showing the result of calculation example 3. 図51は、計算例3の結果による光線を示す図である。FIG. 51 is a diagram showing light rays based on the result of calculation example 3. 図52は、計算例3の結果による光線を示す別の図である。FIG. 52 is another diagram showing a light ray according to the result of the calculation example 3. 図53(a)は計算例3の第2のコンター図であり、図53(b)は計算例3の第3のコンター図である。FIG. 53 (a) is a second contour diagram of the calculation example 3, and FIG. 53 (b) is a third contour diagram of the calculation example 3. 図54(a)は計算例3の第4のコンター図であり、図54(b)は計算例3の第5のコンター図である。FIG. 54 (a) is a fourth contour diagram of Calculation Example 3, and FIG. 54 (b) is a fifth contour diagram of Calculation Example 3. 図55(a)は計算例3の第6のコンター図であり、図55(b)は計算例3の第7のコンター図である。FIG. 55 (a) is a sixth contour diagram of Calculation Example 3, and FIG. 55 (b) is a seventh contour diagram of Calculation Example 3.
 以下、添付図面を参照しながら本発明を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description is omitted.
 図1に示す光電変換素子1は、いわゆる裏面照射型の画素である。光電変換素子1は、アウターレンズ10(第1のレンズ、光方向変換部60)と、メインスペーサ20と、光電変換部30と、配線部40と、光閉じ込め部50と、を有する。 The photoelectric conversion element 1 shown in FIG. 1 is a so-called back-illuminated pixel. The photoelectric conversion element 1 includes an outer lens 10 (first lens, optical direction conversion unit 60), a main spacer 20, a photoelectric conversion unit 30, a wiring unit 40, and a light confinement unit 50.
 アウターレンズ10は、メインスペーサ20とともに光電変換部30に入射させる光Rの方向を決める。つまり、アウターレンズ10は、メインスペーサ20とともに光方向変換部60を構成する。アウターレンズ10は、レンズ入射面11と、レンズ出射面12と、を有する。アウターレンズ10の屈折率は、一例としてn=1.58である。アウターレンズ10の詳細については、後述する。 The outer lens 10 determines the direction of the light R incident on the photoelectric conversion unit 30 together with the main spacer 20. That is, the outer lens 10 constitutes the optical direction conversion unit 60 together with the main spacer 20. The outer lens 10 has a lens incident surface 11 and a lens emitting surface 12. The refractive index of the outer lens 10 is n = 1.58 as an example. The details of the outer lens 10 will be described later.
 メインスペーサ20は、アウターレンズ10から光電変換部30までの距離を決める。メインスペーサ20の屈折率は、一例としてn=1.58である。つまり、メインスペーサ20の屈折率は、アウターレンズ10の屈折率と同じである。メインスペーサ20は、スペーサ入射面21と、スペーサ出射面22と、を有する。 The main spacer 20 determines the distance from the outer lens 10 to the photoelectric conversion unit 30. The refractive index of the main spacer 20 is, for example, n = 1.58. That is, the refractive index of the main spacer 20 is the same as the refractive index of the outer lens 10. The main spacer 20 has a spacer incident surface 21 and a spacer emitting surface 22.
 本実施形態の光電変換素子1において、光電変換部30で多重反射を生じさせるためには、光電変換部30に対する光の入射位置及び入射角度が重要である。これらの入射位置及び入射角度は、光が通過する光学部品の形状や特性(屈折率)に応じて決まる。光電変換素子1の場合には、アウターレンズ10及びメインスペーサ20がこれに該当する。つまり、光電変換素子1は、アウターレンズ10及びメインスペーサ20によって構成される光方向変換部60を有する。つまり、光方向変換部60は、多重反射を生じさせるように光電変換部30へ光を導く構成である。光方向変換部60は、光電変換部30へ光を導く構成であるから、光電変換部30の外側に配置される。 In the photoelectric conversion element 1 of the present embodiment, in order to cause multiple reflections in the photoelectric conversion unit 30, the incident position and angle of light incident on the photoelectric conversion unit 30 are important. These incident positions and angles are determined according to the shape and characteristics (refractive index) of the optical component through which light passes. In the case of the photoelectric conversion element 1, the outer lens 10 and the main spacer 20 correspond to this. That is, the photoelectric conversion element 1 has an optical direction conversion unit 60 composed of an outer lens 10 and a main spacer 20. That is, the optical direction conversion unit 60 is configured to guide light to the photoelectric conversion unit 30 so as to cause multiple reflections. Since the optical direction conversion unit 60 is configured to guide light to the photoelectric conversion unit 30, it is arranged outside the photoelectric conversion unit 30.
 光電変換部30は、光Rを吸収する。光電変換部30は、吸収した光Rに応じた電荷を発生させる。光電変換部30は、裏面30B(第1の面)と、表面30F(第2の面)と、を有する。光電変換部30は、シリコンにより構成される。シリコンによれば、光電変換部30の屈折率は、n=3.64である。つまり、光電変換部30の屈折率は、アウターレンズ10の屈折率より大きい。また、光電変換部30の屈折率は、メインスペーサ20の屈折率より大きい。 The photoelectric conversion unit 30 absorbs light R. The photoelectric conversion unit 30 generates an electric charge according to the absorbed light R. The photoelectric conversion unit 30 has a back surface 30B (first surface) and a front surface 30F (second surface). The photoelectric conversion unit 30 is made of silicon. According to silicon, the refractive index of the photoelectric conversion unit 30 is n = 3.64. That is, the refractive index of the photoelectric conversion unit 30 is larger than the refractive index of the outer lens 10. Further, the refractive index of the photoelectric conversion unit 30 is larger than the refractive index of the main spacer 20.
 光電変換部30は、p+型の第1半導体領域31と、p-型の第2半導体領域32と、n型の第3半導体領域33と、p+型の第4半導体領域34と、を有する。第1半導体領域31は、光電変換部30の裏面30Bを構成する。第1半導体領域31は、第2半導体領域32に接する。第2半導体領域32は、第1半導体領域31、第3半導体領域33及び第4半導体領域34にそれぞれ接する。第3半導体領域33は、第2半導体領域32及び第4半導体領域34に接する。第2半導体領域32及び第3半導体領域33は、pn接合部を構成し、フォトダイオードとして機能する。つまり、光Rを吸収するシリコンからなる光電変換部30は、フォトダイオードを含む。フォトダイオードの構造は、埋め込みフォトダイオードであることが好ましいが、フォトゲート等の受光素子であってもよい。第4半導体領域34は、光電変換部30の表面30Fを構成する。第4半導体領域34は、第2半導体領域32及び第3半導体領域33に接する。また、第4半導体領域34は、配線部40の裏面40Bに接する。 The photoelectric conversion unit 30 has a p + type first semiconductor region 31, a p-type second semiconductor region 32, an n-type third semiconductor region 33, and a p + type fourth semiconductor region 34. The first semiconductor region 31 constitutes the back surface 30B of the photoelectric conversion unit 30. The first semiconductor region 31 is in contact with the second semiconductor region 32. The second semiconductor region 32 is in contact with the first semiconductor region 31, the third semiconductor region 33, and the fourth semiconductor region 34, respectively. The third semiconductor region 33 is in contact with the second semiconductor region 32 and the fourth semiconductor region 34. The second semiconductor region 32 and the third semiconductor region 33 form a pn junction and function as a photodiode. That is, the photoelectric conversion unit 30 made of silicon that absorbs light R includes a photodiode. The structure of the photodiode is preferably an embedded photodiode, but it may be a light receiving element such as a photogate. The fourth semiconductor region 34 constitutes the surface 30F of the photoelectric conversion unit 30. The fourth semiconductor region 34 is in contact with the second semiconductor region 32 and the third semiconductor region 33. Further, the fourth semiconductor region 34 is in contact with the back surface 40B of the wiring portion 40.
 光閉じ込め部50は、裏面側反射層50B(第1の反射層)と、表面側反射層50F(第2の反射層)と、反射防止層51と、DTI52(Deep Trench Isolation、第1の隔壁部)と、を有する。反射防止層51は、光電変換部30の裏面30Bに形成される。反射防止層51は、例えば、酸化シリコン(SiO)及び窒化シリコン(SiN)によって構成される。反射防止層51は、DTI52よって規定される画素領域の全体を覆う。 The light confinement portion 50 includes a back surface side reflection layer 50B (first reflection layer), a front surface side reflection layer 50F (second reflection layer), an antireflection layer 51, and a DTI 52 (Deep Trench Isolation, first partition wall). Part) and. The antireflection layer 51 is formed on the back surface 30B of the photoelectric conversion unit 30. The antireflection layer 51 is composed of, for example, silicon oxide (SiO 2 ) and silicon nitride (SiN). The antireflection layer 51 covers the entire pixel area defined by the DTI 52.
 裏面側反射層50B及び表面側反射層50Fは、金属によって構成される。つまり、裏面側反射層50B及び表面側反射層50Fは、金属層である。裏面側反射層50B及び表面側反射層50Fは、例えば、アルミニウム(Al)、銅(Cu)又はタングステン(W)によって構成される。裏面側反射層50Bは、反射防止層51に形成される。裏面側反射層50Bは、入射開口50B1と、境界開口50B2と、を含む。入射開口50B1は、光軸Zと交差する。境界開口50B2の位置は、DTI52の位置に対応する。入射開口50B1及び境界開口50B2を介して、反射防止層51が露出する。反射防止層51は、入射開口50B1及び境界開口50B2を介してメインスペーサ20に接する。表面側反射層50Fは、配線部40の内部に形成される。 The back surface side reflective layer 50B and the front surface side reflective layer 50F are made of metal. That is, the back surface side reflective layer 50B and the front surface side reflective layer 50F are metal layers. The back surface side reflective layer 50B and the front surface side reflective layer 50F are made of, for example, aluminum (Al), copper (Cu), or tungsten (W). The back surface side reflective layer 50B is formed on the antireflection layer 51. The back surface side reflective layer 50B includes an incident opening 50B1 and a boundary opening 50B2. The incident aperture 50B1 intersects the optical axis Z. The position of the boundary opening 50B2 corresponds to the position of the DTI 52. The antireflection layer 51 is exposed through the incident opening 50B1 and the boundary opening 50B2. The antireflection layer 51 contacts the main spacer 20 via the incident opening 50B1 and the boundary opening 50B2. The surface-side reflective layer 50F is formed inside the wiring portion 40.
 DTI52は、隣り合う光電変換素子1を光学的に仕切る。DTI52は、光電変換部30を構成するシリコン基板に形成したトレンチに、シリコン(屈折率3.64@940nm)に比べて、屈折率の小さい物質を埋め込んだものである。屈折率の小さい物質として、例えばSiO(屈折率約1.45)が挙げられる。その結果、DTI52は、光Rを反射する機能を奏する。つまり、DTI52は、斜めに入射する光Rを全反射する。 The DTI 52 optically partitions the adjacent photoelectric conversion elements 1. In the DTI 52, a substance having a refractive index smaller than that of silicon (refractive index 3.64 @ 940 nm) is embedded in a trench formed in a silicon substrate constituting the photoelectric conversion unit 30. Examples of the substance having a small refractive index include SiO 2 (refractive index of about 1.45). As a result, the DTI 52 has a function of reflecting light R. That is, the DTI 52 totally reflects the light R incident at an angle.
 DTI52は、第3半導体領域33を囲む。一方のDTI52から他方のDTI52までの幅は、第3半導体領域33の幅よりも大きい。図2は、一方のDTI52を拡大して示す図である。DTI52は、第2半導体領域32及び第4半導体領域34に形成される。DTI52の表面側端面52sは、配線部40に接する。DTI52は、第4半導体領域34を貫通する。配線部40において表面側端面52sが接する部分には、電極43pが設けられている。電極43pは、DTI52を表面側反射層50Fに対して電気的に接続する。DTI52は、第2半導体領域32の表面(光電変換部30の表面30F)から第2半導体領域32の裏面(光電変換部30の裏面30B)に向けて延びる。このような構造のDTI52は、光電変換部30の表面30Fからの加工によって形成されている。DTI52の裏面側端面52tは、第2半導体領域32に位置する。裏面側端面52tと第1半導体領域31との間には、第2半導体領域32の一部が存在する。つまり、DTI52は、第2半導体領域32を貫通しない。 The DTI 52 surrounds the third semiconductor region 33. The width from one DTI 52 to the other DTI 52 is larger than the width of the third semiconductor region 33. FIG. 2 is an enlarged view of one DTI 52. The DTI 52 is formed in the second semiconductor region 32 and the fourth semiconductor region 34. The surface side end surface 52s of the DTI 52 is in contact with the wiring portion 40. The DTI 52 penetrates the fourth semiconductor region 34. An electrode 43p is provided at a portion of the wiring portion 40 in contact with the surface side end surface 52s. The electrode 43p electrically connects the DTI 52 to the surface reflective layer 50F. The DTI 52 extends from the front surface of the second semiconductor region 32 (front surface 30F of the photoelectric conversion unit 30) toward the back surface of the second semiconductor region 32 (back surface 30B of the photoelectric conversion unit 30). The DTI 52 having such a structure is formed by processing from the surface 30F of the photoelectric conversion unit 30. The back surface side end surface 52t of the DTI 52 is located in the second semiconductor region 32. A part of the second semiconductor region 32 exists between the back surface side end surface 52t and the first semiconductor region 31. That is, the DTI 52 does not penetrate the second semiconductor region 32.
 DTI52は、図2示す構成に限定されない。DTI52は、裏面側端面52tと光電変換部30の裏面30Bとの関係及び表面側端面52sと光電変換部30の表面30Fとの関係において、図2に示す第1の構成を含めて3つの構成を採用できる。 The DTI 52 is not limited to the configuration shown in FIG. The DTI 52 has three configurations including the first configuration shown in FIG. 2 in the relationship between the back surface side end surface 52t and the back surface 30B of the photoelectric conversion unit 30 and the relationship between the front surface side end surface 52s and the front surface 30F of the photoelectric conversion unit 30. Can be adopted.
 図3は、第2の構成であるDTI52A(第3の隔壁部)の拡大図である。第2の構成であるDTI52Aでは、裏面側端面52tが光電変換部30の裏面30Bと面一であると共に表面側端面52sが光電変換部30の表面30Fと面一である。つまり、DTI52Aは、光電変換部30を貫通している。裏面側端面52tは、反射防止層51に接する。また、裏面側端面52tの上方におけるわずかな領域には、裏面側反射層50Bが設けられていない。つまり、裏面側反射層50Bは、隙間である境界開口50B2を有する。表面側端面52sは、配線部40の裏面40Bに露出する電極43pに電気的に接続されている。DTI52Aは、光電変換部30の内部を光学的に隔てる。従って、第2の構成であるDTI52Aは、光吸収効率を高める点で有利である。さらに、DTI52Aは、光電変換部30の内部を電気的に隔てる。つまり、DTI52Aは、電荷の移動を阻む。 FIG. 3 is an enlarged view of the DTI 52A (third partition wall portion) having the second configuration. In the second configuration, the DTI 52A, the back surface side end surface 52t is flush with the back surface 30B of the photoelectric conversion unit 30, and the front surface side end surface 52s is flush with the surface 30F of the photoelectric conversion unit 30. That is, the DTI 52A penetrates the photoelectric conversion unit 30. The back surface side end surface 52t is in contact with the antireflection layer 51. Further, the back surface side reflective layer 50B is not provided in a small area above the back surface side end surface 52t. That is, the back surface side reflective layer 50B has a boundary opening 50B2 which is a gap. The front end surface 52s is electrically connected to the electrode 43p exposed on the back surface 40B of the wiring portion 40. The DTI 52A optically separates the inside of the photoelectric conversion unit 30. Therefore, the second configuration, DTI52A, is advantageous in that it enhances the light absorption efficiency. Further, the DTI 52A electrically separates the inside of the photoelectric conversion unit 30. That is, the DTI 52A blocks the transfer of charge.
 図4は、第3の構成であるDTI52B(第2の隔壁部)の拡大図である。第3の構成であるDTI52Bは、裏面側端面52tが光電変換部30の裏面30Bと面一である。裏面側端面52tは、反射防止層51に接触する。一方、表面側端面52sは光電変換部30の表面30Fと面一ではない。表面側端面52sは、光電変換部30の表面30Fから離間する。つまり、DTI52Bは、光電変換部30を貫通しない。このようなDTI52Bは、光電変換部30の裏面30Bからの加工によって形成される。表面側端面52sは、光電変換部30の第2半導体領域32に接する。そうすると、表面側端面52sの下方において光電変換部30の第2半導体領域32は分離されていない。この第2半導体領域32の一部32sは、電荷の移動経路として利用することが可能である。つまり、DTI52Bが貫通していない領域(32s)は、MOSトランジスタ構造を経由した電荷蓄積検出部70(図33参照)への電荷の転送に利用できる。なお、DTI52Bが貫通していない領域からは、光Rの漏れが生じ得る。この場合には、光Rの漏れの対策を適宜講じればよい。 FIG. 4 is an enlarged view of the DTI 52B (second partition wall portion) having the third configuration. In the DTI 52B having the third configuration, the back surface side end surface 52t is flush with the back surface 30B of the photoelectric conversion unit 30. The back surface side end surface 52t comes into contact with the antireflection layer 51. On the other hand, the surface side end surface 52s is not flush with the surface 30F of the photoelectric conversion unit 30. The front end surface 52s is separated from the surface 30F of the photoelectric conversion unit 30. That is, the DTI 52B does not penetrate the photoelectric conversion unit 30. Such a DTI 52B is formed by processing from the back surface 30B of the photoelectric conversion unit 30. The surface side end surface 52s is in contact with the second semiconductor region 32 of the photoelectric conversion unit 30. Then, the second semiconductor region 32 of the photoelectric conversion unit 30 is not separated below the surface side end surface 52s. A part 32s of the second semiconductor region 32 can be used as a charge transfer path. That is, the region (32s) that the DTI 52B does not penetrate can be used for transferring the charge to the charge storage detection unit 70 (see FIG. 33) via the MOS transistor structure. It should be noted that light R may leak from the region where the DTI 52B does not penetrate. In this case, measures for leakage of light R may be taken as appropriate.
 再び図1を参照する。配線部40は、裏面40Bと、表面40Fと、を有する。配線部40は、第1配線層41と、第2配線層42と、電極43、43pと、酸化シリコン領域44と、を有する。酸化シリコン領域44は、配線部40の裏面40B及び配線部40の表面40Fを構成する。第1配線層41、第2配線層42及び電極43、43pは、酸化シリコン領域44に埋め込まれている。また、表面側反射層50Fも酸化シリコン領域44に埋め込まれている。第1配線層41は、電極43を介して第2配線層42に対して電気的に接続されている。 Refer to Fig. 1 again. The wiring portion 40 has a back surface 40B and a front surface 40F. The wiring unit 40 has a first wiring layer 41, a second wiring layer 42, electrodes 43 and 43p, and a silicon oxide region 44. The silicon oxide region 44 constitutes the back surface 40B of the wiring portion 40 and the front surface 40F of the wiring portion 40. The first wiring layer 41, the second wiring layer 42, and the electrodes 43, 43p are embedded in the silicon oxide region 44. Further, the surface-side reflective layer 50F is also embedded in the silicon oxide region 44. The first wiring layer 41 is electrically connected to the second wiring layer 42 via the electrode 43.
 アウターレンズ10についてさらに詳細に説明する。アウターレンズ10のレンズ入射面11は、場所に応じて曲率が異なる。つまり、レンズ入射面11は、一定の曲率を有する曲面ではない。例えば、アウターレンズ10の曲率については、アウターレンズ10における光軸Zを含む断面形状において、光を受け入れる面を示す線分は、第1の曲線部と、第1の曲線部よりも光軸Zから遠い第2の曲線部とを含み、第2の曲線部の曲率は、第1の曲線部の曲率よりも小さいとして説明できる。例えば、図5(a)に示すように、レンズ入射面11において、第1領域L5aが第1の曲線部に対応し、第2領域L5bが第2の曲線部に対応する。そして、第2領域L5bの曲率は、第1領域L5aの曲率よりも小さい。この構成は、図5(a)、図5(b)及び図5(c)を参照すると容易に理解できる。 The outer lens 10 will be described in more detail. The lens incident surface 11 of the outer lens 10 has a different curvature depending on the location. That is, the lens incident surface 11 is not a curved surface having a constant curvature. For example, regarding the curvature of the outer lens 10, in the cross-sectional shape including the optical axis Z of the outer lens 10, the line segment indicating the surface that receives light is the first curved portion and the optical axis Z rather than the first curved portion. It can be explained that the curvature of the second curved portion includes the second curved portion far from the curve portion and is smaller than the curvature of the first curved portion. For example, as shown in FIG. 5A, in the lens incident surface 11, the first region L5a corresponds to the first curved portion, and the second region L5b corresponds to the second curved portion. The curvature of the second region L5b is smaller than the curvature of the first region L5a. This configuration can be easily understood with reference to FIGS. 5 (a), 5 (b) and 5 (c).
 図5(a)は、レンズ入射面11を平面視した等高線図である。図5(a)に示すように、アウターレンズ10は、光軸Zを中心とした回転対称の形状を有する。図5(b)及び図5(c)は、等高線の位置を示す断面図である。図5(b)の断面10aは、図5(a)におけるX1-X1’断面に対応する。図5(b)の断面10bは、図5(a)におけるX2-X2’断面に対応する。図5(c)の断面10cは、図5(a)におけるY1-Y1’断面に対応する。図5(c)の断面10dは、図5(a)におけるY2-Y2’断面に対応する。図5(b)及び図5(c)の軸線は、図5(a)の等高線の位置を示す。例えば、図5(b)及び図5(c)の軸線の数字は、図5(a)の等高線に付した数字に対応する。図5(a)では、例えば、等高線(11)に囲まれた領域を第1領域L5aと定義すると共に等高線(1)から等高線(6)に囲まれた領域を第2領域L5bと定義してもよい。そうすると、第1領域L5aは、光軸Zと交差する。また、第2領域L5bは、第1領域L5aを囲む。 FIG. 5A is a contour line view of the lens incident surface 11 in a plan view. As shown in FIG. 5A, the outer lens 10 has a rotationally symmetric shape centered on the optical axis Z. 5 (b) and 5 (c) are cross-sectional views showing the positions of the contour lines. The cross section 10a in FIG. 5 (b) corresponds to the X1-X1'cross section in FIG. 5 (a). The cross section 10b of FIG. 5B corresponds to the X2-X2'cross section of FIG. 5A. The cross section 10c of FIG. 5 (c) corresponds to the Y1-Y1'cross section of FIG. 5 (a). The cross section 10d in FIG. 5 (c) corresponds to the Y2-Y2'cross section in FIG. 5 (a). The axes of FIGS. 5 (b) and 5 (c) indicate the positions of the contour lines of FIG. 5 (a). For example, the numbers on the axes of FIGS. 5 (b) and 5 (c) correspond to the numbers attached to the contour lines of FIG. 5 (a). In FIG. 5A, for example, the region surrounded by the contour lines (11) is defined as the first region L5a, and the region surrounded by the contour lines (1) to the contour lines (6) is defined as the second region L5b. May be good. Then, the first region L5a intersects the optical axis Z. Further, the second region L5b surrounds the first region L5a.
 このような形状を有するアウターレンズ10は、複数の焦点位置を有するとも言える。例えば、図1に示すように、アウターレンズ10の頂部(第1領域L5a)における焦点FP1の位置は、アウターレンズ10の周辺部(第2領域L5b)における焦点F2の位置よりも光電変換部30から遠い。換言すると、アウターレンズ10の頂部における焦点距離は、アウターレンズ10の周辺部における焦点距離よりも短い。 It can be said that the outer lens 10 having such a shape has a plurality of focal positions. For example, as shown in FIG. 1, the position of the focal point FP1 at the top of the outer lens 10 (first region L5a) is higher than the position of the focal point F2 at the peripheral portion of the outer lens 10 (second region L5b). Far from. In other words, the focal length at the top of the outer lens 10 is shorter than the focal length at the periphery of the outer lens 10.
 図6及び図7を参照しながら、光電変換素子1における光吸収の様子を説明する。光R6a、R6bは、平行光であるとする。光R6a、R6bの方向は、光軸Zに平行である。 The state of light absorption in the photoelectric conversion element 1 will be described with reference to FIGS. 6 and 7. It is assumed that the lights R6a and R6b are parallel lights. The directions of the light R6a and R6b are parallel to the optical axis Z.
 マイクロレンズであるアウターレンズ10の形状は、頂点が丸められた円錐形状であるとも言える。このようなレンズ形状によれば、アウターレンズ10を通った光R6a、R6bは、入射開口50B1から光電変換部30へ入射する。そして、表面側反射層50Fにおいてドーナツ状(リング状)の反射光となる。その後は、表面付近でそのリングの径が拡大されながら一旦はより細いリング形状となる。そして、その半径とリングの直径を広げながら、表面側反射層50Fと裏面側反射層50Bとの間で反射を繰り返す。結果として、光R6a、R6bがシリコンからなる光電変換部30にとどまる限り、光R6a、R6bは光電変換部30に吸収され続けるので、光電変換が継続する。 It can be said that the shape of the outer lens 10 which is a microlens is a conical shape with rounded vertices. According to such a lens shape, the light R6a and R6b that have passed through the outer lens 10 are incident on the photoelectric conversion unit 30 from the incident aperture 50B1. Then, the reflected light becomes donut-shaped (ring-shaped) in the surface-side reflective layer 50F. After that, the diameter of the ring is expanded near the surface, and the ring shape becomes thinner once. Then, while expanding the radius and the diameter of the ring, the reflection is repeated between the front surface side reflection layer 50F and the back surface side reflection layer 50B. As a result, as long as the light R6a and R6b stay in the photoelectric conversion unit 30 made of silicon, the optical R6a and R6b continue to be absorbed by the photoelectric conversion unit 30, so that the photoelectric conversion continues.
 図6を参照しながら、具体的な第1例として、レンズ入射面11における第2領域L5bに入射した光R6aの様子を説明する。光R6aがレンズ入射面11を通るとき、光R6aの進行方向が変わる。進行方向の変化は、レンズ入射面11に対する光R6aの入射角に基づく。さらに、進行方向の変化は、空気の屈折率とアウターレンズ10の屈折率との屈折率差にも基づく。光R6aは、レンズ出射面12からメインスペーサ20に入射する。アウターレンズ10の屈折率は、メインスペーサ20の屈折率と同じである。つまり、アウターレンズ10とメインスペーサ20との間に屈折率差はないので、光R6aの進行方向は変化しない。光R6aは、裏面側反射層50Bの入射開口50B1を通過したのちに、反射防止層51を通過する。その後、光R6aは、光電変換部30に入射する。光電変換部30の第1半導体領域31の屈折率は、メインスペーサ20の屈折率と一致しない。従って、光電変換部30への入射に際して、光R6aの進行方向が変化する。光電変換部30に入射した光R6aは、第1半導体領域31、第2半導体領域32、第3半導体領域33及び第4半導体領域34を通過する。そして、配線部40へ入射する。これらの複数の半導体層は、有意な屈折率差を有しない。従って、光R6aの進行方向は、実質的に変化しない。つまり、光R6aは、光電変換部30において直進する。 As a specific first example, the state of the light R6a incident on the second region L5b on the lens incident surface 11 will be described with reference to FIG. When the light R6a passes through the lens incident surface 11, the traveling direction of the light R6a changes. The change in the traveling direction is based on the incident angle of the light R6a with respect to the lens incident surface 11. Further, the change in the traveling direction is also based on the difference in the refractive index between the refractive index of air and the refractive index of the outer lens 10. The light R6a is incident on the main spacer 20 from the lens emitting surface 12. The refractive index of the outer lens 10 is the same as the refractive index of the main spacer 20. That is, since there is no difference in the refractive index between the outer lens 10 and the main spacer 20, the traveling direction of the light R6a does not change. The light R6a passes through the incident opening 50B1 of the back surface side reflective layer 50B and then passes through the antireflection layer 51. After that, the light R6a is incident on the photoelectric conversion unit 30. The refractive index of the first semiconductor region 31 of the photoelectric conversion unit 30 does not match the refractive index of the main spacer 20. Therefore, the traveling direction of the light R6a changes when it is incident on the photoelectric conversion unit 30. The light R6a incident on the photoelectric conversion unit 30 passes through the first semiconductor region 31, the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34. Then, it is incident on the wiring portion 40. These plurality of semiconductor layers do not have a significant difference in refractive index. Therefore, the traveling direction of the light R6a does not substantially change. That is, the light R6a travels straight in the photoelectric conversion unit 30.
 光電変換部30の屈折率(3.64)は、配線部40の酸化シリコン領域44の屈折率(1.45)と異なる。従って、配線部40への入射に際して、屈折率の差に応じて光R6aの進行方向が変化する。配線部40に入射した光R6aは、表面側反射層50Fに至る。表面側反射層50Fにおいて光R6aが入射する位置は、光軸Zから離れている。光R6aは、表面側反射層50Fにおいて、反射する。 The refractive index (3.64) of the photoelectric conversion unit 30 is different from the refractive index (1.45) of the silicon oxide region 44 of the wiring unit 40. Therefore, upon incident incident on the wiring portion 40, the traveling direction of the light R6a changes according to the difference in the refractive index. The light R6a incident on the wiring portion 40 reaches the surface-side reflective layer 50F. The position where the light R6a is incident on the surface-side reflective layer 50F is away from the optical axis Z. The light R6a is reflected by the surface-side reflective layer 50F.
 反射後の光R6aの進行方向は、表面側反射層50Fへの光R6aの入射角に応じる。反射した光R6aは、配線部40から光電変換部30に入射する。光R6aは、光電変換部30において直進する。そして、光R6aは、裏面側反射層50Bに至る。つまり、表面側反射層50Fにおいて反射した光R6aは、入射開口50B1に戻らない。裏面側反射層50Bにおいて反射した光R6aは、再び光電変換部30を通過した後に、表面側反射層50Fに至る。以後、光R6aは、裏面側反射層50Bと表面側反射層50Fとの間を往復しながら、DTI52に近づく。そして、DTI52に至った光R6aは、DTI52において反射する。その後、光R6aは、再び裏面側反射層50Bと表面側反射層50Fとの間を往復しながら、DTI52から離間する。最終的に、光電変換部30で吸収されなかった光R6aの成分が、入射開口50B1を介して光電変換部30からメインスペーサ20に至る。 The traveling direction of the light R6a after reflection depends on the angle of incidence of the light R6a on the surface side reflection layer 50F. The reflected light R6a is incident on the photoelectric conversion unit 30 from the wiring unit 40. The light R6a travels straight in the photoelectric conversion unit 30. Then, the light R6a reaches the back surface side reflective layer 50B. That is, the light R6a reflected by the surface-side reflective layer 50F does not return to the incident opening 50B1. The light R6a reflected by the back surface side reflection layer 50B passes through the photoelectric conversion unit 30 again and then reaches the front surface side reflection layer 50F. After that, the light R6a approaches the DTI 52 while reciprocating between the back surface side reflective layer 50B and the front surface side reflective layer 50F. Then, the light R6a that has reached the DTI 52 is reflected by the DTI 52. After that, the light R6a reciprocates between the back surface side reflective layer 50B and the front surface side reflective layer 50F, and is separated from the DTI 52. Finally, the component of the light R6a that was not absorbed by the photoelectric conversion unit 30 reaches from the photoelectric conversion unit 30 to the main spacer 20 via the incident opening 50B1.
 図6に示す構造では、光電変換部30の厚さとピクセルサイズ(受光領域の幅)との比を1:2として示している。一例として、光電変換部30の厚さは5μmであり、ピクセルサイズ(受光領域の幅)は10μmである。そうすると、光R6aは、光電変換部30を8回通過する。この場合には、光R6aの光路長は、40.8μmである。光電変換部30において、波長が940nmである光の吸収長は、約40μmである。つまり、反射による損失がないとすれば、量子効率は、約64%まで高めることができる。 In the structure shown in FIG. 6, the ratio of the thickness of the photoelectric conversion unit 30 to the pixel size (width of the light receiving region) is shown as 1: 2. As an example, the thickness of the photoelectric conversion unit 30 is 5 μm, and the pixel size (width of the light receiving region) is 10 μm. Then, the light R6a passes through the photoelectric conversion unit 30 eight times. In this case, the optical path length of the optical R6a is 40.8 μm. In the photoelectric conversion unit 30, the absorption length of light having a wavelength of 940 nm is about 40 μm. That is, if there is no loss due to reflection, the quantum efficiency can be increased to about 64%.
 次に、第2例として、レンズ入射面11における第1領域L5aに入射した光R6bの様子を説明する。光R6bも、第1領域L5aに入射した光R6bと同様に、入射開口50B1から光電変換部30に入射する。そして、光R6bは、光電変換部30を複数回往復する。第2例では、光R6bが入射開口50B1を通過して最初に表面側反射層50Fに入射するときの入射角が、第1例より小さい。その結果、光電変換部30における光R6bの反射回数は、22回である。つまり、光R6bの光電変換部30を往復する回数は、第1例の光R6aが往復する回数よりも多い。そうすると、第2例における光電変換部30の光路長は、約110μmである。反射による損失がないとすれば、量子効率は、約94%まで高めることができる。 Next, as a second example, the state of the light R6b incident on the first region L5a on the lens incident surface 11 will be described. The light R6b also enters the photoelectric conversion unit 30 from the incident opening 50B1 in the same manner as the light R6b incident on the first region L5a. Then, the optical R6b reciprocates the photoelectric conversion unit 30 a plurality of times. In the second example, the incident angle when the light R6b first enters the surface-side reflective layer 50F after passing through the incident opening 50B1 is smaller than that in the first example. As a result, the number of times the light R6b is reflected by the photoelectric conversion unit 30 is 22 times. That is, the number of round trips of the photoelectric conversion unit 30 of the optical R6b is larger than the number of round trips of the optical R6a of the first example. Then, the optical path length of the photoelectric conversion unit 30 in the second example is about 110 μm. If there is no loss due to reflection, the quantum efficiency can be increased to about 94%.
 光電変換素子1を全体として見たとき、反射回数(光路長)は、第1例と第2例の間に存在すると仮定できる。そうすると、光電変換素子1の量子効率は、約80%まで高めることが可能である。 When the photoelectric conversion element 1 is viewed as a whole, it can be assumed that the number of reflections (optical path length) exists between the first example and the second example. Then, the quantum efficiency of the photoelectric conversion element 1 can be increased to about 80%.
 図7は、第2の例を別の表現によって図示する斜視図である。図7には、ひとつの光R7aの光線を例示する。アウターレンズ10は、図7にも示すように、光軸Zの周りに対称な形状を有する。そうすると、光軸Zに沿う同じ位置に入射した光R7aは、表面側反射層50Fに到達したとき、光軸Zから等距離の位置に入射する。換言すると、表面側反射層50Fに入射する位置は、光軸Zを中心とする円である。そして、それぞれの位置において光R7aの入射角は互いに等しいので、表面側反射層50Fから裏面側反射層50Bに向かう方向も等価である。その結果、再び表面側反射層50Fに入射する位置も同様の円である。この場合には、光R7aは、DTI52に近づいているから、換言すると、2回目に表面側反射層50Fに光R7aが入射する位置の半径は、1回目に表面側反射層50Fに光R7aが入射する位置の半径よりも大きい。このような反射が繰り返されることによって、表面側反射層50Fにおいて光R7aが入射する位置は、同心円を描く。以下の説明において、表面側反射層50Fにおいて光軸Zから等距離の位置に入射するように光R7aの進行方向を変換することを、「光の成形」と称する。 FIG. 7 is a perspective view illustrating the second example by another expression. FIG. 7 illustrates a ray of one light R7a. As shown in FIG. 7, the outer lens 10 has a symmetrical shape around the optical axis Z. Then, when the light R7a incident on the same position along the optical axis Z reaches the surface-side reflective layer 50F, it is incident on the position equidistant from the optical axis Z. In other words, the position incident on the surface-side reflective layer 50F is a circle centered on the optical axis Z. Since the incident angles of the light R7a are equal to each other at each position, the directions from the front surface side reflection layer 50F to the back surface side reflection layer 50B are also equivalent. As a result, the position of being incident on the surface-side reflective layer 50F again is a similar circle. In this case, since the light R7a is approaching the DTI 52, in other words, the radius of the position where the light R7a is incident on the surface side reflective layer 50F for the second time is the radius of the position where the light R7a is incident on the surface side reflective layer 50F for the first time. Greater than the radius of the incident position. By repeating such reflections, the positions where the light R7a is incident on the surface-side reflective layer 50F draw concentric circles. In the following description, changing the traveling direction of the light R7a so that it is incident on the surface-side reflective layer 50F at a position equidistant from the optical axis Z is referred to as “light molding”.
<作用効果>
 対象物に光を照射し、その光が対象物で反射して戻ってくる間の飛行時間を計測することによって距離を測定するTOFカメラの光源には、太陽光が存在する屋外での距離測定に対応するために、大気中の水蒸気の吸収により比較的太陽光のスペクトル強度が低くなる940nm帯のレーザー光などがよく用いられる。しかしながら、この波長帯の光に対して半導体であるシリコンの吸収係数は十分に大きいとは言えない。そこで、従来のCMOSイメージセンサの数μmから10数μm程度の光電変換層では量子効率を高くすることができなかった。従って、屋外での距離測定に対して十分な感度が達成できているとは言えなかった。
<Action effect>
The light source of the TOF camera, which measures the distance by irradiating the object with light and measuring the flight time while the light is reflected by the object and returns, measures the distance outdoors in the presence of sunlight. In order to cope with this, laser light in the 940 nm band, in which the spectral intensity of sunlight is relatively low due to absorption of water vapor in the atmosphere, is often used. However, it cannot be said that the absorption coefficient of silicon, which is a semiconductor, is sufficiently large for light in this wavelength band. Therefore, it was not possible to increase the quantum efficiency in the photoelectric conversion layer of about several μm to about 10 μm of the conventional CMOS image sensor. Therefore, it cannot be said that sufficient sensitivity for outdoor distance measurement has been achieved.
 光電変換素子1は、裏面側反射層50Bと表面側反射層50Fとの間で複数回の光Rの反射が生じる。裏面側反射層50Bと表面側反射層50Fとの間には光電変換部30が存在する。つまり、光Rは光電変換部30を複数回往復する。そうすると、光電変換部30における光Rの光路長が伸びるので、光電変換部30に光Rを十分に吸収させることが可能になる。その結果、感度を高めることができる。 The photoelectric conversion element 1 reflects light R a plurality of times between the back surface side reflection layer 50B and the front surface side reflection layer 50F. A photoelectric conversion unit 30 exists between the back surface side reflection layer 50B and the front surface side reflection layer 50F. That is, the light R reciprocates the photoelectric conversion unit 30 a plurality of times. Then, since the optical path length of the light R in the photoelectric conversion unit 30 is extended, it becomes possible for the photoelectric conversion unit 30 to sufficiently absorb the light R. As a result, the sensitivity can be increased.
 つまり、第1実施形態の光電変換素子1は、表面側反射層50Fと入射開口50B1を設けた裏面側反射層50Bとの間で、光Rを複数回反射させる。その結果、シリコンからなる光電変換部30の内部での実質的な光路長を長くすることが可能になるので、近赤外感度を向上させることができる。第1実施形態のアウターレンズ10によれば、表面側反射層50Fにおける光強度の分布を、円環状(ドーナツ状)とすることが可能である。この強度分布によると、光Rのほとんどが、裏面側反射層50Bに投射される。頂部の曲率が大きく、且つ側部の曲率が小さい第1実施形態のアウターレンズ10と、アウターレンズ10と光電変換部30との間に配置されるメインスペーサ20と、の組み合わせによって、円環状の光強度の分布を得ることが可能である。その結果、本実施形態の光電変換素子1によれば、屋外での距離測定に対して十分な感度が達成できる。 That is, the photoelectric conversion element 1 of the first embodiment reflects light R a plurality of times between the front surface side reflection layer 50F and the back surface side reflection layer 50B provided with the incident opening 50B1. As a result, it is possible to lengthen the substantially optical path length inside the photoelectric conversion unit 30 made of silicon, so that the near-infrared sensitivity can be improved. According to the outer lens 10 of the first embodiment, the distribution of the light intensity in the surface-side reflective layer 50F can be made annular (doughnut-shaped). According to this intensity distribution, most of the light R is projected onto the back surface side reflective layer 50B. The combination of the outer lens 10 of the first embodiment, which has a large curvature at the top and a small curvature at the side, and the main spacer 20 arranged between the outer lens 10 and the photoelectric conversion unit 30, is annular. It is possible to obtain the distribution of light intensity. As a result, according to the photoelectric conversion element 1 of the present embodiment, sufficient sensitivity can be achieved for distance measurement outdoors.
 シリコンにより構成される光電変換部30の内部において多重反射を引き起こすためのメインスペーサ20から光電変換部30への屈折角及び入射開口50B1に対する入射位置は、アウターレンズ10に入射する光の入射角と入射面における反射面の傾きとによって直接的に決まる。なお、反射面とは、アウターレンズ10の表面の法線に垂直な面である。 The refraction angle from the main spacer 20 to the photoelectric conversion unit 30 for causing multiple reflections inside the photoelectric conversion unit 30 made of silicon and the incident position with respect to the incident opening 50B1 are the incident angles of the light incident on the outer lens 10. It is directly determined by the inclination of the reflecting surface on the incident surface. The reflective surface is a surface perpendicular to the normal of the surface of the outer lens 10.
 アウターレンズ10における光軸Zを含む断面形状において、光を受け入れる面は、当該面を示す線分が複数の直線を含む場合であっても多重反射を生じさせる条件が存在する。さらに、アウターレンズ10の光を受け入れる面を示す線分が曲線であり、当該曲線の曲率が同じでも多重反射を生じさせる条件は存在する。つまり、光方向変換部を構成するアウターレンズは、第1実施形態のアウターレンズ10に限定されない。アウターレンズは、その他の光学部品と協働して、光電変換部30の裏面30Bと光電変換部30の表面30Fとの間での光の反射が繰り返されるごとに光軸Zから離れる方向に光が進行するように、光の進行方向を変えることが可能な構成を採用してよい。以下、アウターレンズの変形例をいくつか説明する。変形例1~4のアウターレンズを採用する場合にも、アウターレンズに入射した光軸Zに平行な光が、入射開口50B1を通過したのちに、表面側反射層50Fで反射し、さらに入射開口50B1の周囲の裏面側反射層50Bで反射する。つまり、アウターレンズを含む光方向変換部は、多重反射を生じさせることが可能である。本明細書でいう「多重」とは、少なくとも2回以上の反射を意味する。 In the cross-sectional shape of the outer lens 10 including the optical axis Z, the surface that receives light has a condition that causes multiple reflection even when the line segment indicating the surface includes a plurality of straight lines. Further, the line segment indicating the surface of the outer lens 10 that receives light is a curve, and there is a condition that causes multiple reflection even if the curvature of the curve is the same. That is, the outer lens constituting the optical direction conversion unit is not limited to the outer lens 10 of the first embodiment. The outer lens cooperates with other optical components to emit light in a direction away from the optical axis Z each time light is repeatedly reflected between the back surface 30B of the photoelectric conversion unit 30 and the front surface 30F of the photoelectric conversion unit 30. A configuration may be adopted in which the traveling direction of the light can be changed so that the light travels. Hereinafter, some modifications of the outer lens will be described. Even when the outer lenses of Modifications 1 to 4 are adopted, the light parallel to the optical axis Z incident on the outer lens is reflected by the surface-side reflective layer 50F after passing through the incident aperture 50B1, and further the incident aperture. It is reflected by the back surface side reflective layer 50B around 50B1. That is, the optical direction changing unit including the outer lens can generate multiple reflections. As used herein, "multiplex" means at least two or more reflections.
<変形例1>
 図8及び図9を参照しながら、変形例1のアウターレンズ10S1について説明する。アウターレンズ10S1は、複合円錐形状である。以下の説明において、複合円錐形状とは、複数の角度の傾斜を有する多段の形状をいう。つまり、変形例1のアウターレンズ10S1の断面形状では、光軸Zからの距離が大きくなるにつれて傾斜角が大きくなる。ここでいう傾斜角とは、光軸Zを含むアウターレンズ10S1の断面形状において光軸Zと直交する仮想基準軸線ZAに対する輪郭線の角度をいう。傾斜角は、より好ましくは有限の角度である。
<Modification 1>
The outer lens 10S1 of the modification 1 will be described with reference to FIGS. 8 and 9. The outer lens 10S1 has a composite conical shape. In the following description, the compound conical shape refers to a multi-stage shape having inclinations of a plurality of angles. That is, in the cross-sectional shape of the outer lens 10S1 of the first modification, the tilt angle increases as the distance from the optical axis Z increases. The tilt angle here means the angle of the contour line with respect to the virtual reference axis ZA orthogonal to the optical axis Z in the cross-sectional shape of the outer lens 10S1 including the optical axis Z. The tilt angle is more preferably a finite angle.
 なお、図8及び図9に示すアウターレンズ10S1は、複合円錐形状を有するアウターレンズの一例である。従って、具体的な数値は、図8及び図9に示す例及び以下に説明する具体的な数値に限定されない。具体的な数値は、光電変換素子1S1の具体的な構成に応じて、適宜設定してよい。 The outer lens 10S1 shown in FIGS. 8 and 9 is an example of an outer lens having a composite conical shape. Therefore, the specific numerical values are not limited to the examples shown in FIGS. 8 and 9 and the specific numerical values described below. Specific numerical values may be appropriately set according to the specific configuration of the photoelectric conversion element 1S1.
 図8は、複合円錐形状を説明するための概略図である。図8に示す線分C1は、変形例1のアウターレンズ10S1の断面形状において、光を受け入れる面を示す。線分C1は、頂点C1tから端点C1eの間に、第1の直線部分C1a、第2の直線部分C1b及び第3の直線部分C1cを有する。第1の直線部分C1aは、頂点C1tを含む。第3の直線部分C1cは、端点C1eを含む。第2の直線部分C1bは、第1の直線部分C1aと第3の直線部分C1cとの間に配置される。つまり、第2の直線部分C1bは、第1の直線部分C1aを第3の直線部分C1cにつなげる。 FIG. 8 is a schematic diagram for explaining the composite conical shape. The line segment C1 shown in FIG. 8 indicates a surface that receives light in the cross-sectional shape of the outer lens 10S1 of the first modification. The line segment C1 has a first straight line portion C1a, a second straight line portion C1b, and a third straight line portion C1c between the apex C1t and the end point C1e. The first straight line portion C1a includes the apex C1t. The third straight line portion C1c includes the endpoint C1e. The second straight line portion C1b is arranged between the first straight line portion C1a and the third straight line portion C1c. That is, the second straight line portion C1b connects the first straight line portion C1a to the third straight line portion C1c.
 第1の直線部分C1aは、第1の傾斜角A1aを有する。傾斜角とは、光軸Zに対して直交する仮想基準軸線ZAと第1の直線部分C1aとの間の角度である。同様に、第2の直線部分C1bは、第2の傾斜角A1bを有し、第3の直線部分C1cは、第3の傾斜角A1cを有する。第2の傾斜角A1bは、第1の傾斜角A1aよりも大きい。第3の傾斜角A1cは、第2の傾斜角A1bよりも大きい。 The first straight line portion C1a has a first inclination angle A1a. The inclination angle is an angle between the virtual reference axis ZA orthogonal to the optical axis Z and the first straight line portion C1a. Similarly, the second straight line portion C1b has a second tilt angle A1b and the third straight line portion C1c has a third tilt angle A1c. The second tilt angle A1b is larger than the first tilt angle A1a. The third tilt angle A1c is larger than the second tilt angle A1b.
 図9は、図8にて説明した複合円錐形状を有するアウターレンズ10S1を備えた光電変換素子1S1の要部を示す断面図である。光電変換素子1S1は、アウターレンズ10S1と、メインスペーサ20と、光電変換部30と、を有する。 FIG. 9 is a cross-sectional view showing a main part of the photoelectric conversion element 1S1 provided with the outer lens 10S1 having the composite conical shape described with reference to FIG. The photoelectric conversion element 1S1 includes an outer lens 10S1, a main spacer 20, and a photoelectric conversion unit 30.
 光電変換素子1S1が備えるそれぞれの構成要素について、以下の数値が例示できる。
 アウターレンズ:厚さt1=2.8μm、幅t4=10μm、屈折率n=1.8。
 メインスペーサ:厚さt2=7μm、幅t4=10μm、屈折率n=1.8。
 光電変換部:厚さt3=20μm、幅t4=10μm、屈折率n=3.6。
The following numerical values can be exemplified for each component included in the photoelectric conversion element 1S1.
Outer lens: thickness t1 = 2.8 μm, width t4 = 10 μm, refractive index n = 1.8.
Main spacer: thickness t2 = 7 μm, width t4 = 10 μm, refractive index n = 1.8.
Photoelectric conversion unit: thickness t3 = 20 μm, width t4 = 10 μm, refractive index n = 3.6.
 また、図9には、アウターレンズ10S1に入射する光を示す光線を図示する。入射する位置におけるレンズ表面の法線Nと光軸Zに平行な軸線との角度を、それぞれ角度A2a、A2b、A2cとして示す。それぞれの角度の数値として以下が例示できる。
 角度A2a=20°
 角度A2b=30°
 角度A2c=40°
Further, FIG. 9 illustrates a light ray indicating the light incident on the outer lens 10S1. The angles of the normal line N on the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A2a, A2b, and A2c, respectively. The following can be exemplified as the numerical values of each angle.
Angle A2a = 20 °
Angle A2b = 30 °
Angle A2c = 40 °
 アウターレンズ10S1の光軸Zの近傍から入射した光は、表面側反射層50Fで反射されたのちに、裏面側反射層50Bに入射する。つまり、光軸Zの近傍から入射した光は、1回目の表面側反射層50Fでの反射によって、入射開口50B1から光電変換部30の外へ出射されない。同様に、アウターレンズ10S1の端部から入射した光も、表面側反射層50Fで反射されたのちに、裏面側反射層50Bに入射する。つまり、アウターレンズ10S1の端部から入射した光も、1回目の表面側反射層50Fでの反射によって、入射開口50B1から光電変換部30の外へ出射されない。従って、変形例1のアウターレンズ10S1を備えた光電変換素子1S1も、光を好適に光電変換部30に閉じ込めることができる。 The light incident from the vicinity of the optical axis Z of the outer lens 10S1 is reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B. That is, the light incident from the vicinity of the optical axis Z is not emitted from the incident opening 50B1 to the outside of the photoelectric conversion unit 30 due to the first reflection by the surface-side reflective layer 50F. Similarly, the light incident from the end portion of the outer lens 10S1 is also reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B. That is, the light incident from the end portion of the outer lens 10S1 is not emitted from the incident aperture 50B1 to the outside of the photoelectric conversion unit 30 due to the first reflection by the front surface side reflection layer 50F. Therefore, the photoelectric conversion element 1S1 provided with the outer lens 10S1 of the modification 1 can also suitably confine the light in the photoelectric conversion unit 30.
<変形例2>
 図10及び図11を参照しながら、変形例2のアウターレンズ10S2について説明する。アウターレンズ10S2の輪郭を示す断面形状において光を受け入れる部分は、曲線部分を含む。変形例2において曲線とは、円弧である。そして、アウターレンズ10S2の輪郭を示す断面形状において光を受け入れる部分の全体は、光軸Zを対称軸として当該曲線を複写した形状を呈する。曲線の一部は、光軸Zと平行な円弧の軸を含まなくてもよい。
<Modification 2>
The outer lens 10S2 of the modification 2 will be described with reference to FIGS. 10 and 11. The portion that receives light in the cross-sectional shape showing the contour of the outer lens 10S2 includes a curved portion. In the second modification, the curve is an arc. Then, the entire portion of the cross-sectional shape showing the contour of the outer lens 10S2 that receives light exhibits a shape in which the curve is copied with the optical axis Z as the axis of symmetry. Part of the curve does not have to include the axis of the arc parallel to the optical axis Z.
 図10に示す線分C2は、変形例2のアウターレンズ10S2における光軸Zを含む断面形状において、光を受け入れる面を示す。アウターレンズ10S2における光軸Zを含む断面形状において、光を受け入れる面を示す線分C2は、円弧として規定される部分を含む。より詳細には、線分C2は、円弧CAの一部CA1に対応する。円弧CAは、光軸Zに対して平行な仮想基準軸線ZAを有している。この仮想基準軸線ZAと光軸Zとは、光軸Zと直交する方向に互いに離間している。このような線分C2は、曲率としては、ひとつの値を有するものであり、この点において、複数の曲率を含む曲線により示される実施形態のアウターレンズ10とは相違する。 The line segment C2 shown in FIG. 10 shows a surface that receives light in the cross-sectional shape including the optical axis Z in the outer lens 10S2 of the modification 2. In the cross-sectional shape of the outer lens 10S2 including the optical axis Z, the line segment C2 indicating the surface that receives light includes a portion defined as an arc. More specifically, the line segment C2 corresponds to a part CA1 of the arc CA. The arc CA has a virtual reference axis ZA parallel to the optical axis Z. The virtual reference axis ZA and the optical axis Z are separated from each other in a direction orthogonal to the optical axis Z. Such a line segment C2 has one value as the curvature, and in this respect, it differs from the outer lens 10 of the embodiment shown by the curve including a plurality of curvatures.
 図11は、図10にて説明したアウターレンズ10S2を備えた光電変換素子1S2の要部を示す断面図である。光電変換素子1S2は、アウターレンズ10S2と、メインスペーサ20と、光電変換部30と、を有する。 FIG. 11 is a cross-sectional view showing a main part of the photoelectric conversion element 1S2 provided with the outer lens 10S2 described with reference to FIG. The photoelectric conversion element 1S2 includes an outer lens 10S2, a main spacer 20, and a photoelectric conversion unit 30.
 光電変換素子1S2が備えるそれぞれの構成要素について、以下の数値が例示できる。
 アウターレンズ:厚さt1=2.9μm、幅t4=10μm、屈折率n=1.8。
 メインスペーサ:厚さt2=6μm、幅t4=10μm、屈折率n=1.8。
 光電変換部:厚さt3=20μm、幅t4=10μm、屈折率n=3.6。
The following numerical values can be exemplified for each component included in the photoelectric conversion element 1S2.
Outer lens: thickness t1 = 2.9 μm, width t4 = 10 μm, refractive index n = 1.8.
Main spacer: thickness t2 = 6 μm, width t4 = 10 μm, refractive index n = 1.8.
Photoelectric conversion unit: thickness t3 = 20 μm, width t4 = 10 μm, refractive index n = 3.6.
 また、図11には、図9と同様にアウターレンズ10S2に入射する光を示す光線を図示する。入射する位置におけるレンズ表面の法線Nと光軸Zに平行な軸線との角度を、それぞれ角度A3a、A3b、A3c、A3d、A3eとして示す。それぞれの角度の数値として以下が例示できる。
 角度A3a=20°
 角度A3b=25°
 角度A3c=30°
 角度A3d=35°
 角度A3e=40°
Further, FIG. 11 shows a light ray indicating the light incident on the outer lens 10S2 as in FIG. 9. The angles of the normal line N of the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A3a, A3b, A3c, A3d, and A3e, respectively. The following can be exemplified as the numerical values of each angle.
Angle A3a = 20 °
Angle A3b = 25 °
Angle A3c = 30 °
Angle A3d = 35 °
Angle A3e = 40 °
 アウターレンズ10S2の光軸Zの近傍から入射した光(例えば光Lar)は、表面側反射層50Fで反射されたのちに、裏面側反射層50Bに入射する。つまり、アウターレンズ10S2の光軸Zの近傍から入射した光は、入射開口50B1から光電変換部30の外へ出射されない。同様に、アウターレンズ10S2の端部から入射した光(例えば光Lbr、Lbl)も、表面側反射層50Fで反射されたのちに、裏面側反射層50Bに入射する。つまり、アウターレンズ10S2の端部から入射した光も、入射開口50B1から光電変換部30の外へ出射されない。従って、変形例2のアウターレンズ10S2を備えた光電変換素子1S2も、光を好適に光電変換部30に閉じ込めることができる。 Light incident from the vicinity of the optical axis Z of the outer lens 10S2 (for example, optical Lar) is reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B. That is, the light incident from the vicinity of the optical axis Z of the outer lens 10S2 is not emitted from the incident aperture 50B1 to the outside of the photoelectric conversion unit 30. Similarly, the light incident from the end of the outer lens 10S2 (for example, light Lbr, Lbl) is also reflected by the front surface side reflection layer 50F and then incident on the back surface side reflection layer 50B. That is, the light incident from the end portion of the outer lens 10S2 is not emitted from the incident aperture 50B1 to the outside of the photoelectric conversion unit 30. Therefore, the photoelectric conversion element 1S2 provided with the outer lens 10S2 of the modification 2 can also suitably confine the light in the photoelectric conversion unit 30.
 図11に示すアウターレンズ10S2において、紙面右側のレンズ右端Erと、紙面左側のレンズ左端Elと、を定義する。レンズ右端Erには、光Lbrが入射する。レンズ左端Elには、光Lblが入射する。光Lbr、Lblは、光軸Zに対して平行であるとする。さらに、光軸Zに対してわずかに右寄りの位置に対して光Larが入射する。 In the outer lens 10S2 shown in FIG. 11, the right end Er of the lens on the right side of the paper surface and the left end El of the lens on the left side of the paper surface are defined. Light Lbr is incident on Er at the right end of the lens. Light Lbl is incident on the left end El of the lens. It is assumed that the light Lbr and Lbl are parallel to the optical axis Z. Further, the light Lar is incident on a position slightly to the right of the optical axis Z.
 光Lbrは、位置Lbrp1において、光電変換部30に入射する。そして、光Lbrは、表面側反射層50Fにおいて反射したのちに、裏面側反射層50Bにおける位置Lbrp2に入射する。また、光Lblは、位置Lblp1において、光電変換部30に入射する。そして、光Lblは、表面側反射層50Fにおいて反射したのちに、裏面側反射層50Bにおける位置Lblp2に入射する。さらに、光Larは、位置Larp1において、光電変換部30に入射する。そして、光Larは、表面側反射層50Fにおいて反射したのちに、裏面側反射層50Bにおける位置Larp2に入射する。 The light Lbr is incident on the photoelectric conversion unit 30 at the position Lbrp1. Then, the light Lbr is reflected by the front surface side reflection layer 50F and then incident on the position Lbrp2 on the back surface side reflection layer 50B. Further, the light Lbl is incident on the photoelectric conversion unit 30 at the position Lblp1. Then, the light Lbl is reflected by the front surface side reflection layer 50F and then incident on the position Lblp2 on the back surface side reflection layer 50B. Further, the optical Lar is incident on the photoelectric conversion unit 30 at the position Larp1. Then, the light Lar is reflected by the front surface side reflection layer 50F and then incident on the position Larp 2 on the back surface side reflection layer 50B.
 ここで、光軸Zから位置Lblp1までの距離と、光軸Zから位置Lbrp2までの距離とを比較すると、光軸Zから位置Lbrp2までの距離は、光軸Zから位置Lblp1までの距離よりも大きい。さらに、光軸Zから位置Lblp1までの距離と、光軸Zから位置Larp2までの距離とを比較すると、光軸Zから位置Larp2までの距離は、光軸Zから位置Lblp1までの距離よりも大きい。そして、入射開口50B1は、位置Lbrp1と位置Lblp1とを通るように設けられる。 Here, comparing the distance from the optical axis Z to the position Lblp1 and the distance from the optical axis Z to the position Lbrp2, the distance from the optical axis Z to the position Lbrp2 is larger than the distance from the optical axis Z to the position Lblp1. big. Further, comparing the distance from the optical axis Z to the position Lblp1 and the distance from the optical axis Z to the position Larp2, the distance from the optical axis Z to the position Larp2 is larger than the distance from the optical axis Z to the position Lblp1. .. Then, the incident opening 50B1 is provided so as to pass through the position Lbrp1 and the position Lblp1.
 つまり、変形例2のアウターレンズ10S2において、入射開口50B1の開口端は、光軸Zから遠い位置に入射する光Lbr、Lblが光電変換部30に入射する位置(位置Lbrp1、Lblp1)によって決まっている。 That is, in the outer lens 10S2 of the modification 2, the opening end of the incident aperture 50B1 is determined by the position (position Lbrp1, Lblp1) where the light Lbr and Lbl incident on the position far from the optical axis Z are incident on the photoelectric conversion unit 30. There is.
 要するに、アウターレンズ10S2における光Lar、Lbrに対するレンズ面の接線の傾き、アウターレンズ10S2のレンズ材料の屈折率及びメインスペーサ20の厚さは、右側のレンズ最外周の光Lbr及び光軸Zより右側で光軸Zに略重なる光Larがシリコン(光電変換部30)に入射した後に、第2の反射層(表面側反射層50F)で1回反射して第1の反射層(裏面側反射層50B)で2回目の反射をする位置Lbrp2及び位置Larp2が、反対側(左側)のレンズ最外周の光Lblが光電変換部30へ入射する位置Lblp1よりも光軸Zから遠い位置になるように設定されている。そして、画素の左端から位置Lbrp2(または位置Larp2)と位置Lblp1の間まで第1の反射層を構成する裏面側反射層50Bの一部を設ける。これと光軸Zを軸対象に反対側にも第1の反射層を構成する裏面側反射層50Bの別の一部を設ける。 In short, the inclination of the tangent line of the lens surface with respect to the light Lar and Lbr in the outer lens 10S2, the refractive index of the lens material of the outer lens 10S2, and the thickness of the main spacer 20 are on the right side of the light Lbr and the optical axis Z on the outermost periphery of the right lens. After the light Lar substantially overlapping the optical axis Z is incident on silicon (photoelectric conversion unit 30), it is reflected once by the second reflective layer (front surface side reflective layer 50F) and then reflected once by the first reflective layer (back surface side reflective layer). 50B) so that the position Lbrp2 and the position Larp2 where the second reflection is performed are located farther from the optical axis Z than the position Lblp1 where the light Lbl on the outermost periphery of the lens on the opposite side (left side) is incident on the photoelectric conversion unit 30. It is set. Then, a part of the back surface side reflective layer 50B constituting the first reflective layer is provided from the left end of the pixel to the position between the position Lbrp2 (or the position Larp2) and the position Lblp1. Another part of the back surface side reflective layer 50B constituting the first reflective layer is provided on the opposite side of this and the optical axis Z as an axis target.
<変形例3>
 図12は、入射開口50B1の開口端が別の要因によって決まるアウターレンズ10S3を備えた光電変換素子1S3の要部を示す断面図である。光電変換素子1S3は、アウターレンズ10S3と、メインスペーサ20と、光電変換部30と、を有する。
<Modification 3>
FIG. 12 is a cross-sectional view showing a main part of the photoelectric conversion element 1S3 provided with the outer lens 10S3 whose opening end of the incident aperture 50B1 is determined by another factor. The photoelectric conversion element 1S3 includes an outer lens 10S3, a main spacer 20, and a photoelectric conversion unit 30.
 光電変換素子1S3が備えるそれぞれの構成要素について、以下の数値が例示できる。
 アウターレンズ:厚さt1=3.9μm、幅t4=10μm、屈折率n=1.56。
 メインスペーサ:厚さt2=12.5μm、幅t4=10μm、屈折率n=1.56。
 光電変換部:厚さt3=5μm、幅t4=10μm、屈折率n=3.6。
The following numerical values can be exemplified for each component included in the photoelectric conversion element 1S3.
Outer lens: thickness t1 = 3.9 μm, width t4 = 10 μm, refractive index n = 1.56.
Main spacer: thickness t2 = 12.5 μm, width t4 = 10 μm, refractive index n = 1.56.
Photoelectric conversion unit: thickness t3 = 5 μm, width t4 = 10 μm, refractive index n = 3.6.
 また、図12には、図9と同様にアウターレンズ10S3に入射する光を示す光線を図示する。入射する位置におけるレンズ表面の法線Nと光軸Zに平行な軸線との角度を、それぞれ角度A4a、A4bとして示す。それぞれの角度の数値として以下が例示できる。
 角度A4a=20°
 角度A4b=55°
Further, FIG. 12 shows a light ray indicating light incident on the outer lens 10S3 as in FIG. 9. The angles of the normal line N on the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A4a and A4b, respectively. The following can be exemplified as the numerical values of each angle.
Angle A4a = 20 °
Angle A4b = 55 °
 さらに、光電変換素子1S3が備えるそれぞれの構成要素について、以下の数値が追加にて例示できる。
  アウターレンズを規定する円弧の半径t5=10.5μm。
  円弧の軸ZBと光軸Zとのずれt6=3.7μm。
  裏面側反射層の幅t7=2.9μm。
  入射開口の直径t8=4.2μm。
Further, the following numerical values can be additionally exemplified for each component included in the photoelectric conversion element 1S3.
The radius t5 of the arc that defines the outer lens is 10.5 μm.
The deviation between the arc axis ZB and the optical axis Z t6 = 3.7 μm.
The width of the back surface reflective layer t7 = 2.9 μm.
The diameter of the incident opening t8 = 4.2 μm.
 変形例2のアウターレンズ10S2は、入射開口50B1が光軸Zから遠い位置に入射する光Lbr、Lblが光電変換部30に入射する位置によって決まっていた。これに対して、変形例3のアウターレンズ10S3は、入射開口50B1が光軸Zに近い位置に入射する光Larが光電変換部30に入射する位置によって決まっている。 The outer lens 10S2 of the second modification was determined by the position where the light Lbr and Lbl incident on the position where the incident aperture 50B1 is far from the optical axis Z are incident on the photoelectric conversion unit 30. On the other hand, in the outer lens 10S3 of the modification 3, the incident aperture 50B1 is determined by the position where the light Lar incident on the optical axis Z is incident on the photoelectric conversion unit 30.
 具体的には、光Lbrは、位置Lbrp1において、光電変換部30に入射する。そして、光Lbrは、表面側反射層50Fにおいて反射したのちに、裏面側反射層50Bにおける位置Lbrp2に入射する。さらに、光Larは、位置Larp1において、光電変換部30に入射する。そして、光Larは、表面側反射層50Fにおいて反射したのちに、裏面側反射層50Bにおける位置Larp2に入射する。 Specifically, the light Lbr is incident on the photoelectric conversion unit 30 at the position Lbrp1. Then, the light Lbr is reflected by the front surface side reflection layer 50F and then incident on the position Lbrp2 on the back surface side reflection layer 50B. Further, the optical Lar is incident on the photoelectric conversion unit 30 at the position Larp1. Then, the light Lar is reflected by the front surface side reflection layer 50F and then incident on the position Larp 2 on the back surface side reflection layer 50B.
 光軸Zから位置Larp1までの距離と、光軸Zから位置Lbrp2までの距離とを比較すると、光軸Zから位置Lbrp2までの距離は、光軸Zから位置Larp1までの距離よりも大きい。そして、入射開口50B1は、その端部が位置Lbrp2と位置Larp1との間を通るように設けられる。 Comparing the distance from the optical axis Z to the position Larp1 and the distance from the optical axis Z to the position Lbrp2, the distance from the optical axis Z to the position Lbrp2 is larger than the distance from the optical axis Z to the position Larp1. The incident opening 50B1 is provided so that its end portion passes between the position Lbrp2 and the position Larp1.
 要するに、レンズ最外周(右側)の光Lbrがシリコン(光電変換部30)に入射した後に第2の反射層(表面側反射層50F)で1回反射し、第1の反射層(裏面側反射層50B)で2回目の反射をする位置Lbrp2が、光軸Zより右側で光軸Zに略重なる光Larがシリコン(光電変換部30)へ入射する位置Larp1よりも光軸Zから遠い位置になるように、レンズ面の接線の傾き、アウターレンズ10S3であるマイクロレンズを構成する材料の屈折率、メインスペーサ20の厚さを決める。そして、画素の左端から位置Lbrp2と位置Larp1の間の位置まで第1の反射層(裏面側反射層50B)を設ける。これと光軸Zを軸対象に反対側にも第1の反射層(裏面側反射層50B)を設ける。 In short, after the optical Lbr on the outermost periphery (right side) of the lens is incident on silicon (photoelectric conversion unit 30), it is reflected once by the second reflective layer (front surface side reflective layer 50F), and is reflected once by the first reflective layer (back surface side reflection). The position Lbrp2 where the second reflection is performed on the layer 50B) is located on the right side of the optical axis Z and at a position farther from the optical axis Z than the position where the optical Lar substantially overlapping the optical axis Z is incident on the silicon (photoelectric conversion unit 30). Therefore, the inclination of the tangent line of the lens surface, the refractive index of the material constituting the microlens which is the outer lens 10S3, and the thickness of the main spacer 20 are determined. Then, a first reflective layer (reflective layer 50B on the back surface side) is provided from the left end of the pixel to a position between the position Lbrp2 and the position Larp1. A first reflective layer (reflective layer 50B on the back surface side) is also provided on the side opposite to the optical axis Z.
<変形例4>
 変形例2、3では、曲線が円弧の一部である例を説明した。曲線は、円弧に限定されない。図13に示すように、変形例4のアウターレンズ10S4の輪郭を示す断面形状において光を受け入れる部分を示す線分C4は、放物線CBとして規定される部分を含んでもよい。つまり、アウターレンズ10S4の輪郭を示す断面形状は、光軸Zと平行な軸を有する放物線CBの一部を、光軸Zを対称軸に複写した形状としてもよい。放物線CBの一部CB1は、光軸Zと平行な放物線CBの軸ZBを含まなくてもよい。なお、多重反射しない光がある程度発生することを許容できる場合には、光軸Zと平行な放物線CBの軸ZCを含んでもよい。
<Modification example 4>
In the modified examples 2 and 3, an example in which the curve is a part of the arc has been described. Curves are not limited to arcs. As shown in FIG. 13, the line segment C4 indicating the portion that receives light in the cross-sectional shape showing the contour of the outer lens 10S4 of the modified example 4 may include a portion defined as a parabolic CB. That is, the cross-sectional shape showing the outline of the outer lens 10S4 may be a shape in which a part of the parabola CB having an axis parallel to the optical axis Z is copied with the optical axis Z as the axis of symmetry. The partial CB1 of the parabola CB may not include the axis ZB of the parabola CB parallel to the optical axis Z. If it is permissible to generate light that does not reflect multiple times to some extent, the axis ZC of the parabola CB parallel to the optical axis Z may be included.
 図14は、放物線CBとして規定される線分C4を含むアウターレンズ10S4を備えた光電変換素子1S4の要部を示す断面図である。光電変換素子1S4は、アウターレンズ10S4と、メインスペーサ20と、光電変換部30と、を有する。 FIG. 14 is a cross-sectional view showing a main part of a photoelectric conversion element 1S4 provided with an outer lens 10S4 including a line segment C4 defined as a parabolic CB. The photoelectric conversion element 1S4 includes an outer lens 10S4, a main spacer 20, and a photoelectric conversion unit 30.
 光電変換素子1S4が備えるそれぞれの構成要素について、以下の数値が例示できる。
  アウターレンズ:厚さt1=3μm、幅t4=10μm、屈折率n=1.8。
  メインスペーサ:厚さt2=6μm、幅t4=10μm、屈折率n=1.8。
  光電変換部:厚さt3=20μm、幅t4=10μm、屈折率n=3.6。
The following numerical values can be exemplified for each component included in the photoelectric conversion element 1S4.
Outer lens: thickness t1 = 3 μm, width t4 = 10 μm, refractive index n = 1.8.
Main spacer: thickness t2 = 6 μm, width t4 = 10 μm, refractive index n = 1.8.
Photoelectric conversion unit: thickness t3 = 20 μm, width t4 = 10 μm, refractive index n = 3.6.
 また、図14には、図9と同様にアウターレンズ10S4に入射する光を示す光線を図示する。入射する位置におけるレンズ表面の法線Nと光軸Zに平行な軸線との角度を、それぞれ角度A5a、A5b、A5c、A5d、A5eとして示す。それぞれの角度の数値として以下が例示できる。
 角度A5a=20°
 角度A5b=25°
 角度A5c=30°
 角度A5d=35°
 角度A5e=40°
Further, FIG. 14 shows a light ray indicating light incident on the outer lens 10S4 as in FIG. 9. The angles of the normal line N on the lens surface and the axis line parallel to the optical axis Z at the incident position are shown as angles A5a, A5b, A5c, A5d, and A5e, respectively. The following can be exemplified as the numerical values of each angle.
Angle A5a = 20 °
Angle A5b = 25 °
Angle A5c = 30 °
Angle A5d = 35 °
Angle A5e = 40 °
 変形例4のアウターレンズ10S4によっても、光軸Zの近傍から入射した光及び光軸Zから離れた位置から入射した光のいずれも、1回目の反射の結果、入射開口50B1から光電変換部30の外へ出射されない。従って、変形例4のアウターレンズ10S4を備えた光電変換素子1S4も光を好適に光電変換部30に閉じ込めることができる。 Even with the outer lens 10S4 of the modification 4, both the light incident from the vicinity of the optical axis Z and the light incident from a position away from the optical axis Z are reflected from the incident aperture 50B1 to the photoelectric conversion unit 30 as a result of the first reflection. It is not emitted to the outside of. Therefore, the photoelectric conversion element 1S4 provided with the outer lens 10S4 of the modification 4 can also suitably confine the light in the photoelectric conversion unit 30.
<第2実施形態>
 第1実施形態の光電変換素子1では、表面側反射層50Fで1回目に反射した光Rはすべて裏面側反射層50Bに至った。つまり、表面側反射層50Fで1回目に反射した光Rは、入射開口50B1に至ることがない。このような光Rは、第1実施形態ではアウターレンズ10の形状によって実現された。しかし、表面側反射層50Fで1回目に反射した光Rを裏面側反射層50Bに導くことが可能な構成は、アウターレンズ10の形状とは別の構成によっても実現可能である。
<Second Embodiment>
In the photoelectric conversion element 1 of the first embodiment, all the light R reflected for the first time by the front surface side reflection layer 50F reaches the back surface side reflection layer 50B. That is, the light R reflected for the first time by the surface-side reflective layer 50F does not reach the incident opening 50B1. Such light R is realized by the shape of the outer lens 10 in the first embodiment. However, a configuration capable of guiding the light R first reflected by the front surface side reflection layer 50F to the back surface side reflection layer 50B can be realized by a configuration different from the shape of the outer lens 10.
 図15に示すように、第2実施形態の光電変換素子1Aは、アウターレンズ10Aと、メインスペーサ20Aと、インナーレンズ61A(第2のレンズ、光方向変換部60A)と、インナースペーサ62Aと、光電変換部30Aと、配線部40Aと、を備える。第2実施形態の光電変換素子1Aは、第2の構成であるDTI52A(図3参照)を有する。光電変換素子1Aは、アウターレンズ10Aの構成が第1実施形態の光電変換素子1と相違する。 As shown in FIG. 15, the photoelectric conversion element 1A of the second embodiment includes an outer lens 10A, a main spacer 20A, an inner lens 61A (second lens, optical direction conversion unit 60A), an inner spacer 62A, and the like. A photoelectric conversion unit 30A and a wiring unit 40A are provided. The photoelectric conversion element 1A of the second embodiment has a DTI 52A (see FIG. 3) having a second configuration. The photoelectric conversion element 1A differs from the photoelectric conversion element 1 of the first embodiment in the configuration of the outer lens 10A.
 さらに、光電変換素子1Aは、インナーレンズ61A及びインナースペーサ62Aをさらに備える点が第1実施形態の光電変換素子1と相違する。光電変換素子1Aは、第1実施形態の光電変換素子1が備えていないインナーレンズ61Aを備える。インナーレンズ61Aは、第1実施形態のアウターレンズ10に相当する形状を有する。つまり、第2実施形態の光電変換素子1Aは、アウターレンズ10Aとインナーレンズ61Aとを備えた、二重マイクロレンズ構造を採用する。第2実施形態の光電変換素子1Aは、光Rの取り込みためのアウターレンズ10Aとして球面状のマイクロレンズを採用すると共に、インナーレンズ61Aとして頂点が丸められた円錐形状といったマイクロレンズを採用する。つまり、第2実施形態では、光電変換部30Aに光を導く構成部品は、アウターレンズ10A、メインスペーサ20A、インナーレンズ61A及びインナースペーサ62Aである。これらの光学部品は、第2実施形態における光方向変換部60Aを構成する。 Further, the photoelectric conversion element 1A is different from the photoelectric conversion element 1 of the first embodiment in that the inner lens 61A and the inner spacer 62A are further provided. The photoelectric conversion element 1A includes an inner lens 61A that the photoelectric conversion element 1 of the first embodiment does not have. The inner lens 61A has a shape corresponding to the outer lens 10 of the first embodiment. That is, the photoelectric conversion element 1A of the second embodiment adopts a double microlens structure including an outer lens 10A and an inner lens 61A. In the photoelectric conversion element 1A of the second embodiment, a spherical microlens is adopted as the outer lens 10A for capturing light R, and a microlens having a conical shape with rounded vertices is adopted as the inner lens 61A. That is, in the second embodiment, the components that guide the light to the photoelectric conversion unit 30A are the outer lens 10A, the main spacer 20A, the inner lens 61A, and the inner spacer 62A. These optical components constitute the optical direction conversion unit 60A in the second embodiment.
 光電変換素子1Aは、表面側反射層50Fで1回目に反射した光Rを裏面側反射層50Bに導く。光電変換部30A及び配線部40Aは、第1実施形態の光電変換部30及び配線部40と同じであるから、詳細な説明は省略する。以下、アウターレンズ10A、インナーレンズ61A及びインナースペーサ62Aについて詳細に説明する。 The photoelectric conversion element 1A guides the light R first reflected by the front surface side reflection layer 50F to the back surface side reflection layer 50B. Since the photoelectric conversion unit 30A and the wiring unit 40A are the same as the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted. Hereinafter, the outer lens 10A, the inner lens 61A, and the inner spacer 62A will be described in detail.
 第2実施形態のアウターレンズ10Aは、球面状のレンズ入射面11Aを有する。このアウターレンズ10Aの焦点は、光電変換部30Aの内部に設定される。アウターレンズ10Aとインナーレンズ61Aとの位置関係は、メインスペーサ20Aによって調整できる。インナーレンズ61Aは、光軸Zを含む。例えば、インナーレンズ61Aの光軸は、アウターレンズ10Aの光軸と一致する。また、インナーレンズ61Aの光入射面には、アウターレンズ10Aを通過する光Rの光線がすべて交差する。 The outer lens 10A of the second embodiment has a spherical lens incident surface 11A. The focal point of the outer lens 10A is set inside the photoelectric conversion unit 30A. The positional relationship between the outer lens 10A and the inner lens 61A can be adjusted by the main spacer 20A. The inner lens 61A includes an optical axis Z. For example, the optical axis of the inner lens 61A coincides with the optical axis of the outer lens 10A. Further, all the light rays of the light R passing through the outer lens 10A intersect with the light incident surface of the inner lens 61A.
 第2実施形態の光電変換素子1Aは、アウターレンズ10Aと、インナーレンズ61Aと、を備える。インナーレンズ61Aは、第1実施形態のアウターレンズ10と同じ機能を発揮する。つまり、インナーレンズ61Aの形状として、第1実施形態のアウターレンズ10の形状を採用してもよい。また、インナーレンズ61Aの形状として、変形例1~4のアウターレンズ10S1~10S4のうちいずれか一つの形状を採用してもよい。インナースペーサ62Aは、インナーレンズ61Aと光電変換部30Aとの位置関係を調整する。インナーレンズ61A及びインナースペーサ62Aの屈折率(n2)は、アウターレンズ10Aの屈折率(n1)よりも大きい。逆にいえば、アウターレンズ10Aの屈折率は、インナーレンズ61Aの屈折率よりも小さい。換言すると、インナーレンズ61A及びインナースペーサ62Aの屈折率(n2)は、メインスペーサ20Aの屈折率(n1)よりも大きい(n2>n1)。アウターレンズ10Aの屈折率の範囲は、1.55から1.6程度である。そうすると、インナーレンズ61Aの屈折率は2.0程度である。その結果、光Rがメインスペーサ20Aからインナーレンズ61Aに入射するときに、屈折が生じる。つまり、光Rの進行方向が変化する。 The photoelectric conversion element 1A of the second embodiment includes an outer lens 10A and an inner lens 61A. The inner lens 61A exhibits the same function as the outer lens 10 of the first embodiment. That is, as the shape of the inner lens 61A, the shape of the outer lens 10 of the first embodiment may be adopted. Further, as the shape of the inner lens 61A, any one of the outer lenses 10S1 to 10S4 of the modified examples 1 to 4 may be adopted. The inner spacer 62A adjusts the positional relationship between the inner lens 61A and the photoelectric conversion unit 30A. The refractive index (n2) of the inner lens 61A and the inner spacer 62A is larger than the refractive index (n1) of the outer lens 10A. Conversely, the refractive index of the outer lens 10A is smaller than the refractive index of the inner lens 61A. In other words, the refractive index (n2) of the inner lens 61A and the inner spacer 62A is larger than the refractive index (n1) of the main spacer 20A (n2> n1). The range of the refractive index of the outer lens 10A is about 1.55 to 1.6. Then, the refractive index of the inner lens 61A is about 2.0. As a result, refraction occurs when the light R is incident on the inner lens 61A from the main spacer 20A. That is, the traveling direction of the light R changes.
 インナーレンズ61A及びインナースペーサ62Aは、メインスペーサ20Aと光電変換部30Aとの間に配置されている。インナースペーサ62Aの裏面は、裏面側反射層50B及び反射防止層51に接する。そして、インナースペーサ62Aの主面には、インナーレンズ61Aが設けられている。インナーレンズ61A及びインナースペーサ62Aは、一体物である。インナーレンズ61Aの主面及びインナースペーサ62Aの主面は、メインスペーサ20Aに接する。なお、メインスペーサ20Aは、省略することもできる。 The inner lens 61A and the inner spacer 62A are arranged between the main spacer 20A and the photoelectric conversion unit 30A. The back surface of the inner spacer 62A is in contact with the back surface side reflective layer 50B and the antireflection layer 51. An inner lens 61A is provided on the main surface of the inner spacer 62A. The inner lens 61A and the inner spacer 62A are an integral part. The main surface of the inner lens 61A and the main surface of the inner spacer 62A are in contact with the main spacer 20A. The main spacer 20A may be omitted.
 第2実施形態の光電変換素子1Aも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1A of the second embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
 さらに、インナーレンズ61Aを備えた光電変換素子1Aは、裏面側反射層50Bの入射開口50B1において、光Rのスポット径SDが小さくなる。カメラのレンズを開放した場合(小さいFナンバーに設定した場合)には、光Rの入射角が大きくなる。光電変換素子1Aでは上述したような小さいスポット径SDが実現されるので、光Rの入射角が大きくなっても、光Rがメインスペーサ20A側から裏面側反射層50Bに照射されない。従って、第2実施形態の光電変換素子1Aは、光Rの損失が抑制されるので高感度化において有利である。 Further, in the photoelectric conversion element 1A provided with the inner lens 61A, the spot diameter SD of the light R becomes smaller at the incident opening 50B1 of the back surface side reflection layer 50B. When the lens of the camera is opened (when the F number is set small), the incident angle of the light R becomes large. Since the photoelectric conversion element 1A realizes the small spot diameter SD as described above, the light R is not irradiated from the main spacer 20A side to the back surface side reflective layer 50B even if the incident angle of the light R is large. Therefore, the photoelectric conversion element 1A of the second embodiment is advantageous in increasing the sensitivity because the loss of light R is suppressed.
 換言すると、第2実施形態の光電変換素子1Aは、第1実施形態の光電変換素子1と比べると、入射開口50B1における光Rのスポット径SDを小さくすることができる。この態様によれば、光Rの入射角が変化した場合であっても、入射開口50B1に確実に光Rを通過させることができる。換言すると、インナーレンズ61Aを通過した光Rが裏面側反射層50Bに到達することにより光電変換部30Aに入射しない、という状態を抑制できる。従って、入射した光Rは、すべて光電変換部30Aに導かれるので、入射角の変化に起因する感度の低下を抑制することができる。 In other words, the photoelectric conversion element 1A of the second embodiment can reduce the spot diameter SD of the light R in the incident opening 50B1 as compared with the photoelectric conversion element 1 of the first embodiment. According to this aspect, even when the incident angle of the light R changes, the light R can be surely passed through the incident opening 50B1. In other words, it is possible to suppress a state in which the light R that has passed through the inner lens 61A does not enter the photoelectric conversion unit 30A by reaching the back surface side reflective layer 50B. Therefore, since all the incident light R is guided to the photoelectric conversion unit 30A, it is possible to suppress a decrease in sensitivity due to a change in the incident angle.
 また、光Rの入射方向が一定であるような使用態様である場合には、入射開口50B1の面積を縮小してもよい。この構成によれば、光電変換部30Aの内部を往復する光Rが入射開口50B1から再びインナースペーサ62Aへ出てゆくことを好適に抑制できる。従って、光Rを光電変換部30Aにさらに良好に閉じ込めることができる。 Further, when the usage mode is such that the incident direction of the light R is constant, the area of the incident opening 50B1 may be reduced. According to this configuration, it is possible to suitably suppress the light R reciprocating inside the photoelectric conversion unit 30A from exiting from the incident opening 50B1 to the inner spacer 62A again. Therefore, the light R can be better confined in the photoelectric conversion unit 30A.
<第3実施形態>
 例えば、第1実施形態の光電変換素子1は、さらにインナーレンズ61Bを追加して備えてもよい。図16に示すように、第3実施形態の光電変換素子1Bは、アウターレンズ10Bと、メインスペーサ20Bと、インナーレンズ61Bと、インナースペーサ62Bと、光電変換部30B1と、配線部40B1と、を備える。これらのうち、アウターレンズ10B、メインスペーサ20B、インナーレンズ61B及びインナースペーサ62Bは、光方向変換部60Bを構成する。第3実施形態の光電変換素子1Bは、第1の構成であるDTI52(図2参照)を有する。アウターレンズ10B、メインスペーサ20B、光電変換部30B1及び配線部40B1は、第1実施形態のアウターレンズ10、メインスペーサ20、光電変換部30及び配線部40と同じであるから、詳細な説明は省略する。以下、インナーレンズ61B及びインナースペーサ62Bについて詳細に説明する。
<Third Embodiment>
For example, the photoelectric conversion element 1 of the first embodiment may be further provided with an inner lens 61B. As shown in FIG. 16, the photoelectric conversion element 1B of the third embodiment includes an outer lens 10B, a main spacer 20B, an inner lens 61B, an inner spacer 62B, a photoelectric conversion unit 30B1, and a wiring unit 40B1. Be prepared. Of these, the outer lens 10B, the main spacer 20B, the inner lens 61B, and the inner spacer 62B constitute the optical direction conversion unit 60B. The photoelectric conversion element 1B of the third embodiment has a DTI 52 (see FIG. 2) which is the first configuration. Since the outer lens 10B, the main spacer 20B, the photoelectric conversion unit 30B1 and the wiring unit 40B1 are the same as the outer lens 10, the main spacer 20, the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted. do. Hereinafter, the inner lens 61B and the inner spacer 62B will be described in detail.
 インナーレンズ61Bの主面は、球面状である。光電変換素子1Bは、アウターレンズ10Bと、インナーレンズ61Bと、を備える。インナーレンズ61B及びインナースペーサ62Bの屈折率(n2)は、アウターレンズ10B及びメインスペーサ20Bの屈折率(n1)よりも大きい(n2>n1)。 The main surface of the inner lens 61B is spherical. The photoelectric conversion element 1B includes an outer lens 10B and an inner lens 61B. The refractive index (n2) of the inner lens 61B and the inner spacer 62B is larger than the refractive index (n1) of the outer lens 10B and the main spacer 20B (n2> n1).
 第3実施形態の光電変換素子1Bも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1B of the third embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
 なお、第2実施形態の光電変換素子1Aは、アウターレンズ10Aと、インナーレンズ61Aと、を備えていた。第3実施形態の光電変換素子1Bは、アウターレンズ10Bと、インナーレンズ61Bと、を備えていた。例えば、光電変換素子1Bは、アウターレンズ10Aと、インナーレンズ61Bと、を備えるものであってもよい。つまり、第3実施形態の光電変換素子1Aは、アウターレンズの形状として第1実施形態のアウターレンズ10の形状を採用してもよい。また、アウターレンズの形状として、変形例1~4のアウターレンズ10S1~10S4のうちいずれか一つの形状を採用してもよい。さらに、インナーレンズの形状として第1実施形態のアウターレンズ10の形状を採用してもよい。また、インナーレンズの形状として、変形例1~4のアウターレンズ10S1~10S4のうちいずれか一つの形状を採用してもよい。 The photoelectric conversion element 1A of the second embodiment includes an outer lens 10A and an inner lens 61A. The photoelectric conversion element 1B of the third embodiment includes an outer lens 10B and an inner lens 61B. For example, the photoelectric conversion element 1B may include an outer lens 10A and an inner lens 61B. That is, the photoelectric conversion element 1A of the third embodiment may adopt the shape of the outer lens 10 of the first embodiment as the shape of the outer lens. Further, as the shape of the outer lens, any one of the outer lenses 10S1 to 10S4 of the modified examples 1 to 4 may be adopted. Further, the shape of the outer lens 10 of the first embodiment may be adopted as the shape of the inner lens. Further, as the shape of the inner lens, any one of the outer lenses 10S1 to 10S4 of the modified examples 1 to 4 may be adopted.
<第4実施形態>
 第3実施形態の光電変換素子1Bでは、インナーレンズ61Bの屈折率(n2)は、アウターレンズ10Bの屈折率(n1)よりも大きい。この屈折率の関係は逆であってもよい。つまり、図17に示す第4実施形態の光電変換素子1Cのように、インナーレンズ61Cの屈折率(n2)がアウターレンズ10Cの屈折率(n1)より小さくてもよい。第4実施形態の光電変換素子1Cは、インナーレンズ61Cの屈折率(n2)がアウターレンズ10Cの屈折率(n1)よりも小さい場合(n2<n1)の構成例である。
<Fourth Embodiment>
In the photoelectric conversion element 1B of the third embodiment, the refractive index (n2) of the inner lens 61B is larger than the refractive index (n1) of the outer lens 10B. This relationship of refractive index may be reversed. That is, the refractive index (n2) of the inner lens 61C may be smaller than the refractive index (n1) of the outer lens 10C, as in the photoelectric conversion element 1C of the fourth embodiment shown in FIG. The photoelectric conversion element 1C of the fourth embodiment is a configuration example in which the refractive index (n2) of the inner lens 61C is smaller than the refractive index (n1) of the outer lens 10C (n2 <n1).
 第4実施形態の光電変換素子1Cは、アウターレンズ10Cと、メインスペーサ20Cと、インナーレンズ61Cと、インナースペーサ62Cと、光電変換部30Cと、配線部40Cと、を備える。これらのうち、アウターレンズ10C、メインスペーサ20C、インナーレンズ61C及びインナースペーサ62Cは、光方向変換部60Cを構成する。アウターレンズ10C、メインスペーサ20C、光電変換部30C及び配線部40Cは、第1実施形態のアウターレンズ10、メインスペーサ20、光電変換部30及び配線部40と同じであるから、詳細な説明は省略する。この場合には、インナーレンズ61Cは、凹レンズである。第4実施形態の光電変換素子1Cも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1C of the fourth embodiment includes an outer lens 10C, a main spacer 20C, an inner lens 61C, an inner spacer 62C, a photoelectric conversion unit 30C, and a wiring unit 40C. Of these, the outer lens 10C, the main spacer 20C, the inner lens 61C, and the inner spacer 62C constitute the optical direction conversion unit 60C. Since the outer lens 10C, the main spacer 20C, the photoelectric conversion unit 30C and the wiring unit 40C are the same as the outer lens 10, the main spacer 20, the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted. do. In this case, the inner lens 61C is a concave lens. The photoelectric conversion element 1C of the fourth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
<第5実施形態>
 第1~第4実施形態では、アウターレンズ又はインナーレンズによって、光Rを成形した。より詳細には、表面側反射層50Fに到達する前に、光Rを成形した。つまり、光電変換部30に入射する前に光Rの成形は完了しており、表面側反射層50Fで1回目に反射した光Rはすべて裏面側反射層50Bに至る。光Rの成形は、この構成に限定されない。具体的には、光Rの成形は、1回目の反射の際に行われてもよい。以下、図18を参照しながら、1回目の反射の際に光Rの成形を行う構成について詳細に説明する。第5実施形態の光電変換素子1Dは、アウターレンズ10に代えて、凸型の形状を持ったミラー63(反射部)を含む。
<Fifth Embodiment>
In the first to fourth embodiments, the light R is formed by an outer lens or an inner lens. More specifically, the light R was molded before reaching the surface reflective layer 50F. That is, the molding of the light R is completed before the light R is incident on the photoelectric conversion unit 30, and all the light R reflected for the first time by the front surface side reflection layer 50F reaches the back surface side reflection layer 50B. The molding of the optical R is not limited to this configuration. Specifically, the molding of the light R may be performed at the time of the first reflection. Hereinafter, a configuration in which the light R is formed at the time of the first reflection will be described in detail with reference to FIG. The photoelectric conversion element 1D of the fifth embodiment includes a mirror 63 (reflecting portion) having a convex shape instead of the outer lens 10.
 第5実施形態の光電変換素子1Dは、アウターレンズ10Dと、メインスペーサ20Dと、光電変換部30Dと、配線部40Dと、光閉じ込め部50Dと、を有する。メインスペーサ20Dは、アウターレンズ10Dから光電変換部30Dまでの距離を所定の値に設定する。その結果、アウターレンズ10Dの焦点が光電変換部30Dの内部に位置する。光電変換部30D及び配線部40Dは、第1実施形態の光電変換部30及び配線部40と同様であるから、詳細な説明は省略する。 The photoelectric conversion element 1D of the fifth embodiment includes an outer lens 10D, a main spacer 20D, a photoelectric conversion unit 30D, a wiring unit 40D, and a light confinement unit 50D. The main spacer 20D sets the distance from the outer lens 10D to the photoelectric conversion unit 30D to a predetermined value. As a result, the focal point of the outer lens 10D is located inside the photoelectric conversion unit 30D. Since the photoelectric conversion unit 30D and the wiring unit 40D are the same as the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted.
 ミラー63は、第1実施形態のアウターレンズ10と同様の機能を奏する。第5実施形態では、アウターレンズ10D、メインスペーサ20D及びミラー63が光方向変換部60Dを構成する。ミラー63は、光軸Zと交差する位置に設けられる。ミラー63は、光軸Zと平行な向きに対して傾く。つまり、反射板であるミラー63の表面に斜面を形成するものである。例えば、光軸Zを向く方向を内向きとし、その逆方向を外向きとすれば、ミラー63は外向きである。ミラー63の主面は、円錐面であるともいえる。ミラー63の法線は、光軸Zに対して、0度ではない所定の角度を有する。本実施形態では、ミラー63は、表面側反射層50FDと一体化されている。ミラー63は、配線部40Dに埋め込まれている。例えば、ミラー63は、表面側反射層50FDの一部を円錐状に突出させた凸部であるといってもよい。 The mirror 63 has the same function as the outer lens 10 of the first embodiment. In the fifth embodiment, the outer lens 10D, the main spacer 20D, and the mirror 63 constitute the optical direction conversion unit 60D. The mirror 63 is provided at a position intersecting the optical axis Z. The mirror 63 is tilted with respect to a direction parallel to the optical axis Z. That is, a slope is formed on the surface of the mirror 63, which is a reflector. For example, if the direction facing the optical axis Z is inward and the opposite direction is outward, the mirror 63 is outward. It can be said that the main surface of the mirror 63 is a conical surface. The normal of the mirror 63 has a predetermined angle other than 0 degrees with respect to the optical axis Z. In this embodiment, the mirror 63 is integrated with the surface-side reflective layer 50FD. The mirror 63 is embedded in the wiring portion 40D. For example, the mirror 63 may be said to be a convex portion in which a part of the surface-side reflective layer 50FD is projected in a conical shape.
 仮に、アウターレンズ10Dを通過した光Rが、光軸Zに対して垂直である反射面に入射すると、反射した光Rは光軸Z上において集光する。そして、光Rは、再び入射開口50B1を介して光電変換部30Dから出て行く。 If the light R passing through the outer lens 10D is incident on the reflecting surface perpendicular to the optical axis Z, the reflected light R is focused on the optical axis Z. Then, the light R again exits from the photoelectric conversion unit 30D through the incident opening 50B1.
 一方、アウターレンズ10Dを通過した光Rが、光軸Zに対して傾くミラー63に入射すると、光Rの入射角は、光軸Zに対して垂直である反射面における入射角とは異なる。より詳細には、入射角は、大きくなるので、反射角も大きくなる。つまり、光Rの進行方向は、より外向きに偏る。その結果、反射した光Rは、光軸Z上の一点に集光しない。反射した光Rは、光軸Zを中心とする円周上に集光する。そして、反射したすべての光Rは、裏面側反射層50Bに至るので、その後は裏面側反射層50Bと表面側反射層50FDとの間で往復する。 On the other hand, when the light R passing through the outer lens 10D is incident on the mirror 63 tilted with respect to the optical axis Z, the incident angle of the light R is different from the incident angle on the reflecting surface perpendicular to the optical axis Z. More specifically, as the angle of incidence increases, so does the angle of reflection. That is, the traveling direction of the light R is more outwardly biased. As a result, the reflected light R is not focused on one point on the optical axis Z. The reflected light R is focused on the circumference centered on the optical axis Z. Then, all the reflected light R reaches the back surface side reflection layer 50B, and then reciprocates between the back surface side reflection layer 50B and the front surface side reflection layer 50FD.
 第5実施形態の光電変換素子1Dは、ミラー63を専用の工程を追加して形成する。ミラー63を形成する工程において、反射回数が多くなる反射角度となるようにミラー63を形成する。その結果、アウターレンズ10を採用する第1実施形態の光電変換素子1と同様の効果が期待できる。つまり、第5実施形態の光電変換素子1Dも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1D of the fifth embodiment is formed by adding a dedicated process to the mirror 63. In the step of forming the mirror 63, the mirror 63 is formed so that the reflection angle increases the number of reflections. As a result, the same effect as that of the photoelectric conversion element 1 of the first embodiment in which the outer lens 10 is adopted can be expected. That is, the photoelectric conversion element 1D of the fifth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
<第6実施形態>
 反射によって光Rを成形する構成は、第5実施形態のミラー63に限定されない。光軸Zを中心とする円周上に反射した光Rを集光することが可能な構成を適宜採用してよい。例えば、図19は、第5実施形態のミラー63に代わる別の反射構造を有する第6実施形態の光電変換素子1Eを示す。第6実施形態の光電変換素子1Eは、第5実施形態のミラー63をイメージセンサ及び集積回路に用いる配線層の一部を用いて疑似的に実現する。
<Sixth Embodiment>
The configuration for forming the light R by reflection is not limited to the mirror 63 of the fifth embodiment. A configuration capable of condensing the light R reflected on the circumference centered on the optical axis Z may be appropriately adopted. For example, FIG. 19 shows a photoelectric conversion element 1E of a sixth embodiment having another reflection structure instead of the mirror 63 of the fifth embodiment. The photoelectric conversion element 1E of the sixth embodiment pseudo-realizes the mirror 63 of the fifth embodiment by using a part of the wiring layer used for the image sensor and the integrated circuit.
 第6実施形態の光電変換素子1Eは、アウターレンズ10Eと、メインスペーサ20Eと、光電変換部30Eと、配線部40Eと、光閉じ込め部50Eと、を有する。これらのうち、アウターレンズ10E、メインスペーサ20E及び疑似ミラー構造64は、光方向変換部60Eを構成する。光電変換部30E及び配線部40Eは、第1実施形態の光電変換部30及び配線部40と同様であるから、詳細な説明は省略する。 The photoelectric conversion element 1E of the sixth embodiment includes an outer lens 10E, a main spacer 20E, a photoelectric conversion unit 30E, a wiring unit 40E, and a light confinement unit 50E. Of these, the outer lens 10E, the main spacer 20E, and the pseudo mirror structure 64 constitute the optical direction conversion unit 60E. Since the photoelectric conversion unit 30E and the wiring unit 40E are the same as the photoelectric conversion unit 30 and the wiring unit 40 of the first embodiment, detailed description thereof will be omitted.
 疑似ミラー構造64は、配線部40Eにおける酸化シリコン領域44と配線層45a、45b、45c、45dとによって構成される疑似的な反射構造である。疑似ミラー構造64は、酸化シリコン領域44と配線層45a、45b、45c、45dとの積層構造である。配線層45a、45b、45c、45dの幅は、光軸Zに沿って裏面側から表面側に向かって長くなる。換言すると、配線部40Eの表面40F側に配置された配線層45dは、配線部40Eの裏面40B側に配置された配線層45aよりも、幅が広い。配線層45a、45b、45c、45dの両端は、酸化シリコン領域44に接する。つまり、疑似ミラー構造64として用いられる配線層45a、45b、45c、45dは、電気的な接続に用いられる配線層41、42とは、物理的に切り離されている。光Rは、酸化シリコン領域44を透過するが、配線層45a、45b、45c、45dは透過しない。このような構成によれば、光Rを配線部40Eの表面40F側にまで到達させることができる。そして、配線層45a、45b、45c、45dの配置は、階段状であると言える。この階段構造の一つの段差(ステップ)の大きさが、光Rの波長に対して十分に小さい場合には、その斜面の角度の反射面であるとして近似できる。 The pseudo mirror structure 64 is a pseudo reflection structure composed of the silicon oxide region 44 in the wiring portion 40E and the wiring layers 45a, 45b, 45c, 45d. The pseudo mirror structure 64 is a laminated structure of the silicon oxide region 44 and the wiring layers 45a, 45b, 45c, 45d. The widths of the wiring layers 45a, 45b, 45c, and 45d increase from the back surface side to the front surface side along the optical axis Z. In other words, the wiring layer 45d arranged on the front surface 40F side of the wiring portion 40E is wider than the wiring layer 45a arranged on the back surface 40B side of the wiring portion 40E. Both ends of the wiring layers 45a, 45b, 45c, and 45d are in contact with the silicon oxide region 44. That is, the wiring layers 45a, 45b, 45c, 45d used as the pseudo mirror structure 64 are physically separated from the wiring layers 41, 42 used for electrical connection. The light R passes through the silicon oxide region 44, but does not pass through the wiring layers 45a, 45b, 45c, and 45d. According to such a configuration, the light R can reach the surface 40F side of the wiring portion 40E. The arrangement of the wiring layers 45a, 45b, 45c, and 45d can be said to be stepped. When the size of one step of this staircase structure is sufficiently small with respect to the wavelength of the light R, it can be approximated as a reflecting surface at the angle of the slope.
 第6実施形態の光電変換素子1Eも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1E of the sixth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
<第7実施形態>
 第1実施形態のアウターレンズ10は、光軸Zを含む断面形状が同一であった。換言すると、アウターレンズ10は、光軸Zを中心として所定の断面形状を回転させた回転体であった。アウターレンズ10は、このような回転体に限定されない。例えば、アウターレンズの形状の別の例として、図20及び図21に示すシリンドリカル型のアウターレンズ10Fが挙げられる。この形状を採用した場合には、光Rは、入射開口50B1から光電変換部30に入射する。そして、図21に示すように、表面側反射層50Fに至る光Rは、2つの細長い葉巻状の領域に照射される。反射光は、表面付近において一旦より細くなり、裏面側反射層50Bにおいて反射する。その後、その長軸及び短軸の径を広げながら、表面側反射層50Fと裏面側反射層50Bの間で反射を繰り返す。結果として、光Rがシリコンからなる光電変換部30にとどまる限り、光Rは光電変換部30に吸収され、光電変換が継続する。
<7th Embodiment>
The outer lens 10 of the first embodiment had the same cross-sectional shape including the optical axis Z. In other words, the outer lens 10 is a rotating body in which a predetermined cross-sectional shape is rotated around the optical axis Z. The outer lens 10 is not limited to such a rotating body. For example, as another example of the shape of the outer lens, the cylindrical outer lens 10F shown in FIGS. 20 and 21 can be mentioned. When this shape is adopted, the light R is incident on the photoelectric conversion unit 30 from the incident opening 50B1. Then, as shown in FIG. 21, the light R reaching the surface-side reflective layer 50F irradiates the two elongated cigar-shaped regions. The reflected light becomes thinner near the front surface and is reflected by the back surface side reflective layer 50B. After that, the reflection is repeated between the front surface side reflection layer 50F and the back surface side reflection layer 50B while expanding the diameters of the major axis and the minor axis. As a result, as long as the light R stays in the photoelectric conversion unit 30 made of silicon, the light R is absorbed by the photoelectric conversion unit 30 and the photoelectric conversion continues.
 より詳細には、図20のアウターレンズ10Fは、所定の断面形状を光軸Zと直交する掃引軸線SLに沿って引き延ばした形状である。このような立体形状は、シリンドリカル型と称することもできる。そうすると、アウターレンズ10Fの掃引軸線SLに直交する断面形状は、いずれの場所においても同一である。そして、掃引軸線SLに直交する断面形状は、例えば、第1実施形態のアウターレンズ10の断面と同じであってもよいし、掃引軸線KLに直交する断面形状は、略台形形状であってもよい。図21のアウターレンズ10Fは、第1領域L14aと第2領域L14bとを有する。アウターレンズ10Fにおいても、第2領域L14bの第2の曲率は、第1領域L14aの第1の曲率よりも小さい。第1実施形態のアウターレンズ10は、第1領域L5aを第2領域L5bが円環状に囲んでいた。一方、第7実施形態のアウターレンズ10Fは、第1領域L14aを第2領域L14bが挟んでいる。より詳細には、光軸Z及び掃引軸線SLの両方に直交する軸線KLに沿って第2領域L14bは、第1領域L14aを挟む。 More specifically, the outer lens 10F of FIG. 20 has a predetermined cross-sectional shape extended along the sweep axis SL orthogonal to the optical axis Z. Such a three-dimensional shape can also be referred to as a cylindrical type. Then, the cross-sectional shape of the outer lens 10F orthogonal to the sweep axis SL is the same at every place. The cross-sectional shape orthogonal to the sweep axis SL may be, for example, the same as the cross section of the outer lens 10 of the first embodiment, and the cross-sectional shape orthogonal to the sweep axis KL may be a substantially trapezoidal shape. good. The outer lens 10F of FIG. 21 has a first region L14a and a second region L14b. Even in the outer lens 10F, the second curvature of the second region L14b is smaller than the first curvature of the first region L14a. In the outer lens 10 of the first embodiment, the first region L5a is surrounded by the second region L5b in an annular shape. On the other hand, in the outer lens 10F of the seventh embodiment, the first region L14a is sandwiched by the second region L14b. More specifically, the second region L14b sandwiches the first region L14a along the axis KL orthogonal to both the optical axis Z and the sweep axis SL.
 図21のアウターレンズ10Fによれば、表面側反射層50Fには楕円形状に光Rが照射される。楕円状の照射領域IRの長軸方向は、掃引軸線SLの方向に沿っている。一方、楕円状の照射領域IRの短軸方向は、軸線KLの方向に沿っている。一対の照射領域IRは、掃引軸線SLを挟んで線対称である。つまり、掃引軸線SLを挟んで互いに対応する一対の照射領域IRが形成される。照射領域IRは、その短軸の長さ及び長軸の長さを拡大しながら、次第に光軸Zから遠ざかる。その結果、光電変換部30F1における光Rの光路長を十分に確保できる。 According to the outer lens 10F of FIG. 21, the surface-side reflective layer 50F is irradiated with light R in an elliptical shape. The long axis direction of the elliptical irradiation region IR is along the direction of the sweep axis SL. On the other hand, the minor axis direction of the elliptical irradiation region IR is along the direction of the axis KL. The pair of irradiation regions IR are line-symmetrical with the sweep axis SL in between. That is, a pair of irradiation region IRs corresponding to each other are formed with the sweep axis SL interposed therebetween. The irradiation region IR gradually moves away from the optical axis Z while expanding the length of the short axis and the length of the long axis. As a result, the optical path length of the light R in the photoelectric conversion unit 30F1 can be sufficiently secured.
<第8実施形態>
 アウターレンズのさらに好適な例について説明する。図22に示すアウターレンズ10Gは、垂直方向(掃引軸線SLの方向)の断面形状を滑らかに曲率が変化する略三角形(図22(b)参照)とすることによって光Rを多重反射させる。一方、アウターレンズ10Gは、水平方向(軸線KLの方向)の断面形状を略球面型(図22(c)参照)とすることによって、水平方向に反射する光の成分を低減する。
<8th Embodiment>
A more suitable example of the outer lens will be described. The outer lens 10G shown in FIG. 22 reflects light R multiple times by forming a substantially triangular shape (see FIG. 22B) whose curvature changes smoothly in the vertical direction (direction of the sweep axis SL). On the other hand, the outer lens 10G reduces the component of light reflected in the horizontal direction by making the cross-sectional shape in the horizontal direction (direction of the axis KL) a substantially spherical shape (see FIG. 22C).
 図22(a)は、アウターレンズ10Gを平面視した等高線図である。図22(b)及び図22(c)は、等高線の位置を示す断面図である。図22(b)の断面15aは、図5(a)におけるX1-X1’断面に対応する。図22(b)の断面15bは、図22(a)におけるX2-X2’断面に対応する。図22(c)の断面15cは、図22(a)におけるY1-Y1’断面に対応する。図22(c)の断面15dは、図22(a)におけるY2-Y2’断面に対応する。図22(b)及び図22(c)の軸線は、図22(a)の等高線の位置を示す。等高線(8)に囲まれた領域は、第1領域L15aに相当する。そして、掃引軸線SLに沿って第1領域L15aを挟むように第2領域L15bが形成される。 FIG. 22A is a contour diagram of the outer lens 10G in a plan view. 22 (b) and 22 (c) are cross-sectional views showing the positions of the contour lines. The cross section 15a in FIG. 22B corresponds to the X1-X1'cross section in FIG. 5A. The cross section 15b in FIG. 22B corresponds to the X2-X2'cross section in FIG. 22A. The cross section 15c in FIG. 22 (c) corresponds to the cross section Y1-Y1'in FIG. 22 (a). The cross section 15d in FIG. 22 (c) corresponds to the cross section Y2-Y2'in FIG. 22 (a). The axes of FIGS. 22 (b) and 22 (c) indicate the positions of the contour lines of FIG. 22 (a). The region surrounded by the contour lines (8) corresponds to the first region L15a. Then, the second region L15b is formed so as to sandwich the first region L15a along the sweep axis SL.
 図23は、アウターレンズ10Gによって成形された光Rの照射領域IRを平面視して概略的に示す。例えば、Y1-Y1’断面に照射された光Rは、第1の反射光が、スポット形状(IR1参照)となる。スポット形状とされた光成分は、光電変換部30の内部において1回の往復により吸収される。その後、光Rは光電変換部30から出て行くので損失が生じる。しかし、損失となる光の成分は、光電変換部30に入射する光の全体からすると、相対的に十分に小さい。 FIG. 23 schematically shows the irradiation region IR of the light R formed by the outer lens 10G in a plan view. For example, in the light R applied to the cross section of Y1-Y1', the first reflected light has a spot shape (see IR1). The spot-shaped light component is absorbed by one round trip inside the photoelectric conversion unit 30. After that, the light R exits from the photoelectric conversion unit 30, so that a loss occurs. However, the light component that becomes a loss is relatively sufficiently small in view of the entire light incident on the photoelectric conversion unit 30.
<第9実施形態>
 第1実施形態の光電変換素子1は、いわゆる裏面照射型である。第1実施形態の光電変換素子1に採用したアウターレンズ10は、図24に示すような表面照射型の光電変換素子1Hに採用してもよい。つまり、表面照射型の光電変換素子1Hでも、アウターレンズを採用することによって、量子効率を高めることが可能である。
<9th embodiment>
The photoelectric conversion element 1 of the first embodiment is a so-called back-illuminated type. The outer lens 10 used in the photoelectric conversion element 1 of the first embodiment may be used in the surface-illuminated photoelectric conversion element 1H as shown in FIG. 24. That is, even in the surface-illuminated photoelectric conversion element 1H, it is possible to increase the quantum efficiency by adopting the outer lens.
 図24に示すように、第9実施形態の光電変換素子1Hは、アウターレンズ10Hと、メインスペーサ20Hと、光電変換部30Hと、配線部40Hと、光閉じ込め部50Hと、支持基板71Hと、を有する。このうちアウターレンズ10H、メインスペーサ20H及び配線部40Hは、光方向変換部60Hを構成する。光電変換素子1Hは、光電変換部30H及び配線部40Hの配置が第1実施形態の光電変換素子1とは異なる。また、光電変換素子1Hは、支持基板71Hを備える点で、第1実施形態の光電変換素子1とは異なる。 As shown in FIG. 24, the photoelectric conversion element 1H of the ninth embodiment includes an outer lens 10H, a main spacer 20H, a photoelectric conversion unit 30H, a wiring unit 40H, an optical confinement unit 50H, a support substrate 71H, and the like. Has. Of these, the outer lens 10H, the main spacer 20H, and the wiring unit 40H constitute an optical direction conversion unit 60H. The photoelectric conversion element 1H is different from the photoelectric conversion element 1 of the first embodiment in the arrangement of the photoelectric conversion unit 30H and the wiring unit 40H. Further, the photoelectric conversion element 1H is different from the photoelectric conversion element 1 of the first embodiment in that the support substrate 71H is provided.
 光電変換素子1Hは、メインスペーサ20Hと光電変換部30Hとの間に配線部40Hが設けられている。第9実施形態の光電変換素子1Hは、第1の構成であるDTI52(図2参照)を有する。配線部40Hの表面40Fは、メインスペーサ20Hに接する。配線部40Hの裏面40Bは、光電変換部30Hの裏面30Bに設けられた反射防止層51に接する。配線部40Hにおいて、光軸Z近傍の光透過領域46Hは、光Rが透過する。従って、この光透過領域46Hには、光Rを通さない第1配線層41及び第2配線層42は形成されない。つまり、光透過領域46Hは、配線部40の裏面40Bから配線部40の表面40Fまでが一体の酸化シリコンにより構成される。そして、配線部40Hにおいて最も光電変換部30H寄りには、表面側反射層50Fが埋め込まれている。表面側反射層50Fは、光透過領域46Hを構成する部分に設けられた入射開口50F1を有する。 The photoelectric conversion element 1H is provided with a wiring portion 40H between the main spacer 20H and the photoelectric conversion portion 30H. The photoelectric conversion element 1H of the ninth embodiment has a DTI 52 (see FIG. 2) which is the first configuration. The surface 40F of the wiring portion 40H is in contact with the main spacer 20H. The back surface 40B of the wiring unit 40H is in contact with the antireflection layer 51 provided on the back surface 30B of the photoelectric conversion unit 30H. In the wiring portion 40H, the light R is transmitted through the light transmission region 46H near the optical axis Z. Therefore, the first wiring layer 41 and the second wiring layer 42 that do not allow light R to pass through are not formed in the light transmission region 46H. That is, in the light transmission region 46H, the back surface 40B of the wiring portion 40 to the front surface 40F of the wiring portion 40 are integrally formed of silicon oxide. The surface-side reflective layer 50F is embedded in the wiring portion 40H closest to the photoelectric conversion portion 30H. The surface-side reflective layer 50F has an incident opening 50F1 provided in a portion constituting the light transmission region 46H.
 第9実施形態の光電変換素子1Hも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1H of the ninth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
 次に、第9実施形態の光電変換素子1Hを備える撮像装置101を製造する方法を説明する。撮像装置101を製造する方法は、まず標準的な表面照射型の撮像装置を形成する工程により、中間ウェハを準備する。次に、中間ウェハをフォトダイオードのための低濃度の層(第2半導体領域32)と、電極のためのp+層(第4半導体領域34)を残して、薄層化する。次に、裏面側反射層50Bを形成する。次に、裏面から支持基板を接着する。最後に、アウターレンズ10Gを含むレンズユニットを形成する。その結果、シリコンからなる光電変換部30の内部で光Rが多重反射する構造を備えた光電変換素子1Hが得られる。以下、より詳細に撮像装置101を製造する方法を説明する。 Next, a method of manufacturing the image pickup apparatus 101 including the photoelectric conversion element 1H of the ninth embodiment will be described. In the method of manufacturing the image pickup apparatus 101, an intermediate wafer is first prepared by a step of forming a standard surface-illuminated image pickup apparatus. Next, the intermediate wafer is thinned, leaving a low concentration layer for the photodiode (second semiconductor region 32) and a p + layer for the electrodes (fourth semiconductor region 34). Next, the back surface side reflective layer 50B is formed. Next, the support substrate is bonded from the back surface. Finally, a lens unit including the outer lens 10G is formed. As a result, the photoelectric conversion element 1H having a structure in which light R is multiple-reflected inside the photoelectric conversion unit 30 made of silicon is obtained. Hereinafter, a method of manufacturing the image pickup apparatus 101 will be described in more detail.
 図25(a)は、CMOSを形成する工程(CIS工程)が終了した直後の様子を示す。図25(a)の例では、配線部40H、光電変換部30Hを構成する第2半導体領域32、第3半導体領域33及び第4半導体領域34が示されている。まず、半導体領域31S上に後の第2半導体領域32となる半導体層を設ける。半導体層の厚さは、例えば20μmである。そして、当該半導体層に第3半導体領域33及び第4半導体領域34をそれぞれ設ける。その後、DTI52を形成する工程を行う。DTI52は、互いに隣接して形成された第4半導体領域34の間にそれぞれ形成される。その結果、光電変換部30Hを構成する第2半導体領域32、第3半導体領域33及び第4半導体領域34がそれぞれ形成される。続いて、配線部40Hを形成する。配線部40Hの厚さは、例えば5μmである。 FIG. 25A shows a state immediately after the step of forming the CMOS (CIS step) is completed. In the example of FIG. 25A, the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34 constituting the wiring unit 40H and the photoelectric conversion unit 30H are shown. First, a semiconductor layer to be later a second semiconductor region 32 is provided on the semiconductor region 31S. The thickness of the semiconductor layer is, for example, 20 μm. Then, the third semiconductor region 33 and the fourth semiconductor region 34 are provided on the semiconductor layer, respectively. After that, a step of forming the DTI 52 is performed. The DTI 52 is formed between the fourth semiconductor regions 34 formed adjacent to each other. As a result, the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34 constituting the photoelectric conversion unit 30H are formed, respectively. Subsequently, the wiring portion 40H is formed. The thickness of the wiring portion 40H is, for example, 5 μm.
 次に、図25(b)に示すように第1支持基板81を接着する。第1支持基板81は、配線部40の表面40Fに接着される。 Next, as shown in FIG. 25 (b), the first support substrate 81 is bonded. The first support substrate 81 is adhered to the surface 40F of the wiring portion 40.
 次に、図26(a)に示すように、第1支持基板81が下側に位置するように裏返す。続いて、上側に位置する半導体領域31Sを薄膜化する。薄膜化されて残った半導体層は、第1半導体領域31である。第1半導体領域31の厚さは、1μm以上2μm以下としてよい。また、第1半導体領域31の厚さは、3μm以上5μm以下としてもよい。 Next, as shown in FIG. 26 (a), turn it over so that the first support substrate 81 is located on the lower side. Subsequently, the semiconductor region 31S located on the upper side is thinned. The semiconductor layer remaining after being thinned is the first semiconductor region 31. The thickness of the first semiconductor region 31 may be 1 μm or more and 2 μm or less. Further, the thickness of the first semiconductor region 31 may be 3 μm or more and 5 μm or less.
 次に、図26(b)に示すように、裏面側反射層50Bを設ける。裏面側反射層50Bは、アルミニウム層としてもよい。次に、図27(a)に示すように、第2支持基板82を接着する。第2支持基板82は、裏面側反射層50Bに接着する。次に、図27(b)に示すように、第2支持基板82が下側に位置するように裏返す。続いて、第1支持基板81を取り除く。 Next, as shown in FIG. 26B, the back surface side reflective layer 50B is provided. The back surface side reflective layer 50B may be an aluminum layer. Next, as shown in FIG. 27 (a), the second support substrate 82 is bonded. The second support substrate 82 is adhered to the back surface side reflective layer 50B. Next, as shown in FIG. 27 (b), the second support substrate 82 is turned over so as to be located on the lower side. Subsequently, the first support substrate 81 is removed.
 次に、図28(a)に示すように、配線部40Hにレンズユニット83を形成する。レンズユニット83は、複数のアウターレンズ10Hが一体化されたものである。続いて、図28(b)に示すように、パッケージ84にウェハを収容する。このとき、第2支持基板82の裏面をパッケージ84の底面に固定する。次に、配線部40Hの周辺部に設けられた電極パッド45に対してワイヤ85をボンディングする。最後に、パッケージ84の開口を光Rに対して透明な板86によって閉鎖する。以上の工程を経て、複数の光電変換素子1Hを含む撮像装置101が得られる。 Next, as shown in FIG. 28A, the lens unit 83 is formed in the wiring portion 40H. The lens unit 83 is a combination of a plurality of outer lenses 10H. Subsequently, as shown in FIG. 28 (b), the wafer is housed in the package 84. At this time, the back surface of the second support substrate 82 is fixed to the bottom surface of the package 84. Next, the wire 85 is bonded to the electrode pad 45 provided in the peripheral portion of the wiring portion 40H. Finally, the opening of the package 84 is closed by a plate 86 that is transparent to the light R. Through the above steps, an image pickup apparatus 101 including a plurality of photoelectric conversion elements 1H can be obtained.
 複数の光電変換素子1Hを含む撮像装置101は、さらに簡易な工程によって製造することもできる。 The image pickup apparatus 101 including a plurality of photoelectric conversion elements 1H can be manufactured by a simpler process.
 図29(a)に示す中間ウェハ104を準備する。中間ウェハ104は、半導体基板87a、第2半導体領域32、第3半導体領域33、第4半導体領域34を含む半導体層87bと、配線部40Hと、を有する。半導体層87bには、DTI52が形成されている。配線部40Hには、表面側反射層50Fが形成されている。ここまでの製造工程を、例えば、「前工程」と称してもよい。次に、図29(b)に示すように、半導体基板87aを薄膜化する。具体的には、半導体基板87aの厚さを750μmから200μmまで削る。つまり、半導体基板87aの全体を薄膜化する。次に、半導体基板87aにおいて光電変換素子1Hを構成する構造が設けられた領域L22aを薄膜化する。半導体基板87aの部分的な薄膜化は、領域L22aに対応する部分の厚さを200μmから21μm以上25μm程度にまで削る。半導体基板87aを部分的に削る工程として、例えばエッチング処理を採用できる。薄膜化された部分は、第1半導体領域31となる。 Prepare the intermediate wafer 104 shown in FIG. 29 (a). The intermediate wafer 104 includes a semiconductor substrate 87a, a semiconductor layer 87b including a second semiconductor region 32, a third semiconductor region 33, and a fourth semiconductor region 34, and a wiring portion 40H. A DTI 52 is formed on the semiconductor layer 87b. A surface-side reflective layer 50F is formed on the wiring portion 40H. The manufacturing process up to this point may be referred to as, for example, a "pre-process". Next, as shown in FIG. 29 (b), the semiconductor substrate 87a is thinned. Specifically, the thickness of the semiconductor substrate 87a is reduced from 750 μm to 200 μm. That is, the entire semiconductor substrate 87a is thinned. Next, in the semiconductor substrate 87a, the region L22a provided with the structure constituting the photoelectric conversion element 1H is thinned. For the partial thinning of the semiconductor substrate 87a, the thickness of the portion corresponding to the region L22a is reduced from 200 μm to about 21 μm or more and 25 μm. As a step of partially scraping the semiconductor substrate 87a, for example, an etching process can be adopted. The thinned portion becomes the first semiconductor region 31.
 続いて、図30(a)に示すように、裏面側反射層50Bを形成する。裏面側反射層50Bは、スパッタ法によって形成されるアルミニウム膜である。次に、図30(b)に示すように配線部40Hの表面40Fに複数のアウターレンズ10Hを含むレンズユニット83Hを形成する。そして、図31に示すように、パッケージ84に実装する。図30(b)に示す工程及び図31に示す工程の具体的な手順は、前述した図28(a)及び図28(b)に示す工程と同様としてよい。 Subsequently, as shown in FIG. 30A, the back surface side reflective layer 50B is formed. The back surface side reflective layer 50B is an aluminum film formed by a sputtering method. Next, as shown in FIG. 30B, a lens unit 83H including a plurality of outer lenses 10H is formed on the surface 40F of the wiring portion 40H. Then, as shown in FIG. 31, it is mounted in the package 84. The specific procedure of the step shown in FIG. 30 (b) and the step shown in FIG. 31 may be the same as the steps shown in FIGS. 28 (a) and 28 (b) described above.
<第10実施形態>
 第2実施形態の光電変換素子1Aも、いわゆる裏面照射型である。第2実施形態の光電変換素子1Aに採用したインナーレンズ61Aは、図32に示すような表面照射型の光電変換素子1Kに採用してもよい。つまり、第10実施形態の光電変換素子1Kは、アウターレンズ10Kと、インナーレンズ61Kと、を備える。
<10th Embodiment>
The photoelectric conversion element 1A of the second embodiment is also a so-called back-illuminated type. The inner lens 61A adopted for the photoelectric conversion element 1A of the second embodiment may be adopted for the surface-illuminated photoelectric conversion element 1K as shown in FIG. 32. That is, the photoelectric conversion element 1K of the tenth embodiment includes an outer lens 10K and an inner lens 61K.
 第10実施形態の光電変換素子1Kは、アウターレンズ10Kと、メインスペーサ20Kと、インナーレンズ61Kと、インナースペーサ62Kと、配線部40Kと、光電変換部30Kと、光閉じ込め部50Kと、支持基板71Kと、を有する。これらのうちアウターレンズ10K、メインスペーサ20K、インナーレンズ61K、インナースペーサ62K及び配線部40Kは、光方向変換部60Kを構成する。光電変換素子1Kは、光電変換部30K及び配線部40Kの配置が第2実施形態の光電変換素子1Aとは異なる。また、光電変換素子1Kは、支持基板71Kを備える点で、第2実施形態の光電変換素子1Aとは異なる。 The photoelectric conversion element 1K of the tenth embodiment includes an outer lens 10K, a main spacer 20K, an inner lens 61K, an inner spacer 62K, a wiring portion 40K, a photoelectric conversion portion 30K, an optical confinement portion 50K, and a support substrate. It has 71K and. Of these, the outer lens 10K, the main spacer 20K, the inner lens 61K, the inner spacer 62K, and the wiring portion 40K constitute an optical direction conversion portion 60K. The photoelectric conversion element 1K is different from the photoelectric conversion element 1A of the second embodiment in the arrangement of the photoelectric conversion unit 30K and the wiring unit 40K. Further, the photoelectric conversion element 1K is different from the photoelectric conversion element 1A of the second embodiment in that the support substrate 71K is provided.
 第10実施形態の光電変換素子1Kも、第1実施形態の光電変換素子1と同様に、感度を高めることができる。 The photoelectric conversion element 1K of the tenth embodiment can also increase the sensitivity in the same manner as the photoelectric conversion element 1 of the first embodiment.
<第11実施形態>
 図33は、第11実施形態の光電変換素子1Tの平面図である。第11実施形態では、特にDTI構造55Tに注目する。
<11th Embodiment>
FIG. 33 is a plan view of the photoelectric conversion element 1T of the eleventh embodiment. In the eleventh embodiment, particular attention is paid to the DTI structure 55T.
 図33に示すDTI構造55Tは、光電変換部30における電荷の発生に寄与する光Rの吸収をより高めることを意図したものである。DTI構造55Tによって囲まれた画素領域90Tは、一つの画素に対応する。画素領域90Tは、光電変換領域91Tと、電荷蓄積検出領域92Tと、を含む。光電変換領域91Tの平面形状は、正八角形である。電荷蓄積検出領域92Tの平面形状は、正方形である。正八角形である光電変換領域91Tの一つの辺が外方向に突出しており、当該突出した部分が電荷蓄積検出領域92Tである。電荷蓄積検出領域92Tの一辺の長さは、光電変換領域91Tの一辺の長さと等しい。 The DTI structure 55T shown in FIG. 33 is intended to further enhance the absorption of light R that contributes to the generation of electric charges in the photoelectric conversion unit 30. The pixel area 90T surrounded by the DTI structure 55T corresponds to one pixel. The pixel region 90T includes a photoelectric conversion region 91T and a charge accumulation detection region 92T. The planar shape of the photoelectric conversion region 91T is a regular octagon. The planar shape of the charge accumulation detection region 92T is a square. One side of the photoelectric conversion region 91T, which is a regular octagon, protrudes outward, and the protruding portion is the charge accumulation detection region 92T. The length of one side of the charge accumulation detection region 92T is equal to the length of one side of the photoelectric conversion region 91T.
 光電変換領域91Tは、第2半導体領域32と第3半導体領域33と(図1参照)により形成されるフォトダイオードを含む。さらに、光電変換領域91Tの中心は、入射開口50B1の中心と一致する。例えば入射開口50B1の形状は、正八角形としてよい。換言すると、光電変換領域91Tの平面形状は、入射開口50B1の平面形状の相似形であってもよい。 The photoelectric conversion region 91T includes a photodiode formed by a second semiconductor region 32 and a third semiconductor region 33 (see FIG. 1). Further, the center of the photoelectric conversion region 91T coincides with the center of the incident aperture 50B1. For example, the shape of the incident opening 50B1 may be a regular octagon. In other words, the planar shape of the photoelectric conversion region 91T may be similar to the planar shape of the incident opening 50B1.
 電荷蓄積検出領域92Tは、複数の電荷蓄積検出部70を含む。より詳細には、複数の電荷蓄積検出部70は、そのすべてが電荷蓄積検出領域92Tに配置されており、光電変換領域91には配置されない。複数の電荷蓄積検出部70は、第2半導体領域32と第3半導体領域33とにより形成されるフォトダイオードに接続されている。電荷蓄積検出部70には、所定のタイミングごとに光電変換部30で生じた電荷が振り分けられる。 The charge accumulation detection area 92T includes a plurality of charge accumulation detection units 70. More specifically, all of the plurality of charge accumulation detection units 70 are arranged in the charge accumulation detection region 92T, and are not arranged in the photoelectric conversion detection region 91. The plurality of charge storage detection units 70 are connected to a photodiode formed by the second semiconductor region 32 and the third semiconductor region 33. The charge generated by the photoelectric conversion unit 30 is distributed to the charge accumulation detection unit 70 at predetermined timing intervals.
 図34を参照することにより、第11実施形態の光電変換素子1Tの作用効果を容易に理解できる。図34は、図33に示す平面視した光電変換素子1Tに、図7に示す表面側反射層50Fにおける光Rの照射領域IRを重ねたものである。第11実施形態の光電変換素子1Tは、アウターレンズを備える。なお、第11実施形態の光電変換素子1Tは、光電変換素子1A等が備える別の光成形部品(インナーレンズ61A等)を備えてもよい。つまり、第11実施形態の光電変換素子1Tは、光Rを同心円状に成形する構成を備えていればよい。 By referring to FIG. 34, the action and effect of the photoelectric conversion element 1T of the eleventh embodiment can be easily understood. FIG. 34 shows a plan-viewed photoelectric conversion element 1T shown in FIG. 33 overlaid with an irradiation region IR of light R in the surface-side reflective layer 50F shown in FIG. 7. The photoelectric conversion element 1T of the eleventh embodiment includes an outer lens. The photoelectric conversion element 1T of the eleventh embodiment may include another optical molding component (inner lens 61A or the like) included in the photoelectric conversion element 1A or the like. That is, the photoelectric conversion element 1T of the eleventh embodiment may have a configuration in which the light R is formed concentrically.
 そうすると、光Rは、光軸Zを中心とした複数の円環領域に照射され、次第に外側に広がる。光電変換領域91Tは、正八角形であるから、光軸ZからDTI構造55Tまでの距離は、8つの方向において等しい。つまり、特定の方向において、光Rの進行が阻害されない。その結果、反射を繰り返す光Rを好適に光電変換部30Tに吸収させることができる。 Then, the light R is irradiated to a plurality of annular regions centered on the optical axis Z, and gradually spreads outward. Since the photoelectric conversion region 91T is a regular octagon, the distance from the optical axis Z to the DTI structure 55T is equal in eight directions. That is, the progress of light R is not hindered in a specific direction. As a result, the light R that repeats reflection can be suitably absorbed by the photoelectric conversion unit 30T.
 ここで、電荷蓄積検出部70に光Rが入射すると、電荷蓄積検出部70においても電荷が生じることがあり得る。電荷蓄積検出部70は、所定の規則に基づいて振り分けられた電荷を蓄積しているので、規則に従うことなく蓄積された電荷はノイズである。電荷蓄積検出領域92Tは、光電変換領域91Tに隣接するように配置されている。この配置によれば、電荷蓄積検出部70は、光軸Zから十分に離れている。その結果、光Rが反射を繰り返して、電荷蓄積検出領域92Tに到達するまでの間に十分に吸収される。従って、電荷蓄積検出領域92Tに入射する光Rは、実質的に無視することができる。 Here, when the light R is incident on the charge storage detection unit 70, the charge may be generated in the charge storage detection unit 70 as well. Since the charge storage detection unit 70 stores the charges distributed based on a predetermined rule, the stored charges without following the rules are noise. The charge accumulation detection region 92T is arranged so as to be adjacent to the photoelectric conversion region 91T. According to this arrangement, the charge accumulation detection unit 70 is sufficiently separated from the optical axis Z. As a result, the light R is repeatedly reflected and sufficiently absorbed until it reaches the charge accumulation detection region 92T. Therefore, the light R incident on the charge accumulation detection region 92T can be substantially ignored.
 なお、図33では、光電変換領域91Tと電荷蓄積検出領域92Tとの境界には、DTI構造55Tを図示していない。電荷蓄積検出領域92Tは、光電変換領域91Tに対して光学的に分離されており、電気的に接続されていることを要する。従って、例えば、光電変換領域91Tと電荷蓄積検出領域92Tとの境界には、図4に示す第3の構造のDTI52Bを設けてもよい。この配置によれば、光電変換領域91Tから電荷蓄積検出領域92Tに移動する光Rをさらに低減すると共に、光Rを光電変換領域91Tに閉じ込めることができる。つまり、DTI52Bは、電荷蓄積検出領域92Tに影を作ることになるので、電荷蓄積検出領域92Tを構成するPN接合部に光Rを当たりにくくすることができる。その結果、電荷蓄積検出部70の寄生感度を低減させることができる。 Note that, in FIG. 33, the DTI structure 55T is not shown at the boundary between the photoelectric conversion region 91T and the charge accumulation detection region 92T. The charge accumulation detection region 92T is optically separated from the photoelectric conversion region 91T and needs to be electrically connected. Therefore, for example, a DTI 52B having a third structure shown in FIG. 4 may be provided at the boundary between the photoelectric conversion region 91T and the charge accumulation detection region 92T. According to this arrangement, the light R moving from the photoelectric conversion region 91T to the charge accumulation detection region 92T can be further reduced, and the light R can be confined in the photoelectric conversion region 91T. That is, since the DTI 52B casts a shadow on the charge accumulation detection region 92T, it is possible to make it difficult for the light R to hit the PN junction constituting the charge accumulation detection region 92T. As a result, the parasitic sensitivity of the charge accumulation detection unit 70 can be reduced.
 一方、光電変換領域91Tを囲む隔壁として、第2の構造のDTI52Aを採用してよい。同様に、電荷蓄積検出領域92Tを囲む隔壁として、第2の構造のDTI52Aを採用してよい。第2の構造のDTI52Aによれば、互いに隣接する光電変換素子1T同士を光学的及び電気的に確実に分離することができる。 On the other hand, DTI52A having a second structure may be adopted as the partition wall surrounding the photoelectric conversion region 91T. Similarly, the DTI 52A having the second structure may be adopted as the partition wall surrounding the charge accumulation detection region 92T. According to the DTI 52A having the second structure, the photoelectric conversion elements 1T adjacent to each other can be reliably separated optically and electrically.
 図33に示すDTI構造55Tによれば、図35に示すように複数の光電変換素子1Tを格子状に配置した撮像装置101Tを構成できる。格子状の配置とは、互いに直交する軸線に沿って、複数の光電変換素子1Tが並んでいる状態を意味する。例えば、ある光電変換素子1Tにおいて、電荷蓄積検出領域92Tを構成する3つの辺は、光電変換素子1Tに縦方向、横方向及び斜め方向に隣接するそれぞれの光電変換素子1Tの光電変換領域91Tの辺にそれぞれ接する。格子状の配置によれば、水平方向に沿う光電変換素子1Tの間隔(ピッチ)を等しくすることができる。同様に、垂直方向に沿う光電変換素子1Tの間隔(ピッチ)を等しくすることもできる。 According to the DTI structure 55T shown in FIG. 33, as shown in FIG. 35, an image pickup device 101T in which a plurality of photoelectric conversion elements 1T are arranged in a grid pattern can be configured. The grid-like arrangement means a state in which a plurality of photoelectric conversion elements 1T are arranged along axes orthogonal to each other. For example, in a certain photoelectric conversion element 1T, the three sides constituting the charge accumulation detection region 92T are the photoelectric conversion regions 91T of each photoelectric conversion element 1T adjacent to the photoelectric conversion element 1T in the vertical, horizontal, and diagonal directions. It touches each side. According to the grid arrangement, the intervals (pitch) of the photoelectric conversion elements 1T along the horizontal direction can be made equal. Similarly, the intervals (pitch) of the photoelectric conversion elements 1T along the vertical direction can be made equal.
 第11実施形態の光電変換素子1Tを備えた撮像装置101Tは、光電変換部30Tにおいて光の多重反射を生じさせるアウターレンズ10Tを備える。図33に示すDTI構造55Tは、裏面側反射層50Bの入射開口50B1から電荷蓄積検出部70までの距離が最も遠い。また、DTI構造55Tは、光Rが回り込む体積を小さくする。従って、DTI構造55Tは、非復調成分光が直接に電荷蓄積検出領域92Tに入射することに起因する寄生感度を良好に低減することができる。その結果、第11実施形態の光電変換素子1Tは、近赤外光に対して高い量子効率を発揮することができる。 The image pickup apparatus 101T provided with the photoelectric conversion element 1T of the eleventh embodiment includes an outer lens 10T that causes multiple reflection of light in the photoelectric conversion unit 30T. In the DTI structure 55T shown in FIG. 33, the distance from the incident opening 50B1 of the back surface side reflective layer 50B to the charge accumulation detection unit 70 is the longest. Further, the DTI structure 55T reduces the volume around which the light R wraps around. Therefore, the DTI structure 55T can satisfactorily reduce the parasitic sensitivity caused by the non-demodulation component light directly incident on the charge accumulation detection region 92T. As a result, the photoelectric conversion element 1T of the eleventh embodiment can exhibit high quantum efficiency with respect to near-infrared light.
 なお、図33に示すDTI構造55Tによれば、図36に示すような別の配置を採用することもできる。図36に示す配置は、千鳥配置である。また、図36に示す配置は、いわゆるハニカム構造配置であるともいえる。水平方向にあるピッチ(P)をもって光電変換素子1Tが配置されているとき、垂直方向に隣接する光電変換素子1Tは、あるピッチ(P)の1/2の位置に配置される。このような配置によれば、水平方向及び垂直方向の解像度を高めることができる。 According to the DTI structure 55T shown in FIG. 33, another arrangement as shown in FIG. 36 can be adopted. The arrangement shown in FIG. 36 is a staggered arrangement. Further, it can be said that the arrangement shown in FIG. 36 is a so-called honeycomb structure arrangement. When the photoelectric conversion element 1T is arranged with a pitch (P) in the horizontal direction, the photoelectric conversion element 1T adjacent in the vertical direction is arranged at a position ½ of a certain pitch (P). With such an arrangement, horizontal and vertical resolution can be increased.
 また、光電変換素子1Tは、図22に示す形状を有するアウターレンズを備えてもよい。図37は、図33に示す平面視した光電変換素子1Tに、図23に示す表面側反射層50Fにおける光Rの照射領域IRを重ねたものである。図22に示す形状を有するアウターレンズを備える場合には、アウターレンズの掃引軸線SLが光電変換領域91Tと電荷蓄積検出領域92Tとを結ぶ軸線と平行になるように配置される。そうすると、光Rの照射領域IRは、入射開口50B1から電荷蓄積検出領域92Tに向かって進行しない。従って、電荷蓄積検出領域92Tへの光Rの入射に起因するノイズの発生を好適に抑制することができる。 Further, the photoelectric conversion element 1T may include an outer lens having the shape shown in FIG. 22. FIG. 37 is a plan-viewed photoelectric conversion element 1T shown in FIG. 33 overlaid with an irradiation region IR of light R in the surface-side reflective layer 50F shown in FIG. 23. When the outer lens having the shape shown in FIG. 22 is provided, the sweep axis SL of the outer lens is arranged so as to be parallel to the axis connecting the photoelectric conversion region 91T and the charge accumulation detection region 92T. Then, the irradiation region IR of the light R does not proceed from the incident opening 50B1 toward the charge accumulation detection region 92T. Therefore, it is possible to suitably suppress the generation of noise due to the incident light R on the charge accumulation detection region 92T.
<第12実施形態>
 第11実施形態では、正八角形の光電変換領域91Tを形成するDTI構造55Tを例示した。光電変換領域91Tの形状は、正八角形に限定されない。図38に示すように、光電変換領域91Rは、矩形であってもよい。図38は、4タップ1ドレインのTOF型の光電変換素子1Rの平面図である。図39は、図38の光電変換素子1Rに図21(b)に示す照射領域IRを重ねたものである。電荷蓄積検出部70への寄生感度を減らすために、DTI構造55Rによって影を作る。さらに、第7実施形態で示したアウターレンズ10Fによって、電荷蓄積検出部70の方向と直交する方向に反射光を進行させる。その結果、光Rは、光電変換部30に閉じ込められるので、電荷蓄積検出領域92Rに直接に光Rが入射することが抑制される。
<12th Embodiment>
In the eleventh embodiment, the DTI structure 55T forming the regular octagonal photoelectric conversion region 91T is exemplified. The shape of the photoelectric conversion region 91T is not limited to a regular octagon. As shown in FIG. 38, the photoelectric conversion region 91R may be rectangular. FIG. 38 is a plan view of a TOF type photoelectric conversion element 1R having 4 taps and 1 drain. In FIG. 39, the irradiation region IR shown in FIG. 21B is superimposed on the photoelectric conversion element 1R of FIG. 38. A shadow is created by the DTI structure 55R in order to reduce the sensitivity of parasitism to the charge accumulation detection unit 70. Further, the outer lens 10F shown in the seventh embodiment causes the reflected light to travel in a direction orthogonal to the direction of the charge accumulation detection unit 70. As a result, since the light R is confined in the photoelectric conversion unit 30, it is suppressed that the light R is directly incident on the charge accumulation detection region 92R.
 第12実施形態の光電変換素子1Rにおいて、画素領域90Rの形状は、平面視して略矩形である。そして、画素領域90Rは、矩形の光電変換領域91Rと、矩形の電荷蓄積検出領域92Rと、を有する。画素領域90RにDTI52Aが設けられることによって、光電変換領域91Rと電荷蓄積検出領域92Rとに仕切られている。画素領域90Rを囲む4つの隔壁として、DTI52Aが採用される。なお、図38には図示していないが、画素領域90Rを仕切るDTI52Aの間には、例えば、図4に示す第3の構造のDTI52Bを設けてもよい。 In the photoelectric conversion element 1R of the twelfth embodiment, the shape of the pixel region 90R is substantially rectangular in a plan view. The pixel region 90R has a rectangular photoelectric conversion region 91R and a rectangular charge storage detection region 92R. By providing the DTI 52A in the pixel region 90R, it is divided into a photoelectric conversion region 91R and a charge accumulation detection region 92R. DTI52A is adopted as the four partition walls surrounding the pixel region 90R. Although not shown in FIG. 38, for example, a DTI 52B having a third structure shown in FIG. 4 may be provided between the DTI 52A partitioning the pixel region 90R.
 光電変換領域91Rには、第2半導体領域32と第3半導体領域33とにより形成されるフォトダイオードが配置される。さらに、図38の例示では、一対のドレイン72が光電変換領域91Rに配置される。その他の電荷蓄積検出部70は、電荷蓄積検出領域92Rに配置される。 In the photoelectric conversion region 91R, a photodiode formed by the second semiconductor region 32 and the third semiconductor region 33 is arranged. Further, in the illustration of FIG. 38, a pair of drains 72 are arranged in the photoelectric conversion region 91R. The other charge accumulation detection unit 70 is arranged in the charge accumulation detection region 92R.
 このような画素領域90Rを採用する場合において、光電変換素子1Rは、第7実施形態の光成形部品を採用する。図39に示すように、成形された光は、所定の軸線KLに沿って反射を繰り返す。軸線KLは、図38の例示であるときに光電変換領域91Rと電荷蓄積検出領域92Rが並ぶ方向と直交する。従って、アウターレンズ10Pは、光電変換領域91Rと電荷蓄積検出領域92Rが並ぶ方向と掃引軸線SLが一致するように配置される。そうすると、成形された光が入射する領域は、光電変換領域91Rと電荷蓄積検出領域92Rが並ぶ方向と直交する方向に並ぶ。このように、光が拡散する方向が特定の方向である場合には、光電変換領域91Rを矩形とするとよい。 When such a pixel region 90R is adopted, the photoelectric conversion element 1R adopts the optical molding component of the seventh embodiment. As shown in FIG. 39, the molded light repeatedly reflects along a predetermined axis KL. The axis KL is orthogonal to the direction in which the photoelectric conversion region 91R and the charge accumulation detection region 92R are arranged in the example of FIG. 38. Therefore, the outer lens 10P is arranged so that the direction in which the photoelectric conversion region 91R and the charge accumulation detection region 92R are lined up coincides with the sweep axis SL. Then, the region where the molded light is incident is aligned in a direction orthogonal to the direction in which the photoelectric conversion region 91R and the charge accumulation detection region 92R are aligned. As described above, when the direction in which the light is diffused is a specific direction, the photoelectric conversion region 91R may be rectangular.
 以下、アウターレンズの効果を確認するためのいくつかの計算(計算例2、3、4)を行った結果を説明する。また、比較例であるアウターレンズの効果を確認するための計算(計算例1)を行った結果も併せて説明する。 Hereinafter, the results of performing some calculations (calculation examples 2, 3, and 4) for confirming the effect of the outer lens will be described. In addition, the results of calculations (calculation example 1) for confirming the effect of the outer lens, which is a comparative example, will also be described.
 まず、図40を参照しながら、シミュレーションに用いた解析モデルについて説明する。図40に示すように、解析モデル103Pは、アウターレンズ10Pを含む。解析モデル103Mは、アウターレンズ10Mを含む。解析モデル103Nは、アウターレンズ10Nを含む。図40では、3つのアウターレンズ10P、10M、10Nを重ねて図示している。メインスペーサ20及び光電変換部30の構成は、計算例1~4で共通である。 First, the analysis model used in the simulation will be described with reference to FIG. 40. As shown in FIG. 40, the analysis model 103P includes an outer lens 10P. The analysis model 103M includes an outer lens 10M. The analysis model 103N includes an outer lens 10N. In FIG. 40, three outer lenses 10P, 10M, and 10N are superimposed and shown. The configurations of the main spacer 20 and the photoelectric conversion unit 30 are the same in Calculation Examples 1 to 4.
 計算例1のアウターレンズ10Pの形状を規定するパラメータとして、以下を設定した。図41は、計算例1に用いたアウターレンズ10Pの斜視図である。
  レンズ直径:8.4μm
  レンズ厚 :5.0μm
  土台厚  :0.8μm
  オフセット:1
  ベース  :1
  レート  :1
The following are set as parameters that define the shape of the outer lens 10P of Calculation Example 1. FIG. 41 is a perspective view of the outer lens 10P used in the calculation example 1.
Lens diameter: 8.4 μm
Lens thickness: 5.0 μm
Base thickness: 0.8 μm
Offset: 1
Base: 1
Rate: 1
 計算例2のアウターレンズ10Mの形状を規定するパラメータとして、以下を設定した。計算例1のアウターレンズ10Pと比較すると理解できるように、計算例2のアウターレンズ10Mは、頂部の曲率が大きく且つ側部の曲率が小さい。図42は、計算例2に用いたアウターレンズ10Mの斜視図である。
  レンズ直径:8.4μm
  レンズ厚 :5.0μm
  土台厚  :0.8μm
  オフセット:1000
  ベース  :1
  レート  :1
The following are set as parameters that define the shape of the outer lens 10M of Calculation Example 2. As can be understood by comparing with the outer lens 10P of the calculation example 1, the outer lens 10M of the calculation example 2 has a large curvature at the top and a small curvature at the side. FIG. 42 is a perspective view of the outer lens 10M used in Calculation Example 2.
Lens diameter: 8.4 μm
Lens thickness: 5.0 μm
Base thickness: 0.8 μm
Offset: 1000
Base: 1
Rate: 1
 計算例3のアウターレンズ10Nの形状を規定するパラメータとして、以下を設定した。図43は、計算例3に用いたアウターレンズ10Nの斜視図である。アウターレンズ10Nのレンズ厚は、アウターレンズ10Mのレンズ厚と異なる。その他のアウターレンズ10Nのパラメータは、アウターレンズ10Mのパラメータと同じである。
  レンズ直径:8.4μm
  レンズ厚 :3.0μm
  土台厚  :0.8μm
  オフセット:1000
  ベース  :1
  レート  :1
The following are set as parameters that define the shape of the outer lens 10N of Calculation Example 3. FIG. 43 is a perspective view of the outer lens 10N used in the calculation example 3. The lens thickness of the outer lens 10N is different from the lens thickness of the outer lens 10M. The parameters of the other outer lens 10N are the same as the parameters of the outer lens 10M.
Lens diameter: 8.4 μm
Lens thickness: 3.0 μm
Base thickness: 0.8 μm
Offset: 1000
Base: 1
Rate: 1
 なお、アウターレンズ10P、10M、10Nの屈折率は、1.58とした。 The refractive index of the outer lenses 10P, 10M, and 10N was 1.58.
 第1層L1は、メインスペーサ20に対応する。第1層L1、第2層L2の詳細は以下のとおりである。
  第1層L1:マイクロレンズ材料、屈折率(1.54~1.58)
  第2層L2:誘電体多層膜(材料:窒化シリコン、酸化シリコン)、屈折率(1.46~1.92)
The first layer L1 corresponds to the main spacer 20. The details of the first layer L1 and the second layer L2 are as follows.
First layer L1: Microlens material, refractive index (1.54 to 1.58)
Second layer L2: Dielectric multilayer film (material: silicon nitride, silicon oxide), refractive index (1.46 to 1.92)
 第3層L3は、光電変換部30に対応する。第3層L3の詳細は以下のとおりである。
  第3層L3:材料/シリコン(Si)、屈折率(自動設定)
The third layer L3 corresponds to the photoelectric conversion unit 30. The details of the third layer L3 are as follows.
Third layer L3: Material / Silicon (Si), Refractive index (automatic setting)
 アウターレンズ10P、10M、10Nに入射する光の条件は、以下を設定した。
  波長:870nm
  方向:垂直入射(ζ=0°、φ=0°)
  光強度:1W/cm-2
  入射位置:二次元配置(60点(X)×60点(Y)=3600点)
The conditions of the light incident on the outer lenses 10P, 10M, and 10N were set as follows.
Wavelength: 870 nm
Direction: Vertical incident (ζ = 0 °, φ = 0 °)
Light intensity: 1 W / cm -2
Incident position: Two-dimensional arrangement (60 points (X) x 60 points (Y) = 3600 points)
 上記の条件を用いて、レイトレーシング法による数値シミュレーションを行った。そして、数値シミュレーションの結果として、光強度の分布をコンター図として得た。 Using the above conditions, a numerical simulation was performed by the ray tracing method. Then, as a result of the numerical simulation, the distribution of the light intensity was obtained as a contour diagram.
<計算例1(比較例)>
 計算例1では、アウターレンズ10Pを採用した。図44及び図45は、光強度の分布のコンター図である。図44のコンター図において、領域A37aが最も光強度が強く、領域A37bに近づくに従って光強度が下がることがわかった。また、図44によれば、光電変換部30の表面の近傍(Z=0.0μm)において、光強度が強い領域A37aが現れた。また、図45は、図44のZ=15μmである部分を断面視したコンター図である。例えば、Z=15μmである位置は、表面側反射層50F(図1参照)が配置される位置とみなすこともできる。そうすると、図45によれば、光強度が強い領域は、中心付近の領域A38a及び周辺付近の領域A38bに生じることがわかった。つまり、アウターレンズ10Pは、光強度の分布が円環形状とならないことがわかった。このような分布によれば、中心付近の領域A38aに照射される光Rは、表面側反射層50Fにおいて反射した後に、入射開口50B1(図1参照)を介して光電変換部30から出て行ってしまう。つまり、入射した光Rのうち、光電変換部30において電荷を発生させない光成分を生じさせてしまう。
<Calculation example 1 (comparative example)>
In Calculation Example 1, the outer lens 10P was adopted. 44 and 45 are contour diagrams of the distribution of light intensity. In the contour diagram of FIG. 44, it was found that the region A37a had the strongest light intensity, and the light intensity decreased as the region A37b was approached. Further, according to FIG. 44, a region A37a having a strong light intensity appeared in the vicinity of the surface of the photoelectric conversion unit 30 (Z = 0.0 μm). Further, FIG. 45 is a contour diagram in which a portion of FIG. 44 where Z = 15 μm is viewed in cross section. For example, the position where Z = 15 μm can be regarded as the position where the surface-side reflective layer 50F (see FIG. 1) is arranged. Then, according to FIG. 45, it was found that the region having strong light intensity was generated in the region A38a near the center and the region A38b near the periphery. That is, it was found that the outer lens 10P does not have an annular shape in the light intensity distribution. According to such a distribution, the light R irradiating the region A38a near the center is reflected by the surface-side reflective layer 50F and then exits from the photoelectric conversion unit 30 through the incident opening 50B1 (see FIG. 1). It ends up. That is, of the incident light R, a light component that does not generate an electric charge is generated in the photoelectric conversion unit 30.
<計算例2>
 計算例2では、アウターレンズ10Mを採用した。図46及び図47は、光強度の分布のコンター図である。図46のコンター図において、領域A39aが最も強度が強く、領域A39bに近づくに従って強度が下がることがわかった。また、図46によれば、光電変換部30の表面の近傍(Z=0.0μm)において、光強度が強い領域A39aが現れた。また、図47は、図46におけるZ=15μmである部分を断面視したコンター図である。計算例2では、中心近傍の領域A40aの光強度が弱く、外側に向かうにつれて次第に大きくなり、領域A40bにおいて最大値となったのちに強度が低下していくことがわかった。つまり、アウターレンズ10Mは、光強度の分布が円環形状となることがわかった。このような分布によれば、例えば、領域A40bに照射される光は、表面側反射層50Fにおいて反射すると入射開口50B1を介して光電変換部30から出ることなく、裏面側反射層50Bに向かって進む。従って、アウターレンズ10Mは、光Rを光電変換部30に好適に閉じ込めるように進行方向を変化させ得ることがわかった。
<Calculation example 2>
In Calculation Example 2, the outer lens 10M was adopted. 46 and 47 are contour diagrams of the distribution of light intensity. In the contour diagram of FIG. 46, it was found that the region A39a had the strongest strength, and the strength decreased as the region A39b was approached. Further, according to FIG. 46, a region A39a having a strong light intensity appeared in the vicinity of the surface of the photoelectric conversion unit 30 (Z = 0.0 μm). Further, FIG. 47 is a contour diagram in which a portion in FIG. 46 where Z = 15 μm is viewed in cross section. In Calculation Example 2, it was found that the light intensity of the region A40a near the center was weak, gradually increased toward the outside, reached the maximum value in the region A40b, and then decreased. That is, it was found that the outer lens 10M has an annular shape in the light intensity distribution. According to such a distribution, for example, when the light radiated to the region A40b is reflected by the front surface side reflection layer 50F, it does not exit from the photoelectric conversion unit 30 through the incident opening 50B1 but toward the back surface side reflection layer 50B. move on. Therefore, it was found that the outer lens 10M can change the traveling direction so as to suitably confine the light R in the photoelectric conversion unit 30.
 ところで、再び図46のコンター図を参照する。図46のコンター図において第3層L3の光強度の分布に注目すると、光Rは第3層L3(光電変換部30)において広がっていることがわかった(矢印S39参照)。第3層L3における光Rの広がりは、図48の光線図を見るとより理解できる。この光Rの広がりの原因を考察した。図49は、図48に示す光線の一つだけを図示したものである。光線L41aは、入射光を示す。光線L41cは屈折光を示す。図49に示すように、光Rの広がりの原因は、アウターレンズ10Mの光軸Zと光線L41a、L41cの交点L41pが第3層L3の表面に位置していることが原因であると考えられる。 By the way, refer to the contour diagram of FIG. 46 again. Focusing on the distribution of the light intensity of the third layer L3 in the contour diagram of FIG. 46, it was found that the light R spreads in the third layer L3 (photoelectric conversion unit 30) (see arrow S39). The spread of the light R in the third layer L3 can be better understood by looking at the ray diagram of FIG. The cause of the spread of this light R was considered. FIG. 49 illustrates only one of the light rays shown in FIG. 48. The light ray L41a indicates incident light. The light ray L41c indicates refracted light. As shown in FIG. 49, it is considered that the cause of the spread of the light R is that the intersection L41p of the optical axis Z of the outer lens 10M and the light rays L41a and L41c is located on the surface of the third layer L3. ..
<計算例3>
 そこで、光Rの広がりを抑制する要素の検討を行った。光Rの広がりを抑制する要素として、レンズ厚に注目した。計算例3では、アウターレンズ10Nの厚さを3μmとした。
<Calculation example 3>
Therefore, we investigated the factors that suppress the spread of light R. We paid attention to the lens thickness as an element that suppresses the spread of light R. In Calculation Example 3, the thickness of the outer lens 10N was set to 3 μm.
 図50に示すコンター図によれば、第3層L3における光強度の分布は、Z=0μm~10.0μmの範囲L43aで広がることなく、逆に絞られていることがわかった。この様子は、図51の光線図における領域L44aによっても明確に理解できる。この光Rの分布の原因を考察した。図52は、図51に示す光線の一つだけを図示したものである。光線L45aは、入射光を示す。光線L45cは屈折光を示す。図52に示すように、光Rの分布の原因は、アウターレンズ10Nの光軸Zと光線L45cの交点L45pが第3層L3の内部に位置していることが原因であると考えられる。 According to the contour diagram shown in FIG. 50, it was found that the distribution of the light intensity in the third layer L3 was narrowed down in the range L43a in the range of Z = 0 μm to 10.0 μm. This situation can be clearly understood from the region L44a in the ray diagram of FIG. The cause of this distribution of light R was considered. FIG. 52 illustrates only one of the light rays shown in FIG. 51. The light ray L45a indicates incident light. The light ray L45c indicates refracted light. As shown in FIG. 52, it is considered that the cause of the distribution of the light R is that the intersection L45p of the optical axis Z of the outer lens 10N and the light ray L45c is located inside the third layer L3.
 また、第3層L3における光強度の分布の形状を確認した。図53、図54及び図55は、異なる断面位置における光強度のコンター図である。図53(a)はZ=0μmに対応し、図53(b)はZ=5μmに対応する。図54(a)はZ=10μmに対応し、図54(b)はZ=15μmに対応する。図55(a)はZ=20μmに対応し、図55(b)はZ=25μmに対応する。それぞれの図に示されるように、いずれの断面においても光強度の分布は円環状であることがわかった。 In addition, the shape of the light intensity distribution in the third layer L3 was confirmed. 53, 54 and 55 are contour diagrams of light intensity at different cross-sectional positions. FIG. 53 (a) corresponds to Z = 0 μm, and FIG. 53 (b) corresponds to Z = 5 μm. FIG. 54 (a) corresponds to Z = 10 μm, and FIG. 54 (b) corresponds to Z = 15 μm. FIG. 55 (a) corresponds to Z = 20 μm, and FIG. 55 (b) corresponds to Z = 25 μm. As shown in each figure, it was found that the light intensity distribution was annular in each cross section.
1,1A,1B,1C,1D,1E,1H,1K,1R,1T…光電変換素子、10,10A,10B,10C,10D,10E,10F,10G,10H,10K,10M,10N,10P,10T…アウターレンズ、30,30A,30B1,30C,30D,30E,30F1,30H,30K,30T…光電変換部、30B…光電変換部裏面(第1の面)、30F…光電変換部表面(第2の面)、50,50D,50E,50H,50K…光閉じ込め部、61A,61B,61C,61K…インナーレンズ、63…ミラー(反射部)、L5a,L14a,L15a…第1領域、L5b,L14b,L15b…第2領域、R,R6a,R6b,R7a…光、Z…光軸。 1,1A, 1B, 1C, 1D, 1E, 1H, 1K, 1R, 1T ... Photoelectric conversion element 10,10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10K, 10M, 10N, 10P, 10T ... outer lens, 30,30A, 30B1,30C, 30D, 30E, 30F1,30H, 30K, 30T ... photoelectric conversion unit, 30B ... photoelectric conversion unit back surface (first surface), 30F ... photoelectric conversion unit surface (first surface) 2), 50, 50D, 50E, 50H, 50K ... Optical confinement part, 61A, 61B, 61C, 61K ... Inner lens, 63 ... Mirror (reflection part), L5a, L14a, L15a ... First region, L5b, L14b, L15b ... second region, R, R6a, R6b, R7a ... light, Z ... optical axis.

Claims (25)

  1.  光を受けて電荷を発生させる光電変換部と、
     前記光電変換部から受けた前記電荷を蓄積する電荷蓄積検出部と、
     前記光電変換部の第1の面側に設けられると共に前記光を受け入れる開口を含む第1の反射層、及び、前記第1の面とは逆側である前記光電変換部の第2の面側に設けられた第2の反射層を有し、前記光が前記光電変換部において往復するように、前記光を前記光電変換部に閉じ込める光閉じ込め部と、
     前記第1の面側に配置された第1のレンズを含み、前記光電変換部における前記光の進行方向を決める光方向変換部と、を備え、
     前記光方向変換部は、前記第1の面と前記第2の面とに挟まれた領域の外側に配置されて、前記第1の面と前記第2の面との間での前記光の反射が繰り返されるごとに前記第1のレンズの光軸から離れる方向に前記光を進行させる、光電変換素子。
    A photoelectric conversion unit that receives light and generates an electric charge,
    A charge storage detection unit that stores the charge received from the photoelectric conversion unit, and a charge storage detection unit.
    A first reflective layer provided on the first surface side of the photoelectric conversion unit and including an opening for receiving the light, and a second surface side of the photoelectric conversion unit opposite to the first surface. A light confinement portion that confine the light in the photoelectric conversion unit so that the light reciprocates in the photoelectric conversion unit.
    It includes a first lens arranged on the first surface side, and includes an optical direction conversion unit that determines the traveling direction of the light in the photoelectric conversion unit.
    The optical direction changing unit is arranged outside the region sandwiched between the first surface and the second surface, and the light of the light between the first surface and the second surface. A photoelectric conversion element that advances the light in a direction away from the optical axis of the first lens each time the reflection is repeated.
  2.  前記第1のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、第1の曲線部と、前記第1の曲線部よりも前記光軸から遠い第2の曲線部とを含み、
     前記第2の曲線部の曲率は、前記第1の曲線部の曲率よりも小さい、請求項1に記載の光電変換素子。
    In the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives the light includes the first curved portion and the second curved portion that is farther from the optical axis than the first curved portion. Including the part
    The photoelectric conversion element according to claim 1, wherein the curvature of the second curved portion is smaller than the curvature of the first curved portion.
  3.  前記第1のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、円弧として規定される部分を含む、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein in the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives the light includes a portion defined as an arc.
  4.  前記第1のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、放物線として規定される部分を含む、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein in the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives the light includes a portion defined as a parabola.
  5.  前記第1のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、第1の直線部と、前記第1の直線部よりも前記光軸から遠い第2の直線部とを含み、
     前記光軸に直交する仮想基準軸線と前記第2の直線部との間の第2の傾斜角は、前記仮想基準軸線と前記第1の直線部との間の第1の傾斜角よりも大きい、請求項1に記載の光電変換素子。
    In the cross-sectional shape including the optical axis of the first lens, the line segment indicating the surface that receives the light is a first straight line portion and a second straight line portion farther from the optical axis than the first straight line portion. Including the part
    The second tilt angle between the virtual reference axis orthogonal to the optical axis and the second straight line portion is larger than the first tilt angle between the virtual reference axis and the first straight line portion. , The photoelectric conversion element according to claim 1.
  6.  前記第1のレンズの形状は、前記光軸を中心とした回転対称の形状である、請求項2~5のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 2 to 5, wherein the shape of the first lens is a shape symmetrical with respect to the optical axis.
  7.  前記第1のレンズの形状は、前記断面形状を前記光軸に直交する方向に引き延ばした形状である、請求項2~5のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 2 to 5, wherein the shape of the first lens is a shape obtained by extending the cross-sectional shape in a direction orthogonal to the optical axis.
  8.  前記光方向変換部は、前記第1のレンズに加えて、さらに、前記第1のレンズと前記第1の面との間に配置された第2のレンズを含む、請求項1~7のいずれか一項に記載の光電変換素子。 Any of claims 1 to 7, wherein the optical direction changing unit further includes, in addition to the first lens, a second lens arranged between the first lens and the first surface. The photoelectric conversion element according to claim 1.
  9.  前記第2のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、第3の曲線部と、前記第3の曲線部よりも前記光軸から遠い第4の曲線部とを含み、
     前記第4の曲線部の曲率は、前記第3の曲線部の曲率よりも小さい、請求項8に記載の光電変換素子。
    In the cross-sectional shape of the second lens including the optical axis, the line segment indicating the surface that receives the light includes a third curved portion and a fourth curve that is farther from the optical axis than the third curved portion. Including the part
    The photoelectric conversion element according to claim 8, wherein the curvature of the fourth curved portion is smaller than the curvature of the third curved portion.
  10.  前記第2のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、円弧として規定される部分を含む、請求項8に記載の光電変換素子。 The photoelectric conversion element according to claim 8, wherein in the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives the light includes a portion defined as an arc.
  11.  前記第2のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、放物線として規定される部分を含む、請求項8に記載の光電変換素子。 The photoelectric conversion element according to claim 8, wherein in the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives the light includes a portion defined as a parabola.
  12.  前記第2のレンズにおける前記光軸を含む断面形状において、前記光を受け入れる面を示す線分は、第3の直線部と、前記第3の直線部よりも前記光軸から遠い第4の直線部とを含み、
     前記光軸に直交する仮想基準軸線と前記第4の直線部との間の第4の傾斜角は、前記仮想基準軸線と前記第3の直線部との間の第3の傾斜角よりも大きい、請求項8に記載の光電変換素子。
    In the cross-sectional shape including the optical axis of the second lens, the line segment indicating the surface that receives the light is a third straight line portion and a fourth straight line portion farther from the optical axis than the third straight line portion. Including the part
    The fourth tilt angle between the virtual reference axis orthogonal to the optical axis and the fourth straight line portion is larger than the third tilt angle between the virtual reference axis and the third straight line portion. The photoelectric conversion element according to claim 8.
  13.  前記光方向変換部は、前記第2の面側に配置された反射部を含む、請求項1~12のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 12, wherein the optical direction conversion unit includes a reflection unit arranged on the second surface side.
  14.  前記光閉じ込め部は、前記光電変換部を囲む第1の隔壁部をさらに有し、
     前記第1の隔壁部の一方の端面は、前記第1の反射層と協働して前記光電変換部の一部を挟み、
     前記第1の隔壁部の他方の端面は、前記光電変換部の前記第2の面と面一である、請求項1~13のいずれか一項に記載の光電変換素子。
    The light confinement portion further has a first partition wall portion surrounding the photoelectric conversion portion.
    One end surface of the first partition wall portion cooperates with the first reflective layer to sandwich a part of the photoelectric conversion portion.
    The photoelectric conversion element according to any one of claims 1 to 13, wherein the other end surface of the first partition wall portion is flush with the second surface of the photoelectric conversion unit.
  15.  前記光閉じ込め部は、前記光電変換部を囲む第2の隔壁部をさらに有し、
     前記第2の隔壁部の一方の端面は、前記光電変換部の前記第1の面と面一であり、
     前記第2の隔壁部の他方の端面は、前記第2の反射層と協働して前記光電変換部の一部を挟む、請求項1~14のいずれか一項に記載の光電変換素子。
    The light confinement portion further has a second partition wall portion surrounding the photoelectric conversion portion.
    One end surface of the second partition wall portion is flush with the first surface of the photoelectric conversion portion.
    The photoelectric conversion element according to any one of claims 1 to 14, wherein the other end surface of the second partition wall cooperates with the second reflective layer to sandwich a part of the photoelectric conversion portion.
  16.  前記光閉じ込め部は、前記光電変換部を囲む第3の隔壁部をさらに有し、
     前記第3の隔壁部の一方の端面は、前記光電変換部の前記第1の面と面一であり、
     前記第3の隔壁部の他方の端面は、前記光電変換部の前記第2の面と面一である、請求項1~15のいずれか一項に記載の光電変換素子。
    The light confinement portion further has a third partition wall portion surrounding the photoelectric conversion portion.
    One end surface of the third partition wall portion is flush with the first surface of the photoelectric conversion portion.
    The photoelectric conversion element according to any one of claims 1 to 15, wherein the other end surface of the third partition wall portion is flush with the second surface of the photoelectric conversion unit.
  17.  前記光電変換部は、前記第1の反射層の前記開口と重複する部分を含み、
     前記電荷蓄積検出部は、前記第1の反射層の前記開口と重複する部分を含まない、請求項1~16の何れか一項に記載の光電変換素子。
    The photoelectric conversion unit includes a portion of the first reflective layer that overlaps with the opening.
    The photoelectric conversion element according to any one of claims 1 to 16, wherein the charge accumulation detection unit does not include a portion of the first reflective layer that overlaps with the opening.
  18.  前記光閉じ込め部は、前記光の入射方向から見て前記光電変換部が構成するpn接合部を含む光電変換領域と前記電荷蓄積検出部を含む電荷蓄積検出領域とを有する画素領域に、前記開口から入射した前記光を閉じ込めるように前記光電変換領域及び前記電荷蓄積検出領域を囲む外隔壁部を含む、請求項1~13の何れか一項に記載の光電変換素子。 The light confinement portion is opened in a pixel region having a photoelectric conversion region including a pn junction formed by the photoelectric conversion portion and a charge storage detection region including the charge storage detection unit when viewed from the incident direction of the light. The photoelectric conversion element according to any one of claims 1 to 13, which includes an outer partition wall portion surrounding the photoelectric conversion region and the charge accumulation detection region so as to confine the light incident from the light.
  19.  前記外隔壁部の一方の端面は、前記pn接合を構成する半導体領域に接し、
     前記外隔壁部の他方の端面は、前記光電変換部の前記第2の面と面一である、請求項18に記載の光電変換素子。
    One end face of the outer partition wall is in contact with the semiconductor region constituting the pn junction.
    The photoelectric conversion element according to claim 18, wherein the other end surface of the outer partition wall portion is flush with the second surface of the photoelectric conversion unit.
  20.  前記外隔壁部の一方の端面は、前記光電変換部の前記第1の面と面一であり、
     前記外隔壁部の他方の端面は、前記pn接合を構成する半導体領域に接する、
    、請求項18に記載の光電変換素子。
    One end surface of the outer partition wall portion is flush with the first surface of the photoelectric conversion unit.
    The other end face of the outer partition wall is in contact with the semiconductor region constituting the pn junction.
    The photoelectric conversion element according to claim 18.
  21.  前記外隔壁部の一方の端面は、前記光電変換部の前記第1の面と面一であり、
     前記外隔壁部の他方の端面は、前記光電変換部の前記第2の面と面一である、請求項18に記載の光電変換素子。
    One end surface of the outer partition wall portion is flush with the first surface of the photoelectric conversion unit.
    The photoelectric conversion element according to claim 18, wherein the other end surface of the outer partition wall portion is flush with the second surface of the photoelectric conversion unit.
  22.  前記光閉じ込め部は、前記光の入射方向から見て前記光電変換領域と前記電荷蓄積検出領域との間に設けられ、前記電荷蓄積検出領域を前記光電変換領域から光学的に隔てる内隔壁部を含む、請求項18~21の何れか一項に記載の光電変換素子。 The light confinement portion is provided between the photoelectric conversion region and the charge storage detection region when viewed from the incident direction of the light, and has an inner partition portion that optically separates the charge storage detection region from the photoelectric conversion region. The photoelectric conversion element according to any one of claims 18 to 21, which includes.
  23.  前記内隔壁部の一方の端面は、前記pn接合を構成する半導体領域に接し、
     前記内隔壁部の他方の端面は、前記光電変換部の前記第2の面と面一である、請求項22に記載の光電変換素子。
    One end face of the inner partition wall is in contact with the semiconductor region constituting the pn junction.
    22. The photoelectric conversion element according to claim 22, wherein the other end surface of the inner partition wall is flush with the second surface of the photoelectric conversion unit.
  24.  前記内隔壁部の一方の端面は、前記光電変換部の前記第1の面と面一であり、
     前記内隔壁部の他方の端面は、前記pn接合を構成する半導体領域に接する、請求項22に記載の光電変換素子。
    One end surface of the inner partition wall portion is flush with the first surface of the photoelectric conversion unit.
    22. The photoelectric conversion element according to claim 22, wherein the other end surface of the inner partition wall is in contact with a semiconductor region constituting the pn junction.
  25.  前記内隔壁部の一方の端面は、前記光電変換部の前記第1の面と面一であり、
     前記内隔壁部の他方の端面は、前記光電変換部の前記第2の面と面一である、請求項22に記載の光電変換素子。
    One end surface of the inner partition wall portion is flush with the first surface of the photoelectric conversion unit.
    22. The photoelectric conversion element according to claim 22, wherein the other end surface of the inner partition wall is flush with the second surface of the photoelectric conversion unit.
PCT/JP2021/027180 2020-07-22 2021-07-20 Photoelectric conversion element WO2022019307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022538024A JPWO2022019307A1 (en) 2020-07-22 2021-07-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-125723 2020-07-22
JP2020125723 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019307A1 true WO2022019307A1 (en) 2022-01-27

Family

ID=79729172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027180 WO2022019307A1 (en) 2020-07-22 2021-07-20 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JPWO2022019307A1 (en)
WO (1) WO2022019307A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140610A (en) * 1992-10-27 1994-05-20 Sony Corp Solid-state image pick-up device and its manufacture
JP2009188316A (en) * 2008-02-08 2009-08-20 Denso Corp Light receiving element
JP2011003860A (en) * 2009-06-22 2011-01-06 Sony Corp Solid-state imaging device and manufacturing method thereof, and electronic apparatus
JP2013065688A (en) * 2011-09-16 2013-04-11 Sony Corp Solid state imaging element, manufacturing method, and electronic apparatus
JP2017011091A (en) * 2015-06-22 2017-01-12 凸版印刷株式会社 Solid-state image pickup device and electronic equipment
JP2017134163A (en) * 2016-01-26 2017-08-03 大日本印刷株式会社 Lens sheet, imaging module, and imaging apparatus
US20180006072A1 (en) * 2016-06-30 2018-01-04 Stmicroelectronics (Crolles 2) Sas Backside illuminated photosensor element with light pipe and light mirror structures
WO2018100998A1 (en) * 2016-12-01 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, method for manufacturing solid-state imaging element, and imaging device
JP2018110147A (en) * 2016-12-28 2018-07-12 凸版印刷株式会社 Solid state imaging device and manufacturing method thereof
WO2019093479A1 (en) * 2017-11-09 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic device
JP2019114642A (en) * 2017-12-22 2019-07-11 キヤノン株式会社 Solid state image sensor, electronic equipment and transport equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140610A (en) * 1992-10-27 1994-05-20 Sony Corp Solid-state image pick-up device and its manufacture
JP2009188316A (en) * 2008-02-08 2009-08-20 Denso Corp Light receiving element
JP2011003860A (en) * 2009-06-22 2011-01-06 Sony Corp Solid-state imaging device and manufacturing method thereof, and electronic apparatus
JP2013065688A (en) * 2011-09-16 2013-04-11 Sony Corp Solid state imaging element, manufacturing method, and electronic apparatus
JP2017011091A (en) * 2015-06-22 2017-01-12 凸版印刷株式会社 Solid-state image pickup device and electronic equipment
JP2017134163A (en) * 2016-01-26 2017-08-03 大日本印刷株式会社 Lens sheet, imaging module, and imaging apparatus
US20180006072A1 (en) * 2016-06-30 2018-01-04 Stmicroelectronics (Crolles 2) Sas Backside illuminated photosensor element with light pipe and light mirror structures
WO2018100998A1 (en) * 2016-12-01 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, method for manufacturing solid-state imaging element, and imaging device
JP2018110147A (en) * 2016-12-28 2018-07-12 凸版印刷株式会社 Solid state imaging device and manufacturing method thereof
WO2019093479A1 (en) * 2017-11-09 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic device
JP2019114642A (en) * 2017-12-22 2019-07-11 キヤノン株式会社 Solid state image sensor, electronic equipment and transport equipment

Also Published As

Publication number Publication date
JPWO2022019307A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US20200152682A1 (en) An image sensor comprising at least one sensing unit with light guiding means
US8330847B2 (en) Solid-state imaging device with improved light use efficiency
JP2891525B2 (en) lamp
JP6815448B2 (en) Solid-state image sensor
KR101458271B1 (en) Backside image sensor pixel with silicon microlenses and metal reflector
US9581762B2 (en) Pixel structure using a tapered core waveguide, image sensors and camera using same
US20150228687A1 (en) Solid-state image sensor and imaging device
TWI467789B (en) Optoelectronic device with light directing arrangement and method of forming the arrangement
US8970751B2 (en) Solid-state imaging device
US8610228B2 (en) Solid-state image sensor
US9989640B2 (en) Optical apparatus, light sensitive device with micro-lens and manufacturing method thereof
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
US8610048B2 (en) Photosensitive integrated circuit equipped with a reflective layer and corresponding method of production
US9565381B2 (en) Solid-state image sensor and image-capturing device
KR102573305B1 (en) 3D(dimension) image sensor based on SL(Structured Light)
WO2022019307A1 (en) Photoelectric conversion element
KR20120125600A (en) Solid-state imaging device
JP7049094B2 (en) Line light source and optical line sensor unit equipped with this
EP3577389B1 (en) A dielectric collimator with a rejecting center lens
TW201941442A (en) Semiconductor light receiving element
CN102891159B (en) The pixel structure and its manufacturing method of CMOS image sensor
KR20240037964A (en) Light detection device, manufacturing method and electronic device
JP6080494B2 (en) Solid-state imaging device and imaging system
JP6002955B2 (en) Reflective concentrator
WO2023151506A1 (en) Photoelectric detection element, image sensor and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847320

Country of ref document: EP

Kind code of ref document: A1