WO2021132236A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2021132236A1
WO2021132236A1 PCT/JP2020/047921 JP2020047921W WO2021132236A1 WO 2021132236 A1 WO2021132236 A1 WO 2021132236A1 JP 2020047921 W JP2020047921 W JP 2020047921W WO 2021132236 A1 WO2021132236 A1 WO 2021132236A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cured product
retardation
meth
optical laminate
Prior art date
Application number
PCT/JP2020/047921
Other languages
French (fr)
Japanese (ja)
Inventor
智 永安
松熙 朴
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080090355.8A priority Critical patent/CN114902096B/en
Priority to KR1020227025614A priority patent/KR20220118536A/en
Publication of WO2021132236A1 publication Critical patent/WO2021132236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an optical laminate.
  • an optical laminate having antireflection performance is arranged on the visual side of the image display panel to suppress deterioration of visibility due to reflection of external light.
  • a circular polarizing plate having a structure in which a linear polarizing plate having a thermoplastic resin film on both sides of a polarizing element and a retardation layer are laminated via an adhesive layer is known.
  • Patent Document 1 a circularly polarizing plate having a structure in which a linear polarizing plate having a thermoplastic resin film on both sides of a polarizing element and a retardation layer are laminated via an adhesive layer.
  • the circularly polarizing plate is usually provided with an adhesive layer on the side opposite to the linearly polarized light of the retardation layer, and is laminated on the image display panel.
  • a transparent conductive film such as an indium tin oxide (ITO) thin film or a conductive layer made of a metal layer such as aluminum is formed on the surface of an image display panel having a touch panel function.
  • ITO indium tin oxide
  • the present invention provides the following [1] to [16].
  • An optical laminate including a polarizer, a first cured product layer, a retardation layer, and an adhesive layer in this order.
  • the polarizer is made of a polyvinyl alcohol resin containing iodine.
  • the first cured product layer is a cured product of an active energy curable composition.
  • the retardation layer contains at least one retardation expression layer which is a polymer of a polymerizable liquid crystal compound.
  • the pressure-sensitive adhesive layer has an iodine content of 900 mg / kg or less after the optical laminate is stored at a temperature of 80 ° C. and a relative humidity of 90% for 250 hours.
  • the polarizer and the first cured product layer are in direct contact with each other.
  • the retardation layer is a layer containing the first polymerized layer, the second cured product layer, and the second polymerized layer in this order from the first cured product layer side.
  • An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
  • the polarizer is made of a polyvinyl alcohol resin containing iodine.
  • the first retardation layer and the second retardation layer contain a retardation expression layer containing a polymer of a polymerizable liquid crystal compound independently of each other.
  • the first cured product layer and the second cured product layer contain the cured product of the active energy ray-curable composition independently of each other.
  • the storage elastic modulus of the first cured product layer at a temperature of 80 ° C. is 300 MPa or more.
  • the polarizer and the first cured product layer are in direct contact with each other.
  • the optical laminate according to. [8] Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30 ⁇ m is 1500 [g / (m 2 ⁇ 24hr)] Hereinafter, according to any one of [5] to [7] Optical laminate. [9] An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
  • the polarizer is made of a polyvinyl alcohol resin containing iodine.
  • the first retardation layer and the second retardation layer contain a retardation expression layer which is a polymer of a polymerizable liquid crystal compound independently of each other.
  • the first cured product layer and the second cured product layer are independently cured products of an active energy ray-curable composition.
  • the glass transition temperature (Tg 1 ) of the first cured product layer is more than 60 ° C.
  • the polarizer and the first cured product layer are in direct contact with each other.
  • the optical laminate according to [9], wherein the glass transition temperature (Tg 2) of the second cured product layer is 40 ° C. or higher.
  • the retardation layer includes a retardation expression layer containing a polymer of a polymerizable liquid crystal compound.
  • the first cured product layer is a cured product of an active energy curable composition.
  • the active energy ray-curable composition is an optical laminate containing an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
  • An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
  • the polarizer is made of a polyvinyl alcohol resin containing iodine.
  • the one cured product layer is a cured product of an active energy curable composition.
  • the active energy ray-curable composition is an optical laminate containing an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
  • An active energy ray-curable composition containing a curable component (A) and a photopolymerization initiator (B).
  • the curable component (A) contains a polyfunctional oxetane compound (A5-1) and an epoxy compound (A2-1) containing a tricyclic condensed ring and a diglycidyl ether group in the molecule.
  • the polyfunctional oxetane compound (A5-1) / epoxy compound (A2-1) containing the tricyclic condensed ring and two glycidyl ether groups in the molecule 1.5 / 1 to 5/1 [ 15]
  • the active energy ray-curable composition according to.
  • the optical laminate of the present invention is a laminate provided with a linear polarizing plate and a retardation layer, and can suppress corrosion of the conductive layer when laminated with the conductive layer via an adhesive layer.
  • the optical laminate 100 shown in FIG. 1 includes a polarizer 13, a first cured product layer 14, a retardation layer 20, and an adhesive layer 70 in this order, and the polarizer 13 and the first cured product layer 14 are in direct contact with each other.
  • the first cured product layer 14 and the retardation layer 20 are in direct contact with each other.
  • the thermoplastic resin film 11 may be laminated on the side of the polarizer 13 opposite to the first cured product layer 14 via the adhesive layer 12. Further, it is preferable that the retardation layer 20 and the pressure-sensitive adhesive layer 70 are in direct contact with each other.
  • the configuration including the thermoplastic resin film 11, the adhesive layer 12, and the polarizer 13 in this order is referred to as a linear polarizing plate 10.
  • the thickness of the optical laminate 100 may be, for example, 2 ⁇ m or more and 100 ⁇ m, preferably 2 ⁇ m or more and 80 ⁇ m or less.
  • the optical laminate 100 may be long or single-wafered.
  • the shape of the optical laminate 100 in a plan view can be substantially rectangular.
  • the plan view means that the optical laminate 100 is viewed from the thickness direction.
  • a substantially rectangular shape means a shape in which at least one of the four corners (corners) is cut off so as to have an obtuse angle, a shape having a rounded shape, or a part of an end face in a plan view.
  • Has a recess (notch) that is recessed in the in-plane direction, or has a perforated part that is hollowed out into a shape such as a circle, an ellipse, a polygon, or a combination thereof in a plan view. It means that you can do it.
  • the size of the optical laminate 100 is not particularly limited.
  • the length of the long side is preferably 6 cm or more and 35 cm or less, more preferably 10 cm or more and 30 cm or less, and the length of the short side.
  • the size is preferably 5 cm or more and 30 cm or less, and more preferably 6 cm or more and 25 cm or less.
  • thermoplastic resin film 11 can be arranged on the visible side of the laminate.
  • the thermoplastic resin film 11 can have the function of a protective film for protecting the polarizer 13.
  • the thermoplastic resin film may be arranged on both sides of the polarizer, but from the viewpoint of thinning the laminate, the thermoplastic resin film may be arranged on one side of the polarizer. Preferably, it is more preferably arranged only on the visible side of the laminate.
  • the material of the thermoplastic resin film 11 is not particularly limited, but for example, a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose, polyethylene terephthalate, or polyethylene na.
  • films known in the art include polyester resin films made of resins such as phthalate and polybutylene terephthalate, polycarbonate resin films, (meth) acrylic resin films, and polypropylene resin films.
  • the thickness of the thermoplastic resin film 11 is usually 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less, and usually 5 ⁇ m or more, 20 ⁇ m or more. Is preferable.
  • the thermoplastic resin film 11 may or may not have a phase difference.
  • the thermoplastic resin film 11 contains rubber particles, lubricants, fluorescent whitening agents, dispersants, heat stabilizers, light stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, antioxidants, etc., as required.
  • the additive may be contained alone or in combination of two or more.
  • the thermoplastic resin film 11 preferably contains an ultraviolet absorber from the viewpoint of durability (light resistance) of the laminated body.
  • thermoplastic resin film 11 from the viewpoint of corrosion resistance, moisture permeability is preferably not more than 100g / m 2 ⁇ 24hr, and more preferably less 30g / m 2 ⁇ 24hr.
  • the adhesive layer 12 is a layer formed of an adhesive for adhering the thermoplastic resin film 11 and the polarizer 13.
  • the adhesive may be any adhesive that exhibits adhesive strength to both of them.
  • water-based adhesive composition for example, a polyvinyl alcohol-based resin or a urethane resin is used as a main component, and a cross-linking agent or a curable compound such as an isocyanate-based compound or an epoxy compound is blended in order to improve adhesion. Can be a thing.
  • a polyvinyl alcohol-based resin is used as the main component of the aqueous adhesive composition, in addition to partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, etc. And modified polyvinyl alcohol-based resins such as amino group-modified polyvinyl alcohol may be used.
  • the water-based adhesive composition preferably contains an acetoacetyl group-modified polyvinyl alcohol.
  • Such an aqueous solution of a polyvinyl alcohol-based resin is used as a water-based adhesive, and the concentration of the polyvinyl alcohol-based resin in the water-based adhesive is usually 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of water. It is preferably 1 part by mass or more and 5 parts by mass or less.
  • a curable compound such as a polyvalent aldehyde, a water-soluble epoxy resin, a melamine compound, a zirconia compound, and a zinc compound is added to an aqueous adhesive composition composed of an aqueous solution of a polyvinyl alcohol resin in order to improve adhesion.
  • a water-soluble epoxy resin a water-soluble epoxy resin obtained by reacting a polyamide polyamine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid with epichlorohydrin.
  • a sex polyamide epoxy resin is a sex polyamide epoxy resin.
  • polyester-based ionomer-type urethane resin When urethane resin is used as the main component of the water-based adhesive composition, it is effective to use polyester-based ionomer-type urethane resin as the main component of the water-based adhesive composition.
  • the polyester-based ionomer type urethane resin referred to here is a urethane resin having a polyester skeleton, in which a small amount of an ionic component (hydrophilic component) is introduced. Since such an ionomer type urethane resin is directly emulsified in water to form an emulsion without using an emulsifier, it can be used as an aqueous adhesive.
  • polyester ionomer type urethane resin When a polyester ionomer type urethane resin is used, it is effective to add a water-soluble epoxy compound as a cross-linking agent.
  • a polyester-based ionomer type urethane resin as an adhesive for a polarizing plate is described in, for example, Japanese Patent Application Laid-Open No. 2005-70140 and Japanese Patent Application Laid-Open No. 2005-208456.
  • the water-based adhesive composition can contain a filler, a flow conditioner, a defoaming agent, a leveling agent, a dye, an organic solvent and the like.
  • the water-based adhesive composition is usually used in the form of each component dissolved in water.
  • the components contained in the water-based adhesive composition that are insoluble in water may be dispersed in the system.
  • a transparent pressure-sensitive adhesive may be formed by applying the water-based adhesive composition to one side of the polarizer and drying it.
  • the water-based adhesive composition is applied to one or both sides of a polarizer or a thermoplastic resin film, and then bonded to each other. Then, the water is evaporated by heating and the thermal cross-linking reaction is allowed to proceed to sufficiently bond the two. can do.
  • a laminate in which the polarizer 13 and the thermoplastic resin film 11 are laminated via the adhesive layer 12 is also referred to as a linear polarizing plate 10.
  • the active energy ray-curable adhesive composition used for the adhesive layer 12 may not contain either a photosensitizer or a photosensitizer. Further, the type may be the same as or different from the active energy ray-curable adhesive composition contained in the first cured product layer 14.
  • the thickness of the first adhesive layer 12 may be, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the thickness of the first adhesive layer 12 may be, for example, 0.1 ⁇ m or more.
  • the polarizer 13 is an absorption type polarizer having a property of absorbing linearly polarized light having a vibration plane parallel to its absorption axis and transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis (parallel to the transmission axis). Can be.
  • a polarizer in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be preferably used.
  • the polarizer 13 is, for example, a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye; polyvinyl having the dichroic dye adsorbed. It can be produced by a method including a step of treating the alcohol-based resin film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the treatment with the cross-linking solution.
  • a cross-linking solution such as an aqueous boric acid solution
  • polyvinyl alcohol-based resin a saponified polyvinyl acetate-based resin
  • examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable with the vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • (meth) acrylic means at least one selected from acrylic and methacryl. The same applies to "(meth) acryloyl", “(meth) acrylate” and the like.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used.
  • the average degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
  • a film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer.
  • the method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and a known method is adopted.
  • the thickness of the polyvinyl alcohol-based raw film is not particularly limited, but may be, for example, 5 ⁇ m or more and 85 ⁇ m or less.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after staining, the uniaxial stretching may be performed before or during the cross-linking treatment. Moreover, uniaxial stretching may be performed in these a plurality of steps.
  • uniaxial stretching rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch.
  • the uniaxial stretching may be a dry stretching in which the film is stretched in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen with a solvent or water.
  • the draw ratio is usually 3 to 8 times.
  • a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye for example, a method of immersing the film in an aqueous solution containing a dichroic dye is adopted.
  • a dichroic dye iodine or a dichroic organic dye is used.
  • the polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
  • the cross-linking treatment after dyeing with a dichroic dye a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution is usually adopted.
  • the boric acid-containing aqueous solution preferably contains potassium iodide.
  • the thickness of the polarizer 13 is usually 30 ⁇ m or less, preferably 28 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the thickness of the polarizer 13 is usually 2 ⁇ m or more, preferably 3 ⁇ m or more.
  • the first cured product layer 14 is formed with the polarizer 13 and the retardation layer 20 in order to bond the polarizing element 13 and the retardation layer 20 (to bond the linear polarizing plate and the retardation laminate described later). Placed between.
  • the first cured product layer 14 is a cured product of the active energy ray-curable adhesive composition.
  • the thickness of the first cured product layer 14 may be, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 4 m or less, and further preferably 3 ⁇ m or less.
  • the thickness of the first cured product layer 14 may be, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more.
  • the active energy ray-curable adhesive composition may be any one that is cured by irradiating with active energy rays, for example, a cationically polymerizable adhesive composition, or a radically polymerizable adhesive composition. There may be.
  • the active energy ray-curable adhesive composition is preferably a cationically polymerizable adhesive composition.
  • the cationically polymerizable adhesive composition contains a curable component (A) and a photocationic polymerization initiator (B).
  • the curable component (A) is a component that can be cured by causing cationic polymerization by irradiation with active energy rays. Adhesive strength is developed by polymerization curing of the curable component (A).
  • the curable component (A) can contain at least one of an alicyclic epoxy compound (A1) and a polyfunctional aliphatic epoxy compound (A2).
  • the curable component (A) can further include at least one selected from the group consisting of a monofunctional epoxy compound (A3), a polyfunctional aromatic epoxy compound (A4) and an oxetane compound (A5).
  • the content of the alicyclic epoxy compound (A1) is, for example, 5 parts by mass or more and 90 parts by mass with respect to 100 parts by mass of the curable component (A). It may be 10 parts by mass or less, preferably 10 parts by mass or more and 80 parts by mass or less.
  • the content of the polyfunctional aliphatic epoxy compound (A2) is, for example, 1 part by mass with respect to 100 parts by mass of the curable component (A). It may be 50 parts by mass or less, preferably 5 parts by mass or more and 45 parts by mass or less.
  • the content of the monofunctional epoxy compound (A3) is, for example, 1 part by mass or more and 20 parts by mass with respect to 100 parts by mass of the curable component (A). It may be less than or equal to, preferably 1 part by mass or more and 15 parts by mass or less.
  • the content of the polyfunctional aromatic epoxy compound (A4) is, for example, 1 part by mass with respect to 100 parts by mass of the curable component (A). It may be 60 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less.
  • the content of the oxetane compound (A5) is, for example, 5 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the curable component (A). It is often, preferably 10 parts by mass or more and 80 parts by mass or less.
  • the active energy ray-curable adhesive composition preferably does not contain a solvent.
  • a solvent preferably contains a solvent.
  • the alicyclic epoxy compound (A1) is a compound having one or more alicyclic epoxy groups.
  • the alicyclic epoxy compound (A1) may further have an epoxy group other than the alicyclic epoxy group as long as it is a compound having one or more alicyclic epoxy groups.
  • the alicyclic epoxy group means an epoxy group bonded to the alicyclic ring, and means a bridging oxygen atom-O-in the structure represented by the following formula (a).
  • m is an integer of 2 to 5.
  • the compound in which the group in the form of removing one or a plurality of hydrogen atoms in (CH 2 ) m in the above formula (a) is bonded to another chemical structure can be an alicyclic epoxy compound (A1). ..
  • One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • the curing rate of the active energy ray-curable adhesive composition can be adjusted by the alicyclic epoxy compound (A1).
  • alicyclic epoxy compound (A1) examples include 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, and 1,2-epoxy-1-methyl-.
  • alicyclic epoxy compounds (A1) 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate is preferably used because it has appropriate curability and can be obtained at a relatively low price.
  • the alicyclic epoxy compound (A1) one kind of alicyclic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
  • alicyclic epoxy compound (A1) Commercially available products can be used as the alicyclic epoxy compound (A1).
  • the polyfunctional aliphatic epoxy compound (A2) is a compound having two or more epoxy groups and having no aromatic ring.
  • the polyfunctional aliphatic epoxy compound (A2) referred to in the present specification excludes compounds having an alicyclic epoxy group contained in the alicyclic epoxy compound (A1).
  • the adhesiveness of the adhesive cured layer can be adjusted by the polyfunctional aliphatic epoxy compound (A2).
  • an aliphatic diepoxy compound represented by the following formula (b) is more preferable.
  • an active energy ray-curable adhesive having a low viscosity and easy to apply can be obtained.
  • Z is an alkylene group, an alkylidene group having 3 or 4 carbon atoms having 1 to 9 carbon atoms, a divalent alicyclic hydrocarbon group, or the formula -C m H 2m -Z 1 -C n H It is a divalent group represented by 2n ⁇ . Further, the formula -C m H 2m -Z 1 -C n H 2n - in, -Z 1 - is, -O -, - CO-O -, - O-CO -, - SO 2 -, - SO- Alternatively, it is CO-, and m and n each independently represent an integer of 1 or more, and the sum of m and n is 9 or less.
  • the divalent alicyclic hydrocarbon group may be, for example, a divalent alicyclic hydrocarbon group having 4 to 16 carbon atoms, for example, a divalent group represented by the following formula (b-1) or a formula. Examples thereof include a divalent group represented by (b-2).
  • Specific examples of the compound represented by the formula (b) include diglycidyl ether of alkanediol, diglycidyl ether of oligoalkylene glycol up to about 4 repetitions, diglycidyl ether of alicyclic diol and the like.
  • Examples of the diol (glycol) capable of forming the compound represented by the formula (b) include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-.
  • the polyfunctional aliphatic epoxy compound (A2) includes 1,4-butanediol diglycidyl ether, from the viewpoint of obtaining an active energy ray-curable adhesive composition having a low viscosity and easy to apply. 1,6-Hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and dicyclopentadiene methanol diglycidyl ether are preferable.
  • the polyfunctional aliphatic epoxy compound (A2) one kind of aliphatic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
  • the polyfunctional aliphatic epoxy compound (A2) is preferably an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
  • the tricyclic condensed ring is not particularly limited as long as it is a condensed ring composed of three rings, but a condensed ring composed of an aliphatic ring is preferable.
  • Examples of the tricyclic fused ring include an adamantane ring, a tricyclodecane ring, a dicyclopentadiene ring, and a tricyclodecanene ring.
  • Examples of the epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule include a compound represented by the following formula (c-1).
  • X 1 represents a tricyclic condensed ring
  • Z 2 and Z 3 each independently represent a single bond or a divalent hydrocarbon group.
  • Examples of the tricyclic condensed ring represented by X 1 include an adamantane ring, a tricyclodecane ring, a dicyclopentadiene ring, a tricyclodecane ring, and the like, and a tricyclodecane ring is preferable.
  • Examples of the divalent hydrocarbon group represented by Z 2 and Z 3 include an alkanediyl group having 1 to 8 carbon atoms such as a methylene group, an ethylene group and a propanediyl group; and a phenylene group having 6 to 10 carbon atoms.
  • Aromatic hydrocarbon groups of. Z 2 and Z 3 are preferably divalent hydrocarbon groups independently of each other, more preferably an alkanediyl group having 1 to 8 carbon atoms, and an alkanediyl group having 1 to 4 carbon atoms. More preferably, it is particularly preferably a methylene group.
  • polyfunctional aliphatic epoxy compound (A2) for example, "EP-4088S” (above, manufactured by ADEKA Corporation), “EHPE3150” (above, manufactured by Daicel Corporation), “EX”. -211L “,” EX-212L “(all of which are manufactured by Nagase ChemteX Corporation) and the like can be mentioned.
  • the monofunctional epoxy compound (A3) is a compound having one epoxy group.
  • the monofunctional epoxy compound (A3) referred to in the present specification excludes compounds having an alicyclic epoxy group in the molecule contained in the alicyclic epoxy compound (A1).
  • the monofunctional epoxy compound (A3) may or may not have an aromatic ring in the molecule.
  • the viscosity of the active energy ray-curable adhesive composition can be adjusted by the monofunctional epoxy compound (A3).
  • Examples of the monofunctional epoxy compound (A3) having an aromatic ring include monovalent phenols such as phenol, cresol, and butylphenol, bisphenol A, bisphenol derivatives such as bisphenol F, and monoglycidyl esterified products of their alkylene oxide adducts; epoxy novolac.
  • Resin Monoglycidyl esterified product of an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol; an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol.
  • Monoglycidyl esterified products monoglycidyl esters of polybasic acid aromatic compounds having two or more carboxyl groups such as phthalic acid, terephthalic acid, trimellitic acid; glycidyl esters of benzoic acid, toluic acid, monoglycidyl naphthoic acid Esters and the like can be mentioned.
  • Examples of the monofunctional epoxy compound (A3) having no aromatic ring include glycidyl ethers of aliphatic alcohols and glycidyl esters of alkylcarboxylic acids, and specific examples thereof include allyl glycidyl ether, butyl glycidyl ether, and sec-butyl. It contains phenylglycidyl ether, 2-ethylhexyl glycidyl ether, alkyl glycidyl ether mixed with 12 and 13 carbon atoms, glycidyl ether of alcohol, monoglycidyl ether of aliphatic higher alcohol, glycidyl ester of higher fatty acid and the like. As the monofunctional epoxy compound (A3), one type of monofunctional epoxy compound may be used alone, or a plurality of different types may be used in combination.
  • the polyfunctional aromatic epoxy compound (A4) is a compound having two or more epoxy groups and having an aromatic ring.
  • the polyfunctional aromatic epoxy compound (A4) referred to in the present specification excludes compounds having an alicyclic epoxy group in the molecule contained in the alicyclic epoxy compound (A1).
  • polyfunctional aromatic epoxy compound (A4) examples include naphthalene or a polyglycidyl etherified product of a naphthalene derivative (also referred to as “naphthalene type epoxy compound”); a polyglycidyl etherified product of a bisphenol derivative such as bisphenol A or bisphenol F.
  • Epoxy novolak resin (Also referred to as "bisphenol A type epoxy compound” and “bisphenol F type epoxy compound”); Epoxy novolak resin; Polyglycidyl etherified product of an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol; Polyglycidyl etherified product of an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol; a polybase having two or more carboxyl groups such as phthalic acid, terephthalic acid, and trimellitic acid.
  • Polyglycidyl esters of acid aromatic compounds glycidyl esters of benzoic acid, toluic acid, polyglycidyl esters of naphthoic acid, etc .; styrene oxides such as styrene oxides, alkylated styrene oxides, epoxidates of vinylnaphthalene, or diepoxidates of divinylbenzene. And so on.
  • the polyfunctional aromatic epoxy compound (A4) one kind of compound may be used alone, or a plurality of different kinds may be used in combination.
  • polyfunctional aromatic epoxy compound (A4) Commercially available products can be used as the polyfunctional aromatic epoxy compound (A4).
  • “Denacol EX-201”, “Denacol EX-711” and “Denacol EX-721” all of which are Nagase ChemteX).
  • the oxetane compound (A5) is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound or an aromatic compound.
  • the oxetane compound (A5) referred to in the present specification is a compound having no epoxy group.
  • the oxetane compound (A5) may be a monofunctional oxetane compound having one oxetaneyl group, or a polyfunctional oxetane compound (A5-1) having two or more oxetaneyl groups.
  • the oxetane compound (A5) is preferably a polyfunctional oxetane compound (A5-1), and more preferably a bifunctional oxetane compound.
  • oxetane compound (A5) examples include 3,7-bis (3-oxetanyl) -5-oxa-nonane and 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 1, 2-Bis [(3-ethyl-3-oxetanylmethoxy) methyl] ethane, 1,3-bis [(3-ethyl-3-oxetanylmethoxy) methyl] propane, ethylene glycol bis (3-ethyl-3-oxetanylmethyl) ) Ether, triethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether ,, 4-bis (3-ethyl-3-oxetanylmethoxy) butane , 1,6-bis (3-ethyl-3-oxetanylme
  • oxetane compound (A5) Commercially available products can be used as the oxetane compound (A5).
  • the "Aron Oxetane (registered trademark)” series sold by Toa Synthetic Co., Ltd. and Ube Industries, Ltd., respectively, are sold under their trade names.
  • curable components alicyclic epoxy compound (A1), polyfunctional aliphatic epoxy compound (A2), monofunctional epoxy compound (A3), polyfunctional aromatic epoxy compound (A4), oxetane compound (A5)] are In order to make the active energy ray-curable adhesive composition solvent-free, it is preferable to use one that has not been diluted with an organic solvent or the like.
  • the above-mentioned curable component is usually liquid at room temperature, has appropriate fluidity even in the absence of a solvent, and is selected to give appropriate adhesive strength, and a suitable photocationic polymerization initiator is blended.
  • the activated energy ray-curable adhesive composition can omit the drying equipment for evaporating the solvent in the step of adhering the linear polarizing plate and the retardation layer laminate. Further, by irradiating an appropriate active energy dose, the curing rate can be accelerated and the production rate can be improved.
  • the curable component (A) contained in the active energy ray-curable adhesive composition is not limited to the above-mentioned curable component, and is a cationically polymerizable curable component other than the above-mentioned cationically polymerizable curable component. It may contain a component and a radically polymerizable curable component.
  • a radically polymerizable compound is a compound or oligomer in which a radical polymerization reaction proceeds and is cured by irradiation or heating with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, and specifically, an ethylenically unsaturated bond.
  • active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays
  • Compounds having an ethylenically unsaturated bond include (meth) acrylic compounds having one or more (meth) acryloyl groups in the molecule, styrene, styrene sulfonic acid, vinyl acetate, vinyl propionate, and N-vinyl. Examples thereof include vinyl compounds such as -2-pyrrolidone.
  • the preferred radically polymerizable compound is a (meth) acrylic compound.
  • the (meth) acrylic compound is obtained by reacting two or more kinds of a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule, a (meth) acrylamide monomer, and a functional group-containing compound.
  • a (meth) acryloyl group-containing compounds such as (meth) acrylic oligomers having at least two (meth) acryloyl groups in the molecule.
  • the (meth) acrylic oligomer is preferably a (meth) acrylate oligomer having at least two (meth) acryloyloxy groups in the molecule.
  • the (meth) acrylic compound only one kind may be used alone, or two or more kinds may be used in combination.
  • the (meth) acrylate monomer includes a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in the molecule.
  • Monomers and polyfunctional (meth) acrylate monomers having three or more (meth) acryloyloxy groups in the molecule can be mentioned.
  • An example of a monofunctional (meth) acrylate monomer is an alkyl (meth) acrylate.
  • the alkyl group may be linear or branched as long as it has 3 or more carbon atoms.
  • Specific examples of alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and the like. Examples thereof include 2-ethylhexyl (meth) acrylate.
  • aralkyl (meth) acrylates such as benzyl (meth) acrylates; (meth) acrylates of terpen alcohols such as isobornyl (meth) acrylates; and tetrahydrofurfuryl structures such as tetrahydrofurfuryl (meth) acrylates (meth).
  • Acrylate has a cycloalkyl group at the alkyl group moiety such as cyclohexyl (meth) acrylate, cyclohexylmethyl methacrylate, dicyclopentanyl acrylate, dicyclopentenyl (meth) acrylate, 1,4-cyclohexanedimethanol monoacrylate (meth).
  • Aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; 2-phenoxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate , (Meta) acrylate having an ether bond at the alkyl moiety such as phenoxypolyethylene glycol (meth) acrylate can also be used as the monofunctional (meth) acrylate monomer.
  • a monofunctional (meth) acrylate having a hydroxyl group at the alkyl moiety and a monofunctional (meth) acrylate having a carboxyl group at the alkyl moiety can also be used.
  • Specific examples of the monofunctional (meth) acrylate having a hydroxyl group at the alkyl moiety include 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy.
  • the monofunctional (meth) acrylate having a carboxyl group at the alkyl moiety include 2-carboxyethyl (meth) acrylate, ⁇ -carboxy-polycaprolactone (n ⁇ 2) mono (meth) acrylate, 1- [2- ( Meta) acryloyloxyethyl] phthalic acid, 1- [2- (meth) acryloyloxyethyl] hexahydrophthalic acid, 1- [2- (meth) acryloyloxyethyl] succinic acid, 4- [2- (meth) acryloyl Oxyethyl] Trimellitic acid, N- (meth) acryloyloxy-N', N'-dicarboxymethyl-p-phenylenediamine.
  • N-substituted (meth) acrylamide examples include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (meth) acrylamide, and Nt-.
  • N-alkyl (meth) acrylamide such as butyl (meth) acrylamide, N-hexyl (meth) acrylamide; N, N- such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide.
  • the N-substituted group may be an alkyl group having a hydroxyl group, and examples thereof include N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, and N- (2-hydroxy).
  • specific examples of the N-substituted (meth) acrylamide forming the above-mentioned 5-membered ring or 6-membered ring include N-acryloylpyrrolidine, 3-acryloyl-2-oxazolidinone, 4-acryloylmorpholine, and N-acryloyl.
  • piperidine N-methacryloyl piperidine and the like.
  • Examples of the bifunctional (meth) acrylate monomer include alkylene glycol di (meth) acrylate, polyoxyalkylene glycol di (meth) acrylate, halogen-substituted alkylene glycol di (meth) acrylate, aliphatic polyol di (meth) acrylate, and hydrogenation.
  • Di (meth) acrylate of dicyclopentadiene or tricyclodecanediakanol di (meth) acrylate of dioxane glycol or dioxandialkanol, di (meth) acrylate of alkylene oxide adduct of bisphenol A or bisphenol F, bisphenol A or bisphenol Examples thereof include the epoxy di (meth) acrylate of F.
  • Examples of the trifunctional or higher functional polyfunctional (meth) acrylate monomer include glycerin tri (meth) acrylate, alkoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, and ditrimethylol.
  • Propanetetra (meth) acrylate pentaerythritol trimethylolpropane (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • Poly (meth) acrylates of trifunctional or higher functional aliphatic polyols are typical, and in addition, poly (meth) acrylates of trifunctional or higher functional halogen-substituted polyols and glycerin alkylene oxide adduct tri (meth) Acrylate, tri (meth) acrylate of alkylene oxide adduct of trimethylolpropane, 1,1,1-tris [(meth) acryloyloxyethoxyethoxy] propane, tris (hydroxyethyl) isocyanurate tri (meth) acrylate and the like. Be done.
  • (meth) acrylic oligomers include urethane (meth) acrylic oligomers, polyester (meth) acrylic oligomers, epoxy (meth) acrylic oligomers, and the like.
  • the urethane (meth) acrylic oligomer is a compound having a urethane bond (-NHCOO-) and at least two (meth) acryloyl groups in the molecule.
  • It can be a urethanization reaction product of a terminal isocyanato group-containing urethane compound obtained by reaction and a (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule. ..
  • the hydroxyl group-containing (meth) acrylic monomer used in the urethanization reaction can be, for example, a hydroxyl group-containing (meth) acrylate monomer, and specific examples thereof include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth).
  • hydroxyl group-containing (meth) acrylate monomer examples include N-hydroxyalkyl (meth) acrylamide monomers such as N-hydroxyethyl (meth) acrylamide and N-methylol (meth) acrylamide.
  • Examples of the polyisocyanate used for the urethanization reaction with the hydroxyl group-containing (meth) acrylic monomer include hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and among these diisocyanates, aromatic ones.
  • Diisocyanates obtained by hydrogenating isocyanates for example, hydrogenated tolylene diisocyanates, hydrogenated xylylene diisocyanates, etc.
  • di- or tri-isocyanates such as triphenylmethane triisocyanates, dibenzylbenzene triisocyanates, and the above.
  • examples thereof include polyisocyanate obtained by increasing the amount of diisocyanate.
  • a polyester polyol, a polyether polyol, or the like can be used in addition to an aromatic, aliphatic or alicyclic polyol. it can.
  • aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, and ditri.
  • Examples thereof include methylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, hydrogenated bisphenol A and the like.
  • the polyester polyol is obtained by a dehydration condensation reaction between the above-mentioned polyol and a polybasic carboxylic acid or an anhydride thereof.
  • polybasic carboxylic acids or their anhydrides which may be anhydrides, are represented by adding "(anhydride)" to (anhydrous) succinic acid, adipic acid, (anhydrous) maleic acid, (anhydrous).
  • anhydrous succinic acid
  • adipic acid anhydrous
  • maleic acid anhydrous
  • itaconic acid (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, hexahydro (anhydrous) phthalic acid and the like.
  • the polyether polyol may be a polyoxyalkylene-modified polyol obtained by reacting the above-mentioned polyol or dihydroxybenzenes with an alkylene oxide, in addition to the polyalkylene glycol.
  • a polyester (meth) acrylic oligomer is a compound having an ester bond and at least two (meth) acryloyl groups (typically (meth) acryloyloxy groups) in the molecule. Specifically, it can be obtained by a dehydration condensation reaction using (meth) acrylic acid, a polybasic carboxylic acid or an anhydride thereof, and a polyol. Examples of polybasic carboxylic acids or their anhydrides used in the dehydration condensation reaction, which can be anhydrous, are represented by adding "(anhydride)" to (anhydrous) succinic acid, adipic acid, (anhydride).
  • maleic acid there are maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, hexahydro (anhydride) phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid and the like.
  • the polyol used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, and trimethylolpropane.
  • Examples thereof include ditrimethylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, and hydrogenated bisphenol A.
  • the epoxy (meth) acrylic oligomer can be obtained, for example, by an addition reaction between polyglycidyl ether and (meth) acrylic acid, and has at least two (meth) acryloyloxy groups in the molecule.
  • the polyglycidyl ether used in the addition reaction include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • photoradical initiators include acetophenone, 3-methylacetophenone, benzyldimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1-[.
  • Acetphenone-based initiators such as 4- (methylthio) phenyl-2-morpholinopropane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone, 4,4' -Benzophenone-based initiators such as diaminobenzophenone; benzoin ether-based initiators such as benzoinpropyl ether and benzoin ethyl ether; thioxanthone-based initiators such as 4-isopropylthioxanthone; ..
  • the blending amount of the photoradical polymerization initiator is usually 0.5 parts by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound.
  • the radically polymerizable compound can be sufficiently cured, and high mechanical strength and adhesive strength can be imparted to the obtained polarizing plate.
  • the amount is excessively large, the durability of the polarizing plate may decrease.
  • the active energy ray-curable adhesive composition contains only a cationically polymerizable curable component as the curable component (A).
  • the active energy ray-curable adhesive composition contains a photocationic polymerization initiator (B).
  • the curable component (A) can be cured by cationic polymerization by irradiation with active energy rays to form an adhesive layer.
  • the photocationic polymerization initiator (B) generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates the polymerization reaction of the curable component (A). It is something that makes you.
  • the photocationic polymerization initiator (B) acts catalytically with light, it is excellent in storage stability and workability even when mixed with the curable component (A).
  • a compound that can be used as a photocationic polymerization initiator (B) and produces a cationic species or Lewis acid by irradiation with active energy rays for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt. ; Iron-alene complex and the like can be mentioned.
  • aromatic diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
  • aromatic iodonium salt examples include diphenyl iodonium tetrakis (pentafluorophenyl) borate, diphenyl iodonium hexafluorophosphate, diphenyl iodonium hexafluoroantimonate, and di (4-nonylphenyl) iodonium hexafluorophosphate.
  • aromatic sulfonium salt examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, and 4,4'-bis [diphenylsulfonio] diphenylsulfide bishexa.
  • Fluorophosphate 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide bis Hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4 -Phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4- (p-tert-butylphenyl
  • iron-arene complex examples include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, and xylene-cyclopentadienyl iron (II) tris ( Trifluoromethylsulfonyl) metanide.
  • the photocationic polymerization initiator (B) only one type may be used alone, or two or more types may be used in combination.
  • the aromatic sulfonium salt is particularly preferable because it has ultraviolet absorption characteristics even in the wavelength region near 300 nm, and thus it is possible to obtain an adhesive cured layer having excellent curability and good mechanical strength and adhesive strength. Used.
  • the content of the photocationic polymerization initiator (B) is 0.5 parts by mass or more and 10 parts by mass or less, preferably 1 part by mass or more and 4 parts by mass with respect to 100 parts by mass of the total amount of the curable component (A). It is as follows. By containing 1 part by mass or more of the photocationic polymerization initiator (B), the curable component can be sufficiently cured, and an adhesive cured layer having sufficient adhesive strength and hardness can be obtained. On the other hand, if the amount is large, the amount of ionic substances in the cured product increases, which increases the hygroscopicity of the cured product and may reduce the durability performance of the laminate. Therefore, the photocationic polymerization initiator (B) ) Is 10 parts by mass or less with respect to 100 parts by mass of the total amount of the curable component (A).
  • a radical polymerization initiator in addition to the photocationic polymerization initiator (B) as the polymerization initiator.
  • the active energy ray-curable adhesive composition may contain a photosensitizer (C).
  • a photosensitizer C
  • the curability of the adhesive can be improved as compared with the case where it is not contained.
  • the photosensitizer (C) is based on the following general formula (I):
  • R 1 and R 2 represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 12 carbon atoms independently of each other, and R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the photocationic polymerization initiator (B) exhibits maximum absorption in a wavelength region near 300 nm or shorter, generates cation species or Lewis acid in response to light having a wavelength in the vicinity, and is cationically polymerizable.
  • the photosensitizer (C) preferably exhibits maximum absorption in a wavelength region longer than 380 nm so as to initiate cationic polymerization of the sex component and to be sensitive to light having a wavelength longer than that.
  • an anthracene-based compound is preferably used as such a photosensitizer (C).
  • anthracene compounds include, for example. 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-Dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-Dibutoxyanthracene, 9,10-Dipentyloxyanthracene, 9,10-dihexyloxyanthracene, 9,10-bis (2-methoxyethoxy) anthracene, 9,10-bis (2-ethoxyethoxy) anthracene, 9,10-Bis (2-butoxyethoxy) anthracene, 9,10-Bis (3-butoxypropoxy) anthracene, 2-Methyl or 2-ethyl-9,10-dimethoxyanthracene, 2-Methyl or 2-Ethyl-9,10-diethoxyanthracene, 2-Methyl or 2-Ethyl-9,10-dipropoxy
  • the curability of the adhesive can be improved as compared with the case where it is not contained.
  • Such an effect can be exhibited by setting the content of the photosensitizer to 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the curable component (A).
  • the content of the photosensitizer (C) is large, problems such as precipitation during low temperature storage occur. Therefore, the content is 2 with respect to 100 parts by mass of the total amount of the curable component (A). It is preferably less than or equal to parts by mass.
  • the active energy ray-curable adhesive composition may contain a photosensitizer (D).
  • the photosensitizer (D) is preferably a naphthalene-based photosensitizer.
  • naphthalene-based photosensitizers include, for example. 4-Methoxy-1-naphthol, 4-ethoxy-1-naphthol, 4-propoxy-1-naphthol, 4-Butoxy-1-naphthol, 4-hexyloxy-1-naphthol, 1,4-dimethoxynaphthalene, 1-ethoxy-4-methoxynaphthalene, 1,4-Diethoxynaphthalene, 1,4-Dipropoxynaphthalene, Examples include 1,4-dibutoxynaphthalene.
  • the curability of the adhesive can be improved as compared with the case where it is not contained.
  • Such an effect can be exhibited by setting the content of the naphthalene-based photosensitizer to 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the curable component (A).
  • the content of the naphthalene-based photosensitizer increases, problems such as precipitation during low-temperature storage occur. Therefore, the content is 5 with respect to 100 parts by mass of the total amount of the curable component (A). It is preferably less than or equal to parts by mass.
  • the content of the naphthalene-based photosensitizer is preferably 3 parts by mass or less with respect to 100 parts by mass of the total amount of the curable component (A).
  • the active energy ray-curable adhesive composition may contain an additive component (E) as another component which is an optional component as long as the effects of the present invention are not impaired.
  • the additive component (E) includes an ion trap agent, an antioxidant, a light stabilizer, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow conditioner, a plasticizer, a defoaming agent, and a leveling agent. Examples include dyes and organic solvents.
  • the content thereof is preferably 10 parts by mass or less with respect to 100 parts by mass of the total amount of the curable component (A).
  • the above-mentioned photocationic polymerization initiator (B), photosensitizer (C), photosensitizer (D), and additive component (E) were used when preparing the active energy ray-curable adhesive composition. It may be added without a solvent, or it may be diluted with a solvent and then added directly.
  • the above-mentioned numerical range of the content is a numerical range based on the solid content.
  • the active energy ray-curable composition forming the first cured product layer contains an epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule.
  • the composition is preferably contained.
  • the active energy ray-curable composition contains an epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, it is preferable to further contain an oxetane compound (A5).
  • a polyfunctional oxetane compound (A5-1) is more preferable, and a bifunctional oxetane compound is further preferably contained.
  • the active energy ray-curable composition contains an epoxy compound (A2-1) and an oxetane compound (A5) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, it is further alicyclic. At least one selected from the epoxy compound (A1) and the polyfunctional aliphatic epoxy compound (A2) (excluding the epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule). It is preferable to include one type.
  • the active energy ray-curable composition contains an epoxy compound (A2-1) and an oxetane compound (A5) containing a three-ring condensed ring and two glycidyl ether groups in the molecule
  • the oxetane compound (A5) The content of is higher than the content of the epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule.
  • the active energy ray-curable composition contains an epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, and a polyfunctional oxetane compound (A5-1), there are many cases.
  • the content of the functional oxetane compound (A5-1) is preferably higher than the content of the epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
  • the content ratio (mass ratio) of the polyfunctional oxetane compound (A5-1), the tricyclic condensed ring, and the epoxy compound (A2-1) containing two glycidyl ether groups in the molecule is the polyfunctional oxetane compound (mass ratio).
  • the epoxy compound (A2-1) containing the condensed ring of A5-1) / 3 ring type and two glycidyl ether groups in the molecule is preferably 1.1 / 1 to 5/1, and 1.5 / It is more preferably 1 to 5/1, and even more preferably 2/1 to 5/1. Within the above range, a cured film having a high crosslink density can be easily obtained, so that the amount of iodine transfer can be suppressed.
  • the active energy ray-curable composition contains an epoxy compound (A2-1) and an oxetane compound (A5) containing a three-ring fused ring and two glycidyl ether groups in the molecule
  • the oxetane compound (A5) The content of is preferably 35% by mass or more, preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass based on the total mass of the curable component (A). It is more preferably less than or equal to%.
  • the active energy ray-curable composition contains an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule and an oxetane compound (A5), the tricyclic condensation
  • the content of the epoxy compound (A2-1) containing a ring and two glycidyl ether groups in the molecule is preferably 1% by mass or more based on the total mass of the curable component (A), and is preferably 5% by mass. More preferably, it is less than 35% by mass, and more preferably 30% by mass or less.
  • the viscosity of the active energy ray-curable adhesive composition may be any one having a viscosity that can be applied by various methods, but the viscosity at a temperature of 25 ° C. may be, for example, 200 mPa ⁇ s or less, which is preferable. Is 0.1 mPa ⁇ s or more and 180 mPa ⁇ s or less. If the viscosity is too small, it tends to be difficult to form a layer with a desired thickness. On the other hand, if the viscosity is too high, it tends to be difficult to flow, and it tends to be difficult to obtain a uniform and uniform coating film.
  • the viscosity referred to here is a value measured at 10 rpm after adjusting the temperature of the adhesive to 25 ° C. using an E-type viscometer.
  • the active energy ray-curable adhesive composition can be used in the form of an electron beam-curable type or an ultraviolet-curable type.
  • an active energy ray is defined as an energy ray capable of decomposing a compound that generates an active species to generate an active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays and electron beams.
  • the acceleration voltage is preferably 5 kV or more and 300 kV or less, and more preferably 10 kV or more and 250 kV or less. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and curing may be insufficient. If the acceleration voltage exceeds 300 kV, the penetrating force through the sample is too strong and the electron beam bounces off, and a transparent protective film or There is a risk of damaging the polarizer.
  • the irradiation dose is 5 kGy or more and 100 kGy or less, more preferably 10 kGy or more and 75 kGy or less.
  • the irradiation dose is less than 5 kGy, the adhesive is insufficiently cured, and when it exceeds 100 kGy, the optical layer is damaged, mechanical strength is lowered and yellowing occurs, and desired optical characteristics cannot be obtained.
  • Electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under conditions where a small amount of oxygen is introduced. By appropriately introducing oxygen, it is possible to prevent damage to other optical layers by intentionally causing oxygen inhibition in the optical layer to which the electron beam first hits, and to efficiently irradiate only the adhesive with the electron beam. Can be done.
  • the light irradiation intensity of the active energy ray-curable adhesive composition is determined for each adhesive composition and is not particularly limited, but is 10 mW / cm 2 or more and 1,000 mW / cm 2 or less. Is preferable. If the light irradiation intensity of the resin composition is less than 10 mW / cm 2 , the reaction time becomes too long, and if it exceeds 1,000 mW / cm 2 , the heat radiated from the light source and the heat generated during the polymerization of the composition cause. , May cause yellowing of the constituent materials of the adhesive.
  • the irradiation intensity is preferably an intensity in a wavelength region effective for activating the photocationic polymerization initiator (B), more preferably an intensity in a wavelength region having a wavelength of 400 nm or less, and further preferably a wavelength of 280 nm or more and 320 nm.
  • the integrated light quantity is preferably 10 mJ / cm 2 or more, more preferably set to be 100 mJ / cm 2 or more 1,000 mJ / cm 2 or less ..
  • the integrated light intensity to the adhesive is less than 10 mJ / cm 2 , the active species derived from the polymerization initiator are not sufficiently generated, and the adhesive is not sufficiently cured. On the other hand, if the integrated light intensity exceeds 1,000 mJ / cm 2 , the irradiation time becomes long, which is disadvantageous for improving productivity. At this time, depending on the type of the first retardation layer 30 and the second retardation layer 40, the combination of the adhesive types, etc., the wavelength region (UVA (320 nm or more and 390 nm or less), UVB (280 nm or more and 320 nm or less), etc.) and its integration. The amount of light can be set as appropriate.
  • the light source used for polymerizing and curing the active energy ray-curable adhesive composition by irradiation with the active energy ray in the present invention is not particularly limited, but for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, and an ultra-high-pressure mercury lamp.
  • Examples thereof include xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excima lasers, LED light sources that emit light in a wavelength range of 380 nm or more and 440 nm or less, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. From the viewpoint of energy stability and simplicity of the apparatus, an ultraviolet light source having an emission distribution having a wavelength of 400 nm or less is preferable.
  • the storage elastic modulus (E 1 ) of the first cured product layer at a temperature of 80 ° C. is preferably 300 MPa or more, more preferably 500 MPa or more, and more preferably 1000 MPa or more from the viewpoint of suppressing corrosion of the conductive layer. Is even more preferable. Further, it is preferably 5000 MPa or less, more preferably 4000 MPa or less, and further preferably 3500 MPa or less.
  • the storage elastic modulus (E 1 ) of the first cured product layer is measured by the method described in the section of Examples described later.
  • the storage elastic modulus (E 1 ) of the first cured product layer at a temperature of 80 ° C. and the storage elastic modulus (E 2 ) of the second cured product layer at a temperature of 80 ° C., which will be described later, suppress corrosion and cause cracks during the durability test. From the viewpoint of suppression, it is preferable to satisfy the relationship of E 1 > E 2 , and when E 1 ⁇ E 2 ⁇ E, ⁇ E is more preferably 2000 MPa or less, and further preferably 1500 MPa or less.
  • the difference between the storage elastic modulus at a temperature of 30 ° C. and the storage elastic modulus at a temperature of 80 ° C. of the first cured product layer is not too large. If the difference between the storage elastic modulus at a temperature of 30 ° C. and the storage elastic modulus at a temperature of 80 ° C. is too large, metal corrosion tends to occur easily.
  • the difference between the storage elastic modulus at a temperature of 30 ° C. and the storage elastic modulus at a temperature of 80 ° C. is preferably 1500 MPa or less.
  • the glass transition temperature (Tg 1 ) of the first cured product layer is preferably 65 ° C. or higher, more preferably 70 ° C. or higher, and 75 ° C. or higher from the viewpoint of suppressing corrosion of the conductive layer. Is even more preferable. Further, it is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 120 ° C. or lower.
  • the glass transition temperature (Tg 1 ) of the first cured product layer is measured by the method described in the section of Examples described later.
  • the moisture permeability of the first cured product layer at a temperature of 80 ° C. is preferably low from the viewpoint of suppressing metal corrosion.
  • First cured layer having a thickness of 30 ⁇ m is by cup method defined in JIS Z 0208, temperature 80 ° C., the moisture permeability being measured under the conditions of a relative humidity of 90%, preferably from 1500g / (m 2 ⁇ 24hr) or less , more preferably 1000g / (m 2 ⁇ 24hr) or less, still more preferably 950g / (m 2 ⁇ 24hr) or less.
  • the transparent humidity is usually 100g / (m 2 ⁇ 24hr) or more.
  • the moisture permeability J of the first cured film is a laminate (for example, 20 ⁇ m triacetyl cellulose film / 5 ⁇ m pressure-sensitive adhesive layer /) in which the first cured product layer is formed on a base film or the like having a known moisture permeability.
  • a laminated body of the first cured product layer having a thickness of 30 ⁇ m) is produced, the moisture permeability of the laminated body is measured by the above method, and the measurement result can be used to obtain it based on the following formula.
  • Jt is the moisture permeability of the laminated body
  • Jsub is the moisture permeability in the layer structure obtained by removing the first cured product layer from the laminated body.
  • the laminate is attached to the cup with the cured film facing outward.
  • a laminate having a layer structure of 20 ⁇ m triacetyl cellulose film / 5 ⁇ m pressure-sensitive adhesive layer / 30 ⁇ m-thick first cured product layer has a temperature of 80 ° C. and a relative humidity of 90 by the cup method specified in JIS Z 0208.
  • moisture permeability measured in% conditions are preferably at 1000g / (m 2 ⁇ 24hr) or less and more preferably 950g / (m 2 ⁇ 24hr) or less.
  • the transparent humidity is usually 100g / (m 2 ⁇ 24hr) or more.
  • the optical laminate of the present invention includes a retardation layer 20 having at least one retardation layer which is a polymer of a polymerizable liquid crystal compound.
  • the retardation layer 20 is not particularly limited as long as it is a retardation layer including at least one retardation expression layer that gives a predetermined retardation to light, and is, for example, a 1/2 wavelength layer, a 1/4 wavelength layer, and a positive C plate. It may be an optical compensation layer such as.
  • the retardation layer may be a positive dispersion retardation layer or a reverse wavelength dispersion retardation layer.
  • the retardation layer 20 may be composed of only the retardation expression layer as long as it contains at least one retardation expression layer, or may include another layer together with the retardation expression layer. May be good.
  • the retardation layer 20 may be composed of two layers, a first retardation layer 30 and a second retardation layer 40.
  • the laminated body in which the first retardation layer 30 and the second retardation layer 40 are adhered to each other via the second cured product layer 50 described later is also referred to as a retardation layer laminate 60.
  • the retardation expression layer examples include a layer containing a polymer of a polymerizable liquid crystal compound (hereinafter, also referred to as a liquid crystal layer) or a stretched film. At least one of the first retardation layer 30 and the second retardation layer 40 is preferably a liquid crystal layer.
  • the first retardation layer 30 is a liquid crystal layer
  • the surface of the first retardation layer 30 on the side of the second cured product layer 50 is a liquid crystal layer which is a retardation expression layer.
  • the second retardation layer 40 is a liquid crystal layer
  • the surface of the second retardation layer 40 on the side of the second cured product layer 50 is a liquid crystal layer which is a retardation expression layer.
  • the retardation expression layer which is a liquid crystal layer, is generally easier to thin than the retardation expression layer, which is a stretched film.
  • At least one of the first retardation layer 30 and the second retardation layer 40 has a light transmittance of preferably 5% or more, more preferably 10% or more, still more preferably, from the viewpoint of adhesion at a wavelength of 320 nm. Is more than 30%.
  • the light transmittance can be measured according to the measurement method described in the column of Examples described later.
  • At least one of the first retardation layer 30 and the second retardation layer 40 preferably has a light transmittance of 0% or more and 10% or less at a wavelength of 380 nm and a light transmittance of 30% or more at a wavelength of 400 nm.
  • the light transmittance at a wavelength of 380 nm is 0% or more and 5% or less
  • the light transmittance at a wavelength of 400 nm is 35% or more
  • the light transmittance at a wavelength of 380 nm is 0%. It is 1% or less
  • the light transmittance at a wavelength of 400 nm is 40% or more.
  • the thickness thereof is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and 0.5 ⁇ m or more and 5 ⁇ m or less. Is more preferable.
  • the first retardation layer 30 and the second retardation layer 40 include layers other than the retardation expression layer (base material layer, alignment film layer, protective layer, etc.), the total thickness is 0.5 ⁇ m or more and 300 ⁇ m. It is preferably 0.5 ⁇ m or more, and more preferably 150 ⁇ m or less.
  • first retardation layer 30 and the second retardation layer 40 for example, i) Combination of 1/2 wavelength layer and 1/4 wavelength layer, ii) Combination of 1/2 wavelength layer and optical compensation layer, iii) Combination of 1/4 wavelength layer and optical compensation layer, And so on.
  • the first retardation layer 30 is a 1/2 wavelength layer and the second retardation layer 40 is a 1/4 wavelength layer.
  • the first retardation layer 30 is a 1/2 wavelength layer
  • the second retardation layer 40 is an optical compensation layer
  • the first retardation layer 30 is a 1/2 wavelength layer.
  • the second retardation layer 40 is a positive C plate.
  • the first retardation layer 30 is a 1/4 wavelength layer
  • the second retardation layer 40 is an optical compensation layer
  • the first retardation layer 30 is a 1/4 wavelength layer.
  • the second retardation layer 40 is a positive C plate.
  • the in-plane retardation value of Re (550) at a wavelength of 550 nm preferably satisfies 210 nm ⁇ Re (550) ⁇ 300 nm. Further, it is more preferable to satisfy 220 nm ⁇ Re (550) ⁇ 290 nm.
  • the wavelength is 550 nm.
  • Re (550) which is an in-plane retardation value at a wavelength of 550 nm, satisfies 100 nm ⁇ Re (550) ⁇ 160 nm. Further, it is more preferable to satisfy 110 nm ⁇ Re (550) ⁇ 150 nm.
  • Examples of the optical compensation layer include a positive A plate and a positive C plate.
  • the positive A plate has Nx> Ny when the refractive index in the slow axis direction in the plane is Nx, the refractive index in the phase advance axis direction in the plane is Ny, and the refractive index in the thickness direction is Nz. Satisfy the relationship.
  • the positive A plate preferably satisfies the relationship of Nx> Ny ⁇ Nz.
  • the positive A plate can also function as a quarter wavelength layer.
  • the positive C plate satisfies the relationship of Nz> Nx ⁇ Ny.
  • the inverse wavelength dispersibility is an optical characteristic in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength, and the following equation (2): Re (450) ⁇ Re (550) ⁇ Re (650) (2) To meet.
  • Re ( ⁇ ) represents an in-plane retardation value for light having a wavelength of ⁇ nm.
  • the optical characteristics of the retardation layer can be adjusted by the orientation state of the liquid crystal compound constituting the retardation expression layer or the stretching method of the stretched film constituting the retardation expression layer.
  • the retardation layer laminate and the linear polarizing plate can be laminated to obtain a polarizing plate composite having antireflection performance.
  • FIG. 2 is a schematic cross-sectional view schematically showing an example of a retardation layer including a retardation expression layer which is a liquid crystal layer and another layer.
  • the first retardation layer 30 shown in FIG. 2 is formed by laminating a base material layer 31, an alignment layer 32, and a retardation expression layer 33, which is a liquid crystal layer, in this order.
  • the retardation layer is not limited to the first retardation layer 30 shown in FIG. 2 as long as it includes the retardation expression layer 33 of the liquid crystal layer, and the base material layer 31 is separated from the first retardation layer 30.
  • the configuration may be composed of only the alignment layer 32 and the phase difference expression layer 33, and the base material layer 31 and the alignment layer 32 are separated from the first retardation layer 30 and only from the phase difference expression layer 33 of the liquid crystal layer. It may be configured as follows. From the viewpoint of thinning, the retardation layer preferably has a structure in which the base material layer 31 is peeled off, and more preferably a structure consisting of only the retardation expression layer 33 of the liquid crystal layer.
  • the base material layer 31 has a function as a support layer that supports the alignment layer 32 formed on the base material layer 31 and the retardation expression layer 33 of the liquid crystal layer.
  • the base material layer 31 is preferably a film made of a resin material.
  • the resin material for example, a resin material having excellent transparency, mechanical strength, thermal stability, stretchability, etc. is used.
  • polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid, poly (meth) methyl acrylate and the like.
  • (meth) acrylic acid means "at least one of acrylic acid and methacrylic acid”.
  • the base material layer 31 may be a single layer obtained by mixing one or more of the above resins, or may have a multilayer structure of two or more layers. When having a multi-layer structure, the resins forming each layer may be the same or different.
  • any additive may be added to the resin material forming the resin film.
  • the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an antioxidant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
  • the thickness of the base material layer 31 is not particularly limited, but is generally preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, and 10 ⁇ m or more and 150 ⁇ m from the viewpoint of workability such as strength and handleability. The following is more preferable.
  • At least the surface of the base material layer 31 on the side where the alignment layer 32 is formed may be subjected to corona treatment, plasma treatment, flame treatment, or the like.
  • a primer layer or the like may be formed.
  • the alignment layer 32 has an orientation regulating force that aligns the liquid crystal compound contained in the phase difference expressing layer 33 of the liquid crystal layer formed on the alignment layer 32 in a desired direction.
  • the oriented layer 32 include an oriented polymer layer formed of an oriented polymer, a photo-aligned polymer layer formed of a photo-aligned polymer, and a grub-aligned layer having a concavo-convex pattern and a plurality of grubs (grooves) on the layer surface. Can be done.
  • the thickness of the alignment layer 32 is usually 0.01 ⁇ m or more and 10 ⁇ m or less, and preferably 0.01 ⁇ m or more and 5 ⁇ m or less.
  • the oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base material layer 31 to remove the solvent, and if necessary, rubbing treatment.
  • the orientation regulating force can be arbitrarily adjusted in the orientation polymer layer formed of the orientation polymer depending on the surface condition of the orientation polymer and the rubbing conditions.
  • the photo-aligned polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base material layer 31 and irradiating it with polarized light.
  • the orientation-regulating force can be arbitrarily adjusted depending on the polarization irradiation conditions of the photo-alignment polymer.
  • the grub alignment layer is active on a plate-shaped master having grooves on the surface, for example, a method of forming a concavo-convex pattern by exposure, development, etc. through an exposure mask having a pattern-shaped slit on the surface of a photosensitive polyimide film.
  • the phase difference expression layer 33 which is a liquid crystal layer, is not particularly limited as long as it gives a predetermined phase difference to light, and is, for example, a phase difference expression layer for a 1/2 wavelength layer and a position for a 1/4 wavelength layer. Examples thereof include a phase difference expression layer, a phase difference expression layer for an optical compensation layer such as a positive C plate, and a phase difference expression layer for an inverse wavelength dispersibility 1/4 wavelength layer.
  • the phase difference expression layer 33 which is a liquid crystal layer, can be formed by using a known liquid crystal compound.
  • the type of the liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used.
  • the liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture thereof. Examples of the liquid crystal compound include JP-A-11-513019, JP-A-2005-289980, JP-A-2007-108732, JP-A-2010-2404038, JP-A-2010-31223, and JP-A.
  • a composition containing the polymerizable liquid crystal compound is applied onto the alignment layer 32 to form a coating film, and the coating film is cured to cure the retardation layer 33.
  • the thickness of the retardation expression layer 33 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the composition containing the polymerizable liquid crystal compound may contain a polymerization initiator, a polymerizable monomer, a surfactant, a solvent, an adhesion improver, a plasticizer, an alignment agent and the like in addition to the liquid crystal compound.
  • Examples of the method for applying the composition containing the polymerizable liquid crystal compound include known methods such as a die coating method.
  • Examples of the curing method of the composition containing the polymerizable liquid crystal compound include known methods such as irradiation with active energy rays (for example, ultraviolet rays).
  • the stretched film is usually obtained by stretching the base material.
  • a roll in which the base material is wound on a roll is prepared, and the base material is continuously unwound and unwound from the winding body.
  • the base material is transferred to the heating furnace.
  • the set temperature of the heating furnace is in the range of the base material near the glass transition temperature (° C) to [glass transition temperature +100] (° C), preferably near the glass transition temperature (° C) to [glass transition temperature +50] (° C). The range of.
  • the transport direction and tension are adjusted and the base material is inclined at an arbitrary angle to perform uniaxial or biaxial thermal stretching treatment.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
  • the method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously tilted to a desired angle, and a known stretching method can be adopted.
  • a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920.
  • the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
  • the base material is usually a transparent base material.
  • the transparent base material means a base material having transparency capable of transmitting light, particularly visible light, and the transparency means a characteristic that the transmittance for light rays having a wavelength of 380 nm or more and 780 nm or less is 80% or more.
  • Specific examples of the transparent base material include a translucent resin base material.
  • Resins constituting the translucent resin base material include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetylcellulose, Cellulose esters such as diacetyl cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyether ketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of availability and transparency, polyethylene terephthalate, polymethacrylic acid ester, cellulose ester, cyclic olefin resin or polycarbonate is preferable.
  • Cellulose ester is an esterified part or all of the hydroxyl groups contained in cellulose and can be easily obtained from the market. Cellulose ester substrates are also readily available on the market. Examples of commercially available cellulose ester base materials include "Fujitac (registered trademark) film” (Fujifilm Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (Konica Minolta Opto Co., Ltd.). ..
  • polymethacrylic acid ester and polyacrylic acid ester may be collectively referred to as (meth) acrylic resin.
  • Examples of the (meth) acrylic resin include homopolymers of methacrylic acid alkyl esters or acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters.
  • Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate and propyl methacrylate
  • specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate and propyl acrylate.
  • As the (meth) acrylic resin a commercially available general-purpose (meth) acrylic resin can be used.
  • As the (meth) acrylic resin what is called an impact resistant (meth) acrylic resin may be used.
  • the rubber particles are preferably acrylic particles.
  • the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer containing an acrylic acid alkyl ester as a main component, such as butyl acrylate or 2-ethylhexyl acrylate, in the presence of a polyfunctional monomer. It is a particle.
  • the acrylic rubber particles may be formed by forming such particles having rubber elasticity in a single layer, or may be a multilayer structure having at least one rubber elastic layer.
  • the multi-layered acrylic rubber particles include those having the above-mentioned particles having rubber elasticity as nuclei and covering them with a hard methacrylic acid alkyl ester polymer, and hard methacrylic acid alkyl ester polymers.
  • the core is made of an acrylic polymer having rubber elasticity as described above, and the hard core is covered with a rubber elastic acrylic polymer, and the periphery thereof is a hard alkyl methacrylic acid ester. Examples thereof include those covered with a system polymer.
  • the rubber particles formed by the elastic layer usually have an average diameter in the range of 50 nm or more and 400 nm or less.
  • the content of rubber particles in the (meth) acrylic resin is usually 5 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and the acrylic rubber particles are commercially available in a mixed state, the commercially available products can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include "HT55X” and "Technoloy S001” sold by Sumitomo Chemical Co., Ltd. "Technoloy S001" is sold in the form of a film.
  • Cyclic olefin resin is easily available on the market.
  • Commercially available cyclic olefin resins include "Topas” (registered trademark) [Ticona (Germany)], “Arton” (registered trademark) [JSR Co., Ltd.], “ZEONOR” (registered trademark) [Japan. Zeon Co., Ltd.], “ZEONEX” (registered trademark) [Zeon Corporation] and "Apel” (registered trademark) [Mitsui Chemicals Co., Ltd.].
  • Such a cyclic olefin resin can be used as a base material by forming a film by a known means such as a solvent casting method or a melt extrusion method.
  • cyclic olefin resin base material can also be used.
  • Commercially available cyclic olefin resin base materials include "Sushina” (registered trademark) [Sekisui Chemical Co., Ltd.], "SCA40” (registered trademark) [Sekisui Chemical Co., Ltd.], and “Zeonor Film” (registered trademark). ) [Optes Co., Ltd.] and "Arton Film” (registered trademark) [JSR Co., Ltd.].
  • the cyclic olefin resin is a copolymer of a cyclic olefin and an aromatic compound having a chain olefin or a vinyl group
  • the content ratio of the structural unit derived from the cyclic olefin is the total structural unit of the copolymer. On the other hand, it is usually in the range of 50 mol% or less, preferably 15 mol% or more and 50 mol% or less.
  • the chain olefin include ethylene and propylene
  • examples of the aromatic compound having a vinyl group include styrene, ⁇ -methylstyrene and alkyl-substituted styrene.
  • the content ratio of the structural unit derived from the chain olefin is the content of the copolymer.
  • the content ratio of the structural unit derived from the aromatic compound having a vinyl group which is usually 5 mol% or more and 80 mol% or less with respect to the total structural unit, is usually 5 mol with respect to the total structural unit of the copolymer. % Or more and 80 mol% or less.
  • Such a ternary copolymer has an advantage that the amount of expensive cyclic olefin used can be relatively reduced in the production thereof.
  • the second cured product layer 50 includes the first retardation layer 30 and the second retardation layer 40. Can be placed for gluing.
  • the thickness of the second cured product layer 50 may be, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the thickness of the second cured product layer 50 may be, for example, 0.5 ⁇ m or more.
  • the second cured product layer 50 contains a cured product of the active energy ray-curable adhesive composition.
  • the active energy ray-curable adhesive composition used for the second cured product layer 50 the above description of the first cured product layer 14 is applied.
  • the active energy ray-curable adhesive composition used for the second cured product layer 50 may not contain either a photosensitizer or a photosensitizer.
  • the active energy ray-curable adhesive composition contained in the second cured product layer 50 may be of the same or different type as the active energy ray-curable adhesive composition contained in the first cured product layer 14.
  • the second cured product layer 50 is preferably a cured product layer of the cationically polymerizable adhesive composition.
  • the storage elastic modulus of the second cured product layer at a temperature of 30 ° C. is preferably 300 MPa or more, more preferably 500 MPa or more, and more preferably 1000 MPa or more, from the viewpoint of suppressing retardation cracks during processing. More preferred. Further, it is preferably 5000 MPa or less, more preferably 4000 MPa or less, and further preferably 3500 MPa or less.
  • the storage elastic modulus of the second cured product layer is measured by the method described in the section of Examples described later.
  • the storage elastic modulus (E 2 ) of the second cured product layer is measured by the method described in the section of Examples described later.
  • the glass transition temperature (Tg 2 ) of the second cured product layer is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and 120 ° C. or lower, from the viewpoint of suppressing retardation cracks during processing. It is more preferable to have. Further, it is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, further preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher.
  • the glass transition temperature (Tg 2 ) of the second cured product layer is measured by the method described in the section of Examples described later.
  • the laminate 100 has an adhesive layer 70 on the opposite side of the retardation layer 20 from the first cured product layer 14.
  • the pressure-sensitive adhesive layer can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • the thickness of the pressure-sensitive adhesive layer is usually 3 ⁇ m or more and 30 ⁇ m or less, preferably 3 ⁇ m or more and 25 ⁇ m or less.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ().
  • Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, and the like, such as meth) acrylate.
  • the pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly.
  • Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
  • the amount of iodine in the pressure-sensitive adhesive layer after the optical laminate is stored at a temperature of 80 ° C. and a relative humidity of 90% for 250 hours is 900 mg / kg or less.
  • the amount of iodine contained in the pressure-sensitive adhesive layer can be measured by the method described in Examples.
  • the iodine content refers to the content of the iodine element in the pressure-sensitive adhesive layer.
  • the amount of iodine contained in the pressure-sensitive adhesive layer is preferably 800 mg / kg or less, more preferably 700 mg / kg or less.
  • FIG. 3A a linear polarizing plate 10 in which a polarizing element 13 and a thermoplastic resin film 11 are laminated via an adhesive layer 12 is produced.
  • FIG. 3B the first retardation layer 30 including the first retardation expression layer 31, the first alignment layer 32 and the first base material layer 33, the second retardation expression layer 43, and the second orientation.
  • the second retardation layer 40 including the layer 42 and the second base material layer 41 is laminated via the second cured product layer 50, and as shown in FIG. 3C, the first base material layer 33 and the first base material layer 33 are laminated.
  • a retardation layer laminate in which the alignment layer 32, the first retardation expression layer 31, the second cured product layer 50, the second retardation expression layer 43, the second alignment layer 42, and the second base material layer 41 are laminated in this order. 60 is made. As shown in FIG. 3D, the polarizer 13 side of the linear polarizing plate 10 and the first retardation layer 30 side of the retardation layer laminate 60 are laminated via the first cured product layer 14, and the laminate is formed. Get 80.
  • an adhesive composition is applied to either or both of the binder 13 and the bonding surface of the thermoplastic resin film 11, and the other is coated.
  • a method of laminating the bonded surfaces of the above and curing the adhesive composition constituting the adhesive layer 12 can be mentioned.
  • the first retardation layer 30 and the second retardation layer 40 As a method of adhering the first retardation layer 30 and the second retardation layer 40, it is active on either or both of the bonding surface of the first retardation layer 30 and the bonding surface of the second retardation layer 40. Examples thereof include a method in which an energy ray-curable adhesive composition is applied, the other bonded surface is laminated thereto, and the active energy ray-curable adhesive constituting the second cured product layer 50 is cured.
  • the active energy ray for curing the active energy ray-curable adhesive constituting the second cured product layer 50 is irradiated from one or both sides of the first retardation layer 30 and the second retardation layer 40. be able to.
  • an active energy ray-curable type is applied to either or both of the bonding surface of the linear polarizing plate 10 and the retardation layer laminate 60.
  • Examples thereof include a method of applying an adhesive composition, laminating the other bonded surface on the adhesive composition, and curing the active energy ray-curable adhesive constituting the first cured product layer 14.
  • the active energy ray-curable adhesive composition is preferably applied only to the bonded surface of the retardation layer laminate 60.
  • the active energy ray for curing the active energy ray-curable adhesive constituting the first cured product layer 14 may be irradiated from either one or both sides of the linear polarizing plate 10 and the retardation layer laminate 60. it can.
  • Corona treatment, plasma treatment, etc. may be performed on either or both of the bonded surfaces, or a primer layer may be formed.
  • various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • the laminate of the present invention may be a laminate containing the laminate 80 and the pressure-sensitive adhesive layer shown in FIG. 3 (D) (the pressure-sensitive adhesive layer is laminated on the second retardation layer 40 side). Further, even if the laminate includes a laminate obtained by peeling at least one of the first substrate layer 33 and the second substrate layer 41 from the laminate 80 shown in FIG. 3 (D) and an adhesive layer. Good. Further, it may be a laminate in which the first base material layer 33 and the first alignment layer 32 are peeled off from the laminate 80 shown in FIG. 3 (D), and a laminate including an adhesive layer, and FIG. 3 It may be a laminate including a laminate in which the second base material layer 41 and the second orientation layer 42 are peeled off from the laminate 80 shown in (D) and an adhesive layer.
  • the optical laminate of the present invention can be laminated on the conductive layer formed on the substrate on the pressure-sensitive adhesive layer 70 side.
  • the conductive layer may be, for example, a conductive transparent metal oxide layer or a metal layer wiring layer.
  • Examples of the conductive transparent metal oxide layer include ITO (tin-doped indium oxide) and AZO (aluminum-doped zinc oxide).
  • the metal constituting the metal wiring layer contains, for example, aluminum, copper, silver, iron, tin, zinc, platinum, nickel, molybdenum, chromium, tungsten, lead, titanium, palladium, indium, and two or more of these metals. It may be a layer containing at least one metal element selected from the alloys to be used. Of these, a layer containing at least one metal element selected from aluminum, copper, silver and gold is preferable from the viewpoint of conductivity, and more preferably contains an aluminum element from the viewpoint of conductivity and cost. It is a layer. When the layer contains copper, it may be blackened from the viewpoint of preventing light reflection. The blackening treatment is to oxidize the surface of the conductive layer to precipitate Cu 2 O or Cu O. Further, the conductive layer may be, for example, a layer containing graphene, zinc oxide or the like.
  • the conductive layer is provided on the substrate, for example.
  • Examples of the method for forming the conductive layer on the substrate include a sputtering method.
  • the substrate may be a transparent substrate constituting a liquid crystal cell included in the touch input element, or may be a glass substrate.
  • the transparent substrate may be formed of, for example, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene naphthalate, polyether sulfone, cyclic olefin copolymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polystyrene, biaxially stretched polystyrene or the like.
  • the glass substrate may be made of, for example, soda lime glass, low-alkali glass, non-alkali glass, or the like.
  • the conductive layer may be formed on the entire surface of the substrate, or may be formed on a part thereof.
  • the metal wiring layer examples include a metal mesh, which is a thin metal wiring layer, metal nanoparticles, and a layer in which metal nanowires are added to a binder.
  • the metal mesh indicates a two-dimensional network structure formed of metal wiring.
  • the shape of the metal mesh opening is not particularly limited, and may be, for example, a polygon (triangle, quadrangle, pentagon, hexagon, etc.), a circle, an ellipse, or an indefinite shape.
  • the openings may be the same or different.
  • the metal mesh openings have the same shape and are square or rectangular, respectively.
  • the metal wiring may be arranged at predetermined intervals in the vertical and horizontal directions of a plane on the substrate, for example.
  • the opening may be filled with a resin (adhesive or the like), or a metal wiring layer may be embedded in the resin (adhesive or the like).
  • resin or the like is used, the conductive layer is composed of both metal wiring and resin (adhesive).
  • the line width of the metal wiring (particularly metal mesh) is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the line width of the metal wiring layer may be a combination of these upper limit values and lower limit values, and is preferably 0.5 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the thickness of the conductive layer is not particularly limited, but is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. It is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the thickness of the conductive layer may be a combination of these upper limit values and lower limit values, and is preferably 0.01 to 3 ⁇ m, more preferably 0.05 to 1 ⁇ m.
  • the thickness of the conductive layer is the thickness including the resin.
  • the method for preparing the conductive layer is not particularly limited, and may be metal foil lamination, such as vacuum deposition method, sputtering method, wet coating, ion plating method, inkjet printing method, gravure printing method, electrolytic plating, and electroless plating. Although it may be formed by sputtering, it is preferably a conductive layer formed by a sputtering method, an inkjet printing method, or a gravure printing method, and more preferably a conductive layer formed by sputtering.
  • the conductive layer (for example, a metal mesh) may have a function of generating a signal when a transparent substrate is touched on a touch panel and transmitting the touch coordinates to an integrated circuit or the like.
  • An optical laminate provided with a conductive layer is useful because it can be used for a touch input type liquid crystal display device having a touch panel function, but it is a polarizer.
  • the dichroic dye (iodine) contained in the above moves to the conductive layer, and the conductive layer is easily corroded.
  • the conductive layer is more likely to be corroded because the line width is narrow.
  • the optical laminate of the present invention can effectively suppress the movement of the dichroic dye to the conductive layer and effectively prevent the corrosion of the conductive layer.
  • the laminate can be used in an image display device.
  • the image display device is a device having an image display panel, and includes a light emitting element or a light emitting device as a light emitting source.
  • the image display device includes a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, an electric field emission display device (FED), a surface electric field emission display).
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • FED electric field emission display device
  • SED electronic paper
  • display device using electronic ink or electrophoresis element plasma display device
  • projection type display device for example, grating light valve (GLV) display device, display with digital micromirror device (DMD)) Devices
  • piezoelectric ceramic displays etc.
  • the liquid crystal display device include any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct-view type liquid crystal display device, and a projection type liquid crystal display device.
  • These image display devices may be an image display device that displays a two-dimensional image, or may be a three-dimensional image display device that displays a three-dimensional image.
  • a polarizing plate that is a circular polarizing plate.
  • the composite can be effectively used in an organic electroluminescence (EL) display device which may include an image display panel having a bent portion.
  • EL organic electroluminescence
  • the optical laminate can function as a circularly polarizing plate and an antireflection film.
  • the optical laminate can be arranged on the viewing side of the image display layer panel in a direction in which the polarizing film is located on the viewing side.
  • the laminate is suitable as a circularly polarizing plate or an antireflection film used in an in-vehicle image display device.
  • the laminates obtained in Examples and Comparative Examples were cut into test pieces having a size of 25 mm ⁇ 50 mm and attached to the metal layer side of the glass substrate with a metal layer via an adhesive layer.
  • a glass substrate manufactured by Geomatec Co., Ltd.
  • the obtained optical laminate was stored in an oven at a temperature of 85 ° C.
  • The number of pitting corrosion generated on the surface of the metal layer is 4 or less.
  • The number of pitting corrosion generated on the surface of the metal layer is 10 or less.
  • X A large number of pitting corrosions occur on the front surface of the metal layer surface.
  • a cyclic polyolefin resin film having a thickness of 50 ⁇ m is coated with any of the adhesives 1 to 5 described below using a coating machine [Barcoater, manufactured by Daiichi Rika Co., Ltd.], and the coated surface is coated. Further, a cyclic polyolefin resin film having a thickness of 50 ⁇ m was laminated. Next, the adhesive layer was cured by irradiating with ultraviolet rays so that the integrated light amount was 1500 mJ / cm 2 (UVB) by a "D bulb” manufactured by Fusion UV Systems.
  • UVB ultraviolet ray
  • This cured film is gripped with a dynamic viscoelasticity measuring device "DVA-220" manufactured by IT Measurement Control Co., Ltd. at a distance of 2 cm between grippers so that the long side thereof is in the tensile direction, and tension and contraction are performed.
  • the frequency was set to 10 Hz and the temperature rising rate was set to 10 ° C./min, and measurements were performed in the temperature range of 25 ° C. to 200 ° C. to determine the storage elastic modulus at a temperature of 80 ° C.
  • the glass transition temperature The temperature at which the value of the storage modulus (E A) and the loss modulus ratio (E B) (E B / E A) is the maximum value did.
  • the results are shown in Tables 1 and 3.
  • a film with an adhesive layer having an acrylic pressure-sensitive adhesive layer 1 having a thickness of 5 ⁇ m formed on the surface of a triacetyl cellulose film having a thickness of 20 ⁇ m was prepared.
  • Moisture permeability at a temperature 80 ° C. and 90% relative humidity of the pressure-sensitive with adhesive layer film was 5200 [g / (m 2 ⁇ 24hr)].
  • the coating layer is cured by irradiating the coating layer with ultraviolet rays to form a 30 ⁇ m adhesive layer 1 and a 30 ⁇ m adhesive layer 1/5 ⁇ m acrylic pressure-sensitive adhesive.
  • a laminated body having a laminated structure of a triacetyl cellulose film having a agent layer of 1/20 ⁇ m was obtained.
  • Adhesive 1 was changed to adhesives 2 to 5, and the moisture permeability of each adhesive was measured. The results are shown in Tables 1 and 3.
  • A-1 3', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (trade name: CEL2021P, manufactured by Daicel Corporation)
  • A-2 1,2-Epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (trade name: EHPE3150, manufactured by Daicel Corporation)
  • A-3 Neopentyl glycol diglycidyl ether (trade name: EX-211L, manufactured by Nagase ChemteX Corporation)
  • A-4 3-Ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (trade name: OXT-221, manufactured by Toa Synthetic Co., Ltd.)
  • A-5 Bisphenol A type epoxy resin (trade name: EP-4100E, ADEKA Corporation, viscos
  • a cycloolefin film (COP film) with a hard coat layer having a thickness of 25 ⁇ m was attached to one side of the obtained polarizing film via an aqueous adhesive, dried at 90 ° C., and the COP film / aqueous adhesive (adhesive) was applied.
  • a linear polarizing plate 1 having a laminated structure of agent layer) / polarizer was obtained.
  • a ⁇ / 2 alignment treatment was performed by applying an alignment film coating liquid to a transparent resin base material and drying it. Next, a coating liquid containing a discotic liquid crystal compound is applied to the alignment surface, and the orientation of the liquid crystal compound is fixed by heating and UV irradiation. was produced.
  • a transparent resin base material for ⁇ / 4 alignment which has been rubbed with an alignment film, is coated with a coating liquid containing a rod-shaped and polymerizable nematic liquid crystal monomer and solidified while maintaining refractive index anisotropy.
  • a retardation-expressing layer having a thickness of 1 ⁇ m was obtained on the substrate.
  • the liquid crystal layer side of the ⁇ / 2 retardation layer and the ⁇ / 4 retardation layer was subjected to corona treatment. Arrange so that the angle formed by the slow axis of the ⁇ / 2 retardation layer and the slow axis of the ⁇ / 4 retardation layer is 60 °, and use the adhesive 1 so that the thickness of the adhesive is 3 ⁇ m.
  • the liquid crystal layers were bonded to each other with a laminator to obtain a laminated body.
  • UV irradiation was performed with an integrated light amount of 400 mJ / cm 2 (UV-B) using an ultraviolet irradiation device [manufactured by Fusion UV Systems Co., Ltd.], and the above-mentioned adhesion was performed.
  • Agent 1 is cured to form a second cured product layer, which is " ⁇ / 2 retardation layer" (first retardation layer) / adhesive layer (second cured product layer) / " ⁇ / 4 retardation layer” (first A retardation layer laminate having a laminated structure of two retardation layers) was obtained.
  • Example 1 The alignment film on the ⁇ / 2 retardation layer side and the transparent resin base material of the obtained retardation layer laminate are peeled off, and the surface of the linear polarizing plate 1 opposite to the thermoplastic resin film and the ⁇ / 2 retardation The liquid crystal layer of the layer was bonded to each other using the adhesive 2.
  • the thickness of the first cured product layer made of the adhesive 2 was 3 ⁇ m, and the angle formed by the transmission axis of the polarizer and the slow axis of the ⁇ / 2 retardation layer was 15 °.
  • thermoplastic resin film / water-based adhesive adheresive layer
  • polarizer / first cured product layer / " ⁇ / 2 retardation”
  • An acrylic pressure-sensitive adhesive layer 1 having a thickness of 15 ⁇ m was laminated on the surface of the second retardation layer of the obtained laminate to obtain the laminate of Example 1.
  • the obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 2.
  • ⁇ Comparative example 1> The alignment film on the ⁇ / 2 retardation layer side and the transparent resin base material of the obtained retardation layer laminate are peeled off, and the surface of the linear polarizing plate 1 opposite to the thermoplastic resin film and the ⁇ / 2 phase difference.
  • the liquid crystal layer of the layer was bonded to each other using an acrylic pressure-sensitive adhesive layer 2 having a thickness of 5 ⁇ m (storage elastic modulus at a temperature of 80 ° C. of 0.5 MPa, glass transition temperature of ⁇ 45 ° C.).
  • the angle formed by the transmission axis of the polarizer and the slow axis of the ⁇ / 2 retardation layer was 15 °.
  • thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / adhesive layer / " ⁇ / 2 retardation layer” A laminated body having a laminated structure of (first retardation layer) / second cured product layer / " ⁇ / 4 retardation layer” (second retardation layer) was obtained.
  • An acrylic pressure-sensitive adhesive layer 1 having a thickness of 15 ⁇ m was laminated on the surface of the second retardation layer of the obtained laminate to obtain a laminate of Comparative Example 1.
  • the obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 2.
  • A-7 3', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (trade name: CEL2021P, manufactured by Daicel Corporation)
  • A-8 2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct (trade name: EHPE3150, manufactured by Daicel Corporation)
  • A-10 3-Ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (trade name: OXT-221, manufactured by Toa Synthetic Co., Ltd.)
  • A-111 Compound represented by the following formula
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that the adhesive 2 was replaced with the adhesives 3 to 5. The obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 4.
  • the laminate of Example 2 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 3) / " ⁇ / 2 retardation layer”. It has a laminated structure of (first retardation layer) / second cured product layer (cured product layer of adhesive 1) / " ⁇ / 4 retardation layer” (second retardation layer) / 15 ⁇ m pressure-sensitive adhesive layer.
  • the laminate of Example 3 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 4) / " ⁇ / 2 retardation layer" (first It has a laminated structure of 1 retardation layer) / second cured product layer (cured product layer of adhesive 1) / " ⁇ / 4 retardation layer” (second retardation layer) / 15 ⁇ m pressure-sensitive adhesive layer.
  • the laminate of Example 4 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 5) / " ⁇ / 2 retardation layer” (first It has a laminated structure of 1 retardation layer) / second cured product layer (cured product layer of adhesive 1) / " ⁇ / 4 retardation layer” (second retardation layer) / 15 ⁇ m pressure-sensitive adhesive layer.
  • the laminate of Comparative Example 2 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 1) / " ⁇ / 2 retardation layer”. It has a laminated structure of (first retardation layer) / second cured product layer (cured product layer of adhesive 1) / " ⁇ / 4 retardation layer” (second retardation layer) / 15 ⁇ m pressure-sensitive adhesive layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

[Abstract] [Problem] To provide an optical laminate capable of preventing, even in a high-temperature and high-humidity environment, the deterioration of a conductive layer due to the migration of a dichroic dye included in a polarizer to the conductive layer because the movement of the dichroic dye from the polarizer is particularly dominant in the high-temperature and high-humidity environment. [Solution] This optical laminate includes a polarizer, a first cured product layer, a retardation layer, and an adhesive layer, in this order, wherein: the polarizer is composed of a polyvinyl alcohol resin including iodine; the first cured product layer is a cured product of an active energy curable composition; the retardation layer includes at least one retardation expression layer which is a polymer of a polymerizable liquid crystal compound; the adhesive layer has an iodine content of 900 mg/kg after the optical laminate is stored for 250 hours at a temperature of 80 °C and a relative humidity of 90%; the polarizer and the first cured product layer are in direct contact with each other; and the first cured product layer and the retardation layer are in direct contact with each other. [Selected drawing] FIG. 1

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 画像表示装置において、画像表示パネルの視認側に反射防止性能を有する光学積層体を配置して、外来光の反射による視認性の低下を抑制する方法が採用されている。 In the image display device, a method is adopted in which an optical laminate having antireflection performance is arranged on the visual side of the image display panel to suppress deterioration of visibility due to reflection of external light.
 反射防止性能を有する光学積層体として、偏光子の両面に熱可塑性樹脂フィルムを備えた直線偏光板及び位相差層とを粘着剤層を介して積層させた構成からなる円偏光板が知られている(特許文献1)。円偏光板は通常、位相差層の直線偏光板とは反対側にさらに粘着剤層を設け、画像表示パネルに積層される。 As an optical laminate having antireflection performance, a circular polarizing plate having a structure in which a linear polarizing plate having a thermoplastic resin film on both sides of a polarizing element and a retardation layer are laminated via an adhesive layer is known. (Patent Document 1). The circularly polarizing plate is usually provided with an adhesive layer on the side opposite to the linearly polarized light of the retardation layer, and is laminated on the image display panel.
 また、近年、画像表示装置において、円偏光板とタッチパネル機能を有する画像表示パネルを組み合わせて用いる入力装置が広く普及してきている。タッチパネル機能を有する画像表示パネルの表面には、酸化インジウムスズ(ITO)薄膜等の透明導電膜や、アルミニウム等の金属層からなる導電層が形成されている。 Further, in recent years, in image display devices, input devices that use a combination of a circularly polarizing plate and an image display panel having a touch panel function have become widespread. A transparent conductive film such as an indium tin oxide (ITO) thin film or a conductive layer made of a metal layer such as aluminum is formed on the surface of an image display panel having a touch panel function.
特開2019-197235号公報JP-A-2019-197235
 近年、画像表示装置の薄膜化に伴い、偏光子の片面のみに熱可塑性樹脂フィルムを備えた直線偏光板を適用した円偏光板が提案されている。このような構成の直線偏光板を導電層に積層させた場合、偏光子に含まれる二色性色素(例えばヨウ素)が導電層まで移動する場合があり、感知不良等の誤作動を生じさせる場合がある。偏光子からの二色性色素の移動は、特に高温高湿の環境下において顕著となるため、高温高湿の環境下においても偏光子に含まれる二色性色素が、導電層へ移行する事による導電層の劣化を防止できる光学積層体が必要とされている。 In recent years, with the thinning of image display devices, circular polarizing plates to which a linear polarizing plate having a thermoplastic resin film is provided on only one side of a polarizing element have been proposed. When a linear polarizing plate having such a configuration is laminated on the conductive layer, the dichroic dye (for example, iodine) contained in the polarizer may move to the conductive layer, which may cause a malfunction such as poor detection. There is. Since the movement of the dichroic dye from the polarizer is particularly remarkable in a high temperature and high humidity environment, the dichroic dye contained in the polarizing element is transferred to the conductive layer even in a high temperature and high humidity environment. There is a need for an optical laminate that can prevent deterioration of the conductive layer due to the above.
 本発明は、以下の[1]~[16]を提供する。
[1] 偏光子と、第1硬化物層と、位相差層と、粘着剤層とをこの順に含む光学積層体であり、
 前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
 前記第1硬化物層は、活性エネルギー硬化性組成物の硬化物であり、
 前記位相差層は、重合性液晶化合物の重合体である位相差発現層を少なくとも一つ含み、
 前記粘着剤層は、光学積層体を温度80℃、相対湿度90%において250時間保管した後のヨウ素量が900mg/kg以下であり、
 前記偏光子と前記第1硬化物層とは直接接し、
 前記第1硬化物層と前記位相差層とは直接接している、光学積層体。
[2] 前記位相差層は、前記第1硬化物層側から、第1重合層と、第2硬化物層と、第2重合層とをこの順に含む層であり、
 前記第1重合層及び前記第2重合層は、互いに独立して、重合性液晶化合物の重合体を含む、[1]に記載の光学積層体。
[3] 前記第2硬化物層は、活性エネルギー線硬化物層である、[2]に記載の光学積層体。
[4] 厚み30μmにおける第1硬化物層の温度80℃相対湿度90%の透湿度が1500[g/(m・24hr)]以下である、[1]~[3]のいずれかに記載の光学積層体。
[5] 偏光子と、第1硬化物層と、第1位相差層と、第2硬化物層と、第2位相差層と、粘着剤層とをこの順に含む光学積層体であり、
 前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
 第1位相差層及び第2位相差層は、互いに独立して、重合性液晶化合物の重合体を含む位相差発現層を含み、
 第1硬化物層及び第2硬化物層は、互いに独立して、活性エネルギー線硬化性組成物の硬化物を含み、
 前記第1硬化物層の温度80℃における貯蔵弾性率が300MPa以上であり、
 前記偏光子と前記第1硬化物層とは直接接し、
 前記第1硬化物層と前記第1位相差層とは直接接している、光学積層体。
[6] 前記第2硬化物層の温度80℃における貯蔵弾性率が20MPa以上である、[5]に記載の光学積層体。
[7] 前記第1硬化物層の温度80℃における貯蔵弾性率(E)が、前記第2硬化物層の温度80℃における貯蔵弾性率(E)より大きい、[5]又は[6]に記載の光学積層体。
[8] 厚み30μmにおける第1硬化物層の温度80℃相対湿度90%の透湿度が1500[g/(m・24hr)]以下である、[5]~[7]のいずれかに記載の光学積層体。
[9] 偏光子と、第1硬化物層と、第1位相差層と、第2硬化物層と、第2位相差層と、粘着剤層とをこの順に含む光学積層体であり、
 前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
 前記第1位相差層及び前記第2位相差層は、互いに独立して、重合性液晶化合物の重合体である位相差発現層を含み、
 前記第1硬化物層及び前記第2硬化物層は、それぞれ独立して、活性エネルギー線硬化性組成物の硬化物であり、
 前記第1硬化物層のガラス転移温度(Tg)が60℃超であり、
 前記偏光子と前記第1硬化物層とは直接接し、
 前記第1硬化物層と前記第1位相差層とは直接接している、光学積層体。
[10] 前記第2硬化物層のガラス転移温度(Tg)が40℃以上である、[9]に記載の光学積層体。
[11] 前記第1硬化物層のガラス転移温度(Tg)が、前記第2硬化物層のガラス転移温度(Tg)より大きい、[9]又は[10]に記載の光学積層体。
[12] 厚み30μmにおける第1硬化物層の温度80℃相対湿度90%の透湿度が1500[g/(m・24hr)]以下である、[9]~[11]のいずれかに記載の光学積層体。
[13] 偏光子と、第1硬化物層と、位相差層と、粘着剤層とをこの順に含む光学積層体であり、
 前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
 前記位相差層は、重合性液晶化合物の重合体を含む位相差発現層を含み、
 前記第1硬化物層は、活性エネルギー硬化性組成物の硬化物であり、
 前記活性エネルギー線硬化性組成物は、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有する組成物である、光学積層体。
[14] 偏光子と、第1硬化物層と、第1位相差層と、第2硬化物層と、第2位相差層と、粘着剤層とをこの順に含む光学積層体であり、
 前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
 前記1硬化物層は活性エネルギー硬化性組成物の硬化物であり、
 前記活性エネルギー線硬化性組成物は、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有する組成物である、光学積層体。
[15] 硬化性成分(A)と光重合開始剤(B)とを含む活性エネルギー線硬化性組成物であって、
 前記硬化性成分(A)は多官能オキセタン化合物(A5-1)及び3環式の縮合環とジグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有し、
 前記多官能オキセタン化合物(A5-1)の含有量が前記3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)の含有量よりも多い、活性エネルギー線硬化性組成物。
[16] 前記多官能オキセタン化合物(A5-1)と前記3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)との含有比(質量比)が、前記多官能オキセタン化合物(A5-1)/前記3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)=1.5/1~5/1である[15]に記載の活性エネルギー線硬化性組成物。
The present invention provides the following [1] to [16].
[1] An optical laminate including a polarizer, a first cured product layer, a retardation layer, and an adhesive layer in this order.
The polarizer is made of a polyvinyl alcohol resin containing iodine.
The first cured product layer is a cured product of an active energy curable composition.
The retardation layer contains at least one retardation expression layer which is a polymer of a polymerizable liquid crystal compound.
The pressure-sensitive adhesive layer has an iodine content of 900 mg / kg or less after the optical laminate is stored at a temperature of 80 ° C. and a relative humidity of 90% for 250 hours.
The polarizer and the first cured product layer are in direct contact with each other.
An optical laminate in which the first cured product layer and the retardation layer are in direct contact with each other.
[2] The retardation layer is a layer containing the first polymerized layer, the second cured product layer, and the second polymerized layer in this order from the first cured product layer side.
The optical laminate according to [1], wherein the first polymerized layer and the second polymerized layer contain a polymer of a polymerizable liquid crystal compound independently of each other.
[3] The optical laminate according to [2], wherein the second cured product layer is an active energy ray-cured product layer.
[4] Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30μm is 1500 [g / (m 2 · 24hr)] Hereinafter, according to any one of [1] to [3] Optical laminate.
[5] An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
The polarizer is made of a polyvinyl alcohol resin containing iodine.
The first retardation layer and the second retardation layer contain a retardation expression layer containing a polymer of a polymerizable liquid crystal compound independently of each other.
The first cured product layer and the second cured product layer contain the cured product of the active energy ray-curable composition independently of each other.
The storage elastic modulus of the first cured product layer at a temperature of 80 ° C. is 300 MPa or more.
The polarizer and the first cured product layer are in direct contact with each other.
An optical laminate in which the first cured product layer and the first retardation layer are in direct contact with each other.
[6] The optical laminate according to [5], wherein the second cured product layer has a storage elastic modulus of 20 MPa or more at a temperature of 80 ° C.
[7] The storage elastic modulus (E 1 ) of the first cured product layer at a temperature of 80 ° C. is larger than the storage elastic modulus (E 2 ) of the second cured product layer at a temperature of 80 ° C., [5] or [6]. ] The optical laminate according to.
[8] Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30μm is 1500 [g / (m 2 · 24hr)] Hereinafter, according to any one of [5] to [7] Optical laminate.
[9] An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
The polarizer is made of a polyvinyl alcohol resin containing iodine.
The first retardation layer and the second retardation layer contain a retardation expression layer which is a polymer of a polymerizable liquid crystal compound independently of each other.
The first cured product layer and the second cured product layer are independently cured products of an active energy ray-curable composition.
The glass transition temperature (Tg 1 ) of the first cured product layer is more than 60 ° C.
The polarizer and the first cured product layer are in direct contact with each other.
An optical laminate in which the first cured product layer and the first retardation layer are in direct contact with each other.
[10] The optical laminate according to [9], wherein the glass transition temperature (Tg 2) of the second cured product layer is 40 ° C. or higher.
[11] The optical laminate according to [9] or [10], wherein the glass transition temperature (Tg 1 ) of the first cured product layer is higher than the glass transition temperature (Tg 2) of the second cured product layer.
[12] Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30μm is 1500 [g / (m 2 · 24hr)] Hereinafter, according to any one of [9] to [11] Optical laminate.
[13] An optical laminate including a polarizer, a first cured product layer, a retardation layer, and an adhesive layer in this order.
The polarizer is made of a polyvinyl alcohol resin containing iodine.
The retardation layer includes a retardation expression layer containing a polymer of a polymerizable liquid crystal compound.
The first cured product layer is a cured product of an active energy curable composition.
The active energy ray-curable composition is an optical laminate containing an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
[14] An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
The polarizer is made of a polyvinyl alcohol resin containing iodine.
The one cured product layer is a cured product of an active energy curable composition.
The active energy ray-curable composition is an optical laminate containing an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
[15] An active energy ray-curable composition containing a curable component (A) and a photopolymerization initiator (B).
The curable component (A) contains a polyfunctional oxetane compound (A5-1) and an epoxy compound (A2-1) containing a tricyclic condensed ring and a diglycidyl ether group in the molecule.
Active energy rays in which the content of the polyfunctional oxetane compound (A5-1) is higher than the content of the epoxy compound (A2-1) containing the tricyclic condensed ring and two glycidyl ether groups in the molecule. Curable composition.
[16] The content ratio (mass ratio) of the polyfunctional oxetane compound (A5-1) to the epoxy compound (A2-1) containing the tricyclic condensed ring and two glycidyl ether groups in the molecule is determined. The polyfunctional oxetane compound (A5-1) / epoxy compound (A2-1) containing the tricyclic condensed ring and two glycidyl ether groups in the molecule = 1.5 / 1 to 5/1 [ 15] The active energy ray-curable composition according to.
 本発明の光学積層体は、直線偏光板と位相差層とを備えた積層体において、粘着剤層を介して導電層と積層させた際に、導電層の腐食を抑制することができる。 The optical laminate of the present invention is a laminate provided with a linear polarizing plate and a retardation layer, and can suppress corrosion of the conductive layer when laminated with the conductive layer via an adhesive layer.
本発明の積層体を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the laminated body of this invention. 位相差層を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the retardation layer. 積層体の製造方法における各製造工程の一例を模式的に示す概略断面図である。It is the schematic cross-sectional view which shows typically an example of each manufacturing process in the manufacturing method of a laminated body.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale is appropriately adjusted to make it easier to understand each component, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 <光学積層体>
 本発明の光学積層体について、図1を参照しながら説明する。図1に示す光学積層体100は、偏光子13、第1硬化物層14、位相差層20、粘着剤層70をこの順に含み、偏光子13及び第1硬化物層14は直接接しており、第1硬化物層14と位相差層20とは直接接している。偏光子13の第一硬化物層14とは反対側には、接着剤層12を介して熱可塑性樹脂フィルム11を積層してもよい。また、位相差層20と粘着剤層70とは直接接していることが好ましい。本発明においては、熱可塑性樹脂フィルム11、接着剤層12、偏光子13をこの順に含む構成を、直線偏光板10という。
<Optical laminate>
The optical laminate of the present invention will be described with reference to FIG. The optical laminate 100 shown in FIG. 1 includes a polarizer 13, a first cured product layer 14, a retardation layer 20, and an adhesive layer 70 in this order, and the polarizer 13 and the first cured product layer 14 are in direct contact with each other. , The first cured product layer 14 and the retardation layer 20 are in direct contact with each other. The thermoplastic resin film 11 may be laminated on the side of the polarizer 13 opposite to the first cured product layer 14 via the adhesive layer 12. Further, it is preferable that the retardation layer 20 and the pressure-sensitive adhesive layer 70 are in direct contact with each other. In the present invention, the configuration including the thermoplastic resin film 11, the adhesive layer 12, and the polarizer 13 in this order is referred to as a linear polarizing plate 10.
 図示されていないが、熱可塑性樹脂フィルム11の接着剤層12とは反対側に、ハードコート層や反射防止層等の公知の表面処理層を設けていてもよい。また、光学積層体100の厚みは、例えば2μm以上100μmであってよく、好ましくは2μm以上80μm以下である。 Although not shown, a known surface treatment layer such as a hard coat layer or an antireflection layer may be provided on the opposite side of the thermoplastic resin film 11 from the adhesive layer 12. The thickness of the optical laminate 100 may be, for example, 2 μm or more and 100 μm, preferably 2 μm or more and 80 μm or less.
 光学積層体100は、長尺状であってもよいし、枚葉状であってもよい。光学積層体100が枚葉状である場合、光学積層体100の平面視における形状は、実質的に矩形であることができる。平面視とは光学積層体100の厚み方向からみることをいう。実質的に矩形であるとは、4つの隅(角部)のうち少なくとも1つの角部が鈍角となるように切除された形状や丸みを設けた形状であったり、平面視における端面の一部が面内方向に窪んだ凹み部(切り欠け)を有したり、平面視における形状の一部が、円形、楕円形、多角形及びそれらの組合せ等の形状にくり抜かれた穴あき部を有したりしてもよいことをいう。 The optical laminate 100 may be long or single-wafered. When the optical laminate 100 has a single-wafer shape, the shape of the optical laminate 100 in a plan view can be substantially rectangular. The plan view means that the optical laminate 100 is viewed from the thickness direction. A substantially rectangular shape means a shape in which at least one of the four corners (corners) is cut off so as to have an obtuse angle, a shape having a rounded shape, or a part of an end face in a plan view. Has a recess (notch) that is recessed in the in-plane direction, or has a perforated part that is hollowed out into a shape such as a circle, an ellipse, a polygon, or a combination thereof in a plan view. It means that you can do it.
 光学積層体100の大きさは特に限定されない。光学積層体100が枚葉状であり、かつ実質的に矩形である場合、長辺の長さは6cm以上35cm以下であることが好ましく、10cm以上30cm以下であることがより好ましく、短辺の長さは5cm以上30cm以下であることが好ましく、6cm以上25cm以下であることがより好ましい。 The size of the optical laminate 100 is not particularly limited. When the optical laminate 100 is single-wafered and substantially rectangular, the length of the long side is preferably 6 cm or more and 35 cm or less, more preferably 10 cm or more and 30 cm or less, and the length of the short side. The size is preferably 5 cm or more and 30 cm or less, and more preferably 6 cm or more and 25 cm or less.
 (熱可塑性樹脂フィルム)
 熱可塑性樹脂フィルム11は、積層体の視認側に配置されることができる。熱可塑性樹脂フィルム11は偏光子13を保護するための保護フィルムの機能を有することができる。図示されていないが、熱可塑性樹脂フィルムは、偏光子の両側に配置されていてもよいが、積層体の薄膜化の観点で、熱可塑性樹脂フィルムは、偏光子の片側に配置されることが好ましく、積層体の視認側にのみ配置されることがより好ましい。
(Thermoplastic resin film)
The thermoplastic resin film 11 can be arranged on the visible side of the laminate. The thermoplastic resin film 11 can have the function of a protective film for protecting the polarizer 13. Although not shown, the thermoplastic resin film may be arranged on both sides of the polarizer, but from the viewpoint of thinning the laminate, the thermoplastic resin film may be arranged on one side of the polarizer. Preferably, it is more preferably arranged only on the visible side of the laminate.
 熱可塑性樹脂フィルム11の材質としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂フィルム、トリアセチルセルロース、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、(メタ)アクリル系樹脂フィルム、ポリプロピレン系樹脂フィルムなど、当分野において公知のフィルムを挙げることができる。熱可塑性樹脂フィルム11の厚みは、薄型化の観点から、通常300μm以下であり、200μm以下であることが好ましく、50μm以下であることがより好ましく、また、通常5μm以上であり、20μm以上であることが好ましい。また、熱可塑性樹脂フィルム11は位相差を有していてもよいし、位相差を有していなくてもよい。 The material of the thermoplastic resin film 11 is not particularly limited, but for example, a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose, polyethylene terephthalate, or polyethylene na. Examples of films known in the art include polyester resin films made of resins such as phthalate and polybutylene terephthalate, polycarbonate resin films, (meth) acrylic resin films, and polypropylene resin films. From the viewpoint of thinning, the thickness of the thermoplastic resin film 11 is usually 300 μm or less, preferably 200 μm or less, more preferably 50 μm or less, and usually 5 μm or more, 20 μm or more. Is preferable. Further, the thermoplastic resin film 11 may or may not have a phase difference.
 熱可塑性樹脂フィルム11は、必要に応じて、ゴム粒子、滑剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、帯電防止剤、酸化防止剤等の添加剤を1種又は2種以上含有してもよい。熱可塑性樹脂フィルム11は、積層体の耐久性(耐光性)の観点から紫外線吸収剤を含むことが好ましい。 The thermoplastic resin film 11 contains rubber particles, lubricants, fluorescent whitening agents, dispersants, heat stabilizers, light stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, antioxidants, etc., as required. The additive may be contained alone or in combination of two or more. The thermoplastic resin film 11 preferably contains an ultraviolet absorber from the viewpoint of durability (light resistance) of the laminated body.
 熱可塑性樹脂フィルム11は、耐腐食性の観点から、透湿度は100g/m・24hr以下であることが好ましく、30g/m・24hr以下であることがより好ましい。 The thermoplastic resin film 11, from the viewpoint of corrosion resistance, moisture permeability is preferably not more than 100g / m 2 · 24hr, and more preferably less 30g / m 2 · 24hr.
(接着剤層)
 接着剤層12は、熱塑性樹脂フィルム11と偏光子13とを接着するための接着剤から形成された層である。接着剤は、両者に対して接着力を発現するものであればよく、例えば、接着剤成分を水に溶解又は分散させた水系接着剤や、活性エネルギー線硬化性化合物を含有する活性エネルギー線硬化型接着剤組成物が挙げられる。
(Adhesive layer)
The adhesive layer 12 is a layer formed of an adhesive for adhering the thermoplastic resin film 11 and the polarizer 13. The adhesive may be any adhesive that exhibits adhesive strength to both of them. For example, an aqueous adhesive in which an adhesive component is dissolved or dispersed in water, or an active energy ray-curable compound containing an active energy ray-curable compound. Examples include mold adhesive compositions.
 水系接着剤組成物としては、例えば、主成分としてポリビニルアルコール系樹脂又はウレタン樹脂を用い、密着性を向上させるために、イソシアネート系化合物やエポキシ化合物のような架橋剤又は硬化性化合物を配合した組成物であることができる。 As the water-based adhesive composition, for example, a polyvinyl alcohol-based resin or a urethane resin is used as a main component, and a cross-linking agent or a curable compound such as an isocyanate-based compound or an epoxy compound is blended in order to improve adhesion. Can be a thing.
 水系接着剤組成物の主成分としてポリビニルアルコール系樹脂を用いる場合、部分ケン化ポリビニルアルコール及び完全ケン化ポリビニルアルコールのほか、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、及びアミノ基変性ポリビニルアルコールのような、変性されたポリビニルアルコール系樹脂を用いてもよい。水系接着剤組成物は好ましくはアセトアセチル基変性ポリビニルアルコールを含む。このようなポリビニルアルコール系樹脂の水溶液が水系接着剤として用いられるが、水系接着剤中のポリビニルアルコール系樹脂の濃度は、水100質量部に対して、通常1質量部以上10質量部以下であり、好ましくは1質量部以上5質量部以下である。 When a polyvinyl alcohol-based resin is used as the main component of the aqueous adhesive composition, in addition to partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, etc. And modified polyvinyl alcohol-based resins such as amino group-modified polyvinyl alcohol may be used. The water-based adhesive composition preferably contains an acetoacetyl group-modified polyvinyl alcohol. Such an aqueous solution of a polyvinyl alcohol-based resin is used as a water-based adhesive, and the concentration of the polyvinyl alcohol-based resin in the water-based adhesive is usually 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of water. It is preferably 1 part by mass or more and 5 parts by mass or less.
 ポリビニルアルコール系樹脂の水溶液からなる水系接着剤組成物には、密着性を向上させるために、多価アルデヒド、水溶性エポキシ樹脂、メラミン系化合物、ジルコニア系化合物、及び亜鉛化合物のような硬化性化合物を配合することができる。水溶性エポキシ樹脂の例を挙げると、ジエチレントリアミンやトリエチレンテトラミンのようなポリアルキレンポリアミンとアジピン酸のようなジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られる水溶性のポリアミドエポキシ樹脂がある。このようなポリアミドエポキシ樹脂の市販品として、住化ケムテックス株式会社から販売されている「スミレーズレジン650」及び「スミレーズレジン675」、日本PMC株式会社から販売されている「WS-525」などがある。水溶性エポキシ樹脂を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常1質量部以上100質量部以下であり、好ましくは1質量部以上50質量部以下である。 A curable compound such as a polyvalent aldehyde, a water-soluble epoxy resin, a melamine compound, a zirconia compound, and a zinc compound is added to an aqueous adhesive composition composed of an aqueous solution of a polyvinyl alcohol resin in order to improve adhesion. Can be blended. To give an example of a water-soluble epoxy resin, a water-soluble epoxy resin obtained by reacting a polyamide polyamine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid with epichlorohydrin. There is a sex polyamide epoxy resin. As commercially available products of such polyamide epoxy resin, "Sumirace Resin 650" and "Sumiraizu Resin 675" sold by Sumika Chemtex Co., Ltd., "WS-525" sold by Japan PMC Co., Ltd., etc. There is. When the water-soluble epoxy resin is blended, the amount added is usually 1 part by mass or more and 100 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polyvinyl alcohol-based resin.
 また、水系接着剤組成物の主成分としてウレタン樹脂を用いる場合、ポリエステル系アイオノマー型ウレタン樹脂を水系接着剤組成物の主成分とするのが有効である。ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入されたものである。かかるアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合するのが有効である。ポリエステル系アイオノマー型ウレタン樹脂を偏光板の接着剤とすることは、例えば、特開 2005-70140号公報や特開2005-208456号公報に記載されている。 When urethane resin is used as the main component of the water-based adhesive composition, it is effective to use polyester-based ionomer-type urethane resin as the main component of the water-based adhesive composition. The polyester-based ionomer type urethane resin referred to here is a urethane resin having a polyester skeleton, in which a small amount of an ionic component (hydrophilic component) is introduced. Since such an ionomer type urethane resin is directly emulsified in water to form an emulsion without using an emulsifier, it can be used as an aqueous adhesive. When a polyester ionomer type urethane resin is used, it is effective to add a water-soluble epoxy compound as a cross-linking agent. Using a polyester-based ionomer type urethane resin as an adhesive for a polarizing plate is described in, for example, Japanese Patent Application Laid-Open No. 2005-70140 and Japanese Patent Application Laid-Open No. 2005-208456.
 水系接着剤組成物は、充填剤、流動調整剤、消泡剤、レベリング剤、色素、有機溶剤等を含むことができる。 The water-based adhesive composition can contain a filler, a flow conditioner, a defoaming agent, a leveling agent, a dye, an organic solvent and the like.
 水系接着剤組成物は、通常、各成分を水に溶かした形態で使用される。水系接着剤組成物に含まれる水に溶解しない成分は、系中に分散した状態であればよい。水系接着剤組成物を偏光子の片面に塗布し、乾燥させることで透明粘着剤を形成させてもよい。 The water-based adhesive composition is usually used in the form of each component dissolved in water. The components contained in the water-based adhesive composition that are insoluble in water may be dispersed in the system. A transparent pressure-sensitive adhesive may be formed by applying the water-based adhesive composition to one side of the polarizer and drying it.
 水系接着剤組成物は、偏光子又は熱可塑性樹脂フィルムの片面又は両面に塗布し、貼り合わせた後、加熱することで水を蒸発させつつ、熱架橋反応を進行させることで両者を十分に接着することができる。偏光子13と熱可塑性樹脂フィルム11とが接着剤層12を介して積層された積層体を直線偏光板10ともいう。 The water-based adhesive composition is applied to one or both sides of a polarizer or a thermoplastic resin film, and then bonded to each other. Then, the water is evaporated by heating and the thermal cross-linking reaction is allowed to proceed to sufficiently bond the two. can do. A laminate in which the polarizer 13 and the thermoplastic resin film 11 are laminated via the adhesive layer 12 is also referred to as a linear polarizing plate 10.
 活性エネルギー線硬化型接着剤組成物については、後述の第1硬化物層14での説明が適用される。接着剤層12に用いる活性エネルギー線硬化型接着剤組成物は光増感剤及び光増感助剤をいずれも含有していなくてもよい。また、第1硬化物層14に含まれる活性エネルギー線硬化型接着剤組成物と同一又は異なった種類であってよい。 Regarding the active energy ray-curable adhesive composition, the description in the first cured product layer 14 described later is applied. The active energy ray-curable adhesive composition used for the adhesive layer 12 may not contain either a photosensitizer or a photosensitizer. Further, the type may be the same as or different from the active energy ray-curable adhesive composition contained in the first cured product layer 14.
 第1接着剤層12の厚みは、例えば20μm以下であってよく、好ましくは10μm以下であり、より好ましくは5μm以下である。第1接着剤層12の厚みは、例えば0.1μm以上であってよい。 The thickness of the first adhesive layer 12 may be, for example, 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less. The thickness of the first adhesive layer 12 may be, for example, 0.1 μm or more.
 (偏光子)
 偏光子13は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光子であることができる。偏光子13としては、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させた偏光子を好適に用いることができる。偏光子13は、例えばポリビニルアルコール系樹脂フィルムを一軸延伸する工程;ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程;二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液等の架橋液で処理する工程;及び、架橋液による処理後に水洗する工程を含む方法によって製造できる。
(Polarizer)
The polarizer 13 is an absorption type polarizer having a property of absorbing linearly polarized light having a vibration plane parallel to its absorption axis and transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis (parallel to the transmission axis). Can be. As the polarizer 13, a polarizer in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be preferably used. The polarizer 13 is, for example, a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye; polyvinyl having the dichroic dye adsorbed. It can be produced by a method including a step of treating the alcohol-based resin film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the treatment with the cross-linking solution.
 ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体の例は、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、及びアンモニウム基を有する(メタ)アクリルアミド類等を含む。 As the polyvinyl alcohol-based resin, a saponified polyvinyl acetate-based resin can be used. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable with the vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
 本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。 As used herein, the term "(meth) acrylic" means at least one selected from acrylic and methacryl. The same applies to "(meth) acryloyl", "(meth) acrylate" and the like.
 ポリビニルアルコール系樹脂のケン化度は通常、85~100mol%であり、98mol%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール又はポリビニルアセタール等を用いることもできる。ポリビニルアルコール系樹脂の平均重合度は通常、1000~10000であり、1500~5000が好ましい。ポリビニルアルコール系樹脂の平均重合度は、JIS K 6726に準拠して求めることができる。 The degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used. The average degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000. The average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法が採用される。ポリビニルアルコール系原反フィルムの厚みは特に制限されないが、例えば5μm以上85μm以下であってよい。 A film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer. The method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and a known method is adopted. The thickness of the polyvinyl alcohol-based raw film is not particularly limited, but may be, for example, 5 μm or more and 85 μm or less.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、架橋処理の前又は架橋処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行ってもよい。 The uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after staining, the uniaxial stretching may be performed before or during the cross-linking treatment. Moreover, uniaxial stretching may be performed in these a plurality of steps.
 一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤や水を用いてポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は通常、3~8倍である。 In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch. The uniaxial stretching may be a dry stretching in which the film is stretched in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen with a solvent or water. The draw ratio is usually 3 to 8 times.
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色する方法としては、例えば、該フィルムを二色性色素が含有された水溶液に浸漬する方法が採用される。二色性色素としては、ヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。 As a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye, for example, a method of immersing the film in an aqueous solution containing a dichroic dye is adopted. As the dichroic dye, iodine or a dichroic organic dye is used. The polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
 二色性色素による染色後の架橋処理としては通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法が採用される。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液は、ヨウ化カリウムを含有することが好ましい。 As the cross-linking treatment after dyeing with a dichroic dye, a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution is usually adopted. When iodine is used as the dichroic pigment, the boric acid-containing aqueous solution preferably contains potassium iodide.
 偏光子13の厚みは、通常30μm以下であり、好ましくは28μm以下であり、より好ましくは20μm以下であり、さらに好ましくは15μm以下であり、特に好ましくは10μm以下である。偏光子13の厚みは、通常2μm以上であり、3μm以上であることが好ましい。 The thickness of the polarizer 13 is usually 30 μm or less, preferably 28 μm or less, more preferably 20 μm or less, still more preferably 15 μm or less, and particularly preferably 10 μm or less. The thickness of the polarizer 13 is usually 2 μm or more, preferably 3 μm or more.
 (第1硬化物層)
 第1硬化物層14は、偏光子13と位相差層20とを接着するために(直線偏光板と後述する位相差積層体とを接着するために)、偏光子13と位相差層20との間に配置される。第1硬化物層14は、活性エネルギー線硬化型接着剤組成物の硬化物である。第1硬化物層14が活性エネルギー線硬化型接着剤組成物の硬化物から形成されることにより、粘着剤層を用いる場合に比べ、偏光子に含まれるヨウ素の移行が抑制され、導電層と積層させた際の導電層の腐食を抑制することができる。本発明において、腐食性の評価は、後述の実施例の欄において説明する評価方法に従って行われる。
(First cured product layer)
The first cured product layer 14 is formed with the polarizer 13 and the retardation layer 20 in order to bond the polarizing element 13 and the retardation layer 20 (to bond the linear polarizing plate and the retardation laminate described later). Placed between. The first cured product layer 14 is a cured product of the active energy ray-curable adhesive composition. By forming the first cured product layer 14 from the cured product of the active energy ray-curable adhesive composition, the transfer of iodine contained in the polarizer is suppressed as compared with the case where the pressure-sensitive adhesive layer is used, and the conductive layer and the conductive layer Corrosion of the conductive layer when laminated can be suppressed. In the present invention, the evaluation of corrosiveness is performed according to the evaluation method described in the column of Examples described later.
 第1硬化物層14の厚みは、例えば10μm以下であってよく、好ましくは5μm以下であり、より好ましくは4m以下、さらに好ましくは3μm以下である。第1硬化物層14の厚みは、例えば0.5μm以上であってよく、好ましくは1μm以上である。 The thickness of the first cured product layer 14 may be, for example, 10 μm or less, preferably 5 μm or less, more preferably 4 m or less, and further preferably 3 μm or less. The thickness of the first cured product layer 14 may be, for example, 0.5 μm or more, preferably 1 μm or more.
 (活性エネルギー線硬化型接着剤組成物)
 活性エネルギー線硬化型接着剤組成物としては、活性エネルギー線を照射して硬化するものであればよく、例えばカチオン重合性接着剤組成物であってもよいし、ラジカル重合性接着剤組成物であってもよい。活性エネルギー線硬化型接着剤組成物は、好ましくはカチオン重合性接着剤組成物である。
(Active energy ray-curable adhesive composition)
The active energy ray-curable adhesive composition may be any one that is cured by irradiating with active energy rays, for example, a cationically polymerizable adhesive composition, or a radically polymerizable adhesive composition. There may be. The active energy ray-curable adhesive composition is preferably a cationically polymerizable adhesive composition.
 (カチオン重合性接着剤組成物)
 カチオン重合性接着剤組成物は、硬化性成分(A)と、光カチオン重合開始剤(B)とを含む。硬化性成分(A)は、活性エネルギー線の照射によりカチオン重合を起こして硬化し得る成分である。硬化性成分(A)の重合硬化により接着力が発現する。
(Cationopolymerizable Adhesive Composition)
The cationically polymerizable adhesive composition contains a curable component (A) and a photocationic polymerization initiator (B). The curable component (A) is a component that can be cured by causing cationic polymerization by irradiation with active energy rays. Adhesive strength is developed by polymerization curing of the curable component (A).
 (硬化性成分(A))
 硬化性成分(A)は、脂環式エポキシ化合物(A1)及び多官能脂肪族エポキシ化合物(A2)の少なくともいずれか1種を含むことができる。硬化性成分(A)は、単官能エポキシ化合物(A3)、多官能芳香族エポキシ化合物(A4)及びオキセタン化合物(A5)からなる群から選択される少なくとも1種をさらに含むことができる。
(Curable component (A))
The curable component (A) can contain at least one of an alicyclic epoxy compound (A1) and a polyfunctional aliphatic epoxy compound (A2). The curable component (A) can further include at least one selected from the group consisting of a monofunctional epoxy compound (A3), a polyfunctional aromatic epoxy compound (A4) and an oxetane compound (A5).
 硬化性成分(A)は脂環式エポキシ化合物(A1)を含む場合、脂環式エポキシ化合物(A1)の含有量は、硬化性成分(A)100質量部に対し、例えば5質量部以上90質量部以下であってよく、好ましくは10質量部以上80質量部以下である。
 硬化性成分(A)は多官能脂肪族エポキシ化合物(A2)を含む場合、多官能脂肪族エポキシ化合物(A2)の含有量は、硬化性成分(A)100質量部に対し、例えば1質量部以上50質量部以下であってよく、好ましくは5質量部以上45質量部以下である。
 硬化性成分(A)は単官能エポキシ化合物(A3)を含む場合、単官能エポキシ化合物(A3)の含有量は、硬化性成分(A)100質量部に対し、例えば1質量部以上20質量部以下であってよく、好ましくは1質量部以上15質量部以下である。
 硬化性成分(A)は多官能芳香族エポキシ化合物(A4)を含む場合、多官能芳香族エポキシ化合物(A4)の含有量は、硬化性成分(A)100質量部に対し、例えば1質量部以上60質量部以下であってよく、好ましくは1質量部以上50質量部以下である。
 硬化性成分(A)はオキセタン化合物(A5)を含む場合、オキセタン化合物(A5)の含有量は、硬化性成分(A)100質量部に対し、例えば5質量部以上90質量部以下であってよく、好ましくは10質量部以上80質量部以下である。
When the curable component (A) contains an alicyclic epoxy compound (A1), the content of the alicyclic epoxy compound (A1) is, for example, 5 parts by mass or more and 90 parts by mass with respect to 100 parts by mass of the curable component (A). It may be 10 parts by mass or less, preferably 10 parts by mass or more and 80 parts by mass or less.
When the curable component (A) contains the polyfunctional aliphatic epoxy compound (A2), the content of the polyfunctional aliphatic epoxy compound (A2) is, for example, 1 part by mass with respect to 100 parts by mass of the curable component (A). It may be 50 parts by mass or less, preferably 5 parts by mass or more and 45 parts by mass or less.
When the curable component (A) contains the monofunctional epoxy compound (A3), the content of the monofunctional epoxy compound (A3) is, for example, 1 part by mass or more and 20 parts by mass with respect to 100 parts by mass of the curable component (A). It may be less than or equal to, preferably 1 part by mass or more and 15 parts by mass or less.
When the curable component (A) contains the polyfunctional aromatic epoxy compound (A4), the content of the polyfunctional aromatic epoxy compound (A4) is, for example, 1 part by mass with respect to 100 parts by mass of the curable component (A). It may be 60 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less.
When the curable component (A) contains the oxetane compound (A5), the content of the oxetane compound (A5) is, for example, 5 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the curable component (A). It is often, preferably 10 parts by mass or more and 80 parts by mass or less.
 活性エネルギー線硬化型接着剤組成物は、溶剤を含まないことが好ましい。以下、各成分について詳細を説明する。 The active energy ray-curable adhesive composition preferably does not contain a solvent. Hereinafter, each component will be described in detail.
 (脂環式エポキシ化合物(A1))
 脂環式エポキシ化合物(A1)は、脂環式エポキシ基を1つ以上有する化合物である。脂環式エポキシ化合物(A1)は、脂環式エポキシ基を1つ以上有する化合物であれば、脂環式エポキシ基以外のエポキシ基をさらに有していてもよい。本明細書において、脂環式エポキシ基とは、脂環式環に結合したエポキシ基を意味し、下記式(a)で示される構造における橋かけの酸素原子-O-を意味する。
(Alicyclic epoxy compound (A1))
The alicyclic epoxy compound (A1) is a compound having one or more alicyclic epoxy groups. The alicyclic epoxy compound (A1) may further have an epoxy group other than the alicyclic epoxy group as long as it is a compound having one or more alicyclic epoxy groups. In the present specification, the alicyclic epoxy group means an epoxy group bonded to the alicyclic ring, and means a bridging oxygen atom-O-in the structure represented by the following formula (a).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(a)中、mは2~5の整数である。上記式(a)における(CH中の1個又は複数個の水素原子を取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物(A1)となり得る。(CH中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物(A1)により、活性エネルギー線硬化型接着剤組成物の硬化速度を調整することができる。 In the above formula (a), m is an integer of 2 to 5. The compound in which the group in the form of removing one or a plurality of hydrogen atoms in (CH 2 ) m in the above formula (a) is bonded to another chemical structure can be an alicyclic epoxy compound (A1). .. One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. The curing rate of the active energy ray-curable adhesive composition can be adjusted by the alicyclic epoxy compound (A1).
 脂環式エポキシ化合物(A1)の具体例は、3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、1,2-エポキシ-1-メチル-4-(1-メチルエポキシエチル)シクロヘキサン、3,4-エポキシシクロヘキシルメチル メタアクリレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの4-(1,2-エポキシエチル)-1,2-エポキシシクロヘキサン付加物、エチレン ビス(3,4-エポキシシクロヘキサンカルボキシレート)、オキシジエチレン ビス(3,4-エポキシシクロヘキサンカルボキシレート)、1,4-シクロヘキサンジメチル ビス(3,4-エポキシシクロヘキサンカルボキシレート)、及び3-(3,4-エポキシシクロヘキシルメトキシカルボニル)プロピル 3,4-エポキシシクロヘキサンカルボキシレート等が挙げられる。 Specific examples of the alicyclic epoxy compound (A1) include 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, and 1,2-epoxy-1-methyl-. 4- (1-Methylepoxyethyl) cyclohexane, 3,4-epoxycyclohexylmethyl methacrylate, 4- (1,2-epoxyethyl) -1,2-of 2,2-bis (hydroxymethyl) -1-butanol Epoxycyclohexane adduct, ethylene bis (3,4-epoxycyclohexanecarboxylate), oxydiethylene bis (3,4-epoxycyclohexanecarboxylate), 1,4-cyclohexanedimethylbis (3,4-epoxycyclohexanecarboxylate), And 3- (3,4-epoxycyclohexanemethoxycarbonyl) propyl 3,4-epoxycyclohexanecarboxylate and the like.
 脂環式エポキシ化合物(A1)の中でも、適度な硬化性を有するとともに、比較的廉価に入手できることから、3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートが好ましく用いられる。脂環式エポキシ化合物(A1)としては、1種の脂環式エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。 Among the alicyclic epoxy compounds (A1), 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate is preferably used because it has appropriate curability and can be obtained at a relatively low price. As the alicyclic epoxy compound (A1), one kind of alicyclic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
 脂環式エポキシ化合物(A1)は、市販品を用いることができ、例えば、それぞれ商品名で、(株)ダイセルから販売されている“セロキサイド(登録商標)”シリーズ及び“サイクロマー(登録商標)”、ダウケミカル社から販売されている“サイラキュア UVR”シリーズ等が挙げられる。 Commercially available products can be used as the alicyclic epoxy compound (A1). For example, the "Ceroxide (registered trademark)" series and "Cyclomer (registered trademark)" sold by Daicel Co., Ltd. under their respective trade names. , "Cyracure UVR" series sold by Dow Chemical Co., Ltd., etc.
 (多官能脂肪族エポキシ化合物(A2))
 多官能脂肪族エポキシ化合物(A2)は、2個以上のエポキシ基を有し、芳香環を有さない化合物である。ただし、本明細書でいう多官能脂肪族エポキシ化合物(A2)は、脂環式エポキシ化合物(A1)に含まれる、脂環式エポキシ基を有する化合物を除く。多官能脂肪族エポキシ化合物(A2)により、接着剤硬化層の密着性を調整することができる。
(Polyfunctional aliphatic epoxy compound (A2))
The polyfunctional aliphatic epoxy compound (A2) is a compound having two or more epoxy groups and having no aromatic ring. However, the polyfunctional aliphatic epoxy compound (A2) referred to in the present specification excludes compounds having an alicyclic epoxy group contained in the alicyclic epoxy compound (A1). The adhesiveness of the adhesive cured layer can be adjusted by the polyfunctional aliphatic epoxy compound (A2).
 多官能脂肪族エポキシ化合物(A2)としては、下記式(b)で表される脂肪族ジエポキシ化合物がより好ましい。下記式(b)で表される脂肪族ジエポキシ化合物を多官能脂肪族エポキシ化合物(A2)として含むことにより、粘度が低く、塗布し易い活性エネルギー線硬化型接着剤を得ることができる。 As the polyfunctional aliphatic epoxy compound (A2), an aliphatic diepoxy compound represented by the following formula (b) is more preferable. By containing the aliphatic diepoxy compound represented by the following formula (b) as the polyfunctional aliphatic epoxy compound (A2), an active energy ray-curable adhesive having a low viscosity and easy to apply can be obtained.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(b)中、Zは炭素数1~9のアルキレン基、炭素数3もしくは4のアルキリデン基、2価の脂環式炭化水素基、又は式-C2m-Z-C2n-で示される2価の基である。また、前記式-C2m-Z-C2n-中、-Z-は、-O-、-CO-O-、-O-CO-、-SO-、-SO-又はCO-であり、m及びnは各々独立に1以上の整数を表し、m及びnの合計は9以下である。 Wherein (b), Z is an alkylene group, an alkylidene group having 3 or 4 carbon atoms having 1 to 9 carbon atoms, a divalent alicyclic hydrocarbon group, or the formula -C m H 2m -Z 1 -C n H It is a divalent group represented by 2n −. Further, the formula -C m H 2m -Z 1 -C n H 2n - in, -Z 1 - is, -O -, - CO-O -, - O-CO -, - SO 2 -, - SO- Alternatively, it is CO-, and m and n each independently represent an integer of 1 or more, and the sum of m and n is 9 or less.
 2価の脂環式炭化水素基は、例えば、炭素数4~16の2価の脂環式炭化水素基であってよく、例えば下記式(b-1)で示される2価の基又は式(b-2)で示される2価の基等が挙げられる。 The divalent alicyclic hydrocarbon group may be, for example, a divalent alicyclic hydrocarbon group having 4 to 16 carbon atoms, for example, a divalent group represented by the following formula (b-1) or a formula. Examples thereof include a divalent group represented by (b-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(b)で示される化合物の具体例としては、例えばアルカンジオールのジグリシジルエーテル、繰り返し数4程度までのオリゴアルキレングリコールのジグリシジルエーテル、又は脂環式ジオールのジグリシジルエーテル等が挙げられる。 Specific examples of the compound represented by the formula (b) include diglycidyl ether of alkanediol, diglycidyl ether of oligoalkylene glycol up to about 4 repetitions, diglycidyl ether of alicyclic diol and the like.
 前記式(b)で示される化合物を形成し得るジオール(グリコール)としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-2,4-ペンタンジオール、2,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、3,5-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等のアルカンジオール;ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール等のオリゴアルキレングリコール;シクロヘキサンジオール、シクロヘキサンジメタノール、ジシクロペンタジエンジメタノール等の脂環式ジオールが挙げられる。 Examples of the diol (glycol) capable of forming the compound represented by the formula (b) include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-. 2-Ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl -1,5-Pentanediol, 2-Methyl-2,4-Pentanediol, 2,4-diethyl-1,5-Pentanediol, 1,6-Hexanediol, 1,7-Heptanediol, 3,5- Alcandiols such as heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol and 1,9-nonanediol; oligoalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol and dipropylene glycol Examples thereof include alicyclic diols such as cyclohexanediol, cyclohexanedimethanol, and dicyclopentadienedimethanol.
 本発明において、多官能脂肪族エポキシ化合物(A2)としては、粘度が低く、塗布しやすい活性エネルギー線硬化型接着剤組成物が得られるとの観点から、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジシクロペンタジエンメタノールジグリシジルエーテルが好ましい。
 多官能脂肪族エポキシ化合物(A2)としては、1種の脂肪族エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
In the present invention, the polyfunctional aliphatic epoxy compound (A2) includes 1,4-butanediol diglycidyl ether, from the viewpoint of obtaining an active energy ray-curable adhesive composition having a low viscosity and easy to apply. 1,6-Hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and dicyclopentadiene methanol diglycidyl ether are preferable.
As the polyfunctional aliphatic epoxy compound (A2), one kind of aliphatic epoxy compound may be used alone, or a plurality of different kinds may be used in combination.
 また、本発明の一様態として、多官能脂肪族エポキシ化合物(A2)は、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)であることが好ましい。
 3環式の縮合環としては、3つの環からなる縮合環であれば特に限定されないが、脂肪族環からなる縮合環であることが好ましい。3環式の縮合環としては、アダマンタン環、トリシクロデカン環、ジシクロペンタジエン環、トリシクロデカエン環等が挙げられる。
 3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)としては、例えば、下記式(c-1)で表される化合物等が挙げられる。
Further, as a uniform state of the present invention, the polyfunctional aliphatic epoxy compound (A2) is preferably an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule. ..
The tricyclic condensed ring is not particularly limited as long as it is a condensed ring composed of three rings, but a condensed ring composed of an aliphatic ring is preferable. Examples of the tricyclic fused ring include an adamantane ring, a tricyclodecane ring, a dicyclopentadiene ring, and a tricyclodecanene ring.
Examples of the epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule include a compound represented by the following formula (c-1).
Figure JPOXMLDOC01-appb-C000005
[式(c-1)中、Xは3環式の縮合環を表し、Z及びZは、それぞれ独立して単結合又は2価の炭化水素基を表す。]
 Xで表される3環式の縮合環は、アダマンタン環、トリシクロデカン環、ジシクロペンタジエン環、トリシクロデカエン環等が挙げられ、トリシクロデカン環であることが好ましい。
 Z及びZで表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、プロパンジイル基等の炭素数1~8のアルカンジイル基;フェニレン基等の炭素数6~10の芳香族炭化水素基が挙げられる。
 Z及びZは、それぞれ独立して、2価の炭化水素基であることが好ましく、炭素数1~8のアルカンジイル基であることがより好ましく、炭素数1~4のアルカンジイル基であることがさらに好ましく、メチレン基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000005
[In formula (c-1), X 1 represents a tricyclic condensed ring, and Z 2 and Z 3 each independently represent a single bond or a divalent hydrocarbon group. ]
Examples of the tricyclic condensed ring represented by X 1 include an adamantane ring, a tricyclodecane ring, a dicyclopentadiene ring, a tricyclodecane ring, and the like, and a tricyclodecane ring is preferable.
Examples of the divalent hydrocarbon group represented by Z 2 and Z 3 include an alkanediyl group having 1 to 8 carbon atoms such as a methylene group, an ethylene group and a propanediyl group; and a phenylene group having 6 to 10 carbon atoms. Aromatic hydrocarbon groups of.
Z 2 and Z 3 are preferably divalent hydrocarbon groups independently of each other, more preferably an alkanediyl group having 1 to 8 carbon atoms, and an alkanediyl group having 1 to 4 carbon atoms. More preferably, it is particularly preferably a methylene group.
 多官能脂肪族エポキシ化合物(A2)は市販品を用いることができ、例えば、“EP-4088S”(以上、(株)ADEKA製)、“EHPE3150”(以上、(株)ダイセル製)、“EX-211L”、“EX-212L”(以上、いずれもナガセケムテックス(株)製)等が挙げられる。 Commercially available products can be used as the polyfunctional aliphatic epoxy compound (A2), for example, "EP-4088S" (above, manufactured by ADEKA Corporation), "EHPE3150" (above, manufactured by Daicel Corporation), "EX". -211L "," EX-212L "(all of which are manufactured by Nagase ChemteX Corporation) and the like can be mentioned.
 (単官能エポキシ化合物(A3))
 単官能エポキシ化合物(A3)は、エポキシ基を1つ有する化合物である。ただし、本明細書でいう単官能エポキシ化合物(A3)は、脂環式エポキシ化合物(A1)に含まれる、脂環式エポキシ基を分子内に有する化合物を除く。単官能エポキシ化合物(A3)は、芳香環を分子内に有していてもよく、有していなくてもよい。単官能エポキシ化合物(A3)により、活性エネルギー線硬化型接着剤組成物の粘度を調整することができる。
(Monofunctional epoxy compound (A3))
The monofunctional epoxy compound (A3) is a compound having one epoxy group. However, the monofunctional epoxy compound (A3) referred to in the present specification excludes compounds having an alicyclic epoxy group in the molecule contained in the alicyclic epoxy compound (A1). The monofunctional epoxy compound (A3) may or may not have an aromatic ring in the molecule. The viscosity of the active energy ray-curable adhesive composition can be adjusted by the monofunctional epoxy compound (A3).
 芳香環を有する単官能エポキシ化合物(A3)としては、フェノール、クレゾール、ブチルフェノール等の1価フェノール若しくはビスフェノールA、ビスフェノールF等のビスフェノール誘導体、又はそれらのアルキレンオキサイド付加物のモノグリシジルエーテル化物;エポキシノボラック樹脂;レゾルシノールやハイドロキノン、カテコール等の2個以上のフェノール性水酸基を有する芳香族化合物のモノグリシジルエーテル化物;ベンゼンジメタノールやベンゼンジエタノール、ベンゼンジブタノール等のアルコール性水酸基を2個以上有する芳香族化合物のモノグリシジルエーテル化物;フタル酸、テレフタル酸、トリメリット酸等の2個以上のカルボキシル基を有する多塩基酸芳香族化合物のモノグリシジルエステル;安息香酸のグリシジルエステルやトルイル酸、ナフトエ酸のモノグリシジルエステル等が挙げられる。 Examples of the monofunctional epoxy compound (A3) having an aromatic ring include monovalent phenols such as phenol, cresol, and butylphenol, bisphenol A, bisphenol derivatives such as bisphenol F, and monoglycidyl esterified products of their alkylene oxide adducts; epoxy novolac. Resin: Monoglycidyl esterified product of an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol; an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol. Monoglycidyl esterified products; monoglycidyl esters of polybasic acid aromatic compounds having two or more carboxyl groups such as phthalic acid, terephthalic acid, trimellitic acid; glycidyl esters of benzoic acid, toluic acid, monoglycidyl naphthoic acid Esters and the like can be mentioned.
 芳香環を有しない単官能エポキシ化合物(A3)としては、脂肪族アルコールのグリシジルエーテル化物、アルキルカルボン酸のグリシジルエステル等が挙げられ、その具体例は、アリルグリシジルエーテル、ブチルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、炭素数12及び13混合アルキルグリシジルエーテル、アルコールのグリシジルエーテル、脂肪族高級アルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル等を含む。単官能エポキシ化合物(A3)としては、1種の単官能エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。 Examples of the monofunctional epoxy compound (A3) having no aromatic ring include glycidyl ethers of aliphatic alcohols and glycidyl esters of alkylcarboxylic acids, and specific examples thereof include allyl glycidyl ether, butyl glycidyl ether, and sec-butyl. It contains phenylglycidyl ether, 2-ethylhexyl glycidyl ether, alkyl glycidyl ether mixed with 12 and 13 carbon atoms, glycidyl ether of alcohol, monoglycidyl ether of aliphatic higher alcohol, glycidyl ester of higher fatty acid and the like. As the monofunctional epoxy compound (A3), one type of monofunctional epoxy compound may be used alone, or a plurality of different types may be used in combination.
 単官能エポキシ化合物(A3)は市販品を用いることができ、例えば、“EX-142”、“EX-146”、EX-147”、“EX-121”(以上、いずれもナガセケムテックス(株)製)等が挙げられる。 Commercially available products can be used as the monofunctional epoxy compound (A3), for example, "EX-142", "EX-146", EX-147 "," EX-121 "(all of which are Nagase ChemteX Corporation). ), Etc.
 (多官能芳香族エポキシ化合物(A4))
 多官能芳香族エポキシ化合物(A4)は、エポキシ基を2つ以上有し、芳香環を有する化合物である。ただし、本明細書でいう多官能芳香族エポキシ化合物(A4)は、脂環式エポキシ化合物(A1)に含まれる、分子内に脂環式エポキシ基を有する化合物を除く。
(Polyfunctional aromatic epoxy compound (A4))
The polyfunctional aromatic epoxy compound (A4) is a compound having two or more epoxy groups and having an aromatic ring. However, the polyfunctional aromatic epoxy compound (A4) referred to in the present specification excludes compounds having an alicyclic epoxy group in the molecule contained in the alicyclic epoxy compound (A1).
 多官能芳香族エポキシ化合物(A4)の具体例は、ナフタレン、又はナフタレン誘導体のポリグリシジルエーテル化物(「ナフタレン型エポキシ化合物」とも称する。);ビスフェノールA、ビスフェノールF等のビスフェノール誘導体のポリグリシジルエーテル化物(「ビスフェノールA型エポキシ化合物」、「ビスフェノールF型エポキシ化合物」とも称する。);エポキシノボラック樹脂;レゾルシノールやハイドロキノン、カテコール等の2個以上のフェノール性水酸基を有する芳香族化合物のポリグリシジルエーテル化物;ベンゼンジメタノールやベンゼンジエタノール、ベンゼンジブタノール等のアルコール性水酸基を2個以上有する芳香族化合物のポリグリシジルエーテル化物;フタル酸、テレフタル酸、トリメリット酸等の2個以上のカルボキシル基を有する多塩基酸芳香族化合物のポリグリシジルエステル;安息香酸のグリシジルエステルやトルイル酸、ナフトエ酸のポリグリシジルエステル等;スチレンオキサイドやアルキル化スチレンオキサイド、ビニルナフタレンのエポキシ化物等のスチレンオキサイド類又はジビニルベンゼンのジエポキシ化物等が挙げられる。多官能芳香族エポキシ化合物(A4)としては、1種の化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。 Specific examples of the polyfunctional aromatic epoxy compound (A4) are naphthalene or a polyglycidyl etherified product of a naphthalene derivative (also referred to as “naphthalene type epoxy compound”); a polyglycidyl etherified product of a bisphenol derivative such as bisphenol A or bisphenol F. (Also referred to as "bisphenol A type epoxy compound" and "bisphenol F type epoxy compound"); Epoxy novolak resin; Polyglycidyl etherified product of an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol; Polyglycidyl etherified product of an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol; a polybase having two or more carboxyl groups such as phthalic acid, terephthalic acid, and trimellitic acid. Polyglycidyl esters of acid aromatic compounds; glycidyl esters of benzoic acid, toluic acid, polyglycidyl esters of naphthoic acid, etc .; styrene oxides such as styrene oxides, alkylated styrene oxides, epoxidates of vinylnaphthalene, or diepoxidates of divinylbenzene. And so on. As the polyfunctional aromatic epoxy compound (A4), one kind of compound may be used alone, or a plurality of different kinds may be used in combination.
 多官能芳香族エポキシ化合物(A4)は、市販品を用いることができ、例えば、“デナコールEX-201”、“デナコールEX-711”及び“デナコールEX-721”(以上、いずれもナガセケムテックス(株)製);“オグソールEG-280”及び“オグソールCG-400”(以上、いずれも大阪ガスケミカル(株)製);“EXA-80CRP”及び“HP4032D”(以上、いずれもDIC(株)製);““jER828”及び“jER828EL”(以上、いずれも三菱ケミカル(株)製);“アデカレジンEP-4100”、“アデカレジンEP-4100G”、“アデカレジンEP-4100E”、“アデカレジンEP-4100L”、“アデカレジンEP-4100TX”、“アデカレジンEP-4000”、“アデカレジンEP-4005”、“アデカレジンEP-4901”、“アデカレジンEP-4901E”、(以上、いずれも(株)ADEKA製)等が挙げられる。 Commercially available products can be used as the polyfunctional aromatic epoxy compound (A4). For example, "Denacol EX-201", "Denacol EX-711" and "Denacol EX-721" (all of which are Nagase ChemteX). Co., Ltd.); "Ogsol EG-280" and "Ogsol CG-400" (both manufactured by Osaka Gas Chemical Corporation); "EXA-80CRP" and "HP4032D" (both manufactured by DIC Co., Ltd.) ); "JER828" and "jER828EL" (all manufactured by Mitsubishi Chemical Corporation); "Adeka Resin EP-4100", "Adeka Resin EP-4100G", "Adeka Resin EP-4100E", "Adeka Resin EP-4100L" , "Adeka Resin EP-4100TX", "Adeka Resin EP-4000", "Adeka Resin EP-4005", "Adeka Resin EP-4901", "Adeka Resin EP-4901E", etc. Can be mentioned.
 (オキセタン化合物(A5))
 本明細書において、オキセタン化合物(A5)は、オキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物又は芳香族化合物であってもよい。本明細書でいうオキセタン化合物(A5)は、エポキシ基を有さない化合物とする。オキセタン化合物(A5)により、活性エネルギー線硬化型接着剤組成物の硬化速度や粘度を調整することができ、また反応性を向上させることができる。
(Oxetane compound (A5))
In the present specification, the oxetane compound (A5) is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound or an aromatic compound. The oxetane compound (A5) referred to in the present specification is a compound having no epoxy group. With the oxetane compound (A5), the curing rate and viscosity of the active energy ray-curable adhesive composition can be adjusted, and the reactivity can be improved.
 オキセタン化合物(A5)は、オキセタニル基を1つ有する単官能オキセタン化合物であってもよいし、オキセタニル基を2つ以上有する多官能オキセタン化合物(A5-1)であってもよい。オキセタン化合物(A5)は、多官能オキセタン化合物(A5-1)であることが好ましく、2官能オキセタン化合物であることがより好ましい。 The oxetane compound (A5) may be a monofunctional oxetane compound having one oxetaneyl group, or a polyfunctional oxetane compound (A5-1) having two or more oxetaneyl groups. The oxetane compound (A5) is preferably a polyfunctional oxetane compound (A5-1), and more preferably a bifunctional oxetane compound.
 オキセタン化合物(A5)は、具体例として、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、3-エチル-3-(フェノキシ)メチルオキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(クロロメチル)オキセタン、3-エチルー3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、キシリレンビスオキセタン等を含む。オキセタン化合物(A5)としては、1種のオキセタン化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。 Specific examples of the oxetane compound (A5) include 3,7-bis (3-oxetanyl) -5-oxa-nonane and 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 1, 2-Bis [(3-ethyl-3-oxetanylmethoxy) methyl] ethane, 1,3-bis [(3-ethyl-3-oxetanylmethoxy) methyl] propane, ethylene glycol bis (3-ethyl-3-oxetanylmethyl) ) Ether, triethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether ,, 4-bis (3-ethyl-3-oxetanylmethoxy) butane , 1,6-bis (3-ethyl-3-oxetanylmethoxy) hexane, 3-ethyl-3- (phenoxy) methyloxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, 3-ethyl-3-( 2-Ethylhexyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (chloromethyl) oxetane, 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} Includes oxetane, xylylene bis oxetane, etc. As the oxetane compound (A5), one kind of oxetane compound may be used alone, or a plurality of different kinds may be used in combination.
 オキセタン化合物(A5)は、市販品を用いることができ、例えば、それぞれ商品名で、東亞合成(株)から販売されている“アロンオキセタン(登録商標)”シリーズ、宇部興産(株)から販売されている“ETERNACOLL(登録商標)”シリーズなどが挙げられる。 Commercially available products can be used as the oxetane compound (A5). For example, the "Aron Oxetane (registered trademark)" series sold by Toa Synthetic Co., Ltd. and Ube Industries, Ltd., respectively, are sold under their trade names. "ETERNACOLL (registered trademark)" series and the like.
 上記した硬化性成分[脂環式エポキシ化合物(A1)、多官能脂肪族エポキシ化合物(A2)、単官能エポキシ化合物(A3)、多官能芳香族エポキシ化合物(A4)、オキセタン化合物(A5)]は、活性エネルギー線硬化型接着剤組成物を無溶剤とするために、有機溶剤などで希釈されていないものを用いることが好ましい。 The curable components [alicyclic epoxy compound (A1), polyfunctional aliphatic epoxy compound (A2), monofunctional epoxy compound (A3), polyfunctional aromatic epoxy compound (A4), oxetane compound (A5)] are In order to make the active energy ray-curable adhesive composition solvent-free, it is preferable to use one that has not been diluted with an organic solvent or the like.
 上記した硬化性成分は、通常室温において液体であり、溶剤を存在させなくても適度な流動性を有し、適切な接着強度を与えるものを選択し、それに適した光カチオン重合開始剤を配合した活性エネルギー線硬化型接着剤組成物は、光学積層体の製造設備において、直線偏光板と位相差層積層体とを接着する工程で溶剤を蒸発させるための乾燥設備を省くことができる。また、適切な活性エネルギー線量を照射することで硬化速度を促進させ、生産速度を向上させることができる。 The above-mentioned curable component is usually liquid at room temperature, has appropriate fluidity even in the absence of a solvent, and is selected to give appropriate adhesive strength, and a suitable photocationic polymerization initiator is blended. In the production equipment of the optical laminate, the activated energy ray-curable adhesive composition can omit the drying equipment for evaporating the solvent in the step of adhering the linear polarizing plate and the retardation layer laminate. Further, by irradiating an appropriate active energy dose, the curing rate can be accelerated and the production rate can be improved.
 (その他の硬化性成分)
 活性エネルギー線硬化型接着剤組成物に含まれる硬化性成分(A)は、上記した硬化性成分に限定されることはなく、上記したカチオン重合性の硬化性成分以外のカチオン重合性の硬化性成分、及びラジカル重合性の硬化性成分を含んでいてもよい。
(Other curable ingredients)
The curable component (A) contained in the active energy ray-curable adhesive composition is not limited to the above-mentioned curable component, and is a cationically polymerizable curable component other than the above-mentioned cationically polymerizable curable component. It may contain a component and a radically polymerizable curable component.
 (ラジカル重合性の硬化性成分)
 ラジカル重合性化合物は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射や加熱によりラジカル重合反応が進行し、硬化する化合物又はオリゴマーをいい、具体的にはエチレン性不飽和結合を有する化合物を挙げることができる。エチレン性不飽和結合を有する化合物としては、分子内に1個以上の(メタ)アクリロイル基を有する(メタ)アクリル系化合物の他、スチレン、スチレンスルホン酸、酢酸ビニル、プロピオン酸ビニル、N-ビニル-2-ピロリドンのようなビニル化合物等が挙げられる。中でも、好ましいラジカル重合性化合物は(メタ)アクリル系化合物である。
(Radical polymerizable curable component)
A radically polymerizable compound is a compound or oligomer in which a radical polymerization reaction proceeds and is cured by irradiation or heating with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, and specifically, an ethylenically unsaturated bond. Can be mentioned. Compounds having an ethylenically unsaturated bond include (meth) acrylic compounds having one or more (meth) acryloyl groups in the molecule, styrene, styrene sulfonic acid, vinyl acetate, vinyl propionate, and N-vinyl. Examples thereof include vinyl compounds such as -2-pyrrolidone. Among them, the preferred radically polymerizable compound is a (meth) acrylic compound.
 (メタ)アクリル系化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー、(メタ)アクリルアミドモノマー、及び、官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイル基を有する(メタ)アクリルオリゴマー等の(メタ)アクリロイル基含有化合物を挙げることができる。(メタ)アクリルオリゴマーは好ましくは、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマーである。(メタ)アクリル系化合物は、1種のみを単独で用いてもよいし2種以上を併用してもよい。 The (meth) acrylic compound is obtained by reacting two or more kinds of a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule, a (meth) acrylamide monomer, and a functional group-containing compound. Examples thereof include (meth) acryloyl group-containing compounds such as (meth) acrylic oligomers having at least two (meth) acryloyl groups in the molecule. The (meth) acrylic oligomer is preferably a (meth) acrylate oligomer having at least two (meth) acryloyloxy groups in the molecule. As the (meth) acrylic compound, only one kind may be used alone, or two or more kinds may be used in combination.
 (メタ)アクリレートモノマーとしては、分子内に1個の(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレートモノマー、分子内に2個の(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレートモノマー、分子内に3個以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレートモノマーが挙げられる。 The (meth) acrylate monomer includes a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in the molecule. Monomers and polyfunctional (meth) acrylate monomers having three or more (meth) acryloyloxy groups in the molecule can be mentioned.
 単官能(メタ)アクリレートモノマーの例として、アルキル(メタ)アクリレートがある。アルキル(メタ)アクリレートにおいて、そのアルキル基は炭素数3以上であれば直鎖でも分岐していてもよい。アルキル(メタ)アクリレートの具体例を挙げると、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。また、ベンジル(メタ)アクリレートのようなアラルキル(メタ)アクリレート;イソボルニル(メタ)アクリレートのようなテルペンアルコールの(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレートのようなテトラヒドロフルフリル構造を有する(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、シクロヘキシルメチルメタクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノアクリレートのようなアルキル基部位にシクロアルキル基を有する(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレートのようなアミノアルキル(メタ)アクリレート;2-フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートのようなアルキル部位にエーテル結合を有する(メタ)アクリレートも単官能(メタ)アクリレートモノマーとして用いることができる。 An example of a monofunctional (meth) acrylate monomer is an alkyl (meth) acrylate. In an alkyl (meth) acrylate, the alkyl group may be linear or branched as long as it has 3 or more carbon atoms. Specific examples of alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and the like. Examples thereof include 2-ethylhexyl (meth) acrylate. Also, aralkyl (meth) acrylates such as benzyl (meth) acrylates; (meth) acrylates of terpen alcohols such as isobornyl (meth) acrylates; and tetrahydrofurfuryl structures such as tetrahydrofurfuryl (meth) acrylates (meth). ) Acrylate; has a cycloalkyl group at the alkyl group moiety such as cyclohexyl (meth) acrylate, cyclohexylmethyl methacrylate, dicyclopentanyl acrylate, dicyclopentenyl (meth) acrylate, 1,4-cyclohexanedimethanol monoacrylate (meth). ) Acrylate; Aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; 2-phenoxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate , (Meta) acrylate having an ether bond at the alkyl moiety such as phenoxypolyethylene glycol (meth) acrylate can also be used as the monofunctional (meth) acrylate monomer.
 さらに、アルキル部位に水酸基を有する単官能(メタ)アクリレートや、アルキル部位にカルボキシル基を有する単官能(メタ)アクリレートも用いることができる。アルキル部位に水酸基を有する単官能(メタ)アクリレートの具体例は、2-ヒドロキシエチル(メタ)アクリレート、2-又は3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレートを含む。アルキル部位にカルボキシル基を有する単官能(メタ)アクリレートの具体例は、2-カルボキシエチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(n≒2)モノ(メタ)アクリレート、1-[2-(メタ)アクリロイルオキシエチル]フタル酸、1-[2-(メタ)アクリロイルオキシエチル]ヘキサヒドロフタル酸、1-[2-(メタ)アクリロイルオキシエチル]コハク酸、4-[2-(メタ)アクリロイルオキシエチル]トリメリット酸、N-(メタ)アクリロイルオキシ-N’,N’-ジカルボキシメチル-p-フェニレンジアミンを含む。 Further, a monofunctional (meth) acrylate having a hydroxyl group at the alkyl moiety and a monofunctional (meth) acrylate having a carboxyl group at the alkyl moiety can also be used. Specific examples of the monofunctional (meth) acrylate having a hydroxyl group at the alkyl moiety include 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy. -3-Phenoxypropyl (meth) acrylate, trimethylolpropane mono (meth) acrylate, pentaerythritol mono (meth) acrylate. Specific examples of the monofunctional (meth) acrylate having a carboxyl group at the alkyl moiety include 2-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone (n≈2) mono (meth) acrylate, 1- [2- ( Meta) acryloyloxyethyl] phthalic acid, 1- [2- (meth) acryloyloxyethyl] hexahydrophthalic acid, 1- [2- (meth) acryloyloxyethyl] succinic acid, 4- [2- (meth) acryloyl Oxyethyl] Trimellitic acid, N- (meth) acryloyloxy-N', N'-dicarboxymethyl-p-phenylenediamine.
 (メタ)アクリルアミドモノマーは、好ましくはN-位に置換基を有する(メタ)アクリルアミドであり、そのN-位の置換基の典型的な例はアルキル基であるが、(メタ)アクリルアミドの窒素原子とともに環を形成していてもよく、この環は、炭素原子及び(メタ)アクリルアミドの窒素原子に加え、酸素原子を環構成員として有してもよい。さらに、その環を構成する炭素原子には、アルキルやオキソ(=O)のような置換基が結合していてもよい。 The (meth) acrylamide monomer is preferably (meth) acrylamide having a substituent at the N-position, and a typical example of the substituent at the N-position is an alkyl group, but the nitrogen atom of (meth) acrylamide. It may form a ring with the ring, and the ring may have an oxygen atom as a ring member in addition to the carbon atom and the nitrogen atom of (meth) acrylamide. Further, a substituent such as alkyl or oxo (= O) may be bonded to the carbon atom constituting the ring.
 N-置換(メタ)アクリルアミドの具体例は、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミドのようなN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドのようなN,N-ジアルキル(メタ)アクリルアミドを含む。また、N-置換基は水酸基を有するアルキル基であってもよく、その例として、N-ヒドロキシメチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド等がある。さらに、上記した5員環又は6員環を形成するN-置換(メタ)アクリルアミドの具体的な例としては、N-アクリロイルピロリジン、3-アクリロイル-2-オキサゾリジノン、4-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン等がある。 Specific examples of N-substituted (meth) acrylamide are N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (meth) acrylamide, and Nt-. N-alkyl (meth) acrylamide such as butyl (meth) acrylamide, N-hexyl (meth) acrylamide; N, N- such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide. Contains dialkyl (meth) acrylamide. Further, the N-substituted group may be an alkyl group having a hydroxyl group, and examples thereof include N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, and N- (2-hydroxy). There are propyl) (meth) acrylamide and the like. Furthermore, specific examples of the N-substituted (meth) acrylamide forming the above-mentioned 5-membered ring or 6-membered ring include N-acryloylpyrrolidine, 3-acryloyl-2-oxazolidinone, 4-acryloylmorpholine, and N-acryloyl. There are piperidine, N-methacryloyl piperidine and the like.
 2官能(メタ)アクリレートモノマーとしては、アルキレングリコールジ(メタ)アクリレート、ポリオキシアルキレングリコールジ(メタ)アクリレート、ハロゲン置換アルキレングリコールジ(メタ)アクリレート、脂肪族ポリオールのジ(メタ)アクリレート、水添ジシクロペンタジエン又はトリシクロデカンジアルカノールのジ(メタ)アクリレート、ジオキサングリコール又はジオキサンジアルカノールのジ(メタ)アクリレート、ビスフェノールA又はビスフェノールFのアルキレンオキシド付加物のジ(メタ)アクリレート、ビスフェノールA又はビスフェノールFのエポキシジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional (meth) acrylate monomer include alkylene glycol di (meth) acrylate, polyoxyalkylene glycol di (meth) acrylate, halogen-substituted alkylene glycol di (meth) acrylate, aliphatic polyol di (meth) acrylate, and hydrogenation. Di (meth) acrylate of dicyclopentadiene or tricyclodecanediakanol, di (meth) acrylate of dioxane glycol or dioxandialkanol, di (meth) acrylate of alkylene oxide adduct of bisphenol A or bisphenol F, bisphenol A or bisphenol Examples thereof include the epoxy di (meth) acrylate of F.
 2官能(メタ)アクリレートモノマーのより具体的な例を挙げれば、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン、水添ジシクロペンタジエニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕、ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート等である。 To give a more specific example of the bifunctional (meth) acrylate monomer, ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1 , 6-Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylpropandi (meth) acrylate, pentaerythritol di (meth) acrylate, ditri Methylolpropandi (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, silicone di (meth) acrylate, hydroxypivalate neopentyl glycol ester di (meth) acrylate, 2,2-bis [4- (meth) Acryloyloxyethoxyethoxyphenyl] propane, 2,2-bis [4- (meth) acryloyloxyethoxyethoxycyclohexyl] propane, hydrogenated dicyclopentadienyldi (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate , 1,3-Dioxane-2,5-diyldi (meth) acrylate [also known as dioxane glycol di (meth) acrylate], acetal compound of hydroxypivalaldehyde and trimethylpropane [chemical name: 2- (2-hydroxy) -1,1-Dimethylethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane] di (meth) acrylate, tris (hydroxyethyl) isocyanurate di (meth) acrylate and the like.
 3官能以上の多官能(メタ)アクリレートモノマーとしては、グリセリントリ(メタ)アクリレート、アルコキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3官能以上の脂肪族ポリオールのポリ(メタ)アクリレートが代表的なものであり、その他に、3官能以上のハロゲン置換ポリオールのポリ(メタ)アクリレート、グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキシド付加物のトリ(メタ)アクリレート、1,1,1-トリス[(メタ)アクリロイルオキシエトキシエトキシ]プロパン、トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。 Examples of the trifunctional or higher functional polyfunctional (meth) acrylate monomer include glycerin tri (meth) acrylate, alkoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, and ditrimethylol. Propanetetra (meth) acrylate, pentaerythritol trimethylolpropane (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Poly (meth) acrylates of trifunctional or higher functional aliphatic polyols are typical, and in addition, poly (meth) acrylates of trifunctional or higher functional halogen-substituted polyols and glycerin alkylene oxide adduct tri (meth) Acrylate, tri (meth) acrylate of alkylene oxide adduct of trimethylolpropane, 1,1,1-tris [(meth) acryloyloxyethoxyethoxy] propane, tris (hydroxyethyl) isocyanurate tri (meth) acrylate and the like. Be done.
 一方、(メタ)アクリルオリゴマーには、ウレタン(メタ)アクリルオリゴマー、ポリエステル(メタ)アクリルオリゴマー、エポキシ(メタ)アクリルオリゴマー等がある。 On the other hand, (meth) acrylic oligomers include urethane (meth) acrylic oligomers, polyester (meth) acrylic oligomers, epoxy (meth) acrylic oligomers, and the like.
 ウレタン(メタ)アクリルオリゴマーとは、分子内にウレタン結合(-NHCOO-)及び少なくとも2個の(メタ)アクリロイル基を有する化合物である。具体的には、分子内に少なくとも1個の(メタ)アクリロイル基及び少なくとも1個の水酸基をそれぞれ有する水酸基含有(メタ)アクリルモノマーとポリイソシアネートとのウレタン化反応生成物や、ポリオールをポリイソシアネートと反応させて得られる末端イソシアナト基含有ウレタン化合物と、分子内に少なくとも1個の(メタ)アクリロイル基及び少なくとも1個の水酸基をそれぞれ有する(メタ)アクリルモノマーとのウレタン化反応生成物等であり得る。 The urethane (meth) acrylic oligomer is a compound having a urethane bond (-NHCOO-) and at least two (meth) acryloyl groups in the molecule. Specifically, a urethanization reaction product of a hydroxyl group-containing (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule and polyisocyanate, or a polyol as polyisocyanate. It can be a urethanization reaction product of a terminal isocyanato group-containing urethane compound obtained by reaction and a (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule. ..
 上記ウレタン化反応に用いられる水酸基含有(メタ)アクリルモノマーは、例えば水酸基含有(メタ)アクリレートモノマーであることができ、その具体例は、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートを含む。水酸基含有(メタ)アクリレートモノマー以外の具体例は、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミドモノマーを含む。 The hydroxyl group-containing (meth) acrylic monomer used in the urethanization reaction can be, for example, a hydroxyl group-containing (meth) acrylate monomer, and specific examples thereof include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth). ) Acrylate, 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimethylpropandi (meth) acrylate, pentaerythritol tri (meth) acrylate, di Contains pentaerythritol penta (meth) acrylate. Specific examples other than the hydroxyl group-containing (meth) acrylate monomer include N-hydroxyalkyl (meth) acrylamide monomers such as N-hydroxyethyl (meth) acrylamide and N-methylol (meth) acrylamide.
 水酸基含有(メタ)アクリルモノマーとのウレタン化反応に供されるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート等)、トリフェニルメタントリイソシアネート、ジベンジルベンゼントリイソシアネート等のジ-又はトリ-イソシアネート、及び、上記のジイソシアネートを多量化させて得られるポリイソシアネート等が挙げられる。 Examples of the polyisocyanate used for the urethanization reaction with the hydroxyl group-containing (meth) acrylic monomer include hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and among these diisocyanates, aromatic ones. Diisocyanates obtained by hydrogenating isocyanates (for example, hydrogenated tolylene diisocyanates, hydrogenated xylylene diisocyanates, etc.), di- or tri-isocyanates such as triphenylmethane triisocyanates, dibenzylbenzene triisocyanates, and the above. Examples thereof include polyisocyanate obtained by increasing the amount of diisocyanate.
 また、ポリイソシアネートとの反応により末端イソシアナト基含有ウレタン化合物とするために用いられるポリオールとしては、芳香族、脂肪族又は脂環式のポリオールの他、ポリエステルポリオール、ポリエーテルポリオール等を使用することができる。脂肪族及び脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブタン酸、グリセリン、水添ビスフェノールA等が挙げられる。 Further, as the polyol used to obtain a terminal isocyanato group-containing urethane compound by reaction with polyisocyanate, a polyester polyol, a polyether polyol, or the like can be used in addition to an aromatic, aliphatic or alicyclic polyol. it can. Examples of aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, and ditri. Examples thereof include methylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, hydrogenated bisphenol A and the like.
 ポリエステルポリオールは、上記したポリオールと多塩基性カルボン酸又はその無水物との脱水縮合反応により得られるものである。多塩基性カルボン酸又はその無水物の例を、無水物であり得るものに「(無水)」を付して表すと、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロ(無水)フタル酸等がある。 The polyester polyol is obtained by a dehydration condensation reaction between the above-mentioned polyol and a polybasic carboxylic acid or an anhydride thereof. Examples of polybasic carboxylic acids or their anhydrides, which may be anhydrides, are represented by adding "(anhydride)" to (anhydrous) succinic acid, adipic acid, (anhydrous) maleic acid, (anhydrous). There are itaconic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, hexahydro (anhydrous) phthalic acid and the like.
 ポリエーテルポリオールは、ポリアルキレングリコールの他、上記したポリオール又はジヒドロキシベンゼン類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオール等であり得る。 The polyether polyol may be a polyoxyalkylene-modified polyol obtained by reacting the above-mentioned polyol or dihydroxybenzenes with an alkylene oxide, in addition to the polyalkylene glycol.
 ポリエステル(メタ)アクリルオリゴマーとは、分子内にエステル結合と少なくとも2個の(メタ)アクリロイル基(典型的には(メタ)アクリロイルオキシ基)とを有する化合物である。具体的には、(メタ)アクリル酸、多塩基性カルボン酸又はその無水物、及びポリオールを用いた脱水縮合反応により得ることができる。脱水縮合反応に用いられる多塩基性カルボン酸又はその無水物の例を、無水物であり得るものに「(無水)」を付して表すと、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸等がある。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブタン酸、グリセリン、水添ビスフェノールA等が挙げられる。 A polyester (meth) acrylic oligomer is a compound having an ester bond and at least two (meth) acryloyl groups (typically (meth) acryloyloxy groups) in the molecule. Specifically, it can be obtained by a dehydration condensation reaction using (meth) acrylic acid, a polybasic carboxylic acid or an anhydride thereof, and a polyol. Examples of polybasic carboxylic acids or their anhydrides used in the dehydration condensation reaction, which can be anhydrous, are represented by adding "(anhydride)" to (anhydrous) succinic acid, adipic acid, (anhydride). There are maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, hexahydro (anhydride) phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid and the like. Examples of the polyol used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, and trimethylolpropane. Examples thereof include ditrimethylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, and hydrogenated bisphenol A.
 エポキシ(メタ)アクリルオリゴマーは、例えば、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得ることができ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有している。付加反応に用いられるポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル等が挙げられる。 The epoxy (meth) acrylic oligomer can be obtained, for example, by an addition reaction between polyglycidyl ether and (meth) acrylic acid, and has at least two (meth) acryloyloxy groups in the molecule. Examples of the polyglycidyl ether used in the addition reaction include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
 光ラジカル重合開始剤の具体例は、アセトフェノン、3-メチルアセトフェノン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル-2-モルホリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のアセトフェノン系開始剤;ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノン等のベンゾフェノン系開始剤;ベンゾインプロピルエーテル、ベンゾインエチルエーテル等のベンゾインエーテル系開始剤;4-イソプロピルチオキサントン等のチオキサントン系開始剤;その他、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノンを含む。 Specific examples of photoradical initiators include acetophenone, 3-methylacetophenone, benzyldimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1-[. Acetphenone-based initiators such as 4- (methylthio) phenyl-2-morpholinopropane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone, 4,4' -Benzophenone-based initiators such as diaminobenzophenone; benzoin ether-based initiators such as benzoinpropyl ether and benzoin ethyl ether; thioxanthone-based initiators such as 4-isopropylthioxanthone; ..
 光ラジカル重合開始剤の配合量は、ラジカル重合性化合物100質量部に対して通常、0.5質量部以上20質量部以下であり、好ましくは1質量部以上6重量部以下である。光ラジカル重合開始剤を0.5質量部以上配合することにより、ラジカル重合性化合物を十分に硬化させることができ、得られる偏光板に高い機械的強度と接着強度を与えることができる。一方で、その量が過度に多くなると、偏光板の耐久性が低下する可能性がある。 The blending amount of the photoradical polymerization initiator is usually 0.5 parts by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound. By blending 0.5 parts by mass or more of the photoradical polymerization initiator, the radically polymerizable compound can be sufficiently cured, and high mechanical strength and adhesive strength can be imparted to the obtained polarizing plate. On the other hand, if the amount is excessively large, the durability of the polarizing plate may decrease.
 ただし、ラジカル重合は硬化収縮が大きい傾向にあるため、活性エネルギー線硬化型接着剤組成物は、硬化性成分(A)としてカチオン重合性の硬化性成分のみを含むことが好ましい。 However, since radical polymerization tends to have a large curing shrinkage, it is preferable that the active energy ray-curable adhesive composition contains only a cationically polymerizable curable component as the curable component (A).
 (光カチオン重合開始剤(B))
 活性エネルギー線硬化型接着剤組成物は、光カチオン重合開始剤(B)を含有する。これにより、硬化性成分(A)を活性エネルギー線の照射によるカチオン重合で硬化させて接着剤層を形成することができる。光カチオン重合開始剤(B)は、可視光線、紫外線、X線、電子線のような活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、硬化性成分(A)の重合反応を開始させるものである。光カチオン重合開始剤(B)は光で触媒的に作用するため、硬化性成分(A)に混合しても保存安定性や作業性に優れる。光カチオン重合開始剤(B)として使用し得る、活性エネルギー線の照射によりカチオン種やルイス酸を生じる化合物として、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩;鉄-アレーン錯体等を挙げることができる。
(Photocationic polymerization initiator (B))
The active energy ray-curable adhesive composition contains a photocationic polymerization initiator (B). As a result, the curable component (A) can be cured by cationic polymerization by irradiation with active energy rays to form an adhesive layer. The photocationic polymerization initiator (B) generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates the polymerization reaction of the curable component (A). It is something that makes you. Since the photocationic polymerization initiator (B) acts catalytically with light, it is excellent in storage stability and workability even when mixed with the curable component (A). As a compound that can be used as a photocationic polymerization initiator (B) and produces a cationic species or Lewis acid by irradiation with active energy rays, for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt. ; Iron-alene complex and the like can be mentioned.
 芳香族ジアゾニウム塩としては、例えば、ベンゼンジアゾニウム ヘキサフルオロアンチモネート、ベンゼンジアゾニウム ヘキサフルオロホスフェート、ベンゼンジアゾニウム ヘキサフルオロボレート、が挙げられる。 Examples of the aromatic diazonium salt include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
 芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウム ヘキサフルオロホスフェート、が挙げられる。 Examples of the aromatic iodonium salt include diphenyl iodonium tetrakis (pentafluorophenyl) borate, diphenyl iodonium hexafluorophosphate, diphenyl iodonium hexafluoroantimonate, and di (4-nonylphenyl) iodonium hexafluorophosphate.
 芳香族スルホニウム塩としては、例えば、トリフェニルスルホニウム ヘキサフルオロホスフェート、トリフェニルスルホニウム ヘキサフルオロアンチモネート、トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン ヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレート、が挙げられる。 Examples of the aromatic sulfonium salt include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, and 4,4'-bis [diphenylsulfonio] diphenylsulfide bishexa. Fluorophosphate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide bis Hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4 -Phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfonio-diphenylsulfide hexafluoroantimonate, 4- (p-tert- Butylphenylcarbonyl) -4'-di (p-toluyl) sulfonio-diphenylsulfide tetrakis (pentafluorophenyl) borate.
 鉄-アレーン錯体としては、例えば、キシレン-シクロペンタジエニル鉄(II) ヘキサフルオロアンチモネート、クメン-シクロペンタジエニル鉄(II) ヘキサフルオロホスフェート、キシレン-シクロペンタジエニル鉄(II) トリス(トリフルオロメチルスルホニル)メタナイド、が挙げられる。 Examples of the iron-arene complex include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, and xylene-cyclopentadienyl iron (II) tris ( Trifluoromethylsulfonyl) metanide.
 光カチオン重合開始剤(B)は、1種のみを単独で使用してもよいし2種以上を併用してもよい。上記の中でも特に芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する接着剤硬化層を得ることができるため、好ましく用いられる。 As the photocationic polymerization initiator (B), only one type may be used alone, or two or more types may be used in combination. Among the above, the aromatic sulfonium salt is particularly preferable because it has ultraviolet absorption characteristics even in the wavelength region near 300 nm, and thus it is possible to obtain an adhesive cured layer having excellent curability and good mechanical strength and adhesive strength. Used.
 光カチオン重合開始剤(B)の含有量は、硬化性成分(A)の合計量100質量部に対して0.5質量部以上10質量部以下とされ、好ましくは1質量部以上4質量部以下である。光カチオン重合開始剤(B)を1質量部以上含有させることにより、硬化性成分を十分に硬化させることができ、十分な接着強度と硬度を有する接着剤硬化層を得ることができる。一方、その量が多くなると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、積層体の耐久性能を低下させる可能性があるため、光カチオン重合開始剤(B)の量は、硬化性成分(A)の合計量100質量部に対して10質量部以下とする。 The content of the photocationic polymerization initiator (B) is 0.5 parts by mass or more and 10 parts by mass or less, preferably 1 part by mass or more and 4 parts by mass with respect to 100 parts by mass of the total amount of the curable component (A). It is as follows. By containing 1 part by mass or more of the photocationic polymerization initiator (B), the curable component can be sufficiently cured, and an adhesive cured layer having sufficient adhesive strength and hardness can be obtained. On the other hand, if the amount is large, the amount of ionic substances in the cured product increases, which increases the hygroscopicity of the cured product and may reduce the durability performance of the laminate. Therefore, the photocationic polymerization initiator (B) ) Is 10 parts by mass or less with respect to 100 parts by mass of the total amount of the curable component (A).
 硬化性成分としてラジカル重合性の硬化性成分を含む場合は、重合開始剤として、光カチオン重合開始剤(B)に加えてラジカル重合開始剤を含むことが好ましい。 When a radically polymerizable curable component is contained as the curable component, it is preferable to include a radical polymerization initiator in addition to the photocationic polymerization initiator (B) as the polymerization initiator.
 (光増感剤(C))
 活性エネルギー線硬化型接着剤組成物は、光増感剤(C)を含有してもよい。第1活性エネルギー線硬化性組成物に光増感剤(C)を含有させることにより、それを含有しない場合に比べ、接着剤の硬化性を向上させることができる。
(Photosensitizer (C))
The active energy ray-curable adhesive composition may contain a photosensitizer (C). By including the photosensitizer (C) in the first active energy ray-curable composition, the curability of the adhesive can be improved as compared with the case where it is not contained.
 光増感剤(C)は、下記一般式(I): The photosensitizer (C) is based on the following general formula (I):
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは互いに独立に炭素数1~6のアルキル基又は炭素数2~12のアルコキシアルキル基を表し、Rは水素原子又は炭素数1~6のアルキル基を表す)
で示されるアントラセン系化合物を含む。上記の光カチオン重合開始剤(B)は、300nm付近又はそれより短い波長域に極大吸収を示し、その付近の波長の光に感応してカチオン種又はルイス酸を発生し、カチオン重合性の硬化性成分のカチオン重合を開始させるが、それよりも長い波長の光にも感応するように、光増感剤(C)は、380nmより長い波長域に極大吸収を示すものであることが好ましい。かかる光増感剤(C)として、アントラセン系化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 and R 2 represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 12 carbon atoms independently of each other, and R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. )
Includes anthracene compounds represented by. The photocationic polymerization initiator (B) exhibits maximum absorption in a wavelength region near 300 nm or shorter, generates cation species or Lewis acid in response to light having a wavelength in the vicinity, and is cationically polymerizable. The photosensitizer (C) preferably exhibits maximum absorption in a wavelength region longer than 380 nm so as to initiate cationic polymerization of the sex component and to be sensitive to light having a wavelength longer than that. As such a photosensitizer (C), an anthracene-based compound is preferably used.
 アントラセン系化合物の具体例としては、例えば、
 9,10-ジメトキシアントラセン、
 9,10-ジエトキシアントラセン、
 9,10-ジプロポキシアントラセン、
 9,10-ジイソプロポキシアントラセン、
 9,10-ジブトキシアントラセン、
 9,10-ジペンチルオキシアントラセン、
 9,10-ジヘキシルオキシアントラセン、
 9,10-ビス(2-メトキシエトキシ)アントラセン、
 9,10-ビス(2-エトキシエトキシ)アントラセン、
 9,10-ビス(2-ブトキシエトキシ)アントラセン、
 9,10-ビス(3-ブトキシプロポキシ)アントラセン、
 2-メチル又は2-エチル-9,10-ジメトキシアントラセン、
 2-メチル又は2-エチル-9,10-ジエトキシアントラセン、
 2-メチル又は2-エチル-9,10-ジプロポキシアントラセン、
 2-メチル又は2-エチル-9,10-ジイソプロポキシアントラセン、
 2-メチル又は2-エチル-9,10-ジブトキシアントラセン、
 2-メチル又は2-エチル-9,10-ジペンチルオキシアントラセン、
 2-メチル又は2-エチル-9,10-ジヘキシルオキシアントラセン
が挙げられる。
Specific examples of anthracene compounds include, for example.
9,10-dimethoxyanthracene,
9,10-diethoxyanthracene,
9,10-Dipropoxyanthracene,
9,10-diisopropoxyanthracene,
9,10-Dibutoxyanthracene,
9,10-Dipentyloxyanthracene,
9,10-dihexyloxyanthracene,
9,10-bis (2-methoxyethoxy) anthracene,
9,10-bis (2-ethoxyethoxy) anthracene,
9,10-Bis (2-butoxyethoxy) anthracene,
9,10-Bis (3-butoxypropoxy) anthracene,
2-Methyl or 2-ethyl-9,10-dimethoxyanthracene,
2-Methyl or 2-Ethyl-9,10-diethoxyanthracene,
2-Methyl or 2-Ethyl-9,10-dipropoxyanthracene,
2-Methyl or 2-ethyl-9,10-diisopropoxyanthracene,
2-Methyl or 2-Ethyl-9,10-dibutoxyanthracene,
2-Methyl or 2-ethyl-9,10-dipentyloxyanthracene,
Examples thereof include 2-methyl or 2-ethyl-9,10-dihexyloxyanthracene.
 活性エネルギー線硬化型接着剤組成物に光増感剤(C)を含有させることにより、それを含有しない場合に比べ、接着剤の硬化性を向上させることができる。硬化性成分(A)の合計量100質量部に対する光増感剤の含有量を0.1質量部以上とすることにより、このような効果を発現させることができる。一方、光増感剤(C)の含有量が多くなると、低温保管時に析出する等の問題が生じることから、その含有量は、硬化性成分(A)の合計量100質量部に対して2質量部以下とすることが好ましい。 By including the photosensitizer (C) in the active energy ray-curable adhesive composition, the curability of the adhesive can be improved as compared with the case where it is not contained. Such an effect can be exhibited by setting the content of the photosensitizer to 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the curable component (A). On the other hand, if the content of the photosensitizer (C) is large, problems such as precipitation during low temperature storage occur. Therefore, the content is 2 with respect to 100 parts by mass of the total amount of the curable component (A). It is preferably less than or equal to parts by mass.
 (光増感助剤(D))
 活性エネルギー線硬化型接着剤組成物は、光増感助剤(D)を含有してもよい。光増感助剤(D)は、好ましくはナフタレン系光増感助剤である。
(Photosensitizer (D))
The active energy ray-curable adhesive composition may contain a photosensitizer (D). The photosensitizer (D) is preferably a naphthalene-based photosensitizer.
 ナフタレン系光増感助剤の具体例としては、例えば、
 4-メトキシ-1-ナフトール、
 4-エトキシ-1-ナフトール、
 4-プロポキシ-1-ナフトール、
 4-ブトキシ-1-ナフトール、 4-ヘキシルオキシ-1-ナフトール、
 1,4-ジメトキシナフタレン、
 1-エトキシ-4-メトキシナフタレン、
 1,4-ジエトキシナフタレン、
 1,4-ジプロポキシナフタレン、
 1,4-ジブトキシナフタレン
が挙げられる。
Specific examples of naphthalene-based photosensitizers include, for example.
4-Methoxy-1-naphthol,
4-ethoxy-1-naphthol,
4-propoxy-1-naphthol,
4-Butoxy-1-naphthol, 4-hexyloxy-1-naphthol,
1,4-dimethoxynaphthalene,
1-ethoxy-4-methoxynaphthalene,
1,4-Diethoxynaphthalene,
1,4-Dipropoxynaphthalene,
Examples include 1,4-dibutoxynaphthalene.
 活性エネルギー線硬化型接着剤組成物にナフタレン系光増感助剤を含有させることにより、それを含有しない場合に比べ、接着剤の硬化性を向上させることができる。硬化性成分(A)の合計量100質量部に対するナフタレン系光増感助剤の含有量を0.1質量部以上とすることにより、このような効果を発現させることができる。一方、ナフタレン系光増感助剤の含有量が多くなると、低温保管時に析出する等の問題を生じることから、その含有量は、硬化性成分(A)の合計量100質量部に対して5質量部以下とすることが好ましい。ナフタレン系光増感助剤の含有量は、好ましくは、硬化性成分(A)の合計量100質量部に対して3質量部以下である。 By including a naphthalene-based photosensitizer in the active energy ray-curable adhesive composition, the curability of the adhesive can be improved as compared with the case where it is not contained. Such an effect can be exhibited by setting the content of the naphthalene-based photosensitizer to 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the curable component (A). On the other hand, if the content of the naphthalene-based photosensitizer increases, problems such as precipitation during low-temperature storage occur. Therefore, the content is 5 with respect to 100 parts by mass of the total amount of the curable component (A). It is preferably less than or equal to parts by mass. The content of the naphthalene-based photosensitizer is preferably 3 parts by mass or less with respect to 100 parts by mass of the total amount of the curable component (A).
 (添加剤成分(E))
 活性エネルギー線硬化型接着剤組成物には、本発明の効果を損なわない限り、任意成分である他の成分として、添加剤成分(E)を含有させることができる。添加剤成分(E)としては、イオントラップ剤、酸化防止剤、光安定剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、レベリング剤、色素、有機溶剤等を挙げることができる。
(Additive component (E))
The active energy ray-curable adhesive composition may contain an additive component (E) as another component which is an optional component as long as the effects of the present invention are not impaired. The additive component (E) includes an ion trap agent, an antioxidant, a light stabilizer, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow conditioner, a plasticizer, a defoaming agent, and a leveling agent. Examples include dyes and organic solvents.
 添加剤成分(E)を含有させる場合、その含有量は、硬化性成分(A)の合計量100質量部に対して10質量部以下であることが好ましい。 When the additive component (E) is contained, the content thereof is preferably 10 parts by mass or less with respect to 100 parts by mass of the total amount of the curable component (A).
 上記した光カチオン重合開始剤(B)、光増感剤(C)、光増感助剤(D)、及び添加剤成分(E)は、活性エネルギー線硬化型接着剤組成物の調製時に、溶剤を含まない状態で添加してもよいし、溶剤に希釈してから直接添加してもよい。上記した含有量の数値範囲は、いずれも固形分基準での数値範囲である。 The above-mentioned photocationic polymerization initiator (B), photosensitizer (C), photosensitizer (D), and additive component (E) were used when preparing the active energy ray-curable adhesive composition. It may be added without a solvent, or it may be diluted with a solvent and then added directly. The above-mentioned numerical range of the content is a numerical range based on the solid content.
 本発明の一様態として、第1硬化物層を形成する活性エネルギー線硬化性組成物は、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有する組成物であることが好ましい。
 活性エネルギー線硬化性組成物が、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有する場合、さらにオキセタン化合物(A5)を含むことが好ましく、多官能オキセタン化合物(A5-1)を含むことがより好ましく、2官能オキセタン化合物を含むことがさらに好ましい。
 活性エネルギー線硬化性組成物が、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)とオキセタン化合物(A5)とを含む場合、さらに、脂環式エポキシ化合物(A1)及び多官能脂肪族エポキシ化合物(A2)(3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を除く)から選ばれる少なくともいずれか1種を含むことが好ましい。
As a uniform form of the present invention, the active energy ray-curable composition forming the first cured product layer contains an epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule. The composition is preferably contained.
When the active energy ray-curable composition contains an epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, it is preferable to further contain an oxetane compound (A5). , A polyfunctional oxetane compound (A5-1) is more preferable, and a bifunctional oxetane compound is further preferably contained.
When the active energy ray-curable composition contains an epoxy compound (A2-1) and an oxetane compound (A5) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, it is further alicyclic. At least one selected from the epoxy compound (A1) and the polyfunctional aliphatic epoxy compound (A2) (excluding the epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule). It is preferable to include one type.
 活性エネルギー線硬化性組成物が、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)とオキセタン化合物(A5)とを含む場合、オキセタン化合物(A5)の含有量は3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)の含有量よりも多い。活性エネルギー線硬化性組成物が、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)と多官能オキセタン化合物(A5-1)とを含む場合、多官能オキセタン化合物(A5-1)の含有量は3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)の含有量よりも多いことが好ましい。多官能オキセタン化合物(A5-1)と3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)との含有比(質量比)が、多官能オキセタン化合物(A5-1)/3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)=1.1/1~5/1であることが好ましく、1.5/1~5/1であることがより好ましく、2/1~5/1であることがさらに好ましい。上記範囲であれば、高架橋密度の硬化膜が得られやすくなるため、ヨウ素移行量を抑制できる。
 活性エネルギー線硬化性組成物が、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)とオキセタン化合物(A5)とを含む場合、オキセタン化合物(A5)の含有量は、硬化性成分(A)の全質量を基準に35質量%以上であることが好ましく、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 活性エネルギー線硬化性組成物が、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)とオキセタン化合物(A5)とを含む場合、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)の含有量は、硬化性成分(A)の全質量を基準に1質量%以上であることが好ましく、5質量%以上であることがより好ましく、35質量%未満であることが好ましく、30質量%以下であることがより好ましい。
When the active energy ray-curable composition contains an epoxy compound (A2-1) and an oxetane compound (A5) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, the oxetane compound (A5) The content of is higher than the content of the epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule. When the active energy ray-curable composition contains an epoxy compound (A2-1) containing a three-ring condensed ring and two glycidyl ether groups in the molecule, and a polyfunctional oxetane compound (A5-1), there are many cases. The content of the functional oxetane compound (A5-1) is preferably higher than the content of the epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule. The content ratio (mass ratio) of the polyfunctional oxetane compound (A5-1), the tricyclic condensed ring, and the epoxy compound (A2-1) containing two glycidyl ether groups in the molecule is the polyfunctional oxetane compound (mass ratio). The epoxy compound (A2-1) containing the condensed ring of A5-1) / 3 ring type and two glycidyl ether groups in the molecule is preferably 1.1 / 1 to 5/1, and 1.5 / It is more preferably 1 to 5/1, and even more preferably 2/1 to 5/1. Within the above range, a cured film having a high crosslink density can be easily obtained, so that the amount of iodine transfer can be suppressed.
When the active energy ray-curable composition contains an epoxy compound (A2-1) and an oxetane compound (A5) containing a three-ring fused ring and two glycidyl ether groups in the molecule, the oxetane compound (A5) The content of is preferably 35% by mass or more, preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass based on the total mass of the curable component (A). It is more preferably less than or equal to%.
When the active energy ray-curable composition contains an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule and an oxetane compound (A5), the tricyclic condensation The content of the epoxy compound (A2-1) containing a ring and two glycidyl ether groups in the molecule is preferably 1% by mass or more based on the total mass of the curable component (A), and is preferably 5% by mass. More preferably, it is less than 35% by mass, and more preferably 30% by mass or less.
 (粘度)
 活性エネルギー線硬化型接着剤組成物の粘度としては、種々の方法で塗工できる粘度を有するものであればよいが、その温度25℃における粘度は、例えば200mPa・s以下であってよく、好ましくは0.1mPa・s以上180mPa・s以下である。その粘度があまり小さいと、所望の厚みでの層形成がしにくくなる傾向にある。一方、その粘度があまり大きいと、流動しにくくなって、ムラのない均質な塗膜が得られにくくなる傾向にある。ここでいう粘度は、E型粘度計を用いてその接着剤を25℃に調温した後、10rpmで測定される値である。
(viscosity)
The viscosity of the active energy ray-curable adhesive composition may be any one having a viscosity that can be applied by various methods, but the viscosity at a temperature of 25 ° C. may be, for example, 200 mPa · s or less, which is preferable. Is 0.1 mPa · s or more and 180 mPa · s or less. If the viscosity is too small, it tends to be difficult to form a layer with a desired thickness. On the other hand, if the viscosity is too high, it tends to be difficult to flow, and it tends to be difficult to obtain a uniform and uniform coating film. The viscosity referred to here is a value measured at 10 rpm after adjusting the temperature of the adhesive to 25 ° C. using an E-type viscometer.
 (硬化方法)
 活性エネルギー線硬化型接着剤組成物は、電子線硬化型、紫外線硬化型の態様で用いることができる。本明細書において、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線等が挙げられる。
(Curing method)
The active energy ray-curable adhesive composition can be used in the form of an electron beam-curable type or an ultraviolet-curable type. As used herein, an active energy ray is defined as an energy ray capable of decomposing a compound that generates an active species to generate an active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays and electron beams.
 電子線硬化型において、電子線の照射条件は、活性エネルギー線硬化型接着剤組成物を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV以上300kV以下であり、さらに好ましくは10kV以上250kV以下である。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明保護フィルムや偏光子に損傷を与えるおそれがある。照射線量としては、5kGy以上100kGy以下、さらに好ましくは10kGy以上75kGy以下である。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、光学層に損傷を与え、機械的強度の低下や黄変を生じ、所望の光学特性を得ることができない。 In the electron beam curing type, any appropriate conditions can be adopted as the electron beam irradiation conditions as long as the active energy ray curing adhesive composition can be cured. For example, in electron beam irradiation, the acceleration voltage is preferably 5 kV or more and 300 kV or less, and more preferably 10 kV or more and 250 kV or less. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and curing may be insufficient. If the acceleration voltage exceeds 300 kV, the penetrating force through the sample is too strong and the electron beam bounces off, and a transparent protective film or There is a risk of damaging the polarizer. The irradiation dose is 5 kGy or more and 100 kGy or less, more preferably 10 kGy or more and 75 kGy or less. When the irradiation dose is less than 5 kGy, the adhesive is insufficiently cured, and when it exceeds 100 kGy, the optical layer is damaged, mechanical strength is lowered and yellowing occurs, and desired optical characteristics cannot be obtained.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。酸素を適宜導入することによって、最初に電子線があたる光学層にあえて酸素阻害を生じさせ、他の光学層へのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。 Electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under conditions where a small amount of oxygen is introduced. By appropriately introducing oxygen, it is possible to prevent damage to other optical layers by intentionally causing oxygen inhibition in the optical layer to which the electron beam first hits, and to efficiently irradiate only the adhesive with the electron beam. Can be done.
 紫外線硬化型において、活性エネルギー線硬化型接着剤組成物の光照射強度は、接着剤の組成ごとに決定されるものであって特に限定されないが、10mW/cm2以上1,000mW/cm2以下であることが好ましい。樹脂組成物への光照射強度が10mW/cm2未満であると、反応時間が長くなりすぎ、1,000mW/cm2を超えると、光源から輻射される熱及び組成物の重合時の発熱により、接着剤の構成材料の黄変を生じる可能性がある。なお、照射強度は、好ましくは光カチオン重合開始剤(B)の活性化に有効な波長領域における強度であり、より好ましくは波長400nm以下の波長領域における強度であり、さらに好ましくは波長280nm以上320nm以下の波長領域における強度である。このような光照射強度で1回あるいは複数回照射して、その積算光量を、好ましくは10mJ/cm2以上、さらに好ましくは100mJ/cm2以上1,000mJ/cm2以下となるように設定する。上記接着剤への積算光量が10mJ/cm2未満であると、重合開始剤由来の活性種の発生が十分でなく、接着剤の硬化が不十分となる。一方でその積算光量が1,000mJ/cm2を超えると、照射時間が長くなり、生産性向上には不利なものとなる。この際、第1位相差層30及び第2位相差層40の種類や接着剤種の組み合わせなどによって、波長領域(UVA(320nm以上390nm以下)やUVB(280nm以上320nm以下)など)及びその積算光量を適宜設定することができる。 In the ultraviolet curable type, the light irradiation intensity of the active energy ray-curable adhesive composition is determined for each adhesive composition and is not particularly limited, but is 10 mW / cm 2 or more and 1,000 mW / cm 2 or less. Is preferable. If the light irradiation intensity of the resin composition is less than 10 mW / cm 2 , the reaction time becomes too long, and if it exceeds 1,000 mW / cm 2 , the heat radiated from the light source and the heat generated during the polymerization of the composition cause. , May cause yellowing of the constituent materials of the adhesive. The irradiation intensity is preferably an intensity in a wavelength region effective for activating the photocationic polymerization initiator (B), more preferably an intensity in a wavelength region having a wavelength of 400 nm or less, and further preferably a wavelength of 280 nm or more and 320 nm. The intensity in the following wavelength region. Such once with light intensity or by irradiation a plurality of times, the integrated light quantity is preferably 10 mJ / cm 2 or more, more preferably set to be 100 mJ / cm 2 or more 1,000 mJ / cm 2 or less .. If the integrated light intensity to the adhesive is less than 10 mJ / cm 2 , the active species derived from the polymerization initiator are not sufficiently generated, and the adhesive is not sufficiently cured. On the other hand, if the integrated light intensity exceeds 1,000 mJ / cm 2 , the irradiation time becomes long, which is disadvantageous for improving productivity. At this time, depending on the type of the first retardation layer 30 and the second retardation layer 40, the combination of the adhesive types, etc., the wavelength region (UVA (320 nm or more and 390 nm or less), UVB (280 nm or more and 320 nm or less), etc.) and its integration. The amount of light can be set as appropriate.
 本発明における活性エネルギー線の照射により活性エネルギー線硬化型接着剤組成物の重合硬化を行うために用いる光源は、特に限定されないが、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380nm以上440nm以下を発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプが挙げられる。エネルギーの安定性や装置の簡便さという観点から、波長400nm以下に発光分布を有する紫外光源であることが好ましい。 The light source used for polymerizing and curing the active energy ray-curable adhesive composition by irradiation with the active energy ray in the present invention is not particularly limited, but for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, and an ultra-high-pressure mercury lamp. Examples thereof include xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excima lasers, LED light sources that emit light in a wavelength range of 380 nm or more and 440 nm or less, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. From the viewpoint of energy stability and simplicity of the apparatus, an ultraviolet light source having an emission distribution having a wavelength of 400 nm or less is preferable.
 (第1硬化物層の貯蔵弾性率)
 第1硬化物層の、温度80℃における貯蔵弾性率(E)は、導電層の腐食抑制の観点で、300MPa以上であることが好ましく、500MPa以上であることがより好ましく、1000MPa以上であることがさらに好ましい。また、5000MPa以下であることが好ましく、4000MPa以下であることがより好ましく、3500MPa以下であることがさらに好ましい。なお、第1硬化物層の貯蔵弾性率(E)は、後述する実施例の項に記載の方法によって測定される。
(Storage modulus of the first cured product layer)
The storage elastic modulus (E 1 ) of the first cured product layer at a temperature of 80 ° C. is preferably 300 MPa or more, more preferably 500 MPa or more, and more preferably 1000 MPa or more from the viewpoint of suppressing corrosion of the conductive layer. Is even more preferable. Further, it is preferably 5000 MPa or less, more preferably 4000 MPa or less, and further preferably 3500 MPa or less. The storage elastic modulus (E 1 ) of the first cured product layer is measured by the method described in the section of Examples described later.
 第1硬化物層の温度80℃における貯蔵弾性率(E)と後述する第2硬化物層の温度80℃における貯蔵弾性率(E)は、腐食を抑制及び耐久性試験時におけるクラック発生抑制の観点で、E>Eの関係を満たすことが好ましく、E-E=ΔEとすると、ΔEが2000MPa以下であることがより好ましく、1500MPa以下であることがさらに好ましい。 The storage elastic modulus (E 1 ) of the first cured product layer at a temperature of 80 ° C. and the storage elastic modulus (E 2 ) of the second cured product layer at a temperature of 80 ° C., which will be described later, suppress corrosion and cause cracks during the durability test. From the viewpoint of suppression, it is preferable to satisfy the relationship of E 1 > E 2 , and when E 1 −E 2 = ΔE, ΔE is more preferably 2000 MPa or less, and further preferably 1500 MPa or less.
 第1硬化物層の温度30℃における貯蔵弾性率と、温度80℃における貯蔵弾性率との差が大きすぎない方が好ましい。温度30℃における貯蔵弾性率と温度80℃における貯蔵弾性率との差が大きすぎると、金属腐食が発生しやすくなる傾向がある。温度30℃における貯蔵弾性率と温度80℃における貯蔵弾性率との差は、1500MPa以下であることが好ましい。 It is preferable that the difference between the storage elastic modulus at a temperature of 30 ° C. and the storage elastic modulus at a temperature of 80 ° C. of the first cured product layer is not too large. If the difference between the storage elastic modulus at a temperature of 30 ° C. and the storage elastic modulus at a temperature of 80 ° C. is too large, metal corrosion tends to occur easily. The difference between the storage elastic modulus at a temperature of 30 ° C. and the storage elastic modulus at a temperature of 80 ° C. is preferably 1500 MPa or less.
 (第1硬化物層のガラス転移温度)
 第1硬化物層の、ガラス転移温度(Tg)は、導電層の腐食抑制の観点で、65℃以上であることが好ましく、70℃以上であることがより好ましく、75℃以上であることがさらに好ましい。また、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがさらに好ましい。第1硬化物層のガラス転移温度(Tg)は、後述する実施例の項に記載の方法によって測定される。
(Glass transition temperature of the first cured product layer)
The glass transition temperature (Tg 1 ) of the first cured product layer is preferably 65 ° C. or higher, more preferably 70 ° C. or higher, and 75 ° C. or higher from the viewpoint of suppressing corrosion of the conductive layer. Is even more preferable. Further, it is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 120 ° C. or lower. The glass transition temperature (Tg 1 ) of the first cured product layer is measured by the method described in the section of Examples described later.
 (第1硬化物層の透湿度)
 第1硬化物層の温度80℃における透湿度は、金属腐食を抑制する観点からは、低い方が好ましい。厚み30μmの第1硬化層は、JIS Z 0208に規定されるカップ法により、温度80℃、相対湿度90%の条件下で測定される透湿度が、好ましくは1500g/(m・24hr)以下、より好ましくは1000g/(m・24hr)以下、さらに好ましくは950g/(m・24hr)以下である。該透湿度は、通常100g/(m・24hr)以上である。
(Humidity permeability of the first cured product layer)
The moisture permeability of the first cured product layer at a temperature of 80 ° C. is preferably low from the viewpoint of suppressing metal corrosion. First cured layer having a thickness of 30μm is by cup method defined in JIS Z 0208, temperature 80 ° C., the moisture permeability being measured under the conditions of a relative humidity of 90%, preferably from 1500g / (m 2 · 24hr) or less , more preferably 1000g / (m 2 · 24hr) or less, still more preferably 950g / (m 2 · 24hr) or less. The transparent humidity is usually 100g / (m 2 · 24hr) or more.
 第1硬化膜の透湿度Jは、具体的には、透湿度が既知の基材フィルム等に第1硬化物層を形成した積層体(例えば20μmのトリアセチルセルロースフィルム/5μmの粘着剤層/厚み30μmの第1硬化物層の積層体)を作製して該積層体の透湿度を上記方法で測定し、測定結果を用いて下記式に基づいて求めることができる。
 1/Jt=(1/J)+(1/Jsub)
 上記式中、Jtは上記積層体の透湿度であり、Jsubは積層体から第1硬化物層を除いた層構成での透湿度である。JIS Z 0208に従って積層体の透湿度を測定する際、積層体は、上記硬化膜を外側に向けてカップに取り付けられる。
 例えば、20μmのトリアセチルセルロースフィルム/5μmの粘着剤層/厚み30μmの第1硬化物層の層構成を有する積層体は、JIS Z 0208に規定されるカップ法により、温度80℃、相対湿度90%の条件下で測定される透湿度が、好ましくは1000g/(m・24hr)以下であり、より好ましくは950g/(m・24hr)以下である。該透湿度は、通常100g/(m・24hr)以上である。
Specifically, the moisture permeability J of the first cured film is a laminate (for example, 20 μm triacetyl cellulose film / 5 μm pressure-sensitive adhesive layer /) in which the first cured product layer is formed on a base film or the like having a known moisture permeability. A laminated body of the first cured product layer having a thickness of 30 μm) is produced, the moisture permeability of the laminated body is measured by the above method, and the measurement result can be used to obtain it based on the following formula.
1 / Jt = (1 / J) + (1 / Jsub)
In the above formula, Jt is the moisture permeability of the laminated body, and Jsub is the moisture permeability in the layer structure obtained by removing the first cured product layer from the laminated body. When measuring the moisture permeability of the laminate according to JIS Z 0208, the laminate is attached to the cup with the cured film facing outward.
For example, a laminate having a layer structure of 20 μm triacetyl cellulose film / 5 μm pressure-sensitive adhesive layer / 30 μm-thick first cured product layer has a temperature of 80 ° C. and a relative humidity of 90 by the cup method specified in JIS Z 0208. moisture permeability, measured in% conditions are preferably at 1000g / (m 2 · 24hr) or less and more preferably 950g / (m 2 · 24hr) or less. The transparent humidity is usually 100g / (m 2 · 24hr) or more.
 (位相差層)
 本発明の光学積層体は、重合性液晶化合物の重合体である位相差発現層を少なくとも一つ有する位相差層20を含む。位相差層20は、光に所定の位相差を与える位相差発現層を少なくとも一つ含む位相差層であれば特に限定されず、例えば1/2波長層、1/4波長層、ポジティブCプレート等の光学補償層であってもよい。位相差層は、正分散性の位相差層であっても、逆波長分散性の位相差層であってもよい。位相差層20は、位相差発現層を少なとも一つ含むものであれば、位相差発現層のみからなるものであってもよいし、位相差発現層とともに他の層を含むものであってもよい。他の層としては、例えば、基材層、配向膜層、保護層等が挙げられる。なお、他の層は位相差の値には影響を及ぼさない。また、位相差層20は、第1位相差層30と第2位相差層40の2層から構成されていてもよい。以下、第1位相差層30及び第2位相差層40が後述する第2硬化物層50を介して接着された積層体を、位相差層積層体60ともいう。
(Phase difference layer)
The optical laminate of the present invention includes a retardation layer 20 having at least one retardation layer which is a polymer of a polymerizable liquid crystal compound. The retardation layer 20 is not particularly limited as long as it is a retardation layer including at least one retardation expression layer that gives a predetermined retardation to light, and is, for example, a 1/2 wavelength layer, a 1/4 wavelength layer, and a positive C plate. It may be an optical compensation layer such as. The retardation layer may be a positive dispersion retardation layer or a reverse wavelength dispersion retardation layer. The retardation layer 20 may be composed of only the retardation expression layer as long as it contains at least one retardation expression layer, or may include another layer together with the retardation expression layer. May be good. Examples of other layers include a base material layer, an alignment film layer, a protective layer and the like. The other layers do not affect the value of the phase difference. Further, the retardation layer 20 may be composed of two layers, a first retardation layer 30 and a second retardation layer 40. Hereinafter, the laminated body in which the first retardation layer 30 and the second retardation layer 40 are adhered to each other via the second cured product layer 50 described later is also referred to as a retardation layer laminate 60.
 位相差発現層としては、重合性液晶化合物の重合体を含む層(以下、液晶層ともいう)、又は延伸フィルムが挙げられる。第1位相差層30及び第2位相差層40の少なくとも一方は液晶層であることが好ましい。第1位相差層30が液晶層である場合、第1位相差層30は、第2硬化物層50側の表面が、位相差発現層である液晶層であることが好ましい。第2位相差層40が液晶層である場合、第2位相差層40は、第2硬化物層50側の表面が、位相差発現層である液晶層であることが好ましい。液晶層である位相差発現層の方が、延伸フィルムである位相差発現層よりも、一般的に薄膜化が容易である。 Examples of the retardation expression layer include a layer containing a polymer of a polymerizable liquid crystal compound (hereinafter, also referred to as a liquid crystal layer) or a stretched film. At least one of the first retardation layer 30 and the second retardation layer 40 is preferably a liquid crystal layer. When the first retardation layer 30 is a liquid crystal layer, it is preferable that the surface of the first retardation layer 30 on the side of the second cured product layer 50 is a liquid crystal layer which is a retardation expression layer. When the second retardation layer 40 is a liquid crystal layer, it is preferable that the surface of the second retardation layer 40 on the side of the second cured product layer 50 is a liquid crystal layer which is a retardation expression layer. The retardation expression layer, which is a liquid crystal layer, is generally easier to thin than the retardation expression layer, which is a stretched film.
 第1位相差層30及び第2位相差層40の少なくとも一方は、波長320nmにおける光線透過率が、密着性の観点から好ましくは5%以上であり、より好ましくは10%以上であり、さらに好ましくは30%以上である。光線透過率は後述する実施例の欄において説明する測定方法に従って測定することができる。 At least one of the first retardation layer 30 and the second retardation layer 40 has a light transmittance of preferably 5% or more, more preferably 10% or more, still more preferably, from the viewpoint of adhesion at a wavelength of 320 nm. Is more than 30%. The light transmittance can be measured according to the measurement method described in the column of Examples described later.
 第1位相差層30及び第2位相差層40の少なくとも一方は、好ましくは、波長380nmにおける光線透過率が0%以上10%以下であり、かつ、波長400nmにおける光線透過率が30%以上であり、より好ましくは、波長380nmにおける光線透過率が0%以上5%以下であり、かつ、波長400nmにおける光線透過率が35%以上であり、さらに好ましくは、波長380nmにおける光線透過率が0%以上1%以下であり、かつ、波長400nmにおける光線透過率が40%以上である。 At least one of the first retardation layer 30 and the second retardation layer 40 preferably has a light transmittance of 0% or more and 10% or less at a wavelength of 380 nm and a light transmittance of 30% or more at a wavelength of 400 nm. Yes, more preferably, the light transmittance at a wavelength of 380 nm is 0% or more and 5% or less, and the light transmittance at a wavelength of 400 nm is 35% or more, and even more preferably, the light transmittance at a wavelength of 380 nm is 0%. It is 1% or less, and the light transmittance at a wavelength of 400 nm is 40% or more.
 第1位相差層30及び第2位相差層40が、それぞれ位相差発現層のみからなる場合は、それぞれの厚みが0.5μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることがより好ましい。
 第1位相差層30及び第2位相差層40がそれぞれ位相差発現層以外の他の層(基材層、配向膜層、保護層等)を含む場合、全体の厚みが0.5μm以上300μm以下であることが好ましく、0.5μm以上150μm以下であることがより好ましい。
When the first retardation layer 30 and the second retardation layer 40 are each composed of only a retardation expression layer, the thickness thereof is preferably 0.5 μm or more and 10 μm or less, and 0.5 μm or more and 5 μm or less. Is more preferable.
When the first retardation layer 30 and the second retardation layer 40 include layers other than the retardation expression layer (base material layer, alignment film layer, protective layer, etc.), the total thickness is 0.5 μm or more and 300 μm. It is preferably 0.5 μm or more, and more preferably 150 μm or less.
 第1位相差層30と第2位相差層40との組み合わせとしては、例えば、
i)1/2波長層と、1/4波長層との組み合わせ、
ii)1/2波長層と、光学補償層との組み合わせ、
iii)1/4波長層と、光学補償層との組み合わせ、
等が挙げられる。
As a combination of the first retardation layer 30 and the second retardation layer 40, for example,
i) Combination of 1/2 wavelength layer and 1/4 wavelength layer,
ii) Combination of 1/2 wavelength layer and optical compensation layer,
iii) Combination of 1/4 wavelength layer and optical compensation layer,
And so on.
 i)の場合、第1位相差層30が1/2波長層であり、第2位相差層40が1/4波長層であることが好ましい。 In the case of i), it is preferable that the first retardation layer 30 is a 1/2 wavelength layer and the second retardation layer 40 is a 1/4 wavelength layer.
 ii)の場合、第1位相差層30が1/2波長層であり、第2位相差層40が光学補償層であることが好ましく、第1位相差層30が1/2波長層であり、第2位相差層40がポジティブCプレートであることがより好ましい。 In the case of ii), it is preferable that the first retardation layer 30 is a 1/2 wavelength layer, the second retardation layer 40 is an optical compensation layer, and the first retardation layer 30 is a 1/2 wavelength layer. , It is more preferable that the second retardation layer 40 is a positive C plate.
 iii)の場合、第1位相差層30が1/4波長層であり、第2位相差層40が光学補償層であることが好ましく、第1位相差層30が1/4波長層であり、第2位相差層40がポジティブCプレートであることがより好ましい。 In the case of iii), it is preferable that the first retardation layer 30 is a 1/4 wavelength layer, the second retardation layer 40 is an optical compensation layer, and the first retardation layer 30 is a 1/4 wavelength layer. , It is more preferable that the second retardation layer 40 is a positive C plate.
 1/2波長層は、入射光の電界振動方向(偏光面)にπ(=λ/2)の位相差を与えるものであり、直線偏光の向き(偏光方位)を変える機能を有している。また、円偏光の光を入射させると、円偏光の回転方向を反対回りにすることができる。 The 1/2 wavelength layer gives a phase difference of π (= λ / 2) to the electric field vibration direction (polarization plane) of the incident light, and has a function of changing the direction of linearly polarized light (polarization direction). .. Further, when circularly polarized light is incident, the direction of rotation of circularly polarized light can be reversed.
 1/2波長層は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/2を満足する層である。可視光域の何れの波長においてRe(λ)=λ/2を達成されていればよいが、なかでも波長550nmにおいて達成されることが好ましい。波長550nmにおける面内レターデーション値であるRe(550)は、210nm≦Re(550)≦300nmを満足することが好ましい。また、220nm≦Re(550)≦290nmを満足することがより好ましい。 The 1/2 wavelength layer is a layer in which Re (λ), which is an in-plane retardation value at a specific wavelength λ nm, satisfies Re (λ) = λ / 2. Re (λ) = λ / 2 may be achieved at any wavelength in the visible light region, but it is particularly preferable that it is achieved at a wavelength of 550 nm. The in-plane retardation value of Re (550) at a wavelength of 550 nm preferably satisfies 210 nm ≦ Re (550) ≦ 300 nm. Further, it is more preferable to satisfy 220 nm ≦ Re (550) ≦ 290 nm.
 1/4波長層は、入射光の電界振動方向(偏光面)にπ/2(=λ/4)の位相差を与えるものであり、ある特定の波長の直線偏光を円偏光に(又は円偏光を直線偏光に)変換する機能を有している。 The 1/4 wavelength layer gives a phase difference of π / 2 (= λ / 4) to the electric field vibration direction (polarization plane) of the incident light, and linearly polarized light of a specific wavelength is changed to circularly polarized light (or circularly polarized light). It has the function of converting polarized light (to linearly polarized light).
 1/4波長層は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/4を満足する層であり、可視光域の何れかの波長において達成されていればよいが、なかでも波長550nmで達成されることが好ましい。波長550nmにおける面内レターデーション値であるRe(550)が、100nm≦Re(550)≦160nmを満足することが好ましい。また、110nm≦Re(550)≦150nmを満足することがより好ましい。 The 1/4 wavelength layer is a layer in which Re (λ), which is an in-plane retardation value at a specific wavelength λ nm, satisfies Re (λ) = λ / 4, and is achieved at any wavelength in the visible light region. However, it is preferable that the wavelength is 550 nm. It is preferable that Re (550), which is an in-plane retardation value at a wavelength of 550 nm, satisfies 100 nm ≦ Re (550) ≦ 160 nm. Further, it is more preferable to satisfy 110 nm ≦ Re (550) ≦ 150 nm.
 光学補償層としては、例えば、ポジティブAプレート、ポジティブCプレート等が挙げられる。ポジティブAプレートは、その面内における遅相軸方向の屈折率をNx、その面内における進相軸方向の屈折率をNy、その厚み方向における屈折率をNzとしたときに、Nx>Nyの関係を満足するものである。ポジティブAプレートは、Nx>Ny≧Nzの関係を満足することが好ましい。また、ポジティブAプレートは1/4波長層としても機能することができる。ポジティブCプレートは、Nz>Nx≧Nyの関係を満足するものである。 Examples of the optical compensation layer include a positive A plate and a positive C plate. The positive A plate has Nx> Ny when the refractive index in the slow axis direction in the plane is Nx, the refractive index in the phase advance axis direction in the plane is Ny, and the refractive index in the thickness direction is Nz. Satisfy the relationship. The positive A plate preferably satisfies the relationship of Nx> Ny ≧ Nz. The positive A plate can also function as a quarter wavelength layer. The positive C plate satisfies the relationship of Nz> Nx ≧ Ny.
 逆波長分散性とは、短波長での面内レタデーション値の方が長波長での面内レタデーション値よりも小さくなる光学特性であり、好ましくは、下記式(2):
 Re(450)≦Re(550)≦Re(650)   (2)
を満たすことである。なお、Re(λ)は波長λnmの光に対する面内レタデーション値を表す。
The inverse wavelength dispersibility is an optical characteristic in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength, and the following equation (2):
Re (450) ≤ Re (550) ≤ Re (650) (2)
To meet. Re (λ) represents an in-plane retardation value for light having a wavelength of λ nm.
 位相差層の光学特性は、位相差発現層を構成する液晶化合物の配向状態、又は位相差発現層を構成する延伸フィルムの延伸方法により調節することができる。位相差層の光学特性を適宜調節することにより、位相差層積層体と直線偏光板とを積層して、反射防止性能を有する偏光板複合体を得ることができる。 The optical characteristics of the retardation layer can be adjusted by the orientation state of the liquid crystal compound constituting the retardation expression layer or the stretching method of the stretched film constituting the retardation expression layer. By appropriately adjusting the optical characteristics of the retardation layer, the retardation layer laminate and the linear polarizing plate can be laminated to obtain a polarizing plate composite having antireflection performance.
 (液晶層から形成される位相差発現層)
 位相差発現層が液晶層である場合について説明する。図2は、液晶層である位相差発現層と他の層とを含む位相差層の一例を模式的に示す概略断面図である。図2に示す第1位相差層30は、基材層31、配向層32、液晶層である位相差発現層33がこの順に積層されてなる。位相差層は、液晶層の位相差発現層33を含む構成であれば図2に示す第1位相差層30に限定されることはなく、第1位相差層30から基材層31が剥離されて配向層32と位相差発現層33のみからなる構成であってもよく、第1位相差層30から基材層31と配向層32が剥離されて液晶層の位相差発現層33のみからなる構成であってもよい。薄膜化の観点から、位相差層は、基材層31が剥離されている構成であることが好ましく、液晶層の位相差発現層33のみからなる構成がさらに好ましい。基材層31は、基材層31上に形成される配向層32、及び液晶層の位相差発現層33を支持する支持層として機能を有する。基材層31は、樹脂材料で形成されたフィルムであることが好ましい。
(Phase difference expression layer formed from the liquid crystal layer)
A case where the retardation expression layer is a liquid crystal layer will be described. FIG. 2 is a schematic cross-sectional view schematically showing an example of a retardation layer including a retardation expression layer which is a liquid crystal layer and another layer. The first retardation layer 30 shown in FIG. 2 is formed by laminating a base material layer 31, an alignment layer 32, and a retardation expression layer 33, which is a liquid crystal layer, in this order. The retardation layer is not limited to the first retardation layer 30 shown in FIG. 2 as long as it includes the retardation expression layer 33 of the liquid crystal layer, and the base material layer 31 is separated from the first retardation layer 30. The configuration may be composed of only the alignment layer 32 and the phase difference expression layer 33, and the base material layer 31 and the alignment layer 32 are separated from the first retardation layer 30 and only from the phase difference expression layer 33 of the liquid crystal layer. It may be configured as follows. From the viewpoint of thinning, the retardation layer preferably has a structure in which the base material layer 31 is peeled off, and more preferably a structure consisting of only the retardation expression layer 33 of the liquid crystal layer. The base material layer 31 has a function as a support layer that supports the alignment layer 32 formed on the base material layer 31 and the retardation expression layer 33 of the liquid crystal layer. The base material layer 31 is preferably a film made of a resin material.
 樹脂材料としては、例えば、透明性、機械的強度、熱安定性、延伸性等に優れる樹脂材料が用いられる。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ノルボルネン系ポリマー等の環状ポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;(メタ)アクリル酸、ポリ(メタ)アクリル酸メチル等の(メタ)アクリル酸系樹脂;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル系樹脂;ポリビニルアルコール及びポリ酢酸ビニル等のビニルアルコール系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリアリレート系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルケトン系樹脂;ポリフェニレンスルフィド系樹脂;ポリフェニレンオキシド系樹脂、及びこれらの混合物、共重合物等を挙げることができる。これらの樹脂のうち、環状ポリオレフィン系樹脂、ポリエステル系樹脂、セルロースエステル系樹脂及び(メタ)アクリル酸系樹脂のいずれか又はこれらの混合物を用いることが好ましい。なお、上記「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。 As the resin material, for example, a resin material having excellent transparency, mechanical strength, thermal stability, stretchability, etc. is used. Specifically, polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid, poly (meth) methyl acrylate and the like. (Meta) acrylic acid resin; cellulose ester resin such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; vinyl alcohol resin such as polyvinyl alcohol and polyvinyl acetate; polycarbonate resin; polystyrene resin; poly Arilate-based resin; polysulfone-based resin; polyether sulfone-based resin; polyamide-based resin; polyimide-based resin; polyether ketone-based resin; polyphenylene sulfide-based resin; polyphenylene oxide-based resin, and mixtures and copolymers thereof. Can be done. Among these resins, it is preferable to use any one of cyclic polyolefin-based resin, polyester-based resin, cellulose ester-based resin and (meth) acrylic acid-based resin, or a mixture thereof. The above-mentioned "(meth) acrylic acid" means "at least one of acrylic acid and methacrylic acid".
 基材層31は、上記の樹脂1種類又は2種以上を混合した単層であってもよく、2層以上の多層構造を有していてもよい。多層構造を有する場合、各層をなす樹脂は同じであってもよく異なっていてもよい。 The base material layer 31 may be a single layer obtained by mixing one or more of the above resins, or may have a multilayer structure of two or more layers. When having a multi-layer structure, the resins forming each layer may be the same or different.
 樹脂フィルムをなす樹脂材料には、任意の添加剤が添加されていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、及び着色剤等が挙げられる。 Any additive may be added to the resin material forming the resin film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an antioxidant, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
 基材層31の厚みは、特に限定されないが、一般には強度や取扱い性等の作業性の点から5μm以上200μm以下であることが好ましく、10μm以上200μm以下であることがより好ましく、10μm以上150μm以下であることがさらに好ましい。 The thickness of the base material layer 31 is not particularly limited, but is generally preferably 5 μm or more and 200 μm or less, more preferably 10 μm or more and 200 μm or less, and 10 μm or more and 150 μm from the viewpoint of workability such as strength and handleability. The following is more preferable.
 基材層31と配向層32との密着性を向上させるために、少なくとも基材層31の配向層32が形成される側の表面にコロナ処理、プラズマ処理、火炎処理等を行ってもよく、プライマー層等を形成してもよい。なお、基材層31、又は基材層31及び配向層32を剥離して位相差層とする場合には、剥離界面での密着力を調整することによって剥離を容易とすることができる。 In order to improve the adhesion between the base material layer 31 and the alignment layer 32, at least the surface of the base material layer 31 on the side where the alignment layer 32 is formed may be subjected to corona treatment, plasma treatment, flame treatment, or the like. A primer layer or the like may be formed. When the base material layer 31, or the base material layer 31 and the alignment layer 32 are peeled off to form a retardation layer, the peeling can be facilitated by adjusting the adhesion at the peeling interface.
 配向層32は、これらの配向層32上に形成される液晶層の位相差発現層33に含まれる液晶化合物を所望の方向に液晶配向させる、配向規制力を有する。配向層32としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。配向層32の厚みは、通常0.01μm以上10μm以下であり、0.01μm以上5μm以下であることが好ましい。 The alignment layer 32 has an orientation regulating force that aligns the liquid crystal compound contained in the phase difference expressing layer 33 of the liquid crystal layer formed on the alignment layer 32 in a desired direction. Examples of the oriented layer 32 include an oriented polymer layer formed of an oriented polymer, a photo-aligned polymer layer formed of a photo-aligned polymer, and a grub-aligned layer having a concavo-convex pattern and a plurality of grubs (grooves) on the layer surface. Can be done. The thickness of the alignment layer 32 is usually 0.01 μm or more and 10 μm or less, and preferably 0.01 μm or more and 5 μm or less.
 配向性ポリマー層は、配向性ポリマーを溶剤に溶解した組成物を基材層31に塗布して溶剤を除去し、必要に応じてラビング処理をして形成することができる。この場合、配向規制力は、配向性ポリマーで形成された配向性ポリマー層では、配向性ポリマーの表面状態やラビング条件によって任意に調整することが可能である。 The oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base material layer 31 to remove the solvent, and if necessary, rubbing treatment. In this case, the orientation regulating force can be arbitrarily adjusted in the orientation polymer layer formed of the orientation polymer depending on the surface condition of the orientation polymer and the rubbing conditions.
 光配向ポリマー層は、光反応性基を有するポリマー又はモノマーと溶剤とを含む組成物を基材層31に塗布し、偏光を照射することによって形成することができる。この場合、配向規制力は、光配向ポリマー層では、光配向ポリマーに対する偏光照射条件等によって任意に調整することが可能である。 The photo-aligned polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base material layer 31 and irradiating it with polarized light. In this case, in the photo-alignment polymer layer, the orientation-regulating force can be arbitrarily adjusted depending on the polarization irradiation conditions of the photo-alignment polymer.
 グルブ配向層は、例えば感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光、現像等を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層を基材層31に転写して硬化する方法、基材層31に活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層に、凹凸を有するロール状の原盤を押し当てる等により凹凸を形成して硬化させる方法等によって形成することができる。 The grub alignment layer is active on a plate-shaped master having grooves on the surface, for example, a method of forming a concavo-convex pattern by exposure, development, etc. through an exposure mask having a pattern-shaped slit on the surface of a photosensitive polyimide film. A method of forming an uncured layer of an energy ray-curable resin and transferring this layer to a base material layer 31 for curing. A method of forming an uncured layer of an active energy ray-curable resin on the base material layer 31 and then forming the uncured layer of the active energy ray-curable resin. It can be formed by a method of forming irregularities by pressing a roll-shaped master having irregularities against the layer and hardening the layers.
 液晶層である位相差発現層33は、光に所定の位相差を与えるものであれば特に限定されず、例えば、1/2波長層用の位相差発現層、1/4波長層用の位相差発現層、ポジティブCプレートなどの光学補償層用の位相差発現層、逆波長分散性1/4波長層用の位相差発現層として機能するものを挙げることができる。 The phase difference expression layer 33, which is a liquid crystal layer, is not particularly limited as long as it gives a predetermined phase difference to light, and is, for example, a phase difference expression layer for a 1/2 wavelength layer and a position for a 1/4 wavelength layer. Examples thereof include a phase difference expression layer, a phase difference expression layer for an optical compensation layer such as a positive C plate, and a phase difference expression layer for an inverse wavelength dispersibility 1/4 wavelength layer.
 液晶層である位相差発現層33は、公知の液晶化合物を用いて形成することができる。液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。また、液晶化合物は、高分子液晶化合物であってもよく、重合性液晶化合物であってもよく、これらの混合物であってもよい。液晶化合物としては、例えば、特表平11-513019号公報、特開2005-289980号公報、特開2007-108732号公報、特開2010-244038号公報、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報、特開2011-207765号公報、特開2016-81035号公報、国際公開第2017/043438号及び特表2011-207765号公報に記載の液晶化合物が挙げられる。 The phase difference expression layer 33, which is a liquid crystal layer, can be formed by using a known liquid crystal compound. The type of the liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. Further, the liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture thereof. Examples of the liquid crystal compound include JP-A-11-513019, JP-A-2005-289980, JP-A-2007-108732, JP-A-2010-2404038, JP-A-2010-31223, and JP-A. The liquid crystal compounds described in JP-A-2010-270108, JP-A-2011-6360, JP-A-2011-207765, JP-A-2016-81035, WO2017 / 043438 and JP-A-2011-207765. Can be mentioned.
 例えば、重合性液晶化合物を用いる場合には、重合性液晶化合物を含む組成物を、配向層32上に塗布して塗膜を形成し、この塗膜を硬化させることによって、位相差発現層33を形成することができる。位相差発現層33の厚みは、0.5μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることがさらに好ましい。
 重合性液晶化合物を含む組成物は、液晶化合物以外に、重合開始剤、重合性モノマー、界面活性剤、溶剤、密着改良剤、可塑剤、配向剤等が含まれていてもよい。重合性液晶化合物を含む組成物の塗布方法としては、ダイコーティング法等の公知の方法が挙げられる。重合性液晶化合物を含む組成物の硬化方法としては、活性エネルギー線(例えば紫外線)を照射する等の公知の方法が挙げられる。
For example, when a polymerizable liquid crystal compound is used, a composition containing the polymerizable liquid crystal compound is applied onto the alignment layer 32 to form a coating film, and the coating film is cured to cure the retardation layer 33. Can be formed. The thickness of the retardation expression layer 33 is preferably 0.5 μm or more and 10 μm or less, and more preferably 0.5 μm or more and 5 μm or less.
The composition containing the polymerizable liquid crystal compound may contain a polymerization initiator, a polymerizable monomer, a surfactant, a solvent, an adhesion improver, a plasticizer, an alignment agent and the like in addition to the liquid crystal compound. Examples of the method for applying the composition containing the polymerizable liquid crystal compound include known methods such as a die coating method. Examples of the curing method of the composition containing the polymerizable liquid crystal compound include known methods such as irradiation with active energy rays (for example, ultraviolet rays).
 (延伸フィルムを位相差発現層として備える位相差層)
 位相差発現層が延伸フィルムである場合について説明する。延伸フィルムは通常、基材を延伸することで得られる。基材を延伸する方法としては、例えば、基材がロールに巻き取られているロール(巻き取り体)を準備し、かかる巻き取り体から、基材を連続的に巻き出し、巻き出された基材を加熱炉へと搬送する。加熱炉の設定温度は、基材のガラス転移温度近傍(℃)~[ガラス転移温度+100](℃)の範囲、好ましくは、ガラス転移温度近傍(℃)~[ガラス転移温度+50](℃)の範囲とする。当該加熱炉においては、基材の進行方向へ、又は進行方向と直交する方向へ延伸する際に、搬送方向や張力を調整し任意の角度に傾斜をつけて一軸又は二軸の熱延伸処理を行う。延伸の倍率は、通常1.1~6倍であり、好ましくは1.1~3.5倍である。
(A retardation layer having a stretched film as a retardation expression layer)
A case where the retardation expression layer is a stretched film will be described. The stretched film is usually obtained by stretching the base material. As a method of stretching the base material, for example, a roll (winding body) in which the base material is wound on a roll is prepared, and the base material is continuously unwound and unwound from the winding body. The base material is transferred to the heating furnace. The set temperature of the heating furnace is in the range of the base material near the glass transition temperature (° C) to [glass transition temperature +100] (° C), preferably near the glass transition temperature (° C) to [glass transition temperature +50] (° C). The range of. In the heating furnace, when the base material is stretched in the traveling direction or in the direction orthogonal to the traveling direction, the transport direction and tension are adjusted and the base material is inclined at an arbitrary angle to perform uniaxial or biaxial thermal stretching treatment. Do. The stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
 また、斜め方向に延伸する方法としては、連続的に配向軸を所望の角度に傾斜させることができるものであれば、特に限定されず、公知の延伸方法が採用できる。このような延伸方法は例えば、特開昭50-83482号公報や特開平2-113920号公報に記載された方法を挙げることができる。延伸することでフィルムに位相差性を付与する場合、延伸後の厚みは、延伸前の厚みや延伸倍率によって決定される。 Further, the method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously tilted to a desired angle, and a known stretching method can be adopted. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920. When imparting retardation to a film by stretching, the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
 前記基材は通常透明基材である。透明基材とは、光、特に可視光を透過し得る透明性を有する基材を意味し、透明性とは、波長380nm以上780nm以下にわたる光線に対しての透過率が80%以上となる特性をいう。具体的な透明基材としては、透光性樹脂基材が挙げられる。透光性樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン;ノルボルネン系ポリマーなどの環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネートなどのセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド及びポリフェニレンオキシドが挙げられる。入手のしやすさや透明性の観点から、ポリエチレンテレフタレート、ポリメタクリル酸エステル、セルロースエステル、環状オレフィン系樹脂又はポリカーボネートが好ましい。 The base material is usually a transparent base material. The transparent base material means a base material having transparency capable of transmitting light, particularly visible light, and the transparency means a characteristic that the transmittance for light rays having a wavelength of 380 nm or more and 780 nm or less is 80% or more. To say. Specific examples of the transparent base material include a translucent resin base material. Resins constituting the translucent resin base material include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetylcellulose, Cellulose esters such as diacetyl cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyether ketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of availability and transparency, polyethylene terephthalate, polymethacrylic acid ester, cellulose ester, cyclic olefin resin or polycarbonate is preferable.
 セルロースエステルは、セルロースに含まれる水酸基の一部又は全部が、エステル化されたものであり、市場から容易に入手することができる。また、セルロースエステル基材も市場から容易に入手することができる。市販のセルロースエステル基材としては、例えば、“フジタック(登録商標)フィルム”(富士フイルム(株));“KC8UX2M”、“KC8UY”及び“KC4UY”(コニカミノルタオプト(株))などが挙げられる。 Cellulose ester is an esterified part or all of the hydroxyl groups contained in cellulose and can be easily obtained from the market. Cellulose ester substrates are also readily available on the market. Examples of commercially available cellulose ester base materials include "Fujitac (registered trademark) film" (Fujifilm Co., Ltd.); "KC8UX2M", "KC8UY" and "KC4UY" (Konica Minolta Opto Co., Ltd.). ..
 ポリメタクリル酸エステル及びポリアクリル酸エステル(以下、ポリメタクリル酸エステル及びポリアクリル酸エステルをまとめて(メタ)アクリル系樹脂ということがある。 Polymethacrylic acid ester and polyacrylic acid ester (hereinafter, polymethacrylic acid ester and polyacrylic acid ester may be collectively referred to as (meth) acrylic resin.
 (メタ)アクリル系樹脂としては、例えば、メタクリル酸アルキルエステル又はアクリル酸アルキルエステルの単独重合体や、メタクリル酸アルキルエステルとアクリル酸アルキルエステルとの共重合体などが挙げられる。メタクリル酸アルキルエステルとして具体的には、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレートなどが、またアクリル酸アルキルエステルとして具体的には、メチルアクリレート、エチルアクリレート、プロピルアクリレートなどがそれぞれ挙げられる。かかる(メタ)アクリル系樹脂には、汎用の(メタ)アクリル系樹脂として市販されているものが使用できる。(メタ)アクリル系樹脂として、耐衝撃(メタ)アクリル樹脂と呼ばれるものを使用してもよい。 Examples of the (meth) acrylic resin include homopolymers of methacrylic acid alkyl esters or acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters. Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate and propyl methacrylate, and specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate and propyl acrylate. As the (meth) acrylic resin, a commercially available general-purpose (meth) acrylic resin can be used. As the (meth) acrylic resin, what is called an impact resistant (meth) acrylic resin may be used.
 さらなる機械的強度向上のために、(メタ)アクリル系樹脂にゴム粒子を含有させることも好ましい。ゴム粒子は、アクリル系のものが好ましい。ここで、アクリル系ゴム粒子とは、ブチルアクリレートや2-エチルヘキシルアクリレートのようなアクリル酸アルキルエステルを主成分とするアクリル系モノマーを、多官能モノマーの存在下に重合させて得られるゴム弾性を有する粒子である。アクリル系ゴム粒子は、このようなゴム弾性を有する粒子が単層で形成されたものであってもよいし、ゴム弾性層を少なくとも一層有する多層構造体であってもよい。多層構造のアクリル系ゴム粒子としては、上記のようなゴム弾性を有する粒子を核とし、その周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったもの、硬質のメタクリル酸アルキルエステル系重合体を核とし、その周りを上記のようなゴム弾性を有するアクリル系重合体で覆ったもの、また硬質の核の周りをゴム弾性のアクリル系重合体で覆い、さらにその周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったものなどが挙げられる。弾性層で形成されるゴム粒子は、その平均直径が通常50nm以上400nm以下の範囲にある。 It is also preferable to include rubber particles in the (meth) acrylic resin in order to further improve the mechanical strength. The rubber particles are preferably acrylic particles. Here, the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer containing an acrylic acid alkyl ester as a main component, such as butyl acrylate or 2-ethylhexyl acrylate, in the presence of a polyfunctional monomer. It is a particle. The acrylic rubber particles may be formed by forming such particles having rubber elasticity in a single layer, or may be a multilayer structure having at least one rubber elastic layer. Examples of the multi-layered acrylic rubber particles include those having the above-mentioned particles having rubber elasticity as nuclei and covering them with a hard methacrylic acid alkyl ester polymer, and hard methacrylic acid alkyl ester polymers. The core is made of an acrylic polymer having rubber elasticity as described above, and the hard core is covered with a rubber elastic acrylic polymer, and the periphery thereof is a hard alkyl methacrylic acid ester. Examples thereof include those covered with a system polymer. The rubber particles formed by the elastic layer usually have an average diameter in the range of 50 nm or more and 400 nm or less.
 (メタ)アクリル系樹脂におけるゴム粒子の含有量は、(メタ)アクリル系樹脂100質量部あたり、通常5質量部以上50質量部以下である。(メタ)アクリル系樹脂及びアクリル系ゴム粒子は、それらを混合した状態で市販されているので、その市販品を用いることができる。アクリル系ゴム粒子が配合された(メタ)アクリル系樹脂の市販品の例として、住友化学(株)から販売されている“HT55X”や“テクノロイ S001”などが挙げられる。“テクノロイ S001”は、フィルムの形で販売されている。 The content of rubber particles in the (meth) acrylic resin is usually 5 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and the acrylic rubber particles are commercially available in a mixed state, the commercially available products can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include "HT55X" and "Technoloy S001" sold by Sumitomo Chemical Co., Ltd. "Technoloy S001" is sold in the form of a film.
 環状オレフィン系樹脂は、市場から容易に入手できる。市販の環状オレフィン系樹脂としては、“Topas”(登録商標)[Ticona社(独)]、“アートン”(登録商標)[JSR(株)]、“ゼオノア(ZEONOR)”(登録商標)[日本ゼオン(株)]、“ゼオネックス(ZEONEX)”(登録商標)[日本ゼオン(株)]及び“アペル”(登録商標)[三井化学(株)]が挙げられる。このような環状オレフィン系樹脂を、例えば、溶剤キャスト法、溶融押出法などの公知の手段により製膜して、基材とすることができる。また、市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、“エスシーナ”(登録商標)[積水化学工業(株)]、“SCA40”(登録商標)[積水化学工業(株)]、“ゼオノアフィルム”(登録商標)[オプテス(株)]及び“アートンフィルム”(登録商標)[JSR(株)]が挙げられる。 Cyclic olefin resin is easily available on the market. Commercially available cyclic olefin resins include "Topas" (registered trademark) [Ticona (Germany)], "Arton" (registered trademark) [JSR Co., Ltd.], "ZEONOR" (registered trademark) [Japan. Zeon Co., Ltd.], "ZEONEX" (registered trademark) [Zeon Corporation] and "Apel" (registered trademark) [Mitsui Chemicals Co., Ltd.]. Such a cyclic olefin resin can be used as a base material by forming a film by a known means such as a solvent casting method or a melt extrusion method. Further, a commercially available cyclic olefin resin base material can also be used. Commercially available cyclic olefin resin base materials include "Sushina" (registered trademark) [Sekisui Chemical Co., Ltd.], "SCA40" (registered trademark) [Sekisui Chemical Co., Ltd.], and "Zeonor Film" (registered trademark). ) [Optes Co., Ltd.] and "Arton Film" (registered trademark) [JSR Co., Ltd.].
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンやビニル基を有する芳香族化合物との共重合体である場合、環状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常50モル%以下、好ましくは15モル%以上50モル%以下の範囲である。鎖状オレフィンとしては、エチレン及びプロピレンが挙げられ、ビニル基を有する芳香族化合物としては、スチレン、α-メチルスチレン及びアルキル置換スチレンが挙げられる。環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンと、ビニル基を有する芳香族化合物との三元共重合体である場合、鎖状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5モル%以上80モル%以下であり、ビニル基を有する芳香族化合物に由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5モル%以上80モル%以下である。このような三元共重合体は、その製造において、高価な環状オレフィンの使用量を比較的少なくすることができるという利点がある。 When the cyclic olefin resin is a copolymer of a cyclic olefin and an aromatic compound having a chain olefin or a vinyl group, the content ratio of the structural unit derived from the cyclic olefin is the total structural unit of the copolymer. On the other hand, it is usually in the range of 50 mol% or less, preferably 15 mol% or more and 50 mol% or less. Examples of the chain olefin include ethylene and propylene, and examples of the aromatic compound having a vinyl group include styrene, α-methylstyrene and alkyl-substituted styrene. When the cyclic olefin resin is a ternary copolymer of a cyclic olefin, a chain olefin, and an aromatic compound having a vinyl group, the content ratio of the structural unit derived from the chain olefin is the content of the copolymer. The content ratio of the structural unit derived from the aromatic compound having a vinyl group, which is usually 5 mol% or more and 80 mol% or less with respect to the total structural unit, is usually 5 mol with respect to the total structural unit of the copolymer. % Or more and 80 mol% or less. Such a ternary copolymer has an advantage that the amount of expensive cyclic olefin used can be relatively reduced in the production thereof.
 (第2硬化物層)
 位相差層が、第1位相差層30と第2位相差層40の位相差積層体60からなる場合、第2硬化物層50は、第1位相差層30及び第2位相差層40を接着するために配置されることができる。第2硬化物層50の厚みは、例えば20μm以下であってよく、好ましくは10μm以下であり、より好ましくは5μm以下である。第2硬化物層50の厚みは、例えば0.5μm以上であってよい。
(Second cured product layer)
When the retardation layer is composed of the retardation layer 60 of the first retardation layer 30 and the second retardation layer 40, the second cured product layer 50 includes the first retardation layer 30 and the second retardation layer 40. Can be placed for gluing. The thickness of the second cured product layer 50 may be, for example, 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less. The thickness of the second cured product layer 50 may be, for example, 0.5 μm or more.
 第2硬化物層50は、活性エネルギー線硬化型接着剤組成物の硬化物を含む。第2硬化物層50に用いる活性エネルギー線硬化型接着剤組成物については、上記第1硬化物層14での説明が適用される。第2硬化物層50に用いる活性エネルギー線硬化型接着剤組成物は光増感剤及び光増感助剤をいずれも含有していなくてもよい。
 第2硬化物層50に含まれる活性エネルギー線硬化型接着剤組成物は、第1硬化物層14に含まれる活性エネルギー線硬化型接着剤組成物と同一又は異なった種類であってよい。第2硬化物層50は、カチオン重合性接着剤組成物の硬化物層であることが好ましい。
The second cured product layer 50 contains a cured product of the active energy ray-curable adhesive composition. As for the active energy ray-curable adhesive composition used for the second cured product layer 50, the above description of the first cured product layer 14 is applied. The active energy ray-curable adhesive composition used for the second cured product layer 50 may not contain either a photosensitizer or a photosensitizer.
The active energy ray-curable adhesive composition contained in the second cured product layer 50 may be of the same or different type as the active energy ray-curable adhesive composition contained in the first cured product layer 14. The second cured product layer 50 is preferably a cured product layer of the cationically polymerizable adhesive composition.
 (第2硬化物層の貯蔵弾性率)
 第2硬化物層の、温度30℃における貯蔵弾性率は、加工時の位相差クラック抑制の観点で、300MPa以上であることが好ましく、500MPa以上であることがより好ましく、1000MPa以上であることがさらに好ましい。また、5000MPa以下であることが好ましく、4000MPa以下であることがより好ましく、3500MPa以下であることがさらに好ましい。なお、第2硬化物層の貯蔵弾性率は、後述する実施例の項に記載の方法によって測定される。
第2硬化物層の、温度80℃における貯蔵弾性率(E)は、導電層の腐食抑制の観点で、20MPa以上であることが好ましく、30MPa以上であることがより好ましく、40MPa以上であることがさらに好ましい。また、100MPa以下であることが好ましく、90MPa以下であることがより好ましく、80MPa以下であることがさらに好ましい。なお、第2硬化物層の貯蔵弾性率(E)は、後述する実施例の項に記載の方法によって測定される。
(Storage modulus of the second cured product layer)
The storage elastic modulus of the second cured product layer at a temperature of 30 ° C. is preferably 300 MPa or more, more preferably 500 MPa or more, and more preferably 1000 MPa or more, from the viewpoint of suppressing retardation cracks during processing. More preferred. Further, it is preferably 5000 MPa or less, more preferably 4000 MPa or less, and further preferably 3500 MPa or less. The storage elastic modulus of the second cured product layer is measured by the method described in the section of Examples described later.
The storage elastic modulus (E 2 ) of the second cured product layer at a temperature of 80 ° C. is preferably 20 MPa or more, more preferably 30 MPa or more, and more preferably 40 MPa or more, from the viewpoint of suppressing corrosion of the conductive layer. Is even more preferable. Further, it is preferably 100 MPa or less, more preferably 90 MPa or less, and further preferably 80 MPa or less. The storage elastic modulus (E 2 ) of the second cured product layer is measured by the method described in the section of Examples described later.
 (第2硬化物層のガラス転移温度)
 第2硬化物層の、ガラス転移温度(Tg)は、加工時の位相差クラック抑制の観点で、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがさらに好ましい。また、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましく、70℃以上であることが特に好ましい。第2硬化物層のガラス転移温度(Tg)は、後述する実施例の項に記載の方法によって測定される。
(Glass transition temperature of the second cured product layer)
The glass transition temperature (Tg 2 ) of the second cured product layer is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and 120 ° C. or lower, from the viewpoint of suppressing retardation cracks during processing. It is more preferable to have. Further, it is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, further preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher. The glass transition temperature (Tg 2 ) of the second cured product layer is measured by the method described in the section of Examples described later.
 (粘着剤層)
 積層体100は、位相差層20の第1硬化物層14とは反対側に粘着剤層70を有する。粘着剤層は、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。粘着剤層の厚みは、通常3μm以上30μm以下であり、好ましくは3μm以上25μm以下である。
(Adhesive layer)
The laminate 100 has an adhesive layer 70 on the opposite side of the retardation layer 20 from the first cured product layer 14. The pressure-sensitive adhesive layer can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type. The thickness of the pressure-sensitive adhesive layer is usually 3 μm or more and 30 μm or less, preferably 3 μm or more and 25 μm or less.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, and the like, such as meth) acrylate.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
 本発明の一態様としては、光学積層体を温度80℃、相対湿度90%に250時間保管したとき後の、粘着剤層中のヨウ素量が900mg/kg以下である。粘着剤層に含まれるヨウ素量は実施例に記載の方法で測定することができる。ヨウ素量は、粘着剤層中のヨウ素元素の含有量をいう。
 粘着剤層に含まれるヨウ素量が900mg/kg以下であると、導電層の腐食を抑制できる。粘着剤層に含まれるヨウ素量は、好ましくは800mg/kg以下、より好ましくは700mg/kg以下である。
In one aspect of the present invention, the amount of iodine in the pressure-sensitive adhesive layer after the optical laminate is stored at a temperature of 80 ° C. and a relative humidity of 90% for 250 hours is 900 mg / kg or less. The amount of iodine contained in the pressure-sensitive adhesive layer can be measured by the method described in Examples. The iodine content refers to the content of the iodine element in the pressure-sensitive adhesive layer.
When the amount of iodine contained in the pressure-sensitive adhesive layer is 900 mg / kg or less, corrosion of the conductive layer can be suppressed. The amount of iodine contained in the pressure-sensitive adhesive layer is preferably 800 mg / kg or less, more preferably 700 mg / kg or less.
 (積層体の製造方法)
 本発明の積層体の製造方法の一例について、図3を参照しながら説明する。図3(A)に示すように偏光子13と熱可塑性樹脂フィルム11とを接着剤層12を介して積層された直線偏光板10を作製する。図3(B)に示すように第1位相差発現層31、第1配向層32及び第1基材層33を含む第1位相差層30と、第2位相差発現層43、第2配向層42及び第2基材層41を含む第2位相差層40とを第2硬化物層50を介して積層させ、図3(C)に示すように、第1基材層33、第1配向層32、第1位相差発現層31、第2硬化物層50、第2位相差発現層43、第2配向層42、第2基材層41をこの順に積層された位相差層積層体60を作製する。図3(D)に示すように、直線偏光板10の偏光子13側と位相差層積層体60の第1位相差層30側とを第1硬化物層14を介して積層させ、積層体80を得る。
(Manufacturing method of laminated body)
An example of the method for producing the laminate of the present invention will be described with reference to FIG. As shown in FIG. 3A, a linear polarizing plate 10 in which a polarizing element 13 and a thermoplastic resin film 11 are laminated via an adhesive layer 12 is produced. As shown in FIG. 3B, the first retardation layer 30 including the first retardation expression layer 31, the first alignment layer 32 and the first base material layer 33, the second retardation expression layer 43, and the second orientation. The second retardation layer 40 including the layer 42 and the second base material layer 41 is laminated via the second cured product layer 50, and as shown in FIG. 3C, the first base material layer 33 and the first base material layer 33 are laminated. A retardation layer laminate in which the alignment layer 32, the first retardation expression layer 31, the second cured product layer 50, the second retardation expression layer 43, the second alignment layer 42, and the second base material layer 41 are laminated in this order. 60 is made. As shown in FIG. 3D, the polarizer 13 side of the linear polarizing plate 10 and the first retardation layer 30 side of the retardation layer laminate 60 are laminated via the first cured product layer 14, and the laminate is formed. Get 80.
 偏光子13と熱可塑性樹脂フィルム11とを接着させる方法としては、偏光子13又は熱可塑性樹脂フィルム11の貼合面のいずれか又はその両方に接着剤組成物を塗工し、これにもう一方の貼合面を積層し、接着剤層12を構成する接着剤組成物を硬化する方法が挙げられる。 As a method of adhering the polarizer 13 and the thermoplastic resin film 11, an adhesive composition is applied to either or both of the binder 13 and the bonding surface of the thermoplastic resin film 11, and the other is coated. A method of laminating the bonded surfaces of the above and curing the adhesive composition constituting the adhesive layer 12 can be mentioned.
 第1位相差層30と第2位相差層40とを接着させる方法としては、第1位相差層30の貼合面又は第2位相差層40の貼合面のいずれか又はその両方に活性エネルギー線硬化型接着剤組成物を塗工し、これにもう一方の貼合面を積層し、第2硬化物層50を構成する活性エネルギー線硬化型接着剤を硬化させる方法が挙げられる。第2硬化物層50を構成する活性エネルギー線硬化型接着剤を硬化するための活性エネルギー線は、第1位相差層30及び第2位相差層40のいずれか一方又は両方の側から照射することができる。 As a method of adhering the first retardation layer 30 and the second retardation layer 40, it is active on either or both of the bonding surface of the first retardation layer 30 and the bonding surface of the second retardation layer 40. Examples thereof include a method in which an energy ray-curable adhesive composition is applied, the other bonded surface is laminated thereto, and the active energy ray-curable adhesive constituting the second cured product layer 50 is cured. The active energy ray for curing the active energy ray-curable adhesive constituting the second cured product layer 50 is irradiated from one or both sides of the first retardation layer 30 and the second retardation layer 40. be able to.
 直線偏光板10と位相差層積層体60とを接着させる方法としては、直線偏光板10の貼合面又は位相差層積層体60の貼合面のいずれか又はその両方に活性エネルギー線硬化型接着剤組成物を塗工し、これにもう一方の貼合面を積層し、第1硬化物層14を構成する活性エネルギー線硬化型接着剤を硬化させる方法が挙げられる。密着性の観点から好ましくは位相差層積層体60の貼合面にのみ活性エネルギー線硬化型接着剤組成物を塗工する。第1硬化物層14を構成する活性エネルギー線硬化型接着剤を硬化するための活性エネルギー線は、直線偏光板10及び位相差層積層体60のいずれか一方又は両方の側から照射することができる。 As a method of adhering the linear polarizing plate 10 and the retardation layer laminate 60, an active energy ray-curable type is applied to either or both of the bonding surface of the linear polarizing plate 10 and the retardation layer laminate 60. Examples thereof include a method of applying an adhesive composition, laminating the other bonded surface on the adhesive composition, and curing the active energy ray-curable adhesive constituting the first cured product layer 14. From the viewpoint of adhesion, the active energy ray-curable adhesive composition is preferably applied only to the bonded surface of the retardation layer laminate 60. The active energy ray for curing the active energy ray-curable adhesive constituting the first cured product layer 14 may be irradiated from either one or both sides of the linear polarizing plate 10 and the retardation layer laminate 60. it can.
 貼合面のいずれか又はその両方に、コロナ処理、プラズマ処理等を行ってもよいし、プライマー層を形成してもよい。水系接着剤組成物及び活性エネルギー線硬化型接着剤組成物の塗工には、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が利用できる。 Corona treatment, plasma treatment, etc. may be performed on either or both of the bonded surfaces, or a primer layer may be formed. For coating the water-based adhesive composition and the active energy ray-curable adhesive composition, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
 本発明の積層体は、図3(D)に示す積層体80と粘着剤層とを含む積層体(第2位相差層40側に粘着剤層が積層されている)であってもよい。また、図3(D)に示す積層体80から第1基材層33及び第2基材層41の少なくとも一方の層を剥離した積層体と、粘着剤層とを含む積層体であってもよい。また、図3(D)に示す積層体80から第1基材層33及び第1配向層32が剥離された積層体と、粘着剤層とを含む積層体であってもよいし、図3(D)に示す積層体80から第2基材層41及び第2配向層42が剥離された積層体と粘着剤層とを含む積層体であってもよい。 The laminate of the present invention may be a laminate containing the laminate 80 and the pressure-sensitive adhesive layer shown in FIG. 3 (D) (the pressure-sensitive adhesive layer is laminated on the second retardation layer 40 side). Further, even if the laminate includes a laminate obtained by peeling at least one of the first substrate layer 33 and the second substrate layer 41 from the laminate 80 shown in FIG. 3 (D) and an adhesive layer. Good. Further, it may be a laminate in which the first base material layer 33 and the first alignment layer 32 are peeled off from the laminate 80 shown in FIG. 3 (D), and a laminate including an adhesive layer, and FIG. 3 It may be a laminate including a laminate in which the second base material layer 41 and the second orientation layer 42 are peeled off from the laminate 80 shown in (D) and an adhesive layer.
 (導電層)
 本発明の光学積層体は、粘着剤層70側で、基板上に形成された導電層に積層することができる。導電層としては、例えば導電性の透明金属酸化物層であってもよいし、金属層配線層であってもよい。
(Conductive layer)
The optical laminate of the present invention can be laminated on the conductive layer formed on the substrate on the pressure-sensitive adhesive layer 70 side. The conductive layer may be, for example, a conductive transparent metal oxide layer or a metal layer wiring layer.
 導電性の透明金属酸化物層としては、例えばITO(錫ドープ酸化インジウム)、AZO(アルミニウムドープ酸化亜鉛)等が挙げられる。 Examples of the conductive transparent metal oxide layer include ITO (tin-doped indium oxide) and AZO (aluminum-doped zinc oxide).
 金属配線層を構成する金属は、例えば、アルミニウム、銅、銀、鉄、スズ、亜鉛、白金、ニッケル、モリブデン、クロム、タングステン、鉛、チタン、パラジウム、インジウム及びこれらの2 種以上の金属を含有する合金から選択される少なくとも1種の金属元素を含む層であってもよい。これらのうち、導電性の観点から、好ましくはアルミニウム、銅、銀及び金から選択される少なくとも1種の金属元素を含む層であり、導電性及びコストの観点から、より好ましくはアルミニウム元素を含む層である。なお、銅を含む層である場合、光の反射を防止する観点から、黒化処理を施してもよい。黒化処理とは、導電層の表面を酸化させてCuO 又はCuO を析出させることである。
 また、導電層は、例えば、グラフェン、酸化亜鉛等を含む層であってもよい。
The metal constituting the metal wiring layer contains, for example, aluminum, copper, silver, iron, tin, zinc, platinum, nickel, molybdenum, chromium, tungsten, lead, titanium, palladium, indium, and two or more of these metals. It may be a layer containing at least one metal element selected from the alloys to be used. Of these, a layer containing at least one metal element selected from aluminum, copper, silver and gold is preferable from the viewpoint of conductivity, and more preferably contains an aluminum element from the viewpoint of conductivity and cost. It is a layer. When the layer contains copper, it may be blackened from the viewpoint of preventing light reflection. The blackening treatment is to oxidize the surface of the conductive layer to precipitate Cu 2 O or Cu O.
Further, the conductive layer may be, for example, a layer containing graphene, zinc oxide or the like.
 導電層は例えば、基板上に設けられる。基板上に導電層を形成する方法としては、例えばスパッタリング法などが挙げられる。基板は、タッチ入力素子に含まれる液晶セルを構成する透明基板であってもよく、ガラス基板であってもよい。透明基板は、例えばポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンナフタレート、ポリエーテルスルホン、環状オレフィンコポリマー、トリアセチルセルロース、ポリビニルアルコール、ポリイミド、ポリスチレン、二軸延伸ポリスチレン等で形成されていてもよい。ガラス基板は、例えばソーダライムガラス、低アルカリガラス、無アルカリガラス等で形成されていてもよい。導電層は、基板の全面に形成されていてもよく、その一部に形成されていてもよい。 The conductive layer is provided on the substrate, for example. Examples of the method for forming the conductive layer on the substrate include a sputtering method. The substrate may be a transparent substrate constituting a liquid crystal cell included in the touch input element, or may be a glass substrate. The transparent substrate may be formed of, for example, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene naphthalate, polyether sulfone, cyclic olefin copolymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polystyrene, biaxially stretched polystyrene or the like. The glass substrate may be made of, for example, soda lime glass, low-alkali glass, non-alkali glass, or the like. The conductive layer may be formed on the entire surface of the substrate, or may be formed on a part thereof.
 金属配線層としては、例えば、細線の金属配線層であるメタルメッシュ、金属ナノ粒子、金属ナノワイヤーをバインダー中に添加した層などが挙げられる。なお、メタルメッシュとは、金属配線で形成された二次元の網目状構造を示す。メタルメッシュの開口部(配線間の開口部又は網の目)の形状は、特に限定されず、例えば、多角形(三角形、四角形、五角形、六角形等)、円形、楕円形、不定形であってもよく、それぞれの開口部は同一又は異なっていてもよい。好ましい態様では、メタルメッシュの開口部の形状はそれぞれ同じ形状であり、かつ正方形又は長方形である。 Examples of the metal wiring layer include a metal mesh, which is a thin metal wiring layer, metal nanoparticles, and a layer in which metal nanowires are added to a binder. The metal mesh indicates a two-dimensional network structure formed of metal wiring. The shape of the metal mesh opening (opening between wires or mesh) is not particularly limited, and may be, for example, a polygon (triangle, quadrangle, pentagon, hexagon, etc.), a circle, an ellipse, or an indefinite shape. The openings may be the same or different. In a preferred embodiment, the metal mesh openings have the same shape and are square or rectangular, respectively.
 導電層が金属配線層(特にメタルメッシュ)である場合、例えば基板上の平面の縦横方向に所定の間隔をあけて金属配線を配置してもよい。この際に、前記開口部は樹脂(接着剤等)で充填してもよく、樹脂(接着剤等)の中に金属配線層を埋め込んでもよい。なお、樹脂等を用いる場合、導電層は、金属配線と樹脂(接着剤)の両方で構成されている。 When the conductive layer is a metal wiring layer (particularly a metal mesh), the metal wiring may be arranged at predetermined intervals in the vertical and horizontal directions of a plane on the substrate, for example. At this time, the opening may be filled with a resin (adhesive or the like), or a metal wiring layer may be embedded in the resin (adhesive or the like). When resin or the like is used, the conductive layer is composed of both metal wiring and resin (adhesive).
 金属配線(特にメタルメッシュ)の線幅は通常10μm以下、好ましくは5μm以下、さらに好ましくは3μm以下であり、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上である。金属配線層の線幅はこれらの上限値と下限値の組み合わせであってもよく、好ましくは0.5~5μm、より好ましくは1~3μmである。 The line width of the metal wiring (particularly metal mesh) is usually 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less, usually 0.1 μm or more, preferably 0.5 μm or more, and more preferably 1 μm or more. The line width of the metal wiring layer may be a combination of these upper limit values and lower limit values, and is preferably 0.5 to 5 μm, more preferably 1 to 3 μm.
 導電層(導電性の透明金属酸化物層又は金属配線層)の厚みは、特に限定されないが、通常10μm以下、好ましくは3μm以下、より好ましくは1μm以下、特に好ましくは0.5μm以下であり、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上である。導電層の厚みはこれらの上限値と下限値の組み合わせであってもよく、好ましくは0.01~3μm、より好ましくは0.05~1μmである。なお、導電層が金属配線層であり、金属配線層が樹脂(接着剤等)と金属配線の両方で構成されている場合、導電層の厚みは樹脂を含む厚みである。 The thickness of the conductive layer (conductive transparent metal oxide layer or metal wiring layer) is not particularly limited, but is usually 10 μm or less, preferably 3 μm or less, more preferably 1 μm or less, and particularly preferably 0.5 μm or less. It is usually 0.01 μm or more, preferably 0.05 μm or more, and more preferably 0.1 μm or more. The thickness of the conductive layer may be a combination of these upper limit values and lower limit values, and is preferably 0.01 to 3 μm, more preferably 0.05 to 1 μm. When the conductive layer is a metal wiring layer and the metal wiring layer is composed of both a resin (adhesive or the like) and a metal wiring, the thickness of the conductive layer is the thickness including the resin.
 導電層の調製方法は特に限定されず、金属箔のラミネーションであってもよく、真空蒸着法、スパッタリング法、湿式コーティング、イオンプレーティング法、インクジェット印刷法、グラビア印刷法、電解メッキ、無電解メッキにより形成されたものであってもよいが、好ましくはスパッタリング法、インクジェット印刷法、グラビア印刷法により形成された導電層であり、より好ましくはスパッタリングにより形成された導電層である。 The method for preparing the conductive layer is not particularly limited, and may be metal foil lamination, such as vacuum deposition method, sputtering method, wet coating, ion plating method, inkjet printing method, gravure printing method, electrolytic plating, and electroless plating. Although it may be formed by sputtering, it is preferably a conductive layer formed by a sputtering method, an inkjet printing method, or a gravure printing method, and more preferably a conductive layer formed by sputtering.
 導電層(例えばメタルメッシュ)は、例えばタッチパネルにおいて、透明基板をタッチした際に信号を発生させ、集積回路等にタッチ座標を伝える機能を有していてもよい。 The conductive layer (for example, a metal mesh) may have a function of generating a signal when a transparent substrate is touched on a touch panel and transmitting the touch coordinates to an integrated circuit or the like.
 導電層(例えば導電性の透明金属酸化物層、金属配線層等)を備える光学積層体は、タッチパネル機能を有するタッチ入力式液晶表示装置等に利用することができるため有用であるものの、偏光子に含まれる二色性色素(ヨウ素)が導電層に移動して導電層が腐食されやすい。特にメタルメッシュ等の金属配線層を使用した場合、線幅が狭いため導電層がより腐食されやすくなる。しかし、本発明の光学積層体は、二色性色素の導電層への移動を有効に抑制し、導電層の腐食を効果的に防止することができる。 An optical laminate provided with a conductive layer (for example, a conductive transparent metal oxide layer, a metal wiring layer, etc.) is useful because it can be used for a touch input type liquid crystal display device having a touch panel function, but it is a polarizer. The dichroic dye (iodine) contained in the above moves to the conductive layer, and the conductive layer is easily corroded. In particular, when a metal wiring layer such as a metal mesh is used, the conductive layer is more likely to be corroded because the line width is narrow. However, the optical laminate of the present invention can effectively suppress the movement of the dichroic dye to the conductive layer and effectively prevent the corrosion of the conductive layer.
 (用途)
 積層体は画像表示装置に用いることができる。画像表示装置とは、画像表示パネルを有する装置であり、発光源として発光素子又は発光装置を含む。画像表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)及び圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置及び投写型液晶表示装置などのいずれをも含む。これらの画像表示装置は、2次元画像を表示する画像表示装置であってもよいし、3次元画像を表示する立体画像表示装置であってもよい。特に円偏光板である偏光板複合体は、屈曲部を有する画像表示パネルを備え得る有機エレクトロルミネッセンス(EL)表示装置に有効に用いることができる。
(Use)
The laminate can be used in an image display device. The image display device is a device having an image display panel, and includes a light emitting element or a light emitting device as a light emitting source. The image display device includes a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, an electric field emission display device (FED), a surface electric field emission display). Device (SED)), electronic paper (display device using electronic ink or electrophoresis element, plasma display device, projection type display device (for example, grating light valve (GLV) display device, display with digital micromirror device (DMD)) Devices) and piezoelectric ceramic displays, etc. Examples of the liquid crystal display device include any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct-view type liquid crystal display device, and a projection type liquid crystal display device. These image display devices may be an image display device that displays a two-dimensional image, or may be a three-dimensional image display device that displays a three-dimensional image. In particular, a polarizing plate that is a circular polarizing plate. The composite can be effectively used in an organic electroluminescence (EL) display device which may include an image display panel having a bent portion.
 光学積層体は円偏光板、反射防止フィルムとしての機能を有することができる。光学積層体は、画像表示層パネルの視認側に、偏光フィルムが視認側に位置する向きで配置されることができる。積層体は、車載用画像表示装置に用いる円偏光板や反射防止フィルムとして好適である。 The optical laminate can function as a circularly polarizing plate and an antireflection film. The optical laminate can be arranged on the viewing side of the image display layer panel in a direction in which the polarizing film is located on the viewing side. The laminate is suitable as a circularly polarizing plate or an antireflection film used in an in-vehicle image display device.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記のない限り、質量%及び質量部である。 Hereinafter, the present invention will be described in more detail with reference to Examples. Unless otherwise specified, "%" and "part" in the example are mass% and parts by mass.
 (耐金属腐食性評価)
 実施例及び比較例で得られた積層体を、25mm×50mmの大きさの試験片に裁断し、金属層付ガラス基板の金属層側に粘着剤層を介して貼着した。金属層付ガラス基板には、無アルカリガラス表面にスパッタリングによって厚み約500nmの金属アルミニウム層を積層させたガラス基板(ジオマテック社製)を使用した。得られた光学積層体を、温度85℃、相対湿度85%のオーブン中で250時間保管した後、光学積層体が貼着された部分の金属層の状態をガラス基板の背面から光を当てて偏光板表面から拡大鏡を通して観察し、孔食(直径0.1mm以上であり、光を透過することが可能な孔の発生)の発生について以下の基準で評価した。結果を表2および表4に示す。
(Evaluation of metal corrosion resistance)
The laminates obtained in Examples and Comparative Examples were cut into test pieces having a size of 25 mm × 50 mm and attached to the metal layer side of the glass substrate with a metal layer via an adhesive layer. As the glass substrate with a metal layer, a glass substrate (manufactured by Geomatec Co., Ltd.) in which a metal-aluminum layer having a thickness of about 500 nm was laminated on a non-alkali glass surface by sputtering was used. The obtained optical laminate was stored in an oven at a temperature of 85 ° C. and a relative humidity of 85% for 250 hours, and then the state of the metal layer on the portion to which the optical laminate was attached was irradiated with light from the back surface of the glass substrate. Observation was performed from the surface of the polarizing plate through a magnifying glass, and the occurrence of pore erosion (generation of pores having a diameter of 0.1 mm or more and capable of transmitting light) was evaluated according to the following criteria. The results are shown in Tables 2 and 4.
 ◎:金属層表面に発生した孔食の数が4個以下である、
 ○:金属層表面に発生した孔食の数が10個以下である、
 ×:金属層表面の前面に多数の孔食が発生している。
⊚: The number of pitting corrosion generated on the surface of the metal layer is 4 or less.
◯: The number of pitting corrosion generated on the surface of the metal layer is 10 or less.
X: A large number of pitting corrosions occur on the front surface of the metal layer surface.
 (粘着剤層中のヨウ素量評価)
 実施例及び比較例で得られた光学積層体を25mm×50mmの大きさの試験片に裁断し、無アルカリガラス(コーニング社製 EAGLE XG)に粘着剤層を介して貼着した。ガラスに貼着した光学積層体を、温度80℃、相対湿度90%のオーブン中で250時間保管した。その後、光学積層体をガラスから剥がし、粘着剤のみを掻き取った。得られた粘着剤から、下記装置及び条件で酸化燃焼イオンクロマトグラフ法を用いて、粘着剤中に含まれるヨウ素量(mg/kg)を定量した。結果を表2および表4に示す。
(Evaluation of the amount of iodine in the adhesive layer)
The optical laminates obtained in Examples and Comparative Examples were cut into test pieces having a size of 25 mm × 50 mm and attached to non-alkali glass (EAGLE XG manufactured by Corning Inc.) via an adhesive layer. The optical laminate attached to the glass was stored in an oven at a temperature of 80 ° C. and a relative humidity of 90% for 250 hours. Then, the optical laminate was peeled off from the glass and only the adhesive was scraped off. From the obtained pressure-sensitive adhesive, the amount of iodine (mg / kg) contained in the pressure-sensitive adhesive was quantified by using an oxidation combustion ion chromatograph method under the following equipment and conditions. The results are shown in Tables 2 and 4.
(1)試料燃焼
・装置:株式会社三菱化学アナリテック製 AQF-2100H
・燃焼条件
 燃焼温度:1100℃
 ガス流量:アルゴン流量=200mL/分、
 酸素流量=400mL/分、
 加湿Air流量=100mL/分
(2)イオンクロマトグラフ
・装置:サーモフィッシャーサイエンティフィック社製 Integrion
・カラム:サーモフィッシャーサイエンティフィック社製 IonPac AS19
・測定条件
 溶離液:KOHグラジエント
 流速:1.0mL/分
 注入量:100μL
 測定モード:サプレッサ式
 検出器:電気伝導度
(1) Sample combustion / equipment: AQF-2100H manufactured by Mitsubishi Chemical Analytech Co., Ltd.
・ Combustion conditions Combustion temperature: 1100 ℃
Gas flow rate: Argon flow rate = 200 mL / min,
Oxygen flow rate = 400 mL / min,
Humidifying Air flow rate = 100 mL / min (2) Ion chromatograph / device: Thermo Fisher Scientific's Integration
-Column: IonPac AS19 manufactured by Thermo Fisher Scientific
-Measurement conditions Eluent: KOH gradient Flow velocity: 1.0 mL / min Injection volume: 100 μL
Measurement mode: Suppressor type detector: Electrical conductivity
 (密着性測定)
 実施例及び比較例で作製した積層体を長さ200mm×幅25mmの大きさに裁断し、その粘着剤層面をソーダガラス基板に貼合した。
 次いで、偏光子とλ/2位相差層との間にカッターの刃を入れ、長さ方向に端から30mm剥離し、その剥離部分を万能引張試験機〔(株)島津製作所製“AG-1”〕のつか部でつかんだ。この状態の試験片を、温度23℃相対湿度55%の雰囲気中にて、JIS K 6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に準じて、つかみ移動速度300mm/分で180度はく離試験を行い、つかみ部の30mmを除く170mmの長さにわたる平均剥離力を求め、以下の基準に基づいて評価した。結果を表2および表4に示す。
 〇:180°剥離力が1.0N以上
 △:180°剥離力が0.5N以上1.0N未満
(Adhesion measurement)
The laminates produced in Examples and Comparative Examples were cut into a size of 200 mm in length and 25 mm in width, and the pressure-sensitive adhesive layer surface was bonded to a soda glass substrate.
Next, insert a cutter blade between the polarizer and the λ / 2 retardation layer, peel off 30 mm from the end in the length direction, and peel off the peeled part with a universal tensile tester ["AG-1" manufactured by Shimadzu Corporation. I grabbed it at the part of "]. The test piece in this state was subjected to JIS K 6854-2: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 2: 180 ° Peeling" in an atmosphere at a temperature of 23 ° C. and a relative humidity of 55%. A 180-degree peeling test was performed at a gripping movement speed of 300 mm / min, and an average peeling force over a length of 170 mm excluding 30 mm of the gripped portion was obtained and evaluated based on the following criteria. The results are shown in Tables 2 and 4.
〇: 180 ° peeling force is 1.0N or more Δ: 180 ° peeling force is 0.5N or more and less than 1.0N
 (接着剤層の80℃における貯蔵弾性率及びガラス転移温度の測定)
 厚み50μmの環状ポリオレフィン系樹脂フィルムの片面に、塗工機〔バーコーター、第一理化(株)製〕を用いて、後述の接着剤1~5のいずれかを塗工し、その塗工面にさらに厚み50μmの環状ポリオレフィン系樹脂フィルムを積層させた。次に、フュージョンUVシステムズ社製の「Dバルブ」により、積算光量が1500mJ/cm2(UVB)となるように紫外線を照射して、接着剤層を硬化させた。これを5mm×30mmの大きさに裁断し、環状ポリオレフィン系樹脂フィルムを剥がして接着剤の硬化フィルムを得た。この硬化フィルムをその長辺が引張り方向となるように、アイティー計測制御(株)製の動的粘弾性測定装置「DVA-220」を用いてつかみ具の間隔2cmで把持し、引張りと収縮の周波数を10Hz、昇温速度を10℃/分に設定して、温度25℃から温度200℃の範囲の測定を行い、温度80℃における貯蔵弾性率を求めた。また、上記測定で得られた結果において、貯蔵弾性率(E)と損失弾性率(E)の比(E/E)の値が最大値となるときの温度をガラス転移温度とした。結果を表1および表3に示す。
(Measurement of storage elastic modulus and glass transition temperature of adhesive layer at 80 ° C)
One side of a cyclic polyolefin resin film having a thickness of 50 μm is coated with any of the adhesives 1 to 5 described below using a coating machine [Barcoater, manufactured by Daiichi Rika Co., Ltd.], and the coated surface is coated. Further, a cyclic polyolefin resin film having a thickness of 50 μm was laminated. Next, the adhesive layer was cured by irradiating with ultraviolet rays so that the integrated light amount was 1500 mJ / cm 2 (UVB) by a "D bulb" manufactured by Fusion UV Systems. This was cut into a size of 5 mm × 30 mm, and the cyclic polyolefin resin film was peeled off to obtain a cured film of an adhesive. This cured film is gripped with a dynamic viscoelasticity measuring device "DVA-220" manufactured by IT Measurement Control Co., Ltd. at a distance of 2 cm between grippers so that the long side thereof is in the tensile direction, and tension and contraction are performed. The frequency was set to 10 Hz and the temperature rising rate was set to 10 ° C./min, and measurements were performed in the temperature range of 25 ° C. to 200 ° C. to determine the storage elastic modulus at a temperature of 80 ° C. Further, in the results obtained in the above measurement, the glass transition temperature The temperature at which the value of the storage modulus (E A) and the loss modulus ratio (E B) (E B / E A) is the maximum value did. The results are shown in Tables 1 and 3.
 (透湿度の評価)
 厚み20μmのトリアセチルセルロースフィルムの表面に厚み5μmのアクリル系粘着剤層1が形成された粘着剤層付きフィルムを用意した。該粘着剤層付きフィルムの温度80℃相対湿度90%での透湿度は5200[g/(m・24hr)]であった。
 アクリル系粘着剤層1の表面に、接着剤1を塗布した後に紫外線を照射して塗布層を硬化し、30μmの接着剤層1を形成し、30μmの接着剤層1/5μmのアクリル系粘着剤層1/20μmのトリアセチルセルロースフィルムの積層構造を有する積層体を得た。
 得られた積層体を、JIS Z 0208に規定されるカップ法により、温度40℃、相対湿度90%での透湿度〔g/(m・24hr)〕を測定した。接着剤1を、接着剤2~5に変更して、各接着剤の透湿度を測定した。結果を表1および表3に示す。
(Evaluation of moisture permeability)
A film with an adhesive layer having an acrylic pressure-sensitive adhesive layer 1 having a thickness of 5 μm formed on the surface of a triacetyl cellulose film having a thickness of 20 μm was prepared. Moisture permeability at a temperature 80 ° C. and 90% relative humidity of the pressure-sensitive with adhesive layer film was 5200 [g / (m 2 · 24hr)].
After applying the adhesive 1 to the surface of the acrylic pressure-sensitive adhesive layer 1, the coating layer is cured by irradiating the coating layer with ultraviolet rays to form a 30 μm adhesive layer 1 and a 30 μm adhesive layer 1/5 μm acrylic pressure-sensitive adhesive. A laminated body having a laminated structure of a triacetyl cellulose film having a agent layer of 1/20 μm was obtained.
The resulting laminate, the cup method defined in JIS Z 0208, temperature 40 ° C., was measured moisture permeability at 90% relative humidity [g / (m 2 · 24hr)]. Adhesive 1 was changed to adhesives 2 to 5, and the moisture permeability of each adhesive was measured. The results are shown in Tables 1 and 3.
 (活性エネルギー線硬化型接着剤組成物の調製)
 表1に示される各成分を、表1に示す配合割合(単位は質量部)で混合した後、脱泡して、活性エネルギー線硬化型接着剤組成物(接着剤1~2)を調製した。なお、カチオン重合開始剤(B-1)は、50%プロピレンカーボネート溶液として配合し、表1はその固形分量で示した。
(Preparation of active energy ray-curable adhesive composition)
Each component shown in Table 1 was mixed at the blending ratio (unit: parts by mass) shown in Table 1 and then defoamed to prepare an active energy ray-curable adhesive composition (adhesives 1 and 2). .. The cationic polymerization initiator (B-1) was blended as a 50% propylene carbonate solution, and Table 1 shows the solid content thereof.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (カチオン重合性化合物(A))
 A-1:3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P、(株)ダイセル製)
 A-2:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(商品名:EHPE3150、(株)ダイセル製)
 A-3:ネオペンチルグリコールジグリシジルエーテル(商品名:EX-211L、ナガセケムテックス(株)製)
 A-4:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(商品名:OXT-221、東亞合成(株)製)
 A-5:ビスフェノールA型エポキシ樹脂(商品名:EP-4100E、(株)ADEKA、粘度13Pa・s(温度25℃))
 A-6:芳香族含有オキセタン化合物(商品名:TCM-104、TRONLY製)
 (光カチオン重合開始剤(B))
 B-1:CPI-100P、サンアプロ(株)製、50質量%溶液
 (光増感助剤(C))
 C-1:1,4-ジエトキシナフタレン
(Cation-polymerizable compound (A))
A-1: 3', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (trade name: CEL2021P, manufactured by Daicel Corporation)
A-2: 1,2-Epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (trade name: EHPE3150, manufactured by Daicel Corporation)
A-3: Neopentyl glycol diglycidyl ether (trade name: EX-211L, manufactured by Nagase ChemteX Corporation)
A-4: 3-Ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane (trade name: OXT-221, manufactured by Toa Synthetic Co., Ltd.)
A-5: Bisphenol A type epoxy resin (trade name: EP-4100E, ADEKA Corporation, viscosity 13 Pa · s (temperature 25 ° C))
A-6: Aromatic-containing oxetane compound (trade name: TCM-104, manufactured by TRONLY)
(Photocationic polymerization initiator (B))
B-1: CPI-100P, manufactured by Sun Appro Co., Ltd., 50% by mass solution (photosensitizer (C))
C-1: 1,4-diethoxynaphthalene
 (直線偏光板1の製造)
 厚み20μm 、重合度2,400、ケン化度99.9%以上のポリビニルアルコールフィルムを、125℃に加熱したロール上で延伸倍率4.5倍に一軸延伸し、緊張状態を保ったまま、28℃の水に30秒間浸漬した後、水100質量部あたりヨウ素0.05質量部及びヨウ化カリウム5質量部を含有する28℃の染色浴に30秒間浸漬した。
 次いで、水100質量部あたりホウ酸5.5質量部及びヨウ化カリウム15質量部を含有する64℃のホウ酸水溶液1に、110秒間浸漬した。
 次いで、水100質量部あたりホウ酸2.35質量部及びヨウ化カリウム15質量部を含有する67℃のホウ酸水溶液2に、30秒間浸漬した。
 その後、10℃の純水を用いて水洗し、80℃で乾燥して、偏光フィルムを得た。
 得られた偏光フィルムの厚みは7μmであった。
(Manufacturing of linear polarizing plate 1)
A polyvinyl alcohol film having a thickness of 20 μm, a degree of polymerization of 2,400, and a saponification degree of 99.9% or more was uniaxially stretched on a roll heated to 125 ° C. at a draw ratio of 4.5 times, and maintained in a tense state, 28. After immersing in water at ° C. for 30 seconds, it was immersed in a dyeing bath at 28 ° C. containing 0.05 parts by mass of iodine and 5 parts by mass of potassium iodide per 100 parts by mass of water for 30 seconds.
Then, it was immersed in a boric acid aqueous solution 1 at 64 ° C. containing 5.5 parts by mass of boric acid and 15 parts by mass of potassium iodide per 100 parts by mass of water for 110 seconds.
Then, it was immersed in a boric acid aqueous solution 2 at 67 ° C. containing 2.35 parts by mass of boric acid and 15 parts by mass of potassium iodide per 100 parts by mass of water for 30 seconds.
Then, it was washed with pure water at 10 ° C. and dried at 80 ° C. to obtain a polarizing film.
The thickness of the obtained polarizing film was 7 μm.
さらに、得られた偏光フィルムの片面に、水系接着剤を介して厚み25μmのハードコート層付シクロオレフィンフィルム(COPフィルム)を貼合し、90℃で乾燥し、COPフィルム/水系接着剤(接着剤層)/偏光子の積層構造を有する直線偏光板1を得た。 Further, a cycloolefin film (COP film) with a hard coat layer having a thickness of 25 μm was attached to one side of the obtained polarizing film via an aqueous adhesive, dried at 90 ° C., and the COP film / aqueous adhesive (adhesive) was applied. A linear polarizing plate 1 having a laminated structure of agent layer) / polarizer was obtained.
 (直線偏光板2の製造)
 ホウ酸水溶液2におけるホウ酸含有量を5.5質量部に変更した以外は、直線偏光板1の製造と同様の方方法で、COPフィルム/水系接着剤(接着剤層)/偏光子の積層構造を有する直線偏光板2を得た。
(Manufacturing of linear polarizing plate 2)
Lamination of COP film / water-based adhesive (adhesive layer) / polarizer in the same manner as in the production of the linear polarizing plate 1 except that the boric acid content in the boric acid aqueous solution 2 was changed to 5.5 parts by mass. A linear polarizing plate 2 having a structure was obtained.
 (λ/2位相差層の製造)
 透明樹脂基材に配向膜塗布液を塗布し乾燥することにより、λ/2配向処理をした。次いで、配向面に、ディスコチック液晶性化合物を含む塗布液を塗布し、加熱及びUV照射をして液晶化合物の配向を固定化することにより、透明樹脂基材上に厚み2μmの位相差発現層を作製した。
(Manufacturing of λ / 2 retardation layer)
A λ / 2 alignment treatment was performed by applying an alignment film coating liquid to a transparent resin base material and drying it. Next, a coating liquid containing a discotic liquid crystal compound is applied to the alignment surface, and the orientation of the liquid crystal compound is fixed by heating and UV irradiation. Was produced.
 (λ/4位相差層の製造)
 配向膜をラビング処理したλ/4配向用透明樹脂基材に、棒状で重合性のネマチック液晶モノマーを含む塗布液を塗布し、屈折率異方性を保持した状態で固化することにより、透明樹脂基材上に厚み1μmの位相差発現層を得た。
(Manufacturing of λ / 4 retardation layer)
A transparent resin base material for λ / 4 alignment, which has been rubbed with an alignment film, is coated with a coating liquid containing a rod-shaped and polymerizable nematic liquid crystal monomer and solidified while maintaining refractive index anisotropy. A retardation-expressing layer having a thickness of 1 μm was obtained on the substrate.
 (位相差層積層体の製造)
 上記λ/2位相差層及びλ/4位相差層の液晶層側にコロナ処理を施した。λ/2位相差層の遅相軸と、λ/4位相差層の遅相軸とがなす角度が60°となるよう配置し、接着剤1を用いて、接着剤厚みが3μmとなるよう液晶層同士をラミネーターで貼合し、積層体を得た。
 得られた積層体のλ/4位相差層側から、紫外線照射装置〔フュージョンUVシステムズ(株)製〕を用い、積算光量400mJ/cm2(UV-B)で紫外線照射を行い、上述の接着剤1を硬化させて第2硬化物層とし、「λ/2位相差層」(第1位相差層)/接着剤層(第2硬化物層)/「λ/4位相差層」(第2位相差層)の積層構造を有する位相差層積層体を得た。
(Manufacturing of retardation layer laminate)
The liquid crystal layer side of the λ / 2 retardation layer and the λ / 4 retardation layer was subjected to corona treatment. Arrange so that the angle formed by the slow axis of the λ / 2 retardation layer and the slow axis of the λ / 4 retardation layer is 60 °, and use the adhesive 1 so that the thickness of the adhesive is 3 μm. The liquid crystal layers were bonded to each other with a laminator to obtain a laminated body.
From the λ / 4 retardation layer side of the obtained laminate, ultraviolet irradiation was performed with an integrated light amount of 400 mJ / cm 2 (UV-B) using an ultraviolet irradiation device [manufactured by Fusion UV Systems Co., Ltd.], and the above-mentioned adhesion was performed. Agent 1 is cured to form a second cured product layer, which is "λ / 2 retardation layer" (first retardation layer) / adhesive layer (second cured product layer) / "λ / 4 retardation layer" (first A retardation layer laminate having a laminated structure of two retardation layers) was obtained.
 <実施例1>
 得られた位相差層積層体のλ/2位相差層側の配向膜及び透明樹脂基材を剥離し、上記直線偏光板1の熱可塑性樹脂フィルムとは反対側の面とλ/2位相差層の液晶層とを接着剤2を用いて貼合した。なお、接着剤2からなる第1硬化物層の膜厚は3μmであり、偏光子の透過軸とλ/2位相差層の遅相軸とがなす角度が15°であった。
 次いで、λ/4位相差層側の配向膜及び透明樹脂基材を剥離し、熱可塑性樹脂フィルム/水系接着剤(接着剤層)/偏光子/第1硬化物層/「λ/2位相差層」(第1位相差層)/第2硬化物層/「λ/4位相差層」(第2位相差層)の積層構造を有する積層体を得た。得られた積層体の第2位相差層の表面に、厚み15μmのアクリル系粘着剤層1を積層し、実施例1の積層体を得た。得られた積層体について耐金属腐食性、粘着剤層中のヨウ素量および密着性の評価を行った。結果を表2に示す。
<Example 1>
The alignment film on the λ / 2 retardation layer side and the transparent resin base material of the obtained retardation layer laminate are peeled off, and the surface of the linear polarizing plate 1 opposite to the thermoplastic resin film and the λ / 2 retardation The liquid crystal layer of the layer was bonded to each other using the adhesive 2. The thickness of the first cured product layer made of the adhesive 2 was 3 μm, and the angle formed by the transmission axis of the polarizer and the slow axis of the λ / 2 retardation layer was 15 °.
Next, the alignment film on the λ / 4 retardation layer side and the transparent resin base material are peeled off, and the thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer / "λ / 2 retardation" A laminated body having a laminated structure of "layer" (first retardation layer) / second cured product layer / "λ / 4 retardation layer" (second retardation layer) was obtained. An acrylic pressure-sensitive adhesive layer 1 having a thickness of 15 μm was laminated on the surface of the second retardation layer of the obtained laminate to obtain the laminate of Example 1. The obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 2.
 <比較例1>
得られた位相差層積層体のλ/2位相差層側の配向膜及び透明樹脂基材を剥離し、上記直線偏光板1の熱可塑性樹脂フィルムとは反対側の面とλ/2位相差層の液晶層とを厚さ5μmのアクリル系粘着剤層2(温度80℃における貯蔵弾性率0.5MPa、ガラス転移温度-45℃)を用いて貼合した。なお、偏光子の透過軸とλ/2位相差層の遅相軸とがなす角度が15°であった。
 次いで、λ/4位相差層側の配向膜及び透明樹脂基材を剥離し、熱可塑性樹脂フィルム/水系接着剤(接着剤層)/偏光子/粘着剤層/「λ/2位相差層」(第1位相差層)/第2硬化物層/「λ/4位相差層」(第2位相差層)の積層構造を有する積層体を得た。得られた積層体の第2位相差層の表面に、厚み15μmのアクリル系粘着剤層1を積層し、比較例1の積層体を得た。得られた積層体について耐金属腐食性、粘着剤層中のヨウ素量および密着性の評価を行った。結果を表2に示す。
<Comparative example 1>
The alignment film on the λ / 2 retardation layer side and the transparent resin base material of the obtained retardation layer laminate are peeled off, and the surface of the linear polarizing plate 1 opposite to the thermoplastic resin film and the λ / 2 phase difference. The liquid crystal layer of the layer was bonded to each other using an acrylic pressure-sensitive adhesive layer 2 having a thickness of 5 μm (storage elastic modulus at a temperature of 80 ° C. of 0.5 MPa, glass transition temperature of −45 ° C.). The angle formed by the transmission axis of the polarizer and the slow axis of the λ / 2 retardation layer was 15 °.
Next, the alignment film on the λ / 4 retardation layer side and the transparent resin base material are peeled off, and the thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / adhesive layer / "λ / 2 retardation layer" A laminated body having a laminated structure of (first retardation layer) / second cured product layer / "λ / 4 retardation layer" (second retardation layer) was obtained. An acrylic pressure-sensitive adhesive layer 1 having a thickness of 15 μm was laminated on the surface of the second retardation layer of the obtained laminate to obtain a laminate of Comparative Example 1. The obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (活性エネルギー線硬化型接着剤組成物の調製)
 表3に示される各成分を、表3に示す配合割合(単位は質量部)で混合した後、脱泡して、活性エネルギー線硬化型接着剤組成物(接着剤3~5)を調製した。なお、カチオン重合開始剤(B-2)は、50%プロピレンカーボネート溶液として配合し、表3はその固形分量で示した。
(Preparation of active energy ray-curable adhesive composition)
Each component shown in Table 3 was mixed at the blending ratio (unit: parts by mass) shown in Table 3 and then defoamed to prepare an active energy ray-curable adhesive composition (adhesives 3 to 5). .. The cationic polymerization initiator (B-2) was blended as a 50% propylene carbonate solution, and Table 3 shows the solid content thereof.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (カチオン重合性化合物(A))
 A-7:3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P、(株)ダイセル製)
 A-8:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(商品名:EHPE3150、(株)ダイセル製)
 A-9:ネオペンチルグリコールジグリシジルエーテル(商品名:ED-523T、(株)ADEKA製)
 A-10:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(商品名:OXT-221、東亞合成(株)製)
 A-11:下記式で表される化合物
(Cation-polymerizable compound (A))
A-7: 3', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (trade name: CEL2021P, manufactured by Daicel Corporation)
A-8: 2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct (trade name: EHPE3150, manufactured by Daicel Corporation)
A-9: Neopentyl glycol diglycidyl ether (trade name: ED-523T, manufactured by ADEKA Corporation)
A-10: 3-Ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane (trade name: OXT-221, manufactured by Toa Synthetic Co., Ltd.)
A-111: Compound represented by the following formula
Figure JPOXMLDOC01-appb-C000010
 (光カチオン重合開始剤(B))
 B-2:CPI-100P、サンアプロ(株)製、50質量%溶液
 (光増感助剤(C))
 C-2:1,4-ジエトキシナフタレン
Figure JPOXMLDOC01-appb-C000010
(Photocationic polymerization initiator (B))
B-2: CPI-100P, manufactured by Sun Appro Co., Ltd., 50% by mass solution (photosensitizer (C))
C-2: 1,4-diethoxynaphthalene
 <実施例2~4>
 接着剤2を接着剤3~5に代えた以外は実施例1と同様にして、積層体を得た。得られた積層体について耐金属腐食性、粘着剤層中のヨウ素量および密着性の評価を行った。結果を表4に示す。
 なお、実施例2の積層体は、熱可塑性樹脂フィルム/水系接着剤(接着剤層)/偏光子/第1硬化物層(接着剤3の硬化物層)/「λ/2位相差層」(第1位相差層)/第2硬化物層(接着剤1の硬化物層)/「λ/4位相差層」(第2位相差層)/15μmの粘着剤層の積層構造を有する。
 実施例3の積層体は、熱可塑性樹脂フィルム/水系接着剤(接着剤層)/偏光子/第1硬化物層(接着剤4の硬化物層)/「λ/2位相差層」(第1位相差層)/第2硬化物層(接着剤1の硬化物層)/「λ/4位相差層」(第2位相差層)/15μmの粘着剤層の積層構造を有する。
 実施例4の積層体は、熱可塑性樹脂フィルム/水系接着剤(接着剤層)/偏光子/第1硬化物層(接着剤5の硬化物層)/「λ/2位相差層」(第1位相差層)/第2硬化物層(接着剤1の硬化物層)/「λ/4位相差層」(第2位相差層)/15μmの粘着剤層の積層構造を有する。
<Examples 2 to 4>
A laminate was obtained in the same manner as in Example 1 except that the adhesive 2 was replaced with the adhesives 3 to 5. The obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 4.
The laminate of Example 2 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 3) / "λ / 2 retardation layer". It has a laminated structure of (first retardation layer) / second cured product layer (cured product layer of adhesive 1) / "λ / 4 retardation layer" (second retardation layer) / 15 μm pressure-sensitive adhesive layer.
The laminate of Example 3 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 4) / "λ / 2 retardation layer" (first It has a laminated structure of 1 retardation layer) / second cured product layer (cured product layer of adhesive 1) / "λ / 4 retardation layer" (second retardation layer) / 15 μm pressure-sensitive adhesive layer.
The laminate of Example 4 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 5) / "λ / 2 retardation layer" (first It has a laminated structure of 1 retardation layer) / second cured product layer (cured product layer of adhesive 1) / "λ / 4 retardation layer" (second retardation layer) / 15 μm pressure-sensitive adhesive layer.
 <比較例2>
 接着剤2を接着剤1に代えた以外は実施例1と同様にして、積層体を得た。得られた積層体について耐金属腐食性、粘着剤層中のヨウ素量および密着性の評価を行った。結果を表4に示す。
 なお、比較例2の積層体は、熱可塑性樹脂フィルム/水系接着剤(接着剤層)/偏光子/第1硬化物層(接着剤1の硬化物層)/「λ/2位相差層」(第1位相差層)/第2硬化物層(接着剤1の硬化物層)/「λ/4位相差層」(第2位相差層)/15μmの粘着剤層の積層構造を有する。
<Comparative example 2>
A laminate was obtained in the same manner as in Example 1 except that the adhesive 2 was replaced with the adhesive 1. The obtained laminate was evaluated for metal corrosion resistance, the amount of iodine in the pressure-sensitive adhesive layer, and adhesion. The results are shown in Table 4.
The laminate of Comparative Example 2 is a thermoplastic resin film / water-based adhesive (adhesive layer) / polarizer / first cured product layer (cured product layer of adhesive 1) / "λ / 2 retardation layer". It has a laminated structure of (first retardation layer) / second cured product layer (cured product layer of adhesive 1) / "λ / 4 retardation layer" (second retardation layer) / 15 μm pressure-sensitive adhesive layer.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 10 直線偏光板、11 熱可塑性樹脂フィルム、12 接着剤層、13 偏光子、14 第1硬化物層、20 位相差層、30 第1位相差層、31 位相差発現層、32 配向層、33 基材層、40 第2位相差層、41 基材層、42 配向層、43 位相差発現層、50 第2硬化物層、60 位相差積層体、70 粘着剤層、80 光学積層体、100 光学積層体 10 linear polarizing plate, 11 thermoplastic resin film, 12 adhesive layer, 13 polarizer, 14 first cured product layer, 20 retardation layer, 30 first retardation layer, 31 retardation expression layer, 32 orientation layer, 33 Base material layer, 40 second retardation layer, 41 base material layer, 42 alignment layer, 43 retardation expression layer, 50 second cured product layer, 60 retardation laminate, 70 adhesive layer, 80 optical laminate, 100 Optical laminate

Claims (16)

  1.  偏光子と、第1硬化物層と、位相差層と、粘着剤層とをこの順に含む光学積層体であり、
     前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
     前記第1硬化物層は、活性エネルギー硬化性組成物の硬化物であり、
     前記位相差層は、重合性液晶化合物の重合体である位相差発現層を少なくとも一つ含み、
     前記粘着剤層は、光学積層体を温度80℃、相対湿度90%において250時間保管した後のヨウ素量が900mg/kg以下であり、
     前記偏光子と前記第1硬化物層とは直接接し、
     前記第1硬化物層と前記位相差層とは直接接している、光学積層体。
    An optical laminate including a polarizer, a first cured product layer, a retardation layer, and an adhesive layer in this order.
    The polarizer is made of a polyvinyl alcohol resin containing iodine.
    The first cured product layer is a cured product of an active energy curable composition.
    The retardation layer contains at least one retardation expression layer which is a polymer of a polymerizable liquid crystal compound.
    The pressure-sensitive adhesive layer has an iodine content of 900 mg / kg or less after the optical laminate is stored at a temperature of 80 ° C. and a relative humidity of 90% for 250 hours.
    The polarizer and the first cured product layer are in direct contact with each other.
    An optical laminate in which the first cured product layer and the retardation layer are in direct contact with each other.
  2.  前記位相差層は、前記第1硬化物層側から、第1重合層と、第2硬化物層と、第2重合層とをこの順に含む層であり、
     前記第1重合層及び前記第2重合層は、互いに独立して、重合性液晶化合物の重合体を含む、請求項1に記載の光学積層体。
    The retardation layer is a layer containing the first polymerized layer, the second cured product layer, and the second polymerized layer in this order from the first cured product layer side.
    The optical laminate according to claim 1, wherein the first polymerized layer and the second polymerized layer contain a polymer of a polymerizable liquid crystal compound independently of each other.
  3.  前記第2硬化物層は、活性エネルギー線硬化物層である、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the second cured product layer is an active energy ray-cured product layer.
  4.  厚み30μmにおける第1硬化物層の温度80℃相対湿度90%の透湿度が1500[g/(m・24hr)]以下である、請求項1~3のいずれか一項に記載の光学積層体。 Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30μm is 1500 [g / (m 2 · 24hr)] Hereinafter, the optical laminate according to any one of claims 1 to 3 body.
  5.  偏光子と、第1硬化物層と、第1位相差層と、第2硬化物層と、第2位相差層と、粘着剤層とをこの順に含む光学積層体であり、
     前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
     第1位相差層及び第2位相差層は、互いに独立して、重合性液晶化合物の重合体を含む位相差発現層を含み、
     第1硬化物層及び第2硬化物層は、互いに独立して、活性エネルギー線硬化性組成物の硬化物を含み、
     前記第1硬化物層の温度80℃における貯蔵弾性率が300MPa以上であり、
     前記偏光子と前記第1硬化物層とは直接接し、
     前記第1硬化物層と前記第1位相差層とは直接接している、光学積層体。
    An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
    The polarizer is made of a polyvinyl alcohol resin containing iodine.
    The first retardation layer and the second retardation layer contain a retardation expression layer containing a polymer of a polymerizable liquid crystal compound independently of each other.
    The first cured product layer and the second cured product layer contain the cured product of the active energy ray-curable composition independently of each other.
    The storage elastic modulus of the first cured product layer at a temperature of 80 ° C. is 300 MPa or more.
    The polarizer and the first cured product layer are in direct contact with each other.
    An optical laminate in which the first cured product layer and the first retardation layer are in direct contact with each other.
  6.  前記第2硬化物層の温度80℃における貯蔵弾性率が20MPa以上である、請求項5に記載の光学積層体。 The optical laminate according to claim 5, wherein the second cured product layer has a storage elastic modulus of 20 MPa or more at a temperature of 80 ° C.
  7.  前記第1硬化物層の温度80℃における貯蔵弾性率(E)が、前記第2硬化物層の温度80℃における貯蔵弾性率(E)より大きい、請求項5又は6に記載の光学積層体。 The optics according to claim 5 or 6, wherein the storage elastic modulus (E 1 ) of the first cured product layer at a temperature of 80 ° C. is larger than the storage elastic modulus (E 2) of the second cured product layer at a temperature of 80 ° C. Laminated body.
  8.  厚み30μmにおける第1硬化物層の温度80℃相対湿度90%の透湿度が1500[g/(m・24hr)]以下である、請求項5~7のいずれか一項に記載の光学積層体。 Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30μm is 1500 [g / (m 2 · 24hr)] Hereinafter, the optical laminate according to any one of claims 5-7 body.
  9.  偏光子と、第1硬化物層と、第1位相差層と、第2硬化物層と、第2位相差層と、粘着剤層とをこの順に含む光学積層体であり、
     前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
     前記第1位相差層及び前記第2位相差層は、互いに独立して、重合性液晶化合物の重合体である位相差発現層を含み、
     前記第1硬化物層及び前記第2硬化物層は、それぞれ独立して、活性エネルギー線硬化性組成物の硬化物であり、
     前記第1硬化物層のガラス転移温度(Tg)が60℃超であり、
     前記偏光子と前記第1硬化物層とは直接接し、
     前記第1硬化物層と前記第1位相差層とは直接接している、光学積層体。
    An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
    The polarizer is made of a polyvinyl alcohol resin containing iodine.
    The first retardation layer and the second retardation layer contain a retardation expression layer which is a polymer of a polymerizable liquid crystal compound independently of each other.
    The first cured product layer and the second cured product layer are independently cured products of an active energy ray-curable composition.
    The glass transition temperature (Tg 1 ) of the first cured product layer is more than 60 ° C.
    The polarizer and the first cured product layer are in direct contact with each other.
    An optical laminate in which the first cured product layer and the first retardation layer are in direct contact with each other.
  10.  前記第2硬化物層のガラス転移温度(Tg)が40℃以上である、請求項9に記載の光学積層体。 The optical laminate according to claim 9, wherein the glass transition temperature (Tg 2) of the second cured product layer is 40 ° C. or higher.
  11.  前記第1硬化物層のガラス転移温度(Tg)が、前記第2硬化物層のガラス転移温度(Tg)より大きい、請求項9又は10に記載の光学積層体。 The optical laminate according to claim 9 or 10, wherein the glass transition temperature (Tg 1 ) of the first cured product layer is higher than the glass transition temperature (Tg 2) of the second cured product layer.
  12.  厚み30μmにおける第1硬化物層の温度80℃相対湿度90%の透湿度が1500[g/(m・24hr)]以下である、請求項9~11のいずれか一項に記載の光学積層体。 Temperature 80 ° C. and 90% relative humidity moisture permeability of the first cured layer in a thickness 30μm is 1500 [g / (m 2 · 24hr)] Hereinafter, the optical laminate according to any one of claims 9-11 body.
  13.  偏光子と、第1硬化物層と、位相差層と、粘着剤層とをこの順に含む光学積層体であり、
     前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
     前記位相差層は、重合性液晶化合物の重合体を含む位相差発現層を含み、
     前記第1硬化物層は、活性エネルギー硬化性組成物の硬化物であり、
     前記活性エネルギー線硬化性組成物は、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有する組成物である、光学積層体。
    An optical laminate including a polarizer, a first cured product layer, a retardation layer, and an adhesive layer in this order.
    The polarizer is made of a polyvinyl alcohol resin containing iodine.
    The retardation layer includes a retardation expression layer containing a polymer of a polymerizable liquid crystal compound.
    The first cured product layer is a cured product of an active energy curable composition.
    The active energy ray-curable composition is an optical laminate containing an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
  14.  偏光子と、第1硬化物層と、第1位相差層と、第2硬化物層と、第2位相差層と、粘着剤層とをこの順に含む光学積層体であり、
     前記偏光子は、ヨウ素を含むポリビニルアルコール樹脂からなり、
     前記1硬化物層は活性エネルギー硬化性組成物の硬化物であり、
     前記活性エネルギー線硬化性組成物は、3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有する組成物である、光学積層体。
    An optical laminate including a polarizer, a first cured product layer, a first retardation layer, a second cured product layer, a second retardation layer, and an adhesive layer in this order.
    The polarizer is made of a polyvinyl alcohol resin containing iodine.
    The one cured product layer is a cured product of an active energy curable composition.
    The active energy ray-curable composition is an optical laminate containing an epoxy compound (A2-1) containing a tricyclic condensed ring and two glycidyl ether groups in the molecule.
  15.  硬化性成分(A)と光重合開始剤(B)とを含む活性エネルギー線硬化性組成物であって、
     前記硬化性成分(A)は多官能オキセタン化合物(A5-1)及び3環式の縮合環とジグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)を含有し、
     前記多官能オキセタン化合物(A5-1)の含有量が前記3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)の含有量よりも多い、活性エネルギー線硬化性組成物。
    An active energy ray-curable composition containing a curable component (A) and a photopolymerization initiator (B).
    The curable component (A) contains a polyfunctional oxetane compound (A5-1) and an epoxy compound (A2-1) containing a tricyclic condensed ring and a diglycidyl ether group in the molecule.
    Active energy rays in which the content of the polyfunctional oxetane compound (A5-1) is higher than the content of the epoxy compound (A2-1) containing the tricyclic condensed ring and two glycidyl ether groups in the molecule. Curable composition.
  16.  前記多官能オキセタン化合物(A5-1)と前記3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)との含有比(質量比)が、前記多官能オキセタン化合物(A5-1)/前記3環式の縮合環と2つのグリシジルエーテル基とを分子内に含むエポキシ化合物(A2-1)=1.5/1~5/1である請求項15に記載の活性エネルギー線硬化性組成物。 The content ratio (mass ratio) of the polyfunctional oxetane compound (A5-1), the tricyclic condensed ring, and the epoxy compound (A2-1) containing two glycidyl ether groups in the molecule is the polyfunctionality. The oxetane compound (A5-1) / an epoxy compound (A2-1) containing the three-ring condensed ring and two glycidyl ether groups in the molecule = 1.5 / 1 to 5/1 according to claim 15. The active energy ray-curable composition according to the above.
PCT/JP2020/047921 2019-12-26 2020-12-22 Optical laminate WO2021132236A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080090355.8A CN114902096B (en) 2019-12-26 2020-12-22 Optical laminate
KR1020227025614A KR20220118536A (en) 2019-12-26 2020-12-22 optical laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-237258 2019-12-26
JP2019237258 2019-12-26
JP2020-011023 2020-01-27
JP2020011023 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021132236A1 true WO2021132236A1 (en) 2021-07-01

Family

ID=76576057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047921 WO2021132236A1 (en) 2019-12-26 2020-12-22 Optical laminate

Country Status (5)

Country Link
JP (1) JP2021113969A (en)
KR (1) KR20220118536A (en)
CN (1) CN114902096B (en)
TW (1) TW202132104A (en)
WO (1) WO2021132236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203988A1 (en) * 2023-03-27 2024-10-03 東亞合成株式会社 Heat-adhesive laminate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024889A1 (en) * 2022-07-29 2024-02-01 住友化学株式会社 Optical layered body
JP7551014B1 (en) 2023-03-31 2024-09-13 住友化学株式会社 Optical laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052765A (en) * 2013-09-09 2015-03-19 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device
JP2017075986A (en) * 2015-10-13 2017-04-20 株式会社サンリッツ Polarizing plate with adhesive layer and manufacturing method of the same, active energy ray curable polymer composition used for the manufacture, and liquid crystal display
JP2018017996A (en) * 2016-07-29 2018-02-01 日東電工株式会社 Polarizing plate with retardation layer and organic EL display device
JP2018141962A (en) * 2017-02-28 2018-09-13 住友化学株式会社 Optical laminate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973834A (en) * 1997-12-19 1999-10-26 Polaroid Corporation Method for the manufacture of a light-polarizing polyvinylene sheet
JP4286378B2 (en) * 1999-04-26 2009-06-24 新日本石油株式会社 Method for producing polarization diffraction film
JP4139673B2 (en) * 2002-11-12 2008-08-27 富士フイルム株式会社 Antireflection film and display device
JP5046728B2 (en) * 2007-04-25 2012-10-10 株式会社ジャパンディスプレイイースト Liquid crystal display
TWI550069B (en) * 2010-09-14 2016-09-21 Sumitomo Chemical Co Polymerizable liquid crystal composition
JP6171276B2 (en) * 2011-07-12 2017-08-02 住友化学株式会社 Polarizer and manufacturing method thereof
EP3035089B1 (en) * 2014-12-17 2018-03-21 Samsung Electronics Co., Ltd Polarizing film and display device including the polarizing film
JP6605682B2 (en) 2017-11-10 2019-11-13 住友化学株式会社 Circular polarizer
WO2019093476A1 (en) * 2017-11-10 2019-05-16 住友化学株式会社 Circularly polarizing plate and display device
CN110673251A (en) * 2019-09-11 2020-01-10 维沃移动通信有限公司 Polarizing plate preparation method, polarizing plate, display screen and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052765A (en) * 2013-09-09 2015-03-19 日東電工株式会社 Polarizing film with adhesive layer for transparent conductive films, laminate, and image display device
JP2017075986A (en) * 2015-10-13 2017-04-20 株式会社サンリッツ Polarizing plate with adhesive layer and manufacturing method of the same, active energy ray curable polymer composition used for the manufacture, and liquid crystal display
JP2018017996A (en) * 2016-07-29 2018-02-01 日東電工株式会社 Polarizing plate with retardation layer and organic EL display device
JP2018141962A (en) * 2017-02-28 2018-09-13 住友化学株式会社 Optical laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203988A1 (en) * 2023-03-27 2024-10-03 東亞合成株式会社 Heat-adhesive laminate

Also Published As

Publication number Publication date
JP2021113969A (en) 2021-08-05
TW202132104A (en) 2021-09-01
KR20220118536A (en) 2022-08-25
CN114902096B (en) 2024-09-27
CN114902096A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2021132236A1 (en) Optical laminate
JP2021008117A (en) Optical laminate and method for manufacturing the same, front plate, and image display device
KR102313276B1 (en) Photocurable adhesive, and polarizing plate, laminated optical member, and liquid crystal display device using same
CN105739003B (en) Polarizing plate
TWI689755B (en) Polarizing plate and liquid crystal display device
JP7373303B2 (en) Optical laminates, polarizing plate composites, and image display devices
KR20190053784A (en) Composite retardation plate, optical laminate and image display device
JP2010102310A (en) Composite polarizing plate and liquid crystal display device using the same
WO2020066830A1 (en) Optical laminate, polarizing plate composite, and image display device
JP7250827B2 (en) optical laminate
JP2020173458A (en) Polarizing plate
JP6718685B2 (en) Photocurable adhesive, polarizing plate using the same, laminated optical member and liquid crystal display device
WO2021132234A1 (en) Multilayer body
TW202421420A (en) Optical laminate
WO2021153019A1 (en) Optical laminate and display device in which same is used
KR20220033996A (en) Optical laminate
JP2017122881A (en) Photo-curable adhesive, and polarizing plate and laminate optical member using the same
JP7578659B2 (en) Composite retardation plate, optical laminate, and image display device
JP2011123168A (en) Polarizing plate
WO2024024889A1 (en) Optical layered body
WO2017119323A1 (en) Photocurable adhesive, polarizing plate using same, and multilayer optical member
KR20230115914A (en) Polarizing plate and image display device
JP2023090645A (en) laminate
JP2023011583A (en) Composite retardation plate, optical laminate, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025614

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906341

Country of ref document: EP

Kind code of ref document: A1