WO2021101281A1 - Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method - Google Patents

Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method Download PDF

Info

Publication number
WO2021101281A1
WO2021101281A1 PCT/KR2020/016402 KR2020016402W WO2021101281A1 WO 2021101281 A1 WO2021101281 A1 WO 2021101281A1 KR 2020016402 W KR2020016402 W KR 2020016402W WO 2021101281 A1 WO2021101281 A1 WO 2021101281A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
lithium
metal oxide
transition metal
Prior art date
Application number
PCT/KR2020/016402
Other languages
French (fr)
Korean (ko)
Inventor
정원식
박현아
윤여준
이강현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021566079A priority Critical patent/JP7258409B2/en
Priority to EP20889802.3A priority patent/EP3943452A4/en
Priority to US17/608,356 priority patent/US20220263073A1/en
Priority to CN202080033028.9A priority patent/CN113795464B/en
Publication of WO2021101281A1 publication Critical patent/WO2021101281A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a positive electrode active material for a lithium secondary battery, and a positive electrode for a lithium secondary battery and a lithium secondary battery including the positive electrode active material prepared by the above manufacturing method.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and widely used.
  • Lithium transition metal oxide is used as a positive electrode active material of a lithium secondary battery.
  • lithium cobalt oxide of LiCoO 2 having high operating voltage and excellent capacity characteristics was mainly used.
  • LiCoO 2 has very poor thermal properties due to destabilization of the crystal structure due to delithiation, and is expensive, so it is limited in mass use as a power source in fields such as electric vehicles.
  • a lithium manganese composite metal oxide such as LiMnO 2 or LiMn 2 O 4
  • a lithium iron phosphate compound such as LiFePO 4
  • a lithium nickel composite metal oxide such as LiNiO 2
  • LiNiO 2 lithium nickel composite metal oxide
  • the surface of the lithium nickel cobalt metal oxide has an electrically neutral surface property.
  • the electrolytic solution used in the secondary battery uses an organic solvent that exhibits electrical polarity. Accordingly, at the interface formed between the positive electrode active material and the electrolyte, potential energy required for the passage of Li energy increases, thereby acting as an ion conduction resistance, and there is a problem in that the charge/discharge capacity decreases.
  • a first technical problem of the present invention is to provide a method of manufacturing a positive electrode active material capable of lowering the potential energy between the positive electrode active material and the electrolyte interface by forming a specific coating layer between the positive electrode active material and the electrolyte.
  • a second technical problem of the present invention is to provide a positive electrode active material in which potential energy between a positive electrode active material and an electrolyte solution interface is lowered by forming a coating layer.
  • a third technical problem of the present invention is to provide a positive electrode for a lithium secondary battery including a positive electrode active material manufactured by the above-described method.
  • a fourth technical problem of the present invention is to provide a lithium secondary battery including the positive electrode.
  • the present invention the step of washing the lithium transition metal oxide with a water washing solution; And forming a coating layer on the surface of the lithium transition metal oxide by solid-phase mixing the washed lithium transition metal oxide and Br ⁇ nsted solid acid and heat treatment.
  • the Bronsted solid acid is a metal phosphate compound having a melting point of 500° C. or less, and the coating layer is formed to have a thickness of 80 nm or less.
  • the present invention is a lithium transition metal oxide; And a coating layer formed by reacting a metal phosphate compound having a melting point of 500° C. or less and lithium of the lithium transition metal oxide disposed on the surface of the lithium transition metal oxide, and having a thickness of the coating layer of 80 nm or less. .
  • the present invention provides a positive electrode for a lithium secondary battery including the positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode for the lithium secondary battery.
  • the present invention forms a coating layer on the surface of the lithium transition metal oxide by reacting lithium transition metal oxide with Bronsted solid acid, so that the surface of the positive electrode active material becomes polar and the position necessary for the passage of Li ions at the interface between the positive electrode active material and the electrolyte solution Reduced energy. Accordingly, when the positive electrode active material of the present invention is applied to a secondary battery, superior capacity characteristics and resistance characteristics can be obtained compared to the prior art.
  • the coating layer can be formed smoothly by using a phosphate compound having excellent reactivity with lithium as a Bronsted solid acid, which is a coating material.
  • the present invention uses a material with a low melting point of 500°C or less with Bronsted solid acid, so that a coating layer can be formed through solid-phase mixing at a relatively low heat treatment temperature, so that lithium transfer by solvent or heat during the coating layer formation process It was made to be able to suppress the damage or deformation of the metal oxide. Accordingly, the positive electrode active material prepared through the method of the present invention has superior capacity characteristics, life characteristics, and resistance characteristics compared to the conventional positive electrode active material in which the coating layer was formed by using the wet coating method.
  • the method of manufacturing a positive electrode active material of the present invention increases the reactivity with Bronsted solid acid by appropriately controlling the content of residual lithium and hydroxyl groups on the surface of the lithium transition metal oxide through water washing, thereby forming a uniform coating layer by a dry coating method. It was made to be formed, and the thickness of the coating layer was appropriately adjusted.
  • FIG. 1 is a view for explaining the polarity of a surface before and after forming a coating layer of a positive active material according to the present invention.
  • the present inventors formed a coating layer by reacting a lithium transition metal oxide with a specific Bronsted solid acid, thereby forming a potential energy at the interface between the lithium transition metal oxide and the electrolyte. It was found that it can be lowered and the present invention was completed.
  • the method for preparing a positive electrode active material of the present invention includes the steps of: (1) washing lithium transition metal oxide with a water washing solution, and (2) mixing the washed lithium transition metal oxide with a Br ⁇ nsted solid acid in a solid phase. And heat treatment to form a coating layer on the surface of the lithium transition metal oxide, wherein a metal (M) phosphate compound having a melting point of 500° C. or less with the Bronsted solid acid is used, and the thickness of the coating layer is 80 nm or less. It is characterized in that it is formed to be.
  • the lithium transition metal oxide is washed with a washing solution (first step).
  • the washing step is to reduce the residual lithium on the surface of the lithium transition metal oxide, and to improve the reactivity with the Bronsted solid acid in the coating step to be described later.
  • Lithium transition metal oxide used as a positive electrode active material is usually prepared by mixing a precursor in the form of a transition metal hydroxide and a lithium raw material, followed by firing. When the precursor and the lithium raw material are mixed, the lithium raw material is stoichiometrically used. It is common to add an excess amount compared to the required amount, and for this reason, residual lithium exists on the surface of the lithium transition metal oxide after firing.
  • the residual lithium acts as a raw material for forming a coating layer in the process of forming a coating layer, which will be described later, when there is an excessive amount of residual lithium on the surface of the lithium transition metal oxide, the coating layer is formed thick, thereby increasing resistance.
  • the lithium transition metal oxide is washed with a water washing solution to reduce the amount of residual lithium on the surface of the lithium transition metal oxide, thereby minimizing the occurrence of the above side effects.
  • the content of lithium by-products present on the surface of the lithium transition metal oxide is 0.5% by weight or less, preferably 0.01% to 0.5% by weight, more preferably, based on the total weight of the lithium transition metal oxide. It may be carried out to be 0.1% by weight to 0.5% by weight.
  • the content of the lithium by-product may be, for example, the sum of the contents of lithium carbonate (Li 2 CO 3) and lithium hydroxide (LiOH) present on the surface of the lithium transition metal oxide.
  • washing solution general washing solutions used for washing the positive electrode active material, for example, organic solvents such as water and alcohol, and combinations thereof, may be used, and the type is not particularly limited.
  • the lithium transition metal oxide and the water washing solution are in a weight ratio of 1:0.5 to 1:2 or less, preferably 1:0.6 to 1:2, more preferably 1:0.8 to 1:1.2 After mixing at a weight ratio, it may be carried out by stirring.
  • the mixing ratio of the lithium transition metal oxide and the water washing solution satisfies the above range, lithium by-products are effectively removed and a hydroxyl group (-OH) is generated on the surface of the lithium transition metal oxide during the washing process. It is possible to obtain an effect of improving the reactivity of.
  • a weak acid solution may be additionally added during washing with water.
  • a weak acid it is possible to obtain an effect of increasing the removal efficiency of lithium carbonate (Li 2 CO 3 ).
  • Lithium carbonate generates gases such as CO and CO 2 at the beginning of driving the secondary battery. Therefore, the higher the removal efficiency of lithium carbonate, the more excellent the effect of suppressing the occurrence of gas and swelling.
  • the weak acid solution may be, for example, a solution containing at least one selected from the group consisting of phosphoric acid, acetic acid, oxalic acid, and boric acid.
  • the weak acid solution may be added so that the pH of the mixture of the lithium transition metal oxide and the washing solution is 8 to 10, preferably 8.5 to 9.5.
  • the amount of the weak acid solution is within the above range, lithium carbonate can be effectively removed without damaging the lithium transition metal oxide.
  • the washed lithium transition metal oxide and Br ⁇ nsted solid acid are solidly mixed and then heat treated to form a coating layer (second step).
  • the Bronsted solid acid a metal (M) phosphate compound having a melting point of 500° C. or less is used.
  • the Bronsted solid acid may be BiPO 4.
  • the metal (M) phosphate compound Since the metal (M) phosphate compound has good reactivity with lithium, when a metal phosphate compound is applied as a Bronsted solid acid, lithium present in the lithium transition metal oxide reacts with the Bronsted solid acid to facilitate the coating layer. Can be formed.
  • a wet coating method was mainly used to form a coating layer containing the metal phosphate as described above.
  • the coating layer is formed through the wet coating method, not only the coating process is complicated, but also problems such as the elution of the transition metal of the lithium transition metal oxide or the occurrence of surface defects may occur due to the coating solution.
  • the coating layer is formed by a dry coating method using a metal phosphate compound having a high melting point
  • a high temperature heat treatment is required to attach the metal phosphate compound to the surface of the lithium transition metal oxide.
  • the coating layer formation heat treatment temperature is too high, deformation occurs in the crystal structure of the lithium transition metal oxide, which is not preferable.
  • a uniform coating layer can be formed even when heat treatment is performed at a low temperature of about 300° C. to 500° C., so heat treatment for forming a coating layer Thus, it is possible to prevent the lithium transition metal oxide from being damaged or deformed.
  • the Bronsted solid acid may be added to be 500 to 3,000 ppm, preferably 500 to 2,000 ppm, and most preferably 500 to 1,000 ppm, based on the total weight of the lithium transition metal oxide. If the content of the Bronsted solid acid is too high, the lithium content of the lithium transition metal oxide may decrease, resulting in a decrease in the physical properties of the positive electrode active material. If the content is too small, the coating layer is not sufficiently formed and the effect of improving the physical properties is insignificant.
  • a coating layer is formed by reacting the Bronsted solid acid with lithium of a lithium transition metal oxide through heat treatment.
  • a metal (M) phosphate compound having a melting point of 500° C. or less as in the present invention and a lithium transition metal oxide the metal (M) phosphate compound is melted and present inside and/or on the surface of the lithium transition metal oxide.
  • a coating layer is formed while reacting with lithium to form a Li-MPO complex.
  • M refers to a metal element derived from a metal phosphate compound. That is, when using BiPO 4 as the Bronsted solid acid, M is Bi.
  • the surface of the coating layer formed according to the method of the present invention is polar.
  • 1 is a diagram showing a surface state of a positive electrode active material modified through formation of a coating layer.
  • the surface of the lithium transition metal oxide before the coating layer is formed is in an electrically neutral state.
  • the Bronsted solid acid is melted and the lithium present in the lithium transition metal oxide and the residual lithium present on the surface of the lithium transition metal oxide.
  • the coating layer is formed by reacting with and forming an ionic bond or a covalent bond, and the coating layer is electrically negatively charged ( ⁇ -).
  • the coating layer serves as a surfactant that connects the lithium transition metal oxide surface and the polar electrolyte solution, thereby lowering the potential energy of the interface between the lithium transition metal oxide and the electrolyte solution, thereby improving lithium mobility. You can get the effect.
  • the heat treatment may be performed at a temperature of 300°C to 500°C, preferably 300°C to 400°C, and more preferably 330°C to 380°C.
  • the heat treatment temperature satisfies the above range, it is possible to smoothly form the coating layer without damaging the lithium transition metal oxide.
  • the coating layer has a thickness of 80 nm or less, preferably 5 nm to 80 nm, and most preferably 5 nm to 40 nm.
  • the thickness of the coating layer can be measured through, for example, a time-of-flight secondary ion mass spectrometer (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the thickness of the coating layer is between the minimum and maximum values of the normalized intensity of the Ni element according to the sputtering depth measured by sputtering the positive electrode active material using a time-of-flight secondary ion mass spectrometer. It may be the sputtering depth of the point where
  • the thickness of the coating layer exceeds 80 nm, the lithium content in the lithium transition metal oxide decreases, resulting in a decrease in capacity characteristics, and the lithium ion mobility decreases due to an increase in the thickness of the coating layer, and resistance increases, so that the effect of improving physical properties cannot be obtained.
  • the thickness of the coating layer varies depending on whether water is washed, the amount of Bronsted solid acid is added, and the heat treatment temperature, the coating layer having a desired thickness can be formed by appropriately adjusting these conditions.
  • the present invention provides a positive electrode active material manufactured by the above-described manufacturing method.
  • the positive electrode active material according to the present invention includes a lithium transition metal oxide; And a coating layer formed by reacting a metal phosphate compound having a melting point of 500° C. or less and lithium of the lithium transition metal oxide on the surface of the lithium transition metal oxide, wherein the thickness of the coating layer is 80 nm or less.
  • the lithium transition metal oxide may include those represented by Formula 1 below.
  • M1 is to include at least one of Mn and Al
  • M2 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd , Sm, Ca, Ce, Nb, Mg, B, and at least one selected from the group consisting of Mo.
  • the coating layer is formed by reacting a metal (M) phosphate compound having a melting point of 500° C. or less and lithium of the lithium transition metal oxide, and includes a composite of Li-MPO.
  • the metal phosphate compound may be, for example, BiPO 4
  • the coating layer may include a lithium-metal phosphate Li-Bi-PO composite.
  • the thickness of the coating layer is 80 nm or less, preferably 5 nm to 80 nm, and most preferably 5 nm to 40 nm.
  • the thickness of the coating layer can be measured through, for example, a time-of-flight secondary ion mass spectrometer (TOF-SIMS).
  • the thickness of the coating layer exceeds 80 nm, the lithium content in the lithium transition metal oxide decreases, resulting in a decrease in capacity characteristics, and the lithium ion mobility decreases due to an increase in the thickness of the coating layer, and resistance increases, so that the effect of improving physical properties cannot be obtained.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material described above.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , Silver, or the like may be used.
  • the positive electrode current collector may generally have a thickness of 3 to 500 ⁇ m, and fine unevenness may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the positive electrode active material layer may include a conductive material and a binder together with the positive electrode active material.
  • the positive active material may be included in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight, based on the total weight of the positive electrode active material layer.
  • excellent capacity characteristics may be exhibited.
  • the conductive material is used to impart conductivity to the electrode, and in the battery to be configured, it may be used without particular limitation as long as it does not cause chemical changes and has electronic conductivity.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Alternatively, a conductive polymer such as a polyphenylene derivative may be used, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode active material and optionally, a composition for forming a positive active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent may be coated on a positive electrode current collector, followed by drying and rolling.
  • the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or Water, and the like, and one of them alone or a mixture of two or more may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness and production yield of the slurry, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for the production of the positive electrode afterwards. Do.
  • the positive electrode may be prepared by casting the composition for forming a positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support on a positive electrode current collector.
  • the present invention can manufacture an electrochemical device including the positive electrode.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode positioned opposite to the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so a detailed description thereof is omitted, Hereinafter, only the remaining configuration will be described in detail.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member that seals the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, and the like may be used.
  • the negative electrode current collector may generally have a thickness of 3 ⁇ m to 500 ⁇ m, and, like the positive electrode current collector, microscopic irregularities may be formed on the surface of the current collector to enhance the bonding strength of the negative electrode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative active material layer optionally includes a binder and a conductive material together with the negative active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy;
  • Metal oxides capable of doping and undoping lithium such as SiO ⁇ (0 ⁇ 2), SnO 2, vanadium oxide, and lithium vanadium oxide;
  • a composite including the metal compound and a carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more of them may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are typical, and high crystalline carbon is amorphous, plate, scale, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish). graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes) is typical.
  • the negative active material may be included in an amount of 80 to 99 parts by weight based on 100 parts by weight of the total weight of the negative active material layer.
  • the binder is a component that aids in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the total weight of the negative active material layer.
  • a binder include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro.
  • Roethylene polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • nitrile-butadiene rubber fluorine rubber
  • the conductive material is a component for further improving the conductivity of the negative active material, and may be added in an amount of 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the total weight of the negative active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode active material layer is prepared by coating and drying a negative electrode active material, and optionally a negative electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent on a negative electrode current collector, and drying the negative electrode mixture. It can be produced by casting on a support and then laminating a film obtained by peeling from the support on a negative electrode current collector.
  • the negative active material layer is, for example, coated on a negative electrode current collector and a negative electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent, followed by drying, or casting the negative electrode mixture on a separate support. Then, it may be produced by laminating a film obtained by peeling from this support on a negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as it is used as a separator in a general lithium secondary battery.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A stacked structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and optionally, a single layer or a multilayer structure may be used.
  • electrolytes used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, etc. that can be used in the manufacture of lithium secondary batteries, and are limited to these. It does not become.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of a battery can move.
  • the organic solvent include ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate-based solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2-C20 linear, branched or cyclic hydrocarbon group
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (e.g., ethylene carbonate or propylene carbonate, etc.), which can increase the charging/discharging performance of the battery, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2.
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, excellent electrolyte performance can be exhibited, and lithium ions can effectively move.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving the life characteristics of the battery, suppressing the reduction in battery capacity, and improving the discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving the life characteristics of the battery, suppressing the reduction in battery capacity, and improving the discharge capacity of the battery.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included.
  • the additive may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and life characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in electric vehicle fields such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack may include a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices among systems for power storage.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the appearance of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch type, or a coin type using a can.
  • the lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • Lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 was mixed with water in a weight ratio of 1:1 and washed with water for 5 minutes. Subsequently, 1,000 ppm of BiPO 4 was mixed with the washed lithium transition metal oxide as Bronsted solid acid and heat-treated at 350° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
  • a lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 and water are mixed in a weight ratio of 1:1, and an aqueous P 2 O 5 solution having a concentration of 10% by weight is added thereto until the pH reaches 9, Washed for 5 minutes. Subsequently, 1,000 ppm of BiPO 4 was mixed with the washed lithium transition metal oxide and heat-treated at 350° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
  • a positive electrode active material with a coating layer was prepared in the same manner as in Example 1, except that BiPO 4 was mixed with 2,000 ppm.
  • a positive electrode active material with a coating layer was prepared in the same manner as in Example 1, except that BiPO 4 was mixed with 3,000 ppm.
  • a positive electrode active material having a coating layer formed thereon was prepared in the same manner as in Example 1.
  • a positive electrode active material having a coating layer formed thereon was prepared in the same manner as in Example 1.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the coating layer was not formed.
  • a positive electrode active material with a coating layer was prepared in the same manner as in Example 1, except that BiPO 4 was mixed with 10,000 ppm.
  • Lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 was mixed with water in a weight ratio of 1:1 and washed with water for 5 minutes. Subsequently, 1,000 ppm of AlPO 4 having a melting point of 1800° C. was mixed with the washed lithium transition metal oxide with a Bronsted solid acid and heat-treated at 700° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
  • lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 and 1,000 ppm of BiPO 4 were mixed and heat-treated at 350° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
  • the thickness of the coating layer in the positive electrode active materials prepared in Examples 1 to 6 and Comparative Examples 2 to 4 was measured using a time-of-flight secondary ion mass spectrometer (TOF-SIMS, IONTOF). Specifically, the normalized intensity of the Ni element was measured according to the sputtering depth while sputtering the positive electrode active material using a time-of-flight secondary ion mass spectrometer. ), the sputtering depth at the midpoint between the minimum and maximum values was determined as the thickness of the coating layer . The measurement results are shown in the following [Table 2].
  • TOF-SIMS measurement data of Examples 1 to 4 are shown in FIG. 2
  • TOF-SIMS measurement data of Comparative Example 3 is shown in FIG. 2.
  • Example 1 O BiPO 4 , 1,000 350 25.5
  • Example 5 O BiPO 4 , 1,000 300 9.8
  • Example 6 O BiPO 4 , 1,000 400 18.6 Comparative Example 2 O BiPO 4 , 10,000 350 132.2 Comparative Example 3 O AlPO 4 , 1,000 700 38.6 Comparative Example 4 X BiPO 4 , 1,000 350 114.2
  • the positive electrode active material prepared in Examples 1 to 6 of the present invention has a coating layer thickness of 80 nm or less, whereas in the case of Comparative Example 2, an excessive amount of Bronsted solid acid was added to form a thick coating layer of 132 nm or more. It can be confirmed that it is. Meanwhile, in the case of Comparative Example 3 , since AlPO 4 having a high melting point was used, a high temperature heat treatment of 700° C. or higher was required to form a coating layer.
  • the coating layer was formed very thick despite the use of the same amount of BiPO 4 as in Example 1 due to an excess of lithium by-products on the surface of the lithium transition metal oxide. I can confirm.
  • a lithium secondary battery was manufactured using the positive electrode active material prepared in Examples 1 to 6 and Comparative Examples 1 to 4, and for each of the lithium secondary batteries including the positive electrode active material of Examples 1 to 6 and Comparative Examples 1 to 4 The capacity characteristics and resistance characteristics at high rate were evaluated.
  • the positive electrode active material, carbon black conductive material, and polyvinylidene fluoride binder each prepared in Examples 1 to 6 and Comparative Examples 1 to 4 were mixed in an N-methylpyrrolidone solvent at a weight ratio of 97.5:1.0:1.5.
  • a positive electrode slurry was prepared.
  • the positive electrode slurry was coated on one surface of an aluminum current collector, dried at 130° C., and then rolled to prepare a positive electrode.
  • a negative active material slurry was prepared by mixing carbon black and a polyvinylidene fluoride binder as a negative electrode active material in a weight ratio of 97.5:2.5 and adding it to N-methylpyrrolidone as a solvent. This was coated on a copper foil having a thickness of 16.5 ⁇ m, dried, and then roll pressed to prepare a negative electrode.
  • An electrode assembly was manufactured by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared above, and then placed inside the battery case, and then an electrolyte was injected into the case to prepare a lithium secondary battery. At this time, an electrolytic solution in which 1 M of LiPF 6 was dissolved was injected into an organic solvent in which ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) was mixed in a ratio of 3:4:3 as an electrolytic solution.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Each of the lithium secondary batteries prepared as described above was charged to 4.25V with a 0.2C constant current at 25°C, and then discharged to 2.5V with a 0.2C constant current to measure the initial charge capacity and the initial discharge capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a method for preparing a cathode active material, the method comprising the steps of: washing a lithium transition metal oxide with a washing solution; and subjecting the washed lithium transition metal oxide and a metal phosphate compound having a melting point of 500°C or lower to solid-state mixing and heat treatment to form a coating layer on the surface of the lithium transition metal oxide.

Description

리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질Method for producing a positive electrode active material for a lithium secondary battery, a positive electrode active material prepared by the method
[관련출원과의 상호인용][Mutual citation with related application]
본 출원은 2019년 11월 22일에 출원된 한국특허출원 제10-2019-0151077호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0151077 filed on November 22, 2019, and all contents disclosed in the Korean Patent Application Document are included as part of this specification.
[기술분야][Technical field]
본 발명은 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.The present invention relates to a method of manufacturing a positive electrode active material for a lithium secondary battery, and a positive electrode for a lithium secondary battery and a lithium secondary battery including the positive electrode active material prepared by the above manufacturing method.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among these secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and widely used.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이 중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 산화물이 주로 사용되었다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다. Lithium transition metal oxide is used as a positive electrode active material of a lithium secondary battery. Among them, lithium cobalt oxide of LiCoO 2 having high operating voltage and excellent capacity characteristics was mainly used. However, LiCoO 2 has very poor thermal properties due to destabilization of the crystal structure due to delithiation, and is expensive, so it is limited in mass use as a power source in fields such as electric vehicles.
상기 LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 개발이 보다 활발히 연구되고 있다. 그러나, 상기 LiNiO2는 LiCoO2와 비교하여 열안정성이 열위하고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있었다. 이에 따라 LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, 니켈의 일부를 코발트로 치환한 LiNi1-αCoαO2(α=0.1~0.3) 또는, 니켈의 일부를 Mn, Co 또는 Al로 치환한 리튬니켈코발트금속 산화물이 개발되었다.As a material for replacing the LiCoO 2 , a lithium manganese composite metal oxide (such as LiMnO 2 or LiMn 2 O 4 ), a lithium iron phosphate compound ( such as LiFePO 4 ) or a lithium nickel composite metal oxide ( such as LiNiO 2 ) have been developed. . Among them, research and development on lithium nickel composite metal oxides, which have a high reversible capacity of about 200 mAh/g and are easy to implement large-capacity batteries, are being actively studied. However, LiNiO 2 is inferior to LiCoO 2 in thermal stability, and when an internal short circuit occurs due to external pressure or the like in a charged state, the positive electrode active material itself is decomposed, causing the battery to rupture and ignite. Accordingly, as a method to improve low thermal stability while maintaining excellent reversible capacity of LiNiO 2 , LiNi 1-α Co α O 2 (α=0.1 to 0.3) or a part of nickel substituted with cobalt Lithium nickel cobalt metal oxides substituted with Mn, Co or Al have been developed.
상기 리튬니켈코발트금속 산화물의 표면은 전기적으로 중성인 표면 특성을 가진다. 이에 반해, 이차전지에 사용되는 전해액은 전기적으로 극성을 나타내는 유기 용매를 사용하고 있다. 이로 인해 양극 활물질과 전해액 사이에 형성되는 계면에서는 Li 에너지가 통과하는데 필요한 위치 에너지가 커져 이온 전도 저항으로 작용하고, 충방전 용량이 저하되는 문제가 있다. The surface of the lithium nickel cobalt metal oxide has an electrically neutral surface property. On the other hand, the electrolytic solution used in the secondary battery uses an organic solvent that exhibits electrical polarity. Accordingly, at the interface formed between the positive electrode active material and the electrolyte, potential energy required for the passage of Li energy increases, thereby acting as an ion conduction resistance, and there is a problem in that the charge/discharge capacity decreases.
따라서, 상술한 양극 활물질과 전해액 사이에 형성되는 계면의 위치 에너지를 낮출 수 있는 양극 활물질에 대한 개발이 요구되고 있다. Accordingly, there is a need for development of a positive electrode active material capable of lowering the potential energy of an interface formed between the positive electrode active material and the electrolyte.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 양극 활물질과 전해액 사이에 특정 코팅층을 형성함으로써 양극활물질-전해액 계면 사이의 위치 에너지를 낮출 수 있는 양극 활물질의 제조 방법을 제공하는 것이다.In order to solve the above problems, a first technical problem of the present invention is to provide a method of manufacturing a positive electrode active material capable of lowering the potential energy between the positive electrode active material and the electrolyte interface by forming a specific coating layer between the positive electrode active material and the electrolyte. .
본 발명의 제2 기술적 과제는 코팅층 형성에 의해 양극활물질-전해액 계면 사이의 위치 에너지가 낮아진 양극 활물질을 제공하는 것이다.A second technical problem of the present invention is to provide a positive electrode active material in which potential energy between a positive electrode active material and an electrolyte solution interface is lowered by forming a coating layer.
본 발명의 제3 기술적 과제는 상술한 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공하는 것이다.A third technical problem of the present invention is to provide a positive electrode for a lithium secondary battery including a positive electrode active material manufactured by the above-described method.
본 발명의 제4 기술적 과제는 상기 양극을 포함하는 리튬 이차전지를 제공하는 것이다. A fourth technical problem of the present invention is to provide a lithium secondary battery including the positive electrode.
일 구현예에 따르면, 본 발명은, 리튬 전이금속 산화물을 수세 용액으로 수세하는 단계; 및 상기 수세된 리튬 전이금속 산화물과 브뢴스테드(Brønsted) 고체산을 고상 혼합하고 열처리하여 상기 리튬 전이금속 산화물의 표면에 코팅층을 형성하는 단계를 포함하는 양극 활물질 제조 방법을 제공한다. 이때, 상기 브뢴스테드 고체산은 녹는 점이 500℃ 이하인 금속 인산염 화합물이며, 상기 코팅층은 그 두께가 80nm 이하가 되도록 형성된다.According to one embodiment, the present invention, the step of washing the lithium transition metal oxide with a water washing solution; And forming a coating layer on the surface of the lithium transition metal oxide by solid-phase mixing the washed lithium transition metal oxide and Brønsted solid acid and heat treatment. At this time, the Bronsted solid acid is a metal phosphate compound having a melting point of 500° C. or less, and the coating layer is formed to have a thickness of 80 nm or less.
다른 구현예에 따르면, 본 발명은 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면에 위치하며, 녹는 점이 500℃ 이하인 금속 인산염 화합물과 상기 리튬 전이금속 산화물의 리튬이 반응하여 형성되는 코팅층을 포함하고, 상기 코팅층의 두께가 80nm 이하인 양극 활물질을 제공한다. According to another embodiment, the present invention is a lithium transition metal oxide; And a coating layer formed by reacting a metal phosphate compound having a melting point of 500° C. or less and lithium of the lithium transition metal oxide disposed on the surface of the lithium transition metal oxide, and having a thickness of the coating layer of 80 nm or less. .
또한, 본 발명은 상기 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.In addition, the present invention provides a positive electrode for a lithium secondary battery including the positive electrode active material.
또한, 본 발명은 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다. In addition, the present invention provides a lithium secondary battery including the positive electrode for the lithium secondary battery.
본 발명은 리튬 전이금속 산화물과 브뢴스테드 고체산을 반응시켜 리튬 전이금속 산화물의 표면에 코팅층을 형성함으로써, 양극 활물질의 표면이 극성을 띄게 하여 양극 활물질과 전해액 계면에서 Li 이온이 통과하는데 필요한 위치 에너지를 감소시켰다. 이에 따라, 본 발명의 양극 활물질을 이차전지에 적용할 경우, 종래에 비해 우수한 용량 특성 및 저항 특성을 얻을 수 있다.The present invention forms a coating layer on the surface of the lithium transition metal oxide by reacting lithium transition metal oxide with Bronsted solid acid, so that the surface of the positive electrode active material becomes polar and the position necessary for the passage of Li ions at the interface between the positive electrode active material and the electrolyte solution Reduced energy. Accordingly, when the positive electrode active material of the present invention is applied to a secondary battery, superior capacity characteristics and resistance characteristics can be obtained compared to the prior art.
또한, 본 발명은 코팅 물질인 브뢴스테드 고체산으로 리튬과의 반응성이 우수한 인산염 화합물을 사용함으로써 코팅층 형성이 원활하게 이루어질 수 있도록 하였다. In addition, in the present invention, the coating layer can be formed smoothly by using a phosphate compound having excellent reactivity with lithium as a Bronsted solid acid, which is a coating material.
또한, 본 발명은 브뢴스테드 고체산으로 녹는점이 500℃ 이하로 낮은 물질을 사용함으로써, 비교적 낮은 열처리 온도에서 고상 혼합을 통해 코팅층을 형성할 수 있도록 함으로써, 코팅층 형성 과정에서 용매나 열에 의해 리튬 전이금속 산화물이 손상되거나 변형되는 것을 억제할 수 있도록 하였다. 이에 따라, 본 발명의 방법을 통해 제조된 양극 활물질은, 습식 코팅법을 이용하여 코팅층을 형성하였던 종래의 양극 활물질과 비교하여 더 우수한 용량 특성, 수명 특성 및 저항 특성을 갖는다.In addition, the present invention uses a material with a low melting point of 500°C or less with Bronsted solid acid, so that a coating layer can be formed through solid-phase mixing at a relatively low heat treatment temperature, so that lithium transfer by solvent or heat during the coating layer formation process It was made to be able to suppress the damage or deformation of the metal oxide. Accordingly, the positive electrode active material prepared through the method of the present invention has superior capacity characteristics, life characteristics, and resistance characteristics compared to the conventional positive electrode active material in which the coating layer was formed by using the wet coating method.
또한, 본 발명의 양극 활물질 제조 방법은, 수세를 통해 리튬 전이금속 산화물 표면의 잔류 리튬 및 수산화기의 함량을 적절하게 조절함으로써 브뢴스테드 고체산과의 반응성을 증가시켜 건식 코팅 방법으로도 균일한 코팅층을 형성할 수 있도록 하였으며, 코팅층의 두께를 적절하게 조절할 수 있도록 하였다.In addition, the method of manufacturing a positive electrode active material of the present invention increases the reactivity with Bronsted solid acid by appropriately controlling the content of residual lithium and hydroxyl groups on the surface of the lithium transition metal oxide through water washing, thereby forming a uniform coating layer by a dry coating method. It was made to be formed, and the thickness of the coating layer was appropriately adjusted.
도 1은 본 발명에 따른 양극 활물질의 코팅층 형성 전 후 표면의 극성을 설명하기 위한 도면이다.1 is a view for explaining the polarity of a surface before and after forming a coating layer of a positive active material according to the present invention.
도 2는 실시예1~4에서 제조한 양극 활물질의 TOF-SIMS 데이터이다.2 is TOF-SIMS data of positive active materials prepared in Examples 1 to 4.
도 3은 비교예 2에서 제조한 양극 활물질의 TOF-SIMS 데이터이다.3 is TOF-SIMS data of the positive electrode active material prepared in Comparative Example 2.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
양극 활물질의 제조 방법Method for producing positive electrode active material
본 발명자들은 전기화학적 물성이 개선된 양극 활물질을 개발하기 위해 연구를 거듭한 결과, 리튬 전이금속 산화물을 특정한 브뢴스테드 고체산과 반응시켜 코팅층을 형성함으로써 리튬 전이금속 산화물과 전해액 사이의 계면에서 위치 에너지를 낮출 수 있음을 알아내고 본 발명을 완성하였다.As a result of repeated research to develop a positive electrode active material with improved electrochemical properties, the present inventors formed a coating layer by reacting a lithium transition metal oxide with a specific Bronsted solid acid, thereby forming a potential energy at the interface between the lithium transition metal oxide and the electrolyte. It was found that it can be lowered and the present invention was completed.
구체적으로, 본 발명의 양극 활물질의 제조 방법은, (1) 리튬 전이금속 산화물을 수세 용액으로 수세하는 단계 및 (2) 상기 수세된 리튬 전이금속 산화물과 브뢴스테드(Brønsted) 고체산을 고상 혼합하고 열처리하여 상기 리튬 전이금속 산화물의 표면에 코팅층을 형성하는 단계를 포함하되, 상기 브뢴스테드 고체산으로 녹는 점이 500℃ 이하인 금속(M) 인산염 화합물을 사용하고, 상기 코팅층의 두께가 80nm 이하가 되도록 형성하는 것을 특징으로 한다. Specifically, the method for preparing a positive electrode active material of the present invention includes the steps of: (1) washing lithium transition metal oxide with a water washing solution, and (2) mixing the washed lithium transition metal oxide with a Brønsted solid acid in a solid phase. And heat treatment to form a coating layer on the surface of the lithium transition metal oxide, wherein a metal (M) phosphate compound having a melting point of 500° C. or less with the Bronsted solid acid is used, and the thickness of the coating layer is 80 nm or less. It is characterized in that it is formed to be.
이하, 본 발명에 따른 양극 활물질의 제조 방법을 보다 구체적으로 설명한다.Hereinafter, the method of manufacturing the positive electrode active material according to the present invention will be described in more detail.
먼저, 리튬 전이금속 산화물을 수세 용액으로 수세한다(제1단계).First, the lithium transition metal oxide is washed with a washing solution (first step).
상기 수세 단계는 리튬 전이금속 산화물 표면의 잔류 리튬을 감소시키고, 후술할 코팅 단계에서 브뢴스테드 고체산과의 반응성을 향상시키기 위한 것이다. The washing step is to reduce the residual lithium on the surface of the lithium transition metal oxide, and to improve the reactivity with the Bronsted solid acid in the coating step to be described later.
양극 활물질로 사용되는 리튬 전이금속 산화물은, 통상 전이금속 수산화물 형태의 전구체와 리튬 원료 물질을 혼합한 후 소성하는 방법으로 제조되는데, 상기 전구체와 리튬 원료 물질 혼합 시에 리튬 원료 물질을 화학양론적으로 요구되는 양에 비해 과량으로 투입하는 것이 일반적이며, 이로 인해, 소성 후에 리튬 전이금속 산화물의 표면에 잔류 리튬이 존재하게 된다. Lithium transition metal oxide used as a positive electrode active material is usually prepared by mixing a precursor in the form of a transition metal hydroxide and a lithium raw material, followed by firing. When the precursor and the lithium raw material are mixed, the lithium raw material is stoichiometrically used. It is common to add an excess amount compared to the required amount, and for this reason, residual lithium exists on the surface of the lithium transition metal oxide after firing.
리튬 전이금속 산화물 표면에 잔류 리튬이 과량으로 존재할 경우, 전지 적용 후에 전해액과 반응하여 스웰링(swelling) 및 가스 발생 등의 부작용을 야기하고, 이로 인해 전지의 팽창 및 발화를 야기할 수 있다. 또한, 상기 잔류 리튬은 후술할 코팅층 형성 과정에서 코팅층 형성 원료로 작용하기 때문에, 리튬 전이금속 산화물 표면에 잔류 리튬이 과량으로 존재할 경우 코팅층이 두껍게 형성되고, 이로 인해 저항이 증가하는 문제점이 있다. If there is an excessive amount of residual lithium on the surface of the lithium transition metal oxide, it reacts with the electrolyte after application of the battery, causing side effects such as swelling and gas generation, which may cause expansion and ignition of the battery. In addition, since the residual lithium acts as a raw material for forming a coating layer in the process of forming a coating layer, which will be described later, when there is an excessive amount of residual lithium on the surface of the lithium transition metal oxide, the coating layer is formed thick, thereby increasing resistance.
따라서, 본 발명에서는 리튬 전이금속 산화물을 수세 용액으로 수세하여 리튬 전이금속 산화물 표면의 잔류 리튬 양을 감소시킴으로써, 상기와 같은 부작용 발생을 최소화할 수 있도록 하였다. Accordingly, in the present invention, the lithium transition metal oxide is washed with a water washing solution to reduce the amount of residual lithium on the surface of the lithium transition metal oxide, thereby minimizing the occurrence of the above side effects.
바람직하게는, 상기 수세는 상기 리튬 전이금속 산화물의 표면에 존재하는 리튬 부산물 함량이 리튬 전이금속 산화물 전체 중량을 기준으로 0.5중량% 이하, 바람직하게는 0.01 중량% 내지 0.5중량%, 더 바람직하게는 0.1 중량% 내지 0.5중량%가 되도록 수행될 수 있다. 이때, 상기 리튬 부산물의 함량은, 예를 들면, 리튬 전이금속 산화물 표면에 존재하는 탄산 리튬(Li2CO3)과 수산화리튬(LiOH)의 함량의 합일 수 있다. 리튬 전이금속 산화물 표면에 존재하는 리튬 부산물 함량이 상기 범위를 만족할 때, 스웰링 및 가스 발생 등의 부작용을 억제할 수 있고, 코팅층 두께를 원하는 범위로 형성할 수 있다. Preferably, in the water washing, the content of lithium by-products present on the surface of the lithium transition metal oxide is 0.5% by weight or less, preferably 0.01% to 0.5% by weight, more preferably, based on the total weight of the lithium transition metal oxide. It may be carried out to be 0.1% by weight to 0.5% by weight. In this case, the content of the lithium by-product may be, for example, the sum of the contents of lithium carbonate (Li 2 CO 3) and lithium hydroxide (LiOH) present on the surface of the lithium transition metal oxide. When the lithium by-product content present on the surface of the lithium transition metal oxide satisfies the above range, side effects such as swelling and gas generation can be suppressed, and the thickness of the coating layer can be formed in a desired range.
한편, 상기 수세 용액으로는, 양극 활물질 수세에 사용되는 일반적인 수세액들, 예를 들면, 물, 알코올 등의 유기 용매 및 이들의 조합을 사용할 수 있으며, 그 종류가 특별히 제한되는 것은 아니다. Meanwhile, as the washing solution, general washing solutions used for washing the positive electrode active material, for example, organic solvents such as water and alcohol, and combinations thereof, may be used, and the type is not particularly limited.
한편, 상기 수세는 상기 리튬 전이금속 산화물과 수세 용액을 1:0.5 초과 1:2 이하의 중량비, 바람직하게는 1:0.6 내지 1:2의 중량비, 더 바람직하게는 1:0.8 내지 1:1.2의 중량비로 혼합한 후 교반하는 방법으로 수행될 수 있다. 리튬 전이금속 산화물과 수세 용액의 혼합비가 상기 범위를 만족할 경우, 리튬 부산물을 효과적으로 제거하는 동시에 수세 과정에서 리튬 전이금속 산화물 표면에 수산화기(-OH)를 생성시켜 후술할 코팅 과정에서 브뢴스테드 고체산과의 반응성을 향상시키는 효과를 얻을 수 있다. Meanwhile, in the water washing, the lithium transition metal oxide and the water washing solution are in a weight ratio of 1:0.5 to 1:2 or less, preferably 1:0.6 to 1:2, more preferably 1:0.8 to 1:1.2 After mixing at a weight ratio, it may be carried out by stirring. When the mixing ratio of the lithium transition metal oxide and the water washing solution satisfies the above range, lithium by-products are effectively removed and a hydroxyl group (-OH) is generated on the surface of the lithium transition metal oxide during the washing process. It is possible to obtain an effect of improving the reactivity of.
한편, 필수적인 것은 아니나, 상기 수세 시에 약산(weak acid) 용액을 추가로 투입할 수 있다. 약산을 추가로 투입하여 수세를 진행할 경우, 탄산리튬(Li2CO3)의 제거 효율이 증가하는 효과를 얻을 수 있다. 탄산리튬은 이차 전지 구동 초기에 CO, CO2 등의 가스를 발생시킨다. 따라서, 탄산리튬의 제거 효율이 높을수록 가스 및 스웰링 발생 억제 효과가 더욱 우수하다. Meanwhile, although not essential, a weak acid solution may be additionally added during washing with water. When washing with water by additionally adding a weak acid, it is possible to obtain an effect of increasing the removal efficiency of lithium carbonate (Li 2 CO 3 ). Lithium carbonate generates gases such as CO and CO 2 at the beginning of driving the secondary battery. Therefore, the higher the removal efficiency of lithium carbonate, the more excellent the effect of suppressing the occurrence of gas and swelling.
상기 약산 용액은, 예를 들면, 인산, 아세트산, 옥살산 및 붕산으로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 용액일 수 있다. The weak acid solution may be, for example, a solution containing at least one selected from the group consisting of phosphoric acid, acetic acid, oxalic acid, and boric acid.
상기 약산 용액은 리튬 전이금속 산화물과 수세 용액의 혼합물의 pH가 8 ~ 10, 바람직하게는 8.5 ~ 9.5가 되도록 투입될 수 있다. 약산 용액의 투입량이 상기 범위를 만족할 때, 리튬 전이금속 산화물의 손상 없이 탄산리튬을 효과적으로 제거할 수 있다. The weak acid solution may be added so that the pH of the mixture of the lithium transition metal oxide and the washing solution is 8 to 10, preferably 8.5 to 9.5. When the amount of the weak acid solution is within the above range, lithium carbonate can be effectively removed without damaging the lithium transition metal oxide.
다음으로, 수세된 리튬 전이금속 산화물과 브뢴스테드(Brønsted) 고체산을 고상 혼합한 후 열처리하여 코팅층을 형성한다(제2단계).Next, the washed lithium transition metal oxide and Brønsted solid acid are solidly mixed and then heat treated to form a coating layer (second step).
이때, 상기 브뢴스테드 고체산으로는 녹는점이 500℃ 이하인 금속(M) 인산염 화합물을 사용한다. 구체적으로는 상기 브뢴스테드 고체산은 BiPO4일 수 있다. In this case, as the Bronsted solid acid, a metal (M) phosphate compound having a melting point of 500° C. or less is used. Specifically, the Bronsted solid acid may be BiPO 4.
금속(M) 인산염 화합물은 리튬과의 반응성이 좋기 때문에, 브뢴스테드 고체산으로 금속 인산염 화합물을 적용할 경우, 리튬 전이금속 산화물에 존재하는 리튬과 상기 브뢴스테드 고체산이 반응하여 코팅층을 용이하게 형성할 수 있다.Since the metal (M) phosphate compound has good reactivity with lithium, when a metal phosphate compound is applied as a Bronsted solid acid, lithium present in the lithium transition metal oxide reacts with the Bronsted solid acid to facilitate the coating layer. Can be formed.
다만, 금속 인산염 화합물이라도, AlPO4, CoPO4와 같이 녹는 점이 높은 화합물을 사용할 경우, 고상 혼합을 이용한 건식 코팅을 통해서 균일한 코팅층을 형성하기 어렵다. 따라서, 종래에는 상기와 같은 금속 인산염을 포함하는 코팅층을 형성하기 위해 습식 코팅법을 주로 사용하였다. 그러나, 습식 코팅법을 통해 코팅층을 형성할 경우, 코팅 공정이 복잡할 뿐 아니라, 코팅 용액에 의해 리튬 전이금속 산화물의 전이금속이 용출되거나 표면 결함이 발생하는 등의 문제가 발생할 수 있다. However, even if it is a metal phosphate compound, when a compound having a high melting point such as AlPO 4 or CoPO 4 is used, it is difficult to form a uniform coating layer through dry coating using solid-phase mixing. Therefore, in the related art, a wet coating method was mainly used to form a coating layer containing the metal phosphate as described above. However, when the coating layer is formed through the wet coating method, not only the coating process is complicated, but also problems such as the elution of the transition metal of the lithium transition metal oxide or the occurrence of surface defects may occur due to the coating solution.
한편, 녹는 점이 높은 금속 인산염 화합물을 이용하여 건식 코팅법으로 코팅층을 형성할 경우에는 상기 금속 인산염 화합물을 리튬 전이금속 산화물 표면에 부착하기 위해 높은 온도의 열처리가 필요하게 된다. 그러나, 코팅층 형성 열처리 온도가 너무 높으면 리튬 전이금속 산화물의 결정 구조에 변형이 발생하게 되어 바람직하지 못하다. On the other hand, when the coating layer is formed by a dry coating method using a metal phosphate compound having a high melting point, a high temperature heat treatment is required to attach the metal phosphate compound to the surface of the lithium transition metal oxide. However, if the coating layer formation heat treatment temperature is too high, deformation occurs in the crystal structure of the lithium transition metal oxide, which is not preferable.
이에 비해 본 발명과 같이 녹는점이 500℃ 이하인 금속(M) 인산염 화합물을 사용할 경우, 300℃ 내지 500℃ 정도의 낮은 온도에서 열처리를 수행해도 균일한 코팅층을 형성할 수 있기 때문에, 코팅층 형성을 위한 열처리에 의해 리튬 전이금속 산화물이 손상 또는 변형되는 것을 방지할 수 있다. In contrast, in the case of using a metal (M) phosphate compound having a melting point of 500° C. or less as in the present invention, a uniform coating layer can be formed even when heat treatment is performed at a low temperature of about 300° C. to 500° C., so heat treatment for forming a coating layer Thus, it is possible to prevent the lithium transition metal oxide from being damaged or deformed.
한편, 상기 브뢴스테드 고체산은 리튬 전이금속 산화물 총 중량에 대하여 500 내지 3,000 ppm, 바람직하게는 500 내지 2,000 ppm, 가장 바람직하게는 500 내지 1,000 ppm이 되도록 투입하는 것일 수 있다. 브뢴스테드 고체산의 함량이 너무 많으면, 리튬 전이금속 산화물의 리튬 함량이 감소해 양극 활물질 물성이 저하될 수 있으며, 너무 적으면 코팅층이 충분히 형성되지 않아 물성 개선 효과가 미미하다. Meanwhile, the Bronsted solid acid may be added to be 500 to 3,000 ppm, preferably 500 to 2,000 ppm, and most preferably 500 to 1,000 ppm, based on the total weight of the lithium transition metal oxide. If the content of the Bronsted solid acid is too high, the lithium content of the lithium transition metal oxide may decrease, resulting in a decrease in the physical properties of the positive electrode active material. If the content is too small, the coating layer is not sufficiently formed and the effect of improving the physical properties is insignificant.
다음으로, 열처리를 통해 상기 브뢴스테드 고체산과 리튬 전이금속 산화물의 리튬을 반응시켜 코팅층을 형성한다. 본 발명과 같이 녹는점이 500℃ 이하인 금속(M) 인산염 화합물과 리튬 전이금속 산화물을 혼합한 후 열처리를 수행하면, 금속(M) 인산염 화합물이 용융되면서 리튬 전이금속 산화물 내부 및/또는 표면에 존재하는 리튬과 반응하면서 Li-M-P-O 복합체를 형성하면서 코팅층이 형성된다. 이때, 상기 M은 금속 인산염 화합물로부터 유래된 금속 원소를 의미한다. 즉, 브뢴스테드 고체산으로 BiPO4를 사용할 경우, 상기 M은 Bi이다.Next, a coating layer is formed by reacting the Bronsted solid acid with lithium of a lithium transition metal oxide through heat treatment. When performing heat treatment after mixing a metal (M) phosphate compound having a melting point of 500° C. or less as in the present invention and a lithium transition metal oxide, the metal (M) phosphate compound is melted and present inside and/or on the surface of the lithium transition metal oxide. A coating layer is formed while reacting with lithium to form a Li-MPO complex. In this case, M refers to a metal element derived from a metal phosphate compound. That is, when using BiPO 4 as the Bronsted solid acid, M is Bi.
한편, 본 발명의 방법에 따라 형성된 상기 코팅층은 표면이 극성을 띈다. 도 1에는 코팅층 형성을 통해 개질된 양극 활물질의 표면 상태를 보여주는 도면이 도시되어 있다. 도 1에 도시된 바와 같이, 코팅층 형성 전의 리튬 전이금속 산화물 표면은 전기적으로 중성 상태이다. 그러나, 상기 리튬 전이금속 산화물과 브뢴스테드 고체산을 혼합한 후 열처리를 수행하면, 브뢴스테드 고체산이 용융되면서 리튬 전이금속 산화물 내부에 존재하는 리튬 및 리튬 전이금속 산화물의 표면에 존재하는 잔류 리튬과 반응하여 이온 결합 또는 공유 결합을 형성하여 코팅층이 형성되고, 상기 코팅층은 전기적으로 음전하(δ-)를 띄게 된다. 극성을 띄는 표면을 갖는 코팅층이 형성되면, 상기 코팅층이 리튬 전이금속 산화물 표면과, 극성인 전해액을 이어주는 계면활성제로서의 역할을 수행하여 리튬 전이금속 산화물과 전해액 간의 계면 위치 에너지를 낮춰 리튬 이동성이 개선되는 효과를 얻을 수 있다. Meanwhile, the surface of the coating layer formed according to the method of the present invention is polar. 1 is a diagram showing a surface state of a positive electrode active material modified through formation of a coating layer. As shown in FIG. 1, the surface of the lithium transition metal oxide before the coating layer is formed is in an electrically neutral state. However, when heat treatment is performed after mixing the lithium transition metal oxide and the Bronsted solid acid, the Bronsted solid acid is melted and the lithium present in the lithium transition metal oxide and the residual lithium present on the surface of the lithium transition metal oxide. The coating layer is formed by reacting with and forming an ionic bond or a covalent bond, and the coating layer is electrically negatively charged (δ-). When a coating layer having a polarized surface is formed, the coating layer serves as a surfactant that connects the lithium transition metal oxide surface and the polar electrolyte solution, thereby lowering the potential energy of the interface between the lithium transition metal oxide and the electrolyte solution, thereby improving lithium mobility. You can get the effect.
한편, 상기 열처리는, 300℃ 내지 500℃, 바람직하게는 300℃ 내지 400℃, 더 바람직하게는 330℃ 내지 380℃의 온도로 수행될 수 있다. 열처리 온도가 상기 범위를 만족할 때, 리튬 전이금속 산화물의 손상 없이 코팅층을 원활하게 형성할 수 있다. Meanwhile, the heat treatment may be performed at a temperature of 300°C to 500°C, preferably 300°C to 400°C, and more preferably 330°C to 380°C. When the heat treatment temperature satisfies the above range, it is possible to smoothly form the coating layer without damaging the lithium transition metal oxide.
한편, 본 발명에 따르면, 상기 코팅층은 그 두께가 80nm 이하, 바람직하게는 5nm 내지 80nm, 가장 바람직하게는 5nm 내지 40nm이다. 상기 코팅층의 두께는, 예를 들면, 비행 시간형 2차 이온 질량 분석기(TOF-SIMS)를 통해 측정할 수 있다. 구체적으로는 본 발명에서 코팅층 두께는 비행 시간형 2차 이온 질량 분석기를 이용하여 양극 활물질을 스퍼터링하여 측정한 스퍼터링 깊이(sputtering depth)에 따른 Ni 원소의 강도(normalized intensity)의 최소값과 최대값의 중간이 되는 지점의 스퍼터링 깊이일 수 있다.Meanwhile, according to the present invention, the coating layer has a thickness of 80 nm or less, preferably 5 nm to 80 nm, and most preferably 5 nm to 40 nm. The thickness of the coating layer can be measured through, for example, a time-of-flight secondary ion mass spectrometer (TOF-SIMS). Specifically, in the present invention, the thickness of the coating layer is between the minimum and maximum values of the normalized intensity of the Ni element according to the sputtering depth measured by sputtering the positive electrode active material using a time-of-flight secondary ion mass spectrometer. It may be the sputtering depth of the point where
상기 코팅층의 두께가 80nm를 초과하는 경우, 리튬 전이금속 산화물 내 리튬 함량이 떨어져 용량 특성이 저하되고, 코팅층 두께 증가로 인해 리튬 이온 이동성이 떨어지고, 저항이 증가하여 물성 개선 효과를 얻을 수 없다. 한편, 상기 코팅층 두께는 수세 여부, 브뢴스테드 고체산의 투입량, 열처리 온도 등에 따라 달라지므로, 이들 조건을 적절하게 조절함으로써 원하는 두께를 갖는 코팅층을 형성할 수 있다. When the thickness of the coating layer exceeds 80 nm, the lithium content in the lithium transition metal oxide decreases, resulting in a decrease in capacity characteristics, and the lithium ion mobility decreases due to an increase in the thickness of the coating layer, and resistance increases, so that the effect of improving physical properties cannot be obtained. On the other hand, since the thickness of the coating layer varies depending on whether water is washed, the amount of Bronsted solid acid is added, and the heat treatment temperature, the coating layer having a desired thickness can be formed by appropriately adjusting these conditions.
양극 활물질Positive electrode active material
또한, 본 발명은 상술한 제조 방법에 의해 제조된 양극 활물질을 제공한다. In addition, the present invention provides a positive electrode active material manufactured by the above-described manufacturing method.
구체적으로 본 발명에 따른 양극 활물질은, 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면에 위치하며, 녹는 점이 500℃ 이하인 금속 인산염 화합물과 상기 리튬 전이금속 산화물의 리튬이 반응하여 형성되는 코팅층을 포함하고, 이때, 상기 코팅층의 두께가 80nm 이하이다. Specifically, the positive electrode active material according to the present invention includes a lithium transition metal oxide; And a coating layer formed by reacting a metal phosphate compound having a melting point of 500° C. or less and lithium of the lithium transition metal oxide on the surface of the lithium transition metal oxide, wherein the thickness of the coating layer is 80 nm or less.
상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 것을 포함할 수 있다. The lithium transition metal oxide may include those represented by Formula 1 below.
[화학식 1] [Formula 1]
Li1+aNixCoyM1zM2wO2 Li 1+a Ni x Co y M1 z M2 w O 2
상기 화학식 1에서, In Formula 1,
-0.2≤a≤0.2, 0<x<1, 0<y<1, 0<z<1, 0≤w≤0.1, 바람직하게는 -0.1≤a≤0.1, 0.5≤x<1, 0<y≤0.40, 0<z≤0.40, 0≤w≤0.05, 가장 바람직하게는 -0.1≤a≤0.1, 0.7≤x<1, 0<y≤0.25, 0<z≤0.25, 0≤w≤0.05이고, M1은 Mn 및 Al 중 적어도 어느 하나를 포함하는 것이고, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo로 이루어진 군에서 선택되는 적어도 어느 하나 이상이다.-0.2≤a≤0.2, 0<x<1, 0<y<1, 0<z<1, 0≤w≤0.1, preferably -0.1≤a≤0.1, 0.5≤x<1, 0<y ≤0.40, 0<z≤0.40, 0≤w≤0.05, most preferably -0.1≤a≤0.1, 0.7≤x<1, 0<y≤0.25, 0<z≤0.25, 0≤w≤0.05, and , M1 is to include at least one of Mn and Al, M2 is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd , Sm, Ca, Ce, Nb, Mg, B, and at least one selected from the group consisting of Mo.
한편, 상기 코팅층은 녹는 점이 500℃ 이하인 금속(M) 인산염 화합물과 상기 리튬 전이금속 산화물의 리튬이 반응하여 형성되는 것으로, Li-M-P-O의 복합체를 포함한다. 이때, 상기 금속 인산염 화합물은, 예를 들면, BiPO4일 수 있으며, 이 경우, 상기 코팅층은 리튬-금속 인산염은 Li-Bi-P-O 복합체를 포함할 수 있다. Meanwhile, the coating layer is formed by reacting a metal (M) phosphate compound having a melting point of 500° C. or less and lithium of the lithium transition metal oxide, and includes a composite of Li-MPO. In this case, the metal phosphate compound may be, for example, BiPO 4 , and in this case, the coating layer may include a lithium-metal phosphate Li-Bi-PO composite.
한편, 본 발명의 양극 활물질에서, 상기 코팅층의 두께는 80nm 이하, 바람직하게는 5nm 내지 80nm, 가장 바람직하게는 5nm 내지 40nm이다. 상기 코팅층의 두께는, 예를 들면, 비행 시간형 2차 이온 질량 분석기(TOF-SIMS)를 통해 측정할 수 있다.Meanwhile, in the positive electrode active material of the present invention, the thickness of the coating layer is 80 nm or less, preferably 5 nm to 80 nm, and most preferably 5 nm to 40 nm. The thickness of the coating layer can be measured through, for example, a time-of-flight secondary ion mass spectrometer (TOF-SIMS).
코팅층의 두께가 80nm를 초과하는 경우, 리튬 전이금속 산화물 내 리튬 함량이 떨어져 용량 특성이 저하되고, 코팅층 두께 증가로 인해 리튬 이온 이동성이 떨어지고, 저항이 증가하여 물성 개선 효과를 얻을 수 없다. When the thickness of the coating layer exceeds 80 nm, the lithium content in the lithium transition metal oxide decreases, resulting in a decrease in capacity characteristics, and the lithium ion mobility decreases due to an increase in the thickness of the coating layer, and resistance increases, so that the effect of improving physical properties cannot be obtained.
양극 anode
또한, 본 발명은 상술한 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다. In addition, the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material described above.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.Specifically, the positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector and including the positive electrode active material.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , Silver, or the like may be used. In addition, the positive electrode current collector may generally have a thickness of 3 to 500 μm, and fine unevenness may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
상기 양극 활물질층은 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다. The positive electrode active material layer may include a conductive material and a binder together with the positive electrode active material.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 햠량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.In this case, the positive active material may be included in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight, based on the total weight of the positive electrode active material layer. When included in the above content range, excellent capacity characteristics may be exhibited.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.At this time, the conductive material is used to impart conductivity to the electrode, and in the battery to be configured, it may be used without particular limitation as long as it does not cause chemical changes and has electronic conductivity. Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Alternatively, a conductive polymer such as a polyphenylene derivative may be used, and one of them alone or a mixture of two or more may be used. The conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.The binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC). ), starch, hydroxypropylcellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one of them alone or a mixture of two or more may be used. The binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.The positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above. Specifically, the positive electrode active material and optionally, a composition for forming a positive active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent may be coated on a positive electrode current collector, followed by drying and rolling. At this time, the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.The solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or Water, and the like, and one of them alone or a mixture of two or more may be used. The amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness and production yield of the slurry, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for the production of the positive electrode afterwards. Do.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.Alternatively, the positive electrode may be prepared by casting the composition for forming a positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support on a positive electrode current collector.
리튬 이차전지Lithium secondary battery
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.In addition, the present invention can manufacture an electrochemical device including the positive electrode. The electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다. Specifically, the lithium secondary battery includes a positive electrode, a negative electrode positioned opposite to the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so a detailed description thereof is omitted, Hereinafter, only the remaining configuration will be described in detail.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.In addition, the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member that seals the battery container.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.In the lithium secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, and the like may be used. In addition, the negative electrode current collector may generally have a thickness of 3 μm to 500 μm, and, like the positive electrode current collector, microscopic irregularities may be formed on the surface of the current collector to enhance the bonding strength of the negative electrode active material. For example, it may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.The negative active material layer optionally includes a binder and a conductive material together with the negative active material.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; Metal oxides capable of doping and undoping lithium such as SiO β (0<β<2), SnO 2, vanadium oxide, and lithium vanadium oxide; Or a composite including the metal compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more of them may be used. In addition, a metal lithium thin film may be used as the negative electrode active material. Further, as the carbon material, both low crystalline carbon and high crystalline carbon may be used. As low crystalline carbon, soft carbon and hard carbon are typical, and high crystalline carbon is amorphous, plate, scale, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish). graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes) is typical.
상기 음극활물질은 음극 활물질층의 총 중량 100 중량부에 대하여 80 중량부 내지 99중량부로 포함될 수 있다.The negative active material may be included in an amount of 80 to 99 parts by weight based on 100 parts by weight of the total weight of the negative active material layer.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 총 중량 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that aids in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the total weight of the negative active material layer. Examples of such a binder include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro. Roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber, and various copolymers thereof.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 총 중량 100 중량부에 대하여 10 중량부 이하, 바람직하게는 5 중량부 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative active material, and may be added in an amount of 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the total weight of the negative active material layer. Such a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 도포하고 건조함으로써 제조되거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.For example, the negative electrode active material layer is prepared by coating and drying a negative electrode active material, and optionally a negative electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent on a negative electrode current collector, and drying the negative electrode mixture. It can be produced by casting on a support and then laminating a film obtained by peeling from the support on a negative electrode current collector.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 도포하고 건조하거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.The negative active material layer is, for example, coated on a negative electrode current collector and a negative electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent, followed by drying, or casting the negative electrode mixture on a separate support. Then, it may be produced by laminating a film obtained by peeling from this support on a negative electrode current collector.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.On the other hand, in the lithium secondary battery, the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as it is used as a separator in a general lithium secondary battery. On the other hand, it is preferable to have low resistance and excellent electrolyte-moisturizing ability. Specifically, a porous polymer film, for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A stacked structure of two or more layers of may be used. In addition, a conventional porous nonwoven fabric, for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. In addition, in order to secure heat resistance or mechanical strength, a coated separator containing a ceramic component or a polymer material may be used, and optionally, a single layer or a multilayer structure may be used.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. In addition, electrolytes used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, etc. that can be used in the manufacture of lithium secondary batteries, and are limited to these. It does not become.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of a battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate, γ-butyrolactone, and ε-caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate-based solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2-C20 linear, branched or cyclic hydrocarbon group, and may contain a double bonded aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Alternatively, sulfolanes or the like may be used. Among them, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (e.g., ethylene carbonate or propylene carbonate, etc.), which can increase the charging/discharging performance of the battery, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2. LiCl, LiI, or LiB(C 2 O 4 ) 2 may be used. The concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, excellent electrolyte performance can be exhibited, and lithium ions can effectively move.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량 100 중량부에 대하여 0.1 내지 5 중량부로 포함될 수 있다.In addition to the electrolyte constituents, the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving the life characteristics of the battery, suppressing the reduction in battery capacity, and improving the discharge capacity of the battery. Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.As described above, since the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and life characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in electric vehicle fields such as hybrid electric vehicle, HEV).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or battery pack may include a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices among systems for power storage.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The appearance of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch type, or a coin type using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. The lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, examples will be described in detail to illustrate the present invention in detail. However, the embodiments according to the present invention may be modified in various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.
실시예 1Example 1
LiNi0.8Co0.1Mn0.1O2로 표시되는 리튬 전이금속 산화물을 물과 1:1의 중량비로 혼합하여 5분 동안 수세하였다. 이어서, 상기 수세된 리튬 전이금속 산화물에 브뢴스테드 고체산으로 BiPO4 1,000ppm을 혼합하고 350℃에서 5시간 동안 열처리하여 코팅층이 형성된 양극 활물질을 제조하였다.Lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 was mixed with water in a weight ratio of 1:1 and washed with water for 5 minutes. Subsequently, 1,000 ppm of BiPO 4 was mixed with the washed lithium transition metal oxide as Bronsted solid acid and heat-treated at 350° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
실시예 2Example 2
LiNi0.8Co0.1Mn0.1O2로 표시되는 리튬 전이금속 산화물과 물을 1:1의 중량비로 혼합하고, 여기에 10중량% 농도의 P2O5 수용액을 pH 9가 될 때까지 투입한 다음, 5분 동안 수세하였다. 이어서, 상기 수세된 리튬 전이금속 산화물에 BiPO4 1,000 ppm을 혼합하고 350℃에서 5시간 동안 열처리하여 코팅층이 형성된 양극 활물질을 제조하였다.A lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 and water are mixed in a weight ratio of 1:1, and an aqueous P 2 O 5 solution having a concentration of 10% by weight is added thereto until the pH reaches 9, Washed for 5 minutes. Subsequently, 1,000 ppm of BiPO 4 was mixed with the washed lithium transition metal oxide and heat-treated at 350° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
실시예 3Example 3
BiPO4 2,000ppm으로 혼합한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 코팅층이 형성된 양극 활물질을 제조하였다.A positive electrode active material with a coating layer was prepared in the same manner as in Example 1, except that BiPO 4 was mixed with 2,000 ppm.
실시예 4 Example 4
BiPO4 3,000ppm 으로 혼합한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 코팅층이 형성된 양극 활물질을 제조하였다.A positive electrode active material with a coating layer was prepared in the same manner as in Example 1, except that BiPO 4 was mixed with 3,000 ppm.
실시예 5Example 5
열처리를 300℃에서 5시간 동안 수행한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 코팅층이 형성된 양극 활물질을 제조하였다.Except that the heat treatment was performed at 300° C. for 5 hours, a positive electrode active material having a coating layer formed thereon was prepared in the same manner as in Example 1.
실시예 6Example 6
열처리를 400℃에서 5시간 동안 수행한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 코팅층이 형성된 양극 활물질을 제조하였다.Except that the heat treatment was performed at 400° C. for 5 hours, a positive electrode active material having a coating layer formed thereon was prepared in the same manner as in Example 1.
비교예 1Comparative Example 1
코팅층을 형성하지 않은 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1, except that the coating layer was not formed.
비교예 2Comparative Example 2
BiPO4 10,000ppm으로 혼합한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 코팅층이 형성된 양극 활물질을 제조하였다.A positive electrode active material with a coating layer was prepared in the same manner as in Example 1, except that BiPO 4 was mixed with 10,000 ppm.
비교예 3 Comparative Example 3
LiNi0.8Co0.1Mn0.1O2로 표시되는 리튬 전이금속 산화물을 물과 1:1의 중량비로 혼합하여 5분 동안 수세하였다. 이어서, 상기 수세된 리튬 전이금속 산화물에 브뢴스테드 고체산으로 녹는점이 1800℃인 AlPO4 1,000ppm을 혼합하고 700℃에서 5시간 동안 열처리하여 코팅층이 형성된 양극 활물질을 제조하였다.Lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 was mixed with water in a weight ratio of 1:1 and washed with water for 5 minutes. Subsequently, 1,000 ppm of AlPO 4 having a melting point of 1800° C. was mixed with the washed lithium transition metal oxide with a Bronsted solid acid and heat-treated at 700° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
비교예 4 Comparative Example 4
수세 공정을 수행하지 않고, LiNi0.8Co0.1Mn0.1O2로 표시되는 리튬 전이금속 산화물과 BiPO4 1,000 ppm을 혼합하고 350℃에서 5시간 동안 열처리하여 코팅층이 형성된 양극 활물질을 제조하였다.Without performing the water washing process, lithium transition metal oxide represented by LiNi 0.8 Co 0.1 Mn 0.1 O 2 and 1,000 ppm of BiPO 4 were mixed and heat-treated at 350° C. for 5 hours to prepare a positive electrode active material with a coating layer formed thereon.
실험예 1Experimental Example 1
실시예 1 및 2에서 사용된 리튬 전이금속 산화물의 수세 전 샘플과 수세 후의 샘플을 채취하여 pH 적정법(titration)을 통해 리튬 부산물 함량을 측정하였다. Samples before and after washing of the lithium transition metal oxide used in Examples 1 and 2 were collected, and the content of lithium by-products was measured through pH titration.
구체적으로는, 각각의 샘플 50g을 증류수 50mL에 투입하여 교반하여 측정용 용액을 제조한 후 상기 측정용 용액에 0.1M의 HCl 용액을 1 mL씩 적정하면서 pH를 측정하여 적정 곡선(titration curve)를 얻은 다음, 이를 이용하여 탄산리튬과 수산화리튬의 함량을 계산하였다. 측정 결과는 하기 표 1에 나타내었다. Specifically, 50 g of each sample was added to 50 mL of distilled water and stirred to prepare a measurement solution, and then a 0.1 M HCl solution was titrated in 1 mL each to the measurement solution, and the pH was measured to obtain a titration curve. Then, the contents of lithium carbonate and lithium hydroxide were calculated using this. The measurement results are shown in Table 1 below.
수세 전Before washing 수세 후After washing
Li2CO3 (wt%)Li 2 CO 3 (wt%) LiOH (wt%)LiOH (wt%) Li2CO3 (wt%)Li 2 CO 3 (wt%) LiOH (wt%)LiOH (wt%)
실시예 1Example 1 0.3980.398 0.5180.518 0.1330.133 0.2540.254
실시예 2Example 2 0.3820.382 0.5210.521 0.0950.095 0.2380.238
상기 표 1을 통해 수세를 통해 리튬 부산물의 함량이 감소하였음을 확인할 수 있으며, 실시예 2와 같이 수세 시 약산 용액을 첨가한 경우에 탄산리튬(Li2CO3)의 비율이 더욱 감소하였음을 확인할 수 있다.It can be seen from Table 1 that the content of lithium by-products decreased through water washing, and it was confirmed that the proportion of lithium carbonate (Li 2 CO 3 ) was further reduced when a weak acid solution was added during washing with water as in Example 2. I can.
실험예 2Experimental Example 2
상기 실시예 1~6 및 비교예 1~4에서 제조한 양극 활물질의 특성을 이하에 기재된 방법으로 측정하였다.The properties of the positive electrode active materials prepared in Examples 1 to 6 and Comparative Examples 1 to 4 were measured by the method described below.
(1) 코팅층 두께 측정 (1) Measurement of coating layer thickness
비행 시간형 2차 이온 질량 분석기(TOF-SIMS, IONTOF 社)를 이용하여 상기 실시예 1~6 및 비교예 2~4에서 제조한 양극 활물질에서의 코팅층 두께를 측정하였다. 구체적으로는 비행 시간형 2차 이온 질량 분석기를 이용하여 양극 활물질을 스퍼터링하면서 스퍼터링 깊이(sputtering depth)에 따른 Ni 원소의 강도(normalized intensity)를 측정하였으며, 측정 오차를 고려하여 Ni 원소의 강도(Intensity)의 최소값과 최대값의 중간이 되는 지점의 스퍼터링 깊이를 코팅층의 두께로 판단하였다 . 측정 결과는 하기 [표 2]에 나타냈다. The thickness of the coating layer in the positive electrode active materials prepared in Examples 1 to 6 and Comparative Examples 2 to 4 was measured using a time-of-flight secondary ion mass spectrometer (TOF-SIMS, IONTOF). Specifically, the normalized intensity of the Ni element was measured according to the sputtering depth while sputtering the positive electrode active material using a time-of-flight secondary ion mass spectrometer. ), the sputtering depth at the midpoint between the minimum and maximum values was determined as the thickness of the coating layer . The measurement results are shown in the following [Table 2].
또한, 참조를 위해, 도 2에 실시예 1 ~ 4의 TOF-SIMS 측정 데이터를 도시하였고, 도 2에는 비교예 3의 TOF-SIMS 측정 데이터를 도시하였다. In addition, for reference, TOF-SIMS measurement data of Examples 1 to 4 are shown in FIG. 2, and TOF-SIMS measurement data of Comparative Example 3 is shown in FIG. 2.
수세 여부Whether to wash 브뢴스테드 고체산 종류, 투입량 (ppm)Bronsted solid acid type, input amount (ppm) 열처리 온도(℃)Heat treatment temperature (℃) 코팅층 두께(nm)Coating layer thickness (nm)
실시예 1Example 1 OO BiPO4, 1,000BiPO 4 , 1,000 350350 25.525.5
실시예 2Example 2 OO BiPO4, 1,000BiPO 4 , 1,000 350350 28.228.2
실시예 3Example 3 OO BiPO4, 2,000BiPO 4 , 2,000 350350 44.344.3
실시예 4Example 4 OO BiPO4, 3,000BiPO 4 , 3,000 350350 66.566.5
실시예 5Example 5 OO BiPO4, 1,000BiPO 4 , 1,000 300300 9.89.8
실시예 6Example 6 OO BiPO4, 1,000BiPO 4 , 1,000 400400 18.618.6
비교예 2Comparative Example 2 OO BiPO4, 10,000BiPO 4 , 10,000 350350 132.2132.2
비교예 3Comparative Example 3 OO AlPO4, 1,000AlPO 4 , 1,000 700700 38.638.6
비교예 4Comparative Example 4 XX BiPO4, 1,000BiPO 4 , 1,000 350350 114.2114.2
상기 표 2에 나타난 바와 같이, 본 발명 실시예 1~6에서 제조한 양극 활물질은 코팅층 두께가 80nm 이하인 반면, 비교예 2의 경우 브뢴스테드 고체산을 과량으로 투입하여 코팅층이 132nm 이상으로 두껍게 형성되었음을 확인할 수 있다. 한편, 비교예 3의 경우, 녹는 점이 높은 AlPO4를 사용했기 때문에, 코팅층 형성을 위해 700℃ 이상의 고온 열처리가 요구되었다. 또한, 수세 공정을 수행하지 않고 코팅층을 형성한 비교예 4의 경우, 리튬 전이금속 산화물 표면에 과량의 리튬 부산물로 인해 실시예 1과 동일한 양의 BiPO4를 사용하였음에도 불구하고 코팅층이 매우 두껍게 형성되었음을 확인할 수 있다. As shown in Table 2, the positive electrode active material prepared in Examples 1 to 6 of the present invention has a coating layer thickness of 80 nm or less, whereas in the case of Comparative Example 2, an excessive amount of Bronsted solid acid was added to form a thick coating layer of 132 nm or more. It can be confirmed that it is. Meanwhile, in the case of Comparative Example 3 , since AlPO 4 having a high melting point was used, a high temperature heat treatment of 700° C. or higher was required to form a coating layer. In addition, in the case of Comparative Example 4 in which the coating layer was formed without performing the water washing process, the coating layer was formed very thick despite the use of the same amount of BiPO 4 as in Example 1 due to an excess of lithium by-products on the surface of the lithium transition metal oxide. I can confirm.
실험예 3Experimental Example 3
상기 실시예 1~6 및 비교예 1~4에서 제조한 양극 활물질을 이용하여 리튬 이차전지를 제조하였고, 실시예 1~6 및 비교예 1~4의 양극 활물질을 포함하는 리튬 이차전지 각각에 대하여 고율에서의 용량 특성 및 저항 특성을 평가하였다.A lithium secondary battery was manufactured using the positive electrode active material prepared in Examples 1 to 6 and Comparative Examples 1 to 4, and for each of the lithium secondary batteries including the positive electrode active material of Examples 1 to 6 and Comparative Examples 1 to 4 The capacity characteristics and resistance characteristics at high rate were evaluated.
구체적으로, 실시예 1~6 및 비교예 1~4에서 각각 제조한 양극 활물질, 카본블랙 도전재 및 폴리비닐리덴플루오라이드 바인더를 97.5:1.0:1.5의 중량비로 N-메틸피롤리돈 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.Specifically, the positive electrode active material, carbon black conductive material, and polyvinylidene fluoride binder each prepared in Examples 1 to 6 and Comparative Examples 1 to 4 were mixed in an N-methylpyrrolidone solvent at a weight ratio of 97.5:1.0:1.5. Thus, a positive electrode slurry was prepared. The positive electrode slurry was coated on one surface of an aluminum current collector, dried at 130° C., and then rolled to prepare a positive electrode.
한편, 음극 활물질로서 카본블랙 및 폴리비닐리덴플루오라이드 바인더를 97.5:2.5의 중량비로 혼합하여 용매인 N-메틸피롤리돈에 첨가하여 음극 활물질 슬러리를 제조하였다. 이를 두께가 16.5㎛인 구리 호일 상에 도포하고 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.Meanwhile, a negative active material slurry was prepared by mixing carbon black and a polyvinylidene fluoride binder as a negative electrode active material in a weight ratio of 97.5:2.5 and adding it to N-methylpyrrolidone as a solvent. This was coated on a copper foil having a thickness of 16.5 μm, dried, and then roll pressed to prepare a negative electrode.
상기에서 제조한 양극과 음극 사이에 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조한 다음, 이를 전지 케이스 내부에 위치시킨 후, 상기 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때, 전해액으로서 에틸렌 카보네이트(EC):디메틸카보네이트(DMC):에틸메틸카보네이트(EMC)를 3:4:3의 비율로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액을 주입하여, 실시예 1~6 및 비교예 1~4에 따른 리튬 이차전지를 제조하였다.An electrode assembly was manufactured by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared above, and then placed inside the battery case, and then an electrolyte was injected into the case to prepare a lithium secondary battery. At this time, an electrolytic solution in which 1 M of LiPF 6 was dissolved was injected into an organic solvent in which ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) was mixed in a ratio of 3:4:3 as an electrolytic solution. Lithium secondary batteries according to 1 to 6 and Comparative Examples 1 to 4 were prepared.
상기와 같이 제조된 리튬 이차전지 각각에 대하여, 25℃에서 0.2C 정전류로 4.25V까지 충전한 후, 0.2C 정전류로 2.5V까지 방전을 실시하여, 초기 충전 용량 및 초기 방전 용량을 측정하였다. Each of the lithium secondary batteries prepared as described above was charged to 4.25V with a 0.2C constant current at 25°C, and then discharged to 2.5V with a 0.2C constant current to measure the initial charge capacity and the initial discharge capacity.
이후, 상기 초기 충방전된 이차 전지 각각에 대하여, 45℃에서 0.33C 정전류로 4.25V까지 충전하고, 0.33C 정전류로 2.5V까지 방전하는 것을 1 사이클로 하여, 30사이클 충방전을 실시한 후 용량 유지율 및 저항 증가율을 측정하였다. 측정 결과는 이를 하기 표 3에 나타내었다. Thereafter, for each of the initially charged and discharged secondary batteries, charging to 4.25V with a constant current of 0.33C at 45°C and discharging to 2.5V with a constant current of 0.33C as one cycle, after 30 cycles charging and discharging, and the capacity retention rate and The resistance increase rate was measured. The measurement results are shown in Table 3 below.
초기 충전용량 (mAh/g)Initial charging capacity (mAh/g) 초기 방전용량 (mAh/g)Initial discharge capacity (mAh/g) 용량 유지율 (%)Capacity retention rate (%) 저항증가율 (%)Resistance increase rate (%)
실시예1Example 1 221.7221.7 196.5196.5 94.694.6 40.840.8
실시예2Example 2 222.7222.7 197.1197.1 96.096.0 38.738.7
실시예3Example 3 221.6221.6 195.1195.1 95.595.5 84.684.6
실시예4Example 4 220.1220.1 194.2194.2 91.291.2 120.2120.2
실시예5Example 5 219.1219.1 193.5193.5 93.193.1 75.275.2
실시예6Example 6 219.5219.5 193.4193.4 92.792.7 74.974.9
비교예1Comparative Example 1 218.4218.4 193.8193.8 90.290.2 80.680.6
비교예2Comparative Example 2 210.1210.1 184.5184.5 87.487.4 204.3204.3
비교예3Comparative Example 3 218.6218.6 190.8190.8 89.889.8 155.4155.4
비교예4Comparative Example 4 216.5216.5 187.2187.2 88.588.5 186.4186.4
상기 표 3에 나타난 바와 같이, 표면에 브뢴스테드 고체산을 포함하는 코팅층이 형성되지 않거나(비교예 1) 또는 코팅층의 두께가 80nm를 초과하는 경우(비교예 2 및 4), 실시예 1~6에 비하여 충방전 효율 및 저항 증가율이 모두 열위한 것을 확인할 수 있었다. 또한, 코팅층 두께가 80nm 이하로 형성되더라도 녹는 점이 높은 브뢴스테드 고체산를 이용하여 코팅층을 형성한 경우(비교예 3)에도 실시예 1 ~ 6에 비해 충방전 효율이 떨어지고, 저항 증가율이 높게 나타남을 확인할 수 있었다.As shown in Table 3, when a coating layer containing Bronsted solid acid is not formed on the surface (Comparative Example 1) or the thickness of the coating layer exceeds 80 nm (Comparative Examples 2 and 4), Examples 1 to Compared to 6, it was confirmed that both the charging/discharging efficiency and the resistance increase rate were hot. In addition, even if the coating layer is formed with a thickness of 80 nm or less, when the coating layer is formed using a Bronsted solid acid having a high melting point (Comparative Example 3), the charging/discharging efficiency is lower than in Examples 1 to 6, and the resistance increase rate is high. I could confirm.

Claims (14)

  1. 리튬 전이금속 산화물을 수세 용액으로 수세하는 단계; 및Washing the lithium transition metal oxide with a washing solution; And
    상기 수세된 리튬 전이금속 산화물과 브뢴스테드(Brønsted) 고체산을 고상 혼합하고 열처리하여 상기 리튬 전이금속 산화물의 표면에 코팅층을 형성하는 단계를 포함하며,Including the step of forming a coating layer on the surface of the lithium transition metal oxide by solid-phase mixing and heat treatment of the washed lithium transition metal oxide and Brønsted solid acid,
    상기 브뢴스테드 고체산은 녹는 점이 500℃ 이하인 금속 인산염 화합물이며,The Bronsted solid acid is a metal phosphate compound having a melting point of 500°C or less,
    상기 코팅층은 그 두께가 80nm 이하가 되도록 형성되는 것인 양극 활물질의 제조 방법. The method of manufacturing a positive electrode active material, wherein the coating layer is formed to have a thickness of 80 nm or less.
  2. 제1항에 있어서,The method of claim 1,
    상기 브뢴스테드(Brønsted) 고체산은 BiPO4인 양극 활물질의 제조 방법.The Brønsted solid acid is BiPO 4 A method for producing a positive electrode active material.
  3. 제1항에 있어서,The method of claim 1,
    상기 수세는 상기 리튬 전이금속 산화물의 표면에 존재하는 리튬 부산물의 함량이 0.5 중량% 이하가 되도록 수행되는 것인 양극 활물질의 제조 방법.The water washing is performed so that the content of lithium by-products present on the surface of the lithium transition metal oxide is 0.5% by weight or less.
  4. 제1항에 있어서, The method of claim 1,
    상기 코팅층은 리튬 전이금속 산화물의 리튬과 상기 브뢴스테드 고체산이 반응하여 형성되는 것인 양극 활물질의 제조 방법.The coating layer is a method of producing a positive electrode active material formed by reacting lithium of a lithium transition metal oxide with the Bronsted solid acid.
  5. 제1항에 있어서,The method of claim 1,
    상기 수세는 상기 리튬 전이금속 산화물과 수세 용액을 1:0.5 초과 1:2 이하의 중량비로 혼합하여 수행되는 것인 양극 활물질의 제조 방법. The water washing is performed by mixing the lithium transition metal oxide and the water washing solution in a weight ratio of 1:0.5 to 1:2 or less.
  6. 제1항에 있어서,The method of claim 1,
    상기 수세 시에 약산 용액을 추가로 투입하는 것인 양극 활물질의 제조 방법.The method for producing a positive electrode active material to which a weak acid solution is additionally added during the washing with water.
  7. 제6항에 있어서,The method of claim 6,
    상기 약산 용액은 인산, 아세트산, 옥살산 및 붕산으로 이루어진 군에서 선택되는 어느 하나 이상인 것인 양극 활물질의 제조 방법.The weak acid solution is any one or more selected from the group consisting of phosphoric acid, acetic acid, oxalic acid and boric acid.
  8. 제1항에 있어서,The method of claim 1,
    상기 브뢴스테드 고체산은 상기 리튬 전이금속 산화물 총 중량에 대하여 500 내지 3,000 ppm으로 혼합되는 것인 양극 활물질의 제조 방법.The Bronsted solid acid is mixed at 500 to 3,000 ppm based on the total weight of the lithium transition metal oxide.
  9. 제1항에 있어서,The method of claim 1,
    상기 브뢴스테드 고체산은 상기 리튬 전이금속 산화물 총 중량에 대하여 1,000 내지 1,500 ppm으로 혼합되는 것인 양극 활물질의 제조 방법.The Bronsted solid acid is mixed at 1,000 to 1,500 ppm based on the total weight of the lithium transition metal oxide.
  10. 제1항에 있어서, The method of claim 1,
    상기 열처리는 300℃ 내지 500℃의 온도로 수행되는 것인 양극 활물질의 제조 방법.The heat treatment is performed at a temperature of 300°C to 500°C.
  11. 리튬 전이금속 산화물; 및Lithium transition metal oxide; And
    상기 리튬 전이금속 산화물의 표면에 위치하며, 녹는 점이 500℃ 이하인 금속 인산염 화합물과 상기 리튬 전이금속 산화물의 리튬이 반응하여 형성되는 코팅층을 포함하고,It is located on the surface of the lithium transition metal oxide and includes a coating layer formed by reacting lithium of the lithium transition metal oxide with a metal phosphate compound having a melting point of 500°C or less,
    상기 코팅층의 두께가 80nm 이하인 양극 활물질.A positive electrode active material having a thickness of the coating layer of 80 nm or less.
  12. 제11항에 있어서,The method of claim 11,
    상기 금속 인산염 화합물은 BiPO4이고, The metal phosphate compound is BiPO 4 ,
    상기 코팅층은 Li-Bi-P-O 복합체를 포함하는 것인 양극 활물질.The coating layer is Li-Bi-PO The positive electrode active material comprising a composite.
  13. 제11항에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극.A positive electrode for a lithium secondary battery comprising the positive electrode active material according to claim 11.
  14. 제13항에 따른 리튬 이차전지용 양극을 포함하는 리튬 이차전지. A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to claim 13.
PCT/KR2020/016402 2019-11-22 2020-11-19 Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method WO2021101281A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021566079A JP7258409B2 (en) 2019-11-22 2020-11-19 Manufacturing method of positive electrode active material for lithium secondary battery and positive electrode active material manufactured by said manufacturing method
EP20889802.3A EP3943452A4 (en) 2019-11-22 2020-11-19 Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method
US17/608,356 US20220263073A1 (en) 2019-11-22 2020-11-19 Method for Producing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Positive Material Produced Thereby
CN202080033028.9A CN113795464B (en) 2019-11-22 2020-11-19 Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0151077 2019-11-22
KR20190151077 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021101281A1 true WO2021101281A1 (en) 2021-05-27

Family

ID=75981386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016402 WO2021101281A1 (en) 2019-11-22 2020-11-19 Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method

Country Status (6)

Country Link
US (1) US20220263073A1 (en)
EP (1) EP3943452A4 (en)
JP (1) JP7258409B2 (en)
KR (1) KR102439774B1 (en)
CN (1) CN113795464B (en)
WO (1) WO2021101281A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102363682B1 (en) * 2020-11-26 2022-02-16 한국생산기술연구원 Lithium electrodeposition voltage reduction electrolyte and preparation method of lithium foil
WO2023018277A1 (en) * 2021-08-13 2023-02-16 주식회사 엘지화학 Method for producing positive electrode active material, and positive electrode active material
WO2024070707A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Negative-electrode material for secondary battery, and secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090013841A (en) * 2006-05-04 2009-02-05 주식회사 엘지화학 Electrode active material with high stability and electrochemical device using the same
CN102862967A (en) * 2012-09-22 2013-01-09 湘潭大学 Preparation method of lithium ion battery anode materials BiPO4 based on chemical conversion reaction and lithium ion battery for manufacturing
KR20180077026A (en) * 2016-12-28 2018-07-06 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20190057952A (en) * 2017-11-21 2019-05-29 주식회사 엘지화학 Preparing method of the positive electrode active material for lithium secondary battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346510C (en) * 2005-07-27 2007-10-31 浙江大学 Surface modified positive pole material of lithium ion cell and preparation method thereof
US9764962B2 (en) 2011-04-14 2017-09-19 Toda Kogyo Corporation Li—Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
CN103094552B (en) * 2012-10-12 2016-08-03 合肥国轩高科动力能源有限公司 5V lithium ion battery anode material LiNi0.5-xMn1.5MxO4Surface coating method of
JP6455124B2 (en) 2013-12-24 2019-01-23 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2016056072A (en) 2014-09-11 2016-04-21 旭化成株式会社 Method for producing lithium-containing metal oxide
KR101622352B1 (en) 2014-10-27 2016-05-18 울산과학기술원 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
EP3513447A4 (en) * 2016-09-16 2020-07-01 Robert Bosch GmbH Coated cathode active material for engineered solid-state battery interfaces
KR20180058547A (en) * 2016-11-24 2018-06-01 삼성전자주식회사 Method and apparatus for selecting reactant for removing Li residuals at surface of battery
CN106505205A (en) * 2016-12-30 2017-03-15 先雪峰 Lithium ion battery active material and preparation method thereof, lithium ion battery electrode sizing agent, negative or positive electrode and lithium ion battery
US10892488B2 (en) 2017-01-17 2021-01-12 Samsung Electronics Co., Ltd. Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material
US10930927B2 (en) 2017-11-08 2021-02-23 Samsung Electronics Co., Ltd. Positive electrode active material, methods for the manufacture thereof, and electrochemical cell comprising the positive electrode active material
KR102010929B1 (en) 2017-12-26 2019-08-16 주식회사 포스코 Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR102231062B1 (en) * 2018-03-09 2021-03-23 주식회사 엘지화학 Positive electrode active material, method for producing thereof, positive electrode and secondary battery comprising the same
CN112004780B (en) 2018-05-04 2023-06-06 株式会社Lg化学 Method of washing positive electrode active material, method of preparing positive electrode active material comprising the same, and positive electrode active material prepared thereby
CN109192971A (en) * 2018-10-25 2019-01-11 上海电气国轩新能源科技有限公司 A kind of positive electrode and preparation method, lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090013841A (en) * 2006-05-04 2009-02-05 주식회사 엘지화학 Electrode active material with high stability and electrochemical device using the same
CN102862967A (en) * 2012-09-22 2013-01-09 湘潭大学 Preparation method of lithium ion battery anode materials BiPO4 based on chemical conversion reaction and lithium ion battery for manufacturing
KR20180077026A (en) * 2016-12-28 2018-07-06 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20190057952A (en) * 2017-11-21 2019-05-29 주식회사 엘지화학 Preparing method of the positive electrode active material for lithium secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU WANMIN, GUO HAIHUA, QIN MULAN, DENG JIYONG, XU LV, YI SU, HONG TIANLI: "Effect of Voltage Range and BiPO 4 Coating on the Electrochemical Properties of LiNi 0.8 Co 0.15 Al 0.05 O 2", CHEMISTRYSELECT, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 3, no. 26, 13 July 2018 (2018-07-13), DE, pages 7660 - 7666, XP055813872, ISSN: 2365-6549, DOI: 10.1002/slct.201800879 *
See also references of EP3943452A4 *

Also Published As

Publication number Publication date
CN113795464A (en) 2021-12-14
EP3943452A4 (en) 2022-10-12
KR20210063247A (en) 2021-06-01
US20220263073A1 (en) 2022-08-18
KR102439774B1 (en) 2022-09-02
CN113795464B (en) 2024-09-13
EP3943452A1 (en) 2022-01-26
JP2022532110A (en) 2022-07-13
JP7258409B2 (en) 2023-04-17

Similar Documents

Publication Publication Date Title
WO2021029652A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2019147017A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019194510A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2017095061A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2020145639A1 (en) Positive electrode active material, method for manufacturing positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2018143753A1 (en) Positive electrode active material for secondary battery, method for preparing same and lithium secondary battery comprising same
WO2020116858A1 (en) Positive electrode active material for rechargeable battery, production method therefor and rechargeable battery positive electrode comprising same
WO2021049918A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2021015511A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by preparation method
WO2022092906A1 (en) Cathode active material and preparation method therefor
WO2019212321A1 (en) Method for cleaning positive electrode active material, positive electrode active material manufacturing method comprising same, and positive electrode active material manufactured by same
WO2021154035A1 (en) Cathode active material for lithium secondary battery and method for producing same
WO2021101281A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method
WO2022039576A1 (en) Cathode active material preparation method
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2021125873A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2021096265A1 (en) Cathode active material for lithium secondary battery, and method for preparing cathode active material
WO2021096204A1 (en) Irreversible additive, cathode material comprising irreversible additive, and lithium secondary battery comprising cathode material
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2021112606A1 (en) Cathode active material for lithium secondary battery and method for preparing cathode active material
WO2022203434A1 (en) Method for manufacturing cathode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020889802

Country of ref document: EP

Effective date: 20211022

ENP Entry into the national phase

Ref document number: 2021566079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE