WO2021072777A1 - Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance - Google Patents
Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance Download PDFInfo
- Publication number
- WO2021072777A1 WO2021072777A1 PCT/CN2019/112038 CN2019112038W WO2021072777A1 WO 2021072777 A1 WO2021072777 A1 WO 2021072777A1 CN 2019112038 W CN2019112038 W CN 2019112038W WO 2021072777 A1 WO2021072777 A1 WO 2021072777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tissue
- animal
- organ
- cell
- transgenes
- Prior art date
Links
- 210000000056 organ Anatomy 0.000 title claims abstract description 318
- 241001465754 Metazoa Species 0.000 title claims abstract description 291
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 269
- 230000004083 survival effect Effects 0.000 title abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 48
- 210000004027 cell Anatomy 0.000 claims description 527
- 108700019146 Transgenes Proteins 0.000 claims description 344
- 210000001519 tissue Anatomy 0.000 claims description 327
- 241000881705 Porcine endogenous retrovirus Species 0.000 claims description 111
- 230000014509 gene expression Effects 0.000 claims description 92
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 claims description 81
- 210000004185 liver Anatomy 0.000 claims description 77
- 108010081355 beta 2-Microglobulin Proteins 0.000 claims description 74
- 102000015736 beta 2-Microglobulin Human genes 0.000 claims description 71
- 238000005345 coagulation Methods 0.000 claims description 71
- 230000015271 coagulation Effects 0.000 claims description 70
- 102100030951 Tissue factor pathway inhibitor Human genes 0.000 claims description 68
- 108010013555 lipoprotein-associated coagulation inhibitor Proteins 0.000 claims description 68
- 108010074708 B7-H1 Antigen Proteins 0.000 claims description 65
- 210000003734 kidney Anatomy 0.000 claims description 64
- 239000013598 vector Substances 0.000 claims description 62
- 230000000295 complement effect Effects 0.000 claims description 57
- 101000961414 Homo sapiens Membrane cofactor protein Proteins 0.000 claims description 54
- 102100025680 Complement decay-accelerating factor Human genes 0.000 claims description 50
- 108050006318 Haem oxygenases Proteins 0.000 claims description 49
- 102000016761 Haem oxygenases Human genes 0.000 claims description 49
- 238000012217 deletion Methods 0.000 claims description 49
- 230000037430 deletion Effects 0.000 claims description 48
- 230000028993 immune response Effects 0.000 claims description 46
- 102100039373 Membrane cofactor protein Human genes 0.000 claims description 45
- 101710168055 Cytidine monophosphate-N-acetylneuraminic acid hydroxylase Proteins 0.000 claims description 44
- 210000004369 blood Anatomy 0.000 claims description 43
- 239000008280 blood Substances 0.000 claims description 43
- 102100022002 CD59 glycoprotein Human genes 0.000 claims description 42
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 claims description 41
- 102100031504 Beta-1,4 N-acetylgalactosaminyltransferase 2 Human genes 0.000 claims description 40
- 230000004044 response Effects 0.000 claims description 40
- -1 CD39 Proteins 0.000 claims description 38
- 230000024203 complement activation Effects 0.000 claims description 38
- 230000028709 inflammatory response Effects 0.000 claims description 37
- 230000001404 mediated effect Effects 0.000 claims description 37
- 210000002966 serum Anatomy 0.000 claims description 37
- 230000002779 inactivation Effects 0.000 claims description 35
- 102000004169 proteins and genes Human genes 0.000 claims description 34
- 230000002829 reductive effect Effects 0.000 claims description 34
- 239000002955 immunomodulating agent Substances 0.000 claims description 32
- 229940121354 immunomodulator Drugs 0.000 claims description 32
- 230000002584 immunomodulator Effects 0.000 claims description 31
- 108091007433 antigens Proteins 0.000 claims description 28
- 230000010354 integration Effects 0.000 claims description 27
- 239000000427 antigen Substances 0.000 claims description 26
- 102000036639 antigens Human genes 0.000 claims description 26
- 108010047303 von Willebrand Factor Proteins 0.000 claims description 26
- 102100036537 von Willebrand factor Human genes 0.000 claims description 25
- 229960001134 von willebrand factor Drugs 0.000 claims description 25
- 101100111156 Homo sapiens B4GALNT2 gene Proteins 0.000 claims description 23
- 108010079274 Thrombomodulin Proteins 0.000 claims description 23
- 108010068144 beta-1,4-N-acetyl-galactosaminyl transferase 2 Proteins 0.000 claims description 23
- 230000006870 function Effects 0.000 claims description 23
- 235000018102 proteins Nutrition 0.000 claims description 22
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 18
- 230000004069 differentiation Effects 0.000 claims description 18
- 230000003511 endothelial effect Effects 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000003780 insertion Methods 0.000 claims description 16
- 230000037431 insertion Effects 0.000 claims description 16
- 210000000265 leukocyte Anatomy 0.000 claims description 16
- 230000009261 transgenic effect Effects 0.000 claims description 16
- 150000001720 carbohydrates Chemical class 0.000 claims description 15
- 210000005260 human cell Anatomy 0.000 claims description 15
- 238000012163 sequencing technique Methods 0.000 claims description 15
- 210000001772 blood platelet Anatomy 0.000 claims description 14
- 230000001988 toxicity Effects 0.000 claims description 14
- 231100000419 toxicity Toxicity 0.000 claims description 14
- 238000013518 transcription Methods 0.000 claims description 14
- 230000035897 transcription Effects 0.000 claims description 14
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 12
- 108010082126 Alanine transaminase Proteins 0.000 claims description 12
- 230000007541 cellular toxicity Effects 0.000 claims description 12
- 238000010362 genome editing Methods 0.000 claims description 12
- 108010088751 Albumins Proteins 0.000 claims description 11
- 102100026292 Asialoglycoprotein receptor 1 Human genes 0.000 claims description 11
- 101710200897 Asialoglycoprotein receptor 1 Proteins 0.000 claims description 11
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 11
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 11
- 102000004190 Enzymes Human genes 0.000 claims description 10
- 108090000790 Enzymes Proteins 0.000 claims description 10
- 229940088598 enzyme Drugs 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 10
- 230000008685 targeting Effects 0.000 claims description 10
- 229940109239 creatinine Drugs 0.000 claims description 9
- 102000044446 human CD46 Human genes 0.000 claims description 9
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 9
- 101001094887 Ambrosia artemisiifolia Pectate lyase 1 Proteins 0.000 claims description 8
- 101001123576 Ambrosia artemisiifolia Pectate lyase 2 Proteins 0.000 claims description 8
- 101001123572 Ambrosia artemisiifolia Pectate lyase 3 Proteins 0.000 claims description 8
- 101000573177 Ambrosia artemisiifolia Pectate lyase 5 Proteins 0.000 claims description 8
- 102000015212 Fas Ligand Protein Human genes 0.000 claims description 8
- 108010039471 Fas Ligand Protein Proteins 0.000 claims description 8
- 108010047933 Tumor Necrosis Factor alpha-Induced Protein 3 Proteins 0.000 claims description 8
- 102100024596 Tumor necrosis factor alpha-induced protein 3 Human genes 0.000 claims description 8
- 101150045640 VWF gene Proteins 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 210000002845 virion Anatomy 0.000 claims description 8
- 230000003907 kidney function Effects 0.000 claims description 7
- 230000002503 metabolic effect Effects 0.000 claims description 7
- 230000036961 partial effect Effects 0.000 claims description 7
- 102000003886 Glycoproteins Human genes 0.000 claims description 6
- 108090000288 Glycoproteins Proteins 0.000 claims description 6
- 206010067125 Liver injury Diseases 0.000 claims description 6
- 108010094028 Prothrombin Proteins 0.000 claims description 6
- 102100027378 Prothrombin Human genes 0.000 claims description 6
- 210000000941 bile Anatomy 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 231100000234 hepatic damage Toxicity 0.000 claims description 6
- 230000008818 liver damage Effects 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- 229940039716 prothrombin Drugs 0.000 claims description 6
- 108090000190 Thrombin Proteins 0.000 claims description 5
- 238000004820 blood count Methods 0.000 claims description 5
- 230000009918 complex formation Effects 0.000 claims description 5
- 230000037433 frameshift Effects 0.000 claims description 5
- 108020004999 messenger RNA Proteins 0.000 claims description 5
- 210000000440 neutrophil Anatomy 0.000 claims description 5
- 229960004072 thrombin Drugs 0.000 claims description 5
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 claims description 4
- 108010049003 Fibrinogen Proteins 0.000 claims description 4
- 102000008946 Fibrinogen Human genes 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 108010000499 Thromboplastin Proteins 0.000 claims description 4
- 102000002262 Thromboplastin Human genes 0.000 claims description 4
- 229940012952 fibrinogen Drugs 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 102000006395 Globulins Human genes 0.000 claims description 3
- 108010044091 Globulins Proteins 0.000 claims description 3
- 108010091086 Recombinases Proteins 0.000 claims description 3
- 102000018120 Recombinases Human genes 0.000 claims description 3
- 230000002255 enzymatic effect Effects 0.000 claims description 3
- 238000003018 immunoassay Methods 0.000 claims description 3
- 230000003908 liver function Effects 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 238000008050 Total Bilirubin Reagent Methods 0.000 claims description 2
- 210000003979 eosinophil Anatomy 0.000 claims description 2
- 210000001616 monocyte Anatomy 0.000 claims description 2
- 108700004029 pol Genes Proteins 0.000 claims description 2
- 102000012607 Thrombomodulin Human genes 0.000 claims 21
- 102000008096 B7-H1 Antigen Human genes 0.000 claims 18
- 102000009027 Albumins Human genes 0.000 claims 3
- 238000012258 culturing Methods 0.000 claims 3
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 claims 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 claims 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims 1
- 108010011485 Aspartame Proteins 0.000 claims 1
- 108091026890 Coding region Proteins 0.000 claims 1
- 102000004420 Creatine Kinase Human genes 0.000 claims 1
- 108010042126 Creatine kinase Proteins 0.000 claims 1
- 101710177291 Gag polyprotein Proteins 0.000 claims 1
- 102100034353 Integrase Human genes 0.000 claims 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 claims 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 claims 1
- 101710125418 Major capsid protein Proteins 0.000 claims 1
- 241000249107 Teschovirus A Species 0.000 claims 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims 1
- 239000000605 aspartame Substances 0.000 claims 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 claims 1
- 229960003438 aspartame Drugs 0.000 claims 1
- 235000010357 aspartame Nutrition 0.000 claims 1
- 239000004202 carbamide Substances 0.000 claims 1
- 235000012000 cholesterol Nutrition 0.000 claims 1
- 229960003624 creatine Drugs 0.000 claims 1
- 239000006046 creatine Substances 0.000 claims 1
- 108010078428 env Gene Products Proteins 0.000 claims 1
- 108700004025 env Genes Proteins 0.000 claims 1
- 210000003722 extracellular fluid Anatomy 0.000 claims 1
- 108700004026 gag Genes Proteins 0.000 claims 1
- 230000004217 heart function Effects 0.000 claims 1
- 108010089520 pol Gene Products Proteins 0.000 claims 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims 1
- 241000282898 Sus scrofa Species 0.000 description 338
- 241000282887 Suidae Species 0.000 description 117
- 238000002689 xenotransplantation Methods 0.000 description 53
- 210000002950 fibroblast Anatomy 0.000 description 48
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 46
- 102100026966 Thrombomodulin Human genes 0.000 description 41
- 101000763314 Homo sapiens Thrombomodulin Proteins 0.000 description 39
- 238000012239 gene modification Methods 0.000 description 34
- 230000005017 genetic modification Effects 0.000 description 32
- 235000013617 genetically modified food Nutrition 0.000 description 32
- 210000004072 lung Anatomy 0.000 description 31
- 239000003795 chemical substances by application Substances 0.000 description 30
- 210000002889 endothelial cell Anatomy 0.000 description 30
- 238000002054 transplantation Methods 0.000 description 26
- 150000007523 nucleic acids Chemical class 0.000 description 25
- 238000003752 polymerase chain reaction Methods 0.000 description 23
- 239000013604 expression vector Substances 0.000 description 22
- 230000004048 modification Effects 0.000 description 20
- 238000012986 modification Methods 0.000 description 20
- 108700028369 Alleles Proteins 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- 238000010374 somatic cell nuclear transfer Methods 0.000 description 19
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 18
- 210000002216 heart Anatomy 0.000 description 18
- 230000035772 mutation Effects 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 239000012634 fragment Substances 0.000 description 16
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical group C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 16
- 229940027941 immunoglobulin g Drugs 0.000 description 15
- 241000282412 Homo Species 0.000 description 14
- 201000010099 disease Diseases 0.000 description 14
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 13
- 108020005004 Guide RNA Proteins 0.000 description 13
- 230000001506 immunosuppresive effect Effects 0.000 description 13
- 238000012070 whole genome sequencing analysis Methods 0.000 description 13
- 108091033409 CRISPR Proteins 0.000 description 12
- 206010052779 Transplant rejections Diseases 0.000 description 12
- 230000006378 damage Effects 0.000 description 12
- 230000002068 genetic effect Effects 0.000 description 12
- 210000001161 mammalian embryo Anatomy 0.000 description 12
- 102000040430 polynucleotide Human genes 0.000 description 12
- 108091033319 polynucleotide Proteins 0.000 description 12
- 239000002157 polynucleotide Substances 0.000 description 12
- 238000010186 staining Methods 0.000 description 12
- 102000053602 DNA Human genes 0.000 description 11
- 210000001744 T-lymphocyte Anatomy 0.000 description 11
- 208000034841 Thrombotic Microangiopathies Diseases 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 230000001900 immune effect Effects 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 108091093088 Amplicon Proteins 0.000 description 10
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 10
- 230000004913 activation Effects 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 230000002950 deficient Effects 0.000 description 10
- 210000002540 macrophage Anatomy 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 10
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 9
- 241000282693 Cercopithecidae Species 0.000 description 9
- 206010062016 Immunosuppression Diseases 0.000 description 9
- 238000003205 genotyping method Methods 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- 208000014674 injury Diseases 0.000 description 9
- 210000000822 natural killer cell Anatomy 0.000 description 9
- 230000006780 non-homologous end joining Effects 0.000 description 9
- 230000010412 perfusion Effects 0.000 description 9
- 102100027211 Albumin Human genes 0.000 description 8
- 102000043129 MHC class I family Human genes 0.000 description 8
- 108091054437 MHC class I family Proteins 0.000 description 8
- FDJKUWYYUZCUJX-UHFFFAOYSA-N N-glycolyl-beta-neuraminic acid Natural products OCC(O)C(O)C1OC(O)(C(O)=O)CC(O)C1NC(=O)CO FDJKUWYYUZCUJX-UHFFFAOYSA-N 0.000 description 8
- 238000003559 RNA-seq method Methods 0.000 description 8
- 208000027418 Wounds and injury Diseases 0.000 description 8
- 238000001574 biopsy Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000001605 fetal effect Effects 0.000 description 8
- 238000000684 flow cytometry Methods 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 210000000287 oocyte Anatomy 0.000 description 8
- 210000000496 pancreas Anatomy 0.000 description 8
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 8
- 210000002381 plasma Anatomy 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 229950010131 puromycin Drugs 0.000 description 8
- 210000000952 spleen Anatomy 0.000 description 8
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 8
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 7
- 108700005089 MHC Class I Genes Proteins 0.000 description 7
- 206010057249 Phagocytosis Diseases 0.000 description 7
- 108091027544 Subgenomic mRNA Proteins 0.000 description 7
- 108010020764 Transposases Proteins 0.000 description 7
- 102000008579 Transposases Human genes 0.000 description 7
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 7
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 7
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 7
- 230000001154 acute effect Effects 0.000 description 7
- 238000011316 allogeneic transplantation Methods 0.000 description 7
- 238000009395 breeding Methods 0.000 description 7
- 230000001488 breeding effect Effects 0.000 description 7
- 230000003915 cell function Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 208000020832 chronic kidney disease Diseases 0.000 description 7
- 210000002257 embryonic structure Anatomy 0.000 description 7
- 239000005090 green fluorescent protein Substances 0.000 description 7
- 230000015788 innate immune response Effects 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000008782 phagocytosis Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 210000004988 splenocyte Anatomy 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 102000007347 Apyrase Human genes 0.000 description 6
- 108010007730 Apyrase Proteins 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 102000002698 KIR Receptors Human genes 0.000 description 6
- 108010043610 KIR Receptors Proteins 0.000 description 6
- FDJKUWYYUZCUJX-AJKRCSPLSA-N N-glycoloyl-beta-neuraminic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@@H]1O[C@](O)(C(O)=O)C[C@H](O)[C@H]1NC(=O)CO FDJKUWYYUZCUJX-AJKRCSPLSA-N 0.000 description 6
- 239000004019 antithrombin Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 230000030833 cell death Effects 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 210000003038 endothelium Anatomy 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000010353 genetic engineering Methods 0.000 description 6
- 238000003364 immunohistochemistry Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 230000035479 physiological effects, processes and functions Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 5
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 5
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 5
- 206010019636 Hepatic artery thrombosis Diseases 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 101710163270 Nuclease Proteins 0.000 description 5
- 241000288906 Primates Species 0.000 description 5
- 101710183280 Topoisomerase Proteins 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 230000000735 allogeneic effect Effects 0.000 description 5
- 210000002403 aortic endothelial cell Anatomy 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 210000000845 cartilage Anatomy 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000004154 complement system Effects 0.000 description 5
- 230000009089 cytolysis Effects 0.000 description 5
- 238000012350 deep sequencing Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000011304 droplet digital PCR Methods 0.000 description 5
- 210000002919 epithelial cell Anatomy 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 108091006104 gene-regulatory proteins Proteins 0.000 description 5
- 102000034356 gene-regulatory proteins Human genes 0.000 description 5
- 102000054766 genetic haplotypes Human genes 0.000 description 5
- 229940089468 hydroxyethylpiperazine ethane sulfonic acid Drugs 0.000 description 5
- 210000002865 immune cell Anatomy 0.000 description 5
- 238000010166 immunofluorescence Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000000415 inactivating effect Effects 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 230000007170 pathology Effects 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000009919 sequestration Effects 0.000 description 5
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 210000003606 umbilical vein Anatomy 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 4
- 102000009839 Endothelial Protein C Receptor Human genes 0.000 description 4
- 108010009900 Endothelial Protein C Receptor Proteins 0.000 description 4
- 102100027186 Extracellular superoxide dismutase [Cu-Zn] Human genes 0.000 description 4
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 4
- 108010086246 Glucagon-Like Peptide-1 Receptor Proteins 0.000 description 4
- 102000007446 Glucagon-Like Peptide-1 Receptor Human genes 0.000 description 4
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 4
- 101000836222 Homo sapiens Extracellular superoxide dismutase [Cu-Zn] Proteins 0.000 description 4
- 101000638044 Homo sapiens Neurogenic differentiation factor 1 Proteins 0.000 description 4
- 101100156611 Homo sapiens VWF gene Proteins 0.000 description 4
- 101000782195 Homo sapiens von Willebrand factor Proteins 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 241001441752 Philesturnus carunculatus Species 0.000 description 4
- 238000011529 RT qPCR Methods 0.000 description 4
- 101000718529 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) Alpha-galactosidase Proteins 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 102100023038 WD and tetratricopeptide repeats protein 1 Human genes 0.000 description 4
- 230000004721 adaptive immunity Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 230000035558 fertility Effects 0.000 description 4
- 239000004023 fresh frozen plasma Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 4
- 229960004866 mycophenolate mofetil Drugs 0.000 description 4
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 4
- 229910052754 neon Inorganic materials 0.000 description 4
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 4
- 230000009437 off-target effect Effects 0.000 description 4
- 230000007310 pathophysiology Effects 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- 230000036593 pulmonary vascular resistance Effects 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000008313 sensitization Effects 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 210000001082 somatic cell Anatomy 0.000 description 4
- 229960005322 streptomycin Drugs 0.000 description 4
- 102100022464 5'-nucleotidase Human genes 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 208000005623 Carcinogenesis Diseases 0.000 description 3
- 108010077544 Chromatin Proteins 0.000 description 3
- 108010051219 Cre recombinase Proteins 0.000 description 3
- 206010015548 Euthanasia Diseases 0.000 description 3
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 3
- 108010024164 HLA-G Antigens Proteins 0.000 description 3
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 3
- 101100386242 Homo sapiens CD55 gene Proteins 0.000 description 3
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 3
- 101000653189 Homo sapiens Tissue factor pathway inhibitor Proteins 0.000 description 3
- 102000003839 Human Proteins Human genes 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- 206010061598 Immunodeficiency Diseases 0.000 description 3
- 108700005092 MHC Class II Genes Proteins 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 238000011887 Necropsy Methods 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 208000001647 Renal Insufficiency Diseases 0.000 description 3
- 206010062104 Renal mass Diseases 0.000 description 3
- 108020004459 Small interfering RNA Proteins 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 230000036952 cancer formation Effects 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 230000022534 cell killing Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 210000003483 chromatin Anatomy 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000009260 cross reactivity Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 210000003754 fetus Anatomy 0.000 description 3
- 210000000232 gallbladder Anatomy 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 230000024924 glomerular filtration Effects 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 210000005003 heart tissue Anatomy 0.000 description 3
- 238000005534 hematocrit Methods 0.000 description 3
- 230000002440 hepatic effect Effects 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 201000006370 kidney failure Diseases 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 210000005229 liver cell Anatomy 0.000 description 3
- 210000005228 liver tissue Anatomy 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000003101 oviduct Anatomy 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 210000004508 polar body Anatomy 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 229920002477 rna polymer Polymers 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 108010056545 swine leukocyte antigen Proteins 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 2
- MYXCRYWEUADHAI-CTGNGXHTSA-N (2R,3S,4S,5R)-2,3,4,5,6-pentahydroxy-3-[(3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]hexanal Chemical compound C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)[C@]([C@H](C=O)O)(O)[C@@H](O)[C@H](O)CO MYXCRYWEUADHAI-CTGNGXHTSA-N 0.000 description 2
- 101150084750 1 gene Proteins 0.000 description 2
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 2
- 101710131943 40S ribosomal protein S3a Proteins 0.000 description 2
- 102100023990 60S ribosomal protein L17 Human genes 0.000 description 2
- 101000874385 Arabidopsis thaliana Serine carboxypeptidase-like 19 Proteins 0.000 description 2
- 101000631707 Arabidopsis thaliana Spermidine coumaroyl-CoA acyltransferase Proteins 0.000 description 2
- 102000005427 Asialoglycoprotein Receptor Human genes 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 101150071258 C3 gene Proteins 0.000 description 2
- 102100037904 CD9 antigen Human genes 0.000 description 2
- 102000017925 CHRM3 Human genes 0.000 description 2
- 101150060249 CHRM3 gene Proteins 0.000 description 2
- 101150113197 CMAH gene Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 102000016918 Complement C3 Human genes 0.000 description 2
- 108010028780 Complement C3 Proteins 0.000 description 2
- 206010010356 Congenital anomaly Diseases 0.000 description 2
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- 101100512188 Dictyostelium discoideum prtB gene Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102100029723 Ectonucleoside triphosphate diphosphohydrolase 2 Human genes 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 108010074860 Factor Xa Proteins 0.000 description 2
- 101150042360 GGTA1 gene Proteins 0.000 description 2
- 208000031448 Genomic Instability Diseases 0.000 description 2
- 108700023372 Glycosyltransferases Proteins 0.000 description 2
- 102100028970 HLA class I histocompatibility antigen, alpha chain E Human genes 0.000 description 2
- 101150074628 HLA-E gene Proteins 0.000 description 2
- 101150024418 HLA-G gene Proteins 0.000 description 2
- 102100028006 Heme oxygenase 1 Human genes 0.000 description 2
- 101100437218 Homo sapiens B2M gene Proteins 0.000 description 2
- 101000738354 Homo sapiens CD9 antigen Proteins 0.000 description 2
- 101100501552 Homo sapiens ENTPD1 gene Proteins 0.000 description 2
- 101001012441 Homo sapiens Ectonucleoside triphosphate diphosphohydrolase 2 Proteins 0.000 description 2
- 101000986085 Homo sapiens HLA class I histocompatibility antigen, alpha chain E Proteins 0.000 description 2
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 2
- 101001010600 Homo sapiens Interleukin-12 subunit alpha Proteins 0.000 description 2
- 101001005139 Homo sapiens Protein limb expression 1 homolog Proteins 0.000 description 2
- 101000739506 Homo sapiens Secretin Proteins 0.000 description 2
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 2
- 102000004157 Hydrolases Human genes 0.000 description 2
- 108090000604 Hydrolases Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 102100022338 Integrin alpha-M Human genes 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 102100030698 Interleukin-12 subunit alpha Human genes 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 108700002010 MHC class II transactivator Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- SUHQNCLNRUAGOO-UHFFFAOYSA-N N-glycoloyl-neuraminic acid Natural products OCC(O)C(O)C(O)C(NC(=O)CO)C(O)CC(=O)C(O)=O SUHQNCLNRUAGOO-UHFFFAOYSA-N 0.000 description 2
- FDJKUWYYUZCUJX-KVNVFURPSA-N N-glycolylneuraminic acid Chemical compound OC[C@H](O)[C@H](O)[C@@H]1O[C@](O)(C(O)=O)C[C@H](O)[C@H]1NC(=O)CO FDJKUWYYUZCUJX-KVNVFURPSA-N 0.000 description 2
- 206010053159 Organ failure Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241000282520 Papio Species 0.000 description 2
- 241000255969 Pieris brassicae Species 0.000 description 2
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 206010037394 Pulmonary haemorrhage Diseases 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 2
- 102100037505 Secretin Human genes 0.000 description 2
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000000223 Solitary Kidney Diseases 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000033289 adaptive immune response Effects 0.000 description 2
- NNISLDGFPWIBDF-MPRBLYSKSA-N alpha-D-Gal-(1->3)-beta-D-Gal-(1->4)-D-GlcNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@@H](CO)O1 NNISLDGFPWIBDF-MPRBLYSKSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229960005348 antithrombin iii Drugs 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 108010006523 asialoglycoprotein receptor Proteins 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- IYNDLOXRXUOGIU-LQDWTQKMSA-M benzylpenicillin potassium Chemical compound [K+].N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1 IYNDLOXRXUOGIU-LQDWTQKMSA-M 0.000 description 2
- 210000000013 bile duct Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229940046731 calcineurin inhibitors Drugs 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 238000011964 cellular and gene therapy Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 2
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 229960005052 demecolcine Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 208000009190 disseminated intravascular coagulation Diseases 0.000 description 2
- 210000002308 embryonic cell Anatomy 0.000 description 2
- 208000028208 end stage renal disease Diseases 0.000 description 2
- 201000000523 end stage renal failure Diseases 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010228 ex vivo assay Methods 0.000 description 2
- 238000003209 gene knockout Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000001631 haemodialysis Methods 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000000322 hemodialysis Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 229940117681 interleukin-12 Drugs 0.000 description 2
- 238000007449 liver function test Methods 0.000 description 2
- 229940124302 mTOR inhibitor Drugs 0.000 description 2
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000007758 minimum essential medium Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000000242 pagocytic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 201000001474 proteinuria Diseases 0.000 description 2
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000005084 renal tissue Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- 229960002930 sirolimus Drugs 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 238000010911 splenectomy Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 229960002385 streptomycin sulfate Drugs 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229960001967 tacrolimus Drugs 0.000 description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 1
- 108010022379 (N-acetylneuraminyl)-galactosylglucosylceramide N-acetylgalactosaminyltransferase Proteins 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 102000004008 5'-Nucleotidase Human genes 0.000 description 1
- TWOKNYRPKCLMAR-UHFFFAOYSA-N 5-(2,5-dioxopyrrolidin-1-yl)oxycarbonyl-2-(3-hydroxy-6-oxoxanthen-9-yl)benzoic acid Chemical compound C=1C=C(C2=C3C=CC(=O)C=C3OC3=CC(O)=CC=C32)C(C(=O)O)=CC=1C(=O)ON1C(=O)CCC1=O TWOKNYRPKCLMAR-UHFFFAOYSA-N 0.000 description 1
- MJZJYWCQPMNPRM-UHFFFAOYSA-N 6,6-dimethyl-1-[3-(2,4,5-trichlorophenoxy)propoxy]-1,6-dihydro-1,3,5-triazine-2,4-diamine Chemical compound CC1(C)N=C(N)N=C(N)N1OCCCOC1=CC(Cl)=C(Cl)C=C1Cl MJZJYWCQPMNPRM-UHFFFAOYSA-N 0.000 description 1
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 1
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 1
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 1
- 206010058808 Abdominal compartment syndrome Diseases 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 101000729838 Arabidopsis thaliana Beta-1,3-galactosyltransferase GALT1 Proteins 0.000 description 1
- 102000008682 Argonaute Proteins Human genes 0.000 description 1
- 108010088141 Argonaute Proteins Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 101150098747 B4galnt2 gene Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 208000031872 Body Remains Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- 108010009575 CD55 Antigens Proteins 0.000 description 1
- 101710176679 CD59 glycoprotein Proteins 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 229940122739 Calcineurin inhibitor Drugs 0.000 description 1
- 101710192106 Calcineurin-binding protein cabin-1 Proteins 0.000 description 1
- 102100024123 Calcineurin-binding protein cabin-1 Human genes 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 108700004991 Cas12a Proteins 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 1
- 241001533384 Circovirus Species 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 101710172562 Cobra venom factor Proteins 0.000 description 1
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 1
- 229940124073 Complement inhibitor Drugs 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 108700011014 Congenital Deficiency of Pulmonary Surfactant Protein B Proteins 0.000 description 1
- 206010010317 Congenital absence of bile ducts Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 208000032589 Diaphragmatic Congenital Hernias Diseases 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 108010074604 Epoetin Alfa Proteins 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 108060003306 Galactosyltransferase Proteins 0.000 description 1
- 102000030902 Galactosyltransferase Human genes 0.000 description 1
- 108010001498 Galectin 1 Proteins 0.000 description 1
- 102100021736 Galectin-1 Human genes 0.000 description 1
- 101000834253 Gallus gallus Actin, cytoplasmic 1 Proteins 0.000 description 1
- 241001663880 Gammaretrovirus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 238000002738 Giemsa staining Methods 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 102100036243 HLA class II histocompatibility antigen, DQ alpha 1 chain Human genes 0.000 description 1
- 102100040505 HLA class II histocompatibility antigen, DR alpha chain Human genes 0.000 description 1
- 108010086786 HLA-DQA1 antigen Proteins 0.000 description 1
- 108010067802 HLA-DR alpha-Chains Proteins 0.000 description 1
- 101150027051 HO1 gene Proteins 0.000 description 1
- 208000018565 Hemochromatosis Diseases 0.000 description 1
- 208000000616 Hemoptysis Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 101000937544 Homo sapiens Beta-2-microglobulin Proteins 0.000 description 1
- 101000957299 Homo sapiens Coronin-7 Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101100451279 Homo sapiens HMOX1 gene Proteins 0.000 description 1
- 101001079623 Homo sapiens Heme oxygenase 1 Proteins 0.000 description 1
- 101000972282 Homo sapiens Mucin-5AC Proteins 0.000 description 1
- 101000689199 Homo sapiens Src-like-adapter Proteins 0.000 description 1
- 101000800546 Homo sapiens Transcription factor 21 Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 101000618467 Hypocrea jecorina (strain ATCC 56765 / BCRC 32924 / NRRL 11460 / Rut C-30) Endo-1,4-beta-xylanase 2 Proteins 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 1
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 1
- 206010021263 IgA nephropathy Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 206010022044 Injection site abscess Diseases 0.000 description 1
- 206010022076 Injection site infection Diseases 0.000 description 1
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 1
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 208000002623 Intra-Abdominal Hypertension Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 208000032376 Lung infection Diseases 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 102000050019 Membrane Cofactor Human genes 0.000 description 1
- 101710146216 Membrane cofactor protein Proteins 0.000 description 1
- 102100022496 Mucin-5AC Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100111157 Mus musculus B4galnt2 gene Proteins 0.000 description 1
- 241000428199 Mustelinae Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 208000013544 Platelet disease Diseases 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 241001135989 Porcine reproductive and respiratory syndrome virus Species 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 238000012181 QIAquick gel extraction kit Methods 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 238000010459 TALEN Methods 0.000 description 1
- 102000018679 Tacrolimus Binding Proteins Human genes 0.000 description 1
- 108010027179 Tacrolimus Binding Proteins Proteins 0.000 description 1
- 229940111979 Thromboxane synthase inhibitor Drugs 0.000 description 1
- 108091028113 Trans-activating crRNA Proteins 0.000 description 1
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 1
- 102100033121 Transcription factor 21 Human genes 0.000 description 1
- 206010069363 Traumatic lung injury Diseases 0.000 description 1
- 101710187743 Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 1
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 1
- 108020004417 Untranslated RNA Proteins 0.000 description 1
- 102000039634 Untranslated RNA Human genes 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 101100029259 Zinnia violacea POD4 gene Proteins 0.000 description 1
- 229960003697 abatacept Drugs 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 208000006682 alpha 1-Antitrypsin Deficiency Diseases 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960004238 anakinra Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 108010072035 antithrombin III-protease complex Proteins 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 201000005271 biliary atresia Diseases 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 230000029803 blastocyst development Effects 0.000 description 1
- 210000001109 blastomere Anatomy 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 1
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 101150038500 cas9 gene Proteins 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 229960003115 certolizumab pegol Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000002987 choroid plexus Anatomy 0.000 description 1
- 210000003737 chromaffin cell Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 238000007820 coagulation assay Methods 0.000 description 1
- 239000004074 complement inhibitor Substances 0.000 description 1
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 201000005890 congenital diaphragmatic hernia Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 210000001771 cumulus cell Anatomy 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 229960002806 daclizumab Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 229940091906 dectomax Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- QLFZZSKTJWDQOS-YDBLARSUSA-N doramectin Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O3)C=C[C@H](C)[C@@H](C3CCCCC3)O4)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C QLFZZSKTJWDQOS-YDBLARSUSA-N 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 210000000959 ear middle Anatomy 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000009228 embryo fetal development Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 229940089118 epogen Drugs 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 210000001733 follicular fluid Anatomy 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 230000037442 genomic alteration Effects 0.000 description 1
- 210000002980 germ line cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940125672 glycoprotein IIb/IIIa inhibitor Drugs 0.000 description 1
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 1
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229960001743 golimumab Drugs 0.000 description 1
- 210000002503 granulosa cell Anatomy 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 102000047279 human B2M Human genes 0.000 description 1
- 102000048776 human CD274 Human genes 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 208000021822 hypotensive Diseases 0.000 description 1
- 230000001077 hypotensive effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000002650 immunosuppressive therapy Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011419 induction treatment Methods 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 235000013902 inosinic acid Nutrition 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 229960005435 ixekizumab Drugs 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 229940076483 kcentra Drugs 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 229960000681 leflunomide Drugs 0.000 description 1
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012317 liver biopsy Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 231100000515 lung injury Toxicity 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 244000309715 mini pig Species 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229940014456 mycophenolate Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 229960005027 natalizumab Drugs 0.000 description 1
- 230000003589 nefrotoxic effect Effects 0.000 description 1
- 238000013059 nephrectomy Methods 0.000 description 1
- 231100000381 nephrotoxic Toxicity 0.000 description 1
- 101150115538 nero gene Proteins 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000012758 nuclear staining Methods 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 230000010118 platelet activation Effects 0.000 description 1
- 238000003615 platelet activation assay Methods 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 101150088264 pol gene Proteins 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000031915 positive regulation of coagulation Effects 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008742 procoagulation Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- LJPYJRMMPVFEKR-UHFFFAOYSA-N prop-2-ynylurea Chemical compound NC(=O)NCC#C LJPYJRMMPVFEKR-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 102000037983 regulatory factors Human genes 0.000 description 1
- 108091008025 regulatory factors Proteins 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000002976 reverse transcriptase assay Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 208000010157 sclerosing cholangitis Diseases 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 201000005665 thrombophilia Diseases 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 239000003768 thromboxane synthase inhibitor Substances 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 229960003989 tocilizumab Drugs 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000005353 urine analysis Methods 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960003824 ustekinumab Drugs 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 230000009723 vascular congestion Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 229960004914 vedolizumab Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 244000000023 zoonotic pathogen Species 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/15—Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/108—Swine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/02—Animal zootechnically ameliorated
- A01K2267/025—Animal producing cells or organs for transplantation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
Definitions
- porcine organs trigger rejection by the human immune system in a number of forms, including (i) hyperacute rejection, (ii) acute humoral rejection consisting of disordered thromboregulation and type II endothelial cell (EC) activation with leukocyte recruitment, (iii) thrombotic microangiopathy consisting of intravascular thrombosis with platelet consumption and EC activation, fibrin deposition, and thrombosis due to lack of thromboregulation, and (iv) chronic vasculopathy.
- hyperacute rejection consisting of disordered thromboregulation and type II endothelial cell (EC) activation with leukocyte recruitment
- thrombotic microangiopathy consisting of intravascular thrombosis with platelet consumption and EC activation, fibrin deposition, and thrombosis due to lack of thromboregulation
- chronic vasculopathy including (i) hyperacute rejection, (ii) acute humoral rejection consisting of disordered thromboregulation and type II endotheli
- porcine cells, tissues, organs, and/or porcine animals having a novel combination of gene modifications for use in xenotransplantation and for developing associated methods.
- the present disclosure provides cells, tissues, organs, and animals comprising genetic modifications that result in enhanced immunological compatibility, as well as vectors and methods for use in generating these cells, tissues, organs, and animals, and the use of these cells, tissues, organs, and animals in xenotransplantation.
- the genetic modifications giving rise to enhanced immunological compatibility include one or more complement response genes (interchangeably referred to herein as complement toxicity genes) , coagulation response genes (interchangeably referred to herein as coagulation genes) , inflammatory response genes (interchangeably referred to herein as apoptosis/inflammation genes) , immune response genes (interchangeably referred to herein as cellular toxicity genes) , and/or immunomodulator genes.
- the present disclosure provides isolated cells, tissues, organs, and animals comprising a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof.
- the present disclosure provides for an isolated cell, tissue, organ, or animal comprising a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene.
- the plurality of transgenes comprises at least three transgenes selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof.
- the inflammatory response transgenes are selected from the group consisting of tumor necrosis factor ⁇ -induced protein 3 (A20) , heme oxygenase (HO-1 or HMOX1) , Cluster of Differentiation 47 (CD47) , and combinations thereof.
- the immune response transgenes are selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof.
- the immunomodulator transgene is selected from the group consisting of programmed death ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof.
- the plurality of transgenes further comprises at least one coagulation response transgene.
- the coagulation response transgenes are selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD, TBM, or TM) , tissue factor pathway inhibitor (TFPI) , and combinations thereof.
- the plurality of transgenes further comprises at least one complement response transgene.
- the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46 or simply CD46) ; human complement decay accelerating factor (hCD55 or simply CD55) , human MAC-inhibitor factor (hCD59 or simply CD59) , and combinations thereof.
- human membrane cofactor protein hCD46 or simply CD46
- human complement decay accelerating factor hCD55 or simply CD55
- human MAC-inhibitor factor hCD59 or simply CD59
- the present disclosure provides isolated cells, tissues, organs, and animals comprising one or more transgenes, each independently selected from the group consisting of complement response transgenes (e.g., CD46, CD55, CD59) ; coagulation response transgenes (e.g., CD39, THBD or TBM, TFPI) ; inflammatory response transgenes (e.g., A20, HO-1, CD47) ; immune response transgenes (e.g., HLA-E, B2M) ; and/or immunomodulator transgenes (e.g., PD-L1, FasL) .
- the cells, tissues, organs, or animals may further comprise one or more additional transgenes from other gene categories.
- the isolated cells, tissues, organs, and animals provided herein comprise one or more complement response transgenes selected from the group consisting of hCD46, hCD55, and hCD59.
- expression of one or more of the complement response transgenes is driven by a ubiquitous promoter.
- the isolated cells, tissues, organs, and animals provided herein comprise one or more coagulation response transgenes selected from the group consisting of CD39, THBD, and TFPI.
- expression of one or more of the coagulation response transgenes is driven by a tissue-specific promoter.
- the tissue-specific promoter is an endothelial-specific promoter, and in certain of these embodiments, the endothelial-specific promoter is a low expression endothelial-specific promoter.
- the isolated cells, tissues, organs, and animals provided herein comprise one or more inflammatory response transgenes selected from the group consisting of A20, HO-1, and CD47.
- expression of one or more of the inflammatory response transgenes is driven by a ubiquitous promoter, a tissue-specific promoter such as an endothelial-specific promoter, or any combination thereof.
- the isolated cells, tissues, organs, and animals provided herein comprise one or more immune response transgenes selected from the group consisting of HLA-E and B2M.
- expression of one or more of the immune response transgenes is driven by a ubiquitous promoter.
- the isolated cells, tissues, organs, and animals provided herein comprise one or more immunomodulator transgenes, including but not limited to PD-L1, FasL, or both.
- the isolated cells, tissues, organs, and animals provided herein comprise six or more transgenes, e.g., 6, 7, 8, 9, 10, 11, or 12 transgenes, selected from the group consisting of complement response, coagulation response, inflammatory response, immune genes, and immunomodulator transgenes.
- the cells, tissues, organs, or animals may comprise at least one transgene from each category. In other embodiments, certain categories of transgenes may be excluded.
- the complement response, coagulation response, inflammatory response, immune response, and/or immunomodulator transgenes may all be expressed at detectable and/or clinically effective levels simultaneously. In other embodiments, only specific subsets of transgenes may be expressed at clinically effective levels at certain timepoints or in response to certain signals. In these embodiments, expression of one or more of the transgenes may drop below detectable and/or clinically effective levels at certain timepoints.
- the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI.
- the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, and TFPI.
- the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1.
- the isolated cells, tissues, organs, and animals disclosed herein further comprise one or more modifications to a complement response gene, coagulation response genes, inflammatory response genes, immune response genes, and/or immunomodulator genes.
- a complement response gene coagulation response genes
- inflammatory response genes inflammatory response genes
- immune response genes immune response genes
- immunomodulator genes include one or more modifications to a complement response gene, coagulation response genes, inflammatory response genes, immune response genes, and/or immunomodulator genes.
- the cell, tissue, organ, or animal may comprise an alteration of the von Willebrand factor (vWF) gene, including in some instances alterations that result in humanization of the gene.
- vWF von Willebrand factor
- the cells, tissues, organs, and animals disclosed herein further comprise one or more modifications to other categories of genes. These modifications may include, for example, deletion or excision of all or part of the gene (i.e., knockout) , or any other inactivation, disruption, or alteration.
- the cells, tissues, organs, and animals may comprise a knockout, inactivation, or disruption of asialoglycoprotein receptor 1 (ASGR1) .
- ASGR1 asialoglycoprotein receptor 1
- the cells, tissues, organs, and animals may be genetically modified to exhibit a reduced carbohydrate antigen response.
- the cells, tissues, organs, or animals may comprise a knockout, inactivation, or disruption of one or more carbohydrate antigen-producing genes (e.g., glycoprotein ⁇ -galactosyltransferase 1 (GGTA) , ⁇ 1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) ) .
- carbohydrate antigen-producing genes e.g., glycoprotein ⁇ -galactosyltransferase 1 (GGTA) , ⁇ 1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) ) .
- carbohydrate antigen-producing genes e.g., glycoprotein ⁇ -galact
- the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI, and further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, and CMAH.
- the isolated cells, tissues, organs, and animals further comprise the transgenes CD59 and B2M, and in certain of those embodiments the isolated cells, tissues, organs, and animals further comprise the transgenes A20, PD-L1, and HO-1.
- these cells, tissues, organs, and animals exhibit enhanced immunological compatibility comprising reduced carbohydrate antigen response and enhanced coagulation, complement, inflammatory, and/or immune response.
- the isolated cells, tissues, organs, and animals provided herein are porcine, i.e., a porcine cell, porcine tissue, porcine organ, or a pig or progeny thereof.
- the cells, tissues, organs, or animals are free of porcine endogenous retroviruses ( “PERV-free” ) .
- the “PERV-free” cells, tissues, organs, or animals do not produce xenotropic PERV virions.
- the “PERV-free” cells, tissues, organs, or animals do not produce PERV virions.
- the “PERV-free” cells, tissues, organs, or animals do not produce infectious PERV virions.
- the PERV-free cells, tissues, organs, and animals comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI, and optionally further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, and and/or CMAH.
- the PERV-free cells, tissues, organs, and animals comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, and TFPI, and optionally further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, and/or CMAH.
- the PERV-free cells, tissues, organs, and animals comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1, and optionally further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, or CMAH.
- the cells or tissues are kidney or liver cells or tissues.
- the organ is a kidney or a liver.
- the present disclosure provides vectors comprising a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof.
- the plurality of transgenes comprises three types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof.
- the present disclosure provides for a vector comprising a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene.
- the inflammatory response transgene is selected from the group consisting of A20, HO-1, CD47, and combinations thereof.
- the immune response transgene is selected from the group consisting of HLA-E, B2M, and combinations thereof.
- the immunomodulator transgene is selected from the group consisting of PD-L1, FasL, and combinations thereof.
- the plurality of transgenes further comprises at least one coagulation response transgene.
- the coagulation response transgene is selected from the group consisting of CD39, THBD, TFPI, and combinations thereof.
- the plurality of transgenes further comprises at least one complement response transgene.
- the complement response transgene is selected from the group consisting of CD46, CD55, CD59, and combinations thereof.
- the present disclosure provides vectors for use in genetically modifying cells, tissues, organs, or animals to produce the cells, tissues, organs, or animals provided herein, including, for example, vectors for inserting (i.e., knocking in) one or more complement response, coagulation response, inflammatory response, immune response, and/or immunomodulator transgenes.
- the vectors comprise at least 6, 7, 8, 9, 10, 11, or 12 of the transgenes. In some of these embodiments, at least six of the transgenes are expressed from a single locus.
- CRISPR-based editing components such as guide RNAs (gRNAs) or endonucleases.
- the vectors provided herein comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI. In certain of these embodiments, the vectors further comprise the transgenes CD59 and B2M. In certain of these embodiments, the vectors further comprise the transgenes A20, PD- L1, and HO-1, and in certain of these embodiments the vectors comprise the components set forth in FIGs. 17-20, 31, or 48-50. In certain embodiments, the vectors comprise a sequence set forth in any of SEQ ID NOs: 212-214.
- kits for generating the isolated cells, tissues, organs, and animals provided herein comprise introducing one or more of the vectors provided herein. Accordingly, in certain embodiments, the cells, tissues, organs, and animals provided herein comprise one or more of the vectors disclosed herein.
- the methods disclosed and described herein comprise single copy polycistronic transgene integration through transposition, mono/bi-allelic site-specific integration through recombinase-mediated cassette exchange (RMCE) , genomic replacement, endogenous gene humanization, or any combination thereof.
- RMCE recombinase-mediated cassette exchange
- the methods further comprise knocking out or otherwise disrupting or inactivating one or more PERV genes, for example PERV pol, and in certain of these embodiments the resultant porcine cells, tissues, organs, or animals are PERV-free.
- the present disclosure provides a transgenic pig liver having reduced liver damage and/or stable coagulation when exposed to non-pig blood, wherein reduced liver damage is assessed by determining the levels of bile production, one or more metabolic enzymes, and/or one or more serum electrolytes, and wherein stable coagulation is assessed by determining the levels of Prothrombin Time (PT) and International Normalized Ratio (PT-NIR) , fibrinogen levels (FIB) , and/or lower activated partial thromboplastin time (APTT) .
- the metabolic enzymes are selected from the group consisting of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and albumin (ALB) .
- the serum electrolytes are potassium (K) and/or sodium (Na) .
- the transgenic pig livers disclosed and described herein comprise native metabolic enzymes selected from the group consisting of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and albumin (ALB) .
- ALT alanine aminotransferase
- AST aspartate aminotransferase
- ALB albumin
- FIGs. 1A-1C are charts displaying genotyping results of a complement factor 3 knockout ( “C3-KO” ) pig.
- FIG. 1A shows the sizes of the deletions introduced.
- FIG. 1B illustrates the position of the indels.
- FIG. 1C lists sequences of the indels generated.
- FIG. 2 is a block diagram of a scheme depicting a Major Histocompatibility Complex class I ( “MHC class I” ) replacement strategy where the locus containing the SLA-1, SLA-2, and SLA-3 genes was flanked with loxP sites.
- MHC class I Major Histocompatibility Complex class I
- FIGs. 3A and 3B are charts displaying genotyping results of a Major Histocompatibility Complex (MHC) class II knockout ( “MHCII-KO” ) pig genotype, specifically the MHCII gene DQA.
- FIG. 3A shows the positions and sized and indels having two insertions of 1bp in positions 126 and 127 of the amplicon.
- FIG. 3B illustrates the position of one of the insertions.
- MHC Major Histocompatibility Complex
- FIGs. 4A and 4B are charts displaying genotyping results of another MHC class II-KO pig genotype, specifically the MHCII gene DRA.
- FIG. 4A shows the positions and sized and indels having two insertions of 1bp in positions 106 and 107 of the amplicon.
- FIG. 4B illustrates the position of one of the insertions.
- FIG. 5 includes six charts showing the results of a fluorescence assisted cell sorting (FACS) analysis of an MHCII-KO pig ( “H3-9P01” ) and a wild-type ( “WT” ) pig.
- FACS fluorescence assisted cell sorting
- FIG. 6 is a series of images depicting one or more phenotypes associated with the MHCII-KO phenotype.
- FIG. 7 is a series of block diagrams illustrating a scheme for altering the PD-L1 gene.
- FIG. 8 is a chart illustrating expression of PD-L1 as measured by qPCR using two amplicons.
- FIG. 9 is a sequence listing showing alignment of porcine and human vWF protein.
- the A1 domain is highlighted in the box, whereas the potential glycosylation sites in the flanking region are labeled by dashes.
- the human specific residues that are deleted in pvWF is labeled with a horizontal line.
- the A1 and flanking region that were humanized is labeled with the half parenthesis.
- FIG. 10 depicts a design of a homology-directed repair ( “HDR” ) vector targeting pvWF and two sgRNAs.
- FIG. 11 shows the screening results for HDR via SphI and BspEI digestion.
- FIGs. 12A and 12B show sequencing results of a biallelic HDR clone obtained from FIG. 11 where vWF was targeted. The chromatography of both sequencing results is illustrated with one line of overlapping sequences. The humanized A1 and flanking region is labeled with half parenthesis.
- FIG. 13 is a graph depicting a species-specific platelet aggregation response induced by shear stress and monitored by light transmission for platelets isolated from WT (porcine A1-domain) or HDR targeted (human A1-domain) pigs.
- FIG. 14 is a schematic of the porcine MHC class I locus. All classical MHCI genes are color coded. Unique flanking regions immediately next to the UTRs of the MHCI genes are labeled as green parenthesis. Four highly active sgRNAs (SEQ ID NOs: 1-4) selected from these regions are also shown.
- FIG. 15 depicts fragmental deletion of the MHCI classical cluster induced using the sgRNAs in FIG. 14.
- FIG. 15A shows PCR amplicon across the unique regions of MHCI 5’, 3’ and 5’-3’ deletion junctions in the population of sgRNA transfected cells.
- FIG. 15B shows that the 5’-3’ junction PCR was TOPO cloned and the sequencing results were aligned to the expected MHCI 5’-3’ junctions generated by MHC5’_sg1 and MHC3’_sg2.
- FIG. 16 shows enrichment of MHCI negative cells using a porcine specific SLA-1 antibody.
- FIG. 17 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein.
- Payload 5 (Pig2.1) : 12 transgenes, ubiquitous expression.
- FIG. 18 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein.
- Payload 9 (Pig2.2) : 12 transgenes, endothelial-specificity.
- FIG. 19 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein.
- Payload 10 (Pig2.3) : 12 transgenes, endothelial/islet-specificity.
- FIG. 20 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein.
- Payload 10-Exo (Pig2.4) : 12 transgenes, endothelial-/islet-specificity, with pancreatic exocrine ablation.
- FIG. 21 is a schematic showing pedigrees of genetically engineered source donor pigs described herein.
- FIG. 22 demonstrates that genetically engineered pig fibroblasts having enhanced compatibility with human tissues show a significantly reduced binding affinity to human antibodies.
- FIG. 23 demonstrates tissue-specific mRNA expression from genetically engineered pig primary fibroblasts or endothelial cells described herein.
- FIG. 23A is a schematic of a transgenic construct assembled using molecular cloning techniques.
- the CD46, CD55, and CD59 cassette was placed under control of the ubiquitous EF1 ⁇ promoter
- the HLA-E, B2M, and CD47 cassette was placed under control of the ubiquitous CAG promoter
- the A20, PD-L1, HO-1 cassette was placed under control of the islet specific NeuroD promoter
- the THBD, TFPI, and CD39 cassette was placed under control of endothelial specific ICAM2 promoter.
- the transgenic construct was electroporated into porcine primary fibroblasts (FIG. 23B) or an immortalized porcine aortic endothelial cell line (PEC-A) (FIG. 23C) and mRNA expression determined by qRT-PCR.
- FIG. 24 depicts transgene protein expression in Pig 2.0 ( “3KO+12TG” ) spleen and fibroblast cells.
- FIG. 25 demonstrates that the genetically engineered pig fibroblasts having enhanced compatibility with human cells exhibited a significantly lower level of complement-mediated cell death.
- FIG. 26 demonstrates that pig fibroblasts genetically engineered to express human HLA-E exhibit a reduced susceptibility to NK-mediated lysis.
- FIG. 27 demonstrates that endothelial cells derived from GGTAKO + CD55KI pigs exhibit decreased formation of thrombin-antithrombin III (TAT) complexes.
- TAT thrombin-antithrombin III
- FIG. 28 demonstrates that livers isolated from 4-7 pigs and perfused with human blood have increased bile production as compared to wild type (WT) livers.
- FIG. 29 demonstrates that livers isolated from 4-7 pigs and perfused with human blood have improved liver function as assessed by makers of liver damage and serum electrolyte levels as compared to WT livers.
- FIG. 30 demonstrates that livers isolated from 4-7 pigs and perfused with human blood have improved coagulation as compared to WT livers.
- FIG. 31 shows a transgene expression vector according to an embodiment disclosed and described herein.
- Payload 13 (Pig2.5) : 10 transgenes, bicistronic.
- FIGs. 32A-B demonstrate that host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs exhibit stable serum creatinine levels.
- FIGs. 33A-B show hematocrit levels in host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs.
- FIGs. 34A-B show platelet counts in host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs.
- FIGs. 35A-B show fluctuations in white blood cell (WBC) counts in host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs
- FIG. 36 shows RNAseq expression data showing complement and cellular toxicity genes are expressed in samples collected from Payload 9 and Payload 10 pigs.
- FIG. 37 shows FACS data showing complement and cellular toxicity proteins expressed in samples collected from Payload 5, Payload 9, and Payload 10 pigs.
- FIGs. 38A-I show clinical labs following pig-to-baboon orthotopic liver xenotransplants (OLTx) .
- FIGs. 39A-F are representative images of H+E staining liver samples from OLTx.
- FIGs. 40A-E demonstrate clinical labs following ex vivo xenoperfusion of genetically modified pig livers with human whole blood.
- FIGs. 41A-H are representative images of H+E staining of xenoperfused pig livers.
- FIG. 42 demonstrates that pulmonary vascular resistance (PVR) rise was significantly attenuated and delayed in ‘untreated’ Pig 2.0 ( “3KO+12TG” ) lungs perfused with human blood, relative to GalTKO. hCD55 lungs.
- PVR pulmonary vascular resistance
- FIGs. 43A-D demonstrate binding of a panel of human serum to human T cells (A) and B cells (C) , showing that high PRA sera are more likely than low PRA to stain human cells and binding of a panel of human sera to porcine T cells (B) and B cells (D) . Sera from both low PRA patients and high PRA patients show high levels of binding to porcine targets.
- FIG. 44 shows a panel of high PRA human sera show significantly lower levels of binding to genetically modified porcine aortic endothelial cells (Pig 2.0 ( “3KO+12TG” ) pAEC) compared to wild-type cells (WT pAEC) .
- the Pig 2.0 cells lack aGal, Neu5Gc, and Sda.
- FIGs. 45A-C demonstrate staining of Pig 2.0 ( “3KO+12TG” ) pAEC with serum taken from kidney (A) , heart (B) , and liver (C) xenotransplant recipient animals at various time points. Serum samples taken post-transplantation show a reduced level of binding, particularly the post liver xenotransplants.
- FIGs. 46A-C demonstrate binding of human serum to wild-type (WT) and Pig 2.0 ( “3KO+12TG” ) pAEC (A) , binding of human serum (B) or cynomolgus serum (C) to pAEC before and after IdeS treatment.
- IdeS effectively reduces human and cynomolgus IgG binding, while having no impact on the binding of intact IgM.
- FIG. 47 shows a transgene expression vector according to an embodiment disclosed and described herein.
- Payload 12F 12 transgenes.
- FIG. 48 shows a transgene expression vector according to an embodiment disclosed and described herein.
- Payload 12G 12 transgenes.
- FIG. 49 shows a transgene expression vector according to an embodiment disclosed and described herein.
- Payload 13A 10 transgenes.
- FIG. 50 shows RNAseq results demonstrating expression of complement & cellular toxicity genes.
- FIG. 51A shows a scheme for CRISPR gene knockout and PiggyBac integration.
- CRISPR/Cas9 targeting 2 copies of GGTA1 gene, 2 copies of CMAH gene and 4 copies of B4GALNT2 gene were used to generate the 3KO, and CRISPR/Cas9 targeting the copies of PERV in Pig 2.0 ( “3KO+9TG” ) were used to generate PERV-KO cells.
- PiggyBac-mediated random integration was used to insert the 9 transgenes into the pig genome.
- the transgenes were expressed in 3 cassettes, with each cassette expressing 3 genes linked by Porcine 2A (P2A) peptide.
- P2A Porcine 2A
- FIG. 51B shows results of sequencing of GGTA1, CMAH, and B4GALNT2 knockout.
- the whole genome sequencing analysis revealed that in pig 2.0 (3KO+9TG) and pig 3.0 (3KO+9TG) , i) the GGTA1 gene has -10 bp deletion in one allele and transgene vector insertion in another gene, ii) the CMAH gene has -391 bp deletion in one allele and 2bp (AA) insertion in another allele and iii) the B4GALNT2 has -13, -14, -13, -14 in each of the 4 alleles of B4GALNT2 genes. All the modification occurs at the gRNA target sites, indicating the modification are mediated by on target activity of the CRISPR/Cas9 used.
- FIG. 51C shows results of sequencing analysis of PERV knockout.
- the raw reads for Pig 2.0 (3KO+9TG) ( ⁇ 2,000X) and 3.0 ( ⁇ 20,000X) are shown below a schematic PERV gene structure. Reads are grouped by their sequence composition and shown proportionally to their coverage. The vertical line in red, blue, green and orange in the coverage track represent single nucleotide change from reference allele to T, C, A, G respectively.
- FIG. 51D shows PCR analysis of the 9TG integration.
- Transgene integration of Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) have been validated at the genomic DNA (gDNA) level by PCR.
- the PCR gel image shows the presence of 9 human transgenes in gDNA from Pig 2.0 and Pig 3.0 fetus fibroblasts, whereas WT Pig fetus fibroblast and NTC (without the addition of gDNA) groups serve as negative control.
- FIG. 51E shows normal karyotype for Pig 2.0 (3KO+9TG) and 3.0 (3KO+9TG) cells.
- Pig 2.0 (A) and Pig 3.0 (B) fibroblasts were karyotyped using Giemsa-staining-based G-banding technique. Metaphase spreads were analyzed using SmartType software. Both Pig 2.0 and Pig 3.0 show normal [36 + XY] karyotypes.
- FIG. 52A shows a heatmap of expression of the 9 transgenes.
- Transgene expression was measured by RNA-Seq in HUVEC endothelium, PUVEC endothelium, Pig 2.0 (3KO+9TG) PUVEC endothelium, Pig 2.0 ear fibroblast and Pig3.0 fetal fibroblast.
- Each row represents one transgene and each column represents one sample.
- the expression level is colored coded in blue-yellow-red to represent low-medium-high.
- the tissue type and payload information for each sample is labeled on top of the heatmap as color bars.
- FIG. 52B shows analysis of 3KO and 9TG expression by FACS. Genetic modifications (KO and TG) of Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) have been validated at the protein level by FACS. Pig 2.0 and Pig 3.0 PUVECs show comparable TG expression level to human endogenous (HUVEC) in general, except for hCD39 (higher than human endogenous) and hTHBD (lower than human endogenous) .
- FIG. 52C shows immunofluorescence analysis of 3KO and 9TG expression. Genetic modifications (KO and TG) of Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) have been validated at the protein level in kidney cryosections by immunofluorescence (IF) .
- IF immunofluorescence
- FIG. 53A shows binding of human antibodies to Pig 2.0 (3KO+9TG) and 3.0 (3KO+9TG) cells.
- Pig 2.0 and Pig 3.0 PUVECs substantially attenuate the antibody binding to human IgG and IgM compared to their WT counterpart.
- FIG. 53B shows complement toxicity to WT pig, Pig 2.0 (3KO+9TG) , Pig 3.0 (3KO+9TG) and HUVEC cells.
- FIG. 53C shows NK-mediated cytotoxicity to WT pig, Pig 2.0 (3KO+9TG) , Pig 3.0 (3KO+9TG) and HUVEC cells.
- FIG. 53D shows phagocytosis of Pig 2.0 (3KO+9TG) and 3.0 (3KO+9TG) splenocytes by human macrophages.
- Pig 2.0 and Pig 3.0 splenocytes show reduced phagocytosis by human macrophage cell line.
- CFSE-labeled Pig 2.0 and Pig 3.0 splenocytes (target cells, T) were incubated with CD11b-labeled human macrophage cell line (effector cells, E) for 4 hours at 37°C, respectively. 2 different E: T ratios, 1: 1 and 1: 5, were performed.
- Phagocytosis of CFSE-labeled targets were measured by FACS, where the region of non-phagocytosing macrophages is shown in the upper left quadrants (Q1) , and region of phagocytosing macrophages is shown in the upper right quadrants (Q2) . Phagocytic activity was calculated as Q2/ (Q1+Q2) x 100%.
- FIG. 53E shows level of thrombin-antithrombin (TAT) formation by WT pig, Pig 2.0 (3KO+9TG) , Pig 3.0 (3KO+9TG) and HUVEC cells.
- FIG 53F shows ADPase activity of the CD39 transgene.
- Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) PUVECs show significantly higher CD39 ADPase biochemical activity compared to WT PUVEC and HUVEC.
- A Human transgene CD39 mRNA are expressed higher than endogenous CD39 in Pig 2.0 and Pig 3.0.
- B FACS revealed that Pig 2.0 and Pig 3.0 have higher human CD39 protein expression than WT PUVEC and HUVEC.
- FIG. 53G shows TFPI function in 3.0 cells.
- Activated Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) PUVECs express human TFPI on cell surface and show significantly higher binding ability to human Xa compared to WT PUVEC and HUVECs in vitro.
- Activated Pig 2.0 PUVECs show significantly higher Xa binding ability compared to WT PUVECs and HUVECs in vitro.
- FIGs 54A, 54B, 54C, 54D, and 54E show normal phenotypes of Pig 1.0 and 2.0 pigs (3KO+9TG) .
- Pig 1.0 and Pig 2.0 show similar pathophysiology, compared with WT pigs in terms of complete blood count (A) , liver (B) , heart (C) and kidney function (D) , and coagulation function (E) .
- the sample numbers for Pig 1.0, Pig 2.0 and WT pigs are 18, 16 and 21, respectively. “no sig” denotes no statistical significance among the Pig 1.0, Pig 2.0 and WT groups by student’s t-test.
- FIG. 55 shows mendelian inheritance of PERV-KO.
- the genetic modification of PERV-KO can be inherited following Mendelian genetics during natural mating production.
- the x-axis represents the total number of shifted bases calculated as the sum of insertions subtracting the sum of deletions.
- the y-axis represents the percent of reads.
- the red and green color indicate frameshift or not respectively.
- some PERV copies in the WT sample might be non-functional or carry KO.
- the liver, kidney and heart of the offspring pig has only ⁇ 50%PERV copies to carry knockout. The pattern is similar among tissues, indicating that the PERV-KO modification is stably inherited following Mendelian genetics among different tissues.
- FIGs. 56A, 56B, and 56C show mendelian inheritance of the 9TG construct and the 3KO through breeding.
- the genetic modifications (3KO and 9TG) of this iteration of Pig 2.0 can be transmitted to the next generation following Mendelian genetics through natural mating production, as validated at genomic DNA (A) , mRNA (B) and protein Level (C) .
- genomic DNA A
- B mRNA
- C protein Level
- A For the 9TG, approximately half of the progeny of Pig 2.0 x WT pigs and Pig 2.0 x 3KO pigs carry the transgenes in the genome.
- pig , “swine” and “porcine” are used herein interchangeably to refer to anything related to the various breeds of domestic pig, species Sus scrofa.
- biologically active when used to refer to a fragment or derivative of a protein or polypeptide means that the fragment or derivative retains at least one measurable and/or detectable biological activity of the reference full-length protein or polypeptide.
- a biologically active fragment or derivative of a CRISPR/Cas9 protein may be capable of binding a gRNA, sometimes also referred to herein as a single guide RNA (sgRNA) , binding a target DNA sequence when complexed with a guide RNA, and/or cleaving one or more DNA strands.
- gRNA single guide RNA
- treatment when used in the context of a disease, injury or disorder, are used herein to generally mean obtaining a desired pharmacologic and/or physiologic effect, and may also be used to refer to improving, alleviating, and/or decreasing the severity of one or more symptoms of a condition being treated.
- the effect may be prophylactic in terms of completely or partially delaying the onset or recurrence of a disease, condition, or symptoms thereof, and/or may be therapeutic in terms of a partial or complete cure for a disease or condition and/or adverse effect attributable to the disease or condition.
- Treatment covers any treatment of a disease or condition of a mammal, particularly a human, and includes: (a) preventing the disease or condition from occurring in a subject which may be predisposed to the disease or condition but has not yet been diagnosed as having it; (b) inhibiting the disease or condition (e.g., arresting its development) ; or (c) relieving the disease or condition (e.g., causing regression of the disease or condition, providing improvement in one or more symptoms) .
- spontaneous is used herein to refer to an event that occurs at the same time as another event, such as within seconds, milliseconds, microseconds, or less when compared to the occurrence of another event.
- KO knockout
- KO knocking out
- KO can also refer to a method of performing, or having performed, a deletion, deactivation or ablation of a gene or portion thereof.
- KI knockin
- knocking in is used herein to refer to an addition, replacement, or mutation of nucleotide (s) of a gene in a pig or other animal or any cells in the pig or other animal.
- KI as used herein, can also refer to a method of performing, or having performed, an addition, replacement, or mutation of nucleotide (s) of a gene or portion thereof.
- Porcine xenografts are broadly compatible with human organ size and physiology and are ethically acceptable to the US general population.
- xenotransplanted porcine tissue elicits a complex series of events leading to graft rejection including: hyperacute rejection due to the presence of preformed antibodies to pig antigens, complement activation and hypercoagulability, and heightened innate and adaptive immune responses due to molecular incompatibilities.
- the present disclosure uses genetic engineering approaches to address current shortcomings of xenotransplantation.
- Complement-and coagulation- mediated dysfunction arises due to molecular incompatibility between the donor porcine tissue and human physiology and leads to acute xenograft failure.
- Pre-formed antibodies to ⁇ -1, 3-galactosyl-galactose ( ⁇ Gal) epitopes initiate hyperacute graft rejection through activation of complement.
- Genetic inactivation of the glycoprotein ⁇ -galactosyltransferase 1 gene (GGTA1) can reduce this rapid graft destruction. Protection is further improved through over-expression of genes for human complement regulatory proteins (hCRPs) CD46 (membrane cofactor protein) , CD55 (complement decay accelerating factor) , and CD59 (MAC-inhibitory protein) .
- hCRPs human complement regulatory proteins
- CMAH cytidine monophosphate-N-acetylneuraminic acid hydrolase
- Coagulation dysfunction including thrombotic microangiopathy and systemic consumptive coagulopathy, has persisted even with GTKO and overexpression of hCRP due primarily to molecular incompatibilities in the coagulation system between pig and non-human primates (NHP) .
- transgenic pigs for safe xenotransplantation, these transgenic pigs carried only a limited number of transgenes due to construct capacity constraints and transcription interference between transgenes. These methods proved insufficient to overcome xenograft incompatibility.
- US Patent Publ. No. 2018/0249688 utilized multi-cistronic expression vectors with different combinations of transgenes. Importantly, these multi-cistronic vectors comprised only 4 transgenes and were used to produce pigs having 6 genetic modifications, including KO of alpha Gal (GTKO) . In the present disclosure, a combination of KO, KI, and genomic replacement strategies are utilized. For the first time, PERV-free pigs have been produced expressing more than 6 transgenes from a single locus.
- porcine complement factors can be KO'd and that viable pigs can be produced having one or more modified MHC Class I genes, inactivation of MHC Class II genes, KI of PD-L1 to reduce adaptive immunity-based rejections, modified porcine vWF to modulate platelet aggregation, and deletions of porcine MHC Class I genes.
- porcine cells were genetically modified with more than six transgenes to generate immunologically compatible cells, tissues, organs, pigs, and progeny.
- CRISPR-Cas9 multiple genes were functionally knocked out, including GGTA1, CMAH, and B4GALNT2, to eliminate the glycans that are recognized by human preformed anti-pig antibodies.
- GGTA1 GGTA1
- CMAH CMAH
- B4GALNT2 B4GALNT2
- pigs have been produced utilizing CRISPR-mediated non-homologous end joining (NHEJ) to disrupt the 3 major xenogenic carbohydrate antigen-producing genes ( “3KO” ; GGTA1, B4GALNT2 and CMAH) coupled with PiggyBAC-mediated random integration of the 9 transgenes CD46, CD55, CD59, CD39, CD47, HLA-E, B2M, THBD, and TFPI or the 12 transgenes (CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1) into the porcine genome.
- NHEJ CRISPR-mediated non-homologous end joining
- source donor pigs harboring the 3KO and 9T or 12TG modifications on a PERV-free background will also be genetically engineered to carry additional genetic modifications, including humanization of the vWF gene and deletion or disruption of the asialoglycoprotein receptor 1 (ASGR1) and endogenous B2M genes, among others.
- ASGR1 asialoglycoprotein receptor 1
- the present disclosure provides cells, tissues, organs, and animals having multiple modified genes, and methods of generating the same.
- the cells, tissue, organs are obtained from an animal, or is an animal.
- the animal is a mammal.
- the mammal is a non-human mammal, for example, equine, primate, porcine, bovine, ovine, caprine, canine, or feline.
- the mammal is a porcine.
- Modification of genes in accordance with the present disclosure serves to improve molecular compatibility between the donor and the recipient and to reduce adverse events, including hyperacute rejection, acute humoral rejection, thrombotic microangiopathy, and chronic vasculopathy.
- hyperacute rejection occurs in a very short time span, typically within minutes to hours after transplantation and results from pre-formed antibodies that activate complement and graft endothelial cells, in turn causing pro-coagulation changes that lead to hemostasis and eventually destruction of the grafted organ.
- the cells, tissues, organs, and animals generate a reduced hyperacute rejection.
- the present disclosure provides for one or more cells, tissues, organs, or animals having multiple modified genes.
- the cell, tissue, organ, or animal has been genetically modified such that multiple genes have been added, deleted, inactivated, disrupted, a portion thereof has been excised, or the gene sequence has been altered.
- the cell, tissue, organ, or animal has 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 genes that have been modified.
- the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 genes that have been modified are expressed from a single locus.
- the 5, 10, or 12 genes that have been modified are expressed from a single locus.
- the 12 genes that have been modified are expressed from a single locus.
- the cell, tissue, organ, or animal has more than 20, more than 15, more than 10, more than 5, more than 3, or 2 genes that have been modified.
- the cell, tissue, organ, or animal has more than 10, more than 5, more than 3, more than 2, or more than 1 gene that has been modified.
- the cell, tissue, organ, or animal has one copy of the modified gene and in other embodiments, the cell, tissue, organ, or animal has more than one copy of the one or more modified genes, such as more than 2, more than 3, more than 4, more than 5, more than 6, more than 7, more than 8, more than 9, more than 10, more than 15, more than 20, more than 25, more than 30, more than 35, more than 40, more than 50, more than 60, more than 70, more than 80, more than 90, or more than 100 copies of the modified gene.
- the cell has between 100 copies and about 1 copy, 90 copies and about 1 copy, 80 copies and about 1 copy, about 70 copies and about 1 copy, 60 copies and about 1 copy, between about 50 copies and about 1 copy, between about 40 copies and about 1 copy, between about 30 copies and about 1 copy, between about 20 copies and about 5 copies, between about 15 copies and about 10 copies, or between about 5 copies and about 1 copy of one or more modified genes.
- the present disclosure provides for one or more cells, tissues, organs, or animals having multiple copies of one or more of the modified genes.
- the cells, tissues, organs, or animals may have 2, 3, 4, 5, 6, 7, 8, 9, about 10, about 15, about 20, about 25, about 30, or more of one or more of the modified genes.
- the one or more cells is a primary cell. In some embodiments, the one or more cells is a somatic cell. In some embodiments, the one or more cells is a post-natal cell. In some embodiments, the one or more cells is an adult cell (e.g., an adult ear fibroblast) . In some embodiments, the one or more cells is a fetal/embryonic cell (e.g., an embryonic blastomere) . In some embodiments, the one or more cells is a germ line cell. In some embodiments, the one or more cells is an oocyte. In some embodiments, the one or more cells is a stem cell. In some embodiments, the one or more cells is a cell from a primary cell line.
- the one or more cells is selected from the group consisting of: an epithelial cell, a liver cell, a granulosa cell, a fat cell.
- the one or more cells is a fibroblast.
- the fibroblast is a female fetal fibroblast.
- the one or more cells is in vitro.
- the one or more cells is in vivo.
- the one or more cells is a single cell.
- the one or more cells is a member of a cell colony.
- the one or more cells is a porcine cell.
- Non-limiting examples of the breeds a porcine cell originates from or is derived from includes any of the following pig breeds: American Landrace, American Yorkshire, Aksai Black Pied, Angeln saddleback, Appalachian English, Arapawa Island, Auckland Island, Australian Yorkshire, Babi Kampung, Ba Xuyen, Bantu, Basque, Bazna, Beijing Black, else Black Pied, Belgian Landrace, Bengali Brown Shannaj, Bentheim Black Pied, Berkshire, Bisaro, Bangur, Black Slavonian, Black Canarian, Breitovo, British Landrace, British Lop, British Saddleback, Bulgarian White, Cambrough, Cantonese, Celtic, Chato Murciano, Chester White, Chiangmai Blackpig, Choctaw Hog, Creole, Czech Improved White, Danish Landrace, Danish Protest, Dermantsi Pied, Li Yan, Duroc, Dutch Landrace, East Landrace, East Balkan,
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, or a portion of the gene sequence has been altered.
- the cells, tissues, organs or animals of the disclosure comprise one or more mutations that inactivate one or more genes.
- the cells, tissues, organs or animals comprise one or more mutations or epigenetic changes that result in decreased or eliminated expression of one or more genes having the one or more mutations.
- the one or more genes is inactivated by genetically modifying the nucleic acid (s) present in the cells, tissues, organs or animals.
- the inactivation of one or more genes is confirmed by means of an assay.
- the assay is an infectivity assay, reverse transcriptase PCR assay, RNA-seq, real-time PCR, or junction PCR mapping assay.
- the cells, tissues, organs, and animals are genetically engineered to have enhanced complement (i.e., complement toxicity) , coagulation, inflammatory (i.e., apoptosis/inflammation) , immune (i.e., cellular toxicity) , and/or immunomodulation systems that render them compatible in humans.
- enhanced complement i.e., complement toxicity
- coagulation i.e., apoptosis/inflammation
- immune i.e., cellular toxicity
- immunomodulation systems that render them compatible in humans.
- Novel combinations of knockout (KO) , knockin (KI) (alternately referred to herein as transgene (TG) )
- TG transgene
- genomic replacement strategies provide the enhanced complement, coagulation, inflammatory, immune, and/or immunomodulation systems.
- Cells, tissues, organs and animals lacking expression of major xenogenic carbohydrate antigens reduce or eliminate humoral rejection during xenotransplantation.
- Three of the major xenogenic carbohydrate antigens include those produced by the glycosyltransferases/glycosylhydrolases GGTA1, CMAH, and B4GALNT2.
- a purpose for the functional loss of these genes is to reduce and/or eliminate the binding of preformed anti-pig antibodies to the endothelium of the porcine grafts.
- Insertion of key complement, coagulation, inflammatory, immune, and/or immunomodulation factors into one or more genomic loci will aid in regulating the human complement system, and natural killer (NK) , macrophage, and T cell function.
- safe harbor genomic loci such as AAVS1
- NK natural killer
- Nonlimiting examples include, overexpression by KI of hCD46, hCD55, and hCD59 to inhibit the human complement cascade; humanization of vWF to prevent unregulated platelet sequestration and thrombotic microangiopathy, for example, by humanizing the A1 domain and/or flanking regions of the porcine vWF sequence; KI of B2M-HLA-E SCT to provide protection against human NK cell cytotoxicity and humanization of porcine cells; and KI of CD47, CD39, THBD, TFPI, A20 to function as immunosuppressants, immunomodulators, and/or anticoagulants.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, or a portion of the gene sequence has been altered.
- the present disclosure provides an isolated cell, tissue, organ, or animal having multiple modified genes.
- the modified genes include one or more of alpha 1, 3, galactosyltransferase (GGTA) , Beta-1, 4-N-Acetyl-Galactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) , THBD, TFPI, CD39, HO-1, CD46, CD55, CD59, major histocompatibility complex, class I, E single chain trimer (HLA-E SCT) , A20, PD-L1, CD47, swine leukocyte antigen 1 (SLA-1) , SLA-2, SLA-3, vWF, B2M, DQA, DRA, and CD47.
- GGTA galactosyltransferase
- Beta-1 4-N-Acetyl-Galactosaminyltransferase 2
- CMAH cytidine monophosphate
- the modified genes are GGTA, B4GalNT2, CMAH, or any combination thereof. In some embodiments, the GGTA, B4GalNT2, and/or CMAH are genetically KO. In some embodiments, the modified genes are THBD, TFPI, CD39, HO-1, or any combination thereof. In some embodiments, the THBD, TFPI, CD39, and/or HO-1 are genetically KI. In some embodiments, the modified genes are CD46, CD55, CD59, B2M-HLA-E SCT, A20, PD-L1, CD47, or any combination thereof.
- the CD46, CD55, CD59, B2M-HLA-E SCT, A20, PD-L1, and/or CD47 are genetically KI.
- the modified genes are SLA-1, SLA-2, SLA-3, B2M, or any combination thereof.
- the modified genes are DQA and/or DRA.
- the modified genes are PD-L1, exogenous vWF, HLA-E, HLA-G, B2M, CIITA-DN, and or any combination thereof.
- the modified genes are TBM, PD-L1, HLA-E, CD47, or any combination thereof.
- the TBM, PD-L1, HLA-E, and/or CD47 are genetically KI.
- the modified genes are MHC-I genes SLA-1, SLA-2, and SLA-3, MHC-II genes DQA and DRA, endogenous vWF, CD9, asialoglycoprotein receptor, at least one complement inhibitor gene (e.g., C3, CD46, CD55, and CD59) , and any combination thereof.
- the CD46, CD55 and/or CD59 are genetically KI.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising B2M, HLA-E, CD47, SCT, THBD, TFPI, CD39, A20, PD-L1, FasL, CD46, CD55, CD59, or any combination thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of B2M, HLA-E, CD47, SCT, THBD, TFPI, CD39, A20, PD-L1, FasL, CD46, CD55, and CD59.
- a transgene expression vector is depicted in FIG. 17.
- the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising B2M, HLA-E, SCT, CD47, THBD, TFPI, CD39, A20, PD-L1, HO-1, CD46, CD55, CD59, or any combination thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of B2M, HLA-E, SCT, CD47, THBD, TFPI, CD39, A20, PD-L1, HO-1, CD46, CD55, and CD59.
- a transgene expression vector is depicted in FIG. 18.
- the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising B2M, HLA-E, SCT, CD47, PD-L1, HO-1, THBD, TFPI, CD39, A20, CD46, CD55, CD59, or any combination thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of B2M, HLA-E, SCT, CD47, PD-L1, HO-1, THBD, TFPI, CD39, A20, CD46, CD55, and CD59.
- a transgene expression vector is depicted in FIG. 19.
- the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising CD46, CD55, CD59, A20, THBD, TFPI, CD39, HO-1, 2xFKBP (fusion of s FK506 binding protein) , hCaspase8, PD-L1, B2M, HLA-E, SCT, CD47, or any combination thereof.
- a transgene expression vector comprising CD46, CD55, CD59, A20, THBD, TFPI, CD39, HO-1, 2xFKBP (fusion of s FK506 binding protein) , hCaspase8, PD-L1, B2M, HLA-E, SCT, CD47, or any combination thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of CD46, CD55, CD59, A20, THBD, TFPI, CD39, HO-1, 2xFKBP, hCaspase8, PD-L1, B2M, HLA-E, SCT, and CD47.
- a transgene expression vector is depicted in FIG. 20.
- the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
- the cells, tissues, organs or animals of the present disclosure can be genetically modified by any method.
- suitable methods for the knockout (KO) , knockin (KI) , and/or genomic replacement strategies disclosed and described herein include CRISPR-mediated genetic modification using Cas9, Cas12a (Cpf1) , or other CRISPR endonucleases, Argonaute endonucleases, transcription activator-like (TAL) effector and nucleases (TALEN) , zinc finger nucleases (ZFN) , expression vectors, transposon systems (e.g., PiggyBac transposase) , or any combination thereof.
- the cells, tissues, organs or animals of the present disclosure can be further modified to be PERV-free.
- the cells, tissues, organs or animals of the present disclosure can be further modified to have PERV copies functionally deleted from their genome.
- the cells, tissues, organs or animals of the present disclosure can be further modified to have PERV copies functionally inactivated in their genome.
- PERVs represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients.
- PERVs are released from normal pig cells and are infectious.
- PERV-Aand PERV-B are polytropic viruses infecting cells of several species, among them humans (e.g.
- PERV-C is an ecotropic virus infecting only pig cells.
- Non-limiting methods for functionally deleted PERV copies are disclosed and described in Niu 2017 and WIPO Publ. No. WO2018/195402, both of which are incorporated by reference herein in their entireties.
- the pigs are genetically engineered to be PERV-A, PERV-B, or PERV-C (or any combination thereof) free.
- additional genes of cells, tissues, organs or animals of the present disclosure are modified by addition, deletion, inactivation, disruption, excision of a portion thereof, or a portion of the gene sequence has been altered.
- the modified genes include deleting one or more of the following genes: MHC-I genes SLA-1, SLA-2, and SLA-3, MHC-II genes DQA and DRA, endogenous vWF, CD9, asialoglycoprotein receptor, and C3, and expressing one or more of the following transgenes: PD-L1, exogenous vWF, HLA-E, HLA-G, B2M, and CIITA-DN.
- the modified genes include deleting one or more of the following genes: alpha galactosyltransferase 1, ⁇ 1, 4 N-acetylgalactosaminyltransferase, and cytidine monophosphate-N-acetylneuraminic acid hydroxylase, and expressing one or more of the following transgenes: CD46, CD55, CD59, CD47, HO-1, A20, TNFR1-Ig, CD39, THBD, TFPI, EPCR, PD-1, CTLA-Ig, CD73, SOD3, CXCL12, FasL, CXCR3, CD39L1, GLP-1R, M3R, IL35, IL12A and EB13.
- the modified genes are CD46, CD55, CD59, CD47, HO-1, A20, TNFR1-Ig, CD39, THBD, TFPI, EPCR, PD-1, CTLA-Ig, CD73, SOD3, CXCL12, FasL, CXCR3, CD39L1, GLP-1R, M3R, IL35, IL12A and EB13.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof.
- the present disclosure provides an isolated cell, tissue, organ, or animal has one or more modified genes.
- the modified genes are MHC Class I genes.
- the modified MHC Class I genes include one or more of the following SLA-1, SLA-2, SLA-3, and B2M.
- the modified genes are SLA-1, SLA-2, and/or SLA-3.
- the modified gene is B2M.
- the modified MHC Class I genes include one or more of the following SLA-1, SLA-2, SLA-3, and B2M.
- the modified B2M, SLA-1, SLA-2, and/or SLA-3 genes, and/or a portion thereof are replaced with a human HLA-E gene, a human HLA-G gene, a human B2M gene, and/or a human (dominant-negative mutant class II transactivator) CIITA-DN gene, and/or a portion thereof.
- the modified genes are conditionally and/or inducibly modified.
- a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes.
- the isolated cell, tissue, organ, or animal comprises conditionally altering B2M, SLA-1, SLA-2, or SLA-3 genes, or any combination thereof, and replacing the conditionally altered genes with at least a portion of a human HLA-E gene, a human HLA-G gene, a human B2M gene, and/or a human CIITA-DN gene.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof.
- the present disclosure provides an isolated cell, tissue, organ, or animals has one or more modified genes.
- the modified genes are MHC Class II genes.
- the modified MHC Class II genes are DRQ, DRA, or any combination thereof.
- DRQ and/or DRA is modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered.
- the modified genes are conditionally and/or inducibly modified.
- a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes.
- the isolated cell, tissue, organ, or animal comprises conditionally altering DRQ and/or DRA genes, or any combination thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof.
- the present disclosure provides an isolated cell, tissue, organ, or animal having a modified vWF gene.
- the modified genes are vWF genes and vWF-related genes.
- the modified vWF gene, and/or a portion thereof is replaced with a human vWF gene and/or a portion thereof.
- the modified vWF gene, modified vWF-related genes, and/or a portion (s) thereof is replaced with a human vWF gene, one or more human vWF-related genes, and/or a portion thereof.
- the modified vWF gene and/or vWF-related genes are conditionally and/or inducibly modified.
- a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes.
- the isolated cell, tissue, organ, or animal comprises conditionally altering vWF, vWF-related genes, a portion (s) thereof, or any combination thereof, and replacing the conditionally altered genes with the human vWF gene, at least a portion of the human vWF gene, one or more other human vWF-related genes, at least a portion of one or more human vWF-related genes, or any combination thereof.
- the vWF gene is modified using gRNAs designed to initiate the HDR replacement in the endogenous porcine genome and cut near the region to be replaced by the human sequences.
- suitable gRNAs are any one or more of SEQ ID NOs: 5-157.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified by introduction of one or more exogenous genes, or portions thereof, into the cells, tissues, organs, or animals, such as a transgene.
- the present disclosure provides an isolated cell, tissue, organ, or animal having one or more modified genes.
- the modified genes are programmed death genes.
- the modified gene is PD-L1.
- the cells, tissues, organs, or animals are modified to express an exogenous PD-L1 gene, or portion thereof, such as a transgene.
- the modified genes are conditionally and/or inducibly modified.
- a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes.
- the isolated cell, tissue, organ, or animal comprises conditionally altering PD-L1.
- the PD-L1 comprises the sequence described in SEQ ID NO: 211 or any variant or portion thereof.
- the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof.
- the present disclosure provides an isolated cell, tissue, organ, or animal has one or more modified genes.
- the modified genes are complement genes.
- the modified gene is C3.
- C3 is modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered.
- the modified C3 gene and/or complement-related genes are conditionally and/or inducibly modified.
- a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes.
- the isolated cell, tissue, organ, or animal comprises conditionally altering C3, complement-related genes, a portion (s) thereof, or any combination thereof.
- the C3 gene is modified using gRNAs.
- suitable gRNAs include any one or more of SEQ ID NOs: 158-210.
- the modified gene is a knockout of C3. In some embodiments, the modified gene is a knock-in of PD-L1. In some embodiments, the modified gene is a humanized vWF of the porcine vWF. In some embodiments, the modified gene is a conditional knock-in of MHC-I genes SLA-1, SLA-2, and SLA-3.
- no or substantially no immune response is elicited by the host against the genetically modified cell, tissue or organ.
- the disclosure provides for nucleic acids obtained from any of the cells disclosed herein.
- the nucleic acid (s) in the cell are genetically modified such that one or more genes in the cell are altered or the genome of the cell is otherwise modified.
- the genetic modification system is a TALEN, a zinc finger nuclease, and/or a CRISPR-based system.
- the genetic modification system is a CRISPR-Cas9 system.
- the genetic modification system is a Class II, Type-II CRISPR system.
- the genetic modification system is a Class II, Type-V CRISPR system.
- the cell is genetically modified such that one or more genes or portions thereof in the cell are inactivated, and the cell is further genetically modified such that the cell has reduced expression of one or more genes, or portions thereof, that would induce an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human.
- the cell is genetically modified to have increased expression of one or more human genes, or portions thereof.
- the cell is genetically modified to have increased expression of one or more humanized genes, or portions thereof.
- the cell is genetically modified such that one or more genes, or portions thereof, in the cell are inactivated, and the cell is further genetically modified such that the cell has increased expression of one or more genes that would suppress an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human.
- the cell is genetically modified such that one or more genes, or portions thereof, in the cell are inactivated, and the cell is further genetically modified such that the cell has reduced expression of one or more genes that would induce an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human, and the cell is further genetically modified such that the cell has increased expression of one or more genes that would suppress an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human.
- the disclosure provides for an embryo that was cloned from the genetically modified cell.
- the genetically modified nucleic acid (s) are extracted from the genetically modified cell and cloned into a different cell.
- the genetically modified nucleic acid from the genetically modified cell is introduced into an enucleated oocyte.
- oocytes can be enucleated by partial zona dissection near the polar body and then pressing out cytoplasm at the dissection area.
- an injection pipette with a sharp beveled tip is used to inject the genetically modified cell into an enucleated oocyte arrested at meiosis 2.
- Oocytes arrested at meiosis-2 are frequently termed “eggs. ”
- an embryo is generated by fusing and activating the oocyte. Such an embryo may be referred to herein as a “genetically modified embryo. ”
- the genetically modified embryo is transferred to the oviducts of a recipient female pig.
- the genetically modified embryo is transferred to the oviducts of a recipient female pig 20 to 24 hours after activation. See, e.g., Cibelli 1998 and U.S. Patent No. 6,548,741.
- recipient females are checked for pregnancy approximately 20-21 days after transfer of the genetically modified embryo.
- the genetically modified embryo is grown into a post-natal genetically modified animal.
- the post-natal genetically modified animal is a neo-natal genetically modified animal.
- the genetically modified pig is a juvenile genetically modified animal.
- the genetically modified animal is an adult genetically modified animal (e.g., older than 5-6 months) .
- the genetically modified animal is a female genetically modified animal.
- the animal is a male genetically modified animal.
- the genetically modified animal is bred with a non-genetically modified animal.
- the genetically modified animal is bred with another genetically modified animal.
- the genetically modified pig is bred with another genetically modified animal that has reduced or no active virus. In some embodiments, the genetically modified animal is bred with a second genetically modified animal that has been genetically modified such that the cells, tissues or organs from the second genetically modified animal are less likely to induce an immune response if transplanted to a human.
- the genetically modified animal is an animal having one or more modified genes and maintains a same or similar level of expression or inactivation of the modified gene (s) for at least a month, at least 6 months, at least 1 year, at least 5 years, at least 10 years post-gestation. In some embodiments, the genetically modified animal remains genetically modified having one or more modified genes as a genetically modified pig even after delivery from a non-viral-inactivated surrogate or after being in a facility/space with other non-viral-inactivated animals.
- the disclosure provides for cells, tissues, or organs obtained from any of the post-natal genetically modified pigs described herein.
- the cell, tissue, or organ is selected from the group consisting of liver, kidney, lung, heart, pancreas, muscle, blood, and bone.
- the organ is liver, kidney, lung or heart.
- the cell from the post-natal genetically modified pig is selected from the group consisting of: pancreatic islets, lung epithelial cells, cardiac muscle cells, skeletal muscle cells, smooth muscle cells, hepatocytes, non-parenchymal liver cells, gall bladder epithelial cells, gall bladder endothelial cells, bile duct epithelial cells, bile duct endothelial cells, hepatic vessel epithelial cells, hepatic vessel endothelial cells, sinusoid cells, choroid plexus cells, fibroblasts, Sertoli cells, neuronal cells, stem cells, and adrenal chromaffin cells.
- pancreatic islets lung epithelial cells, cardiac muscle cells, skeletal muscle cells, smooth muscle cells, hepatocytes, non-parenchymal liver cells, gall bladder epithelial cells, gall bladder endothelial cells, bile duct epithelial cells, bile duct endothelial cells, hepatic vessel epit
- the genetically modified organs, tissues or cells have been separated from their natural environment (i.e., separated from the pig in which they are being grown) .
- separation from the natural environment means a gross physical separation from the natural environment, e.g., removal from the genetically modified donor animal, and alteration of the genetically modified organs', tissues' or cells' relationship with the neighboring cells with which they are in direct contact (e.g., by dissociation) .
- the disclosure provides for methods of generating any of the cells, tissues, organs, or animals having one or more modified genes disclosed herein.
- the disclosure provides a method of inactivating, deleting, or otherwise disrupting one or more genes, or portions thereof, in any of the cells disclosed herein, comprising administering to the cell a gene editing agent specific to a gene, wherein the agent disrupts transcription and/or translation of the gene.
- the agent targets the start codon of the gene and inhibits transcription of the gene.
- the agent targets an exon in the gene and the agent induces a frameshift mutation in the gene.
- the agent introduces an inactivating mutation into the gene.
- the agent represses transcription of the gene.
- the disclosure provides a method of altering one or more genes, or a portion thereof, in vivo, comprising administering to the cell a gene editing agent specific to a gene, wherein the agent alters a sequence of the gene, such as by humanizing the gene or otherwise changing a native (e.g., wild-type) sequence of the gene.
- the disclosure provides a method of expressing one or more genes, or a portion thereof, such as a transgene (e.g., non-native gene) comprising administering to the cell a gene editing agent specific to the transgene gene, wherein the agent introduces a sequence of the transgene.
- the agent is a nucleic acid sequence, such as a plasmid, a vector, or the like.
- the nucleic acid sequence includes one or more nucleic acid sequences, such as a promoter, a transgene, and/or additional genes.
- the nucleic acid sequence, or a portion thereof is derived from one or more species and/or one or more sources.
- the species is a species that will receive the genetically modified cell, tissue, or organ. In some embodiments, the species is a human. In other embodiments, the species is non-human, such as a mammal, an animal, a bacteria, and/or a virus.
- any of the agents disclosed herein is a polynucleotide.
- the polynucleotide encodes one or more of the nucleases and/or nickases and/or RNA or DNA molecules described herein.
- the polynucleotide agent is introduced to one or more cells.
- the polynucleotide is introduced to the one or more cells in a manner such that the polynucleotide is transiently expressed by the one or more cells.
- the polynucleotide is introduced to the one or more cells in a manner such that the polynucleotide is stably expressed by the one or more cells.
- the polynucleotide is introduced in a manner such that it is stably incorporated in the cell genome. In some embodiments, the polynucleotide is introduced along with one or more transposable elements. In some embodiments, the transposable element is a polynucleotide sequence encoding a transposase. In some embodiments, the transposable element is a polynucleotide sequence encoding a PiggyBac transposase. In some embodiments, the transposable element is inducible. In some embodiments, the transposable element is doxycycline-inducible. In some embodiments, the polynucleotide further comprises a selectable marker. In some embodiments, the selectable marker is a puromycin-resistant marker. In some embodiments, the selectable marker is a fluorescent protein (e.g., GFP) .
- GFP fluorescent protein
- the agent is a nuclease or a nickase that is used to target DNA in the cell. In some embodiments, the agent specifically targets and suppresses expression of a gene. In some embodiments, the agent comprises a transcription repressor domain. In some embodiments, the transcription repressor domain is a Krüppel associated box (KRAB) .
- KRAB Krüppel associated box
- the agent is any programmable nuclease.
- the agent is a natural homing meganuclease.
- the agent is a TALEN-based agent, a ZFN-based agent, or a CRISPR-based agent, or any biologically active fragment, fusion, derivative or combination thereof.
- CRISPR-based agents include, for example, Class II Type II and Type V systems, including e.g. the various species variants of Cas9 and Cpf1.
- the agent is a deaminase or a nucleic acid encoding a deaminase.
- a cell is genetically engineered to stably and/or transiently express a TALEN-based agent, a ZFN-based agent, and/or a CRISPR-based agent.
- any of the genetically modified cells, tissues or organs disclosed herein may be used to treat a subject of a different species as the genetically modified cells.
- the disclosure provides for methods of transplanting any of the genetically modified cells, tissues or organs described herein into a subject in need thereof.
- the subject is a human.
- the subject is a non-human primate.
- a genetically modified organ for use in any of the methods disclosed herein may be selected from the heart, lung, , liver, , eye, pituitary, thyroid, parathyroid, esophagus, thymus, adrenal glands, appendix, bladder, gallbladder, small intestine, large intestine, small intestine, kidney, pancreas, spleen, stomach, skin, and/or prostate, of the genetically modified pig.
- a genetically modified tissue for use in any of the methods disclosed herein may be selected from cartilage (e.g., esophageal cartilage, cartilage of the knee, cartilage of the ear, cartilage of the nose) , muscle such as, but not limited to, smooth and cardiac (e.g., heart valves) , tendons, ligaments, bone (e.g., bone marrow) , cornea, middle ear and veins of the genetically modified pig.
- a genetically modified cell for use in any of the methods disclosed herein includes blood cells, skin follicles, hair follicles, and/or stem cells. Any portion of an organ or tissue (e.g., a portion of the eye such as the cornea) may also be administered the compositions of the present disclosure.
- a heart, lung, liver, kidney, pancreas, or spleen is isolated from a pig that has been genetically modified to comprise (a) deletions or disruptions of GGTA1, CMAH, and B4GALNT2; (b) addition of CD46, CD55, CD59, CD39, CD47, A20, PD-L1, HLA-E, B2M, THBD, TFPI, and HO transgenes (e.g. human or humanized copies thereof) expressed from a single multi-transgene cassette in the pig genome; and (c) functional deletion of all PERV copies.
- a heart, lung, liver, kidney, pancreas, or spleen is isolated from a pig that has been genetically modified to comprise (a) functional disruption of GGTA1, CMAH, and B4GALNT2; (b) addition of CD46, CD55, CD59, CD39, CD47, A20, PD-L1, HLA-E, B2M, THBD, TFPI, and HO transgenes (e.g. humanized copies thereof) expressed from a single multi-transgene cassette in the pig genome; and (c) functional inactivation of all PERV copies.
- the pig has been further genetically modified to have humanized vWF, deletion of ASGR1, and/or deletion of B2M genes.
- the xenotransplanted organ e.g., heart, lung, liver, kidney, pancreas, spleen
- the disclosure provides for treating a subject having a disease, disorder or injury that results in a damaged, deficient or absent organ, tissue or cell function.
- the subject has suffered from an injury or trauma (e.g., an automobile accident) resulting in the damage of one or more cells, tissues or organs of the subject.
- the subject has suffered a fire or acid burn.
- the subject has a disease or disorder that results in a damaged, deficient or absent organ, tissue or cell function.
- the subject is suffering from an autoimmune disease.
- the disease is selected from the group consisting of: heart disease (e.g., atherosclerosis) , dilated cardiomyopathy, severe coronary artery disease, scarred heart tissue, birth defects of the heart, diabetes Type I or Type II, hepatitis, cystic fibrosis, cirrhosis, kidney failure, lupus, scleroderma, IgA nephropathy, polycystic kidney disease, myocardial infarction, emphysema, chronic bronchitis, bronchiolitis obliterans, pulmonary hypertension, congenital diaphragmatic hernia, congenital surfactant protein B deficiency, and congenital cystic emphysematous lung disease, primary biliary cholangitis, sclerosing cholangitis, biliary atresia, alcoholism, Wilson’s disease, hemochromatosis, and/or alpha-1 antitryps
- heart disease
- any of the genetically modified cells, tissues and/or organs of the disclosure are separated from the genetically modified donor and administered into a non-donor subject host.
- “Administering” or “administration” includes, but is not limited to, introducing, applying, injecting, implanting, grafting, suturing, and transplanting.
- the genetically modified cells, tissues and/or organs may be administered by a method or route which results in localization of the organs, tissues, cells or compositions of the disclosure at a desired site.
- the organs, tissues, cells or compositions of the disclosure can be administered to a subject by any appropriate route which results in delivery of the cells to a desired location in the subject where at least a portion of the cells remain viable.
- the cells remain viable after administration to the subject.
- Methods of administering organs, tissues, cells or compositions of the disclosure are well-known in the art.
- the cells, tissues and/or organs are transplanted into the host.
- the cells, tissues and/or organs are injected into the host.
- the cells, tissues and/or organs are grafted onto a surface of the host (e.g., bone or skin) .
- a heart, lung, liver, kidney, pancreas, or spleen which has been genetically modified to harbor deletions or disruptions of GGTA1, CMAH, and B4GALNT2; expression of CD46, CD55, CD39, CD47, HLA-E, THBD, and TFPI, and optionally one or more of CD59, B2M, A20, PD-L1, and HO-1 from a single multi-transgene cassette in the pig genome; along deletion of all PERV copies is transplanted into the host.
- a heart, lung, liver, kidney, pancreas, or spleen which has been genetically modified to harbor deletions of GGTA1, CMAH, and B4GALNT2; expression of CD46, CD55, CD39, CD47, HLA-E, THBD and TFPI, and optionally one or more of CD59, B2M, A20, PD-L1, and HO-1 from a single multi-transgene cassette in the pig genome; and functional inactivation of all PERV copies is transplanted into the host.
- the transplanted heart, lung, liver, kidney, pancreas, spleen, or a portion thereof survive and are functional for a period of time of about 1 day, about 1 week, about 2 weeks, about 3 weeks, about 1 month, about 2 months, about 3 months, about 4 months, about 5 months, about 6 months, about 9 months, about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, about 10 years, or more.
- the genetically modified cell (s) , tissue (s) or organ (s) is administered with a matrix or coating (e.g., gelatin) to protect the genetically modified cell (s) , tissue (s) or organ (s) from an immune response from the host.
- a matrix or coating e.g., gelatin
- the matrix or coating is a biodegradable matrix or coating.
- the matrix or coating is natural. In other embodiments, the matrix or coating is synthetic.
- the genetically modified cell (s) , tissue (s) or organ (s) is administered with an immunosuppressive compound.
- the immunosuppressive compound is a small molecule, a peptide, an antibody, and/or a nucleic acid (e.g., an antisense or siRNA molecule) .
- the immunosuppressive compound is a small molecule.
- the small molecule is a steroid, an mTOR inhibitor, a calcineurin inhibitor, an antiproliferative agent or an IMDH inhibitor.
- the small molecule is selected from the group consisting of corticosteroids (e.g., prednisone, budesonide, prednisolone) , calcineurin inhibitors (e.g., cyclosporine, tacrolimus) , mTOR inhibitors (e.g., sirolimus, everolimus) , IMDH inhibitors (azathioprine, leflunomide, mycophenolate) , antibiotics (e.g., dactinomycin, anthracyclines, mitomycin C, bleomycin, mithramycin) and methotrexate, or salts or derivatives thereof.
- corticosteroids e.g., prednisone, budesonide, prednisolone
- calcineurin inhibitors e.g., cyclosporine, tacrolimus
- mTOR inhibitors e.g., sirolimus, everolimus
- IMDH inhibitors
- the immunosuppressive compound is a polypeptide selected from the group consisting of: CTLA4, anti-b7 antibody, abatacept, adalimumab, anakinra, certolizumab, etanercept, golimumab, infliximab, ixekizumab, natalizumab, rituximab, seckinumab, tocilizumab, ustekinumab, vedolizumab, basiliximab, daclizumab, and murmonab.
- the genetically modified cell (s) , tissue (s) or organ (s) to be administered to the subject have been further genetically modified such that they are less likely to induce an immune response in the subject. In some embodiments, the genetically modified cell (s) , tissue (s) or organ (s) have been further genetically modified such that they do not express functional immunostimulatory molecules.
- C3 A highly conserved region of C3 was selected and two sgRNAs that target a C3 domain were designed.
- the sequences of the two gRNAs sequences are TCTCCAGACGCAGGACGTTG (SEQ ID NO: 158) and GGAGGCCCACGAAGGGCAAG (SEQ ID NO: 159) .
- the C3 sgRNA was transiently transfected together with GGTA sgRNA (GAGAAAATAATGAATGTCAA (SEQ ID NO: 210) ) plasmid and cas9 plasmid into porcine fetal fibroblast cells using the neon transfection machine and reagents.
- C3-KO Cells lacking C3 ( “C3-KO” ) were selected using a GGTA antibody counter selection method to co-enrich the C3-KO cells which were then single cell sorted and genotyped to determine the efficiency of knocking down the C3 target using deep sequencing.
- FIG. 1A shows the sizes of deletions introduced into C3
- FIG. 1B shows the position of the indels
- FIG. 1C shows the sequence of the indels generated in the C3-KO pig.
- the C3-KO pig described above would not have produced any functional C3 protein. Due to the lack of functional C3 protein, the C3-KO pig’s complement system would not be activated thereby decreasing the C3-KO pig’s innate immune system. In addition, it is expected that the C3-KO pig might be more prone to bacterial and/or viral infections compared to a wild-type pig. Moreover, xenotransplantation of a C3-KO pig’s cell, tissue, and/or organ into a human is not expected to activate the human complement system. This should therefore minimize the human innate immune response to the C3-KO pig xenograft.
- Example 2 Pigs Having One or More Modified MHC Class I Genes
- a pig’s MHC major class I alleles were conditionally replaced with human MHC minor class I alleles ( “MHC-I pigs” ) . To do so, a region of the pig’s genome containing the SLA-1, SLA-2, and SLA-3 genes was replaced with a modified version of the human minor allele HLA-E.
- FIG. 2 depicts a scheme of the MHC class I replacment strategy: the locus containing SLA-1, SLA-2, and SLA-3 genes was flanked with loxP sites. After treatment with Cre, SLA-1, SLA-2, and SLA-3 were excised and replaced by human HLA-E, such as various combinations of HLA-E, HLA-G, B2M, and CIITA-DN genes. The MHC-I pigs were viable and severely immunocompromised.
- the MHC I region of the pig was sequenced using long reads technology. Probes to capture the SLA-1, SLA-2, and SLA-3 genes were designed and used to capture the MHC-I genetic region. PacBio sequencing and 10X sequencing were used to accurately determine the MHC-I genetic region.
- the configuration of SLA-1, SLA-2, and SLA-3 is illustrated in FIG. 9. Two cassettes having loxP sites to flank the MHC-I region were designed. Cassette 1 contains a promoter, a loxP site, and a selection agent (i.e., puromycin) .
- Cassette 2 contains a second marker (GFP) , a loxP site, and a promoter-less cassette of genes including HLA-E, B2M and CIITA-DN.
- Cassettes 1 and 2 were synthesized from individual components using a Golden Gate Assembly strategy (New England BioLabs) and were flanked with a 800bp homology sequence corresponding to the insertion sites. Two consecutive rounds of CRISPR-cas9 were used to insert both sites 17 . Puromycin selection and GFP FACS sorting were used to isolate clones and junction PCR was used to validate insertions.
- Cells were transfected with Cre recombinase and expression of Cre recombinase was induced. Single cell sorting was performed and sorted cells were screened using junction PCR to isolate cells having biallelic replacement of SLA-1, SLA-2, and SLA-3 with human MHC-1.
- an alternative cassette 1 has been designed and includes a Cre recombinase under control of a tissue specific promoter or an inducible promoter.
- a tissue specific promoter or an inducible promoter By using a tissue specific promoter or an inducible promoter, the SLA-1, SLA-2, and SLA-3 genes will be excised in cell, tissue and/or organ of interest or excision can be induced in the animal prior to harvesting the cell, tissue, and/or organ.
- Pigs having SLA-1, SLA-2, and SLA-3 replaced with the human MHC-I can be generated by somatic cell nuclear transfer (SCNT) and piglets encoding conditional and/or tissue specific conditionally replaced genes can be generated.
- SCNT somatic cell nuclear transfer
- Pigs lacking expression of the MHC-II alpha chain were generated by excising DQA genes and inactivating DRA genes using established gRNA technology in porcine cells which were then transferred into host pigs via SCNT. Briefly, following gRNA transfer into the porcine cells, the genome was sequenced and variation at the MHC-II loci were identified. Cas9 was delivered to these cells, which were then sorted to isolate single cells. These single cells were sequenced to genotype the targeted DQA and DRA genes. In single cells having DQA and DRA inactivation, embryos were generated following SCNT and were subsequently implanted into a pig to generate the MHC-II KO pig. Four weeks after birth, the MHC-II KO pig remained healthy.
- FIGs. 3A and 3B illustrate the genotype of the MHC-II KO based on the DQA gene.
- the MHC-II KO pig was genotyped by exonic targeting-based amplification and sequencing of the DQA gene as well as sequencing of the DRA gene. As shown in the left panel, the sizes and positions of the indels are located in the DRA gene. Inactivation of the DRA gene was caused by the two single nucleotide insertions at each of positions 126 and 127 in the DRA amplicon as illustrated in the right panel.
- FIGs. 4A and 4B illustrate another genotype of an MHC-II KO pig.
- the DRA genotype was determined using exonic targeting-based amplification and sequencing of the DRA gene.
- the exonic targeting area from DRA has been amplified and sequenced.
- the sizes and positions of the indels are located in the DRA gene.
- Inactivation of the DRA gene was caused by the two single nucleotide insertions at each of positions 106 and 107 in the DRA amplicon as illustrated in the right panel.
- the MHC-II KO pig Similar to a human lacking MHC-II expression, the MHC-II KO pig has a decreased population of CD4 + T cells however, the CD8 + T cell population remains intact (FIG. 5) . In addition, the MHC-II KO pig is immunosuppressed, has increased autoimmunity, and lymphoid defects, amongst other issues. These phenotypes are known to be associated with the MHC-II KO phenotype and have been observed in mice lacking MHC-II expression. These similarities confirm that the MHC-II KO pig is a valid MHC-II KO rather than an active gene modification (FIG. 6) .
- a human PD-L1 gene (e.g., PD-L1 transgene) was delivered to a pig genome. See scheme with structure in FIG. 7. Expression of the human PD-L1 transgene was confirmed by qPCR using two different PD-L1 amplicons (FIG. 8) .
- Porcine tissues expressing PD-L1 may have reduced rejection by a host, such as a human, following xenotransplantation.
- An HDR vector that contains the homology arms from pvWF, the A1 domain, and the certain residues in the flanking regions from hvWF was designed and constructed. (FIG. 10) .
- Two sgRNAs were also designed to initiate the HDR replacement in the endogenous porcine genome and cut near the region to be replaced by the human sequences: TCTCACCTGTGAAGCCTGCG (SEQ ID NO: 5) and CACAGTGACTTGGGCCACTA (SEQ ID NO: 6) .
- the HDR vector is composed of ⁇ 1kb homology arms from porcine vWF and the human A1 and flanking domains as well as inactivating mutations in the sgRNA cutting sites to prevent sgRNA from cutting the donor and modified porcine genome.
- the HDR vector also contains SphI and BspEI sites that can distinguish the HDR vector from the endogenous porcine genome near the sgRNA cutting sites.
- Porcine primary fibroblast cells were transfected using the Neon Transfection System (Invitrogen) with 8 ⁇ g of Cas9, 1 ⁇ g of sgRNA1, and 1 ⁇ g of sgRNA2, as well as 10 ⁇ g of the HDR vector. Two days after transfection, cells were single cell sub-cloned using FACS. The single cells were cultured for additional 12 days until the episomal form of the HDR vectors are lost during cell division. The A1 and flanking regions of the hvWF were amplified using flanking primers.
- the PCR product was subjected to SphI and BspEI sequential digestions to screen the clones having HDR replacement which would add novel SphI and BspEI sites to the PCR products having fragments sized at 700bp, 323bp and 258bp following sequential digestion (FIG. 11) .
- the complete bi-allelic HDR eliminates a wild-type product of 1281bp as well as any partial digestion products larger than 700bp.
- a cell having a bi-allelic HDR was isolated from about 150 single-cell colonies (FIG. 11) . As confirmed by sequencing, both alleles of the porcine A1 domain and flanking regions were replaced with the human counterpart (FIGs. 12A and 12B) . The A1 domain is highlighted, whereas the potential glycosylation sites in the flanking region are labeled with dashes. The human specific residues that are deleted in pvWF are labeled with a bar and the humanized A1 domain and flanking regions are labeled with half parenthesis.
- This isolated cell has been expanded into a cell line and may be used to generate a genetically modified pig by SCNT.
- Cells expressing the A1-humanized pvWF had a significantly reduced aggregation response against human platelets during a platelet activation assay (FIG. 13) . Briefly, the cells were incubated with human platelets and aggregation was induced by shear stress. The cells expressing the A1-humanized pvWF showed a milder and inducible aggregation curve whereas the cells expressing wildtype pvWF had a stronger aggregation response towards human platelets.
- porcine organs having A1 hvWF will likely induce a milder coagulation response in human blood compared to porcine organs expressing pvWF and might ameliorate the vascular incompatibility observed in pig-to-human xenotransplantation.
- MHC class I molecules play a vital role in the rejection of allotransplantation through their peptide presentation to CD8+ T cells.
- deletion of the entire ⁇ 200kb classical MHC class I locus in porcine primary fibroblast cells prevented CD8+ T cell mediated toxicity in xenotransplantation.
- Classical MHC class I genes encode highly polymorphic proteins that are widely expressed in cell surface. They present foreign peptides to CD8+ T lymphocytes leading to the lysis of target cells. Also, mismatched MHCI molecules also serve as antigens in transplantation. Different strategies of removing the classical MHCI molecular in donor porcine organs for xenotransplantation have been explored. In one attempt, the Tector group knocked out the conserved Exon4 of the SLA-1, SLA-2 and SLA-3 molecular using Cas9 and 3 sgRNAs (Reyes 2014) . However, this exon is also share by other classical and non-classical MHCI molecular and it may generate unpredicted off-target effects.
- the remaining Exon1-3 may still be presented as cell surface antigens.
- the heterodimerization partner B2M was knocked out using TALENs (Wang 2016) . This method may also affect the non-classical MHCI molecules and the remaining MHCI may still be presented de-structured proteins on the cell surface.
- human HLA-E/B2M molecules are usually complemented in the MHCI deficient cells to prevent NK cell mediated toxicity.
- the human B2M might dimerize with porcine SLAs and restore their antigenicity in the B2M knockout pigs.
- the MHC classical class I cluster with unique flanking sequences in the porcine genome were first identified (FIG. 14) .
- This ⁇ 200kb cluster contains all the 8 classical MHCI genes without any other protein coding genes.
- sgRNAs SEQ ID NOs 1-4
- enrichment strategies were also designed to isolate bi-allelic deletion clones.
- Porcine primary fibroblast cells were transfected with 1.25 ⁇ g of TrueCut Cas9 protein and 7.5nmole of crRNA/tracrRNA duplex (Invitrogen) using the Neon transfection system (Invitrogen) .
- genomic DNA was harvested from the transfected cells and subject to PCR using designated primer pairs shown in FIG. 15A. Fragmental deletion was detected using primers flanking the expected deletion junction.
- This PCR product was subcloned using Toposiomerase based cloning ( “TOPO cloning” ) and the individual TOPO clones were Sanger sequenced to confirm the sequence of the deletion junctions. The sequences were aligned to the expected junction shown in FIG. 15B.
- TOPO cloning Toposiomerase based cloning
- the cells containing bi-allelic deletion can be used to produce classical MHCI knockout pigs via somatic cells nuclear transfer. It is contemplated that the pigs are completely deficient in all classical MHCI molecules and proficient for the non-classical MHCI molecules, which might be involved in fertility and other physiological functions. The remaining B2M molecules are unlikely to be antigenic because they are non-polymorphic and highly conserved to the human counterpart. Also, the exogenous expression of human HLA-E/B2M cannot rescue the deficiency of classical MHCI molecules. The resultant pig should have the cleanest classical MHCI knockout background compared to previous reports.
- Example 7 Generation of Immunologically Compatible Porcine Cells, Tissue, Organs, Pigs, And Progeny
- FIG. 21 outlines the progression of donor pig generations through sequential gene editing. As described below, in the case of Pig 2.0 (3KO+12TG) these gene edits included three knockouts and 12 transgene knockins designed to address immunologic, coagulation, and species incompatibilities.
- CRISPR-Cas9 mediated NHEJ was used to functionally knock out the three major carbohydrate-producing glycosyltransferase/glycosylhydrolase genes GGTA1, CMAH, and B4GALNT2.
- GGTA1, CMAH, and B4GALNT2 are the major initial immunologic barrier to xenotransplantation, and these three genes have been identified as being largely responsible for producing the xenogenic antigens targeted by these antibodies (Byrne 2014, Lai 2002, Lutz 2013, Martens 2017, Tseng 2006) .
- it was predicted that the functional loss of these genes would largely eliminate the binding of preformed anti-pig antibodies to the endothelium of the porcine graft.
- cis-elements such as ubiquitous chromatin opening elements (UCOEs) were introduced to prevent transgene silencing and insulators with strong polyadenylation sites and terminators to minimize the interaction among transgenes and between transgenes and the flanking chromosome.
- UCOEs ubiquitous chromatin opening elements
- Transgene expression levels and tissue-specific promoter-driven expression was determined using qPCR (FIG. 23) , and integration site and copy number were determined using junction capture based on inverted PCR.
- qPCR qPCR
- integration site and copy number were determined using junction capture based on inverted PCR.
- all transgenes in adjacent cistrons demonstrated desired tissue-specificity in fibroblast and endothelial cell lines without detectable transcription interference.
- all transgenes showed highly consistent expression levels across clones with various locations of genomic integration, which indicates that the transgene expression is independent of chromosomal context.
- the six genes inserted under control of a ubiquitous promoter including the complement regulatory genes (CD46, CD55, and CD59; EF1 ⁇ promoter) and B2M, HLA-E, and CD47 (CAG promoter) were expressed in both fibroblast and endothelial cells.
- the six genes (A20, PD-L1, HO1, THBD, TFPI, and CD39) expressed under the regulation of tissue-specific promoters (NeuroD or ICAM2) , demonstrated lower levels of expression in fibroblasts relative to expression in endothelial cells.
- transgene knockins are randomly integrated into the genome using PiggyBac transposase, and clones with single copy integration into intergenic regions with no predictable consequences are used for pig production.
- homozygous female/male pigs will be generated with biallelic site-specific transgene integration into a safe harbor (e.g., the AAVS1 genomic locus) prior to scaled up breeding and production of source donor pigs.
- Additional in vitro assessments of innate and adaptive immune cell function and complement and coagulation cascades will include antibody reactivity profiling, mixed lymphocyte reaction, complement-dependent cytotoxicity, NK cell cytotoxicity, macrophage phagocytosis, and effects on coagulation factors and platelet aggregation.
- human complement regulatory proteins were over-expressed. Briefly, genetically engineered pig fibroblasts and pig splenocytes were incubated with 25%human complement for one hour. Cells were stained with propidium iodide and analyzed by flow cytometry to quantify cell death. Wild-type fibroblasts and splenocytes demonstrated the highest percentage of cell death after culture with human complement. 4-7P and 4-7H cells are derived from Pig 2.0 (3KO+12TG) piglets; 4-7F cells (3KO +12 TG) are derived from a Pig 2.0 (3KO+12TG) fetus.
- 3-9 is triple carbohydrate antigen-producing enzyme KO, HLA-DQA KO, HLA-DRA KO, and human complement regulatory factor C3 KO.
- pig fibroblasts and splenocytes genetically engineered to express human CD46, CD55, and CD59 exhibited significantly lower levels of complement-mediated cell death compared to control human fibroblasts.
- NK cells are susceptible to targeted cell killing by NK cells.
- human HLA-E which ligates human NK KIR receptors, was overexpressed in pig cells. Seventy percent of WT pig fibroblast and K562 cells (human MHC-deficient cell line) were targeted for killing by NK cells. As shown in FIG. 26, human HLA-E+engineered pig fibroblast cells demonstrated significantly lower NK-mediated cell killing. In contrast, HLA-E+ pig fibroblasts demonstrated significantly lower killing by NK cells, suggesting that expression of HLA-E protected these cells from lysis.
- the over-expression of human CD55 in pig cells reduces complement-mediated toxicity which may diminish coagulation and improve xenograft survival.
- the activation of coagulation ultimately leads to the formation of thrombin which is inactivated by binding antithrombin in a stable thrombin-antithrombin (TAT) complex.
- TAT thrombin-antithrombin
- wild-type, CD55 KI + GGTA1-deficient cells, and human endothelial cells were cultured with human blood. As shown in FIG. 27, human blood alone or human blood incubated with human endothelial cells for 60 min generated approximately 10ng/mL TAT protein.
- RNAseq was performed on samples isolated from pigs genetically modified with Payload 9 or Payload 10. Results demonstrated increased expression of several of the payload immune modifications transgenes, namely the complement transgenes, along with cellular toxicity genes (B2M, HLA-E, CD47) (FIG. 36) .
- Example 8 Antibodies in xenotransplantation and the potential of enzymatic cleavage to prevent functional binding
- Antibody-mediated rejection has historically been the primary hinderance to the development of xenotransplantation as a viable treatment for end stage organ failure.
- recent genetic advancements have allowed for development of multiple-gene knockout pigs, which lack established xenoantigen targets.
- Knockout of aGal, Neu5Gc, and SDa have been linked to improved graft survival.
- further work is needed to fully understand the impact of residual antibody binding to other xenoantigen targets and if the removal of these antigens protects tissues from highly sensitized human serum.
- it was investigated whether xenoantigen knockout decreases high PRA serum binding and whether functional antibody binding is decreased by enzymatic degradation.
- Human and porcine PBMCs were collected from peripheral blood using Ficoll separation. Porcine aortic endothelial cells (pAECs) were processed from WT pigs and the genetically modified Pig 2.0 (3KO+12TG) of Example 7. Anonymous high and low PRA serum samples were generously provided by the Massachusetts General Hospital HLA laboratory. Serum was collected from heart, liver, and kidney xenotransplant recipients. Serum antibody was enzymatically cleaved by IdeS (Genovis Inc. ) .
- FIGs. 46A-46C show that the IgG-specific protease, IdeS, effectively reduces the binding of functional IgG from human and cynomolgus serum to background levels.
- Example 9 Generation of PERV-Free and Immunologically Compatible Porcine Cells, Tissue, Organs, Pigs, And Progeny
- Porcine organs are considered a favorable resource for xenotransplantation since they are similar to human organs in size and function, and pigs can be bred in large numbers.
- porcine organs has been hindered by the potential risk of porcine endogenous retrovirus (PERV) transmission, and by immunological incompatibilities.
- PERVs are gamma retroviruses found in the genome of all pig strains. Pig genomes contain from a few to several dozen copies of PERV elements (Lee 2011) .
- PERVs are an integral part of the pig genome. As such, they cannot be eliminated by bio-secure breeding (Schuurman 2009) .
- PERVs can infect and propagate in human cells through “copy-and-paste” mechanisms.
- viral particles can be released and can infect human cells and randomly integrate into the human genome, preferentially in intragenic regions and in areas of active chromatin remodeling (Armstrong 1971, Moalic 2006, Niu 2017, Patience 1997) .
- both PERV-Aand PERV-B can infect human cells.
- PERV-C is ecotropic, the recombinant viral type (A/C) demonstrates the greatest infectivity.
- PERVs adapt to the new host genome environment through elongation of the LTR sequence, infectivity potential may increase.
- PERVs can also pass horizontally from infected human cells to other human cells that have had no contact with porcine cells.
- PERV can pass from pig cells to mouse cells (Clémenceau 2002) .
- PERV integration could potentially lead to immunodeficiency and tumorigenesis, as reported with other retroviruses.
- Recent breakthroughs in genetic engineering have demonstrated genome-wide inactivation of PERV in an immortalized pig cell line (Yang 2015; PCT Publ. No. WO17/062723) and production of PERV-free pigs (Niu 2017; PCT Publ. No. WO18/195402) .
- PERV copy number was monitored both in a population and in clones of PERV-infected HEK293T-GFP cells (iHEK293T-GFP) for greater than 4 months. PERV copy number was observed to increase over time, as determined by ddPCR (Pinheiro 2012) .
- PERV-Free and Immunologically Compatible Pigs Studies have been undertaken to engineer donor pigs that do not harbor any active PERVs in the genome as well pigs that have enhanced immunological, inflammatory, and coagulation systems compatible with human tissues. With respect to the former, pigs wherein the function of all the PERVs in the pig genome have been eradicated using CRISPR-Cas9 engineering to disrupt the catalytic domain of the reverse transcriptase gene (pol) in the PERV elements (using the methods as described in Niu 2017 and WIPO Publication No. WO2018/195402) and using a combination of knockout (KO) , knockin (KI) , and genomic replacement to provide human tissue compatible organs.
- KO knockout
- KI knockin
- pigs wherein three of the major xenogenic carbohydrate antigen-producing genes/enzymes that trigger humoral rejection, GGTA1, CMAH, and ⁇ 1, 4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) have been genetically inactivated were generated as described herein. It was contemplated that the functional loss of these genes would largely eliminate the binding of preformed anti-pig antibodies to the endothelium of the porcine graft.
- key immunological modulatory factors were inserted at a single locus within the PERV-free pig genome to regulate e.g.
- the human complement system hCD46, hCD55, and hCD59
- the coagulation system e.g. hCD39, hTHBD, and hTFPI
- the inflammation response e.g. hA-20, hCD47, and hHO-1
- NK e.g. PD-L1
- T cell responses e.g. hHLA-E, hB2M
- FIG. 21 outlines the progression of donor pig generations through sequential gene editing.
- Pig 1.0 porcine fibroblasts have been genetically engineered, using CRISPR-Cas9 mediated non-homologous end joining (NHEJ) , to have all PERV copies functionally deleted from or inactivated within the genome.
- NHEJ CRISPR-Cas9 mediated non-homologous end joining
- Pig 2.0 was generated through CRISPR-mediated NHEJ to delete the 3 major xenogenic carbohydrate antigen-producing genes (3KO; GGTA1, B4GALNT2 and CMAH) coupled with PiggyBAC-mediated random integration of up to 12 selected transgenes or knock-ins selected from CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1 that modify various components of the xenogenic immune response into the porcine genome.
- source donor pigs are then generated to carry the 3KO and up to12 specified transgenes, on the PERV-free background.
- next generations of source donor pigs will be genetically engineered to carry additional modifications, such as humanization of the vWF gene and deletion of the asialoglycoprotein receptor 1 (ASGR1) and endogenous B2M genes.
- ASGR1 asialoglycoprotein receptor 1
- PERV-free 3KO+TG pigs (Pig 3.0, FIG. 21) have been genetically engineered, these pigs will be crossbred to generate progeny and/or a drift, drove, litter, and/or sounder of swine.
- Pig 2.0 For production of PERV-free Pig 3.0, Pig 2.0 (3KO+9TG) with xenocompatibility modifications were generated first.
- wild-type porcine ear fibroblasts were first electroporated with both: a) CRISPR-Cas9 reagents targeting the GGTA, CMAH, and B4GALNT2 genes; and b) payload plasmids bearing (i) a PiggyBac transposase cassette (ii) a transgenic construct consisting of the nine human transgenes (hCD46, hCD55, hCD59, hB2M, hHLA-E, hCD47, hTHBD, hTFPI and hCD39) organized into 3 expressible cistrons (see FIG. 51) .
- Single-cell clones of the fibroblasts were generated and screened by a) fragment analysis/whole genome sequencing to identify clones with the desired genomic modifications (see FIG. 51C) and b) conventional PCR (see FIG. 51D) .
- a clone bearing the desired modifications was then used as a donor to produce pig 2.0 by SCNT.
- Pig 2.0 With isolated cells in hand from Pig 2.0 (3KO+9TG) , PERV engineering using a CRISPR-Cas9 system was used to generate cells with xenocompatible modifications that are also PERV-free.
- Pig 2.0 fibroblasts were electroporated with CRISPR-Cas9 reagents targeting the reverse transcriptase (Pol) gene common to all genomic copies of the PERV elements.
- Single-cell clones of the electroporated cells were generated, and these clones were screened by deep-sequencing to identify clones in which the catalytic core of the Pol gene was disrupted (see FIG 51C) .
- Clones with the desired disruption in Pol were then subjected to karyotyping (see FIG. 51E) ; those with a normal karyotype were then used in SCNT to produce the Pig 3.0 (3KO+9TG) embryo and pig.
- Pig 3.0 (3KO+9TG) gained enhanced compatibility with the human immune system, as evidenced by attenuated human antibody binding, complement toxicity, NK-cell toxicity, phagocytosis, and restored coagulation regulation.
- Pig 1.0 and 2.0 were fertile and produced a normal average litter size of seven.
- the offspring from breeding Pig 1.0 with WT pigs carried ⁇ 50%PERV inactivated alleles in their liver, kidney, and heart tissues, indicating that PERV-KO alleles are stably inherited following Mendelian genetics (FIG. 55) .
- all the offspring of Pig 2.0 and WT pigs were heterozygous (FIG. 56A) for 3KO and approximately half carried 9TG, with expression validated at both the mRNA (FIG. 56B) and protein level (FIG. 56C) . This suggests that the genetic modifications have not been swept by normal breeding. Therefore, we conclude that the engineered pigs exhibit normal physiology, fertility, and germline transmission of the edited alleles.
- Pig 3.0 (3KO+9TG) with 42 genomic loci modified to eradicate PERV activity and enhance human immune compatibility.
- Extensive analysis of Pig 3.0 showed that the engineered pig cells exhibit reduced human antibody binding, complement toxicity, NK cell toxicity, and coagulation dysregulation.
- Pig 3.0 (3KO+9TG) demonstrates the power of synthetic biology to extensively engineer the genome and confer novel functions in large animals.
- Pig 3.0 we deleted 25 copies of PERV elements, 8 alleles of xenogeneic genes, and concurrently expressed 9 human transgenes to physiologically relevant levels. It extends the record of genome modifications to 42 in large animal models. With the ability to execute complex genetic engineering in this scale, we are in a position to engineer additional edits and ultimately choose the pig with the combination best suited for xenotransplantation.
- pig 3.0 can be further engineered to achieve additional novel functions, such as immune tolerance, organ longevity, and viral immunity.
- Porcine fetal fibroblast cells and fibroblast cells FFF3 were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) high glucose with sodium pyruvate supplemented with 15%fetal bovine serum (Invitrogen) , 1%penicillin/streptomycin (Pen/Strep, Invitrogen) and 1%HEPES (Thermo Fisher Scientific) . All cells were maintained in a humidified tri-gas incubator at 38°C and 5%CO2, 90%N2, and 5%O2.
- Porcine umbilical vein endothelial cells were freshly isolated from umbilical vein and cultured in PriGrow II Medium (abm) supplemented with 10%fetal bovine serum (Gibco) , 1%penicillin/streptomycin (Pen/Strep, Invitrogen) and 1%HEPES (Thermo Fisher Scientific) .
- Human umbilical vein endothelial cells (HUVEC, ATCC, PCS-100-010) were cultured in vascular cell basal medium (ATCC) supplemented with Endothelial Cell Growth Kit-BBE (ECG kit, ATCC) .
- Human NK-92 cell line was cultured in Minimum Essential Medium Alpha ( ⁇ -MEM, Gibco) supplemented with 12.5%fetal bovine serum (Gibco) , 12.5%fetal equine serum (FES, Solarbio) and 1%penicillin/streptomycin (Pen/Strep, Invitrogen) .
- the human macrophage cell line THP-1 was cultured in RPMI 1640 (BI) supplemented with 10%fetal bovine serum (Gibco) and 1%penicillin/streptomycin (Pen/Strep, Invitrogen) .
- Differentiation of THP-1 cells was achieved in 62.5 nM Phorbol-12-myristate-13-acetate (PMA, Sigma) for 3 days and confirmed by attachment of these cells to tissue-culture plastic.
- PiggyBac-Cas9/2gRNAs excision from the FFF3 genome by transfecting 5 ⁇ 105 cells with 3 ⁇ g PiggyBac Excision-Only Transposase vector using Lipofectamine 2000 reagent.
- the PiggyBac-Cas9/2gRNAs-excised FFF3 cells were then single-cell sorted into 96-well plates for clone growth and genotyping.
- Reactions were incubated at 95°C for 3 min followed by 30 (for single cell) or 25 (for single cell clones) cycles of 95°C, 20 s; 59°C, 20 s and 72°C, 10 s.
- 3 ⁇ l of reaction products were then added to 20 ⁇ l of PCR mix containing 1 ⁇ KAPA 2G fast (KAPA Biosystems) and 0.3 ⁇ M primers carrying Illumina sequence adaptors.
- Reactions were incubated at 95°C for 3 min, followed by 20 (for single cell) or 10 (for single cell clones) cycles of 95°C, 20 s; 59°C, 20 s and 72°C, 10 s.
- PCR products were examined on EX 2%gels (Invitrogen) , followed by the recovery of ⁇ 360 bp target products from the gel. These products were then mixed at roughly the same amount, purified (QIAquick Gel Extraction Kit) , and sequenced with MiSeq Personal Sequencer (Illumina) . We then analyzed deep sequencing data and determined the PERV editing efficiency using CRISPR-GA (5) .
- Illumina_PERV_pol forward 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGACTGCCCCAAGGGTTCAA-3’
- the cumulus cell-oocyte complexes were isolated from the follicles of 3-6 mm in diameter, and then cultured in 200 ⁇ L TCM-199 medium supplemented with 0.1 mg/mL pyruvic acid, 0.1 mg/mL L-cysteine hydrochloride monohydrate, 10 ng/mL epidermal growth factor, 10% (v/v) porcine follicular fluid, 75 mg/mL potassium penicillin G, 50 mg/mL streptomycin sulfate, and 10 IU/mL eCG and hCG (Teikoku Zouki Co., Tokyo, Japan) at 38.5°C in a humidified atmosphere with 5%CO2 (APC-30D, ASTEC, Japan) . After 38 to 42 hours in-vitro maturation, the expanded cumulus cells of the COCs were removed by repeat pipetting of the COCs in 0.1% (w/v) hyaluronidase.
- SCNT was conducted as previously described. Briefly, oocytes extruding the first polar body with intact membrane were cultured in NCSU23 medium supplemented with 0.1 mg/mL demecolcine, 0.05 M sucrose, and 4 mg/mL bovine serum albumin (BSA) for 0.5 to 1 hour for nucleus protrusion.
- NCSU23 medium supplemented with 0.1 mg/mL demecolcine, 0.05 M sucrose, and 4 mg/mL bovine serum albumin (BSA) for 0.5 to 1 hour for nucleus protrusion.
- BSA bovine serum albumin
- the protruded nucleus was then removed along with the polar body by using a bevelled pipette (approximately 20 ⁇ m in diameter) in Tyrode’s lactate medium supplemented with 10 ⁇ M hydroxyethyl piperazineethanesulfonic acid (HEPES) , 0.3% (w/v) polyvinylpyrrolidone, and 10%FBS in the presence of 0.1 mg/mL demecolcine and 5 mg/mL cytochalasin B. WT or PERV-free fibroblasts were used as nuclear donors. A single donor cell was injected into the perivitelline space of the enucleated oocyte.
- HEPES hydroxyethyl piperazineethanesulfonic acid
- FBS hydroxyethyl piperazineethanesulfonic acid
- WT or PERV-free fibroblasts were used as nuclear donors.
- a single donor cell was injected into the perivitelline space of
- Donor cells were fused with the recipient cytoplasts with a single direct current pulse of 200 V/mm for 20 ⁇ s by using an embryonic cell fusion system (ET3, Fujihira Industry Co. Ltd., Tokyo, Japan) in a fusion medium which contains 0.25 M D-sorbic alcohol, 0.05 mM Mg (C2H3O2) 2, 20 mg/mL BSA and 0.5 mM HEPES (free acid) .
- an embryonic cell fusion system E3, Fujihira Industry Co. Ltd., Tokyo, Japan
- a fusion medium which contains 0.25 M D-sorbic alcohol, 0.05 mM Mg (C2H3O2) 2, 20 mg/mL BSA and 0.5 mM HEPES (free acid) .
- the reconstructed embryos were cultured in PZM-3 solution (van’t Veer 1997) for 2 hours to allow nucleus reprogramming and then activated with a single pulse of 150 V/mm for 100 ⁇ s in an activation medium containing 0.25 M D-sorbic alcohol, 0.01 mM Ca (C2H3O2) 2, 0.05 mM Mg (C2H3O2) 2 and 0.1 mg/mL BSA.
- the activated embryos were then cultured in PZM-3 supplemented with 5 mg/mL cytochalasin B for 2 hours at 38.5°C in humidified atmosphere with 5%CO2, 5%O2, and 90%N2 (APM-30D for further activation, ASTEC, Japan) .
- Reconstructed embryos were then transferred to new PZM-3 medium and cultured in humidified air with 5%CO2, 5%O2, and 90%N2 at 38.5°C for 2 and 7 days to detect the embryo cleavage and blastocyst development ratios, respectively.
- Neonatal (3-6 days old) porcine kidney cryosections of WT, Pig 2.0 and Pig 3.0 were subject to immunofluorescence to characterize the genetic modification (3KO and 9TG) at tissue level. Cryosections were fixed with ice-cold acetone, blocked and then stained using either one-step direct or two-step indirect immunofluorescence techniques. The primary and secondary antibodies used were summarized in Supplementary Table 2. Nuclear staining was performed using ProLong Gold DAPI (Thermo Fisher, P36931) . Sections were imaged using a Leica Fluorescence Microscope, and analyzed using ImageJ software. All pictures were taken under the same conditions to allow correct comparison of fluorescence intensities among WT, Pig 2.0 and Pig 3.0 cryosections.
- Pig 2.0, Pig 3.0, WT PUVEC and HUVEC (1 ⁇ 105 cells per test) were incubated with diluted human serum for 30 min at 37°C, respectively. Cells were then washed with cold staining buffer and incubated with goat anti-human IgG Alexa Fluor 488 (Invitrogen, A11013, 1:200 dilution) and goat anti-human IgM Alexa Fluor 647 (Invitrogen, A21249, 1: 200 dilution) for 30 min at 4°C. After washing with cold staining buffer, cells were resuspended in staining buffer containing 7-AAD (BD, 559925, 1: 100 dilution) in order to include a dead/live gating.
- 7-AAD 7-AAD
- MFI median fluorescence intensity
- Pig 2.0, Pig 3.0, WT PUVEC and HUVEC were harvested, washed twice with PBS, and resuspended in serum-free culture medium.
- Cells (1x10 5 cells per test) were incubated with a uniform pool of human serum complement (Quidel, A113) at different concentrations (0%, 25%, 50%and 75%) for 45 min at 37°C and 5%CO2. Afterwards, cells were stained with propidium iodide (Invitrogen, P3566, 1: 500 dilution) for 5 min and analyzed by using a CytoFLEX S flow cytometer. 5,000 events were collected for each sample, and the percentage of PI positive cells was used as the percentage of cell death mediated by human complement.
- PUVEC and HUVEC were used as target cells and labeled with anti-pig CD31-FITC antibody (Bio-Rad) and anti-human CD31-FITC antibody (BD) , respectively.
- human NK 92 cells were used as effector cells and labeled with anti-human CD56-APC antibody (eBioscience) .
- the effector (E) and target cells (T) were cocultured for 4 hours at 37°C and 5%CO 2 , at an E/T ratio of 3. Cells were stained with propidium iodide for 5 min and then subject to FACS analysis. The percentage of PI positive cells in CD31+ gate was used to calculate the percentage of killed target cells.
- THP-1 Differentiation of human macrophage cell line THP-1 was achieved by 62.5 ⁇ M of phorbol myristate acetate (PMA) for 3 days and confirmed by attachment of these cells to tissue-culture plastic. Porcine splenocytes (target cells) were stained with the fluorescent dyes 5/6-CFSE (Molecular Probes) according to the manufacturer’s protocol. CFSE-labeled target cells were incubated with human differentiated THP-1 cells (effector cells) at E/T ratios of 1: 1 and 1: 5, respectively, for 4 hours at 37°C. Macrophages were counterstained with anti-human CD11b antibody and phagocytosis of CFSE-labeled targets were measured by FACS. Phagocytic activity was calculated as previously described (Ide 2007) .
- Pig 2.0, Pig 3.0 and WT PUVEC and HUVEC were seeded at 2 ⁇ 104 per well in a 96-well plate, 1 day before the assay.
- Cells were incubated with 500 ⁇ M ADP (Chrono-Log Corp, #384) for 30 min at 37°C and 5%CO2.
- Malachite green (Sigma, MAK307) was added to stop the reaction, and absorbance was measured at 630 nm to determine levels of phosphate generation against the standard curve of KH2PO4.
- TFPI activity and human factor Xa binding assay was then performed as previously described (Xenotransplantation, Methods and Protocols, Editors: Costa, Columbia, Rafael, ISBN 978-1-61779-845-0) . All assays were performed in quadruplicate.
- Pig 2.0, Pig 3.0 and WT PUVEC and HUVEC were seeded at 3 ⁇ 105 per well in 6-well plates. After 1 day, cells were incubated with 1 mL of fresh whole human blood (containing 0.5 U/mL heparin) at 37°C with gentle shaking. At different indicated time points, blood was aspirated, from which plasma was isolated. TAT content in plasma was measured by using a Thrombin-Antithrombin Complex Human ELISA Kit (Abcam, ab108907) .
- Paired reads are mapped to the Sus Scrofa 11.1 genome (ftp: //ftp. ensembl. org/pub/release-91/fasta/sus_scrofa/dna/) by BWA (v0.7.17-r1188) .
- Variants SNPs and INDELs
- GATK v4.0.7.0
- Genome-wide on-target and off-target sites are predicted using CRISPRSeek (v1.22.1) in R (v3.5.0) allowing up to 6-mismatches.
- the input genome is either Sus Scrofa 11.1 (ftp: //ftp. ensembl. org/pub/release-91/fasta/sus_scrofa/dna/) .
- a variant is an off-target or germline mutation, it is annotated for sequence change at transcript level and amino acid change at protein level to assess its potential functional impact using VEP (variant effect predictor, v93.3) .
- High impact mutations are specially selected if they can result in frameshift, start gain/lost, stop gain/lost, splice donor/acceptor shift or splice region changes. Whenever available, the mutation will be annotated to indicate whether it’s impacting principle or alternative transcripts using the APPRIS database.
- RNA-Seq reads are aligned to the Sus Scrofa 11.1 genome using STAR (v2.6.1a) under the splicing-aware mode.
- the expression level is quantified as TPM (transcripts per million) using Salmon (v0.11.3) with both pig transcriptome and transgenes as input transcripts.
- Paired reads are merged into fragments if their overlap is over 100 bases after trimming 3’-end low-quality bases below Q20. Merged fragments are further scanned to hard mask low-quality bases below Q20 and aligned to the PERV amplicon target sequence using STAR (v2.6.1a) under the splicing-aware mode.
- the output BAM file is then analyzed by an in-house R script (v3.5.0) to digest the alignment pattern to assess the distribution of INDELs within the PERV amplicon target sequence (with respective to the catalytic center) and derive the knock-out efficiency.
- Paired reads are first aligned to the PERV target sequence using STAR (v2.6.1a) under the splicing-aware mode, followed by alignment position dependent deduplication by Picard (v2.18.14) .
- Deduped paired reads are then merged into fragments by an in-house script. Merged fragments are then re-aligned to the PERV capture target sequence using STAR (v2.6.1a) under the splicing-aware mode.
- the output BAM file is then analyzed by an in-house R script (v3.5.0) to digest the alignment pattern to assess the distribution of INDELs within the capture target sequence and derive the knock-out efficiency.
- Paired reads are first aligned to the PERV target sequence using STAR (v2.6.1a) under the splicing-aware mode. Somatic variants are called using Mutect2 (v4.1.2.0) and filtered for variants with minor allele frequency over a given threshold (MAF>0.01) . Filtered variants from multiple samples are merged to derive the collection of variant sites for typing haplotypes. Next, properly aligned paired reads were merged into fragments by an in-house scrip. Merged fragments are then re-aligned to the PERV target sequence using STAR (v2.6.1a) under the splicing-aware mode. For each fragment covering the region of interest, we extract the alleles for the collection of variant sites to define the haplotype of the fragment. Finally, the distribution of haplotypes is derived by counting all the fragments covering the region of interest.
- Paired reads are aligned to a reference library composed of the Sus Scrofa 11.1 genome, PERV haplotypes and the payload plasmid sequence using STAR (v2.6.1a) under the splicing-aware mode.
- Structure variants SVs
- SVs Structure variants
- Lumpy Lumpy
- Liver perfusion experiments were performed with immunologically compatible pig livers isolated from Pig 2.0 (4-7; 3KO+12TG) as a proxy experiment to xenotransplantation for analyzing organ function. Wild type livers and 4-7 livers (approximately 80 kg) were isolated from 12-month-old pigs. Livers were perfused with human whole blood and human fresh frozen plasma (FFP) . A brief liver perfusion protocol is outlined in Table 1.
- ALT alanine aminotransferase
- AST aspartate aminotransferase
- ARB albumin
- Preclinical renal transplant studies For preclinical renal transplant studies, safety and efficacy studies will be in NHP. For safety and efficacy examination, kidneys from 8-to 10-week-old Pig 2.0 donors will be transplanted to NHP (cynomolgus monkey) recipients that will undergo bilateral nephrectomy at the time of transplant. Xenograft function will be monitored by serum creatinine values, complete blood counts, and urine analysis for protein as well as serial biopsies and examinations for weight and general well-being. Immunosuppression will consist of clinically relevant reagents in a combination and intensity that would be acceptable in allotransplantation.
- In vitro antibody reactivity and mixed lymphocyte reaction (MLR) assays will be used to demonstrate lack of reactivity following xenotransplantation in preclinical models.
- MLR mixed lymphocyte reaction
- flow cytometry cross-matching will be performed using serum from male NHP receiving kidney transplants from normal pig and Pig 2.0 donors as described above.
- the reactivity of serum to lymphocytes from a panel of NHP donors as well as to lymphocytes from the porcine donors will be tested.
- Reponses to the porcine cells will confirm that a xeno-sensitizing event has occurred by elevations in anti-porcine antibody levels.
- Samples from the NHP pretransplant will be compared with post-rejection samples to assess for changes in antibody binding to the NHP lymphocyte panel.
- direct and indirect T cell responses by pre-and posttransplant (post-rejection) NHP recipient T cells to a panel of allogeneic stimulators will be evaluated to determine if the cell-mediated allogeneic response is augmented post-rejection of a xenograft (Baertschiger 2004, Cooper 2004, Ye 1995) .
- Biodistribution The migration of donor cells to distal tissues/organs in the recipient remains a possible consequence of xenotransplantation. Chimera studies demonstrate that this may actually increase the success of engraftment reducing the probability of rejection (Starzl 1993, Vagefi 2015) . However, there may be unknown consequences of pig donor cell migration and therefore strategies have been developed to determine if migration of cells has occurred. Biodistribution will be studied as part of the pig-NHP xenotransplant research studies according to principles outlined in FDA guidance documents including Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans, Dec 2016 (Section IX.C.
- Tumorigenicity All animals included in the SCNT and assisted reproduction facilities will be routinely monitored for evidence of tumorigenesis. All animals found moribund or dead will have a full necropsy and gross and microscopic pathology examinations by a veterinary pathologist. Records of all genetically engineered animal health and pathology will be maintained and compiled to determine the risk for tumorigenicity potential due to specific or unintended genetic modification.
- Renal xenotransplantation has been studied for several decades and porcine xenografts have been evaluated in early clinical trials (Starzl 1964) .
- the challenge is to enable xenograft procedures that provide clinical benefit equivalent to allograft survival.
- the proposed clinical study population will include transplant patients age 18-65 with end-stage renal disease who are unlikely to find a suitable kidney donor in a timely manner due to the presence of high levels of panel reactive anti-HLA antibodies (PRA) .
- PRA panel reactive anti-HLA antibodies
- High PRA creates substantial challenges in matching a suitable deceased or live donor, causing extended waiting times for a transplant and excess morbidity from additional years on hemodialysis.
- >90%PRA patients still experience markedly prolonged wait times compared to lesser sensitized patients.
- Subjects that have >90%PRA sensitization to HLA antigens and who manifest a negative flow cross-match to porcine donor lymphocytes (or endothelial cells) will be targeted.
- porcine donor kidneys of 120 ⁇ 10 gm providing an expected glomerular filtration rate (GFR) of 40-50 mL/min/1.73m 2 .
- GFR glomerular filtration rate
- Single porcine kidneys from 9-to 12-month-old donors will be transplanted to the right or left iliac fossa, in a manner identical to that used for allogeneic renal transplantation.
- the primary endpoint will be freedom from hemodialysis for one year post transplant.
- Protocol-designated graft biopsies will be performed every three months and for-cause based on >20%rise in creatinine from baseline, defined as the mean of the best three consecutive creatinine measures in the first month post-transplant, or proteinuria greater than 300 mg/day.
- Safety measures will include monitoring of coagulation parameters, clinical chemistry, hematology, and adventitious infections.
- a single adult kidney may be transplanted successfully into a 10kg infant equating to a 12-17 gm of kidney/kg, which is approximately 3-4 times the renal mass ratio for an average adult (3-4 gm of kidney/kg; Donati-Bourne 2014) .
- This upper graft weight to recipient weight range is relevant to the proposed preclinical studies detailed below.
- 50-75 gm kidneys will be transplanted from 8-to 10-week-old porcine donors into 5-12 kg NHP recipients ( ⁇ 10 gm of kidney/kg) .
- Glomerular filtration rate (GFR; mL/min/1.73m2) is a standard measure of renal function or kidney potency that is used to stage the progress of chronic kidney disease (CKD) and renal failure qualifying for dialysis and/or transplantation.
- CKD chronic kidney disease
- the goal is to achieve a GFR of 45-60 mL/min/1.73m 2 (CKD stage 3A; Levey 2011) .
- This target range for GFR is based on data suggesting that renal function in CKD 3A is comparable to that achieved by single kidney allotransplantation in humans and is stable, whereas lower GFR in the CKD stage 3B (GFR 30-45 mL/min/1.73m 2 ) is associated with an increase in end-stage renal disease and all-cause and cardiovascular mortality (Sharma 2010) .
- the targeted GFR range of 45-60 mL/min/1.73m 2 is comparable to that achieved by single kidney allotransplantation in humans (50-65 mL/min/1.73m 2 ; Gourishankar 2003, Marcén 2010) .
- kidney mass comparable to that routinely used in allotransplantation (115-170 gm) given the comparability of human and porcine kidneys in GFR per renal mass. It should be considered that some renal function may be lost in the donation process and post-transplant due to treatment of the recipient with nephrotoxic immunosuppression in the form of calcineurin inhibitors.
- Pharmacology and Toxicology Information Efficacy and safety will be evaluated using pharmacology studies with both rodent and NHP models. A variety of integrated safety endpoints will be used, as well as an assessment of clinical pathology and pathophysiology in genetically engineered donor porcine tissues. A tiered approach will be taken involving in vitro cellular and tissue function, and assessments of clinical pathology and histopathology in donor pigs and NHP xenografts. Endpoints will include graft function and rejection, and recipient safety related to functions of innate and adaptive immunity, inflammation, as well as complement and coagulation cascades.
- Somatic Cell Nuclear Transfer and Assisted Reproduction of Genetically Engineered Donor Pigs Genetically engineered donor pigs will be monitored routinely for safety considerations with full clinical pathology including clinical chemistry and hematology as well as gross and microscopic histopathology. Reproductive capability, embryo-fetal development, organ and tissue development, and potential tumorigenesis will be monitored and recorded for all donor pigs in the breeding colony.
- Animals are identified by unique ear tags printed with permanent ink (placed at Place of Origin) .
- the flow of pigs includes a quarantine area, which is an open-air, group-housed barn with a bedding of wood shavings.
- the feed trough is wooden and kept clean from debris and waste. Fresh, free-choice water is available at all times via nipple drinkers.
- the barn relies on outdoor wind movement to circulate the air and temperature is maintained above 10°C. Biosecurity requires at least 24 hours of no other swine contact, specific barn attire, and boot dipping in disinfectant before and after barn contact.
- the quarantine period includes 35-40 days of quarantine, vaccination with Parvo Shield L5E, FluSure XP/ER Bac Plus, Ingelvac FLEX combo (Circovirus and Mycovirus) , and Dectomax, and includes 2 blood draws demonstrating no increase in disease antibodies (PRRSV, PRRSX3) .
- pigs are moved into a buffer area at the facility. This area is a closed-barn, group-housed, sawdust-bedded pen in groups of up to 12. Bedding is replaced weekly. Temperature is controlled by thermostat-controlled fans and propane heater to a range of 15–24°C. Pigs are fed in a stainless-steel trough and fresh, free-choice water is available at all times via nipple drinkers. Pigs are observed at least once a day and as health status dictates.
- Pigs with observed health issues are housed in single pens for individualized care and attention and treated as directed by the Attending Veterinarian and Director of Embryology. Biosecurity requires at least 24 hours of no other swine-herd contact. Coveralls limited to use in the barn area and boots are disinfected either with Virkon-Sor Synergize before and after barn contact. Generation of source donor pigs for use in clinical studies will follow all relevant guidance and regulations.
- the endogenous gene KOs and human transgene expression will be validated at genomic, mRNA, and protein levels.
- gene KOs either Sanger sequencing or deep sequencing will be performed to confirm the genetic mutations at the intended target site.
- RNA-seq and/or RT-PCR will be performed to ensure that the mRNAs contain the intended mutations and are subject to non-sense mediated decay.
- RT assays will be performed to demonstrate the elimination of RT activity in PERV KO cells.
- immunohistochemistry (IHC) staining and/or flow cytometry will be performed to ensure that gene products are absent in the cell or at the cell surface.
- Off-target mutations may still exist despite advances in the field of precision gene editing and must be understood in order to generate safe and efficacious donor organs for clinical xenotransplantation.
- the following multi-tiered assessment approach has been employed:
- CIRCLE-Seq A sensitive, in-vitro screening strategy that comprehensively detects genome-wide CRISPR-Cas9 off-target mutations of any given gRNA. The potential off-target sites will be censored in any derived cell line from the specific gRNA using subsequent targeted amplicon sequencing;
- transgene expression intactness and expression of human transgenes in genomic, mRNA, and protein levels will be validated using sequencing, RT-PCR/RNA-seq, and IHC/flow cytometry technologies. Moreover, the location of random transgene integration will be determined by inverted PCR-based junction capture and the results will be validated by junction PCR.
- Clones will be chosen with a single-copy transgene integrated into intergenic regions at least 10,000bp from any known genes and ncRNAs, and at least 50,000bp from any oncogenes and tumor suppressors.
- biallelic site-specific integration/replacement will be validated by junction PCR and droplet digital PCR (ddPCR) .
- Preclinical transplant studies For preclinical transplant studies, safety and efficacy studies were performed in NHP. Hearts, kidneys, and livers from 8-10 week-old Pig 2.0 donors were used for transplanted solid organ studies and liver and lungs were used for perfused organ studies. In a span of 5 months, 15 organ transplants and 11 organ perfusions were performed. Specifically, 7 kidney transplants, 4 heart transplants, 4 liver transplants were performed while 4 livers and 7 lung perfusions were performed, as summarized in Table 3.
- Immunosuppression regimen for kidney transplantations consisted of clinically relevant reagents in a combination and intensity that was acceptable in allotransplantation.
- hCD55 pig kidneys survived until days 76 and 93 when they were euthanized due to renal failure and weight loss, respectively. Of these two, one was found to have thrombotic microangiopathy (TMA) , chronic antibody-mediated rejection (AMR) and borderline T-cell Mediated Rejection (TCMR) ; while the other had C4d deposition, but otherwise no histologic evidence of frank rejection.
- TMA thrombotic microangiopathy
- AMR chronic antibody-mediated rejection
- TCMR borderline T-cell Mediated Rejection
- the remaining seven recipients received kidneys from Pig 2.0. In these pigs, transduced human proteins that regulate immune responses or complement activation were expressed at high levels.
- the NHP recipients of these genetically modified pig kidneys survived >190, 72, 20, 15 and 6 days with immunosuppression regimen for kidney transplantations.
- Compromised health of monkeys contributed to early termination of several of the xenograft monkeys. Complications included blood transfusions, injection site abscess and infection, wound healing. Several cases presented bleeding in bladder and/or ureter, possibly due to over-anti-coagulation. A summary of the Pig2.0 grafts is provided in Table 5.
- Livers were from two genetic constructs of transgenic pigs deficient in targets of xenoantibody and containing human transgenes to address complement activation and innate immune cell function (group 1: B1, B2; group 2: B3, B4) .
- Immunosuppression consisted of ATG, Rituximab, corticosteroids, MMF and aCD154. All recipients received an infusion of KCentra. Unlike previous studies, splenectomy was not performed, and cobra venom factor and tacrolimus were omitted.
- B2 and B4 received a continuous infusion of a GpIIb/IIIa inhibitor. Graft function was assessed with daily chemistries, lactate, CBC, INR and weekly coagulation profile.
- Baboons B1, B2 and B4 underwent successful OLTx with life-sustaining graft function. LFTs peaked on POD1 in all baboons and normalized between POD4-7 (FIGs. 38A-38B) . Each baboon manifested thrombocytopenia, with spontaneous recovery beginning on POD8 in B2 and POD4 in B4 (FIG. 38C) . Transfusions requirements (FIG. 38D) were less than historic experience. Consumption of coagulation factors occurred immediately after OLTx, with subsequent production at normal pig levels (FIG. 38E-38I) . B1 was euthanized on POD8 due to respiratory failure from fluid overload and abdominal compartment syndrome.
- Necropsy showed diffuse pulmonary hemorrhage with normal liver and patent vasculature. B4 recovered uneventfully. Only one post-op blood transfusion was required. On POD7, a rise in Tbili and LFT’s prompted exploration, where a bile leak and hepatic artery thrombosis (HAT) were identified, requiring euthanasia. Biopsy showed focal subcapsular necrosis with negative C4d and no evidence of rejection, consistent with HAT (FIG. 38E-F) .
- Liver Xenoperfusion Barriers to successful xenogeneic pig liver transplantation include hyperacute rejection by preformed xeno-antibody, molecular incompatibilities resulting in dysregulated complement, coagulation, and innate and adaptive immunity. Genetically modified swine may circumvent these obstacles and will require a rapid and efficient model to evaluate the effectiveness of different genetic constructs.
- EDLXP ex-vivo liver xenoperfusion
- WT wild type
- hWB+P human blood and plasma
- EVXLP was performed at 37°C with fresh, heparinized hWB+P. Failure during EVXLP was defined by decreased blood flow due to elevated vascular resistance, severe metabolic derangements or gross necrosis.
- CBC serum clinical chemistry, and blood gas analysis were performed. Tissue biopsies were stained with H+E and for depositions of IgG, IgM, and complement (C4d) .
- EG liver tissue biopsies exhibited preserved hepatic architecture on H+E with mild diffuse portal and sinusoidal inflammation (FIG. 41A) .
- WT livers manifested focal ischemic necrosis and vascular congestion on H+E (FIG. 41E) , with strong staining for IgM and IgG (FIGs. 41F-41G) and C4d-positivity (FIG. 41H) .
- EG livers showed diffuse mild sinusoidal IgG and IgM deposition (FIGs. 41B-41C) , with negative C4d (FIG. 41D) , perhaps suggesting the reduction in pre-formed antigens and improvements in complement regulation by addition of human complement regulatory protein expression resulted in less injury.
- Xenolivers from transgenic pigs deficient in xeno-specific antigens and containing humanized transgenes related to complement activation and immune cell function achieved significantly prolonged survival with less severe platelet sequestration, preserved RBC mass and diminished antibody and complement deposition compared to WT or GTKO.
- CD55 xenografts This model is an efficient and informative tool to simulate pig-to-human xenotransplantation and evaluate the efficacy of specific genetic modifications.
- Lung Xenoperfusion Ex vivo lung perfusion with human blood is a standardized method to evaluate the impact of transgene combinations. Here results associated with novel transgenic pig lines, evaluated in the context of a reference cohort, are reported.
- Pulmonary vascular resistance (PVR) rise was significantly attenuated and delayed in ‘untreated’ Pig 2.0 lungs, relative to GalTKO. hCD55 lungs (FIG. 42) .
- RNAseq expression data showed complement and cellular toxicity genes are expressed in samples collected from Payload 9 and Payload 10 Pig 2.0 pigs (FIG. 36) .
- FACS data showed complement and cellular toxicity proteins are expressed in samples collected from Payload 5, Payload 9 and Payload 10 pigs (FIG. 37) .
- Payload 5 expressed CD39
- Payload 10 expressed PDL1.
- AVR acute vascular rejection
- APTT activated partial thromboplastin time
- AAVS1 adeno-associated virus integration site 1
- ALT alanine aminotransferase
- ARB albumin
- AMR antibody-mediated rejection
- ASGR1 anti-thymocyte globulin
- ASGR1 asialoglycoprotein receptor 1
- ASGR1 aspartate aminotransferase
- AST aspartate aminotransferase
- B4GalNT2 beta-2 microglobulin
- B2M Cluster of Differentiation 39
- CD47 Cluster of Differentiation 47
- CRISPR class II transactivator dominant-negative
- CMV CMV early
- SEQ ID NO 214 Payload 13A sequence
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Environmental Sciences (AREA)
- Mycology (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Provided are cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance. Also provided are methods of making and using the cells, tissues, organs, and/or animals having one or more of the modified genes.
Description
The shortage of human organs and tissues for transplantation has grown over the last several decades and represents one of the most significant unmet medical needs. Xenotransplantation has the potential to provide an almost unlimited supply of transplant organs for patients with chronic organ failure. Similarities in organ size and physiology, coupled with genetic engineering to eliminate molecular incompatibilities, makes the pig the donor of choice for renal xenograft. Preclinical studies have demonstrated that porcine renal xenografts have supported life for weeks to months in non-human primate recipients (Higginbotham 2015, Iwase 2015b) . However, as a result of the evolutionary distance between pigs and humans, porcine organs trigger rejection by the human immune system in a number of forms, including (i) hyperacute rejection, (ii) acute humoral rejection consisting of disordered thromboregulation and type II endothelial cell (EC) activation with leukocyte recruitment, (iii) thrombotic microangiopathy consisting of intravascular thrombosis with platelet consumption and EC activation, fibrin deposition, and thrombosis due to lack of thromboregulation, and (iv) chronic vasculopathy. These adverse events are due, at least in part, to molecular incompatibilities between the donor and the recipient, particularly with regard to genes involved in complement, coagulation, inflammatory, and immune response systems. The clinical use of xeno-organs (e.g., porcine) has been hindered by these immunological incompatibilities, which have thus far prevented the use of porcine cells, tissue, and vascularized porcine organs in clinical xenotransplantation.
Over the last two decades, several genetic modifications that diminish inter-species incompatibility between porcine and humans have been identified. However, these previously identified genetic modifications have not achieved long-term xenograft survival. Moreover, technical limitations with large-scale genome engineering have hindered the integration of these modifications in a single animal.
SUMMARY
There is a need for developing porcine cells, tissues, organs, and/or porcine animals having a novel combination of gene modifications for use in xenotransplantation and for developing associated methods.
Accordingly, the present disclosure provides cells, tissues, organs, and animals comprising genetic modifications that result in enhanced immunological compatibility, as well as vectors and methods for use in generating these cells, tissues, organs, and animals, and the use of these cells, tissues, organs, and animals in xenotransplantation. In certain embodiments, the genetic modifications giving rise to enhanced immunological compatibility include one or more complement response genes (interchangeably referred to herein as complement toxicity genes) , coagulation response genes (interchangeably referred to herein as coagulation genes) , inflammatory response genes (interchangeably referred to herein as apoptosis/inflammation genes) , immune response genes (interchangeably referred to herein as cellular toxicity genes) , and/or immunomodulator genes.
In some aspects, the present disclosure provides isolated cells, tissues, organs, and animals comprising a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof. In some aspects, the present disclosure provides for an isolated cell, tissue, organ, or animal comprising a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene. In some embodiments, the plurality of transgenes comprises at least three transgenes selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof. In some embodiments, the inflammatory response transgenes are selected from the group consisting of tumor necrosis factor α-induced protein 3 (A20) , heme oxygenase (HO-1 or HMOX1) , Cluster of Differentiation 47 (CD47) , and combinations thereof. In some embodiments, the immune response transgenes are selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof. In some embodiments, the immunomodulator transgene is selected from the group consisting of programmed death ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof. In some embodiments, the plurality of transgenes further comprises at least one coagulation response transgene. In some embodiments, the coagulation response transgenes are selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD, TBM, or TM) , tissue factor pathway inhibitor (TFPI) , and combinations thereof. In some embodiments, the plurality of transgenes further comprises at least one complement response transgene. In some embodiments, the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46 or simply CD46) ; human complement decay accelerating factor (hCD55 or simply CD55) , human MAC-inhibitor factor (hCD59 or simply CD59) , and combinations thereof.
In one aspect, the present disclosure provides isolated cells, tissues, organs, and animals comprising one or more transgenes, each independently selected from the group consisting of complement response transgenes (e.g., CD46, CD55, CD59) ; coagulation response transgenes (e.g., CD39, THBD or TBM, TFPI) ; inflammatory response transgenes (e.g., A20, HO-1, CD47) ; immune response transgenes (e.g., HLA-E, B2M) ; and/or immunomodulator transgenes (e.g., PD-L1, FasL) . In certain embodiments, the cells, tissues, organs, or animals may further comprise one or more additional transgenes from other gene categories.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise one or more complement response transgenes selected from the group consisting of hCD46, hCD55, and hCD59. In some of these embodiments, expression of one or more of the complement response transgenes is driven by a ubiquitous promoter.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise one or more coagulation response transgenes selected from the group consisting of CD39, THBD, and TFPI. In some of these embodiments, expression of one or more of the coagulation response transgenes is driven by a tissue-specific promoter. In certain of these embodiments, the tissue-specific promoter is an endothelial-specific promoter, and in certain of these embodiments, the endothelial-specific promoter is a low expression endothelial-specific promoter.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise one or more inflammatory response transgenes selected from the group consisting of A20, HO-1, and CD47. In some of these embodiments, expression of one or more of the inflammatory response transgenes is driven by a ubiquitous promoter, a tissue-specific promoter such as an endothelial-specific promoter, or any combination thereof.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise one or more immune response transgenes selected from the group consisting of HLA-E and B2M. In some of these embodiments, expression of one or more of the immune response transgenes is driven by a ubiquitous promoter.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise one or more immunomodulator transgenes, including but not limited to PD-L1, FasL, or both.
Expression of at least six of these transgenes at clinically effective levels in the cell, tissue, organ, or animals results in enhanced immunology compatibility. Accordingly, in certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise six or more transgenes, e.g., 6, 7, 8, 9, 10, 11, or 12 transgenes, selected from the group consisting of complement response, coagulation response, inflammatory response, immune genes, and immunomodulator transgenes. In certain of these embodiments, the cells, tissues, organs, or animals may comprise at least one transgene from each category. In other embodiments, certain categories of transgenes may be excluded. In certain embodiments, the complement response, coagulation response, inflammatory response, immune response, and/or immunomodulator transgenes may all be expressed at detectable and/or clinically effective levels simultaneously. In other embodiments, only specific subsets of transgenes may be expressed at clinically effective levels at certain timepoints or in response to certain signals. In these embodiments, expression of one or more of the transgenes may drop below detectable and/or clinically effective levels at certain timepoints.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, and TFPI.
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1.
In certain embodiments, the isolated cells, tissues, organs, and animals disclosed herein further comprise one or more modifications to a complement response gene, coagulation response genes, inflammatory response genes, immune response genes, and/or immunomodulator genes. For example, in certain embodiments in which the cell, tissue, organ, or animal is porcine, the cell, tissue, organ, or animal may comprise an alteration of the von Willebrand factor (vWF) gene, including in some instances alterations that result in humanization of the gene.
In certain embodiments, the cells, tissues, organs, and animals disclosed herein further comprise one or more modifications to other categories of genes. These modifications may include, for example, deletion or excision of all or part of the gene (i.e., knockout) , or any other inactivation, disruption, or alteration. For example, in certain embodiments, the cells, tissues, organs, and animals may comprise a knockout, inactivation, or disruption of asialoglycoprotein receptor 1 (ASGR1) . In certain embodiments, the cells, tissues, organs, and animals may be genetically modified to exhibit a reduced carbohydrate antigen response. For example, the cells, tissues, organs, or animals may comprise a knockout, inactivation, or disruption of one or more carbohydrate antigen-producing genes (e.g., glycoprotein α-galactosyltransferase 1 (GGTA) , β1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) ) .
In certain embodiments, the isolated cells, tissues, organs, and animals provided herein comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI, and further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, and CMAH. In certain embodiments, the isolated cells, tissues, organs, and animals further comprise the transgenes CD59 and B2M, and in certain of those embodiments the isolated cells, tissues, organs, and animals further comprise the transgenes A20, PD-L1, and HO-1. In certain embodiments, these cells, tissues, organs, and animals exhibit enhanced immunological compatibility comprising reduced carbohydrate antigen response and enhanced coagulation, complement, inflammatory, and/or immune response.
In some embodiments, the isolated cells, tissues, organs, and animals provided herein are porcine, i.e., a porcine cell, porcine tissue, porcine organ, or a pig or progeny thereof. In certain of these embodiments, the cells, tissues, organs, or animals are free of porcine endogenous retroviruses ( “PERV-free” ) . In certain of these embodiments, the “PERV-free” cells, tissues, organs, or animals do not produce xenotropic PERV virions. In certain of these embodiments, the “PERV-free” cells, tissues, organs, or animals do not produce PERV virions. In certain of these embodiments, the “PERV-free” cells, tissues, organs, or animals do not produce infectious PERV virions. In certain of these embodiments, the PERV-free cells, tissues, organs, and animals comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI, and optionally further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, and and/or CMAH. In other embodiments, the PERV-free cells, tissues, organs, and animals comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, and TFPI, and optionally further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, and/or CMAH. In still other embodiments, the PERV-free cells, tissues, organs, and animals comprise the transgenes CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1, and optionally further comprise a knockout, inactivation, or disruption of GGTA, B4GalNT2, or CMAH.
In certain embodiments of the isolated cells and tissues provided herein, the cells or tissues are kidney or liver cells or tissues. In certain embodiments of the isolated organs provided herein, the organ is a kidney or a liver.
In another aspect, the present disclosure provides vectors comprising a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof. In some embodiments, the plurality of transgenes comprises three types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, or combinations thereof. In some aspects, the present disclosure provides for a vector comprising a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene. In some embodiments, the inflammatory response transgene is selected from the group consisting of A20, HO-1, CD47, and combinations thereof. In some embodiments, the immune response transgene is selected from the group consisting of HLA-E, B2M, and combinations thereof. In some embodiments, the immunomodulator transgene is selected from the group consisting of PD-L1, FasL, and combinations thereof. In some embodiments, the plurality of transgenes further comprises at least one coagulation response transgene. In some embodiments, the coagulation response transgene is selected from the group consisting of CD39, THBD, TFPI, and combinations thereof. In some embodiments, the plurality of transgenes further comprises at least one complement response transgene. In some embodiments, the complement response transgene is selected from the group consisting of CD46, CD55, CD59, and combinations thereof.
In other aspects, the present disclosure provides vectors for use in genetically modifying cells, tissues, organs, or animals to produce the cells, tissues, organs, or animals provided herein, including, for example, vectors for inserting (i.e., knocking in) one or more complement response, coagulation response, inflammatory response, immune response, and/or immunomodulator transgenes. In certain of these embodiments, the vectors comprise at least 6, 7, 8, 9, 10, 11, or 12 of the transgenes. In some of these embodiments, at least six of the transgenes are expressed from a single locus. Also provided herein are other components for use in genetically modifying cells, tissues, organs, or animals to produce the cells, tissues, organs, or animals provided herein, including, for example, CRISPR-based editing components such as guide RNAs (gRNAs) or endonucleases.
In certain embodiments, the vectors provided herein comprise the transgenes CD46, CD55, HLA-E, CD47, CD39, THBD, and TFPI. In certain of these embodiments, the vectors further comprise the transgenes CD59 and B2M. In certain of these embodiments, the vectors further comprise the transgenes A20, PD- L1, and HO-1, and in certain of these embodiments the vectors comprise the components set forth in FIGs. 17-20, 31, or 48-50. In certain embodiments, the vectors comprise a sequence set forth in any of SEQ ID NOs: 212-214.
Also provided herein in certain embodiments are methods of generating the isolated cells, tissues, organs, and animals provided herein. In certain of these embodiments, the methods comprise introducing one or more of the vectors provided herein. Accordingly, in certain embodiments, the cells, tissues, organs, and animals provided herein comprise one or more of the vectors disclosed herein.
In some embodiments, the methods disclosed and described herein comprise single copy polycistronic transgene integration through transposition, mono/bi-allelic site-specific integration through recombinase-mediated cassette exchange (RMCE) , genomic replacement, endogenous gene humanization, or any combination thereof.
In certain embodiments of the methods provided herein wherein the cells, tissues, organs, and animals being generated are porcine, the methods further comprise knocking out or otherwise disrupting or inactivating one or more PERV genes, for example PERV pol, and in certain of these embodiments the resultant porcine cells, tissues, organs, or animals are PERV-free.
In another aspect, the present disclosure provides a transgenic pig liver having reduced liver damage and/or stable coagulation when exposed to non-pig blood, wherein reduced liver damage is assessed by determining the levels of bile production, one or more metabolic enzymes, and/or one or more serum electrolytes, and wherein stable coagulation is assessed by determining the levels of Prothrombin Time (PT) and International Normalized Ratio (PT-NIR) , fibrinogen levels (FIB) , and/or lower activated partial thromboplastin time (APTT) . In some embodiments, the metabolic enzymes are selected from the group consisting of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and albumin (ALB) . In some embodiments, the serum electrolytes are potassium (K) and/or sodium (Na) .
In some embodiments, the transgenic pig livers disclosed and described herein comprise native metabolic enzymes selected from the group consisting of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and albumin (ALB) .
FIGs. 1A-1C are charts displaying genotyping results of a complement factor 3 knockout ( “C3-KO” ) pig. FIG. 1A shows the sizes of the deletions introduced. FIG. 1B illustrates the position of the indels. FIG. 1C lists sequences of the indels generated.
FIG. 2 is a block diagram of a scheme depicting a Major Histocompatibility Complex class I ( “MHC class I” ) replacement strategy where the locus containing the SLA-1, SLA-2, and SLA-3 genes was flanked with loxP sites.
FIGs. 3A and 3B are charts displaying genotyping results of a Major Histocompatibility Complex (MHC) class II knockout ( “MHCII-KO” ) pig genotype, specifically the MHCII gene DQA. FIG. 3A shows the positions and sized and indels having two insertions of 1bp in positions 126 and 127 of the amplicon. FIG. 3B illustrates the position of one of the insertions.
FIGs. 4A and 4B are charts displaying genotyping results of another MHC class II-KO pig genotype, specifically the MHCII gene DRA. FIG. 4A shows the positions and sized and indels having two insertions of 1bp in positions 106 and 107 of the amplicon. FIG. 4B illustrates the position of one of the insertions.
FIG. 5 includes six charts showing the results of a fluorescence assisted cell sorting (FACS) analysis of an MHCII-KO pig ( “H3-9P01” ) and a wild-type ( “WT” ) pig.
FIG. 6 is a series of images depicting one or more phenotypes associated with the MHCII-KO phenotype.
FIG. 7 is a series of block diagrams illustrating a scheme for altering the PD-L1 gene.
FIG. 8 is a chart illustrating expression of PD-L1 as measured by qPCR using two amplicons.
FIG. 9 is a sequence listing showing alignment of porcine and human vWF protein. The A1 domain is highlighted in the box, whereas the potential glycosylation sites in the flanking region are labeled by dashes. The human specific residues that are deleted in pvWF is labeled with a horizontal line. The A1 and flanking region that were humanized is labeled with the half parenthesis.
FIG. 10 depicts a design of a homology-directed repair ( “HDR” ) vector targeting pvWF and two sgRNAs.
FIG. 11 shows the screening results for HDR via SphI and BspEI digestion.
FIGs. 12A and 12B show sequencing results of a biallelic HDR clone obtained from FIG. 11 where vWF was targeted. The chromatography of both sequencing results is illustrated with one line of overlapping sequences. The humanized A1 and flanking region is labeled with half parenthesis.
FIG. 13 is a graph depicting a species-specific platelet aggregation response induced by shear stress and monitored by light transmission for platelets isolated from WT (porcine A1-domain) or HDR targeted (human A1-domain) pigs.
FIG. 14 is a schematic of the porcine MHC class I locus. All classical MHCI genes are color coded. Unique flanking regions immediately next to the UTRs of the MHCI genes are labeled as green parenthesis. Four highly active sgRNAs (SEQ ID NOs: 1-4) selected from these regions are also shown.
FIG. 15 depicts fragmental deletion of the MHCI classical cluster induced using the sgRNAs in FIG. 14. FIG. 15A shows PCR amplicon across the unique regions of MHCI 5’, 3’ and 5’-3’ deletion junctions in the population of sgRNA transfected cells. FIG. 15B shows that the 5’-3’ junction PCR was TOPO cloned and the sequencing results were aligned to the expected MHCI 5’-3’ junctions generated by MHC5’_sg1 and MHC3’_sg2.
FIG. 16 shows enrichment of MHCI negative cells using a porcine specific SLA-1 antibody.
FIG. 17 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein. Payload 5 (Pig2.1) : 12 transgenes, ubiquitous expression.
FIG. 18 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein. Payload 9 (Pig2.2) : 12 transgenes, endothelial-specificity.
FIG. 19 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein. Payload 10 (Pig2.3) : 12 transgenes, endothelial/islet-specificity.
FIG. 20 shows a transgene expression vector for expressing multiple transgenes (e.g. humanized transgenes) according to an embodiment disclosed and described herein. Payload 10-Exo (Pig2.4) : 12 transgenes, endothelial-/islet-specificity, with pancreatic exocrine ablation.
FIG. 21 is a schematic showing pedigrees of genetically engineered source donor pigs described herein.
FIG. 22 demonstrates that genetically engineered pig fibroblasts having enhanced compatibility with human tissues show a significantly reduced binding affinity to human antibodies.
FIG. 23 demonstrates tissue-specific mRNA expression from genetically engineered pig primary fibroblasts or endothelial cells described herein. FIG. 23A is a schematic of a transgenic construct assembled using molecular cloning techniques. The CD46, CD55, and CD59 cassette was placed under control of the ubiquitous EF1α promoter, the HLA-E, B2M, and CD47 cassette was placed under control of the ubiquitous CAG promoter, the A20, PD-L1, HO-1 cassette was placed under control of the islet specific NeuroD promoter, and the THBD, TFPI, and CD39 cassette was placed under control of endothelial specific ICAM2 promoter. The transgenic construct was electroporated into porcine primary fibroblasts (FIG. 23B) or an immortalized porcine aortic endothelial cell line (PEC-A) (FIG. 23C) and mRNA expression determined by qRT-PCR.
FIG. 24 depicts transgene protein expression in Pig 2.0 ( “3KO+12TG” ) spleen and fibroblast cells.
FIG. 25 demonstrates that the genetically engineered pig fibroblasts having enhanced compatibility with human cells exhibited a significantly lower level of complement-mediated cell death.
FIG. 26 demonstrates that pig fibroblasts genetically engineered to express human HLA-E exhibit a reduced susceptibility to NK-mediated lysis.
FIG. 27 demonstrates that endothelial cells derived from GGTAKO + CD55KI pigs exhibit decreased formation of thrombin-antithrombin III (TAT) complexes.
FIG. 28 demonstrates that livers isolated from 4-7 pigs and perfused with human blood have increased bile production as compared to wild type (WT) livers.
FIG. 29 demonstrates that livers isolated from 4-7 pigs and perfused with human blood have improved liver function as assessed by makers of liver damage and serum electrolyte levels as compared to WT livers.
FIG. 30 demonstrates that livers isolated from 4-7 pigs and perfused with human blood have improved coagulation as compared to WT livers.
FIG. 31 shows a transgene expression vector according to an embodiment disclosed and described herein. Payload 13 (Pig2.5) : 10 transgenes, bicistronic.
FIGs. 32A-B demonstrate that host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs exhibit stable serum creatinine levels.
FIGs. 33A-B show hematocrit levels in host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs.
FIGs. 34A-B show platelet counts in host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs.
FIGs. 35A-B show fluctuations in white blood cell (WBC) counts in host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs
FIG. 36 shows RNAseq expression data showing complement and cellular toxicity genes are expressed in samples collected from Payload 9 and Payload 10 pigs.
FIG. 37 shows FACS data showing complement and cellular toxicity proteins expressed in samples collected from Payload 5, Payload 9, and Payload 10 pigs.
FIGs. 38A-I show clinical labs following pig-to-baboon orthotopic liver xenotransplants (OLTx) .
FIGs. 39A-F are representative images of H+E staining liver samples from OLTx.
FIGs. 40A-E demonstrate clinical labs following ex vivo xenoperfusion of genetically modified pig livers with human whole blood.
FIGs. 41A-H are representative images of H+E staining of xenoperfused pig livers.
FIG. 42 demonstrates that pulmonary vascular resistance (PVR) rise was significantly attenuated and delayed in ‘untreated’ Pig 2.0 ( “3KO+12TG” ) lungs perfused with human blood, relative to GalTKO. hCD55 lungs.
FIGs. 43A-D demonstrate binding of a panel of human serum to human T cells (A) and B cells (C) , showing that high PRA sera are more likely than low PRA to stain human cells and binding of a panel of human sera to porcine T cells (B) and B cells (D) . Sera from both low PRA patients and high PRA patients show high levels of binding to porcine targets.
FIG. 44 shows a panel of high PRA human sera show significantly lower levels of binding to genetically modified porcine aortic endothelial cells (Pig 2.0 ( “3KO+12TG” ) pAEC) compared to wild-type cells (WT pAEC) . The Pig 2.0 cells lack aGal, Neu5Gc, and Sda.
FIGs. 45A-C demonstrate staining of Pig 2.0 ( “3KO+12TG” ) pAEC with serum taken from kidney (A) , heart (B) , and liver (C) xenotransplant recipient animals at various time points. Serum samples taken post-transplantation show a reduced level of binding, particularly the post liver xenotransplants.
FIGs. 46A-C demonstrate binding of human serum to wild-type (WT) and Pig 2.0 ( “3KO+12TG” ) pAEC (A) , binding of human serum (B) or cynomolgus serum (C) to pAEC before and after IdeS treatment. IdeS effectively reduces human and cynomolgus IgG binding, while having no impact on the binding of intact IgM.
FIG. 47 shows a transgene expression vector according to an embodiment disclosed and described herein. Payload 12F: 12 transgenes.
FIG. 48 shows a transgene expression vector according to an embodiment disclosed and described herein. Payload 12G: 12 transgenes.
FIG. 49 shows a transgene expression vector according to an embodiment disclosed and described herein. Payload 13A: 10 transgenes.
FIG. 50 shows RNAseq results demonstrating expression of complement & cellular toxicity genes.
FIG. 51A shows a scheme for CRISPR gene knockout and PiggyBac integration. CRISPR/Cas9 targeting 2 copies of GGTA1 gene, 2 copies of CMAH gene and 4 copies of B4GALNT2 gene were used to generate the 3KO, and CRISPR/Cas9 targeting the copies of PERV in Pig 2.0 ( “3KO+9TG” ) were used to generate PERV-KO cells. PiggyBac-mediated random integration was used to insert the 9 transgenes into the pig genome. The transgenes were expressed in 3 cassettes, with each cassette expressing 3 genes linked by Porcine 2A (P2A) peptide.
FIG. 51B shows results of sequencing of GGTA1, CMAH, and B4GALNT2 knockout. The whole genome sequencing analysis revealed that in pig 2.0 (3KO+9TG) and pig 3.0 (3KO+9TG) , i) the GGTA1 gene has -10 bp deletion in one allele and transgene vector insertion in another gene, ii) the CMAH gene has -391 bp deletion in one allele and 2bp (AA) insertion in another allele and iii) the B4GALNT2 has -13, -14, -13, -14 in each of the 4 alleles of B4GALNT2 genes. All the modification occurs at the gRNA target sites, indicating the modification are mediated by on target activity of the CRISPR/Cas9 used.
FIG. 51C shows results of sequencing analysis of PERV knockout. The raw reads for Pig 2.0 (3KO+9TG) (~2,000X) and 3.0 (~20,000X) are shown below a schematic PERV gene structure. Reads are grouped by their sequence composition and shown proportionally to their coverage. The vertical line in red, blue, green and orange in the coverage track represent single nucleotide change from reference allele to T, C, A, G respectively.
FIG. 51D shows PCR analysis of the 9TG integration. Transgene integration of Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) have been validated at the genomic DNA (gDNA) level by PCR. The PCR gel image shows the presence of 9 human transgenes in gDNA from Pig 2.0 and Pig 3.0 fetus fibroblasts, whereas WT Pig fetus fibroblast and NTC (without the addition of gDNA) groups serve as negative control.
FIG. 51E shows normal karyotype for Pig 2.0 (3KO+9TG) and 3.0 (3KO+9TG) cells. Pig 2.0 (A) and Pig 3.0 (B) fibroblasts were karyotyped using Giemsa-staining-based G-banding technique. Metaphase spreads were analyzed using SmartType software. Both Pig 2.0 and Pig 3.0 show normal [36 + XY] karyotypes.
FIG. 52A shows a heatmap of expression of the 9 transgenes. Transgene expression was measured by RNA-Seq in HUVEC endothelium, PUVEC endothelium, Pig 2.0 (3KO+9TG) PUVEC endothelium, Pig 2.0 ear fibroblast and Pig3.0 fetal fibroblast. Each row represents one transgene and each column represents one sample. The expression level is colored coded in blue-yellow-red to represent low-medium-high. The tissue type and payload information for each sample is labeled on top of the heatmap as color bars.
FIG. 52B shows analysis of 3KO and 9TG expression by FACS. Genetic modifications (KO and TG) of Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) have been validated at the protein level by FACS. Pig 2.0 and Pig 3.0 PUVECs show comparable TG expression level to human endogenous (HUVEC) in general, except for hCD39 (higher than human endogenous) and hTHBD (lower than human endogenous) .
FIG. 52C shows immunofluorescence analysis of 3KO and 9TG expression. Genetic modifications (KO and TG) of Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) have been validated at the protein level in kidney cryosections by immunofluorescence (IF) .
FIG. 53A shows binding of human antibodies to Pig 2.0 (3KO+9TG) and 3.0 (3KO+9TG) cells. Pig 2.0 and Pig 3.0 PUVECs substantially attenuate the antibody binding to human IgG and IgM compared to their WT counterpart. Antibody binding of pooled human serum to PUVECs and HUVECs (positive control) was measured by FACS, respectively. Error bars indicate mean ± s.d. (n = 3) .
FIG. 53B shows complement toxicity to WT pig, Pig 2.0 (3KO+9TG) , Pig 3.0 (3KO+9TG) and HUVEC cells. Pig 2.0 and Pig 3.0 PUVECs reveal comparable antibody-dependent complement toxicity compared to HUVEC, which is significantly lower compared to WT PUVEC. Error bars indicate mean ± s.d. (n = 4) .
FIG. 53C shows NK-mediated cytotoxicity to WT pig, Pig 2.0 (3KO+9TG) , Pig 3.0 (3KO+9TG) and HUVEC cells. Pig 2.0 and Pig 3.0 PUVECs reveal significantly lower NK-mediated cytotoxicity compared to their WT counterpart. Error bars indicate mean ± s.d. (n = 3) .
FIG. 53D shows phagocytosis of Pig 2.0 (3KO+9TG) and 3.0 (3KO+9TG) splenocytes by human macrophages. Pig 2.0 and Pig 3.0 splenocytes show reduced phagocytosis by human macrophage cell line. CFSE-labeled Pig 2.0 and Pig 3.0 splenocytes (target cells, T) were incubated with CD11b-labeled human macrophage cell line (effector cells, E) for 4 hours at 37℃, respectively. 2 different E: T ratios, 1: 1 and 1: 5, were performed. Phagocytosis of CFSE-labeled targets were measured by FACS, where the region of non-phagocytosing macrophages is shown in the upper left quadrants (Q1) , and region of phagocytosing macrophages is shown in the upper right quadrants (Q2) . Phagocytic activity was calculated as Q2/ (Q1+Q2) x 100%.
FIG. 53E shows level of thrombin-antithrombin (TAT) formation by WT pig, Pig 2.0 (3KO+9TG) , Pig 3.0 (3KO+9TG) and HUVEC cells. Pig 2.0 and Pig 3.0 PUVECs mediate very low level of thrombin-antithrombin (TAT) formation, which is comparable to HUVEC and significantly lower than WT PUVEC, upon incubation with whole human blood for indicated time. Error bars indicate mean ± s.d. (n = 4) .
FIG 53F shows ADPase activity of the CD39 transgene. Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) PUVECs show significantly higher CD39 ADPase biochemical activity compared to WT PUVEC and HUVEC. (A) Human transgene CD39 mRNA are expressed higher than endogenous CD39 in Pig 2.0 and Pig 3.0. (B) FACS revealed that Pig 2.0 and Pig 3.0 have higher human CD39 protein expression than WT PUVEC and HUVEC. (C) Pig 2.0 and Pig 3.0 PUVECs have significantly higher ADPase biochemical activity of CD39 as measured by phosphate concentration when incubated with ADP. The higher CD39 ADPase biochemical activity is consistent with its higher CD39 protein expression level in Pig 2.0 and Pig 3.0. Error bars indicate the standard deviation (n = 6) .
FIG. 53G shows TFPI function in 3.0 cells. Activated Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) PUVECs express human TFPI on cell surface and show significantly higher binding ability to human Xa compared to WT PUVEC and HUVECs in vitro. (A) RNA-Seq revealed that Pig 2.0 PUVECs express more human TFPI than its endogenous level in HUVECs, and the porcine TFPI level in WT PUVECs (n = 2) . (B) Activated Pig 2.0 PUVECs show significantly higher Xa binding ability compared to WT PUVECs and HUVECs in vitro. Left panel: The standard curve measures linear regression between the concentration of human recombinant TFPI (rTFPI) protein and the unbound Xa level. Right panel: The tTFPI level projected from the unbound Xa level using the standard curve on the left measures the TFPI Xa Binding ability in Pig 2.0 EC, WT PUVECs and HUVECs with and without PMA activation. PMA (1 μM) : PUVECs and HUVECs were activated by PMA for 6 hours, which leads to the translocation of hTFPI from cytosol to the cell membrane. Error bars indicate the standard deviation (n = 4) .
FIGs 54A, 54B, 54C, 54D, and 54E show normal phenotypes of Pig 1.0 and 2.0 pigs (3KO+9TG) . Pig 1.0 and Pig 2.0 show similar pathophysiology, compared with WT pigs in terms of complete blood count (A) , liver (B) , heart (C) and kidney function (D) , and coagulation function (E) . The sample numbers for Pig 1.0, Pig 2.0 and WT pigs are 18, 16 and 21, respectively. “no sig” denotes no statistical significance among the Pig 1.0, Pig 2.0 and WT groups by student’s t-test.
FIG. 55 shows mendelian inheritance of PERV-KO. The genetic modification of PERV-KO can be inherited following Mendelian genetics during natural mating production. The x-axis represents the total number of shifted bases calculated as the sum of insertions subtracting the sum of deletions. The y-axis represents the percent of reads. The red and green color indicate frameshift or not respectively. One Pig 1.0 pig mated with wild type Bama pig and generated 11 piglets. The liver, kidney, and heart tissue of one offspring piglet were analyzed by high-throughput DNA sequencing together with parental fibroblasts to assess the inheritance of the PERV-KO modifications. Pig 1.0 has 100%of PERV copies to be knockout, while the WT pig has ~80%PERV copies at the same size as the WT length (Insertions-Deletions=0) . Of note, some PERV copies in the WT sample might be non-functional or carry KO. In comparison, the liver, kidney and heart of the offspring pig has only ~50%PERV copies to carry knockout. The pattern is similar among tissues, indicating that the PERV-KO modification is stably inherited following Mendelian genetics among different tissues.
FIGs. 56A, 56B, and 56C show mendelian inheritance of the 9TG construct and the 3KO through breeding. The genetic modifications (3KO and 9TG) of this iteration of Pig 2.0 can be transmitted to the next generation following Mendelian genetics through natural mating production, as validated at genomic DNA (A) , mRNA (B) and protein Level (C) . We mated 9 WT pigs with Pig 2.0, and 11 3KO pigs with Pig 2.0, respectively, and detected the presence of 3KO and 9TG in the F1 progeny. (A) For the 9TG, approximately half of the progeny of Pig 2.0 x WT pigs and Pig 2.0 x 3KO pigs carry the transgenes in the genome. For GGTA1, CMAH and B4GALNT2, the progeny of Pig 2.0 X WT pigs are all heterozygous knockout, and the progeny of Pig 2.0 X 3KO pigs are all homozygous knockout. Of note, B4GALNT2 was analyzed as having four alleles because of the inclusion of its highly homologous pseudogene. (B) Approximately half (5/11) of the progeny of Pig 2.0 X 3KO pigs carry the mRNA corresponding to the 9TG in their mRNA transcripts. (C) FACS analysis validated the inheritance of 3KO and 9TG for Pig 2.0 X 3KO and Pig 2.0 X WT pigs as reduced or absence of cell surface glycans or presence of human proteins.
I.
Definitions
The terms "pig" , "swine" and "porcine" are used herein interchangeably to refer to anything related to the various breeds of domestic pig, species Sus scrofa.
The term "biologically active" when used to refer to a fragment or derivative of a protein or polypeptide means that the fragment or derivative retains at least one measurable and/or detectable biological activity of the reference full-length protein or polypeptide. For example, a biologically active fragment or derivative of a CRISPR/Cas9 protein may be capable of binding a gRNA, sometimes also referred to herein as a single guide RNA (sgRNA) , binding a target DNA sequence when complexed with a guide RNA, and/or cleaving one or more DNA strands.
The terms "treatment, " "treating, " "alleviation" and the like, when used in the context of a disease, injury or disorder, are used herein to generally mean obtaining a desired pharmacologic and/or physiologic effect, and may also be used to refer to improving, alleviating, and/or decreasing the severity of one or more symptoms of a condition being treated. The effect may be prophylactic in terms of completely or partially delaying the onset or recurrence of a disease, condition, or symptoms thereof, and/or may be therapeutic in terms of a partial or complete cure for a disease or condition and/or adverse effect attributable to the disease or condition. "Treatment" as used herein covers any treatment of a disease or condition of a mammal, particularly a human, and includes: (a) preventing the disease or condition from occurring in a subject which may be predisposed to the disease or condition but has not yet been diagnosed as having it; (b) inhibiting the disease or condition (e.g., arresting its development) ; or (c) relieving the disease or condition (e.g., causing regression of the disease or condition, providing improvement in one or more symptoms) .
The term "simultaneously” is used herein to refer to an event that occurs at the same time as another event, such as within seconds, milliseconds, microseconds, or less when compared to the occurrence of another event.
The term “knockout” ( “KO” ) or “knocking out” is used herein to refer to a deletion, deactivation, or ablation of a gene or deficient gene in a pig or other animal or any cells in the pig or other animal. KO, as used herein, can also refer to a method of performing, or having performed, a deletion, deactivation or ablation of a gene or portion thereof.
The term “knockin” ( “KI” ) or “knocking in” is used herein to refer to an addition, replacement, or mutation of nucleotide (s) of a gene in a pig or other animal or any cells in the pig or other animal. KI, as used herein, can also refer to a method of performing, or having performed, an addition, replacement, or mutation of nucleotide (s) of a gene or portion thereof.
II.
Cells, Tissues, Organs, and Animals
Porcine xenografts are broadly compatible with human organ size and physiology and are ethically acceptable to the US general population. However, xenotransplanted porcine tissue elicits a complex series of events leading to graft rejection including: hyperacute rejection due to the presence of preformed antibodies to pig antigens, complement activation and hypercoagulability, and heightened innate and adaptive immune responses due to molecular incompatibilities. The present disclosure uses genetic engineering approaches to address current shortcomings of xenotransplantation.
In particular, a number of immunological and functional challenges exist involving innate and adaptive immune function. Complement-and coagulation- mediated dysfunction arises due to molecular incompatibility between the donor porcine tissue and human physiology and leads to acute xenograft failure. Pre-formed antibodies to α-1, 3-galactosyl-galactose (αGal) epitopes initiate hyperacute graft rejection through activation of complement. Genetic inactivation of the glycoprotein α-galactosyltransferase 1 gene (GGTA1) can reduce this rapid graft destruction. Protection is further improved through over-expression of genes for human complement regulatory proteins (hCRPs) CD46 (membrane cofactor protein) , CD55 (complement decay accelerating factor) , and CD59 (MAC-inhibitory protein) .
Most non-Gal xenoantibodies recognize the sialic acid N-glycolylneuraminic acid (Neu5Gc) which is synthesized by the cytidine monophosphate-N-acetylneuraminic acid hydrolase (CMAH) gene. This gene is inactive in humans and, as such, porcine Neu5Gc is immunogenic in humans. Therefore, porcine CMAH likely must be inactivated for clinical success in xenotransplantation. While expression of complement regulators and knockout of GGTA1 (GTKO) reduces hyperacute rejection, these genetic modifications do not impact acute vascular rejection (AVR) .
Coagulation dysfunction, including thrombotic microangiopathy and systemic consumptive coagulopathy, has persisted even with GTKO and overexpression of hCRP due primarily to molecular incompatibilities in the coagulation system between pig and non-human primates (NHP) .
Despite attempts by others to generate transgenic pigs for safe xenotransplantation, these transgenic pigs carried only a limited number of transgenes due to construct capacity constraints and transcription interference between transgenes. These methods proved insufficient to overcome xenograft incompatibility. For example, US Patent Publ. No. 2018/0249688 utilized multi-cistronic expression vectors with different combinations of transgenes. Importantly, these multi-cistronic vectors comprised only 4 transgenes and were used to produce pigs having 6 genetic modifications, including KO of alpha Gal (GTKO) . In the present disclosure, a combination of KO, KI, and genomic replacement strategies are utilized. For the first time, PERV-free pigs have been produced expressing more than 6 transgenes from a single locus.
The examples described and disclosed herein demonstrate that porcine complement factors can be KO'd and that viable pigs can be produced having one or more modified MHC Class I genes, inactivation of MHC Class II genes, KI of PD-L1 to reduce adaptive immunity-based rejections, modified porcine vWF to modulate platelet aggregation, and deletions of porcine MHC Class I genes. These examples provided a platform to achieve a greater number of genetic modifications within the same pig. From this work, porcine cells were genetically modified with more than six transgenes to generate immunologically compatible cells, tissues, organs, pigs, and progeny. Using CRISPR-Cas9, multiple genes were functionally knocked out, including GGTA1, CMAH, and B4GALNT2, to eliminate the glycans that are recognized by human preformed anti-pig antibodies. In addition, either nine or twelve human transgenes were integrated into a single multi-transgene cassette in the pig genome. Specifically, pigs have been produced utilizing CRISPR-mediated non-homologous end joining (NHEJ) to disrupt the 3 major xenogenic carbohydrate antigen-producing genes ( “3KO” ; GGTA1, B4GALNT2 and CMAH) coupled with PiggyBAC-mediated random integration of the 9 transgenes CD46, CD55, CD59, CD39, CD47, HLA-E, B2M, THBD, and TFPI or the 12 transgenes (CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1) into the porcine genome. A further advancement is to use source donor pigs harboring the 3KO and 9T or 12TG modifications on a PERV-free background. From there, source donor pigs will also be genetically engineered to carry additional genetic modifications, including humanization of the vWF gene and deletion or disruption of the asialoglycoprotein receptor 1 (ASGR1) and endogenous B2M genes, among others.
The present disclosure provides cells, tissues, organs, and animals having multiple modified genes, and methods of generating the same. In some embodiments, the cells, tissue, organs, are obtained from an animal, or is an animal. In some embodiments, the animal is a mammal. In some embodiments, the mammal is a non-human mammal, for example, equine, primate, porcine, bovine, ovine, caprine, canine, or feline. In some embodiments, the mammal is a porcine.
Modification of genes in accordance with the present disclosure serves to improve molecular compatibility between the donor and the recipient and to reduce adverse events, including hyperacute rejection, acute humoral rejection, thrombotic microangiopathy, and chronic vasculopathy. For example, hyperacute rejection occurs in a very short time span, typically within minutes to hours after transplantation and results from pre-formed antibodies that activate complement and graft endothelial cells, in turn causing pro-coagulation changes that lead to hemostasis and eventually destruction of the grafted organ. In certain embodiments, the cells, tissues, organs, and animals generate a reduced hyperacute rejection.
In some embodiments, the present disclosure provides for one or more cells, tissues, organs, or animals having multiple modified genes. In some embodiments, the cell, tissue, organ, or animal has been genetically modified such that multiple genes have been added, deleted, inactivated, disrupted, a portion thereof has been excised, or the gene sequence has been altered. In some embodiments, the cell, tissue, organ, or animal has 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 genes that have been modified. In some embodiments, the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 genes that have been modified are expressed from a single locus. In some embodiments, the 5, 10, or 12 genes that have been modified are expressed from a single locus. In some embodiments, the 12 genes that have been modified are expressed from a single locus. In some embodiments, the cell, tissue, organ, or animal has more than 20, more than 15, more than 10, more than 5, more than 3, or 2 genes that have been modified. In some embodiments, the cell, tissue, organ, or animal has more than 10, more than 5, more than 3, more than 2, or more than 1 gene that has been modified. In some embodiments, the cell, tissue, organ, or animal has one copy of the modified gene and in other embodiments, the cell, tissue, organ, or animal has more than one copy of the one or more modified genes, such as more than 2, more than 3, more than 4, more than 5, more than 6, more than 7, more than 8, more than 9, more than 10, more than 15, more than 20, more than 25, more than 30, more than 35, more than 40, more than 50, more than 60, more than 70, more than 80, more than 90, or more than 100 copies of the modified gene. In some embodiments, the cell has between 100 copies and about 1 copy, 90 copies and about 1 copy, 80 copies and about 1 copy, about 70 copies and about 1 copy, 60 copies and about 1 copy, between about 50 copies and about 1 copy, between about 40 copies and about 1 copy, between about 30 copies and about 1 copy, between about 20 copies and about 5 copies, between about 15 copies and about 10 copies, or between about 5 copies and about 1 copy of one or more modified genes.
In some embodiments, the present disclosure provides for one or more cells, tissues, organs, or animals having multiple copies of one or more of the modified genes. For example, the cells, tissues, organs, or animals may have 2, 3, 4, 5, 6, 7, 8, 9, about 10, about 15, about 20, about 25, about 30, or more of one or more of the modified genes.
In some embodiments, the one or more cells is a primary cell. In some embodiments, the one or more cells is a somatic cell. In some embodiments, the one or more cells is a post-natal cell. In some embodiments, the one or more cells is an adult cell (e.g., an adult ear fibroblast) . In some embodiments, the one or more cells is a fetal/embryonic cell (e.g., an embryonic blastomere) . In some embodiments, the one or more cells is a germ line cell. In some embodiments, the one or more cells is an oocyte. In some embodiments, the one or more cells is a stem cell. In some embodiments, the one or more cells is a cell from a primary cell line. In some embodiments, the one or more cells is selected from the group consisting of: an epithelial cell, a liver cell, a granulosa cell, a fat cell. In particular embodiments, the one or more cells is a fibroblast. In some embodiments, the fibroblast is a female fetal fibroblast. In some embodiments, the one or more cells is in vitro. In some embodiments, the one or more cells is in vivo. In some embodiments, the one or more cells is a single cell. In some embodiments, the one or more cells is a member of a cell colony.
In some embodiments, the one or more cells is a porcine cell. Non-limiting examples of the breeds a porcine cell originates from or is derived from includes any of the following pig breeds: American Landrace, American Yorkshire, Aksai Black Pied, Angeln saddleback, Appalachian English, Arapawa Island, Auckland Island, Australian Yorkshire, Babi Kampung, Ba Xuyen, Bantu, Basque, Bazna, Beijing Black, Belarus Black Pied, Belgian Landrace, Bengali Brown Shannaj, Bentheim Black Pied, Berkshire, Bisaro, Bangur, Black Slavonian, Black Canarian, Breitovo, British Landrace, British Lop, British Saddleback, Bulgarian White, Cambrough, Cantonese, Celtic, Chato Murciano, Chester White, Chiangmai Blackpig, Choctaw Hog, Creole, Czech Improved White, Danish Landrace, Danish Protest, Dermantsi Pied, Li Yan, Duroc, Dutch Landrace, East Landrace, East Balkan, Essex, Estonian Bacon, Fengjing, Finnish Landrace, Forest Mountain, French Landrace, Gascon, German Landrace, Gloucestershire Old Spots, Gottingen minipig, Grice, Guinea Hog, Hampshire, Hante, Hereford, Hezuo, Hogan Hog, Huntington Black Hog, Iberian, Italian Landrace, Japanese Landrace, Jeju Black, Jinhua, Kakhetian, Kele, Kemerovo, Korean Native, Krskopolje, Kunekune, Lamcombe, Large Black, Large Black-White, Large White, Latvian White, Leicoma, Lithuanian Native, Lithuanian White, Lincolnshire Curly-Coated, Livny, Malhado de Alcobaca, Mangalitsa, Meishan, Middle White, Minzhu, Minokawa Buta, Mong Cai, Mora Romagnola, Moura, Mukota, Mulefoot, Murom, Myrhorod, Nero dei Nebrodi, Neijiang, New Zealand, Ningxiang, North Caucasian, North Siberian, Norwegian Landrace, Norwegian Yorkshire, Ossabaw Island, Oxford Sandy and Black, Pakchong 5, Philippine Native, Pietrain, Poland China, Red Wattle, Saddleback, Semirechensk, Siberian Black Pied, Small Black, Small White, Spots, Surabaya Babi, Swabian-Hall, Swedish Landrace, Swallow Belied Mangalitza, Taihu pig, Tamworth, Thuoc Nhieu, Tibetan, Tokyo-X, Tsivilsk, Turopolje, Ukrainian Spotted Steppe, Ukrainian White Steppe, Urzhum, Vietnamese Potbelly, Welsh, Wessex Saddleback, West French White, Windsnyer, Wuzhishanm, Yanan, Yorkshire and Yorkshire Blue and White. In some embodiments, the porcine cells are Yorkshire and Yucatan porcine cells.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, or a portion of the gene sequence has been altered.
In some embodiments, the cells, tissues, organs or animals of the disclosure comprise one or more mutations that inactivate one or more genes. In some embodiments, the cells, tissues, organs or animals comprise one or more mutations or epigenetic changes that result in decreased or eliminated expression of one or more genes having the one or more mutations. In some embodiments, the one or more genes is inactivated by genetically modifying the nucleic acid (s) present in the cells, tissues, organs or animals. In some embodiments, the inactivation of one or more genes is confirmed by means of an assay. In some embodiments, the assay is an infectivity assay, reverse transcriptase PCR assay, RNA-seq, real-time PCR, or junction PCR mapping assay.
Specific Genotypes
To warrant cells, tissues, organs and animals safe and effective for human clinical use, the cells, tissues, organs, and animals (e.g., donor pigs) of the present disclosure are genetically engineered to have enhanced complement (i.e., complement toxicity) , coagulation, inflammatory (i.e., apoptosis/inflammation) , immune (i.e., cellular toxicity) , and/or immunomodulation systems that render them compatible in humans. Novel combinations of knockout (KO) , knockin (KI) (alternately referred to herein as transgene (TG) ) , and/or genomic replacement strategies provide the enhanced complement, coagulation, inflammatory, immune, and/or immunomodulation systems.
Cells, tissues, organs and animals lacking expression of major xenogenic carbohydrate antigens, for example by genetic KO, reduce or eliminate humoral rejection during xenotransplantation. Three of the major xenogenic carbohydrate antigens include those produced by the glycosyltransferases/glycosylhydrolases GGTA1, CMAH, and B4GALNT2. A purpose for the functional loss of these genes is to reduce and/or eliminate the binding of preformed anti-pig antibodies to the endothelium of the porcine grafts.
Insertion of key complement, coagulation, inflammatory, immune, and/or immunomodulation factors into one or more genomic loci, for example safe harbor genomic loci such as AAVS1, will aid in regulating the human complement system, and natural killer (NK) , macrophage, and T cell function. Nonlimiting examples include, overexpression by KI of hCD46, hCD55, and hCD59 to inhibit the human complement cascade; humanization of vWF to prevent unregulated platelet sequestration and thrombotic microangiopathy, for example, by humanizing the A1 domain and/or flanking regions of the porcine vWF sequence; KI of B2M-HLA-E SCT to provide protection against human NK cell cytotoxicity and humanization of porcine cells; and KI of CD47, CD39, THBD, TFPI, A20 to function as immunosuppressants, immunomodulators, and/or anticoagulants.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, or a portion of the gene sequence has been altered. In some embodiments, the present disclosure provides an isolated cell, tissue, organ, or animal having multiple modified genes. In some embodiments, the modified genes include one or more of alpha 1, 3, galactosyltransferase (GGTA) , Beta-1, 4-N-Acetyl-Galactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) , THBD, TFPI, CD39, HO-1, CD46, CD55, CD59, major histocompatibility complex, class I, E single chain trimer (HLA-E SCT) , A20, PD-L1, CD47, swine leukocyte antigen 1 (SLA-1) , SLA-2, SLA-3, vWF, B2M, DQA, DRA, and CD47.
In some embodiments, the modified genes are GGTA, B4GalNT2, CMAH, or any combination thereof. In some embodiments, the GGTA, B4GalNT2, and/or CMAH are genetically KO. In some embodiments, the modified genes are THBD, TFPI, CD39, HO-1, or any combination thereof. In some embodiments, the THBD, TFPI, CD39, and/or HO-1 are genetically KI. In some embodiments, the modified genes are CD46, CD55, CD59, B2M-HLA-E SCT, A20, PD-L1, CD47, or any combination thereof. In some embodiments, the CD46, CD55, CD59, B2M-HLA-E SCT, A20, PD-L1, and/or CD47 are genetically KI. In some embodiments, the modified genes are SLA-1, SLA-2, SLA-3, B2M, or any combination thereof. In some embodiments, the modified genes are DQA and/or DRA. In some embodiments, the modified genes are PD-L1, exogenous vWF, HLA-E, HLA-G, B2M, CIITA-DN, and or any combination thereof. In some embodiments, the modified genes are TBM, PD-L1, HLA-E, CD47, or any combination thereof. In some embodiments, the TBM, PD-L1, HLA-E, and/or CD47 are genetically KI. In some embodiments, the modified genes are MHC-I genes SLA-1, SLA-2, and SLA-3, MHC-II genes DQA and DRA, endogenous vWF, CD9, asialoglycoprotein receptor, at least one complement inhibitor gene (e.g., C3, CD46, CD55, and CD59) , and any combination thereof. In some embodiments the CD46, CD55 and/or CD59 are genetically KI.
In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising B2M, HLA-E, CD47, SCT, THBD, TFPI, CD39, A20, PD-L1, FasL, CD46, CD55, CD59, or any combination thereof. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of B2M, HLA-E, CD47, SCT, THBD, TFPI, CD39, A20, PD-L1, FasL, CD46, CD55, and CD59. One embodiment of a transgene expression vector is depicted in FIG. 17. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising B2M, HLA-E, SCT, CD47, THBD, TFPI, CD39, A20, PD-L1, HO-1, CD46, CD55, CD59, or any combination thereof. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of B2M, HLA-E, SCT, CD47, THBD, TFPI, CD39, A20, PD-L1, HO-1, CD46, CD55, and CD59. One embodiment of a transgene expression vector is depicted in FIG. 18. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising B2M, HLA-E, SCT, CD47, PD-L1, HO-1, THBD, TFPI, CD39, A20, CD46, CD55, CD59, or any combination thereof. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of B2M, HLA-E, SCT, CD47, PD-L1, HO-1, THBD, TFPI, CD39, A20, CD46, CD55, and CD59. One embodiment of a transgene expression vector is depicted in FIG. 19. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising CD46, CD55, CD59, A20, THBD, TFPI, CD39, HO-1, 2xFKBP (fusion of s FK506 binding protein) , hCaspase8, PD-L1, B2M, HLA-E, SCT, CD47, or any combination thereof. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been genetically modified with a transgene expression vector comprising each of CD46, CD55, CD59, A20, THBD, TFPI, CD39, HO-1, 2xFKBP, hCaspase8, PD-L1, B2M, HLA-E, SCT, and CD47. One embodiment of a transgene expression vector is depicted in FIG. 20. In one embodiment, the cells, tissues, organs or animals of the present disclosure have been further genetically modified to have reduced or no expression of GGTA, B4GalNT2, CMAH, or any combination thereof, for example by genetic KO.
The cells, tissues, organs or animals of the present disclosure can be genetically modified by any method. Non-limiting examples of suitable methods for the knockout (KO) , knockin (KI) , and/or genomic replacement strategies disclosed and described herein include CRISPR-mediated genetic modification using Cas9, Cas12a (Cpf1) , or other CRISPR endonucleases, Argonaute endonucleases, transcription activator-like (TAL) effector and nucleases (TALEN) , zinc finger nucleases (ZFN) , expression vectors, transposon systems (e.g., PiggyBac transposase) , or any combination thereof.
The cells, tissues, organs or animals of the present disclosure can be further modified to be PERV-free. The cells, tissues, organs or animals of the present disclosure can be further modified to have PERV copies functionally deleted from their genome. The cells, tissues, organs or animals of the present disclosure can be further modified to have PERV copies functionally inactivated in their genome. PERVs represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients. PERVs are released from normal pig cells and are infectious. PERV-Aand PERV-B are polytropic viruses infecting cells of several species, among them humans (e.g. they are xenotropic) ; whereas PERV-C is an ecotropic virus infecting only pig cells. Non-limiting methods for functionally deleted PERV copies are disclosed and described in Niu 2017 and WIPO Publ. No. WO2018/195402, both of which are incorporated by reference herein in their entireties. In some embodiments, the pigs are genetically engineered to be PERV-A, PERV-B, or PERV-C (or any combination thereof) free.
In some embodiments, additional genes of cells, tissues, organs or animals of the present disclosure are modified by addition, deletion, inactivation, disruption, excision of a portion thereof, or a portion of the gene sequence has been altered. In some embodiments, the modified genes include deleting one or more of the following genes: MHC-I genes SLA-1, SLA-2, and SLA-3, MHC-II genes DQA and DRA, endogenous vWF, CD9, asialoglycoprotein receptor, and C3, and expressing one or more of the following transgenes: PD-L1, exogenous vWF, HLA-E, HLA-G, B2M, and CIITA-DN. In some embodiments, the modified genes include deleting one or more of the following genes: alpha galactosyltransferase 1, β1, 4 N-acetylgalactosaminyltransferase, and cytidine monophosphate-N-acetylneuraminic acid hydroxylase, and expressing one or more of the following transgenes: CD46, CD55, CD59, CD47, HO-1, A20, TNFR1-Ig, CD39, THBD, TFPI, EPCR, PD-1, CTLA-Ig, CD73, SOD3, CXCL12, FasL, CXCR3, CD39L1, GLP-1R, M3R, IL35, IL12A and EB13. In some embodiments, the modified genes are CD46, CD55, CD59, CD47, HO-1, A20, TNFR1-Ig, CD39, THBD, TFPI, EPCR, PD-1, CTLA-Ig, CD73, SOD3, CXCL12, FasL, CXCR3, CD39L1, GLP-1R, M3R, IL35, IL12A and EB13.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof. In some embodiments, the present disclosure provides an isolated cell, tissue, organ, or animal has one or more modified genes. In some embodiments, the modified genes are MHC Class I genes. In some embodiments, the modified MHC Class I genes include one or more of the following SLA-1, SLA-2, SLA-3, and B2M. In some embodiments, the modified genes are SLA-1, SLA-2, and/or SLA-3. In some embodiments, the modified gene is B2M. In some embodiments, the modified MHC Class I genes include one or more of the following SLA-1, SLA-2, SLA-3, and B2M. In some embodiments, the modified B2M, SLA-1, SLA-2, and/or SLA-3 genes, and/or a portion thereof, are replaced with a human HLA-E gene, a human HLA-G gene, a human B2M gene, and/or a human (dominant-negative mutant class II transactivator) CIITA-DN gene, and/or a portion thereof. In some embodiments, the modified genes are conditionally and/or inducibly modified. In some embodiments, a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes. In some embodiments, the isolated cell, tissue, organ, or animal comprises conditionally altering B2M, SLA-1, SLA-2, or SLA-3 genes, or any combination thereof, and replacing the conditionally altered genes with at least a portion of a human HLA-E gene, a human HLA-G gene, a human B2M gene, and/or a human CIITA-DN gene.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof. In some embodiments, the present disclosure provides an isolated cell, tissue, organ, or animals has one or more modified genes. In some embodiments, the modified genes are MHC Class II genes. In some embodiments, the modified MHC Class II genes are DRQ, DRA, or any combination thereof. In some embodiments, DRQ and/or DRA is modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered. In some embodiments, the modified genes are conditionally and/or inducibly modified. In some embodiments, a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes. In some embodiments, the isolated cell, tissue, organ, or animal comprises conditionally altering DRQ and/or DRA genes, or any combination thereof.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof. In some embodiments, the present disclosure provides an isolated cell, tissue, organ, or animal having a modified vWF gene. In some embodiments, the modified genes are vWF genes and vWF-related genes. In some embodiments, the modified vWF gene, and/or a portion thereof, is replaced with a human vWF gene and/or a portion thereof. In some embodiments, the modified vWF gene, modified vWF-related genes, and/or a portion (s) thereof, is replaced with a human vWF gene, one or more human vWF-related genes, and/or a portion thereof. In some embodiments, the modified vWF gene and/or vWF-related genes are conditionally and/or inducibly modified. In some embodiments, a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes. In some embodiments, the isolated cell, tissue, organ, or animal comprises conditionally altering vWF, vWF-related genes, a portion (s) thereof, or any combination thereof, and replacing the conditionally altered genes with the human vWF gene, at least a portion of the human vWF gene, one or more other human vWF-related genes, at least a portion of one or more human vWF-related genes, or any combination thereof. In some embodiments, the vWF gene is modified using gRNAs designed to initiate the HDR replacement in the endogenous porcine genome and cut near the region to be replaced by the human sequences. Non-limiting examples of suitable gRNAs are any one or more of SEQ ID NOs: 5-157.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof. In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified by introduction of one or more exogenous genes, or portions thereof, into the cells, tissues, organs, or animals, such as a transgene. In some embodiments, the present disclosure provides an isolated cell, tissue, organ, or animal having one or more modified genes. In some embodiments, the modified genes are programmed death genes. In some embodiments, the modified gene is PD-L1. In some embodiments, the cells, tissues, organs, or animals are modified to express an exogenous PD-L1 gene, or portion thereof, such as a transgene. In some embodiments, the modified genes are conditionally and/or inducibly modified. In some embodiments, a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes. In some embodiments, the isolated cell, tissue, organ, or animal comprises conditionally altering PD-L1. In some embodiments, the PD-L1 comprises the sequence described in SEQ ID NO: 211 or any variant or portion thereof.
In some embodiments, the cells, tissues, organs or animals of the present disclosure have been genetically modified such that one or more genes has been modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered, or introducing a transgene or a portion thereof. In some embodiments, the present disclosure provides an isolated cell, tissue, organ, or animal has one or more modified genes. In some embodiments, the modified genes are complement genes. In some embodiments, the modified gene is C3. In some embodiments, C3 is modified by addition, deletion, inactivation, disruption, excision of a portion thereof, a portion of the gene sequence has been altered. In some embodiments, the modified C3 gene and/or complement-related genes are conditionally and/or inducibly modified. In some embodiments, a conditional promoter and/or an inducible promoter is used to conditionally and/or inducibly modify the one or more modified genes. In some embodiments, the isolated cell, tissue, organ, or animal comprises conditionally altering C3, complement-related genes, a portion (s) thereof, or any combination thereof. In some embodiments, the C3 gene is modified using gRNAs. Non-limiting examples of suitable gRNAs include any one or more of SEQ ID NOs: 158-210.
In some embodiments, the modified gene is a knockout of C3. In some embodiments, the modified gene is a knock-in of PD-L1. In some embodiments, the modified gene is a humanized vWF of the porcine vWF. In some embodiments, the modified gene is a conditional knock-in of MHC-I genes SLA-1, SLA-2, and SLA-3.
In some embodiments, no or substantially no immune response is elicited by the host against the genetically modified cell, tissue or organ.
In some embodiments, the disclosure provides for nucleic acids obtained from any of the cells disclosed herein. In some embodiments, the nucleic acid (s) in the cell are genetically modified such that one or more genes in the cell are altered or the genome of the cell is otherwise modified. In some embodiments, the genes, or portions thereof, that are genetically modified using any of the genetic modifications systems known in the art and/or disclosed herein. In some embodiments, the genetic modification system is a TALEN, a zinc finger nuclease, and/or a CRISPR-based system. In some embodiments, the genetic modification system is a CRISPR-Cas9 system. In some embodiments, the genetic modification system is a Class II, Type-II CRISPR system. In some embodiments, the genetic modification system is a Class II, Type-V CRISPR system. In some embodiments, the cell is genetically modified such that one or more genes or portions thereof in the cell are inactivated, and the cell is further genetically modified such that the cell has reduced expression of one or more genes, or portions thereof, that would induce an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human. In some embodiments, the cell is genetically modified to have increased expression of one or more human genes, or portions thereof. In some embodiments, the cell is genetically modified to have increased expression of one or more humanized genes, or portions thereof. In some embodiments, the cell is genetically modified such that one or more genes, or portions thereof, in the cell are inactivated, and the cell is further genetically modified such that the cell has increased expression of one or more genes that would suppress an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human. In some embodiments, the cell is genetically modified such that one or more genes, or portions thereof, in the cell are inactivated, and the cell is further genetically modified such that the cell has reduced expression of one or more genes that would induce an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human, and the cell is further genetically modified such that the cell has increased expression of one or more genes that would suppress an immune response if the cell (or a tissue or organ cloned/derived from the cell) were transplanted to a human.
In some embodiments, the disclosure provides for an embryo that was cloned from the genetically modified cell. In some embodiments, the genetically modified nucleic acid (s) are extracted from the genetically modified cell and cloned into a different cell. For example, in somatic cell nuclear transfer, the genetically modified nucleic acid from the genetically modified cell is introduced into an enucleated oocyte. In some embodiments, oocytes can be enucleated by partial zona dissection near the polar body and then pressing out cytoplasm at the dissection area. In some embodiments, an injection pipette with a sharp beveled tip is used to inject the genetically modified cell into an enucleated oocyte arrested at meiosis 2. Oocytes arrested at meiosis-2 are frequently termed “eggs. ” In some embodiments, an embryo is generated by fusing and activating the oocyte. Such an embryo may be referred to herein as a “genetically modified embryo. ” In some embodiments, the genetically modified embryo is transferred to the oviducts of a recipient female pig. In some embodiments, the genetically modified embryo is transferred to the oviducts of a recipient female pig 20 to 24 hours after activation. See, e.g., Cibelli 1998 and U.S. Patent No. 6,548,741. In some embodiments, recipient females are checked for pregnancy approximately 20-21 days after transfer of the genetically modified embryo.
In some embodiments, the genetically modified embryo is grown into a post-natal genetically modified animal. In some embodiments, the post-natal genetically modified animal is a neo-natal genetically modified animal. In some embodiments, the genetically modified pig is a juvenile genetically modified animal. In some embodiments, the genetically modified animal is an adult genetically modified animal (e.g., older than 5-6 months) . In some embodiments, the genetically modified animal is a female genetically modified animal. In some embodiments, the animal is a male genetically modified animal. In some embodiments, the genetically modified animal is bred with a non-genetically modified animal. In some embodiments, the genetically modified animal is bred with another genetically modified animal. In some embodiments, the genetically modified pig is bred with another genetically modified animal that has reduced or no active virus. In some embodiments, the genetically modified animal is bred with a second genetically modified animal that has been genetically modified such that the cells, tissues or organs from the second genetically modified animal are less likely to induce an immune response if transplanted to a human.
In some embodiments the genetically modified animal is an animal having one or more modified genes and maintains a same or similar level of expression or inactivation of the modified gene (s) for at least a month, at least 6 months, at least 1 year, at least 5 years, at least 10 years post-gestation. In some embodiments, the genetically modified animal remains genetically modified having one or more modified genes as a genetically modified pig even after delivery from a non-viral-inactivated surrogate or after being in a facility/space with other non-viral-inactivated animals.
In some embodiments, the disclosure provides for cells, tissues, or organs obtained from any of the post-natal genetically modified pigs described herein. In some embodiments, the cell, tissue, or organ is selected from the group consisting of liver, kidney, lung, heart, pancreas, muscle, blood, and bone. In particular embodiments, the organ is liver, kidney, lung or heart. In some embodiments, the cell from the post-natal genetically modified pig is selected from the group consisting of: pancreatic islets, lung epithelial cells, cardiac muscle cells, skeletal muscle cells, smooth muscle cells, hepatocytes, non-parenchymal liver cells, gall bladder epithelial cells, gall bladder endothelial cells, bile duct epithelial cells, bile duct endothelial cells, hepatic vessel epithelial cells, hepatic vessel endothelial cells, sinusoid cells, choroid plexus cells, fibroblasts, Sertoli cells, neuronal cells, stem cells, and adrenal chromaffin cells. In some embodiments, the genetically modified organs, tissues or cells have been separated from their natural environment (i.e., separated from the pig in which they are being grown) . In some embodiments, separation from the natural environment means a gross physical separation from the natural environment, e.g., removal from the genetically modified donor animal, and alteration of the genetically modified organs', tissues' or cells' relationship with the neighboring cells with which they are in direct contact (e.g., by dissociation) .
III.
Methods of Generating Cells, Tissues, Organs, or Animals
The disclosure provides for methods of generating any of the cells, tissues, organs, or animals having one or more modified genes disclosed herein. In some embodiments, the disclosure provides a method of inactivating, deleting, or otherwise disrupting one or more genes, or portions thereof, in any of the cells disclosed herein, comprising administering to the cell a gene editing agent specific to a gene, wherein the agent disrupts transcription and/or translation of the gene. In some embodiments, the agent targets the start codon of the gene and inhibits transcription of the gene. In some embodiments, the agent targets an exon in the gene and the agent induces a frameshift mutation in the gene. In some embodiments, the agent introduces an inactivating mutation into the gene. In some embodiments, the agent represses transcription of the gene.
In some embodiments, the disclosure provides a method of altering one or more genes, or a portion thereof, in vivo, comprising administering to the cell a gene editing agent specific to a gene, wherein the agent alters a sequence of the gene, such as by humanizing the gene or otherwise changing a native (e.g., wild-type) sequence of the gene.
In some embodiments, the disclosure provides a method of expressing one or more genes, or a portion thereof, such as a transgene (e.g., non-native gene) comprising administering to the cell a gene editing agent specific to the transgene gene, wherein the agent introduces a sequence of the transgene. In some embodiments, the agent is a nucleic acid sequence, such as a plasmid, a vector, or the like. In some embodiments, the nucleic acid sequence includes one or more nucleic acid sequences, such as a promoter, a transgene, and/or additional genes. In some embodiments, the nucleic acid sequence, or a portion thereof, is derived from one or more species and/or one or more sources. In some embodiments, the species is a species that will receive the genetically modified cell, tissue, or organ. In some embodiments, the species is a human. In other embodiments, the species is non-human, such as a mammal, an animal, a bacteria, and/or a virus.
In some embodiments, any of the agents disclosed herein is a polynucleotide. In some embodiments, the polynucleotide encodes one or more of the nucleases and/or nickases and/or RNA or DNA molecules described herein. In some embodiments, the polynucleotide agent is introduced to one or more cells. In some embodiments, the polynucleotide is introduced to the one or more cells in a manner such that the polynucleotide is transiently expressed by the one or more cells. In some embodiments, the polynucleotide is introduced to the one or more cells in a manner such that the polynucleotide is stably expressed by the one or more cells. In some embodiments, the polynucleotide is introduced in a manner such that it is stably incorporated in the cell genome. In some embodiments, the polynucleotide is introduced along with one or more transposable elements. In some embodiments, the transposable element is a polynucleotide sequence encoding a transposase. In some embodiments, the transposable element is a polynucleotide sequence encoding a PiggyBac transposase. In some embodiments, the transposable element is inducible. In some embodiments, the transposable element is doxycycline-inducible. In some embodiments, the polynucleotide further comprises a selectable marker. In some embodiments, the selectable marker is a puromycin-resistant marker. In some embodiments, the selectable marker is a fluorescent protein (e.g., GFP) .
In some embodiments, the agent is a nuclease or a nickase that is used to target DNA in the cell. In some embodiments, the agent specifically targets and suppresses expression of a gene. In some embodiments, the agent comprises a transcription repressor domain. In some embodiments, the transcription repressor domain is a Krüppel associated box (KRAB) .
In some embodiments, the agent is any programmable nuclease. In some embodiments, the agent is a natural homing meganuclease. In some embodiments, the agent is a TALEN-based agent, a ZFN-based agent, or a CRISPR-based agent, or any biologically active fragment, fusion, derivative or combination thereof. CRISPR-based agents include, for example, Class II Type II and Type V systems, including e.g. the various species variants of Cas9 and Cpf1. In some embodiments, the agent is a deaminase or a nucleic acid encoding a deaminase. In some embodiments, a cell is genetically engineered to stably and/or transiently express a TALEN-based agent, a ZFN-based agent, and/or a CRISPR-based agent.
IV.
Methods of Treatment
In some embodiments, any of the genetically modified cells, tissues or organs disclosed herein may be used to treat a subject of a different species as the genetically modified cells. In some embodiments, the disclosure provides for methods of transplanting any of the genetically modified cells, tissues or organs described herein into a subject in need thereof. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human primate.
In some embodiments, a genetically modified organ for use in any of the methods disclosed herein may be selected from the heart, lung, , liver, , eye, pituitary, thyroid, parathyroid, esophagus, thymus, adrenal glands, appendix, bladder, gallbladder, small intestine, large intestine, small intestine, kidney, pancreas, spleen, stomach, skin, and/or prostate, of the genetically modified pig. In some embodiments, a genetically modified tissue for use in any of the methods disclosed herein may be selected from cartilage (e.g., esophageal cartilage, cartilage of the knee, cartilage of the ear, cartilage of the nose) , muscle such as, but not limited to, smooth and cardiac (e.g., heart valves) , tendons, ligaments, bone (e.g., bone marrow) , cornea, middle ear and veins of the genetically modified pig. In some embodiments, a genetically modified cell for use in any of the methods disclosed herein includes blood cells, skin follicles, hair follicles, and/or stem cells. Any portion of an organ or tissue (e.g., a portion of the eye such as the cornea) may also be administered the compositions of the present disclosure.
In some embodiments, a heart, lung, liver, kidney, pancreas, or spleen is isolated from a pig that has been genetically modified to comprise (a) deletions or disruptions of GGTA1, CMAH, and B4GALNT2; (b) addition of CD46, CD55, CD59, CD39, CD47, A20, PD-L1, HLA-E, B2M, THBD, TFPI, and HO transgenes (e.g. human or humanized copies thereof) expressed from a single multi-transgene cassette in the pig genome; and (c) functional deletion of all PERV copies. In some embodiments, a heart, lung, liver, kidney, pancreas, or spleen is isolated from a pig that has been genetically modified to comprise (a) functional disruption of GGTA1, CMAH, and B4GALNT2; (b) addition of CD46, CD55, CD59, CD39, CD47, A20, PD-L1, HLA-E, B2M, THBD, TFPI, and HO transgenes (e.g. humanized copies thereof) expressed from a single multi-transgene cassette in the pig genome; and (c) functional inactivation of all PERV copies. In certain embodiments, the pig has been further genetically modified to have humanized vWF, deletion of ASGR1, and/or deletion of B2M genes.
In some embodiments, the xenotransplanted organ (e.g., heart, lung, liver, kidney, pancreas, spleen) exhibits sustained function once xenografted into a human or nonhuman primate for more than about 300 days, more than about 1 year, more than about 1.5 years, more than about 2 years, more than about 2.5 years, more than about 3 years, more than about 3.5 years, more than about 4 years, more than about 4.5 years, more than about 5 years, more than about 5.5 years, more than about 6 years, more than about 6.5 years, more than about 7 years, more than about 7.5 years, more than about 8 years, more than about 8.5 years, more than about 9 years, more than about 9.5 years, or more than about 10 years.
In some embodiments, the disclosure provides for treating a subject having a disease, disorder or injury that results in a damaged, deficient or absent organ, tissue or cell function. In some embodiments, the subject has suffered from an injury or trauma (e.g., an automobile accident) resulting in the damage of one or more cells, tissues or organs of the subject. In some embodiments, the subject has suffered a fire or acid burn. In some embodiments, the subject has a disease or disorder that results in a damaged, deficient or absent organ, tissue or cell function. In some embodiments, the subject is suffering from an autoimmune disease. In some embodiments, the disease is selected from the group consisting of: heart disease (e.g., atherosclerosis) , dilated cardiomyopathy, severe coronary artery disease, scarred heart tissue, birth defects of the heart, diabetes Type I or Type II, hepatitis, cystic fibrosis, cirrhosis, kidney failure, lupus, scleroderma, IgA nephropathy, polycystic kidney disease, myocardial infarction, emphysema, chronic bronchitis, bronchiolitis obliterans, pulmonary hypertension, congenital diaphragmatic hernia, congenital surfactant protein B deficiency, and congenital cystic emphysematous lung disease, primary biliary cholangitis, sclerosing cholangitis, biliary atresia, alcoholism, Wilson’s disease, hemochromatosis, and/or alpha-1 antitrypsin deficiency.
In some embodiments, any of the genetically modified cells, tissues and/or organs of the disclosure are separated from the genetically modified donor and administered into a non-donor subject host. “Administering” or “administration” , as used in this context, includes, but is not limited to, introducing, applying, injecting, implanting, grafting, suturing, and transplanting. According to the disclosure, the genetically modified cells, tissues and/or organs may be administered by a method or route which results in localization of the organs, tissues, cells or compositions of the disclosure at a desired site. The organs, tissues, cells or compositions of the disclosure can be administered to a subject by any appropriate route which results in delivery of the cells to a desired location in the subject where at least a portion of the cells remain viable. In some embodiments, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%of the cells (whether administered separately or as part of a tissue or organ) remain viable after administration to the subject. Methods of administering organs, tissues, cells or compositions of the disclosure are well-known in the art. In some embodiments, the cells, tissues and/or organs are transplanted into the host. In some embodiments, the cells, tissues and/or organs are injected into the host. In some embodiments, the cells, tissues and/or organs are grafted onto a surface of the host (e.g., bone or skin) .
In some embodiments, a heart, lung, liver, kidney, pancreas, or spleen which has been genetically modified to harbor deletions or disruptions of GGTA1, CMAH, and B4GALNT2; expression of CD46, CD55, CD39, CD47, HLA-E, THBD, and TFPI, and optionally one or more of CD59, B2M, A20, PD-L1, and HO-1 from a single multi-transgene cassette in the pig genome; along deletion of all PERV copies is transplanted into the host. In some embodiments, a heart, lung, liver, kidney, pancreas, or spleen which has been genetically modified to harbor deletions of GGTA1, CMAH, and B4GALNT2; expression of CD46, CD55, CD39, CD47, HLA-E, THBD and TFPI, and optionally one or more of CD59, B2M, A20, PD-L1, and HO-1 from a single multi-transgene cassette in the pig genome; and functional inactivation of all PERV copies is transplanted into the host. In some embodiments, the transplanted heart, lung, liver, kidney, pancreas, spleen, or a portion thereof survive and are functional for a period of time of about 1 day, about 1 week, about 2 weeks, about 3 weeks, about 1 month, about 2 months, about 3 months, about 4 months, about 5 months, about 6 months, about 9 months, about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, about 10 years, or more.
In some embodiments, it will be necessary to protect the genetically modified cell (s) , tissue (s) or organ (s) from the immune system of the host to whom the genetically modified cell (s) , tissue (s) or organ (s) are being administered. For example, in some embodiments, the genetically modified cell (s) , tissue (s) or organ (s) is administered with a matrix or coating (e.g., gelatin) to protect the genetically modified cell (s) , tissue (s) or organ (s) from an immune response from the host. In some embodiments, the matrix or coating is a biodegradable matrix or coating. In some embodiments, the matrix or coating is natural. In other embodiments, the matrix or coating is synthetic.
In some embodiments, the genetically modified cell (s) , tissue (s) or organ (s) is administered with an immunosuppressive compound. In some embodiments, the immunosuppressive compound is a small molecule, a peptide, an antibody, and/or a nucleic acid (e.g., an antisense or siRNA molecule) . In some embodiments, the immunosuppressive compound is a small molecule. In some embodiments, the small molecule is a steroid, an mTOR inhibitor, a calcineurin inhibitor, an antiproliferative agent or an IMDH inhibitor. In some embodiments, the small molecule is selected from the group consisting of corticosteroids (e.g., prednisone, budesonide, prednisolone) , calcineurin inhibitors (e.g., cyclosporine, tacrolimus) , mTOR inhibitors (e.g., sirolimus, everolimus) , IMDH inhibitors (azathioprine, leflunomide, mycophenolate) , antibiotics (e.g., dactinomycin, anthracyclines, mitomycin C, bleomycin, mithramycin) and methotrexate, or salts or derivatives thereof. In some embodiments, the immunosuppressive compound is a polypeptide selected from the group consisting of: CTLA4, anti-b7 antibody, abatacept, adalimumab, anakinra, certolizumab, etanercept, golimumab, infliximab, ixekizumab, natalizumab, rituximab, seckinumab, tocilizumab, ustekinumab, vedolizumab, basiliximab, daclizumab, and murmonab.
In some embodiments, the genetically modified cell (s) , tissue (s) or organ (s) to be administered to the subject have been further genetically modified such that they are less likely to induce an immune response in the subject. In some embodiments, the genetically modified cell (s) , tissue (s) or organ (s) have been further genetically modified such that they do not express functional immunostimulatory molecules.
The following examples are provided to illustrate the disclosure and are merely for illustrative purpose only and should not be construed to limit the scope of the disclosure.
Examples
The disclosure now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present disclosure, and are not intended to limit the disclosure. For example, the particular constructs and experimental design disclosed herein represent exemplary tools and methods for validating proper function. As such, it will be readily apparent that any of the disclosed specific constructs and experimental plan can be substituted within the scope of the present disclosure.
Example 1: Knockout of Porcine Complement Component 3 (C3) to Inhibit
Complement Systems
A highly conserved region of C3 was selected and two sgRNAs that target a C3 domain were designed. The sequences of the two gRNAs sequences are TCTCCAGACGCAGGACGTTG (SEQ ID NO: 158) and GGAGGCCCACGAAGGGCAAG (SEQ ID NO: 159) . The C3 sgRNA was transiently transfected together with GGTA sgRNA (GAGAAAATAATGAATGTCAA (SEQ ID NO: 210) ) plasmid and cas9 plasmid into porcine fetal fibroblast cells using the neon transfection machine and reagents. Cells lacking C3 ( “C3-KO” ) were selected using a GGTA antibody counter selection method to co-enrich the C3-KO cells which were then single cell sorted and genotyped to determine the efficiency of knocking down the C3 target using deep sequencing.
Among the 156 clones screened, 108 clones were bi-allelic C3-KOs. The efficiency of knock-down for the bi-allelic C3-KO cells was 69%. The resultant C3-KO cell line has been used to generate pigs using the somatic cell nuclear transfer method. The C3-KO pig was alive for 63 days and died of liver and lung infection. As shown in FIGs. 1A-C, the C3-KO pig was a 100%NHEJ knockout. FIG. 1A shows the sizes of deletions introduced into C3, FIG. 1B shows the position of the indels, and FIG. 1C shows the sequence of the indels generated in the C3-KO pig.
It is expected that the C3-KO pig described above would not have produced any functional C3 protein. Due to the lack of functional C3 protein, the C3-KO pig’s complement system would not be activated thereby decreasing the C3-KO pig’s innate immune system. In addition, it is expected that the C3-KO pig might be more prone to bacterial and/or viral infections compared to a wild-type pig. Moreover, xenotransplantation of a C3-KO pig’s cell, tissue, and/or organ into a human is not expected to activate the human complement system. This should therefore minimize the human innate immune response to the C3-KO pig xenograft.
Example 2: Pigs Having One or More Modified MHC Class I Genes
A pig’s MHC major class I alleles were conditionally replaced with human MHC minor class I alleles ( “MHC-I pigs” ) . To do so, a region of the pig’s genome containing the SLA-1, SLA-2, and SLA-3 genes was replaced with a modified version of the human minor allele HLA-E.
FIG. 2 depicts a scheme of the MHC class I replacment strategy: the locus containing SLA-1, SLA-2, and SLA-3 genes was flanked with loxP sites. After treatment with Cre, SLA-1, SLA-2, and SLA-3 were excised and replaced by human HLA-E, such as various combinations of HLA-E, HLA-G, B2M, and CIITA-DN genes. The MHC-I pigs were viable and severely immunocompromised. Therefore, rather than replace the SLA-1, SLA-2, and SLA-3 genes with human genes universally, a conditional knockout was used and the SLA-1, SLA-2, and SLA-3 genes were replaced by the human HLA-E and other human genes prior to harvesting a cell, tissue, and/or an organ.
The MHC I region of the pig was sequenced using long reads technology. Probes to capture the SLA-1, SLA-2, and SLA-3 genes were designed and used to capture the MHC-I genetic region. PacBio sequencing and 10X sequencing were used to accurately determine the MHC-I genetic region. The configuration of SLA-1, SLA-2, and SLA-3 is illustrated in FIG. 9. Two cassettes having loxP sites to flank the MHC-I region were designed. Cassette 1 contains a promoter, a loxP site, and a selection agent (i.e., puromycin) . Cassette 2 contains a second marker (GFP) , a loxP site, and a promoter-less cassette of genes including HLA-E, B2M and CIITA-DN.
Cells were transfected with Cre recombinase and expression of Cre recombinase was induced. Single cell sorting was performed and sorted cells were screened using junction PCR to isolate cells having biallelic replacement of SLA-1, SLA-2, and SLA-3 with human MHC-1.
For in vivo Cre excision, an alternative cassette 1 has been designed and includes a Cre recombinase under control of a tissue specific promoter or an inducible promoter. By using a tissue specific promoter or an inducible promoter, the SLA-1, SLA-2, and SLA-3 genes will be excised in cell, tissue and/or organ of interest or excision can be induced in the animal prior to harvesting the cell, tissue, and/or organ. Pigs having SLA-1, SLA-2, and SLA-3 replaced with the human MHC-I can be generated by somatic cell nuclear transfer (SCNT) and piglets encoding conditional and/or tissue specific conditionally replaced genes can be generated.
Example 3: MHC Class II Inactivation
Pigs lacking expression of the MHC-II alpha chain ( “MHC-II KO pigs” ) were generated by excising DQA genes and inactivating DRA genes using established gRNA technology in porcine cells which were then transferred into host pigs via SCNT. Briefly, following gRNA transfer into the porcine cells, the genome was sequenced and variation at the MHC-II loci were identified. Cas9 was delivered to these cells, which were then sorted to isolate single cells. These single cells were sequenced to genotype the targeted DQA and DRA genes. In single cells having DQA and DRA inactivation, embryos were generated following SCNT and were subsequently implanted into a pig to generate the MHC-II KO pig. Four weeks after birth, the MHC-II KO pig remained healthy.
FIGs. 3A and 3B illustrate the genotype of the MHC-II KO based on the DQA gene. The MHC-II KO pig was genotyped by exonic targeting-based amplification and sequencing of the DQA gene as well as sequencing of the DRA gene. As shown in the left panel, the sizes and positions of the indels are located in the DRA gene. Inactivation of the DRA gene was caused by the two single nucleotide insertions at each of positions 126 and 127 in the DRA amplicon as illustrated in the right panel.
FIGs. 4A and 4B illustrate another genotype of an MHC-II KO pig. The DRA genotype was determined using exonic targeting-based amplification and sequencing of the DRA gene. The exonic targeting area from DRA has been amplified and sequenced. As shown in the left panel, the sizes and positions of the indels are located in the DRA gene. Inactivation of the DRA gene was caused by the two single nucleotide insertions at each of positions 106 and 107 in the DRA amplicon as illustrated in the right panel.
Similar to a human lacking MHC-II expression, the MHC-II KO pig has a decreased population of CD4
+ T cells however, the CD8
+ T cell population remains intact (FIG. 5) . In addition, the MHC-II KO pig is immunosuppressed, has increased autoimmunity, and lymphoid defects, amongst other issues. These phenotypes are known to be associated with the MHC-II KO phenotype and have been observed in mice lacking MHC-II expression. These similarities confirm that the MHC-II KO pig is a valid MHC-II KO rather than an active gene modification (FIG. 6) .
Example 4: PD-L1 Knockin to Reduce Adaptive Immunity Based Rejection
A human PD-L1 gene (e.g., PD-L1 transgene) was delivered to a pig genome. See scheme with structure in FIG. 7. Expression of the human PD-L1 transgene was confirmed by qPCR using two different PD-L1 amplicons (FIG. 8) .
Porcine tissues expressing PD-L1 may have reduced rejection by a host, such as a human, following xenotransplantation.
Example 5: Genetic Modification of Porcine von Willebrand Factor to Modulate
Platelet Aggregation
An HDR vector that contains the homology arms from pvWF, the A1 domain, and the certain residues in the flanking regions from hvWF was designed and constructed. (FIG. 10) . Two sgRNAs were also designed to initiate the HDR replacement in the endogenous porcine genome and cut near the region to be replaced by the human sequences: TCTCACCTGTGAAGCCTGCG (SEQ ID NO: 5) and CACAGTGACTTGGGCCACTA (SEQ ID NO: 6) .
The HDR vector is composed of ~1kb homology arms from porcine vWF and the human A1 and flanking domains as well as inactivating mutations in the sgRNA cutting sites to prevent sgRNA from cutting the donor and modified porcine genome. The HDR vector also contains SphI and BspEI sites that can distinguish the HDR vector from the endogenous porcine genome near the sgRNA cutting sites.
Porcine primary fibroblast cells were transfected using the Neon Transfection System (Invitrogen) with 8μg of Cas9, 1μg of sgRNA1, and 1μg of sgRNA2, as well as 10μg of the HDR vector. Two days after transfection, cells were single cell sub-cloned using FACS. The single cells were cultured for additional 12 days until the episomal form of the HDR vectors are lost during cell division. The A1 and flanking regions of the hvWF were amplified using flanking primers. The PCR product was subjected to SphI and BspEI sequential digestions to screen the clones having HDR replacement which would add novel SphI and BspEI sites to the PCR products having fragments sized at 700bp, 323bp and 258bp following sequential digestion (FIG. 11) . The complete bi-allelic HDR eliminates a wild-type product of 1281bp as well as any partial digestion products larger than 700bp.
A cell having a bi-allelic HDR was isolated from about 150 single-cell colonies (FIG. 11) . As confirmed by sequencing, both alleles of the porcine A1 domain and flanking regions were replaced with the human counterpart (FIGs. 12A and 12B) . The A1 domain is highlighted, whereas the potential glycosylation sites in the flanking region are labeled with dashes. The human specific residues that are deleted in pvWF are labeled with a bar and the humanized A1 domain and flanking regions are labeled with half parenthesis. This isolated cell has been expanded into a cell line and may be used to generate a genetically modified pig by SCNT.
Cells expressing the A1-humanized pvWF had a significantly reduced aggregation response against human platelets during a platelet activation assay (FIG. 13) . Briefly, the cells were incubated with human platelets and aggregation was induced by shear stress. The cells expressing the A1-humanized pvWF showed a milder and inducible aggregation curve whereas the cells expressing wildtype pvWF had a stronger aggregation response towards human platelets. Accordingly, porcine organs having A1 hvWF will likely induce a milder coagulation response in human blood compared to porcine organs expressing pvWF and might ameliorate the vascular incompatibility observed in pig-to-human xenotransplantation.
Together these data show that replacing the A1 domain and certain residues in one or more flanking domains of endogenous porcine pvWF with the corresponding residues from the human counterpart (hvWF) may modulate the platelet aggregation response that occurs during xenotransplantation (FIG. 9) .
Example 6: Genomic Deletion of Porcine Classical MHCI Antigens to Prevent CD8+
T Cell Activation
MHC class I molecules play a vital role in the rejection of allotransplantation through their peptide presentation to CD8+ T cells. Here, it was tested whether deletion of the entire ~200kb classical MHC class I locus in porcine primary fibroblast cells prevented CD8+ T cell mediated toxicity in xenotransplantation.
Classical MHC class I genes encode highly polymorphic proteins that are widely expressed in cell surface. They present foreign peptides to CD8+ T lymphocytes leading to the lysis of target cells. Also, mismatched MHCI molecules also serve as antigens in transplantation. Different strategies of removing the classical MHCI molecular in donor porcine organs for xenotransplantation have been explored. In one attempt, the Tector group knocked out the conserved Exon4 of the SLA-1, SLA-2 and SLA-3 molecular using Cas9 and 3 sgRNAs (Reyes 2014) . However, this exon is also share by other classical and non-classical MHCI molecular and it may generate unpredicted off-target effects. Also, the remaining Exon1-3 may still be presented as cell surface antigens. In another attempt, the heterodimerization partner B2M was knocked out using TALENs (Wang 2016) . This method may also affect the non-classical MHCI molecules and the remaining MHCI may still be presented de-structured proteins on the cell surface. In the context of xenotransplantation, human HLA-E/B2M molecules are usually complemented in the MHCI deficient cells to prevent NK cell mediated toxicity. The human B2M might dimerize with porcine SLAs and restore their antigenicity in the B2M knockout pigs.
For this example, to specifically and completely remove the classical MHCI antigens, the MHC classical class I cluster with unique flanking sequences in the porcine genome were first identified (FIG. 14) . This ~200kb cluster contains all the 8 classical MHCI genes without any other protein coding genes. Then, sgRNAs (SEQ ID NOs 1-4) in the unique flanking regions were identified to induce a fragmental deletion of this entire gene cluster. Because frequency of ~200kb fragmental deletion is relatively low, enrichment strategies were also designed to isolate bi-allelic deletion clones.
Porcine primary fibroblast cells were transfected with 1.25μg of TrueCut Cas9 protein and 7.5nmole of crRNA/tracrRNA duplex (Invitrogen) using the Neon transfection system (Invitrogen) . Three days after transfection, genomic DNA was harvested from the transfected cells and subject to PCR using designated primer pairs shown in FIG. 15A. Fragmental deletion was detected using primers flanking the expected deletion junction. This PCR product was subcloned using Toposiomerase based cloning ( “TOPO cloning” ) and the individual TOPO clones were Sanger sequenced to confirm the sequence of the deletion junctions. The sequences were aligned to the expected junction shown in FIG. 15B. At the same time, an aliquot of the cells were stained with a pig-specific SLA-1 antibody. The portion of MHCI negative cells were shown in FIG. 16.
After single-cell subcloning, the cells containing bi-allelic deletion can be used to produce classical MHCI knockout pigs via somatic cells nuclear transfer. It is contemplated that the pigs are completely deficient in all classical MHCI molecules and proficient for the non-classical MHCI molecules, which might be involved in fertility and other physiological functions. The remaining B2M molecules are unlikely to be antigenic because they are non-polymorphic and highly conserved to the human counterpart. Also, the exogenous expression of human HLA-E/B2M cannot rescue the deficiency of classical MHCI molecules. The resultant pig should have the cleanest classical MHCI knockout background compared to previous reports.
Example 7: Generation of Immunologically Compatible Porcine Cells, Tissue,
Organs, Pigs, And Progeny
Despite many attempts by others to generate transgenic pigs for safe xenotransplantation, to date the most advanced transgenic pigs for xenotransplantation carried a limited number of transgenes due to the compacity of the constructs and transcription interference between transgenes. Here, a combination of KO, KI, and genomic replacement was utilized to generate several iterations of donor pigs. FIG. 21 outlines the progression of donor pig generations through sequential gene editing. As described below, in the case of Pig 2.0 (3KO+12TG) these gene edits included three knockouts and 12 transgene knockins designed to address immunologic, coagulation, and species incompatibilities.
CRISPR-Cas9 mediated NHEJ was used to functionally knock out the three major carbohydrate-producing glycosyltransferase/glycosylhydrolase genes GGTA1, CMAH, and B4GALNT2. Preformed antibodies that bind wild-type pig tissue are the major initial immunologic barrier to xenotransplantation, and these three genes have been identified as being largely responsible for producing the xenogenic antigens targeted by these antibodies (Byrne 2014, Lai 2002, Lutz 2013, Martens 2017, Tseng 2006) . Thus, it was predicted that the functional loss of these genes would largely eliminate the binding of preformed anti-pig antibodies to the endothelium of the porcine graft. This was confirmed by flow cytometry results showing decreased binding of host antibodies to target Pig 2.0 (3KO+12TG) fibroblasts (FIG. 22) . To demonstrate diminished antibody binding, genetically engineered pig fibroblasts were incubated with pooled human serum, and bound human IgM and IgG were detected with conjugated secondary anti-human antibodies and analyzed by flow cytometry. In contrast to wild-type pig fibroblasts (red contour plot) , elimination of the three genes resulted in a significant reduction in antibody binding (green and brown contour plots, ~98%decrease) .
Twelve human transgenes (CD46, CD55, CD59, CD39, CD47, A20, PD-L1, HLA-E, B2M, THBD, TFPI, HO-1) were integrated into a single multi-transgene cassette in the pig genome via PiggyBAC transposon-mediated random integration to generate a first iteration of Pig 2.0 (3KO+12TG) (see FIGs. 17-20, 31, 47-49; SEQ ID NOs: 212-214) . The transgenes were arranged into 4 different cistrons with desired ubiquitous or tissue-specific promoters. The transgenes within each cistron were separated with ribosomal skipping 2A peptides to ensure expression in a similar molar ratio. Furthermore, a combination of cis-elements such as ubiquitous chromatin opening elements (UCOEs) were introduced to prevent transgene silencing and insulators with strong polyadenylation sites and terminators to minimize the interaction among transgenes and between transgenes and the flanking chromosome.
Transgene expression levels and tissue-specific promoter-driven expression was determined using qPCR (FIG. 23) , and integration site and copy number were determined using junction capture based on inverted PCR. As a proof-of-principle, all transgenes in adjacent cistrons demonstrated desired tissue-specificity in fibroblast and endothelial cell lines without detectable transcription interference. In addition, all transgenes showed highly consistent expression levels across clones with various locations of genomic integration, which indicates that the transgene expression is independent of chromosomal context. As expected, the six genes inserted under control of a ubiquitous promoter, including the complement regulatory genes (CD46, CD55, and CD59; EF1α promoter) and B2M, HLA-E, and CD47 (CAG promoter) were expressed in both fibroblast and endothelial cells. In contrast, the six genes (A20, PD-L1, HO1, THBD, TFPI, and CD39) expressed under the regulation of tissue-specific promoters (NeuroD or ICAM2) , demonstrated lower levels of expression in fibroblasts relative to expression in endothelial cells. Consistent with the qPCR data, cell surface expression of proteins was observed to be expressed by the inserted human transgenes in pig spleen cells as well as in pig fibroblasts (FIG. 24) . Briefly, Pig 2.0 (3KO+12TG) spleen cells or fibroblasts were isolated and incubated with antibodies recognizing specific human proteins as indicated and the stained cells analyzed using flow cytometry. In each panel of FIG. 24, the peak on the left represents cells stained with an isotype control and the peak on the right represents cells stained with the specific antibody.
For preclinical experimentation, the transgene knockins are randomly integrated into the genome using PiggyBac transposase, and clones with single copy integration into intergenic regions with no predictable consequences are used for pig production. For clinical development, homozygous female/male pigs will be generated with biallelic site-specific transgene integration into a safe harbor (e.g., the AAVS1 genomic locus) prior to scaled up breeding and production of source donor pigs.
Additional in vitro assessments of innate and adaptive immune cell function and complement and coagulation cascades will include antibody reactivity profiling, mixed lymphocyte reaction, complement-dependent cytotoxicity, NK cell cytotoxicity, macrophage phagocytosis, and effects on coagulation factors and platelet aggregation.
To maintain pig graft function and protect the donor organ from complement-mediated toxicity, human complement regulatory proteins were over-expressed. Briefly, genetically engineered pig fibroblasts and pig splenocytes were incubated with 25%human complement for one hour. Cells were stained with propidium iodide and analyzed by flow cytometry to quantify cell death. Wild-type fibroblasts and splenocytes demonstrated the highest percentage of cell death after culture with human complement. 4-7P and 4-7H cells are derived from Pig 2.0 (3KO+12TG) piglets; 4-7F cells (3KO +12 TG) are derived from a Pig 2.0 (3KO+12TG) fetus. 3-9 is triple carbohydrate antigen-producing enzyme KO, HLA-DQA KO, HLA-DRA KO, and human complement regulatory factor C3 KO. As shown in FIG. 25, pig fibroblasts and splenocytes genetically engineered to express human CD46, CD55, and CD59 exhibited significantly lower levels of complement-mediated cell death compared to control human fibroblasts.
Ligation of MHC I on target cells with Killer Inhibitory Receptors (KIR) on natural killer (NK) cells inhibits NK cell-mediated killing of target cells. Pig MHC I is incapable of transmitting signals through the human NK KIR and thus pig cells are susceptible to targeted cell killing by NK cells. To overcome NK-mediated cell death, human HLA-E, which ligates human NK KIR receptors, was overexpressed in pig cells. Seventy percent of WT pig fibroblast and K562 cells (human MHC-deficient cell line) were targeted for killing by NK cells. As shown in FIG. 26, human HLA-E+engineered pig fibroblast cells demonstrated significantly lower NK-mediated cell killing. In contrast, HLA-E+ pig fibroblasts demonstrated significantly lower killing by NK cells, suggesting that expression of HLA-E protected these cells from lysis.
The over-expression of human CD55 in pig cells reduces complement-mediated toxicity which may diminish coagulation and improve xenograft survival. The activation of coagulation ultimately leads to the formation of thrombin which is inactivated by binding antithrombin in a stable thrombin-antithrombin (TAT) complex. Briefly, wild-type, CD55 KI + GGTA1-deficient cells, and human endothelial cells were cultured with human blood. As shown in FIG. 27, human blood alone or human blood incubated with human endothelial cells for 60 min generated approximately 10ng/mL TAT protein. In addition, co-culture of human blood with wild-type pig endothelial cells activated coagulation and increased TAT complex formation to 58 ng/mL. In contrast, co-culture with CD55 KI + GGTA-deficient pig endothelial cells resulted in a significant decrease in TAT complex formation. These data suggest that human CD55 expression is able to modulate coagulation activation.
RNAseq was performed on samples isolated from pigs genetically modified with Payload 9 or Payload 10. Results demonstrated increased expression of several of the payload immune modifications transgenes, namely the complement transgenes, along with cellular toxicity genes (B2M, HLA-E, CD47) (FIG. 36) .
Example 8: Antibodies in xenotransplantation and the potential of enzymatic cleavage
to prevent functional binding
Antibody-mediated rejection has historically been the primary hinderance to the development of xenotransplantation as a viable treatment for end stage organ failure. However, recent genetic advancements have allowed for development of multiple-gene knockout pigs, which lack established xenoantigen targets. Knockout of aGal, Neu5Gc, and SDa have been linked to improved graft survival. However, further work is needed to fully understand the impact of residual antibody binding to other xenoantigen targets and if the removal of these antigens protects tissues from highly sensitized human serum. Here, it was investigated whether xenoantigen knockout decreases high PRA serum binding and whether functional antibody binding is decreased by enzymatic degradation.
Human and porcine PBMCs were collected from peripheral blood using Ficoll separation. Porcine aortic endothelial cells (pAECs) were processed from WT pigs and the genetically modified Pig 2.0 (3KO+12TG) of Example 7. Anonymous high and low PRA serum samples were generously provided by the Massachusetts General Hospital HLA laboratory. Serum was collected from heart, liver, and kidney xenotransplant recipients. Serum antibody was enzymatically cleaved by IdeS (Genovis Inc. ) .
Low PRA human sera show minimal binding to human PBMC target cells, while high PRA human sera bind to the same human PBMC at a high level (FIG. 43A) . In contrast, both high and low PRA sera strongly bind porcine PBMC (FIG. 43B) . High PRA sera also show significant binding to porcine aortic endothelial cells (pAEC) . Genetic modifications dramatically (>95%) reduce the binding of all human sera (FIG. 44) . Importantly, in vivo xenotransplant experiments, using heart, liver, and kidney xenotransplants from Pig 2.0 (3KO+12TG) , show sequestration of porcine specific antibodies through a reduction of antibody binding from recipient serum taken post-transplant (FIG. 45) . These data suggest that a low level of residual xenoantibodies are present. FIGs. 46A-46C show that the IgG-specific protease, IdeS, effectively reduces the binding of functional IgG from human and cynomolgus serum to background levels.
Genetic modifications to remove known xenoantigen targets reduce the binding of human and primate serum to porcine cells, although low level xenoantibody binding remains. High and low PRA sera are similar, suggesting that the binding is likely not related to HLA-SLA cross-reactivity. IdeS treatment of sera from highly sensitized patient demonstrated a negative cross match to Pig 2.0 (3KO+12TG) cells. Other approaches to protect the xenograft targets from antibodies with unknown targets is to use additional genetic modifications to prevent downstream sequelae, such as complement activation and thrombogenesis. This data shows, for the first time, that enzymatic antibody cleavage may successfully reduce the functional binding of the residual IgG, suggesting this treatment may also be an approach to reduce the impact of pre-formed xenoantibody binding.
Example 9: Generation of PERV-Free and Immunologically Compatible Porcine
Cells, Tissue, Organs, Pigs, And Progeny
Porcine organs are considered a favorable resource for xenotransplantation since they are similar to human organs in size and function, and pigs can be bred in large numbers. However, the clinical use of porcine organs has been hindered by the potential risk of porcine endogenous retrovirus (PERV) transmission, and by immunological incompatibilities. PERVs are gamma retroviruses found in the genome of all pig strains. Pig genomes contain from a few to several dozen copies of PERV elements (Lee 2011) . Unlike other zoonotic pathogens, PERVs are an integral part of the pig genome. As such, they cannot be eliminated by bio-secure breeding (Schuurman 2009) . Although no study has shown PERV transmission to humans in the clinical setting to date, it has been demonstrated that PERVs can infect and propagate in human cells through “copy-and-paste” mechanisms. In cell culture, it has been shown that viral particles can be released and can infect human cells and randomly integrate into the human genome, preferentially in intragenic regions and in areas of active chromatin remodeling (Armstrong 1971, Moalic 2006, Niu 2017, Patience 1997) . It has also been demonstrated that both PERV-Aand PERV-B can infect human cells. Although PERV-C is ecotropic, the recombinant viral type (A/C) demonstrates the greatest infectivity. In addition, once PERVs adapt to the new host genome environment through elongation of the LTR sequence, infectivity potential may increase. PERVs can also pass horizontally from infected human cells to other human cells that have had no contact with porcine cells. In vivo in immunocompromised mice, it has been demonstrated that PERV can pass from pig cells to mouse cells (Clémenceau 2002) . PERV integration could potentially lead to immunodeficiency and tumorigenesis, as reported with other retroviruses. Recent breakthroughs in genetic engineering have demonstrated genome-wide inactivation of PERV in an immortalized pig cell line (Yang 2015; PCT Publ. No. WO17/062723) and production of PERV-free pigs (Niu 2017; PCT Publ. No. WO18/195402) .
Leveraging CRISPR-Cas9 technology, the complete elimination of all 62 copies of the PERV elements from the PK15 pig kidney epithelial cell genome (Yang 2015) and all 25 copies from porcine fetal fibroblasts and subsequent generation of live pigs with all PERV elements inactivated (Niu 2017) has been achieved. This success demonstrated that it is now possible to derive PERV-free pigs, which may provide a safe donor pool for xenotransplantation.
To determine whether PERVs remain active and propagate in human cells, PERV copy number was monitored both in a population and in clones of PERV-infected HEK293T-GFP cells (iHEK293T-GFP) for greater than 4 months. PERV copy number was observed to increase over time, as determined by ddPCR (Pinheiro 2012) .
Studies to determine whether disruption of all copies of PERV pol in the pig genome could eliminate in vitro transmission of PERVs from pig to human cells have been conducted (Niu 2017) . Reverse transcriptase activity could not be detected in the cell culture supernatant of highly engineered PERV fetal fibroblast clones, suggesting that modified cells produce minimal, if any, PERV particles. PK15 clones with > 97%PERV pol targeting exhibited up to 1000-fold reduction of PERV infection, similar to background levels. These results were confirmed with PCR amplification of serial dilutions of human embryonic kidney 293 (HEK293) cells that had a history of contact with PK15 clones. Isolated total RNA from a variety of tissues of the pigs has confirmed ~100%PERV inactivation at the mRNA level.
To date, multiple clones with 100%PERV KO have been produced from the Yorkshire breed and pig cloning is in progress. The PERV-inactivated pig production is robust and 63 PERV inactivated piglets have been produced, among which 47 are female and 16 are male. To date the oldest healthy animal has survived for two years. 43 PERV KO pigs are currently aging for breeding. Consistent with the normal karyotype of the cells used to clone the pigs, abnormal chromosomal structural changes have not been detected in the PERV inactivated pigs.
Long term studies to monitor the impact of PERV-inactivation and gene editing on large animals are being conducted. This technology is being applied to additional pig strains, including both Yorkshire and Yucatan pig strains in the US. Source donor pigs will be genetically engineered on a background line with all PERV elements disabled.
Version Iteration of PERV-Free and Immunologically Compatible Pigs. Studies have been undertaken to engineer donor pigs that do not harbor any active PERVs in the genome as well pigs that have enhanced immunological, inflammatory, and coagulation systems compatible with human tissues. With respect to the former, pigs wherein the function of all the PERVs in the pig genome have been eradicated using CRISPR-Cas9 engineering to disrupt the catalytic domain of the reverse transcriptase gene (pol) in the PERV elements (using the methods as described in Niu 2017 and WIPO Publication No. WO2018/195402) and using a combination of knockout (KO) , knockin (KI) , and genomic replacement to provide human tissue compatible organs. With respect to the latter, pigs wherein three of the major xenogenic carbohydrate antigen-producing genes/enzymes that trigger humoral rejection, GGTA1, CMAH, and β1, 4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) have been genetically inactivated were generated as described herein. It was contemplated that the functional loss of these genes would largely eliminate the binding of preformed anti-pig antibodies to the endothelium of the porcine graft. In addition, key immunological modulatory factors were inserted at a single locus within the PERV-free pig genome to regulate e.g. the human complement system (hCD46, hCD55, and hCD59) , the coagulation system (e.g. hCD39, hTHBD, and hTFPI) , the inflammation response (e.g. hA-20, hCD47, and hHO-1) , and NK (e.g. PD-L1) and T cell responses (e.g. hHLA-E, hB2M) . Single copy polycistronic transgene integration through transposition was used to knock in these humanized genes.
It was contemplated that pigs that are both PERV-free and bear an immunocompatibility payload could be generated, which pigs would have a variety of desirable properties. Toward this goal, donor pigs were created through several iterations of genetic modifications. FIG. 21 outlines the progression of donor pig generations through sequential gene editing. In the first iteration, Pig 1.0, porcine fibroblasts have been genetically engineered, using CRISPR-Cas9 mediated non-homologous end joining (NHEJ) , to have all PERV copies functionally deleted from or inactivated within the genome. Pig 2.0 was generated through CRISPR-mediated NHEJ to delete the 3 major xenogenic carbohydrate antigen-producing genes (3KO; GGTA1, B4GALNT2 and CMAH) coupled with PiggyBAC-mediated random integration of up to 12 selected transgenes or knock-ins selected from CD46, CD55, CD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1 that modify various components of the xenogenic immune response into the porcine genome. For the Pig 3.0 iteration, source donor pigs are then generated to carry the 3KO and up to12 specified transgenes, on the PERV-free background. It is contemplated that the next generations of source donor pigs (Pig 3.1, 3.2, etc. ) will be genetically engineered to carry additional modifications, such as humanization of the vWF gene and deletion of the asialoglycoprotein receptor 1 (ASGR1) and endogenous B2M genes.
Once PERV-free 3KO+TG pigs (Pig 3.0, FIG. 21) have been genetically engineered, these pigs will be crossbred to generate progeny and/or a drift, drove, litter, and/or sounder of swine.
Cell Engineering and SCNT to Produce Pig. 3.0 Incorporating an Immunocompatibility Payload, Xenogenic Antigen Disruption, and PERV Disruption
For production of PERV-free Pig 3.0, Pig 2.0 (3KO+9TG) with xenocompatibility modifications were generated first. Pig 2.0 (3KO+9TG) included the transgenes hCD46, hCD55, hCD59, hB2M, hHLA-E, hCD47, hTHBD, hTFPI and hCD39. To generate donor cells for the somatic-cell nuclear transfer (SCNT) to produce Pig 2.0, wild-type porcine ear fibroblasts were first electroporated with both: a) CRISPR-Cas9 reagents targeting the GGTA, CMAH, and B4GALNT2 genes; and b) payload plasmids bearing (i) a PiggyBac transposase cassette (ii) a transgenic construct consisting of the nine human transgenes (hCD46, hCD55, hCD59, hB2M, hHLA-E, hCD47, hTHBD, hTFPI and hCD39) organized into 3 expressible cistrons (see FIG. 51) . Single-cell clones of the fibroblasts were generated and screened by a) fragment analysis/whole genome sequencing to identify clones with the desired genomic modifications (see FIG. 51C) and b) conventional PCR (see FIG. 51D) . A clone bearing the desired modifications was then used as a donor to produce pig 2.0 by SCNT.
With isolated cells in hand from Pig 2.0 (3KO+9TG) , PERV engineering using a CRISPR-Cas9 system was used to generate cells with xenocompatible modifications that are also PERV-free. Pig 2.0 fibroblasts were electroporated with CRISPR-Cas9 reagents targeting the reverse transcriptase (Pol) gene common to all genomic copies of the PERV elements. Single-cell clones of the electroporated cells were generated, and these clones were screened by deep-sequencing to identify clones in which the catalytic core of the Pol gene was disrupted (see FIG 51C) . Clones with the desired disruption in Pol were then subjected to karyotyping (see FIG. 51E) ; those with a normal karyotype were then used in SCNT to produce the Pig 3.0 (3KO+9TG) embryo and pig.
Characterization of Pig 3.0 Genomic, Biochemical, and Phenotypic Features
A) Evaluation of Transgene and Knockout Integrity
Having produced Pig 3.0 (3KO+9TG) , we next sought to examine closely the on-target and off-target effects of genetic modifications therein. To this end, we performed 10X whole genome sequencing (WGS) on WT fibroblasts as well as the Pig 2.0 and Pig 3.0 fibroblasts generated above. Consistent with the deep-sequencing done for screening, the WGS confirmed the mutations introduced into genomic copies of PERV pol and GGTA/B4GALNT2/CMAH genes were all frameshift insertions or deletions that are expected to translate into functional knockouts of the modified gene copies (see FIGs. 51A and 51C) . In addition, we confirmed the presence of all nine transgenes in the porcine genome and, surprisingly, the transgenic construct was found to have integrated into one of the GGTA1 alleles at the CRISPR-Cas9 targeted site.
With respect to potentially confounding off-target effects of CRISPR editing, we found no artifacts expected to interfere with the function of our desired edits or with expected deleterious effects on pig health. We did not observe any difference in structural variants between WT and Pig 2.0 (3KO+9TG) , or between Pig 2.0 (3KO+9TG) and Pig 3.0 (3KO+9TG) , indicating gross genomic stability for these pigs. With respect to smaller genomic changes such as small indels, we examined all 1, 211 predicted off-target sites for the guide RNAs used and found two small insertions in the B4GALNT2 gRNA off-target sites in Pig 2.0 compared to WT; however, neither affect protein coding sequences. Additionally, when we compared Pig 3.0 cells to Pig 2.0 cells, we observed no additional genomic alterations expected to be of consequence; we found only two deletions and one insertion within two PERV gRNA off-target sites, both of which occur outside protein coding regions and which may actually represent somatic mutations (see Kim 2014) . Given the lack of functional implications and together with largely normal pathophysiology data of our pigs, we conclude that the selected Pig 3.0 maintained genomic stability.
Having confirmed the genomic modifications at DNA level, we went further to examine if Pig 3.0 (3KO+9TG) had the proper triple knockout and 9TG expression using RNA expression and immunoassay methods. We first performed RNA-seq and found that both Pig 2.0 and Pig 3.0 expressed all transgenes at levels comparable to that from human umbilical vein endothelial cells (HUVECs) (FIG. 52A) . In addition, we observed comparable transgene expression profile and level in both pig umbilical vein endothelial cells (PUVECs) and fibroblasts, suggesting that the transgenes are ubiquitously expressed among these cell types. We next characterized protein expression in the engineered pigs. We observed diminished glycan markers of α-Gal, Neu5GC, and SDa on cell surface, which suggests functional elimination of the 3 genes responsible for synthesizing these glycan epitopes (GGTA, CMAH, and B4GALNT2, respectively) in both Pig 2.0 (3KO+9TG) and Pig 3.0 cells (FIG. 52B) . By FACS analysis of PUVECs, we observed that both Pig 2.0 and Pig 3.0 express all transgenes at the protein level. Indeed, eight out of the nine transgenes are robustly expressed at a level comparable to that of HUVECs. Intriguingly, THBD expression is detectable but at a much lower level. Consistent with FACS analysis, IHC studies showed that Pig 3.0 kidney lacks the three glycan antigens (FIG. 52C) . Also consistent with FACS staining, we detected expression of 8 transgenes in Pig 3.0 kidney, with the exception of THBD (FIG. 52C) . Taken together, we conclude from the RNA expression and immunoassay data that our triple knockout and 9TG genetic modifications translate into successful RNA and protein expression at the cellular and tissue level in engineered pigs.
B) Evaluation of Xenocompatibility features of Pig 3.0 cells
Next, we examined if the genome modified pigs acquired xenocompatibility functions. We first tested if the genetic modifications allow the modified pig cells to evade preformed human antibody binding. Pig 2.0 and Pig 3.0 PUVECs exhibited over 90%reduction in antibody binding to human IgG and IgM, compared to WT PUVECs, confirming that the antibody barrier to xenotransplantation can be greatly mitigated by 3KO (FIG. 53A) . In addition, when incubated with human complement from pooled human sera, Pig 3.0 PUVECs with the triple knockout which expressing human complement modulators CD46, CD55, and CD59 demonstrated minimal in vitro human complement toxicity, similar to their human HUVEC counterpart (FIG. 53B) . Taken together, these results suggest that, when transplanted, Pig 3.0-derived xenografts are expected to be less susceptible to humoral injury and hyperacute rejection, as a result of significantly reduced antibody binding and complement activation.
Further, we examined if Pig 3.0 was more resistant to injury mediated by human innate cellular immunity. When subjected to ex vivo assays, Pig 3.0 expressing HLA-E/B2M demonstrated significantly stronger resistance to NK-mediated cell killing compared with that of WT PUVECs (FIG. 53C) . Taken together, these results suggested that Pig 3.0 cells, when transplanted, are expected to be more resistant to attack by human innate immunity.
Finally, we examined if Pig 3.0 (3KO+9TG) could attenuate the dysregulated activation of platelets and coagulation cascades often observed in xenotransplantation. When vascularized WT porcine organs are transplanted into humans, preformed antibodies, complement, and innate immune cells can induce endothelial cell activation and trigger coagulation and inflammation. The incompatibility between coagulation regulatory factors from pig endothelial cells and human blood leads to abnormal platelet activation and thrombin formation, exacerbating the damage. In addition, molecular incompatibilities of coagulation regulators (e.g., tissue factor pathway inhibitor, TFPI) between pig and human render the extrinsic coagulation regulation ineffective.
To address these xenogeneic coagulation issues, we overexpressed both: a) human CD39 (an ADP hydrolase that counteracts the thrombotic effect of ADP in the coagulation cascade) and b) human TFPI (a factor that translocates to the cell surface following endothelial cell activation) in Pig 3.0 as part of our multi-transgene construct for Pig 3.0. We then performed a variety of in vitro and ex vivo assays to validate the ability of these transgenes to function correctly and modulate clotting pathways when ported to porcine cells. In vitro ADPase biochemical assays showed significantly higher CD39 activity in Pig 3.0 PUVECs when compared with WT PUVECs and HUVECs, consistent with its higher mRNA and protein expression from the transgene (FIG. 53F) . Similarly, activated Pig 3.0 PUVECs showed ability to effectively bind and neutralize human Xa, which can mitigate coagulation and reduce the formation of thrombin-antithrombin (TAT) complex (FIG. 53G) . Finally, in ex vivo coagulation assays with human whole blood co-cultured with Pig 3.0 PUVECs, minimal TAT (thrombin antithrombin) was formed, and the level of TAT formation was similar to that of HUVECs (FIG. 53E) , suggesting that Pig 3.0 gained enhanced coagulation compatibility with human factors.
Collectively, the results of these xenocompatibility experiments indicated that Pig 3.0 (3KO+9TG) gained enhanced compatibility with the human immune system, as evidenced by attenuated human antibody binding, complement toxicity, NK-cell toxicity, phagocytosis, and restored coagulation regulation.
C) Physiological Phenotypes of Pig 3.0 progenitor/proof of concept pigs
To assess the overall fitness of the engineered pigs, we examined the physiology, fertility, and transmission of the genetic modifications of the engineered pigs to the offspring. We observed that both Pig 1.0 and 2.0 (3KO+9TG) , although extensively engineered on PERV elements, immunological and coagulation pathways, show normal blood cell counts, including total white blood cell and platelet, monocyte, neutrophil, and eosinophil counts (FIG. 54A) . We also observed normal vital organ functions (liver, kidney, and heart) for engineered pigs (FIGS. 54B, 54C, and 54D) . In addition, engineered pigs had similar prothrombin and thrombin time compared with WT pigs (FIG. 54E) .
In addition, we found Pig 1.0 and 2.0 were fertile and produced a normal average litter size of seven. The offspring from breeding Pig 1.0 with WT pigs carried ~50%PERV inactivated alleles in their liver, kidney, and heart tissues, indicating that PERV-KO alleles are stably inherited following Mendelian genetics (FIG. 55) . Similarly, all the offspring of Pig 2.0 and WT pigs were heterozygous (FIG. 56A) for 3KO and approximately half carried 9TG, with expression validated at both the mRNA (FIG. 56B) and protein level (FIG. 56C) . This suggests that the genetic modifications have not been swept by normal breeding. Therefore, we conclude that the engineered pigs exhibit normal physiology, fertility, and germline transmission of the edited alleles.
D) Conclusion
Genetically engineered pigs hold great promise in addressing the unmet medical need of organ shortage. In this report, we engineered Pig 3.0 (3KO+9TG) with 42 genomic loci modified to eradicate PERV activity and enhance human immune compatibility. Extensive analysis of Pig 3.0 showed that the engineered pig cells exhibit reduced human antibody binding, complement toxicity, NK cell toxicity, and coagulation dysregulation. We also examined and validated the normal pathophysiology, fertility, and genetic inheritability of our engineered pigs. The successful production of Pig 3.0 enhances the ability to provide safe and effective organs for clinical transplantation.
Successful generation of Pig 3.0 (3KO+9TG) demonstrates the power of synthetic biology to extensively engineer the genome and confer novel functions in large animals. In Pig 3.0, we deleted 25 copies of PERV elements, 8 alleles of xenogeneic genes, and concurrently expressed 9 human transgenes to physiologically relevant levels. It extends the record of genome modifications to 42 in large animal models. With the ability to execute complex genetic engineering in this scale, we are in a position to engineer additional edits and ultimately choose the pig with the combination best suited for xenotransplantation. In addition, with the tools, we envision pig 3.0 can be further engineered to achieve additional novel functions, such as immune tolerance, organ longevity, and viral immunity.
E) Methods
CRISPR-Cas9 gRNA design
We used the R library DECIPHER to design specific gRNAs (PERV-3N: 5’-TCTGGCGGGAGCCACCAAAC-3’, PERV-5N: 5’-GGCTTCGTCAAAGATGGTCG-3’, PERV-9N: 5’-TTCTAAGCAGTCCTGTTTGG-3’) to target specifically all pol catalytic sequences in the Pig 2.0 genome. In addition, we used specific gRNAs (GGTA1: 5’-GCTGCTTGTCTCAACTGTAA-3’, CMAH: 5’-GAAGCTGCCAATCTCAAGGA-3’, B4GALTN2: 5’-GATGCCCGAAGGCGTCACAT-3’) to target GGTA1, CMAH and B4GALNT2 respectively.
Cell culture
Porcine fetal fibroblast cells and fibroblast cells FFF3 were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) high glucose with sodium pyruvate supplemented with 15%fetal bovine serum (Invitrogen) , 1%penicillin/streptomycin (Pen/Strep, Invitrogen) and 1%HEPES (Thermo Fisher Scientific) . All cells were maintained in a humidified tri-gas incubator at 38℃ and 5%CO2, 90%N2, and 5%O2.
Porcine umbilical vein endothelial cells (PUVEC) were freshly isolated from umbilical vein and cultured in PriGrow II Medium (abm) supplemented with 10%fetal bovine serum (Gibco) , 1%penicillin/streptomycin (Pen/Strep, Invitrogen) and 1%HEPES (Thermo Fisher Scientific) . Human umbilical vein endothelial cells (HUVEC, ATCC, PCS-100-010) were cultured in vascular cell basal medium (ATCC) supplemented with Endothelial Cell Growth Kit-BBE (ECG kit, ATCC) . Human NK-92 cell line was cultured in Minimum Essential Medium Alpha (α-MEM, Gibco) supplemented with 12.5%fetal bovine serum (Gibco) , 12.5%fetal equine serum (FES, Solarbio) and 1%penicillin/streptomycin (Pen/Strep, Invitrogen) . The human macrophage cell line THP-1 was cultured in RPMI 1640 (BI) supplemented with 10%fetal bovine serum (Gibco) and 1%penicillin/streptomycin (Pen/Strep, Invitrogen) . Differentiation of THP-1 cells was achieved in 62.5 nM Phorbol-12-myristate-13-acetate (PMA, Sigma) for 3 days and confirmed by attachment of these cells to tissue-culture plastic.
PiggyBac-Cas9/2gRNAs construction and cell line establishment
Similar to the procedure previously described (Yang 2015) , we synthesized a DNA fragment encoding U6-gRNA1-U6-gRNA2 (Genewiz) and incorporated it into a previously constructed PiggyBac-cas9 plasmid. To establish the FFF3 cell lines with PiggyBac-Cas9/2gRNAs integration, we transfected 5×105 FFF3 cells with 14.3 μg PiggyBac-Cas9/2gRNAs plasmid and 5.7 μg Super PiggyBac Transposase plasmid (System Biosciences) using the Neon transfection system, according to the instructions provided by the vendors (Thermo Fisher Scientific) . To select the cells carrying the integrated construct, 2 μg/mL puromycin was applied to the transfected cells. Based on the negative control, in which we applied puromycin to wild type FFF3 cells, we determined that puromycin selection was completed in 4 days. The FFF3-PiggyBac cell line was maintained with 2 μg/mL puromycin thereafter and a 2 μg/ml doxycycline was applied to induce Cas9 expression of the doxycycline-inducible FFF3-PiggyBac cell line for one week.
To avoid the constitutive Cas9 expression in the FFF3 cell line, we conducted PiggyBac-Cas9/2gRNAs excision from the FFF3 genome by transfecting 5×105 cells with 3 μg PiggyBac Excision-Only Transposase vector using Lipofectamine 2000 reagent. The PiggyBac-Cas9/2gRNAs-excised FFF3 cells were then single-cell sorted into 96-well plates for clone growth and genotyping.
Genotyping of single-cell and single cell clones
First, puromycin selection followed by PiggyBac excision was conducted on the FFF3-PiggyBac-Cas9/2gRNA cell line. Then the cells were sorted into single cells into both 96-well PCR plates for direct genotyping and 96-well cell culture plates for colony growth. To genotype single FF cells without clonal expansion, we directly amplified the PERV loci from sorted single cells. We also conducted genotyping for the clones grown from the sorted single cells. The procedure of genotyping was according to the method of Yang, et al., (6) . Briefly, we sorted single cells into 96-well PCR plates with each well carrying a 5 μl lysis mixture, which contained 0.5 μl 10×KAPA express extract buffer (KAPA Biosystems) , 0.1 μl of 1U/μl KAPA Express Extract Enzyme and 4.4 μl water. We incubated the lysis reaction at 75℃ for 15 min and inactivated the reaction at 95℃ for 5 min. All reactions were then added to 20 μl PCR reactions containing 1× KAPA 2G fast (KAPA Biosystems) , 0.2 μM PERV Illumina primers (Methods Table 2) . Reactions were incubated at 95℃ for 3 min followed by 30 (for single cell) or 25 (for single cell clones) cycles of 95℃, 20 s; 59℃, 20 s and 72℃, 10 s. To add the Illumina sequence adaptors, 3μl of reaction products were then added to 20 μl of PCR mix containing 1×KAPA 2G fast (KAPA Biosystems) and 0.3 μM primers carrying Illumina sequence adaptors. Reactions were incubated at 95℃ for 3 min, followed by 20 (for single cell) or 10 (for single cell clones) cycles of 95℃, 20 s; 59℃, 20 s and 72℃, 10 s. PCR products were examined on EX 2%gels (Invitrogen) , followed by the recovery of ~360 bp target products from the gel. These products were then mixed at roughly the same amount, purified (QIAquick Gel Extraction Kit) , and sequenced with MiSeq Personal Sequencer (Illumina) . We then analyzed deep sequencing data and determined the PERV editing efficiency using CRISPR-GA (5) .
Primers used in the PERV pol genotyping
Illumina_PERV_pol forward: 5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGACTGCCCCAAGGGTTCAA-3’
Illumina_PERV_pol reverse: 5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTCTCCTGCAAATCTGGGCC-3’
Somatic cell microinjection to produce SCNT embryos and embryo transfer for pig cloning
The somatic cell microinjection procedure was according to Wei, et al.. All animal experiments were performed with the approval of the Animal Care Committee of Yunnan Agricultural University, China. All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO, USA) , unless otherwise indicated. Porcine ovaries were collected from Hongteng Abattoir (Chenggong Ruide Food Co., Ltd, Kunming, Yunnan Province, China) . The ovaries were transported to the laboratory at 25℃ to 30℃ in 0.9% (w/v) NaCl solution supplemented with 75 mg/mL potassium penicillin G and 50 mg/mL streptomycin sulfate. The cumulus cell-oocyte complexes (COCs) were isolated from the follicles of 3-6 mm in diameter, and then cultured in 200 μL TCM-199 medium supplemented with 0.1 mg/mL pyruvic acid, 0.1 mg/mL L-cysteine hydrochloride monohydrate, 10 ng/mL epidermal growth factor, 10% (v/v) porcine follicular fluid, 75 mg/mL potassium penicillin G, 50 mg/mL streptomycin sulfate, and 10 IU/mL eCG and hCG (Teikoku Zouki Co., Tokyo, Japan) at 38.5℃ in a humidified atmosphere with 5%CO2 (APC-30D, ASTEC, Japan) . After 38 to 42 hours in-vitro maturation, the expanded cumulus cells of the COCs were removed by repeat pipetting of the COCs in 0.1% (w/v) hyaluronidase.
SCNT was conducted as previously described. Briefly, oocytes extruding the first polar body with intact membrane were cultured in NCSU23 medium supplemented with 0.1 mg/mL demecolcine, 0.05 M sucrose, and 4 mg/mL bovine serum albumin (BSA) for 0.5 to 1 hour for nucleus protrusion. The protruded nucleus was then removed along with the polar body by using a bevelled pipette (approximately 20 μm in diameter) in Tyrode’s lactate medium supplemented with 10 μM hydroxyethyl piperazineethanesulfonic acid (HEPES) , 0.3% (w/v) polyvinylpyrrolidone, and 10%FBS in the presence of 0.1 mg/mL demecolcine and 5 mg/mL cytochalasin B. WT or PERV-free fibroblasts were used as nuclear donors. A single donor cell was injected into the perivitelline space of the enucleated oocyte.
Donor cells were fused with the recipient cytoplasts with a single direct current pulse of 200 V/mm for 20 μs by using an embryonic cell fusion system (ET3, Fujihira Industry Co. Ltd., Tokyo, Japan) in a fusion medium which contains 0.25 M D-sorbic alcohol, 0.05 mM Mg (C2H3O2) 2, 20 mg/mL BSA and 0.5 mM HEPES (free acid) . The reconstructed embryos were cultured in PZM-3 solution (van’t Veer 1997) for 2 hours to allow nucleus reprogramming and then activated with a single pulse of 150 V/mm for 100 μs in an activation medium containing 0.25 M D-sorbic alcohol, 0.01 mM Ca (C2H3O2) 2, 0.05 mM Mg (C2H3O2) 2 and 0.1 mg/mL BSA. The activated embryos were then cultured in PZM-3 supplemented with 5 mg/mL cytochalasin B for 2 hours at 38.5℃ in humidified atmosphere with 5%CO2, 5%O2, and 90%N2 (APM-30D for further activation, ASTEC, Japan) . Reconstructed embryos were then transferred to new PZM-3 medium and cultured in humidified air with 5%CO2, 5%O2, and 90%N2 at 38.5℃ for 2 and 7 days to detect the embryo cleavage and blastocyst development ratios, respectively.
Crossbred (Large White/Landrace Duroc) sows with one birth history were used as the surrogate mothers of the constructed embryos. They were examined for estrus at 9: 00 am and 6: 00 pm daily. The SCNT embryos cultured for 6 hours after activation were surgically transferred to the oviducts of the surrogates. Pregnancy was examined 23 days after embryo transfer using an ultrasound scanner (HS-101 V, Honda Electronics Co. Ltd., Yamazuka, Japan) .
Characterization of protein expression by Immunofluorescence
Neonatal (3-6 days old) porcine kidney cryosections of WT, Pig 2.0 and Pig 3.0 were subject to immunofluorescence to characterize the genetic modification (3KO and 9TG) at tissue level. Cryosections were fixed with ice-cold acetone, blocked and then stained using either one-step direct or two-step indirect immunofluorescence techniques. The primary and secondary antibodies used were summarized in Supplementary Table 2. Nuclear staining was performed using ProLong Gold DAPI (Thermo Fisher, P36931) . Sections were imaged using a Leica Fluorescence Microscope, and analyzed using ImageJ software. All pictures were taken under the same conditions to allow correct comparison of fluorescence intensities among WT, Pig 2.0 and Pig 3.0 cryosections.
Human antibody binding to porcine endothelial cells
Antibody binding of human IgG and IgM antibodies to the porcine and human endothelial cells were assessed by flow cytometry as previously described (Xenotransplantation, Methods and Protocols, Editors: Costa, Cristina,
Rafael, ISBN 978-1-61779-845-0) . In brief, Pig 2.0, Pig 3.0, WT PUVEC and HUVEC were collected, washed twice and resuspended in staining buffer (PBS containing 1%BSA) . Normal human male AB serum (Innovative Research, IPLA-SERAB-H26227) were heat-inactivated at 56 ℃ for 30 min and diluted 1: 4 in staining buffer. Pig 2.0, Pig 3.0, WT PUVEC and HUVEC (1 × 105 cells per test) were incubated with diluted human serum for 30 min at 37℃, respectively. Cells were then washed with cold staining buffer and incubated with goat anti-human IgG Alexa Fluor 488 (Invitrogen, A11013, 1:200 dilution) and goat anti-human IgM Alexa Fluor 647 (Invitrogen, A21249, 1: 200 dilution) for 30 min at 4℃. After washing with cold staining buffer, cells were resuspended in staining buffer containing 7-AAD (BD, 559925, 1: 100 dilution) in order to include a dead/live gating. Fluorescence was acquired on CytoFLEX S flow cytometer and data were analyzed using FlowJo analysis software. For each sample, 5,000 events were collected in the live cell gate and plotted as specific median fluorescence intensity (MFI) which is generated by “test MFI (IgG or IgM) –control (secondary antibody only) MFI” .
Human complement cytotoxicity assay
Pig 2.0, Pig 3.0, WT PUVEC and HUVEC were harvested, washed twice with PBS, and resuspended in serum-free culture medium. Cells (1x10
5 cells per test) were incubated with a uniform pool of human serum complement (Quidel, A113) at different concentrations (0%, 25%, 50%and 75%) for 45 min at 37℃ and 5%CO2. Afterwards, cells were stained with propidium iodide (Invitrogen, P3566, 1: 500 dilution) for 5 min and analyzed by using a CytoFLEX S flow cytometer. 5,000 events were collected for each sample, and the percentage of PI positive cells was used as the percentage of cell death mediated by human complement.
NK cytotoxicity assay
PUVEC and HUVEC were used as target cells and labeled with anti-pig CD31-FITC antibody (Bio-Rad) and anti-human CD31-FITC antibody (BD) , respectively. Meanwhile, human NK 92 cells were used as effector cells and labeled with anti-human CD56-APC antibody (eBioscience) . The effector (E) and target cells (T) were cocultured for 4 hours at 37℃ and 5%CO
2, at an E/T ratio of 3. Cells were stained with propidium iodide for 5 min and then subject to FACS analysis. The percentage of PI positive cells in CD31+ gate was used to calculate the percentage of killed target cells.
Phagocytosis Assay
Differentiation of human macrophage cell line THP-1 was achieved by 62.5 μM of phorbol myristate acetate (PMA) for 3 days and confirmed by attachment of these cells to tissue-culture plastic. Porcine splenocytes (target cells) were stained with the fluorescent dyes 5/6-CFSE (Molecular Probes) according to the manufacturer’s protocol. CFSE-labeled target cells were incubated with human differentiated THP-1 cells (effector cells) at E/T ratios of 1: 1 and 1: 5, respectively, for 4 hours at 37℃. Macrophages were counterstained with anti-human CD11b antibody and phagocytosis of CFSE-labeled targets were measured by FACS. Phagocytic activity was calculated as previously described (Ide 2007) .
CD39 biochemical ADPase assay
Pig 2.0, Pig 3.0 and WT PUVEC and HUVEC were seeded at 2×104 per well in a 96-well plate, 1 day before the assay. Cells were incubated with 500 μM ADP (Chrono-Log Corp, #384) for 30 min at 37℃ and 5%CO2. Malachite green (Sigma, MAK307) was added to stop the reaction, and absorbance was measured at 630 nm to determine levels of phosphate generation against the standard curve of KH2PO4.
TFPI activity and human factor Xa binding assay
Before the assay, cells were treated with 1 μM PMA for 6 hours to induce the hTFPI expression on the cell surface of Pig 2.0 and Pig 3.0 PUVEC. TFPI activity and human factor Xa binding assay was then performed as previously described (Xenotransplantation, Methods and Protocols, Editors: Costa, Cristina,
Rafael, ISBN 978-1-61779-845-0) . All assays were performed in quadruplicate.
TAT formation assay
Pig 2.0, Pig 3.0 and WT PUVEC and HUVEC were seeded at 3×105 per well in 6-well plates. After 1 day, cells were incubated with 1 mL of fresh whole human blood (containing 0.5 U/mL heparin) at 37℃ with gentle shaking. At different indicated time points, blood was aspirated, from which plasma was isolated. TAT content in plasma was measured by using a Thrombin-Antithrombin Complex Human ELISA Kit (Abcam, ab108907) .
Variant calling from whole genome sequencing data
Paired reads are mapped to the Sus Scrofa 11.1 genome (ftp: //ftp. ensembl. org/pub/release-91/fasta/sus_scrofa/dna/) by BWA (v0.7.17-r1188) . Variants (SNPs and INDELs) are called using GATK (v4.0.7.0) following the GATK best practice recommendation with the standard filter plus requiring a minimum depth of 10.
In silico prediction of on/off-target sites
Genome-wide on-target and off-target sites are predicted using CRISPRSeek (v1.22.1) in R (v3.5.0) allowing up to 6-mismatches. The input genome is either Sus Scrofa 11.1 (ftp: //ftp. ensembl. org/pub/release-91/fasta/sus_scrofa/dna/) .
Off-target calling from whole genome sequencing data
Filtered variants from GATK fall within 20 bp flanking the PAM sites of predicted off-targets by CRISPRSeek (v1.22.1) are called as potential off-target modifications. When a parental line WGS data is available, variants with allele frequency deviate from the parental line significantly more or less than 0.5 are filtered out using an in-house developed statistical test. The assumption for this test is the chance for both alleles to be simultaneously modified is highly unlikely because off-target mutation is a rare event.
Functional impact analysis of mutations
Regardless a variant is an off-target or germline mutation, it is annotated for sequence change at transcript level and amino acid change at protein level to assess its potential functional impact using VEP (variant effect predictor, v93.3) . High impact mutations are specially selected if they can result in frameshift, start gain/lost, stop gain/lost, splice donor/acceptor shift or splice region changes. Whenever available, the mutation will be annotated to indicate whether it’s impacting principle or alternative transcripts using the APPRIS database.
Transcription analysis from RNA-Seq
RNA-Seq reads are aligned to the Sus Scrofa 11.1 genome using STAR (v2.6.1a) under the splicing-aware mode. The expression level is quantified as TPM (transcripts per million) using Salmon (v0.11.3) with both pig transcriptome and transgenes as input transcripts.
PERV knock-out efficiency analysis by Amplicon-Seq
Paired reads are merged into fragments if their overlap is over 100 bases after trimming 3’-end low-quality bases below Q20. Merged fragments are further scanned to hard mask low-quality bases below Q20 and aligned to the PERV amplicon target sequence using STAR (v2.6.1a) under the splicing-aware mode. The output BAM file is then analyzed by an in-house R script (v3.5.0) to digest the alignment pattern to assess the distribution of INDELs within the PERV amplicon target sequence (with respective to the catalytic center) and derive the knock-out efficiency.
PERV knock-out efficiency analysis by Capture-Seq
Paired reads are first aligned to the PERV target sequence using STAR (v2.6.1a) under the splicing-aware mode, followed by alignment position dependent deduplication by Picard (v2.18.14) . Deduped paired reads are then merged into fragments by an in-house script. Merged fragments are then re-aligned to the PERV capture target sequence using STAR (v2.6.1a) under the splicing-aware mode. The output BAM file is then analyzed by an in-house R script (v3.5.0) to digest the alignment pattern to assess the distribution of INDELs within the capture target sequence and derive the knock-out efficiency.
PERV haplotype analysis by Capture-Seq
Paired reads are first aligned to the PERV target sequence using STAR (v2.6.1a) under the splicing-aware mode. Somatic variants are called using Mutect2 (v4.1.2.0) and filtered for variants with minor allele frequency over a given threshold (MAF>0.01) . Filtered variants from multiple samples are merged to derive the collection of variant sites for typing haplotypes. Next, properly aligned paired reads were merged into fragments by an in-house scrip. Merged fragments are then re-aligned to the PERV target sequence using STAR (v2.6.1a) under the splicing-aware mode. For each fragment covering the region of interest, we extract the alleles for the collection of variant sites to define the haplotype of the fragment. Finally, the distribution of haplotypes is derived by counting all the fragments covering the region of interest.
Identification of payload integration sites using whole genome sequencing data
Paired reads are aligned to a reference library composed of the Sus Scrofa 11.1 genome, PERV haplotypes and the payload plasmid sequence using STAR (v2.6.1a) under the splicing-aware mode. Structure variants (SVs) are called from the BAM file using Lumpy (v0.2.13) to detect DNA fusion point. Next, we screen for SVs that bridge pig genome and the payload sequence with mismatch reads at the integration site.
Statistical Analysis
All the statistical analyses are performed by R (v3.5.0) and Excel (v2016) . A p-value<0.05 is significant unless otherwise specified. When multiple tests are involved simultaneously, a p-value correction is performed following the Benjamini– Hochberg procedure to control the overall false discovery rate (FDR) . An FDR<0.05 is typically used unless otherwise specified.
Example 10: Perfusion of Immunologically Compatible Pig Liver with Human Blood
Liver perfusion experiments were performed with immunologically compatible pig livers isolated from Pig 2.0 (4-7; 3KO+12TG) as a proxy experiment to xenotransplantation for analyzing organ function. Wild type livers and 4-7 livers (approximately 80 kg) were isolated from 12-month-old pigs. Livers were perfused with human whole blood and human fresh frozen plasma (FFP) . A brief liver perfusion protocol is outlined in Table 1.
Table 1
Bile was collected from livers at various time points and analyzed. As shown in FIG. 28, total bile production increased approximately 2-fold in 4-7 liver as compared to WT liver. In addition, 4-7 liver showed stable serum levels of metabolic enzymes that are markers of liver damage including alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and albumin (ALB) (FIGs. 29A-C) . Furthermore, 4-7 liver showed stable serum electrolyte levels, including potassium (K) and sodium (Na) (FIGs. 29D-E) . 4-7 and WT livers were also tested for complement (C3) expression persisted at a higher, more stable level in 4-7 liver compared to WT liver (FIG. 29F) . When analyzed for coagulation, 4-7 livers showed stable Prothrombin Time (PT) and International Normalized Ratio (PT-NIR) , fibrinogen levels (FIB) , and lower activated partial thromboplastin time (APTT) (FIGs. 30A-D) . Taken together, these data demonstrate 4-7 livers have improved liver function.
Example 11: Pig to Non-Human Primate (NHP) Renal Transplantation
Prior to 2014, the longest pig to non-human primate (NHP) renal xenograft was 90 days, with graft survival > 30 days being highly unusual. Recent advances in induction and maintenance immunosuppressive therapy regimens coupled with the increased availability of donor pigs with genetic alterations that target host innate and adaptive immune responses has resulted in graft survival extension to > 125 days (Higginbotham 2015, Iwase 2015b) . Further genetic engineering to compensate for molecular incompatibilities in immune, coagulation, complement, and inflammatory response pathways is beginning to advance the field of xenotransplantation. Despite genetic modification to produce GTKO and overexpression of one hCRP, coagulation dysfunction including thrombotic microangiopathy and systemic consumptive coagulopathy persisted, due primarily to molecular incompatibilities between pig and NHP.
Preclinical renal transplant studies. For preclinical renal transplant studies, safety and efficacy studies will be in NHP. For safety and efficacy examination, kidneys from 8-to 10-week-old Pig 2.0 donors will be transplanted to NHP (cynomolgus monkey) recipients that will undergo bilateral nephrectomy at the time of transplant. Xenograft function will be monitored by serum creatinine values, complete blood counts, and urine analysis for protein as well as serial biopsies and examinations for weight and general well-being. Immunosuppression will consist of clinically relevant reagents in a combination and intensity that would be acceptable in allotransplantation. These will include induction treatment with steroids, anti-NHP thymocyte globulin, anti-CD20, and maintenance immunosuppression with steroids, anti-CD40, MMF and Rapamycin. Prophylactic anti-viral, anti-bacterial, and anti-coagulation therapy will be administered and supplemental Epogen will be given as needed based on hematocrit levels.
It is contemplated that a six-month well-functioning xenograft survival indicated by a normal creatinine with absence of or low-level proteinuria and a biopsy free of acute antibody-or cell-mediated injury will provide sufficient evidence of efficacy.
By analogy with allotransplantation, it is expected that the period of greatest risk for preformed antibody-mediated injury will be in the first weeks post-transplant, and that acute cell-mediated rejection is most likely to occur in the first three months post-transplant with the risk waning thereafter (Cowan 2014) .
Allograft Rejection. Per the draft guidance ‘Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans’ revised Dec 2016 (FDA 2016) , the possibility exists that rejection of the xenotransplantation product might pre-dispose the recipient to rejection of subsequent xenotransplantation products or allotransplants (Section IX. C. 1. g) .
In vitro antibody reactivity and mixed lymphocyte reaction (MLR) assays will be used to demonstrate lack of reactivity following xenotransplantation in preclinical models. To test for possible cross-reactivity between the response to a xenograft and subsequent allograft, flow cytometry cross-matching will be performed using serum from male NHP receiving kidney transplants from normal pig and Pig 2.0 donors as described above. The reactivity of serum to lymphocytes from a panel of NHP donors as well as to lymphocytes from the porcine donors will be tested. Reponses to the porcine cells will confirm that a xeno-sensitizing event has occurred by elevations in anti-porcine antibody levels. Samples from the NHP pretransplant
will be compared with post-rejection samples to assess for changes in antibody binding to the NHP lymphocyte panel. In parallel, direct and indirect T cell responses by pre-and posttransplant (post-rejection) NHP recipient T cells to a panel of allogeneic stimulators will be evaluated to determine if the cell-mediated allogeneic response is augmented post-rejection of a xenograft (Baertschiger 2004, Cooper 2004, Ye 1995) .
It is anticipated that at least a low level of cross-reactivity between xenogeneic and allogeneic responses will be observed. However, these results should be considered in the context of the proposed trials. For the kidney trial, transplantations are planned with highly sensitized patients that have been unable to receive a transplant due to an inability to identify a suitable match. A modest additional sensitization would be unlikely to alter the chances of an opportunity for receiving a subsequent allograft. Moreover, T cell sensitization has not been identified as a significant barrier to re-transplantation and hence may not be possible to monitor clinically (Baertschiger 2004, Cooper 2015) . Therefore, it seems unlikely that xenogeneic cell-mediated sensitization will impede allograft survival.
Biodistribution. The migration of donor cells to distal tissues/organs in the recipient remains a possible consequence of xenotransplantation. Chimera studies demonstrate that this may actually increase the success of engraftment reducing the probability of rejection (Starzl 1993, Vagefi 2015) . However, there may be unknown consequences of pig donor cell migration and therefore strategies have been developed to determine if migration of cells has occurred. Biodistribution will be studied as part of the pig-NHP xenotransplant research studies according to principles outlined in FDA guidance documents including Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans, Dec 2016 (Section IX.C. 5; FDA Dec 2016) , Gene Therapy Clinical Trials –Observing Subjects for Delayed Adverse Events, Nov 2016 (Section IV.B. 2; FDA Nov 2016) , and Preclinical Assessment of Investigational Cellular and Gene Therapy Products, Nov 2013 (Section V.C. 5.; FDA 2013) .
Tumorigenicity. All animals included in the SCNT and assisted reproduction facilities will be routinely monitored for evidence of tumorigenesis. All animals found moribund or dead will have a full necropsy and gross and microscopic pathology examinations by a veterinary pathologist. Records of all genetically engineered animal health and pathology will be maintained and compiled to determine the risk for tumorigenicity potential due to specific or unintended genetic modification.
Example 12: Pig to Human Renal Transplantation
Renal xenotransplantation has been studied for several decades and porcine xenografts have been evaluated in early clinical trials (Starzl 1964) . The challenge is to enable xenograft procedures that provide clinical benefit equivalent to allograft survival.
Clinical Study Design. The proposed clinical study population will include transplant patients age 18-65 with end-stage renal disease who are unlikely to find a suitable kidney donor in a timely manner due to the presence of high levels of panel reactive anti-HLA antibodies (PRA) . High PRA creates substantial challenges in matching a suitable deceased or live donor, causing extended waiting times for a transplant and excess morbidity from additional years on hemodialysis. Despite being given allocation priority on waitlists, >90%PRA patients still experience markedly prolonged wait times compared to lesser sensitized patients. Subjects that have >90%PRA sensitization to HLA antigens and who manifest a negative flow cross-match to porcine donor lymphocytes (or endothelial cells) will be targeted.
Patients will receive porcine donor kidneys of 120 ± 10 gm providing an expected glomerular filtration rate (GFR) of 40-50 mL/min/1.73m
2. Single porcine kidneys from 9-to 12-month-old donors will be transplanted to the right or left iliac fossa, in a manner identical to that used for allogeneic renal transplantation. The primary endpoint will be freedom from hemodialysis for one year post transplant. Patients will be assessed by serial blood testing for creatinine levels, urinary protein and calculation of GFR using the MDRD equation: GFR (mL/min/1.73 m
2) = 175 × (Scr)
-1.154 × (Age)
-0.203 × (0.742 if female) × (1.212 if African American) . Protocol-designated graft biopsies will be performed every three months and for-cause based on >20%rise in creatinine from baseline, defined as the mean of the best three consecutive creatinine measures in the first month post-transplant, or proteinuria greater than 300 mg/day. Safety measures will include monitoring of coagulation parameters, clinical chemistry, hematology, and adventitious infections.
Organs for Porcine-Human Renal Transplant. Data suggest that porcine kidneys manifest similar functional potency by kidney weight as human kidneys, thus allowing transplant of kidneys by graft and recipient weight comparable to that used clinically with allografts. In humans, transplantation of allogeneic renal grafts is performed over a broad range of kidney weight to recipient weight. On average, adult male kidneys weigh 125-170 grams and adult female kidneys weigh 115-155 grams (Boron 2003) . In considering the upper range for dosing for kidney weight to recipient weight ratio, there is no evidence that an excess of renal function is harmful in any way. Rather, the upper boundary of transplantable renal mass is limited by technical issues. For example, a single adult kidney may be transplanted successfully into a 10kg infant equating to a 12-17 gm of kidney/kg, which is approximately 3-4 times the renal mass ratio for an average adult (3-4 gm of kidney/kg; Donati-Bourne 2014) . This upper graft weight to recipient weight range is relevant to the proposed preclinical studies detailed below. In experimental preclinical studies, 50-75 gm kidneys will be transplanted from 8-to 10-week-old porcine donors into 5-12 kg NHP recipients (~10 gm of kidney/kg) .
Glomerular filtration rate (GFR; mL/min/1.73m2) is a standard measure of renal function or kidney potency that is used to stage the progress of chronic kidney disease (CKD) and renal failure qualifying for dialysis and/or transplantation. In determining the lower range of dosing for kidney weight to recipient weight, the goal is to achieve a GFR of 45-60 mL/min/1.73m
2 (CKD stage 3A; Levey 2011) . This target range for GFR is based on data suggesting that renal function in CKD 3A is comparable to that achieved by single kidney allotransplantation in humans and is stable, whereas lower GFR in the CKD stage 3B (GFR 30-45 mL/min/1.73m
2) is associated with an increase in end-stage renal disease and all-cause and cardiovascular mortality (Sharma 2010) . The targeted GFR range of 45-60 mL/min/1.73m
2 is comparable to that achieved by single kidney allotransplantation in humans (50-65 mL/min/1.73m
2; Gourishankar 2003, Marcén 2010) .
This will require xenotransplantation of a kidney mass comparable to that routinely used in allotransplantation (115-170 gm) given the comparability of human and porcine kidneys in GFR per renal mass. It should be considered that some renal function may be lost in the donation process and post-transplant due to treatment of the recipient with nephrotoxic immunosuppression in the form of calcineurin inhibitors.
Pharmacology and Toxicology Information. Efficacy and safety will be evaluated using pharmacology studies with both rodent and NHP models. A variety of integrated safety endpoints will be used, as well as an assessment of clinical pathology and pathophysiology in genetically engineered donor porcine tissues. A tiered approach will be taken involving in vitro cellular and tissue function, and assessments of clinical pathology and histopathology in donor pigs and NHP xenografts. Endpoints will include graft function and rejection, and recipient safety related to functions of innate and adaptive immunity, inflammation, as well as complement and coagulation cascades.
Somatic Cell Nuclear Transfer and Assisted Reproduction of Genetically Engineered Donor Pigs. Genetically engineered donor pigs will be monitored routinely for safety considerations with full clinical pathology including clinical chemistry and hematology as well as gross and microscopic histopathology. Reproductive capability, embryo-fetal development, organ and tissue development, and potential tumorigenesis will be monitored and recorded for all donor pigs in the breeding colony.
Animals are identified by unique ear tags printed with permanent ink (placed at Place of Origin) . The flow of pigs includes a quarantine area, which is an open-air, group-housed barn with a bedding of wood shavings. The feed trough is wooden and kept clean from debris and waste. Fresh, free-choice water is available at all times via nipple drinkers. The barn relies on outdoor wind movement to circulate the air and temperature is maintained above 10℃. Biosecurity requires at least 24 hours of no other swine contact, specific barn attire, and boot dipping in disinfectant before and after barn contact. The quarantine period includes 35-40 days of quarantine, vaccination with Parvo Shield L5E, FluSure XP/ER Bac Plus, Ingelvac FLEX combo (Circovirus and Mycovirus) , and Dectomax, and includes 2 blood draws demonstrating no increase in disease antibodies (PRRSV, PRRSX3) . After clearance from quarantine, pigs are moved into a buffer area at the facility. This area is a closed-barn, group-housed, sawdust-bedded pen in groups of up to 12. Bedding is replaced weekly. Temperature is controlled by thermostat-controlled fans and propane heater to a range of 15–24℃. Pigs are fed in a stainless-steel trough and fresh, free-choice water is available at all times via nipple drinkers. Pigs are observed at least once a day and as health status dictates.
Pigs with observed health issues are housed in single pens for individualized care and attention and treated as directed by the Attending Veterinarian and Director of Embryology. Biosecurity requires at least 24 hours of no other swine-herd contact. Coveralls limited to use in the barn area and boots are disinfected either with Virkon-Sor Synergize before and after barn contact. Generation of source donor pigs for use in clinical studies will follow all relevant guidance and regulations.
Validation of Genetic Engineering. The endogenous gene KOs and human transgene expression will be validated at genomic, mRNA, and protein levels. For gene KOs, either Sanger sequencing or deep sequencing will be performed to confirm the genetic mutations at the intended target site. Second, RNA-seq and/or RT-PCR will be performed to ensure that the mRNAs contain the intended mutations and are subject to non-sense mediated decay. RT assays will be performed to demonstrate the elimination of RT activity in PERV KO cells. Moreover, immunohistochemistry (IHC) staining and/or flow cytometry will be performed to ensure that gene products are absent in the cell or at the cell surface.
Off-target mutations may still exist despite advances in the field of precision gene editing and must be understood in order to generate safe and efficacious donor organs for clinical xenotransplantation. In order to ascertain the potential off-target effects of CRISPR-Cas9 gene editing, the following multi-tiered assessment approach has been employed:
1. Karyotype of the modified cell clones to determine chromosomal structural integrity;
2. CIRCLE-Seq: A sensitive, in-vitro screening strategy that comprehensively detects genome-wide CRISPR-Cas9 off-target mutations of any given gRNA. The potential off-target sites will be censored in any derived cell line from the specific gRNA using subsequent targeted amplicon sequencing;
3. Whole Genome Sequencing (WGS) : to examine single point mutations as well as small structure variations of the genetically engineered cell lines or pigs. Table 2 lists the resolution and sensitivity of the detection methods employed.
Table 2
For transgene expression, intactness and expression of human transgenes in genomic, mRNA, and protein levels will be validated using sequencing, RT-PCR/RNA-seq, and IHC/flow cytometry technologies. Moreover, the location of random transgene integration will be determined by inverted PCR-based junction capture and the results will be validated by junction PCR.
Clones will be chosen with a single-copy transgene integrated into intergenic regions at least 10,000bp from any known genes and ncRNAs, and at least 50,000bp from any oncogenes and tumor suppressors. For site-specific integration and endogenous gene humanization, biallelic site-specific integration/replacement will be validated by junction PCR and droplet digital PCR (ddPCR) .
Example 13: Non-Human Primate (NHP) Renal Transplantation
Preclinical transplant studies. For preclinical transplant studies, safety and efficacy studies were performed in NHP. Hearts, kidneys, and livers from 8-10 week-old Pig 2.0 donors were used for transplanted solid organ studies and liver and lungs were used for perfused organ studies. In a span of 5 months, 15 organ transplants and 11 organ perfusions were performed. Specifically, 7 kidney transplants, 4 heart transplants, 4 liver transplants were performed while 4 livers and 7 lung perfusions were performed, as summarized in Table 3.
Table 3
Immunosuppression regimen for kidney transplantations consisted of clinically relevant reagents in a combination and intensity that was acceptable in allotransplantation. Clinical monitoring included: abdominal ultrasound at days 2, 5, 7, 9, 12, and 14 and clinical labs (CBC, Chem 17, coags, serum) at days 2, 5, 7, 9, 12, and 14 and weekly.
Survival of transplanted kidneys from Pig2.0 donors and control pigs (GTKO. hCD55) were analyzed. A summary of the results is provided in Table 4.
Table 4
The two longest surviving recipients of GTKO. hCD55 pig kidneys survived until days 76 and 93 when they were euthanized due to renal failure and weight loss, respectively. Of these two, one was found to have thrombotic microangiopathy (TMA) , chronic antibody-mediated rejection (AMR) and borderline T-cell Mediated Rejection (TCMR) ; while the other had C4d deposition, but otherwise no histologic evidence of frank rejection. The remaining seven recipients received kidneys from Pig 2.0. In these pigs, transduced human proteins that regulate immune responses or complement activation were expressed at high levels. The NHP recipients of these genetically modified pig kidneys survived >190, 72, 20, 15 and 6 days with immunosuppression regimen for kidney transplantations.
One recipient is currently doing well with normal kidney function (Creatinine 0.6 mg/dl) at day 190 with immunosuppression regimen for kidney transplantation. Multiple biopsies showed no evidence of rejection or TMA.
Together these data demonstrate long-term survival of a kidney xenograft having triple xenoantigen KO with multiple transduction of human genes encoding regulatory proteins in the innate responses and complement pathways, that is free from rejection or TMA has been achieved with minimal maintenance immunosuppression.
Compromised health of monkeys contributed to early termination of several of the xenograft monkeys. Complications included blood transfusions, injection site abscess and infection, wound healing. Several cases presented bleeding in bladder and/or ureter, possibly due to over-anti-coagulation. A summary of the Pig2.0 grafts is provided in Table 5.
Table 5
Analysis of host monkeys transplanted with kidneys isolated from Payload 9 (A) and Payload 10 (B) donor pigs demonstrated that hosts exhibit stable serum creatinine levels (FIGs. 32A and 32B) . Several host monkeys also exhibited stable or recovering hematocrit levels (FIGs. 33A and 33B) . Platelet counts were low in several of the host monkeys, but had recovered in others (FIGs. 34A and 34B) . Fluctuations in WBC reflect the immunosuppression regimen and infection events (FIGs. 35A and 35B) .
Liver Xenotransplantation. Until recently, pig-to-baboon orthotopic liver xenotransplant (OLTx) survival was limited to 9 days. Administration of human clotting factors improved survival to 25 and 29 days in two recipients of GTKO livers, but consistent survival remains elusive.
Here, four pig-to-baboon OLTx were performed. Livers were from two genetic constructs of transgenic pigs deficient in targets of xenoantibody and containing human transgenes to address complement activation and innate immune cell function (group 1: B1, B2; group 2: B3, B4) . Immunosuppression consisted of ATG, Rituximab, corticosteroids, MMF and aCD154. All recipients received an infusion of KCentra. Unlike previous studies, splenectomy was not performed, and cobra venom factor and tacrolimus were omitted. B2 and B4 received a continuous infusion of a GpIIb/IIIa inhibitor. Graft function was assessed with daily chemistries, lactate, CBC, INR and weekly coagulation profile.
Baboons B1, B2 and B4 underwent successful OLTx with life-sustaining graft function. LFTs peaked on POD1 in all baboons and normalized between POD4-7 (FIGs. 38A-38B) . Each baboon manifested thrombocytopenia, with spontaneous recovery beginning on POD8 in B2 and POD4 in B4 (FIG. 38C) . Transfusions requirements (FIG. 38D) were less than historic experience. Consumption of coagulation factors occurred immediately after OLTx, with subsequent production at normal pig levels (FIG. 38E-38I) . B1 was euthanized on POD8 due to respiratory failure from fluid overload and abdominal compartment syndrome. Liver biopsy showed focal ischemia, no rejection and negative C4d (FIG. 38A-B) . B2 recovered uneventfully and biopsy on POD8 was normal. Development of hemoptysis and increased transfusion requirement, necessitated euthanasia on POD14. Pulmonary hemorrhage was identified on necropsy. H+E staining of the liver exhibited diffuse sinusoidal neutrophil infiltrate, suggesting infectious complications versus rejection, B2 was C4dnegative and the LFTs remained normal throughout (FIG. 38C-D) . B3 was hypotensive and hypoxemic intra-op after reperfusion, requiring euthanasia. Necropsy showed diffuse pulmonary hemorrhage with normal liver and patent vasculature. B4 recovered uneventfully. Only one post-op blood transfusion was required. On POD7, a rise in Tbili and LFT’s prompted exploration, where a bile leak and hepatic artery thrombosis (HAT) were identified, requiring euthanasia. Biopsy showed focal subcapsular necrosis with negative C4d and no evidence of rejection, consistent with HAT (FIG. 38E-F) .
Together these data of OLTx using novel, genetically modified pig organs demonstrate: reduced reperfusion injury, decreased RBC consumption, and the first antibody-mediated rejection-free survival without splenectomy or use of CVF. The absence of evident rejection suggests that this porcine strain is suitable for further OLTx studies.
Liver Xenoperfusion. Barriers to successful xenogeneic pig liver transplantation include hyperacute rejection by preformed xeno-antibody, molecular incompatibilities resulting in dysregulated complement, coagulation, and innate and adaptive immunity. Genetically modified swine may circumvent these obstacles and will require a rapid and efficient model to evaluate the effectiveness of different genetic constructs. Here, initial results are reported using ex-vivo liver xenoperfusion (EVLXP) of wild type (WT) and genetically modified swine livers perfused with human blood and plasma (hWB+P) .
Briefly, livers from Pig 2.0 (EG group, n=3) , WT (n=2) and GTKO. hCD55 (n=4) livers were studied. EVXLP was performed at 37℃ with fresh, heparinized hWB+P. Failure during EVXLP was defined by decreased blood flow due to elevated vascular resistance, severe metabolic derangements or gross necrosis. CBC, serum clinical chemistry, and blood gas analysis were performed. Tissue biopsies were stained with H+E and for depositions of IgG, IgM, and complement (C4d) .
All groups manifested progressive blood flow reduction with a corresponding rise in vascular resistance. Hemodynamic deterioration occurred earlier and progressed faster in the WT and GTKO. CD55 compared to EG livers (FIGs. 39A-39B) , and correlated with longer EG liver survival. Mean liver survival for WT was 5 hours (range 5-7 hours) , GTKO. CD55, 4.5 hours (range 4-6 hours) and 13 hours (range 11-14 hours) in EG liver. Platelets and neutrophils decreased rapidly in all groups, with the greatest losses observed with WT, but differences did not meet statistical significance (FIGs. 39C-39D) . RBC count was preserved throughout perfusion with EG and was significantly higher than WT livers and tended and to be higher than GTKO. CD55 (FIG. 39E) .
EG liver tissue biopsies exhibited preserved hepatic architecture on H+E with mild diffuse portal and sinusoidal inflammation (FIG. 41A) . WT livers manifested focal ischemic necrosis and vascular congestion on H+E (FIG. 41E) , with strong staining for IgM and IgG (FIGs. 41F-41G) and C4d-positivity (FIG. 41H) . In contrast, EG livers showed diffuse mild sinusoidal IgG and IgM deposition (FIGs. 41B-41C) , with negative C4d (FIG. 41D) , perhaps suggesting the reduction in pre-formed antigens and improvements in complement regulation by addition of human complement regulatory protein expression resulted in less injury.
Xenolivers from transgenic pigs deficient in xeno-specific antigens and containing humanized transgenes related to complement activation and immune cell function achieved significantly prolonged survival with less severe platelet sequestration, preserved RBC mass and diminished antibody and complement deposition compared to WT or GTKO. CD55 xenografts. This model is an efficient and informative tool to simulate pig-to-human xenotransplantation and evaluate the efficacy of specific genetic modifications.
Lung Xenoperfusion. Ex vivo lung perfusion with human blood is a standardized method to evaluate the impact of transgene combinations. Here results associated with novel transgenic pig lines, evaluated in the context of a reference cohort, are reported.
Briefly, eight pairs of lungs from pigs with combined Eight pairs of lungs from pigs with combined Gal1, 3αGal, β4Gal and Neu5Gc knockouts (TKOs) and containing human transgenes addressing molecular incompatibilities in complement activation, and innate and adaptive immune cell function were perfused ex vivo with freshly collected heparinized human blood. GalTKO. hCD55 lungs served as reference group. In pairs of lungs from each pig, blood was left ‘untreated’ (n=5 Pig 2.0, and n=3 reference) , or the blood was ‘treated’ with 1-BIA, a thromboxane synthase inhibitor and histamine receptor blocker (n=7 for Pig 2.0, n=4 for reference) . Tissue and blood samples were collected at predefined time points and experiments were terminated electively after 8 hours of perfusion if lungs had not failed earlier.
Median survival time for Pig 2.0 lungs was 450min (range 300-480min) vs. 30min (range 20-300min) for reference lungs (P=0.04) in the untreated groups and 480min (range 360-480min) vs. 300min (range 145-360min) in the treated cohorts (P=0.009) . Pulmonary vascular resistance (PVR) rise was significantly attenuated and delayed in ‘untreated’ Pig 2.0 lungs, relative to GalTKO. hCD55 lungs (FIG. 42) . Additional blood treatment with 1-BIA and H-blocker attenuated PVR rise within both Pig 2.0 and reference groups. Neutrophil and platelet sequestration usually occur within 5-15 min of perfusion, and were not attenuated in association with Pig 2.0 multitransgenic lungs.
These data demonstrate the novel Pig 2.0 donor genetics protect lungs from PVR rise and lung injury and were associated with significantly improved lung survival in this rigorous model. Leukocyte and white cell sequestration were not prevented, as previously described with other lung genetics. The transgene combination expressed by Pig 2.0 lungs may be helpful to accomplish successful xenotransplantation of the lung, and other organs
Transgene expression. RNAseq expression data showed complement and cellular toxicity genes are expressed in samples collected from Payload 9 and Payload 10 Pig 2.0 pigs (FIG. 36) . FACS data showed complement and cellular toxicity proteins are expressed in samples collected from Payload 5, Payload 9 and Payload 10 pigs (FIG. 37) . All three payloads expressed complement (CD46, CD55, and CD59) and cellular toxicity related proteins (e.g., B2M, HLA-E, CD47) . In addition, Payload 5 expressed CD39, while Payload 10 expressed PDL1. Although performance in NHP drastically differs, the gene expression profiles are similar among the five pigs carrying payload 5.
The use of numerical values specified in this application, unless expressly indicated otherwise, are stated as approximations through the minimum and maximum values specified within the stated ranges, and preceded by the word “about. ” The disclosure of ranges is intended as a continuous range including every value between the minimum and maximum values recited as well as any ranges that may be formed through such values. The numerical values presented in this application represent various embodiments of the present disclosure.
This disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and functions have not been shown and/or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, in alternative embodiments the steps may have another suitable order. Similarly, certain embodiments of the present technology disclosed in the context of particular embodiments may be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments may have been disclosed in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the present technology. Accordingly, this disclosure and associated technology may encompass other embodiments not expressly shown and/or described herein.
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the disclosure. Accordingly, the disclosure is not limited except as by the appended claims.
While specific embodiments of the subject disclosure have been discussed, the above specification is illustrative and not restrictive. Many variations of the disclosure will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the disclosure should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
ABBREVIATIONS
acute vascular rejection (AVR) ; activated partial thromboplastin time (APTT) ; adeno-associated virus integration site 1 (AAVS1) ; alanine aminotransferase (ALT) ; albumin (ALB) ; alpha 1, 3-galactosyl-galactose (Gal or αGal) ; antibody-mediated rejection (AMR) ; anti-thymocyte globulin (ATG) ; asialoglycoprotein receptor 1 (ASGR1) ; aspartate aminotransferase (AST) ; β1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) ; Beta-2 microglobulin (B2M) ; Cluster of Differentiation 39 (CD39) ; Cluster of Differentiation 47 (CD47) ; clustered regularly interspaced short palindromic repeats (CRISPR) ; class II transactivator dominant-negative (CIITA-DN) ; CMV early enhancer/chicken β actin (CAG) ; complement factor 3 (C3) ; complement factor 3 knockout (C3-KO) ; complete blood count (CBC) ; C-X-C motif chemokine receptor 3 (CXCR3) ; C-X-C motif chemokine receptor 12 (CXCR12) ; cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) ; cytotoxic T-lymphocyte-associated immunoglobulin (CTLA-Ig) ; deoxyribonucleic acid (DNA) ; DQ Alpha (DQA) ; DR Alpha (DRA) ; droplet digital pCR (ddPCR) ; ecto-5' Nucleotidase (CD73) ; elongation factor 1α (EF1α) ; endothelial cells (EC) ; endothelial protein C receptor (EPCR) ; ex-vivo liver xenoperfusion (EVLXP) ; Fas ligand (FasL) ; fibrinogen levels (FIB) ; fluorescence-activated cell sorting (FACS) ; fresh frozen plasma (FFP) ; green fluorescent protein (GFP) ; glomerular filtration rate (GFR) ; glucagon like peptide 1 receptor (GLP-1R) ; glycoprotein IIb/IIIa (GpIIb/IIIa) ; glycoprotein α-galactosyltransferase 1 (GGTA) ; GGTA knock out (GTKO) ; guide ribonucleic acid (gRNA) ; haemotoxylin and eosin (H+E) ; hepatic artery thrombosis (HAT) ; human embryonic kidney 293 (HEK293) ; heme oxygenase (HO-1) ; homology-directed repair (HDR) ; human blood and plasma (hWB+P) ; human membrane cofactor protein (hCD46) ; human complement decay accelerating factor (hCD55) ; human complement regulatory proteins (hCRPs) ; human leukocyte antigen (HLA) ; human leukocyte antigen-E (HLA-E) ; human MAC-inhibitor factor (hCD59) ; immunoglobulin G (IgG) ; immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) ; immunoglobulin M (IgM) ; immunohistochemistry (IHC) ; inosine monophosphate dehydrogenase (IMDH) ; interleukin 12 (IL12) ; interleukin 35 (IL35) ; international normalized ratio (INR) ; intracellular adhesion molecule-2 (ICAM2) ; killer inhibitory receptors (KIR) ; knockin (KI) ; knockout (KO) ; Krüppel associated box (KRAB) ; liver functional test (LFT) ; long terminal repeat (LTR) ; major histocompatibility complex class I (MHC class I) ; major histocompatibility complex class II (MHC class II) ; major histocompatibility complex, class I, E single chain trimer (HLA-ESCT) ; mechanistic target of rapamycin (mTOR) ; messenger ribonucleic acid (mRNA) ; modification of diet in renal disease (MDRD) ; mixed lymphocyte reaction (MLR) ; mycophenolate mofetil (MMF) ; natural killer (NK) ; N-glycolylneuraminic acid (Neu5Gc) ; neurogenic differentiation 1 (NeuroD) ; non-human primate (NHP) ; non-homologous end joining (NHEJ) ; orthotopic liver xenotransplants (OLTx) ; panel reactive antibody (PRA) ; peripheral blood mononuclear cell (PBMC) ; pig kidney-15 cells (PK15) ; porcine endogenous retroviruses (PERV) ; porcine endogenous retroviruses knockout (PERV KO) ; programmed death-ligand 1 (PD-L1) ; polymerase chain reaction (PCR) ; porcine aortic endothelial cell line (PEC-Aor pAEC) ; potassium (K) ; Prothrombin Time (PT) and International Normalized Ratio (PT-NIR) ; quantitative reverse transcription polymerase chain reaction (qRT-PCR) ; recombinase-mediated cassette exchange (RMCE) ; red blood cell (RBC) ; ribonucleic acid sequencing (RNAseq) ; reverse transcriptase polymerase chain reaction (RT-PCT) ; sgRNA (single guide RNA) ; small interfering ribonucleic acid (siRNA) ; sodium (Na) ; somatic cell nuclear transfer (SCNT) ; superoxide dismutase 3 (SOD3) ; swine leukocyte antigen (SLA) ; T-cell mediated rejection (TCMR) ; thrombin-antithrombin III (TAT) ; thrombomodulin (THBD, TBM, or TM) ; thrombotic microangiopathy (TMA) ; tissue factor pathway inhibitor (TFPI) ; topoisomerase (TOPO) ; total bilirubin (Tbili) ; transcription activator-like (TAL) effector and nucleases (TALEN) ; tumor necrosis factor α-induced protein 3 (A20) ; tumor necrosis factor receptor 1 immunoglobulin (TNFR1-Ig) ; ubiquitous chromatin opening element (UCOE) ; von Willebrand factor (vWF) ; whole genome sequencing (WGS) ; wild type (WT) ; Zinc finger nucleases (ZFN) .
REFERENCES
· Ahlborg et al. N Engl J Med 349 (4) : 327-334 (July 24, 2003) (PMID: 12878739; DOI: 10.1056/NEJMoa022464)
· Armstrong et al. J Gen Virol 10 (2) : 195–198 (Feb. 1971) (PMID: 4324256; DOI: 10.1099/0022-1317-10-2-195)
· Baertschiger et al. Xenotransplantation 11 (1) : 27-32 (Jan. 2004) (PMID: 14962290; DOI: 10.1111/j. 1399-3089.2004.00075. x)
· Boron &Boulpaep, Medical Physiology: A Cellular and Molecular Approach, Elsevier/Saunders (1st ed., 2003)
· Byrne et al. Xenotransplantation 21 (6) : 543-554) (Nov-Dec. 2014) (PMID: 25176027; DOI: 10.1111/xen. 12124)
· Cibelli et al. Science 280 (5367) : 1256-1258 (May 22, 1998) (PMID: 9596577)
· Clémenceau et al. Diabetologia 45 (6) : 914-923 (June 2002) (PMID: 12107737; DOI: 10.1007/s00125-002-0832-7)
· Cooper et al. Transplantation 77 (1) : 1-5 (Jan. 15, 2004) (PMID: 14724427; DOI: 10.1097/01. TP. 0000105116.74032.63)
· Cooper et al. Int J Surg 23 (Pt B) : 211-216 (Nov. 2015) (PMID: 26159291; DOI: 10.1016/j. ijsu. 2015.06.068)
· Cowan et al. Kidney Int 85 (2) : 265-275 (Feb. 2014) (PMID: 24088952; DOI: 10.1038/ki. 2013.381)
· Davis et al. Transplantation 98 (9) : 931-936 (Nov. 15, 2014) (PMID: 25286057; DOI: 10.1097/TP. 0000000000000446)
· Donati-Bourne et al. J Transplant 204: 317574 (2014) (PMID: 24688785; DOI: 10.1155/2014/317574)
· Dunn et al. FASEB J 29 (Suppl 1) : LB761 (Apr. 1, 2015)
· Eggers Am J Kidney Dis 15 (5) : 414-421 (May 1990) (PMID: 2185627)
· Ekser et al. Int J Surg 23 (Pt B) : 197-198 (Nov. 2015) (PMID: 26318503; DOI: 10.1016/j. ijsu. 2015.08.036)
· FDA Guidance for Industry: Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans (Apr. 2003, revised Dec. 2016)
· FDA Guidance for Industry: Gene Therapy Clinical Trials –Observing Subjects for Delayed Adverse Events (Nov. 2006)
· FDA Guidance: Preclinical Assessment of Investigational Cellular and Gene Therapy Products (Nov. 2013)
· Fiebig et al. Virology 307 (2) : 406-413 (Mar. 15, 2003) (PMID: 12667808)
· Fischer et al. Sci Rep 6: 29081 (Jun 29, 2016) (PMID: 27353424; DOI: 10.1038/srep29081)
· Gourishankar et al. J Am Soc Nephrol 14 (9) : 2387-2394 (Sept. 2003) (PMID: 12937318)
· Grams et al. Transplantation 94 (7) : 750-756 (Oct. 15, 2012) (PMID: 22932116; DOI: 10.1097/TP. 0b013e31826205b9)
· Higginbotham et al. Xenotransplantation 22 (3) : 221-230 (May-June 2015) (PMID: 25847130; DOI: 10.1111/xen. 12166)
· Ide et al. Proc Natl Acad Sci USA 104: 5062-5066 (2007)
· Iwase et al. Xenotransplantation 22 (4) : 302-309 (Jul-Aug. 2015) (PMID: 26130164; DOI: 10.1111/xen. 12174)
· Iwase &Kobayashi Int J Surg 23 (Pt B) : 229-233 (Nov. 2015) (PMID: 26305729; DOI: 10.1016/j. ijsu. 2015.07.721)
· Kasiske et al. Am J Kidney Dis 56 (5) : 947-960 (Nov. 2010) (PMID: 20801565; DOI: 10.1053/j. ajkd. 2010.06.020)
· Kim et al. Genome Res 24 (6) : 1012-1019 (June 2014) (PMID: 24696461; DOI: 10.1101/gr. 171322.113)
· Kim et al. Am J Transplant 17 Suppl 1: 174-251 (Jan. 2017) (PMID: 28052604; DOI: 10.1111/ajt. 14126)
· Lai et al. Science 295 (5557) : 1089-1092 (Feb. 8, 2002) (PMID: 11778012; DOI: 10.1126/science. 1068228)
· Lee et al. Anim Biotechnol 22 (4) : 175-180 (Oct. 2011) (PMID: 22132811; DOI: 10.1080/10495398.2011.595294)
· Levey et al. Kidney Int 80 (1) : 17-28 (July 2011) (PMID: 21150873; DOI: 10.1038/ki. 2010.483)
· Lilienfeld Xenotransplantation 14 (2) : 126-134 (Mar. 2007) (PMID: 17381687; DOI: 10.1111/j. 1399-3089.2007.00378. x)
· Loveland et al. Xenotransplantation 11 (2) : 171-183 (Mar. 2004) (PMID: 14962279; DOI: 10.1046/j. 1399-3089.2003.00103. x)
· Lutz et al. Xenotransplantation 20 (1) : 27-35 (Jan-Feb. 2013) (PMID: 23384142; DOI: 10.1111/xen. 12019)
· Marcén et al. NDT Plus 3 (Suppl_2) : ii2-ii8 (June 2010) (PMID: 20508857; DOI: 10.1093/ndtplus/sfq063)
· Martens et al. Transplantation 101 (4) : e86-e92 (Apr. 2017) (PMID: 28114170; DOI: 10.1097/TP. 0000000000001646)
· McGregor et al. Transplantation 93 (7) : 686-692 (Apr. 15, 2012) (PMID: 22391577; DOI: 10.1097/TP. 0b013e3182472850)
· Moalic et al. J Virol 80 (22) : 10980-10988 (Nov. 2006) (PMID: 16928752; DOI: 10.1128/JVI. 00904-06)
· Mohiuddin et al. Nat Commun 7: 11138 (Apr. 5, 2016) (PMID: 27045379; DOI: 10.1038/ncomms11138)
· Niu et al. Science 357 (6357) : 1303-1307 (Sept. 22, 2017) (PMID: 28798043; DOI: 10.1126/science. aan4187)
· Ojo et al. Transplantation 71 (1) : 82-90 (Jan. 15, 2001) (PMID: 11211201)
· Patience et al. Nat Med 3 (3) : 282-286 (Mar. 1997) (PMID: 9055854)
· Patience et al. J Virol 75 (6) : 2771-2775 (Mar. 2001) (PMID: 11222700; DOI: 10.1128/JVI. 75.6.2771-2775.2001)
· Pinheiro et al. Anal Chem 84 (2) : 1003-1011 (Jan. 17, 2012) (PMID: 22122760; DOI: 10.1021/ac202578x)
· Ramsoondar et al. Xenotransplantation 16 (3) : 164-180 (May-June 2009) (PMID: 19566656; DOI: 10.1111/j. 1399-3089.2009.00525. x)
· Reyes et al. J Immunol 193 (11) : 5751-5757 (Dec. 1, 2014) (PMID: 25339675; DOI: 10.4049/jimmunol. 1402059)
· Robson et al. Xenotransplantation 7 (3) : 166-176 (Aug. 2000) (PMID: 11021661)
· Schuurman Xenotransplantation 16 (4) : 215-222 (July-Aug. 2009) (PMID: 19799761; DOI: 10.1111/j. 1399-3089.2009.00541. x)
· Semaan et al. Xenotransplantation 19 (2) : 112-121 (Mar-Apr 2012) (PMID: 22497513; DOI: 10.1111/j. 1399-3089.2012.00683. x)
· Semaan et al. PLoS One 10 (4) : e0122059 (Apr. 24, 2015) (PMID: 25909512; DOI: 10.1371/journal. pone. 0122059)
· Sharma et al. Br J Gen Pract 60 (575) : e266-e276 (June 2010) (DOI: 10.3399/bjgp10X502173)
· Shen et al. Transplant Proc 43 (5) : 1994-1997 (June 2011) (PMID: 21693314; DOI: 10.1016/j. transproceed. 2011.03.037)
· Starzl et al. Transplantation 2: 752-756 (Nov. 1964) (PMID: 14224657)
· Starzl et al. Hepatology 17 (6) : 1127-1152 (June 1993) (PMID: 8514264)
· Tanabe et al. Am J Transplant 17 (7) : 1778-1790 (July 2017) (PMID: 28117931; DOI: 10.1111/ajt. 14210)
· Tseng et al. Transplantation 81 (7) : 1058-1062 (Apr. 15, 2006) (PMID: 16612284; DOI: 10.1097/01. tp. 0000197555.16093.98)
· Vagefi et al. Int J Surg 23 (Pt B) : 291-295 (Nov. 2015) (PMID: 26296932; DOI: 10.1016/j. ijsu. 2015.07.720)
· van’t Veer et al. J Biol Chem 272 (12) : 7983-7994 (Mar. 21, 1997) (PMID: 9065469; DOI: 10.1074/jbc. 272.12.7983)
· Wang et al. Sci Rep 6: 38854 (Dec. 16, 2016) (PMID: 27982048; DOI: 10.1038/srep38854)
· Yang et al. Nucleic Acids Res 41 (19) : 9049-9061 (Oct. 2013) (PMID: 23907390; DOI: 10.1093/nar/gkt555)
· Yang et al. Science 350 (6264) : 1101-1104 (Nov. 27, 2015) (PMID: 26456528; DOI: 10.1126/science. aad1191)
· Ye et al. Transplantation 60 (1) : 19-22 (July 15, 1995) (PMID: 7624938)
PAYLOAD SEQUENCES
SEQ ID NO 212: Payload 12F sequence
SEQ ID NO 213: Payload 12G sequence
SEQ ID NO 214: Payload 13A sequence
Claims (138)
- An isolated cell, tissue, organ, or animal comprising a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, and combinations thereof.
- An isolated cell, tissue, organ, or animal comprising a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene.
- The isolated cell, tissue, organ, or animal of claim 1 or 2, wherein the inflammatory response transgene is selected from the group consisting of TNF α-induced protein 3 (A20) , heme oxygenase (HO-1) , Cluster of Differentiation 47 (CD47) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of claim 1 or 2, wherein the immune response transgene is selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of any one of claims 1 or 2, wherein the immunomodulator transgene is selected from the group consisting of programmed death-ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of claim 1 or 2, wherein the plurality of transgenes further comprises at least one coagulation response transgene.
- The isolated cell, tissue, organ, or animal of claim 6, wherein the coagulation response transgene is selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD) , tissue factor pathway inhibitor (TFPI) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of claim 1 or 2, wherein the plurality of transgenes further comprises at least one complement response transgene.
- The isolated cell, tissue, organ, or animal of claim 8, wherein the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46) , human complement decay accelerating factor (hCD55) , human MAC-inhibitor factor (hCD59) , and combinations thereof.
- An isolated cell, tissue, organ, or animal comprising six or more transgenes, each independently selected from the group consisting of complement response transgenes, coagulation response transgenes, inflammatory response transgenes, immune response transgenes, and immunomodulator transgenes.
- The isolated cell, tissue, organ, or animal of claim 10, wherein the isolated cell, tissue, organ, or animal comprises 9, 10, 11, or 12 transgenes.
- The isolated cell, tissue, organ, or animal of claim 10, wherein the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46) , human complement decay accelerating factor (hCD55) , human MAC-inhibitor factor (hCD59) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of claim 10, wherein the coagulation response transgene is selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD) , tissue factor pathway inhibitor (TFPI) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of claim 10, wherein the inflammatory response transgene is selected from the group consisting of TNF α-induced protein 3 (A20) , heme oxygenase (HO-1) , Cluster of Differentiation 47 (CD47) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of claim 10, wherein the immune response transgene is selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of any one of claims 10, wherein the immunomodulator transgene is selected from the group consisting of programmed death-ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof.
- The isolated cell, tissue, organ, or animal of any one of claims 10-16, wherein the six or more transgenes are selected from the group consisting of hCD46, hCD55, hCD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1.
- The isolated cell, tissue, organ, or animal of claim 17, wherein the cell, tissue, organ, or animal comprises hCD46, hCD55, hCD59, CD39, THBD, TFPI, A20, HO-1, CD47, HLA-E, B2M, and PD-L1 transgenes or THBD, TFPI, CD39, CD46, CD55, CD59, CD46, HO-1, A20, B2M, HLA-E SCT, and CD47 transgenes.
- The isolated cell, tissue, organ, or animal of claim 18, comprising the vector in one of FIGs. 17-20, 31, or 47-49.
- The isolated cell, tissue, organ, or animal of any one of claims 10-19, wherein the at least six transgenes are expressed from a single locus.
- The isolated cell, tissue, organ, or animal of any one of claims 10-20, wherein the at least six transgenes are expressed at a clinically effective level.
- The isolated cell, tissue, organ, or animal of any one of claims 10-21, further comprising a genetically modified von Willebrand factor (vWF) gene.
- The isolated cell, tissue, organ, or animal of claim 22, wherein the modified vWF gene is humanized.
- The isolated cell, tissue, organ, or animal of any one of claims 10-23, further comprising a deletion, disruption, or inactivation of asialoglycoprotein receptor 1 (ASGR1) .
- The isolated cell, tissue, organ, or animal of any one of claims 1-24, further comprising a deletion, disruption, or inactivation of one or more carbohydrate antigen genes.
- The isolated cell, tissue, organ, or animal of claim 25, wherein the one or more carbohydrate antigen genes are selected from the group consisting of glycoprotein α-galactosyltransferase 1 (GGTA) , β1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) .
- The isolated cell, tissue, organ, or animal of any one of claims 1-26, wherein the isolated cell, tissue, organ, or subject is a porcine cell, porcine tissue, a porcine organ, a pig or progeny thereof.
- The isolated cell, tissue, organ, or animal of claim 27, wherein the isolated cell, tissue, organ, or animal is a PERV-free porcine cell, PERV-free porcine tissue, or a PERV-free porcine.
- The isolated cell, tissue, organ, or animal of any one of claims 1-28, wherein the organ is a kidney or a liver.
- A vector comprising a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, and combinations thereof.
- A vector comprising a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene.
- The vector of claim 30 or 31, wherein the inflammatory response transgenes are selected from the group consisting of TNF α-induced protein 3 (A20) , heme oxygenase (HO-1) , Cluster of Differentiation 47 (CD47) , and combinations thereof.
- The vector of any of claims 30-32, wherein expression of at least a portion of the inflammatory response transgenes is driven by a tissue-specific promoter, a ubiquitous promoter, or any combination thereof.
- The vector of claim 33, wherein the tissue-specific promoter is an endothelial-specific promoter.
- The vector of claim 30 or 31, wherein the immune response transgenes are selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof.
- The vector of any of claims 30, 31, or 35, wherein expression of at least a portion of the immune response transgenes is driven by a ubiquitous promoter.
- The vector of claim 30 or 31, wherein the immunomodulator transgenes are selected from the group consisting of programmed death-ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof.
- The vector of claim 30 or 31, wherein the plurality of transgenes further comprises at least one coagulation response transgene.
- The vector of claim 38, wherein the coagulation response transgene is selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD) , tissue factor pathway inhibitor (TFPI) , and combinations thereof.
- The vector of claim 38 or 39, wherein expression of at least a portion of the coagulation response transgenes is driven by a tissue-specific promoter.
- The vector of claim 40, wherein the tissue-specific promoter is an endothelial-specific promoter.
- The vector of claim 41, wherein the endothelial-specific promoter is a low expression endothelial-specific promoter.
- The vector of claim 30 or 31, wherein the plurality of transgenes further comprises at least one complement response transgene.
- The vector of claim 43, wherein the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46) , human complement decay accelerating factor (hCD55) , human MAC-inhibitor factor (hCD59) , and combinations thereof.
- The vector of claim 43 or 44, wherein expression of at least a portion of the complement response transgenes is driven by a ubiquitous promoter.
- A vector comprising six or more transgenes, each independently selected from the group consisting of complement response transgenes, coagulation response transgenes, inflammatory response transgenes, immune response transgenes, and immunomodulator transgenes.
- The vector of claim 46, wherein the vector comprises 9, 10, 11, or 12 transgenes.
- The vector of claim 46, wherein the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46) , human complement decay accelerating factor (hCD55) , human MAC-inhibitor factor (hCD59) , and combinations thereof.
- The vector of any one of claims 46-48, wherein expression of at least a portion of the complement response transgenes is driven by a ubiquitous promoter.
- The vector of claim 46, wherein the coagulation response transgene is selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD) , tissue factor pathway inhibitor (TFPI) , and combinations thereof.
- The vector of any of claims 43-50, wherein expression of at least a portion of the coagulation response transgenes is driven by a tissue-specific promoter.
- The vector of claim 51, wherein the tissue-specific promoter is an endothelial-specific promoter.
- The vector of claim 52, wherein the endothelial-specific promoter is a low expression endothelial-specific promoter.
- The vector of claim 46, wherein the inflammatory response transgene is selected from the group consisting of TNF α-induced protein 3 (A20) , heme oxygenase (HO-1) , Cluster of Differentiation 47 (CD47) , and combinations thereof.
- The vector of any of claims 46-54, wherein expression of at least a portion of the inflammatory response transgenes is driven by a tissue-specific promoter, a ubiquitous promoter, or any combination thereof.
- The vector of claim 55, wherein the tissue-specific promoter is an endothelial-specific promoter.
- The vector of claim 46, wherein the immune response transgene is selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof.
- The vector of any of claims 46-57, wherein expression of at least a portion of the immune response transgenes is driven by a ubiquitous promoter.
- The vector of claim 46, wherein the immunomodulator transgene is selected from the group consisting of programmed death-ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof.
- The vector of any one of claims 46-59, wherein the six or more transgenes are selected from the group consisting of hCD46, hCD55, hCD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1.
- The vector of claim 60, wherein the vector comprises hCD46, hCD55, hCD59, CD39, THBD, TFPI, A20, HO-1, CD47, HLA-E, B2M, and PD-L1 transgenes or THBD, TFPI, CD39, CD46, CD55, CD59, CD46, HO-1, A20, B2M, HLA-E SCT, and CD47 transgenes.
- The vector of claim 61, comprising the vector in one of FIGs. 17-20, 31, or 47-49.
- The vector any one of claims 46-62, wherein the at least six transgenes are expressed from a single locus.
- A method of generating the isolated cell, tissue, or animal of any one of claims 1 to 29.
- The method of claim 64, comprising single copy polycistronic transgene integration through transposition, mono/bi-allelic site-specific integration through recombinase-mediated cassette exchange (RMCE) , genomic replacement, endogenous gene humanization, or any combination thereof.
- A transgenic pig liver having reduced liver damage and/or stable coagulation when exposed to non-pig blood,wherein the reduced liver damage is assessed by determining the levels of one or more of bile production, one or more metabolic enzymes, and one or more serum electrolytes, andwherein the stable coagulation is assessed by determining the levels of one or more of Prothrombin Time (PT) and International Normalized Ratio (PT-NIR) , fibrinogen levels (FIB) , and lower activated partial thromboplastin time (APTT) .
- The transgenic pig liver of claim 66, wherein the metabolic enzymes are selected from the group consisting of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and albumin (ALB) .
- The transgenic pig liver of claim 66 or 67, wherein the serum electrolytes are potassium (K) and/or sodium (Na) .
- An isolated porcine cell, tissue, organ, or animal which:(a) comprises a plurality of transgenes of at least two types selected from the group consisting of inflammatory response transgenes, immune response transgenes, immunomodulator transgenes, and any combination thereof, and(b) is substantially free of production of xenotropic porcine endogenous retrovirus (PERV) virions.
- An isolated porcine cell, tissue, organ, or animal which:(a) comprises a plurality of transgenes, wherein the plurality of transgenes comprises at least one inflammatory response transgene, at least one immune response transgene, and at least one immunomodulator transgene, and(b) is substantially free of production of xenotropic porcine endogenous retrovirus (PERV) virions.
- The porcine isolated cell, tissue, organ, or animal of claim 69 or 70, wherein the porcine isolated cell, tissue, organ, or animal is substantially free of enzymatic activity of PERV polymerase (pol) .
- The porcine isolated cell, tissue, organ, or animal of claim 69 or 70, wherein the porcine isolated cell, tissue, organ, or animal is substantially free of expression of functional full-length PERV pol protein.
- The porcine isolated cell, tissue, organ, or animal of claim 69 or 70, wherein coding sequences of at least about 97%of genomic PERV pol copies are disrupted.
- The porcine isolated cell, tissue, organ, or animal of claim 69 or 70, wherein coding sequences of substantially all of genomic PERV pol copies are disrupted.
- The porcine isolated cell, tissue, organ, or animal of claim 69 or 70, wherein coding sequences of at least about 97%of PERV pol mRNAs transcribed from genomic PERV pol copies are disrupted.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 73-75, wherein disruption comprises at least one frameshift insertion/deletion (indel) at least one nucleotide position of the PERV pol coding sequence.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-76, wherein the porcine isolated cell, tissue, organ, or animal expresses functional PERV gag and/or env protein.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-77, wherein the porcine isolated cell, tissue, organ, or animal comprise intact coding sequences of substantially all genomic copies of PERV gag and/or env genes
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-78, wherein the porcine isolated cell, tissue, organ, or animal exhibits reduced PERV infectivity to a human cell.
- The porcine isolated cell, tissue, organ, or animal of claim 79, wherein the porcine isolated cell, tissue, organ, or animal exhibits at least 200-fold less PERV infectivity to a human cell as compared to a wild-type porcine cell.
- The porcine isolated cell, tissue, organ, or animal of claim 79 or 80, wherein the porcine isolated cell, tissue, organ, or animal exhibits reduced PERV infectivity to a human cell as compared to a porcine isolated porcine cell, tissue, organ, or animal lacking genomic modification targeting PERV pol genes or mRNA.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 79-81, wherein PERV infectivity is ascertained by co-culturing the porcine isolated cell, tissue, organ, or animal, or surgical explants thereof with a human cell.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 79-81 that is a porcine animal, wherein PERV infectivity is ascertained by co-culturing extracellular fluids derived from the porcine animal with a human cell.
- The porcine isolated cell, tissue, organ, or animal of claim 82 or 83, wherein PERV infectivity is ascertained at least in part by analyzing the human cell by sequencing, PCR, or an immunoassay for presence of PERV genomic sequences or antigens following the co-culturing.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-84, wherein the PERV is PERV-A, PERV-B, PERV-A/C, or a recombinant variant thereof.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-85, wherein the inflammatory response transgene is selected from the group consisting of TNF α-induced protein 3 (A20) , heme oxygenase (HO-1) , Cluster of Differentiation 47 (CD47) , and any combination thereof.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-86, wherein the immune response transgene is selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and any combination thereof.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-87, wherein the immunomodulator transgene is selected from the group consisting of programmed death-ligand 1 (PD-L1) , Fas ligand (FasL) , and any combination thereof.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-88, wherein the plurality of transgenes further comprises at least one coagulation response transgene.
- The porcine isolated cell, tissue, organ, or animal of claim 89, wherein the coagulation response transgene is selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD) , tissue factor pathway inhibitor (TFPI) , and any combination thereof.
- The porcine isolated cell, tissue, organ, or animal of any one of claims 69-90, wherein the plurality of transgenes further comprises at least one complement response transgene.
- The porcine isolated cell, tissue, organ, or animal of claim 91, wherein the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46) , human complement decay accelerating factor (hCD55) , human MAC-inhibitor factor (hCD59) , and any combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-92, wherein the isolated porcine cell, tissue, organ, or animal comprises genomic integrations of the transgenes.
- The isolated porcine cell, tissue, organ, or animal of any one of claim 93, wherein the isolated porcine cell, tissue, organ, or animal comprises germline-transmissible genomic integrations of the transgenes.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-94, wherein said porcine cell, tissue, organ, or animal expresses detectable levels of mRNAs transcribed from the transgenes.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-95, wherein said porcine cell, tissue, organ, or animal expresses detectable levels of proteins translated from the transgenes.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-95, wherein said porcine cell, tissue, organ, or animal expresses therapeutically effective levels of proteins translated from mRNAs transcribed from the transgenes.
- An isolated porcine cell, tissue, organ, or animal, which:(a) comprises six or more transgenes, each independently selected from the group consisting of complement response transgenes, coagulation response transgenes, inflammatory response transgenes, immune response transgenes, and immunomodulator transgenes, and(b) is substantially free of production of xenotropic porcine endogenous retrovirus (PERV) virions.
- The isolated porcine cell, tissue, organ, or animal of claim 98, wherein the isolated porcine cell, tissue, organ, or animal comprises 9, 10, 11, or 12 of the transgenes.
- The isolated porcine cell, tissue, organ, or animal of claim 98 or 99, wherein the complement response transgene is selected from the group consisting of human membrane cofactor protein (hCD46) , human complement decay accelerating factor (hCD55) , human MAC-inhibitor factor (hCD59) , and combinations thereof.
- The isolated porcine cell, tissue, organ, or animal of claim 100, wherein transcription of at least a portion of the complement response transgenes is under the transcriptional control of a ubiquitous promoter.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-101, wherein the coagulation response transgene is selected from the group consisting of Cluster of Differentiation 39 (CD39) , thrombomodulin (THBD) , tissue factor pathway inhibitor (TFPI) , and combinations thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-102, wherein transcription of at least a portion of the coagulation response transgenes is under the transcriptional control of a tissue-specific promoter.
- The isolated porcine cell, tissue, organ, or animal of claim 103, wherein the tissue-specific promoter is an endothelial-specific promoter.
- The isolated porcine cell, tissue, organ, or animal of claim 104, wherein the endothelial-specific promoter is a low expression endothelial-specific promoter.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-105, wherein the inflammatory response transgene is selected from the group consisting of TNF α-induced protein 3 (A20) , heme oxygenase (HO-1) , Cluster of Differentiation 47 (CD47) , and combinations thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-106, wherein transcription of at least a portion of the inflammatory response transgenes is driven by a tissue-specific promoter, a ubiquitous promoter, or any combination thereof.
- The isolated porcine cell, tissue, organ, or animal of claim 107, wherein the tissue-specific promoter is an endothelial-specific promoter.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-108, wherein the immune response transgene is selected from the group consisting of human leukocyte antigen-E (HLA-E) , beta-2 microglobulin (B2M) , and combinations thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-109, wherein expression of at least a portion of the immune response transgenes is driven by a ubiquitous promoter.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-110, wherein the immunomodulator transgene is selected from the group consisting of programmed death-ligand 1 (PD-L1) , Fas ligand (FasL) , and combinations thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-111, wherein the six or more transgenes are selected from the group consisting of hCD46, hCD55, hCD59, HLA-E, B2M, CD47, CD39, THBD, TFPI, A20, PD-L1, and HO-1.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-112, wherein the cell, tissue, organ, or animal comprises hCD46, hCD55, hCD59, CD39, THBD, TFPI, A20, HO-1, CD47, HLA-E, B2M, and PD-L1 transgenes or THBD, TFPI, CD39, CD46, CD55, CD59, CD46, HO-1, A20, B2M, HLA-E SCT, and CD47 transgenes.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-113, wherein the transgenes are expressed from a single locus.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 98-114, wherein the transgenes are transcribed into no more than 3 cistrons.
- The isolated porcine cell, tissue, organ, or animal of claim 115, wherein a cistron comprises coding sequences for at least 3 distinct transgenes, wherein the at least 3 distinct transgenes are separated by coding sequences for porcine teschovirus 2A (P2A) peptide.
- The isolated cell, tissue, organ, or animal of any one of claims 69-116, further comprising a deletion, disruption, or inactivation of one or more xenogenic carbohydrate antigen-producing genes.
- The isolated cell, tissue, organ, or animal of claim 117, wherein the one or more xenogenic carbohydrate antigen-producing genes are selected from the group consisting of glycoprotein α-galactosyltransferase 1 (GGTA) , β1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) , cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) .
- The isolated cell, tissue, organ, or animal of claim 118, comprising the deletion, disruption, or inactivation in 2 copies of GGTA, 4 copies of B4GALNT2, or 2 copies of CMAH, or any combination thereof.
- An isolated porcine cell, tissue, organ, or animal, which:(a) comprises six or more transgenes, each independently selected from the group consisting of complement response transgenes, coagulation response transgenes, inflammatory response transgenes, immune response transgenes, and immunomodulator transgenes,(b) is substantially free of production of xenotropic porcine endogenous retrovirus (PERV) virions, and(c) comprises a deletion, disruption, or inactivation in 2 copies of GGTA, 4 copies of B4GALNT2, or 2 copies of CMAH, or any combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-120, wherein the cell, tissue, organ, or animal exhibits reduced binding to human antibodies when exposed to human blood or fractions thereof.
- The isolated porcine cell, tissue, organ, or animal of claim 121, wherein the cell, tissue, organ, or animal exhibits at least about 5-fold reduced binding to human antibodies when exposed to human blood or fractions thereof.
- The isolated porcine cell, tissue, organ, or animal of claim 121, wherein the cell, tissue, organ, or animal exhibits at least about 10-fold reduced binding to human antibodies when exposed to human blood or fractions thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 121-123 wherein the antibodies are IgM antibodies.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 121-123, wherein the antibodies are IgG antibodies.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-125, wherein the cell, tissue, organ, or animal exhibits reduced Natural Killer (NK) cell toxicity when exposed to human blood.
- The isolated porcine cell, tissue, organ, or animal of claim 126, wherein the cell, tissue, organ, or animal exhibits at least about 20%less Natural Killer (NK) cell toxicity when exposed to human blood.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-127, wherein the cell, tissue, organ, or animal exhibits reduced complement toxicity when exposed to complement from human blood.
- The isolated porcine cell, tissue, organ, or animal of claim 128, wherein the cell, tissue, organ, or animal exhibits at least about 5-fold less complement toxicity when exposed to human complement from human blood.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-129, wherein the cell, tissue, organ, or animal exhibits reduced TAT complex formation when exposed to human blood.
- The isolated porcine cell, tissue, organ, or animal of claim 130, wherein the cell, tissue, organ, or animal exhibits at least about 3-fold reduced TAT complex formation when exposed to human blood.
- The isolated porcine cell, tissue, organ, or animal of claim 130, wherein the cell, tissue, organ, or animal exhibits at least about 10-fold reduced TAT complex formation when exposed to human blood.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-132, which is an animal, which exhibits normal blood counts of white blood cells, platelets, monocytes, neutrophils, eosinophils, or any combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-133, which is an animal, which exhibits normal liver function as assessed by serum alkaline phosphatase levels, aspartame aminoacyltransferase levels, alanine aminotransferase levels, ALT/AST level, cholesterol, total bilirubin, triglyceride, or albumin/globulin levels, or any combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-134, which is an animal, which exhibits normal heart function as assessed by serum creatine kinase levels, creatine kinase-MB levels, lactate dehydrogenase levels, or any combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-135, which is an animal, which exhibits normal kidney function as assessed by serum creatinine levels, urea levels, or a combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-136, which is an animal, which exhibits normal coagulation function as assessed by thrombin time, prothrombin levels, or a combination thereof.
- The isolated porcine cell, tissue, organ, or animal of any one of claims 69-137, which is an animal, which is capable of transmitting:(a) the deletion, disruption, or inactivation of one or more xenogenic carbohydrate antigen-producing genes including α-galactosyltransferase 1 (GGTA) , β1, 4 N-acetylgalactosaminyltransferase 2 (B4GalNT2) , or cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) , or a combination thereof;(b) the transgenes;(c) the absence of production of xenotropic porcine endogenous retrovirus (PERV) virions; or(d) any combination thereof;to a progeny animal, wherein (a) - (d) are transmitted by normal mendelian inheritance.
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/112038 WO2021072777A1 (en) | 2019-10-18 | 2019-10-18 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
AU2020274150A AU2020274150A1 (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
EP20806445.1A EP3969596A4 (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
SG11202112675SA SG11202112675SA (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
KR1020217041209A KR20220033468A (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs and/or animals having one or more modified genes for enhanced xenograft survival and/or resistance |
CA3139928A CA3139928A1 (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
PCT/CN2020/090440 WO2020228810A1 (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
CN202080050306.1A CN115176020A (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs and/or animals with one or more modified genes for enhancing xenograft survival and/or tolerance |
BR112021023029A BR112021023029A2 (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs and/or animals having one or more genes modified for survival and/or enhanced xenograft tolerance(s) |
US17/611,838 US20220267805A1 (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
MX2021013914A MX2021013914A (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance. |
JP2021568652A JP2022532783A (en) | 2019-05-16 | 2020-05-15 | Cells, tissues, organs, and / or animals with one or more modified genes for improved xenograft survival and / or resistance |
TW109123749A TW202128989A (en) | 2019-10-18 | 2020-07-14 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
IL288049A IL288049A (en) | 2019-05-16 | 2021-11-11 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/112038 WO2021072777A1 (en) | 2019-10-18 | 2019-10-18 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021072777A1 true WO2021072777A1 (en) | 2021-04-22 |
Family
ID=75538201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/112038 WO2021072777A1 (en) | 2019-05-16 | 2019-10-18 | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021072777A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023076897A1 (en) * | 2021-10-25 | 2023-05-04 | Fios Therapeutics, Llc | Viable galactosyltransferase knock-out sheep and related methods |
CN117987465A (en) * | 2023-11-03 | 2024-05-07 | 云南农业大学 | Construction method of ten-gene editing xenogeneic organ transplantation donor pig |
US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
WO2024218170A1 (en) * | 2023-04-17 | 2024-10-24 | Macomics Limited | Transposons, vectors and genetically engineered cells |
CN117987465B (en) * | 2023-11-03 | 2024-11-15 | 云南农业大学 | Construction method of ten-gene editing xenogeneic organ transplantation donor pig |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011020120A2 (en) * | 2009-08-14 | 2011-02-17 | Revivicor, Inc. | Multi-transgenic pigs for diabetes treatment |
WO2012112586A1 (en) * | 2011-02-14 | 2012-08-23 | Revivicor, Inc. | Genetically modified pigs for xenotransplantation of vascularized xenografts and derivatives thereof |
WO2016094679A1 (en) * | 2014-12-10 | 2016-06-16 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
WO2017044864A1 (en) * | 2015-09-09 | 2017-03-16 | Revivicor, Inc | Multi-transgenic pig for xenotransplantation |
CN108486152A (en) * | 2018-02-13 | 2018-09-04 | 铸造生物科技(深圳)有限公司 | The breeding method of transgene pig and application |
-
2019
- 2019-10-18 WO PCT/CN2019/112038 patent/WO2021072777A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011020120A2 (en) * | 2009-08-14 | 2011-02-17 | Revivicor, Inc. | Multi-transgenic pigs for diabetes treatment |
WO2012112586A1 (en) * | 2011-02-14 | 2012-08-23 | Revivicor, Inc. | Genetically modified pigs for xenotransplantation of vascularized xenografts and derivatives thereof |
WO2016094679A1 (en) * | 2014-12-10 | 2016-06-16 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
WO2017044864A1 (en) * | 2015-09-09 | 2017-03-16 | Revivicor, Inc | Multi-transgenic pig for xenotransplantation |
CN108486152A (en) * | 2018-02-13 | 2018-09-04 | 铸造生物科技(深圳)有限公司 | The breeding method of transgene pig and application |
Non-Patent Citations (3)
Title |
---|
DONG NIU, ET AL.: "Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 357, no. 6357, 22 September 2017 (2017-09-22), US, pages 1303 - 1307, XP055549027, ISSN: 0036-8075, DOI: 10.1126/science.aan4187 * |
ELISABETH H. WEISS, BENJAMIN G. LILIENFELD, SIGRID MULLER, ELFRIEDE MULLER, NADJA HERBACH, BARBARA KESSLER, RUDIGER WANKE, REINHA: "HLA-E/human beta2-microglobulin Transgenic Pigs: Protection Against Xenogeneic Human Anti-Pig Natural Killer Cell Cytotoxicity", TRANSPLANTATION, WILLIAMS AND WILKINS, GB, vol. 87, no. 1, 15 January 2009 (2009-01-15), GB, pages 35 - 43, XP055803377, ISSN: 0041-1337, DOI: 10.1097/TP.0b013e318191c784 * |
JOSE L. ESTRADA, MARTENS GREG, LI PING, ADAMS ANDREW, NEWELL KENNETH A., FORD MANDY L., BUTLER JAMES R., SIDNER RICHARD, TECTOR MA: "Evaluation of human and non-human primate antibody binding to pig cells lackingGGTA1/CMAH/b4GalNT2 genes", XENOTRANSPLANTATION, WILEY-BLACKWELL PUBLISHING, INC., US, vol. 22, no. 3, 1 May 2015 (2015-05-01), US, pages 194 - 202, XP055770346, ISSN: 0908-665X, DOI: 10.1111/xen.12161 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
WO2023076897A1 (en) * | 2021-10-25 | 2023-05-04 | Fios Therapeutics, Llc | Viable galactosyltransferase knock-out sheep and related methods |
WO2024218170A1 (en) * | 2023-04-17 | 2024-10-24 | Macomics Limited | Transposons, vectors and genetically engineered cells |
CN117987465A (en) * | 2023-11-03 | 2024-05-07 | 云南农业大学 | Construction method of ten-gene editing xenogeneic organ transplantation donor pig |
CN117987465B (en) * | 2023-11-03 | 2024-11-15 | 云南农业大学 | Construction method of ten-gene editing xenogeneic organ transplantation donor pig |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yue et al. | Extensive germline genome engineering in pigs | |
Tearle et al. | THE α-1, 3-GALACTOSYLTRANSFERASE KNOCKOUT MOUSE: Implications for Xenotransplantation: 1 | |
WO2020228039A1 (en) | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance | |
Anand et al. | Design and testing of a humanized porcine donor for xenotransplantation | |
Takahagi et al. | Production of α1, 3‐galactosyltransferase gene knockout pigs expressing both human decay‐accelerating factor and N‐acetylglucosaminyltransferase III | |
WO2020228810A1 (en) | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance | |
WO2021072777A1 (en) | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance | |
JP2005535343A (en) | α (1,3) -Galactosyltransferase deficient cells, selection methods, and α (1,3) -galactosyltransferase deficient pigs made therefrom | |
JP2019533445A (en) | Pigs containing modified CD163 and related methods | |
JP2019502400A (en) | Compositions and methods for preparing chimeric embryonic auxiliary organs | |
US20220369609A1 (en) | Transgenic mammals and methods of use thereof | |
US20240084322A1 (en) | Cells, tissues, organs, and animals having one or more modified genes for enhanced xenograft survival and tolerance | |
Ko et al. | A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model | |
WO2021072778A1 (en) | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance | |
WO2020228043A1 (en) | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance | |
TW202128989A (en) | Cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance | |
Michalski et al. | Generation of a new frizzled 2 flox mouse model to clarify its role in development | |
WO2021139722A1 (en) | Methods and compositions for production of xenogeneic islet cells and treatment of insulin-resistant or -deficient conditions with the same | |
TW202246494A (en) | Genetically modified hepatocyte populations | |
US10717991B2 (en) | Transgenic pig which simultaneously expresses HO-1 gene and TNFR1-Fc gene, and comprises knocked-out GGTA1 gene, and use thereof | |
Suzuki et al. | Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events | |
CN117157406A (en) | Cells, tissues, organs and animals having one or more modified genes for enhancing xenograft survival and tolerance | |
US20230256026A1 (en) | Gene editing for the treatment of epidermolysis bullosa | |
Kouskoff et al. | OPEN ACCESS EDITED AND REVIEWED BY | |
Huang | Neonatal Pig as an Alternative Source of Islets for Transplantation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949264 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19949264 Country of ref document: EP Kind code of ref document: A1 |