WO2021161590A1 - Insulation shaft and high-frequency forceps - Google Patents
Insulation shaft and high-frequency forceps Download PDFInfo
- Publication number
- WO2021161590A1 WO2021161590A1 PCT/JP2020/040393 JP2020040393W WO2021161590A1 WO 2021161590 A1 WO2021161590 A1 WO 2021161590A1 JP 2020040393 W JP2020040393 W JP 2020040393W WO 2021161590 A1 WO2021161590 A1 WO 2021161590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- peripheral layer
- outer peripheral
- insulating
- inner peripheral
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
Definitions
- the present invention relates to an insulating shaft, for example, an insulating shaft used for an energy device such as a medical high frequency forceps.
- the present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a new technique for thinning a shaft while satisfying desired strength and insulation.
- the insulating shaft of a certain aspect of the present invention is an insulating shaft used for a medical energy device, and has a tubular outer layer made of an insulating material and a tubular shape made of an insulating material. Between the inner peripheral layer and the tubular intermediate layer which is arranged between the outer peripheral layer and the inner peripheral layer and has lower insulation resistance and higher rigidity than the outer peripheral layer and the inner peripheral layer, and between the outer peripheral layer and the inner peripheral layer. It is arranged and has a sealing portion that seals at least one end face of the intermediate layer.
- the tubular portion by forming the outer peripheral layer and the inner peripheral layer of the tubular portion with an insulating material, it is possible to prevent the current from leaking through the outer peripheral surface and the inner peripheral surface of the tubular portion. Further, when the entire tubular portion is composed of only the same insulating material as the outer peripheral layer and the inner peripheral layer, the tubular portion has the outer peripheral layer and the inner circumference as compared with the thickness of the tubular portion required to obtain the desired strength. By having an intermediate layer having a higher rigidity than the layer, the thickness of the tubular portion can be reduced and the outer diameter of the tubular portion can be reduced.
- the sealing portion may be arranged between the outer peripheral layer and the inner peripheral layer so as to seal both end faces of the intermediate layer.
- the outer peripheral layer, the inner peripheral layer and the sealing portion may be made of glass fiber reinforced plastic, and the intermediate layer may be made of carbon fiber reinforced plastic.
- the insulating shaft can be made lighter and thinner while achieving both insulation and strength.
- the carbon fiber reinforced plastic may have a tensile elastic modulus of 200 [GPa] or more, preferably 240 [GPa] or more. Thereby, the strength of the insulating shaft can be further improved.
- the outer diameter of the outer peripheral layer is 5.2 to 6 mm
- the inner diameter of the inner peripheral layer is 4 to 4.8 mm
- the total thickness of the outer peripheral layer, the intermediate layer and the inner peripheral layer is 0.2 to 1.0 mm.
- the flexural modulus of the insulating shaft itself may be 200 to 240 [GPa].
- the flexural modulus of the insulating shaft itself may be 200 to 240 [GPa].
- This high-frequency forceps includes the above-mentioned insulating shaft, an operating portion having a conductive grip portion provided on one end type of the insulating shaft, and an insulating portion that electrically insulates the operating portion and the insulating shaft. , Is equipped.
- the insulating shaft may be guided by a wire for operating the grip and a cable for supplying an electric current to the grip. As a result, leakage from the cable that supplies the current to the grip portion of the high-frequency forceps to the outside is suppressed.
- the grip portion constitutes a monopolar type electrode, and a voltage of 2 to 4 kV may be applied to the feeding portion. As a result, sufficient insulation can be realized in high-frequency forceps having a monopolar type grip portion to which a relatively high voltage is applied.
- the shaft can be thinned while satisfying the desired strength and insulating property.
- FIG. 2A is a sectional view taken along the line AA of FIG. 1
- FIG. 2B is a sectional view taken along the line BB of FIG. 1
- FIG. 2C is a sectional view taken along the line CC of FIG. It is a vertical sectional view of the insulation shaft which concerns on this embodiment.
- High-frequency forceps grip an object to be gripped with a pair of forceps pieces having electrodes, and apply a high-frequency current to the electrodes to concentrate the current at the gripping site, thereby incising or coagulating living tissue in surgery. Used in case. Of course, it is important to insulate each part because the forceps themselves are energized with an electric current. In addition, when the high-frequency forceps are used repeatedly, it is necessary to have a structure in consideration of cleanability. In addition, when the forceps are inserted into the abdomen of the patient and used, it is necessary to inflate the abdomen of the patient to secure the surgical field.
- FIG. 1 is a cross-sectional view showing a schematic configuration of high-frequency forceps according to the present embodiment.
- 2A is a sectional view taken along the line AA of FIG. 1
- FIG. 2B is a sectional view taken along the line BB of FIG. 1
- FIG. 2C is a sectional view taken along the line CC of FIG.
- FIG. 3 is a vertical cross-sectional view of the insulating shaft according to the present embodiment.
- the high-frequency forceps 10 shown in FIG. 1 are for medical use, and have a cylindrical operating portion 14 having two conductive grip portions 12, and a plurality of wires 16 for operating the grip portions 12. It also includes an inflexible cylindrical portion 20 through which a cable 18 for supplying an electric current to the grip portion 12 is guided, and a cylindrical insulating portion 22 that electrically insulates the operating portion 14 and the cylindrical portion 20.
- the cylindrical portion 20 according to the present embodiment functions as an insulating shaft. As a result, leakage from the cable that supplies the current to the grip portion of the high-frequency forceps to the outside is suppressed.
- the cylindrical portion used for the high-frequency forceps will be described, but the application is not necessarily limited to the high-frequency forceps, and can be used for all medical energy devices.
- a part of the operating portion 14 is configured to function as a flexible joint in which the grip portion 12 can be opened / closed or bent by the movement of each of the plurality of wires 16. Since the mechanical configuration inside the operation unit 14 is not an essential part of the present invention, illustration and description thereof will be omitted.
- the tip of the grip portion 12 is made into an electrode by connecting the cable 18 to the flexible joint.
- the cable 18 is formed by coating a conductive wire made of copper with an insulating layer.
- a metal shaft 17 is connected to the rear end side of the metal wire 16 connected to the operation unit 14, and the metal shafts 17 are further connected to each other via polyarylate fibers 19.
- Polyarylate fiber is an insulating material that is hard to break even when pulled and has excellent hygroscopicity, dimensional stability, abrasion resistance, chemical resistance, and the like. As a result, leakage of current from the metal shaft 17 to the adjacent metal shaft 17 is suppressed (insulation path R1 in FIG. 1).
- a metallic cylindrical cap 24 is arranged between the operating portion 14 and the insulating portion 22.
- a discharge port 24a is formed on a part of the peripheral surface of the cylindrical cap 24. Then, the cleaning liquid discharged from the flash tube 26 provided inside the cylindrical portion 20 is discharged from the discharge port 24a.
- a plurality of through holes 24c for passing the wire 16 and the cable 18 are formed in the disk-shaped end portion 24b of the cylindrical cap 24. Inside the cylindrical cap 24, a sealing member 28 for sealing made of silicone is mounted so that the liquid does not enter from the gap of the through hole 24c toward the operating portion 14.
- a protrusion 24d for hooking the insulating rubber cover 30 is formed on the outer peripheral surface of the cylindrical cap 24, and the insulating rubber cover 30 extends from the tip of the operation portion 14 to the protrusion 24d of the cylindrical cap 24.
- the rubber cover 30 covers the metal portion from the tip of the operation portion 14 to the rear end of the cylindrical cap 24 to insulate the metal portion from the outside (insulation path R2 in FIG. 1).
- the high-frequency forceps 10 Since the high-frequency forceps 10 according to the present embodiment supplies a current to the grip portion 12 at the tip of the operation portion 14 via the cable 18, a part of the current may go to the rear end via the wire 16. There is. On the rear end side of the high frequency forceps 10, there are a control unit, an actuator, and various sensors for controlling the high frequency forceps 10, and when a high frequency high voltage current propagates to the rear end side, control including the high frequency forceps due to noise or leakage current. May affect the system. Therefore, the inventor of the present application has devised various configurations for grasping various paths through which the current is likely to propagate and realizing sufficient insulation in each path.
- the cylindrical portion 20 includes a tubular outer peripheral layer 20a made of an insulating material, a tubular inner peripheral layer 20b made of an insulating material, and an outer peripheral layer 20a. It is arranged between the outer peripheral layer 20b and the cylindrical intermediate layer 20c having lower insulation resistance and higher rigidity than the outer peripheral layer 20a and the inner peripheral layer 20b, and is arranged between the outer peripheral layer 20a and the inner peripheral layer 20b. , 20 g of an annular sealing portion that seals so as to cover at least one annular end face 20h of the intermediate layer 20c.
- the outer peripheral layer 20a and the inner peripheral layer 20b of the cylindrical portion 20 are formed with an insulating material in this way, it is possible to prevent current from leaking through the outer peripheral surface 20d and the inner peripheral surface 20e of the cylindrical portion 20. Further, when the entire cylindrical portion 20 is composed of only the same insulating material as the outer peripheral layer 20a and the inner peripheral layer 20b, the cylindrical portion 20 is compared with the thickness of the cylindrical portion 20 required to obtain a desired strength. By having the intermediate layer 20c having higher rigidity than the outer peripheral layer 20a and the inner peripheral layer 20b, the thickness of the cylindrical portion 20 can be reduced, and the outer diameter of the cylindrical portion 20 can be reduced.
- the outer peripheral layer 20a, the inner peripheral layer 20b, and the sealing portion 20g according to the present embodiment are made of glass fiber reinforced plastic.
- the intermediate layer 20c is made of carbon fiber reinforced plastic. Since the carbon fiber reinforced plastic is a material having extremely high strength and high rigidity, it contributes to improving the strength of the cylindrical portion 20. Therefore, the carbon fiber reinforced plastic constituting the intermediate layer 20c preferably has a tensile elastic modulus of 200 [GPa] or more, more preferably 240 [GPa] or more. Thereby, the strength of the cylindrical portion 20 can be further improved.
- the carbon fiber reinforced plastic constituting the intermediate layer 20c is a substance that conducts electricity relatively easily, but is sandwiched between the outer peripheral layer 20a and the inner peripheral layer 20b made of the glass fiber reinforced plastic which is an insulator.
- the sealing portion 20g does not expose at least one end face of the intermediate layer 20c having a lower insulation resistance than the outer peripheral layer 20a and the inner peripheral layer 20b, leakage of current through the intermediate layer 20c is suppressed.
- the sealing portion 20g may be arranged between the outer peripheral layer 20a and the inner peripheral layer 20b so as to seal both end faces 20h of the intermediate layer 20c.
- the cylindrical portion 20 can be made lighter and thinner while achieving both insulation and strength.
- the outer diameter of the outer peripheral layer 20a may be 5.2 to 6 mm, and the inner diameter of the inner peripheral layer 20b may be 4 to 4.8 mm. Further, the total thickness of the outer peripheral layer 20a, the intermediate layer 20c and the inner peripheral layer 20b may be 0.2 to 1.0 mm. As a result, it is possible to realize a cylindrical portion 20 having a smaller outer diameter than before so that the required strength can be secured while securing a sufficient inner diameter necessary for guiding the wire 16 and the cable 18, and the patient can be operated during surgery. The burden on the operation can be reduced.
- the flexural modulus of the cylindrical portion 20 itself is preferably 200 to 240 [GPa].
- the portion of the cylindrical portion 20 is less likely to bend, and the forceps can be operated with high accuracy by the operation by the operator.
- the insulating portion 22 made of a cylindrical resin cap will be described.
- the insulating portion 22 has a flange portion 22a that covers the end surface 20f of the cylindrical portion 20 and a protruding portion 22b that protrudes from the center of the flange portion 22a so as to cover the inner peripheral layer 20b of the cylindrical portion 20.
- the intermediate layer 20c having a relatively low insulation resistance is exposed on the end surface 20f of the cylindrical portion 20
- the current supplied to the grip portion 12 is less likely to leak to the intermediate layer 20c via the wire 16.
- the intermediate layer 20c according to the present embodiment is sealed by the sealing portion 20g, it is almost prevented that the current leaks to the intermediate layer 20c via the wire 16.
- the creepage distance X1 from the wire 16 to the intermediate layer 20c of the end surface 20f of the cylindrical portion 20 can be lengthened, and the leakage of current from the wire 16 to the intermediate layer 20c can be prevented (FIG. 1). See insulation path R3).
- the protruding portion 22b may have a protruding height (equivalent to the creepage distance X1) from the flange portion 22a of 4 to 10 mm. This makes it possible to more reliably prevent the leakage of current from the wire 16 to the intermediate layer 20c.
- the insulating portion 22 has an outer peripheral surface 22c formed from the outer edge of the flange portion 22a toward the cylindrical cap 24.
- the axial length X2 of the outer peripheral surface 22c may be 4 to 12 mm.
- the cylindrical portion 20 is fitted to the outside of the protruding portion 22b and sealed and fixed with an adhesive. Further, the cylindrical cap 24 is also fitted inside the tip portion of the insulating portion 22, and is sealed and fixed with an adhesive.
- the high-frequency forceps 10 further includes a feeding portion 32 into which a current to be supplied to the grip portion 12 is input.
- the grip portion 12 constitutes a monopolar type electrode, and a voltage having a frequency of 300 kHz to 5 MHz and a frequency of 2 to 4 kV is applied to the feeding portion 32.
- a voltage having a frequency of 300 kHz to 5 MHz and a frequency of 2 to 4 kV is applied to the feeding portion 32.
- the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiment, and the configuration of the embodiment may be appropriately combined or replaced. It is included in the present invention. Further, it is also possible to appropriately rearrange the combination and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment, and such modifications are added. The embodiments described may also be included in the scope of the present invention.
- the present invention can be used for medical high-frequency forceps. Twice
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Provided is a cylindrical section 20 that is an insulation shaft used for a medical energy device. The insulation shaft includes: a cylindrical outer circumferential layer 20a composed of an insulation material; a cylindrical inner circumferential layer 20b composed of an insulating material; a cylindrical intermediate layer 20c disposed between the outer circumferential layer 20a and the inner circumferential layer 20b, the intermediate layer 20c having an insulation resistance lower than those of the outer circumferential layer 20a and the inner circumferential layer 20b and a rigidity higher than those of the outer circumferential layer 20a and the inner circumferential layer 20b; and a sealing section 20g disposed between the outer circumferential layer 20a and the inner circumferential layer 20b, the sealing section 20g sealing at least one end face 20h of the intermediate layer 20c.
Description
本発明は、絶縁シャフトに関し、例えば、医療用の高周波鉗子のようなエネルギーデバイスに用いられる絶縁シャフトに関する。
The present invention relates to an insulating shaft, for example, an insulating shaft used for an energy device such as a medical high frequency forceps.
従来、鉗子を自在に動かすワイヤと、鉗子に高周波電流を印加するための一対の通電経路とが連結シャフトに内包されたバイポーラ型の高周波鉗子を備えた医療用マニピュレータが考案されている(例えば、特許文献1参照)。
Conventionally, a medical manipulator having a bipolar type high-frequency forceps in which a wire for freely moving the forceps and a pair of energizing paths for applying a high-frequency current to the forceps are included in a connecting shaft has been devised (for example,). See Patent Document 1).
しかしながら、前述の医療用マニピュレータのように、マニピュレータの操作部側にある高周波電源から先端動作部側のグリッパやはさみへ通電する場合、通電経路が設けられている連結シャフトには高い絶縁性が求められる。また、操作部の動きが先端動作部へ精度良く伝達されるには、連結シャフトがあまり撓まないような剛性が求められる。また、手術中の患者への低侵襲を実現するために、可能な限り細径な連結シャフトが好ましい。
However, when energizing the gripper or scissors on the tip operating part side from the high-frequency power supply on the operation part side of the manipulator like the medical manipulator described above, high insulation is required for the connecting shaft provided with the energization path. Be done. Further, in order for the movement of the operating portion to be accurately transmitted to the tip operating portion, rigidity is required so that the connecting shaft does not bend so much. In addition, a connecting shaft having as small a diameter as possible is preferable in order to realize minimal invasiveness to the patient during surgery.
本発明はこうした状況に鑑みてなされたものであり、その例示的な目的の一つは、所望の強度と絶縁性を満たしつつシャフトを細くする新たな技術を提供することにある。
The present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a new technique for thinning a shaft while satisfying desired strength and insulation.
上記課題を解決するために、本発明のある態様の絶縁シャフトは、医療用のエネルギーデバイスに用いられる絶縁シャフトであって、絶縁材料からなる筒状の外周層と、絶縁材料からなる筒状の内周層と、外周層と内周層との間に配置され、外周層及び内周層よりも絶縁抵抗が低く剛性の高い筒状の中間層と、外周層と内周層との間に配置され、中間層の少なくとも一方の端面を封止する封止部と、を有する。
In order to solve the above problems, the insulating shaft of a certain aspect of the present invention is an insulating shaft used for a medical energy device, and has a tubular outer layer made of an insulating material and a tubular shape made of an insulating material. Between the inner peripheral layer and the tubular intermediate layer which is arranged between the outer peripheral layer and the inner peripheral layer and has lower insulation resistance and higher rigidity than the outer peripheral layer and the inner peripheral layer, and between the outer peripheral layer and the inner peripheral layer. It is arranged and has a sealing portion that seals at least one end face of the intermediate layer.
この態様によると、筒部の外周層及び内周層を絶縁材料で構成することで、筒部の外周面や内周面を介して電流がリークすることを防止できる。また、筒部全体が外周層や内周層と同じ絶縁材料のみで構成されている場合に所望の強度を得るために必要な筒部の厚みと比較して、筒部が外周層及び内周層よりも剛性の高い中間層を有することで、筒部の厚みを薄くでき、筒部の外径を細くできる。また、封止部により、外周層及び内周層よりも絶縁抵抗が低い中間層の少なくとも一方の端面が露出しないため、中間層を介した電流のリークが抑制される。なお、封止部は、中間層の両方の端面を封止するように、外周層と内周層との間に配置されていてもよい。
According to this aspect, by forming the outer peripheral layer and the inner peripheral layer of the tubular portion with an insulating material, it is possible to prevent the current from leaking through the outer peripheral surface and the inner peripheral surface of the tubular portion. Further, when the entire tubular portion is composed of only the same insulating material as the outer peripheral layer and the inner peripheral layer, the tubular portion has the outer peripheral layer and the inner circumference as compared with the thickness of the tubular portion required to obtain the desired strength. By having an intermediate layer having a higher rigidity than the layer, the thickness of the tubular portion can be reduced and the outer diameter of the tubular portion can be reduced. Further, since at least one end face of the intermediate layer having a lower insulation resistance than the outer peripheral layer and the inner peripheral layer is not exposed by the sealing portion, the leakage of current through the intermediate layer is suppressed. The sealing portion may be arranged between the outer peripheral layer and the inner peripheral layer so as to seal both end faces of the intermediate layer.
外周層、内周層及び封止部は、ガラス繊維強化プラスチックで構成され、中間層は、炭素繊維強化プラスチックで構成されていてもよい。これにより、絶縁性と強度とを両立しつつ絶縁シャフトをより軽量で細くできる。
The outer peripheral layer, the inner peripheral layer and the sealing portion may be made of glass fiber reinforced plastic, and the intermediate layer may be made of carbon fiber reinforced plastic. As a result, the insulating shaft can be made lighter and thinner while achieving both insulation and strength.
炭素繊維強化プラスチックは、引張弾性率が200[GPa]以上であってもよく、好ましくは、240[GPa]以上であってもよい。これにより、絶縁シャフトの強度を更に向上できる。
The carbon fiber reinforced plastic may have a tensile elastic modulus of 200 [GPa] or more, preferably 240 [GPa] or more. Thereby, the strength of the insulating shaft can be further improved.
外周層の外径が5.2~6mmであり、内周層の内径が4~4.8mmであり、外周層、中間層及び内周層の総厚みが0.2~1.0mmであってもよい。これにより、ワイヤやケーブルを案内するために必要な十分な内径を確保しつつ、必要な強度を確保できる程度の従来よりも細い外径の絶縁性シャフトが実現でき、手術の際に患者に与える負担を軽減できる。
The outer diameter of the outer peripheral layer is 5.2 to 6 mm, the inner diameter of the inner peripheral layer is 4 to 4.8 mm, and the total thickness of the outer peripheral layer, the intermediate layer and the inner peripheral layer is 0.2 to 1.0 mm. You may. As a result, it is possible to realize an insulating shaft with an outer diameter thinner than before that can secure the required strength while ensuring a sufficient inner diameter necessary for guiding wires and cables, which is given to the patient during surgery. The burden can be reduced.
絶縁シャフト自体の曲げ弾性率が200~240[GPa]であってもよい。これにより、例えば、高周波鉗子といったエネルギーデバイスを操作する際に絶縁シャフトの部分が撓みにくくなり、術者による操作によって精度よく鉗子を動作できる。
The flexural modulus of the insulating shaft itself may be 200 to 240 [GPa]. As a result, for example, when operating an energy device such as a high-frequency forceps, the portion of the insulating shaft is less likely to bend, and the forceps can be operated with high accuracy by the operation by the operator.
本発明の他の態様は、高周波鉗子である。この高周波鉗子は、上述の絶縁シャフトと、絶縁シャフトの一方の端部型に設けられた、導電性の把持部を有する操作部と、操作部と絶縁シャフトとを電気的に絶縁する絶縁部と、を備えている。絶縁シャフトは、把持部を操作するためのワイヤ及び把持部へ電流を供給するケーブルが案内されていてもよい。これにより、高周波鉗子における把持部へ電流を供給するケーブルから外部へリークすることが抑制される。
Another aspect of the present invention is high frequency forceps. This high-frequency forceps includes the above-mentioned insulating shaft, an operating portion having a conductive grip portion provided on one end type of the insulating shaft, and an insulating portion that electrically insulates the operating portion and the insulating shaft. , Is equipped. The insulating shaft may be guided by a wire for operating the grip and a cable for supplying an electric current to the grip. As a result, leakage from the cable that supplies the current to the grip portion of the high-frequency forceps to the outside is suppressed.
把持部へ供給する電流が入力される給電部を更に備えてもよい。把持部は、モノポーラタイプの電極を構成し、給電部は、2~4kVの電圧が印加されてもよい。これにより、比較的高い電圧が印加されるモノポーラタイプの把持部を有する高周波鉗子において、十分な絶縁性を実現できる。
It may be further provided with a power feeding unit to which a current to be supplied to the grip unit is input. The grip portion constitutes a monopolar type electrode, and a voltage of 2 to 4 kV may be applied to the feeding portion. As a result, sufficient insulation can be realized in high-frequency forceps having a monopolar type grip portion to which a relatively high voltage is applied.
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。
It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention.
本発明によれば、所望の強度と絶縁性を満たしつつシャフトを細くできる。
According to the present invention, the shaft can be thinned while satisfying the desired strength and insulating property.
以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。
Hereinafter, the present invention will be described with reference to the drawings based on the embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
(高周波鉗子)
高周波鉗子は、電極を有する一対の鉗子片にて把持対象物を把持し、電極に高周波電流を通電して把持部位に電流を集中させることで、手術において生体組織を切開したり凝固させたりする場合に使用される。鉗子自体に電流を通電するため、各部の絶縁が重要であることはもちろんである。加えて、高周波鉗子を繰り返し使用する場合は、洗浄性も考慮した構造にする必要がある。また、鉗子を患者の腹部に挿入して使用する場合には、患者の腹部を膨らませて術野を確保する必要がある。そのため、外部から腹部へ炭酸ガスを送り込む経路を高周波鉗子のどこかに設ける必要があり、また、手術中に炭酸ガスが漏れ出さないような密閉性も高周波鉗子に求められる。以下に本実施の形態に係る高周波鉗子の概略構成を説明する。 (High frequency forceps)
High-frequency forceps grip an object to be gripped with a pair of forceps pieces having electrodes, and apply a high-frequency current to the electrodes to concentrate the current at the gripping site, thereby incising or coagulating living tissue in surgery. Used in case. Of course, it is important to insulate each part because the forceps themselves are energized with an electric current. In addition, when the high-frequency forceps are used repeatedly, it is necessary to have a structure in consideration of cleanability. In addition, when the forceps are inserted into the abdomen of the patient and used, it is necessary to inflate the abdomen of the patient to secure the surgical field. Therefore, it is necessary to provide a path for sending carbon dioxide gas from the outside to the abdomen somewhere in the high-frequency forceps, and the high-frequency forceps are also required to be hermetically sealed so that carbon dioxide gas does not leak during surgery. The schematic configuration of the high-frequency forceps according to the present embodiment will be described below.
高周波鉗子は、電極を有する一対の鉗子片にて把持対象物を把持し、電極に高周波電流を通電して把持部位に電流を集中させることで、手術において生体組織を切開したり凝固させたりする場合に使用される。鉗子自体に電流を通電するため、各部の絶縁が重要であることはもちろんである。加えて、高周波鉗子を繰り返し使用する場合は、洗浄性も考慮した構造にする必要がある。また、鉗子を患者の腹部に挿入して使用する場合には、患者の腹部を膨らませて術野を確保する必要がある。そのため、外部から腹部へ炭酸ガスを送り込む経路を高周波鉗子のどこかに設ける必要があり、また、手術中に炭酸ガスが漏れ出さないような密閉性も高周波鉗子に求められる。以下に本実施の形態に係る高周波鉗子の概略構成を説明する。 (High frequency forceps)
High-frequency forceps grip an object to be gripped with a pair of forceps pieces having electrodes, and apply a high-frequency current to the electrodes to concentrate the current at the gripping site, thereby incising or coagulating living tissue in surgery. Used in case. Of course, it is important to insulate each part because the forceps themselves are energized with an electric current. In addition, when the high-frequency forceps are used repeatedly, it is necessary to have a structure in consideration of cleanability. In addition, when the forceps are inserted into the abdomen of the patient and used, it is necessary to inflate the abdomen of the patient to secure the surgical field. Therefore, it is necessary to provide a path for sending carbon dioxide gas from the outside to the abdomen somewhere in the high-frequency forceps, and the high-frequency forceps are also required to be hermetically sealed so that carbon dioxide gas does not leak during surgery. The schematic configuration of the high-frequency forceps according to the present embodiment will be described below.
図1は、本実施の形態に係る高周波鉗子の概略構成を示す断面図である。図2(a)は、図1のA-A断面図、図2(b)は、図1のB-B断面図、図2(c)は、図1のC-C断面図である。図3は、本実施の形態に係る絶縁シャフトの縦断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of high-frequency forceps according to the present embodiment. 2A is a sectional view taken along the line AA of FIG. 1, FIG. 2B is a sectional view taken along the line BB of FIG. 1, and FIG. 2C is a sectional view taken along the line CC of FIG. FIG. 3 is a vertical cross-sectional view of the insulating shaft according to the present embodiment.
前述のように、図1に示す高周波鉗子10は、医療用であって、導電性の2つの把持部12を有する筒状の操作部14と、把持部12を操作するための複数のワイヤ16及び把持部12へ電流を供給するケーブル18が案内される非可撓性の円筒部20と、操作部14と円筒部20とを電気的に絶縁する円筒状の絶縁部22と、を備える。本実施の形態に係る円筒部20は、絶縁シャフトとして機能する。これにより、高周波鉗子における把持部へ電流を供給するケーブルから外部へリークすることが抑制される。以下の実施の形態では、高周波鉗子に用いられる円筒部として説明するが、用途は必ずしも高周波鉗子に限られず、医療用のエネルギーデバイス全般に利用できる。
As described above, the high-frequency forceps 10 shown in FIG. 1 are for medical use, and have a cylindrical operating portion 14 having two conductive grip portions 12, and a plurality of wires 16 for operating the grip portions 12. It also includes an inflexible cylindrical portion 20 through which a cable 18 for supplying an electric current to the grip portion 12 is guided, and a cylindrical insulating portion 22 that electrically insulates the operating portion 14 and the cylindrical portion 20. The cylindrical portion 20 according to the present embodiment functions as an insulating shaft. As a result, leakage from the cable that supplies the current to the grip portion of the high-frequency forceps to the outside is suppressed. In the following embodiments, the cylindrical portion used for the high-frequency forceps will be described, but the application is not necessarily limited to the high-frequency forceps, and can be used for all medical energy devices.
操作部14の一部は、複数のワイヤ16のそれぞれの動きにより把持部12が開閉したり屈曲したりできる柔軟関節として機能するように構成されている。なお、操作部14内部の機構的な構成については本願発明の本質的な部分ではないため図示や説明を省略する。操作部14は、柔軟関節にケーブル18が接続されることで、把持部12の先端が電極化される。なお、ケーブル18は、銅からなる導線が絶縁層で被膜されたものである。
A part of the operating portion 14 is configured to function as a flexible joint in which the grip portion 12 can be opened / closed or bent by the movement of each of the plurality of wires 16. Since the mechanical configuration inside the operation unit 14 is not an essential part of the present invention, illustration and description thereof will be omitted. In the operation unit 14, the tip of the grip portion 12 is made into an electrode by connecting the cable 18 to the flexible joint. The cable 18 is formed by coating a conductive wire made of copper with an insulating layer.
操作部14に接続されている金属製のワイヤ16の後端側には、金属シャフト17が接続されており、更に金属シャフト17同士がポリアリレート系繊維19を介して結合されている。ポリアリレート系繊維は、引っ張っても切れにくく、低吸湿性、寸法安定性、耐磨耗性、耐薬品性などに優れた絶縁材料である。これにより、金属シャフト17から隣接する金属シャフト17への電流のリークが抑制される(図1の絶縁経路R1)。
A metal shaft 17 is connected to the rear end side of the metal wire 16 connected to the operation unit 14, and the metal shafts 17 are further connected to each other via polyarylate fibers 19. Polyarylate fiber is an insulating material that is hard to break even when pulled and has excellent hygroscopicity, dimensional stability, abrasion resistance, chemical resistance, and the like. As a result, leakage of current from the metal shaft 17 to the adjacent metal shaft 17 is suppressed (insulation path R1 in FIG. 1).
操作部14と絶縁部22との間には、金属性の円筒キャップ24が配置されている。円筒キャップ24の周面の一部には、排出口24aが形成されている。そして、円筒部20の内部に設けられているフラッシュチューブ26から放出された洗浄液が排出口24aから排出される。
A metallic cylindrical cap 24 is arranged between the operating portion 14 and the insulating portion 22. A discharge port 24a is formed on a part of the peripheral surface of the cylindrical cap 24. Then, the cleaning liquid discharged from the flash tube 26 provided inside the cylindrical portion 20 is discharged from the discharge port 24a.
円筒キャップ24の円板状の端部24bには、ワイヤ16やケーブル18を通すための複数の貫通孔24cが形成されている。円筒キャップ24の内部には、貫通孔24cの隙間から操作部14に向かって液体が浸入しないように、シリコーンからなる密閉用の封止部材28が装着されている。
A plurality of through holes 24c for passing the wire 16 and the cable 18 are formed in the disk-shaped end portion 24b of the cylindrical cap 24. Inside the cylindrical cap 24, a sealing member 28 for sealing made of silicone is mounted so that the liquid does not enter from the gap of the through hole 24c toward the operating portion 14.
また、円筒キャップ24の外周面には絶縁用のゴムカバー30を引っかけるための突起部24dが形成されており、操作部14の先端から円筒キャップ24の突起部24dまでを絶縁性のゴムカバー30で覆うことで、手術中に排出口24aから患者の体液等が高周波鉗子10の内部へ浸入することが防止される。また、ゴムカバー30により、操作部14の先端から円筒キャップ24の後端までの金属部が被覆されることで、金属部と外部とが絶縁される(図1の絶縁経路R2)。
Further, a protrusion 24d for hooking the insulating rubber cover 30 is formed on the outer peripheral surface of the cylindrical cap 24, and the insulating rubber cover 30 extends from the tip of the operation portion 14 to the protrusion 24d of the cylindrical cap 24. By covering with the rubber, it is possible to prevent the patient's body fluid or the like from entering the inside of the high-frequency forceps 10 from the discharge port 24a during the operation. Further, the rubber cover 30 covers the metal portion from the tip of the operation portion 14 to the rear end of the cylindrical cap 24 to insulate the metal portion from the outside (insulation path R2 in FIG. 1).
本実施の形態に係る高周波鉗子10は、ケーブル18を介して操作部14先端の把持部12に電流を供給しているため、その電流の一部がワイヤ16を介して後端に向かう可能性がある。高周波鉗子10の後端側には、高周波鉗子10を制御する制御部やアクチュエータ、各種センサが有り、高周波で大電圧の電流が後端側に伝搬すると、ノイズやリーク電流によって高周波鉗子を含む制御システムに影響を与える可能性がある。そこで、本願発明者は、電流が伝搬しそうな様々な経路を把握し、各経路において十分な絶縁性を実現するための様々な構成を考案した。
Since the high-frequency forceps 10 according to the present embodiment supplies a current to the grip portion 12 at the tip of the operation portion 14 via the cable 18, a part of the current may go to the rear end via the wire 16. There is. On the rear end side of the high frequency forceps 10, there are a control unit, an actuator, and various sensors for controlling the high frequency forceps 10, and when a high frequency high voltage current propagates to the rear end side, control including the high frequency forceps due to noise or leakage current. May affect the system. Therefore, the inventor of the present application has devised various configurations for grasping various paths through which the current is likely to propagate and realizing sufficient insulation in each path.
本実施の形態に係る円筒部20は、図2や図3に示すように、絶縁材料からなる筒状の外周層20aと、絶縁材料からなる筒状の内周層20bと、外周層20aと内周層20bとの間に配置され、外周層20a及び内周層20bよりも絶縁抵抗が低く剛性の高い筒状の中間層20cと、外周層20aと内周層20bとの間に配置され、中間層20cの少なくとも一方の環状の端面20hを覆うように封止する環状の封止部20gと、を有する。
As shown in FIGS. 2 and 3, the cylindrical portion 20 according to the present embodiment includes a tubular outer peripheral layer 20a made of an insulating material, a tubular inner peripheral layer 20b made of an insulating material, and an outer peripheral layer 20a. It is arranged between the outer peripheral layer 20b and the cylindrical intermediate layer 20c having lower insulation resistance and higher rigidity than the outer peripheral layer 20a and the inner peripheral layer 20b, and is arranged between the outer peripheral layer 20a and the inner peripheral layer 20b. , 20 g of an annular sealing portion that seals so as to cover at least one annular end face 20h of the intermediate layer 20c.
このように、円筒部20の外周層20a及び内周層20bを絶縁材料で構成することで、円筒部20の外周面20dや内周面20eを介して電流がリークすることを防止できる。また、円筒部20全体が外周層20aや内周層20bと同じ絶縁材料のみで構成されている場合に所望の強度を得るために必要な円筒部20の厚みと比較して、円筒部20が外周層20a及び内周層20bよりも剛性の高い中間層20cを有することで、円筒部20の厚みを薄くでき、また、円筒部20の外径を細くできる。
By forming the outer peripheral layer 20a and the inner peripheral layer 20b of the cylindrical portion 20 with an insulating material in this way, it is possible to prevent current from leaking through the outer peripheral surface 20d and the inner peripheral surface 20e of the cylindrical portion 20. Further, when the entire cylindrical portion 20 is composed of only the same insulating material as the outer peripheral layer 20a and the inner peripheral layer 20b, the cylindrical portion 20 is compared with the thickness of the cylindrical portion 20 required to obtain a desired strength. By having the intermediate layer 20c having higher rigidity than the outer peripheral layer 20a and the inner peripheral layer 20b, the thickness of the cylindrical portion 20 can be reduced, and the outer diameter of the cylindrical portion 20 can be reduced.
本実施の形態に係る外周層20a、内周層20b及び封止部20gは、ガラス繊維強化プラスチックで構成されている。また、中間層20cは、炭素繊維強化プラスチックで構成されている。炭素繊維強化プラスチックは、強度が非常に高く剛性の高い材料であるため、円筒部20の強度向上に寄与する。そのため、中間層20cを構成する炭素繊維強化プラスチックは、好ましくは、引張弾性率が200[GPa]以上、より好ましくは、240[GPa]以上であるとよい。これにより、円筒部20の強度を更に向上できる。
The outer peripheral layer 20a, the inner peripheral layer 20b, and the sealing portion 20g according to the present embodiment are made of glass fiber reinforced plastic. The intermediate layer 20c is made of carbon fiber reinforced plastic. Since the carbon fiber reinforced plastic is a material having extremely high strength and high rigidity, it contributes to improving the strength of the cylindrical portion 20. Therefore, the carbon fiber reinforced plastic constituting the intermediate layer 20c preferably has a tensile elastic modulus of 200 [GPa] or more, more preferably 240 [GPa] or more. Thereby, the strength of the cylindrical portion 20 can be further improved.
一方で、中間層20cを構成する炭素繊維強化プラスチックは、比較的電気を通しやすい物質であるが、絶縁体であるガラス繊維強化プラスチックからなる外周層20a及び内周層20bで挟まれている。さらに、封止部20gにより、外周層20a及び内周層20bよりも絶縁抵抗が低い中間層20cの少なくとも一方の端面が露出しないため、中間層20cを介した電流のリークが抑制される。なお、封止部20gは、図3に示すように、中間層20cの両方の端面20hを封止するように、外周層20aと内周層20bとの間に配置されていてもよい。これにより、絶縁性と強度とを両立しつつ円筒部20をより軽量で細くできる。
On the other hand, the carbon fiber reinforced plastic constituting the intermediate layer 20c is a substance that conducts electricity relatively easily, but is sandwiched between the outer peripheral layer 20a and the inner peripheral layer 20b made of the glass fiber reinforced plastic which is an insulator. Further, since the sealing portion 20g does not expose at least one end face of the intermediate layer 20c having a lower insulation resistance than the outer peripheral layer 20a and the inner peripheral layer 20b, leakage of current through the intermediate layer 20c is suppressed. As shown in FIG. 3, the sealing portion 20g may be arranged between the outer peripheral layer 20a and the inner peripheral layer 20b so as to seal both end faces 20h of the intermediate layer 20c. As a result, the cylindrical portion 20 can be made lighter and thinner while achieving both insulation and strength.
また、外周層20aの外径は5.2~6mmであり、内周層20bの内径は4~4.8mmであってもよい。また、外周層20a、中間層20c及び内周層20bの総厚みは0.2~1.0mmであってもよい。これにより、ワイヤ16やケーブル18を案内するために必要な十分な内径を確保しつつ、必要な強度を確保できる程度の従来よりも細い外径の円筒部20が実現でき、手術の際に患者に与える負担を軽減できる。
Further, the outer diameter of the outer peripheral layer 20a may be 5.2 to 6 mm, and the inner diameter of the inner peripheral layer 20b may be 4 to 4.8 mm. Further, the total thickness of the outer peripheral layer 20a, the intermediate layer 20c and the inner peripheral layer 20b may be 0.2 to 1.0 mm. As a result, it is possible to realize a cylindrical portion 20 having a smaller outer diameter than before so that the required strength can be secured while securing a sufficient inner diameter necessary for guiding the wire 16 and the cable 18, and the patient can be operated during surgery. The burden on the operation can be reduced.
また、円筒部20自体の曲げ弾性率が200~240[GPa]であるとよい。これにより、本実施の形態に係る高周波鉗子10のようなエネルギーデバイスを操作する際に、円筒部20の部分が撓みにくくなり、術者による操作によって精度よく鉗子を動作できる。
Further, the flexural modulus of the cylindrical portion 20 itself is preferably 200 to 240 [GPa]. As a result, when operating an energy device such as the high-frequency forceps 10 according to the present embodiment, the portion of the cylindrical portion 20 is less likely to bend, and the forceps can be operated with high accuracy by the operation by the operator.
次に、円筒形の樹脂キャップからなる絶縁部22について説明する。絶縁部22は、円筒部20の端面20fを覆うフランジ部22aと、円筒部20の内周層20bを覆うようにフランジ部22aの中心から突き出す突出部22bと、を有している。これにより、円筒部20の端面20fに比較的絶縁抵抗が低い中間層20cが仮に露出していても、把持部12へ供給された電流がワイヤ16を介して中間層20cへリークしにくくなる。しかも、本実施の形態に係る中間層20cは、封止部20gで封止されているため、電流がワイヤ16を介して中間層20cへリークすることはほぼ防止されている。また、突出部22bがあることで、ワイヤ16から円筒部20の端面20fの中間層20cまでの沿面距離X1を長くでき、ワイヤ16から中間層20cへの電流のリークを防止できる(図1の絶縁経路R3参照)。
Next, the insulating portion 22 made of a cylindrical resin cap will be described. The insulating portion 22 has a flange portion 22a that covers the end surface 20f of the cylindrical portion 20 and a protruding portion 22b that protrudes from the center of the flange portion 22a so as to cover the inner peripheral layer 20b of the cylindrical portion 20. As a result, even if the intermediate layer 20c having a relatively low insulation resistance is exposed on the end surface 20f of the cylindrical portion 20, the current supplied to the grip portion 12 is less likely to leak to the intermediate layer 20c via the wire 16. Moreover, since the intermediate layer 20c according to the present embodiment is sealed by the sealing portion 20g, it is almost prevented that the current leaks to the intermediate layer 20c via the wire 16. Further, since the protrusion 22b is provided, the creepage distance X1 from the wire 16 to the intermediate layer 20c of the end surface 20f of the cylindrical portion 20 can be lengthened, and the leakage of current from the wire 16 to the intermediate layer 20c can be prevented (FIG. 1). See insulation path R3).
本実施の形態に係る突出部22bは、フランジ部22aからの突出高さ(沿面距離X1と同等)が4~10mmであってもよい。これにより、より確実にワイヤ16から中間層20cへの電流のリークを防止できる。
The protruding portion 22b according to the present embodiment may have a protruding height (equivalent to the creepage distance X1) from the flange portion 22a of 4 to 10 mm. This makes it possible to more reliably prevent the leakage of current from the wire 16 to the intermediate layer 20c.
絶縁部22は、フランジ部22aの外縁から円筒キャップ24に向かって外周面22cが形成されている。外周面22cの軸方向の長さX2は4~12mmであってもよい。これにより、操作部14から円筒部20の中間層20cまでの沿面距離X2を長くでき、把持部12へ供給された電流が中間層20cへリークしにくくなる(図1の絶縁経路R4参照)。
The insulating portion 22 has an outer peripheral surface 22c formed from the outer edge of the flange portion 22a toward the cylindrical cap 24. The axial length X2 of the outer peripheral surface 22c may be 4 to 12 mm. As a result, the creepage distance X2 from the operation portion 14 to the intermediate layer 20c of the cylindrical portion 20 can be lengthened, and the current supplied to the grip portion 12 is less likely to leak to the intermediate layer 20c (see the insulation path R4 in FIG. 1).
円筒部20は、突出部22bの外側に嵌め込まれ、接着剤で封止固定されている。また、円筒キャップ24も絶縁部22の先端部の内側に嵌め込まれ、接着剤で封止固定されている。
The cylindrical portion 20 is fitted to the outside of the protruding portion 22b and sealed and fixed with an adhesive. Further, the cylindrical cap 24 is also fitted inside the tip portion of the insulating portion 22, and is sealed and fixed with an adhesive.
なお、本実施の形態に係る高周波鉗子10は、把持部12へ供給する電流が入力される給電部32を更に備えている。把持部12は、モノポーラタイプの電極を構成し、給電部32は、周波数が300kHz~5MHz、2~4kVの電圧が印加される。これにより、比較的高い電圧が印加されるモノポーラタイプの把持部12を有する高周波鉗子10において、十分な絶縁性を実現できる。
The high-frequency forceps 10 according to the present embodiment further includes a feeding portion 32 into which a current to be supplied to the grip portion 12 is input. The grip portion 12 constitutes a monopolar type electrode, and a voltage having a frequency of 300 kHz to 5 MHz and a frequency of 2 to 4 kV is applied to the feeding portion 32. As a result, sufficient insulation can be realized in the high frequency forceps 10 having the monopolar type grip portion 12 to which a relatively high voltage is applied.
以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
Although the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiment, and the configuration of the embodiment may be appropriately combined or replaced. It is included in the present invention. Further, it is also possible to appropriately rearrange the combination and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment, and such modifications are added. The embodiments described may also be included in the scope of the present invention.
本発明は、医療用の高周波鉗子に利用できる。
The present invention can be used for medical high-frequency forceps. Twice
10 高周波鉗子、 12 把持部、 14 操作部、 16 ワイヤ、 18 ケーブル、 20 円筒部、 20a 外周層、 20b 内周層、 20c 中間層、 20d 外周面、 20e 内周面、 20f 端面、 20g 封止部、 20h 端面、 22 絶縁部、 24 円筒キャップ、 26 フラッシュチューブ、 28 封止部材、 30 ゴムカバー、 32 給電部。
10 high-frequency forceps, 12 gripping part, 14 operation part, 16 wire, 18 cable, 20 cylindrical part, 20a outer peripheral layer, 20b inner peripheral layer, 20c intermediate layer, 20d outer peripheral surface, 20e inner peripheral surface, 20f end surface, 20 g sealing Part, 20h end face, 22 insulation part, 24 cylindrical cap, 26 flash tube, 28 sealing member, 30 rubber cover, 32 power supply part.
Claims (6)
- 医療用のエネルギーデバイスに用いられる絶縁シャフトであって、
絶縁材料からなる筒状の外周層と、
絶縁材料からなる筒状の内周層と、
前記外周層と前記内周層との間に配置され、前記外周層及び前記内周層よりも絶縁抵抗が低く剛性の高い筒状の中間層と、
前記外周層と前記内周層との間に配置され、前記中間層の少なくとも一方の端面を封止する封止部と、
を有し、
前記外周層、前記内周層及び前記封止部は、ガラス繊維強化プラスチックで構成され、
前記中間層は、炭素繊維強化プラスチックで構成されていることを特徴とする絶縁シャフト。 An insulating shaft used in medical energy devices.
A tubular outer layer made of insulating material and
A tubular inner layer made of insulating material and
A tubular intermediate layer arranged between the outer peripheral layer and the inner peripheral layer, which has lower insulation resistance and higher rigidity than the outer peripheral layer and the inner peripheral layer,
A sealing portion arranged between the outer peripheral layer and the inner peripheral layer and sealing at least one end face of the intermediate layer.
Have,
The outer peripheral layer, the inner peripheral layer, and the sealing portion are made of glass fiber reinforced plastic.
The intermediate layer is an insulating shaft made of carbon fiber reinforced plastic. - 前記炭素繊維強化プラスチックは、引張弾性率が200[GPa]以上であることを特徴とする請求項1に記載の絶縁シャフト。 The insulating shaft according to claim 1, wherein the carbon fiber reinforced plastic has a tensile elastic modulus of 200 [GPa] or more.
- 前記外周層の外径が5.2~6mmであり、前記内周層の内径が4~4.8mmであり、前記外周層、前記中間層及び前記内周層の総厚みが0.2~1.0mmであることを特徴とする請求項1又は2に記載の絶縁シャフト。 The outer diameter of the outer peripheral layer is 5.2 to 6 mm, the inner diameter of the inner peripheral layer is 4 to 4.8 mm, and the total thickness of the outer peripheral layer, the intermediate layer, and the inner peripheral layer is 0.2 to 0.2 to The insulating shaft according to claim 1 or 2, characterized in that it is 1.0 mm.
- 曲げ弾性率が200~240[GPa]であることを特徴とする請求項1乃至3のいずれか1項に記載の絶縁シャフト。 The insulating shaft according to any one of claims 1 to 3, wherein the flexural modulus is 200 to 240 [GPa].
- 請求項1乃至4のいずれか1項に記載の絶縁シャフトと、
前記絶縁シャフトの一方の端部型に設けられた、導電性の把持部を有する操作部と、
前記操作部と前記絶縁シャフトとを電気的に絶縁する絶縁部と、を備え、
前記絶縁シャフトは、前記把持部を操作するためのワイヤ及び前記把持部へ電流を供給 するケーブルが案内されていることを特徴とする高周波鉗子。 The insulating shaft according to any one of claims 1 to 4,
An operation unit having a conductive grip portion provided on one end mold of the insulating shaft, and an operation unit.
An insulating portion that electrically insulates the operating portion and the insulating shaft is provided.
The insulating shaft is a high-frequency forceps in which a wire for operating the grip portion and a cable for supplying an electric current to the grip portion are guided. - 前記把持部へ供給する電流が入力される給電部を更に備え、
前記把持部は、モノポーラタイプの電極を構成し、
前記給電部は、2~4kVの電圧が印加されることを特徴とする請求項5に記載の高周波鉗子。 Further provided with a power feeding unit to which a current to be supplied to the grip portion is input.
The grip portion constitutes a monopolar type electrode and forms a monopolar type electrode.
The high-frequency forceps according to claim 5, wherein a voltage of 2 to 4 kV is applied to the power feeding unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020021082A JP6789559B1 (en) | 2020-02-12 | 2020-02-12 | Insulated shaft and high frequency forceps |
JP2020-021082 | 2020-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021161590A1 true WO2021161590A1 (en) | 2021-08-19 |
Family
ID=73455226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040393 WO2021161590A1 (en) | 2020-02-12 | 2020-10-28 | Insulation shaft and high-frequency forceps |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6789559B1 (en) |
WO (1) | WO2021161590A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010063886A (en) * | 2008-09-09 | 2010-03-25 | Biosense Webster Inc | Deflectable catheter with joined center support, and method of manufacturing the same |
JP2010525914A (en) * | 2007-05-08 | 2010-07-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Coronary artery selective calcium allocation using a low-dose calcium scoring scan |
JP2012139503A (en) * | 2010-12-29 | 2012-07-26 | Biosense Webster (Israel) Ltd | Braid with integrated signal conductors |
WO2014077238A1 (en) * | 2012-11-13 | 2014-05-22 | オリンパスメディカルシステムズ株式会社 | Treatment tool for endoscope |
WO2016059228A2 (en) * | 2014-10-17 | 2016-04-21 | Creo Medical Limited | Cable for conveying radiofrequency and/or microwave frequency energy to an electrosurgical instrument |
JP2017505654A (en) * | 2014-01-06 | 2017-02-23 | アイオワ アプローチ インコーポレイテッド | Devices and methods for delivering therapeutic electrical impulses |
JP2017528247A (en) * | 2014-09-17 | 2017-09-28 | メタクティブ・メディカル・インコーポレイテッドMetactive Medical, Inc. | Expandable device and method of use |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014277623B2 (en) * | 2013-06-07 | 2018-05-17 | Cathrx Ltd | An electrical lead for a catheter and method of manufacturing |
-
2020
- 2020-02-12 JP JP2020021082A patent/JP6789559B1/en active Active
- 2020-10-28 WO PCT/JP2020/040393 patent/WO2021161590A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010525914A (en) * | 2007-05-08 | 2010-07-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Coronary artery selective calcium allocation using a low-dose calcium scoring scan |
JP2010063886A (en) * | 2008-09-09 | 2010-03-25 | Biosense Webster Inc | Deflectable catheter with joined center support, and method of manufacturing the same |
JP2012139503A (en) * | 2010-12-29 | 2012-07-26 | Biosense Webster (Israel) Ltd | Braid with integrated signal conductors |
WO2014077238A1 (en) * | 2012-11-13 | 2014-05-22 | オリンパスメディカルシステムズ株式会社 | Treatment tool for endoscope |
JP2017505654A (en) * | 2014-01-06 | 2017-02-23 | アイオワ アプローチ インコーポレイテッド | Devices and methods for delivering therapeutic electrical impulses |
JP2017528247A (en) * | 2014-09-17 | 2017-09-28 | メタクティブ・メディカル・インコーポレイテッドMetactive Medical, Inc. | Expandable device and method of use |
WO2016059228A2 (en) * | 2014-10-17 | 2016-04-21 | Creo Medical Limited | Cable for conveying radiofrequency and/or microwave frequency energy to an electrosurgical instrument |
Also Published As
Publication number | Publication date |
---|---|
JP2021126176A (en) | 2021-09-02 |
JP6789559B1 (en) | 2020-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6157792B2 (en) | Medical manipulator | |
EP2130505B1 (en) | Ultrasonic vibration apparatus | |
CN103796600A (en) | Surgical instrument with slip ring assembly to power ultrasonic transducer | |
US12070240B2 (en) | Energy treatment device | |
US20130096555A1 (en) | Electrical charge-dissipating cannula | |
WO2012042709A1 (en) | Catheter | |
JP6789559B1 (en) | Insulated shaft and high frequency forceps | |
JP6815610B1 (en) | High frequency forceps | |
CN113116507B (en) | Bipolar insulating sealing operation tool head | |
WO2024159840A1 (en) | Transducer suitable for ultrasonic-electric hybrid energy platform | |
JP7256588B2 (en) | Electrosurgical instrument with improved sealing | |
US20240325081A1 (en) | Plasma guide wire | |
CN115530921A (en) | Electrode lead for electrohydraulic stone breaking and electrohydraulic stone breaking device | |
JP7418144B2 (en) | Plasma irradiation device | |
CN115581506A (en) | Ultrasonic and high-frequency energy integrated dual-mode system and using method | |
JP2011206416A (en) | Intracoelomic insertion type ultrasonic examination device | |
JP2009022623A (en) | Bipolar high-frequency treating instrument for endoscope | |
KR102403249B1 (en) | Bipolar electrocautery device with elastic diaphragm | |
CN113543941B (en) | Surgical tool for surgical auxiliary robot | |
KR102361779B1 (en) | Apparatus for generating ultrasonic wave | |
JPH10127655A (en) | Ultrasonic surgical operation equipment | |
KR20200106816A (en) | Medical treatment equipment | |
JP4495354B2 (en) | Bipolar high-frequency treatment instrument for endoscope | |
JP4634661B2 (en) | End of the endoscope | |
KR20210071790A (en) | Apparatus for generating ultrasonic wave |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919236 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919236 Country of ref document: EP Kind code of ref document: A1 |