WO2021018601A1 - Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy - Google Patents

Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy Download PDF

Info

Publication number
WO2021018601A1
WO2021018601A1 PCT/EP2020/070079 EP2020070079W WO2021018601A1 WO 2021018601 A1 WO2021018601 A1 WO 2021018601A1 EP 2020070079 W EP2020070079 W EP 2020070079W WO 2021018601 A1 WO2021018601 A1 WO 2021018601A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nickel
copper
weight
carried out
Prior art date
Application number
PCT/EP2020/070079
Other languages
French (fr)
Inventor
Anne-Claire Dubreuil
Vincent Coupard
Malika Boualleg
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2021018601A1 publication Critical patent/WO2021018601A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Definitions

  • the present invention relates to a supported metal catalyst based on nickel and copper intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, the selective hydrogenation of polyunsaturated compounds or the hydrogenation of aromatics.
  • Monounsaturated organic compounds such as ethylene and propylene, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It enables the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes.
  • the selective hydrogenation catalysts are generally based on metals from group VIII of the periodic table, preferably palladium or nickel.
  • the metal is in the form of metal particles deposited on a support.
  • the metal content, the size of the metal particles and the distribution of the active phase in the support are among the criteria which have an importance on the activity and the selectivity of the catalysts.
  • the macroscopic distribution of the metal particles in the support constitutes an important criterion, mainly in the context of rapid and consecutive reactions such as selective hydrogenations. It is generally desirable that these elements be located in a crust at the periphery of the support in order to avoid problems of intragranular material transfer which can lead to defects in activity and loss of selectivity.
  • Such catalysts are also called “eggshell” catalysts according to English terminology.
  • Such catalysts are widely known in the case of selective hydrogenation catalysts based on palladium.
  • the low palladium content generally less than 1% by weight (1% by weight) of palladium relative to the catalyst
  • suitable preparation methods a thin crust of palladium at the periphery of the support grains can be obtained (FR2922784, US2010 / 217052).
  • nickel-based catalysts generally have a metal content of between 5 and 50% by weight of nickel relative to the catalyst.
  • the nickel is generally distributed homogeneously within the support.
  • One of the possible ways of improving these catalysts in terms of activity and selectivity is to control the distribution of nickel within the support by depositing the nickel in a more concentrated manner on a crust, at the periphery of the support. Such catalysts are known from the state of the art.
  • CN 101890351 describes a supported nickel catalyst in which more than 90% of the nickel is found in a 700 ⁇ m thick crust.
  • the catalyst is prepared using an ammoniacal solution to dissolve the nickel salt. These catalysts are used in a selective hydrogenation application.
  • the Applicant has discovered that by applying a specific hydrothermal treatment after the addition of a particular organic additive to a catalyst based on nickel and copper (and in which an alloy based on nickel and copper is formed.
  • copper on the support comprising an alumina support obtained according to a very specific method, a catalyst is obtained in which at least part of the nickel is distributed over a crust at the periphery of the support, the other part of the nickel being distributed in catalyst core.
  • the hydrothermal treatment carried out after the step of bringing a specific organic additive into contact with the nickel and copper-based catalyst on a particular alumina support, which has undergone a hydrothermal treatment in the presence of an acid solution seems to cause the nickel to migrate at least in part from the interior of the support to the periphery of the support, thus forming a nickel crust.
  • carrying out a step of bringing the support into contact with a solution simultaneously containing a metallic precursor based on copper and a metallic precursor based on nickel seems to cause the nickel to migrate at least in part from the interior of the support to the periphery of the support, thus forming a nickel crust.
  • a drying and reduction step in the presence of a reducing gas at low temperature makes it possible to obtain a nickel-copper alloy (in reduced form) which allows unexpectedly greatly improve the reducibility of the active phase of nickel on the support.
  • a reducing gas at low temperature between 150 ° C and 250 ° C
  • the presence of copper in the catalyst makes it possible to maintain good activity and a longer lifetime of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur.
  • the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which limits the irreversible poisoning of the active sites.
  • the present invention thus relates to a new type of catalyst which, by virtue of its specific preparation process, makes it possible to obtain a catalyst comprising performance at least as good, or even better, in terms of activity and selectivity in the context of the reactions.
  • selective hydrogenation of polyunsaturated compounds or hydrogenation of polyunsaturated aromatics while using a lower quantity of nickel phase than that typically used in the state of the art, which is due to a better distribution of the active phase of nickel in the support, making the latter more accessible to reagents.
  • a first object according to the invention relates to a catalyst comprising nickel and copper, at a rate of 1 and 50% by weight of nickel element relative to the total weight of the catalyst, and of a second metallic element of copper, at a rate of 0.5 to 15% by weight of element copper relative to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that:
  • the nickel is distributed both over a crust at the periphery of the support, and at the heart of the support, the thickness of said crust being between 2% and 15% of the diameter of the catalyst;
  • the nickel density ratio between the crust and the core is strictly greater than 3; said crust comprises more than 25% by weight of the element nickel relative to the total weight of nickel contained in the catalyst;
  • the molar ratio between nickel and copper is between 0.5 and 5;
  • At least part of the nickel and copper is in the form of a nickel-copper alloy
  • the nickel content in the nickel-copper alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst
  • the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm.
  • the nickel density ratio between the crust and the core is greater than or equal to 3.5.
  • said crust comprises more than 40% by weight of the nickel element relative to the total weight of nickel contained in the catalyst.
  • the transition interval between the core and the crust of the catalyst is between 0.05% and 3% of the diameter of the catalyst.
  • the size of the nickel particles in the catalyst is between 8 and 23 nm.
  • the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content of said alumina support is between 0.001% and 2% by weight. relative to the total weight of said alumina gel.
  • the thickness of said crust is between 2.5% and 12% of the diameter of the catalyst
  • the nickel density ratio between the crust and the core is between 3.8 and 15.
  • Another object according to the invention relates to a process for preparing a catalyst according to the invention, said process being characterized in that:
  • step b) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature of between 100 and 800 ° C, and at least one calcination step, at a temperature between 400 and 1500 ° C, carried out after the hydrothermal treatment step, to obtain an alumina support;
  • the alumina support is brought into contact with at least one nickel precursor to obtain a catalyst precursor
  • step d2) the catalyst precursor obtained at the end of step d1) is dried at a temperature below 250 ° C;
  • step d3) the dried catalyst precursor obtained at the end of step d2) is brought into contact with at least one solution containing at least one organic additive chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol;
  • step d4) a hydrothermal treatment of the catalyst precursor obtained at the end of step d3) is carried out at a temperature between 100 and 200 ° C for a period of between 30 minutes and 5 hours under a gas flow comprising between 5 and 650 grams of water per kg of dry gas;
  • step e1) the alumina support is brought into contact with at least one solution containing at least one copper precursor and one nickel precursor at a desired nickel concentration in order to obtain a content of between 0.5 and 15% on the final catalyst weight of nickel element relative to the total weight of the final catalyst; e2) at least one step of drying the catalyst precursor obtained at the end of step e1) is carried out at a temperature below 250 ° C;
  • steps d) and e) being carried out separately in any order, f) the catalyst precursor resulting from steps d) and e), or e) and d) is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C.
  • the copper precursor is chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or fluoride. copper.
  • the method further comprises a calcination step d2 ′) of the dried catalyst precursor obtained at the end of step d2), under a gas stream comprising a quantity of water strictly less than 150 grams of water per kg. of dry gas at a temperature between 250 ° C and 1000 ° C.
  • the organic additive is chosen from formic acid, formaldehyde, acetic acid, citric acid, oxalic acid, glycolic acid, malonic acid, l ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose, sorbitol and trioxane.
  • the molar ratio between the organic additive and the nickel is between 0.1 and 5 mol / mol.
  • Another object according to the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst according to the invention.
  • Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, said process being carried out in phase gas or in liquid phase, at a temperature between 30 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume speed (VVH) of between 0.05 and 50 h 1 , in the presence of a catalyst according to the invention.
  • VVH hourly volume speed
  • FIG. 1 is a diagram showing the distribution of nickel in the catalyst.
  • the abscissa axis corresponds to the thickness of the catalyst, measured from the edge of the catalyst (in ⁇ m).
  • the y-axis corresponds to the nickel density (in grams of Ni / mm 3 ).
  • the nickel is distributed both on a crust at the periphery of the support, of thickness ep1, and at the heart of the support.
  • the density of nickel on the crust cr0 ute is greater than the nickel density in the heart of the core of carrier -
  • the transition interval between the heart and the crust of the catalyst has a thickness denoted ep2-ep1.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • micropores are understood to mean pores whose diameter is less than 2 nm, ie 0.002 ⁇ m; by mesopores the pores whose diameter is greater than or equal to 2 nm, i.e. 0.002 ⁇ m and less than or equal to 50 nm, i.e. 0.05 ⁇ m and by macropores the pores whose diameter is greater than 50 nm, i.e. 0.05 ⁇ m.
  • a crust thickness is measured by Castaing microprobe (or microanalysis by electron microprobe).
  • the device used is a CAMECA XS100, equipped with four monochromator crystals allowing the simultaneous analysis of four elements.
  • the Castaing microprobe analysis technique consists of the detection of X radiation emitted by a solid after excitation of its elements by a beam of high energy electrons.
  • the catalyst grains are coated in pads of epoxy resin. These pads are polished until they reach the cut to the diameter of the balls or extruded and then metallized by depositing carbon in a metallic evaporator.
  • the electronic probe is scanned along the diameter of five balls or extrudates to obtain the average distribution profile of the constituent elements of the solids.
  • This method well known to those skilled in the art, is defined in the publication by L. Sorbier et al. “Measurement of palladium crust thickness on catalyst by EPMA” Materials Science and Engineering 32 (2012). It establishes the distribution profile of a given element, here Nickel, within the grain. Furthermore, the Ni concentration is defined for each measurement and therefore for each analysis step. The density of Ni within the grain is therefore defined as the concentration of Ni per mm 3 .
  • the total pore volume is measured by mercury porosimetry according to standard ASTM D4284-92 with a wetting angle of 140 °, for example by means of an Autopore III TM model device from the Microméritics TM brand.
  • the BET specific surface is measured by physisorption with nitrogen according to the ASTM D3663-03 standard, method described in the work Rouquerol F .; Rouquerol J .; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academy Press, 1999.
  • the mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion with a mercury porosimeter.
  • size of the nickel particles is understood to mean the diameter of the crystallites of nickel in oxide form.
  • This method used in X-ray diffraction on powders or polycrystalline samples which relates the width at mid-height of the diffraction peaks to the size of the particles, is described in detail in the reference: Appl. Cryst. (1978), 11, 102-113 “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, J. I. Langford and A. J. C. Wilson.
  • the nickel and copper content is measured by X-ray fluorescence.
  • the invention relates to a catalyst comprising nickel and copper, in an amount of 1 and 50% by weight of nickel element relative to the total weight of the catalyst, and a second metallic element of copper, in an amount of 0.5. at 15% by weight of copper element relative to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that: the nickel is distributed both on a crust at the periphery of the support, and at the heart of the support, the crust thickness (also called ep1) being between 2% and 15% of the diameter of the catalyst, preferably between 2.5 % and 12% of the diameter of the catalyst, even more preferably between 3% and 10% of the diameter of the catalyst and even more preferably between 3% and 7.5% of the diameter of the catalyst;
  • the nickel density ratio between the crust and the core (also referred to here as crust / core) is strictly greater than 3, preferably greater than 3.5 and preferably between 3.8 and 15;
  • said crust comprises more than 25% by weight of nickel element relative to the total weight of nickel contained in the catalyst, preferably more than 40% by weight, more preferably between 45% and 90% by weight, and even more preferably between 60 % and 90% by weight;
  • the molar ratio between nickel and copper is between 0.5 and 5 mol / mol, preferably between 0.7 and 4.5 mol / mol, more preferably between 0.9 and 4 mol / mol;
  • At least part of the nickel and the copper is in the form of a nickel-copper alloy, advantageously corresponding to the formula Ni x Cu y with x ranging between 0.1 and 0.9 and including between 0.1 and 0.9;
  • the nickel content included in the copper-nickel alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst, preferably between 1 and 12% by weight, and more preferably between 1 and 10% by weight;
  • the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm, preferably between 8 and 23 nm.
  • the transition interval between the core and the crust of the catalyst (also called here the core / crust transition interval, or ep2-ep1 according to the notations in FIG. 1), linked to the variation in the density of nickel measured over the thickness of the catalyst from the edge of the catalyst to the center of the catalyst is very steep.
  • the core / crust transition interval is between 0.05% and 3% of the diameter of the catalyst, preferably between 0.5% and 2.5% of the diameter of the catalyst.
  • the nickel content in said catalyst according to the invention is advantageously between 1 and 50% by weight relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% by weight relative to the total weight of the catalyst
  • the copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst, preferably between 0.5 and 12% by weight, so preferred between 0.75 and 10% by weight, and even more preferably between 1 and 9% by weight.
  • the catalyst according to the invention can be qualified as a "semi egg-shell" catalyst in which the concentration of nickel is higher at the periphery of the support than in the core of the support, said concentration of nickel in the core of the support being non-zero.
  • the specific surface of the catalyst is generally between 10 m 2 / g and 200 m 2 / g, preferably between 25 m 2 / g and 110 m 2 / g, more preferably between 40 m 2 / g and 100 m 2 / g.
  • the total pore volume of the catalyst is generally between 0.1 and 1 ml / g, preferably between 0.2 ml / g and 0.8 ml / g, and particularly preferably between 0.3 ml / g and 0.7 ml / g.
  • the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm, preferably between 8 and 23 nm.
  • the active phase of the catalyst does not contain a metal from group VIB. In particular, it does not include molybdenum or tungsten.
  • Said catalyst is in the form of grains advantageously having a diameter of between 0.5 and 10 mm.
  • the grains can have all the shapes known to those skilled in the art, for example the shape of balls (preferably having a diameter of between 1 and 8 mm), of extrudates, of tablets, of hollow cylinders.
  • the catalyst (and the support used for the preparation of the catalyst) are in the form of extrudates with a diameter of between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1, 0 and 2.5 mm and length between 0.5 and 20 mm.
  • the term “diameter” of the extrudates is understood to mean the diameter of the circle circumscribing the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multilobed, trilobal or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all the methods known from the prior art.
  • the characteristics of alumina correspond to the characteristics of the alumina before impregnation of the active phase with nickel, ie the alumina support obtained at the end of step c) of the process for preparing the catalyst according to the invention.
  • the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and particularly preferably at least 99% by weight of alumina relative to the weight support.
  • the alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or as a mixture.
  • the alumina support may comprise impurities such as oxides of metals from groups MA, INB, IVB, NB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, preferably magnesium, calcium, strontium or barium or even sulfur.
  • impurities such as oxides of metals from groups MA, INB, IVB, NB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, preferably magnesium, calcium, strontium or barium or even sulfur.
  • the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content of said alumina support is between 0.001% and 2% by weight. relative to the total weight of said alumina gel.
  • the specific surface of the alumina is generally between 10 m 2 / g and 250 m 2 / g, preferably between 30 m 2 / g and 200 m 2 / g, more preferably between 50 m 2 / g and 150 m 2 / g.
  • the pore volume of the alumina is generally between 0.1 ml / g and 1.2 ml / g, preferably between 0.3 ml / g and 0.9 ml / g, and very preferably between 0.5 ml / g and 0.9 ml / g.
  • Another object according to the invention relates to a process for preparing a catalyst according to the invention comprising at least the following steps:
  • step b) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature of between 100 and 800 ° C, and at least one calcination step, at a temperature between 400 and 1500 ° C, carried out after the hydrothermal treatment step, to obtain an alumina support;
  • step d1) the alumina support is brought into contact with at least one nickel precursor to obtain a catalyst precursor, d2) the catalyst precursor obtained at the end of step d1) is dried at a temperature below 250 ° C .;
  • a heat treatment of the dried catalyst precursor obtained at the end of step d2) is carried out at a temperature between 250 and 1000 ° C to obtain a calcined catalyst precursor;
  • step d3) the dried catalyst precursor obtained at the end of step d2) (optionally calcined obtained at the end of step d2 ') is brought into contact with at least one solution containing at least one organic additive chosen from among aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 atoms carbon per molecule and the carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol;
  • step d4) a hydrothermal treatment of the catalyst precursor obtained at the end of step d3) is carried out at a temperature between 100 and 200 ° C for a period of between 30 minutes and 5 hours under a gas flow comprising between 5 and 650 grams of water per kg of dry gas;
  • a drying step is carried out between 50 and 200 ° C of the catalyst precursor obtained at the end of step d4) under a gas flow comprising a quantity of water strictly less than 5 grams of water per kilogram dry gas; e) the sequence of the following sub-steps is carried out:
  • the alumina support is brought into contact with at least one solution containing at least one copper precursor and one nickel precursor at a desired nickel concentration in order to obtain a content of between 0.5 and 15% on the final catalyst weight of nickel element relative to the total weight of the final catalyst;
  • step e2) at least one step of drying the catalyst precursor obtained at the end of step e1) is carried out at a temperature below 250 ° C;
  • a heat treatment of the catalyst precursor obtained at the end of step e2) is carried out at a temperature between 250 and 1000 ° C, in the presence or absence of water;
  • steps d) and e) being carried out separately in any order
  • steps d) and e), or e) and d) is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C.
  • the order of steps a) to f) is not permutable, with the exception of the 2 steps d) and e) which are permutable between them.
  • a drying step is carried out followed by a calcination step at the end of step b) of shaping (but before carrying out step c).
  • steps d2 ′) and d5) are not optional.
  • step d) and carried out before step e).
  • Steps a) to f) of said preparation process are described in detail below.
  • the catalyst according to the invention comprises an alumina support which is obtained from an alumina gel (or alumina gel) which essentially comprises a precursor of the aluminum oxy (hydroxide) type (AIO (OH)) - also called boehmite.
  • the alumina gel (or otherwise called boehmite gel) is synthesized by precipitation of basic and / or acidic solutions of aluminum salts induced by change in pH or any other method known to those skilled in the art.
  • alumina gel or otherwise called boehmite gel
  • the precipitation reaction is carried out at a temperature between 5 ° C and 80 ° C and at a pH between 6 and 10.
  • the temperature is between 35 ° C and 70 ° C and the pH is between 6 and 10.
  • the alumina gel is obtained by bringing an aqueous solution of an acidic aluminum salt into contact with a basic solution.
  • the acidic aluminum salt is chosen from the group consisting of aluminum sulphate, aluminum nitrate or aluminum chloride and preferably said acid salt is aluminum sulphate.
  • the basic solution is preferably chosen from soda or potash.
  • an alkaline solution of aluminum salts which can be chosen from the group consisting of sodium aluminate and potassium aluminate can be brought into contact with an acid solution.
  • the gel is obtained by bringing a solution of sodium aluminate into contact with nitric acid.
  • the solution of sodium aluminate advantageously has a concentration of between 10 5 and 10 1 mol.L 1 and preferably this concentration is between 10 4 and 10 2 mol.L 1 .
  • the alumina gel is obtained by bringing an aqueous solution of acidic aluminum salts into contact with an alkaline solution of aluminum salts.
  • the support can advantageously be shaped by any technique known to those skilled in the art.
  • the shaping can be carried out for example by kneading-extrusion, by pelletizing, by the drop coagulation method (oil-drop), by granulation on a turntable or by any other method well known to those skilled in the art.
  • the catalysts according to the invention can optionally be manufactured and used in the form of extrudates, tablets or beads.
  • the advantageous shaping method according to the invention is extrusion and the preferred extrudate shapes are cylindrical, twisted cylindrical or multilobed (2, 3, 4 or 5 lobes for example).
  • the alumina gel obtained at the end of step a) is subjected to a mixing step, preferably in an acidic medium.
  • the acid used can be, for example, nitric acid.
  • This step is carried out by means of known tools such as Z-arm mixers, grindstone mixers, continuous mono or twin screws allowing the transformation of the gel into a product having the consistency of a paste.
  • one or more compounds called “pore-forming agents” are introduced into the mixing medium. These compounds have the property of degrading on heating and thus creating porosity in the support. For example, wood flour, charcoal, tars and plastics can be used as pore-forming compounds.
  • the paste thus obtained after kneading is passed through an extrusion die.
  • the extrudates have a diameter of 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and a length of between 0.5 and 20 mm .
  • These extrudates can be cylindrical, multilobed (for example trilobed or quadrilobed).
  • the support is optionally dried before undergoing the hydrothermal treatment according to step c) of the process.
  • drying is carried out at a temperature between 50 and 200 ° C.
  • the dried support is optionally calcined before undergoing the hydrothermal treatment according to step c) of the process.
  • the calcination is carried out at a temperature between 200 and 1000 ° C., in the presence or absence of an air flow containing up to 150 water per kilogram of dry air.
  • step b) The support obtained at the end of step b) then undergoes a heat treatment step which allows it to give it physical properties corresponding to the envisaged application.
  • hydrophilmal treatment denotes a treatment by passage in an autoclave in the presence of water at a temperature above ambient temperature.
  • the shaped alumina can be treated in different ways.
  • the alumina can be impregnated with an acid solution, prior to its passage in the autoclave, the hydrothermal treatment of the alumina being able to be carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the liquid. autoclave which may or may not be acidic.
  • This impregnation, before the hydrothermal treatment can be carried out dry or by immersing the alumina in an acidic aqueous solution.
  • dry impregnation is understood to mean bringing the alumina into contact with a volume of solution less than or equal to the total pore volume of the alumina treated.
  • the impregnation is carried out dry.
  • the extruded support can also be treated without prior impregnation with an acid solution, the acidity in this case being provided by the aqueous liquid in the autoclave.
  • the acidic aqueous solution comprises at least one acidic compound making it possible to dissolve at least part of the alumina of the extrudates.
  • the term “acidic compound making it possible to dissolve at least part of the alumina of the extrudates” is understood to mean any acid compound which, brought into contact with the alumina extrudates, brings about the dissolution of at least part of the aluminum ions. .
  • the acid should preferably dissolve at least 0.5% by weight of the alumina of the alumina extrudates.
  • this acid is chosen from strong acids such as nitric acid, hydrochloric acid, perchloric acid, sulfuric acid or a weak acid used at a concentration such that its aqueous solution has a pH less than 4, such as acetic acid, or a mixture of these acids.
  • strong acids such as nitric acid, hydrochloric acid, perchloric acid, sulfuric acid or a weak acid used at a concentration such that its aqueous solution has a pH less than 4, such as acetic acid, or a mixture of these acids.
  • the hydrothermal treatment is carried out in the presence of nitric acid and acetic acid taken alone or as a mixture.
  • the autoclave is preferably an autoclave with a rotary basket such as that defined in patent application EP-A-0 387 109.
  • the hydrothermal treatment can also be carried out under saturating vapor pressure or under a partial pressure of water vapor at least equal to 70% of the saturated vapor pressure corresponding to the treatment temperature.
  • the hydrothermal treatment is carried out at a temperature of between 100 and 800 ° C, preferably between 200 and 700 ° C, preferably between 30 minutes and 8 hours, more preferably between 30 minutes and 3 hours.
  • the calcination step which takes place after the hydrothermal treatment by autoclaving takes place at a temperature generally between 400 and 1500 ° C, preferably between 800 and 1300 ° C, preferably for 1 and 5 hours in air, the water content of which is generally between 0 and 700 g of water per kilogram of dry air.
  • the alumina obtained exhibits the specific textural properties as described above.
  • Step d) includes the following substeps.
  • Step d1) Bringing the support into contact with a precursor of the active phase of nickel
  • step d1 The contacting of the support with a solution containing a precursor of the active phase of nickel, in accordance with the implementation of step d1), can be carried out by impregnation, dry or in excess, or by deposition - precipitation. , according to methods well known to those skilled in the art.
  • Said step d1) is preferably carried out by impregnation of the support consisting, for example, of bringing the support into contact with at least one aqueous solution containing a nickel precursor.
  • the pH of said solution can be modified by the possible addition of an acid or a base.
  • said step d1) is carried out by dry impregnation, which consists in bringing the support into contact with at least one solution, containing, preferably consisting of, at least one precursor of nickel, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
  • said nickel precursor is introduced in aqueous solution, for example in the form of nitrate, carbonate, acetate, chloride, oxalate, complexes formed by a polyacid or an acid-alcohol and its salts, of complexes formed with acetylacetonates, or of any other inorganic derivative soluble in aqueous solution, which is brought into contact with said support.
  • nickel precursor, nickel nitrate, nickel chloride, nickel acetate or nickel hydroxycarbonate are advantageously used.
  • the nickel precursor is nickel nitrate.
  • the aqueous solution may contain ammonia or NH 4 + ammonium ions.
  • the nickel concentration in solution is adjusted according to the type of impregnation (dry impregnation or in excess) and the pore volume of the support so as to obtain, for the supported catalyst, a nickel content of between 1 and 50% by weight of nickel element per report to the total weight of the catalyst, more preferably between 2 and 45% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% by weight.
  • the drying step is carried out under a gas flow comprising a quantity of water less than 150 grams of water per kilogram of dry gas, preferably less than 50 g of water per kilogram of dry gas, at a temperature below 250 ° C, preferably between 15 and 240 ° C, more preferably between 30 and 220 ° C, even more preferably between 50 and 200 ° C, and even more preferably between 70 and 180 ° C, for a period typically between between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the gas can contain oxygen, nitrogen or an inert gas and preferably the gas is air.
  • the optional calcination step is carried out under a gas stream comprising a quantity of water less than 150 grams of water per kilogram of dry gas, preferably less than 50 g of water per kilogram of dry gas, at a temperature between 250 ° C and 1000 ° C, preferably between 250 and 750 ° C.
  • the duration of this heat treatment is generally between 15 minutes and 10 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the gas may contain oxygen, nitrogen or an inert gas and preferably the gas is air.
  • the nickel is distributed homogeneously on the support.
  • step d3) of the process for preparing the catalyst the catalyst precursor obtained at the end of step d2), optionally at the end of step d2 ′), is brought into contact with at least one solution comprising at least one organic additive chosen from aldehydes containing from 1 to 14 carbon atoms per molecule (preferably from 2 to 12), ketones or polyketones containing from 3 to 18 (preferably from 3 to 12) carbon atoms per molecule, ethers or esters containing from 2 to 14 (preferably from 3 to 12) carbon atoms per molecule, alcohols or polyalcohols containing from 1 to 14 (preferably from 2 to 12) carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing from 1 to 14 (preferably from 1 to 12) carbon atoms per molecule.
  • the organic additive can be composed of a combination of the various functional groups mentioned above.
  • the organic additive is chosen from formic acid HCOOH, formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH2-OH ), malonic acid (HOOC-CH 2 -COOH), ethanol, methanol, ethyl formate HCOOC 2 H 5 , methyl formate HCOOCH 3 , paraldehyde (CH 3 -CHO) 3 , l acetaldehyde C 2 H 4 0, gamma-valerolactone acid (C 5 H 8 0 2 ), glucose, sorbitol and trioxane.
  • formic acid HCOOH formaldehyde CH 2 0, acetic acid CH 3 COOH
  • citric acid oxalic acid
  • glycolic acid HOOC-CH2-OH
  • malonic acid HOOC-CH 2 -COOH
  • ethanol methanol
  • ethyl formate HCOOC 2 H 5 methyl formate HC
  • the organic additive is formic acid.
  • step d3 the step of adding the organic additive to the catalyst (step d3)) is carried out after the step of bringing the support into contact with the precursor of the active phase of nickel.
  • said step d3) is carried out by impregnating the catalyst precursor obtained at the end of the implementation of step d2) or of step d2 ′), with a solution comprising at least one organic additive as mentioned above.
  • Impregnation is generally carried out in aqueous solution or in organic solution or in suspension in aqueous or organic solution, preferably in aqueous solution.
  • an alcohol or polyalcohol, glycol or polyglycol will preferably be used as organic solvent.
  • said step d3) is carried out by dry impregnation, which consists in bringing the catalyst precursor obtained at the end of the implementation of step d2) or of step d2 ′) into contact, with a solution comprising at least one organic additive as mentioned above, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the catalyst precursor to be impregnated.
  • the impregnation is generally carried out at a temperature between 0 and 50 ° C, preferably between 10 and 40 ° C, and particularly preferably at room temperature.
  • the molar ratio between the organic additive and the nickel is greater than 0.05 mol / mol, preferably between 0.1 and 5 mol / mol, more preferably between 0.12 and 3 mol / mol, and even more preferably between 0.15 and 2.5 mol / mol.
  • a hydrothermal treatment of the product from step d3) is carried out at a temperature of between 100 ° C and 200 ° C, preferably between 130 ° C. and 170 ° C, and more particularly around of 150 ° C, under a gas flow comprising between 5 and 650 grams of water per kilogram of dry gas, preferably between 7 and 150 grams of water per kilogram of dry gas, even more preferably between 10 and 50 grams of water per kilogram of dry gas.
  • the gas may contain oxygen, nitrogen or an inert gas and preferably the gas is air.
  • the duration of the hydrothermal treatment is generally between 30 minutes and 5 hours, preferably between 1 and 3 hours.
  • Step d4) can be followed by a step d5) of drying between 50 and 200 ° C under a gas flow comprising a quantity of water strictly less than 5 grams of water per kilogram of dry gas, advantageously for a period of time between between 30 minutes and 5 hours, preferably between 1 and 3 hours.
  • the gas may contain oxygen, nitrogen or an inert gas and preferably the gas is air.
  • a "semi egg-shell" catalyst is obtained as shown schematically in Figure 1 and whose characteristics are described above.
  • Step e) comprises the following sub-steps.
  • Step e) Contacting a nickel precursor and a copper precursor
  • the deposition of nickel and copper on the alumina support can be carried out by impregnation, dry or in excess, or by deposition - precipitation, according to methods well known to those skilled in the art.
  • Said step e1) is preferably carried out by impregnation of the catalyst precursor consisting, for example, of bringing said support into contact with at least one solution, aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent, comprising, preferably consisting of, at least one nickel precursor and at least one copper precursor at least partially in the dissolved state, or alternatively by bringing said catalyst precursor into contact with at least one colloidal solution comprising, preferably consisting of, at least one nickel precursor and one copper precursor in oxidized form (nanoparticles oxide, oxy (hydroxide) or hydroxide of nickel and copper) or in reduced form (metallic nanoparticles of nickel and copper in the reduced state).
  • the solution is aqueous.
  • the pH of this solution can be modified by the optional addition of an acid or a base.
  • said step e1) is carried out by dry impregnation, which consists in bringing the support of the catalyst precursor into contact with a solution, preferably comprising at least one precursor of nickel and at least one precursor of nickel. copper, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
  • a nickel precursor is advantageously used in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, sulfate, formate. , of complexes formed by a polyacid or an acid-alcohol and its salts, of complexes formed with acetylacetonates, of tetrammine or hexammine complexes, or even of any other inorganic derivative soluble in aqueous solution, which is brought into contact with said precursor of catalyst.
  • nickel precursor, nickel nitrate, nickel hydroxide, nickel carbonate, nickel chloride or nickel hydroxycarbonate are advantageously used.
  • the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
  • the copper precursor when the copper precursor is introduced in aqueous solution, a copper precursor in mineral or organic form is advantageously used.
  • the copper precursor can be chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or copper fluoride.
  • the copper precursor salt is copper nitrate.
  • the nickel precursor is supplied to step e1) at a desired concentration to obtain on the final catalyst (ie obtained at the end of step f) reduction or step g) of passivation if the latter is carried out) a content of between 0.5 and 10% by weight of nickel element relative to the total weight of the final catalyst, preferably between 0.5 and 8% by weight, more preferably between 1 and 7% by weight weight, even more preferably between 1 and 5% by weight.
  • the quantities of the copper precursor (s) introduced into the solution according to step e1) are chosen such that the total copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst final (ie obtained at the end of step f) of reduction or of step g) of passivation if the latter is carried out), of preferably between 0.5 and 12% by weight, preferably between 0.75 and 10% by weight, and even more preferably between 1 and 9% by weight.
  • Step e2) of drying the impregnated support is carried out at a temperature below 250 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, typically for a period of between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the dried catalyst precursor can undergo an additional heat treatment step, before reduction step f), at a temperature between 250 and 1000 ° C and preferably between 250 and 750 ° C, typically for a period of between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer durations of treatment are not excluded, but do not necessarily bring improvement.
  • the term “heat treatment” is understood to mean treatment at temperature respectively without the presence or in the presence of water. In the latter case, the contact with the water vapor can take place at atmospheric pressure or at autogenous pressure. Several combined cycles without the presence or with the presence of water can be carried out.
  • the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably, between 250 and 650 grams per kilogram of dry air.
  • a reducing treatment step f) is carried out in the presence of a reducing gas so as to obtain a catalyst comprising nickel in less partially in metallic form.
  • This step is advantageously carried out in situ, that is to say after loading the catalyst into a hydrogenation reactor.
  • This treatment makes it possible to activate said catalyst and to form metal particles, in particular nickel in the zero valent state.
  • Carrying out in situ the reducing treatment of the catalyst eliminates the need for an additional step of passivation of the catalyst with an oxygenated compound or with C0 2 , which is necessarily the case when the catalyst is prepared by performing a reducing treatment ex-situ, that is to say outside the reactor used for the hydrogenation of aromatic or polyaromatic compounds.
  • a passivation step in order to preserve the metallic phase of the catalyst in the presence of air (during the operations of transporting and loading the catalyst into the reactor d. 'hydrogenation), then to carry out a new step of reduction of the catalyst.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (for example a mixture of hydrogen / nitrogen, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
  • said reducing treatment is carried out at a temperature greater than or equal to 150 ° C and less than 250 ° C, preferably between 160 and 230 ° C, and more preferably between 170 and 220 ° C.
  • the duration of the reducing treatment is between 5 minutes and less than 5 hours, preferably between 10 minutes and 4 hours, and even more preferably between 10 minutes and 110 minutes.
  • the presence of the nickel-copper alloy at least partially in reduced form makes it possible to use operating conditions for reducing the active phase of nickel which are less severe than in the prior art and thus makes it possible to carry out the reduction step directly. within the reactor in which it is desired to carry out the hydrogenation of unsaturated or aromatic compounds.
  • the presence of copper in the catalyst makes it possible to maintain good activity of the catalyst and a good lifetime of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur.
  • the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which limits the irreversible poisoning of the active sites.
  • the rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst precursor is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst precursor , even more preferably between 0.1 and 5 L / hour / gram of catalyst precursor.
  • the catalyst prepared according to the process according to the invention can advantageously undergo a step of passivation by a sulfur compound which makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways during the start-up of new catalysts ("run-away" according to Anglo-Saxon terminology).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by implementing methods known to those skilled in the art.
  • the passivation step with a sulfur compound is generally carried out at a temperature of between 20 and 350 ° C, preferably between 40 and 200 ° C, for 10 to 240 minutes.
  • the sulfur compound is, for example, chosen from the following compounds: thiophene, thiophane, alkylmonosulphides such as dimethylsulphide, diethylsulphide, dipropylsulphide and propylmethylsulphide or else an organic disulphide of formula HO-R SSR 2 -OH such as di-thio-di-ethanol of formula HO-C 2 H 4 -SSC 2 H 4 -OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the total weight of the catalyst.
  • the preparation of the catalyst is carried out ex situ, that is to say before loading the catalyst into the reaction unit of the process for the selective hydrogenation or hydrogenation of aromatics.
  • a subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenics, contained in a charge of 'hydrocarbons having a final boiling point of less than or equal at 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at a volume speed hourly between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of
  • Monounsaturated organic compounds such as ethylene and propylene, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It enables the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracked gasolines used as feed, selective hydrogenation also allows the alkenylaromatics to be selectively hydrogenated to aromatics by avoiding the hydrogenation of the aromatic rings.
  • the hydrocarbon feed treated in the selective hydrogenation process has a final boiling point of 300 ° C or less and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function. More particularly, the feed is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5 + cut.
  • the C2 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane.
  • ethylene of the order of 0.1 to 5% by weight of acetylene
  • the remainder being essentially ethane and methane.
  • C3 compounds can also be present.
  • the C3 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methyl acetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds can also be present.
  • a C2 - C3 cut can also be advantageously used for carrying out the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This charge can also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition by weight: 1% by weight of butane, 46.5% by weight of butene, 51% by weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne.
  • C4 cuts between 0.1 and 2% by weight of C3 compounds and C5 compounds can also be present.
  • the C5 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
  • Steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300 ° C, from preferably between 10 and 250 ° C.
  • Polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrene compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.).
  • Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all of the compounds forming 100%. It also contains 0 to 1000 ppm by weight of sulfur, preferably 0 to 500 ppm by weight of sulfur.
  • the polyunsaturated hydrocarbon feed treated in accordance with the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracked gasoline.
  • the selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate the butadiene, vinylacetylene (VAC) and butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefin compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to the corresponding aromatic compounds while avoiding the hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in an ascending or descending current, of the feed of polyunsaturated hydrocarbons and of hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the polyunsaturated hydrocarbon feedstock can advantageously be diluted by one or more re-injections of the effluent, coming from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor. reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor.
  • the hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5 + cuts from steam cracking can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the carbonated for cuts C2 and C2-C3.
  • a liquid phase reaction lowers the energy cost and increases the cycle time of the catalyst.
  • the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300 ° C is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed (defined as ratio of the volume flow rate of feed to the volume of the catalyst) of between 0.1 and 200 h 1 for a process carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally included between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0, the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1 and the pressure is generally between 0, 3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam cracking gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
  • the feed is a steam cracking gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1.0 and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam-cracked gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
  • the feed is a steam-cracked gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1, 5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the speed hourly volume (VVH) is generally between 100 and 40,000 h 1 , preferably between 500 and 30,000 h 1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa .
  • a subject of the present invention is also a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C. , and preferably between 20 and 450 ° C.
  • Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical cuts: reformate from catalytic reforming, kerosene, light gas oil, heavy gas oil, cracked distillates, such as recycle oil from FCC, gas oil from coking unit, hydrocracking distillates.
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon feed treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed.
  • the aromatic compounds present in said hydrocarbon feed are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, o-xylene, m-xylene, or p-xylene, or else aromatics having several aromatic (polyaromatic) rings such as naphthalene.
  • the sulfur or chlorine content of the feed is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is, for example, carried out by injection, in ascending or descending current, of the hydrocarbon feed and hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon feedstock can advantageously be diluted by one or more re-injection (s) of the effluent, coming from said reactor where the aromatic hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the reactor. the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the aromatics hydrogenation process according to the invention can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a reactor of the type. slurry.
  • the hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature between 30 and 350 ° C, preferably between 50 and 325 ° C, at a pressure between 0.1 and 20 MPa, from preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume speed of between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon feed containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C .
  • the hydrogen flow rate is adjusted in order to have it in sufficient quantity to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatics contained in the hydrocarbon feed.
  • the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the produced by the total moles of aromatic or polyaromatic compounds in the hydrocarbon feed.
  • a process is carried out for the hydrogenation of benzene from a hydrocarbon feed, such as the reformate obtained from a catalytic reforming unit.
  • the benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the oil charge.
  • the sulfur or chlorine content of the feed is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane, octane.
  • the hydrogenation of benzene is carried out at a temperature between 30 and 250 ° C, preferably between 50 and 200 ° C, and more preferably between 80 and 180 ° C, at a pressure of between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at an hourly volume speed of between 0.05 and 50 h 1 , of preferably between 0.5 and 10 h 1 .
  • the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
  • An alumina gel is synthesized using a mixture of sodium aluminate and aluminum sulfate.
  • the precipitation reaction is carried out at a temperature of 60 ° C., at a pH of 9, for 60 minutes and with stirring at 200 rpm.
  • the gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste.
  • the extrusion is carried out by passing the paste through a die provided with orifices of diameter 1.6 mm in the shape of a trilobe.
  • the extrudates thus obtained are dried under a flow of dry air at 150 ° C. for 12 hours and then calcined at 450 ° C. under a flow of dry air for 5 hours.
  • the extrude undergoes a hydrothermal treatment at 650 ° C in the presence of an aqueous solution containing acetic acid at 6.5% by weight relative to the weight of alumina for 3 hours. in an autoclave, then calcined in dry air at 1000 ° C. for 2 hours in a tubular reactor. AL-1 alumina is obtained.
  • AL-1 alumina has a specific surface area of 80 m 2 / g, a pore volume (determined by Hg porosimetry) of 0.85 mL / g and a mesoporous diameter of 35 nm.
  • the sodium content is 0.0350% by weight based on the total weight of the alumina and the sulfur content is 0.15% by weight based on the total weight of the alumina.
  • An alumina gel is synthesized using a mixture of sodium aluminate and aluminum sulfate.
  • the precipitation reaction is carried out at a temperature of 60 ° C., at a pH of 9, for 60 minutes and with stirring at 200 rpm.
  • the gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste.
  • the extrusion is carried out by passing the paste through a die provided with orifices of 1.6 mm diameter in the shape of a trilobe.
  • the extrudates thus obtained are dried under a flow of dry air at 150 ° C for 12 hours and then calcined at 450 ° C under a flow of dry air for 5 hours.
  • the AL-2 alumina is obtained.
  • AL-2 alumina has a specific surface area of 250 m 2 / g, a pore volume (determined by Hg porosimetry) of 0.7 mL / g and a median mesoporous diameter of 12 nm.
  • the sodium content is 0.0350% by weight relative to the total weight of the alumina and the sulfur content is 0.15% by weight relative to the total weight of the alumina.
  • the aqueous solution of Ni precursors (solution S1) used for the preparation of catalyst A is prepared by dissolving 43.5 grams (g) of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. The solution S1 is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 2a Preparation of an aqueous solution of the precursors of the NiCu alloy (5% Ni)
  • solution S2 The aqueous solution of Ni precursors (solution S2) is prepared by dissolving 14.5 g of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. Solution S2 is obtained, the Ni concentration of which is 116.6 g of Ni per liter of solution. The copper nitrate precursor is then added in order to have an Ni / Cu molar ratio within the range claimed according to the invention and in particular a Ni / Cu molar ratio of 3 and 1 according to the examples.
  • Example 3 Preparation of a catalyst A according to the invention (in accordance)
  • Example 2 The S1 solution prepared in Example 2 is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the dry air used in this example and all of the examples below contains less than 5 grams of water per kilogram of air.
  • Catalyst A 'precursor is obtained.
  • the catalyst precursor thus obtained is dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
  • the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
  • solution S2 prepared in Example 2a, is added to the catalyst precursor.
  • the Ni content targeted in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 9 below.
  • Catalyst A is obtained, the characteristics of which are shown in Tables 1 and 2 below.
  • Solution S2 prepared in Example 2a, is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
  • the Ni content referred to in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst B 'precursor is obtained.
  • Example 2 the S1 solution prepared in Example 2 is dry impregnated, adding it dropwise, to the catalyst precursor B '.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor thus obtained is then dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
  • the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
  • the catalyst precursor is then reduced under the conditions as described in Example 9 below.
  • Catalyst B is obtained, the characteristics of which are shown in Tables 1 and 2 below.
  • Solution S2 prepared in Example 2 bis, is dry impregnated, by adding it dropwise, onto 10 g of AL-2 alumina obtained according to Example 1 bis.
  • the Ni content targeted in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor C ' is obtained.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor thus obtained is then dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
  • the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
  • the catalyst precursor is then reduced under the conditions as described in Example 9 below.
  • Catalyst C is obtained, the characteristics of which are shown in Tables 1 and 2 below.
  • Solution S2 prepared in Example 2a, is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
  • the Ni content referred to in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C. for 2 hours.
  • the catalyst precursor D ' is obtained.
  • Example 2 the S1 solution prepared in Example 2 is dry impregnated, adding it dropwise, the final catalyst precursor.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 9 below.
  • Catalyst D is obtained, the characteristics of which are shown in Tables 1 and 2 below.
  • Solution S2 prepared in Example 2a, is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
  • the Ni content referred to in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor E ' is obtained.
  • Example 2 the S1 solution prepared in Example 2 is impregnated to dryness, adding it dropwise, the precursor E ’.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor thus obtained is dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 9 below.
  • Catalyst E is obtained, the characteristics of which are shown in Tables 1 and 2 below.
  • Example 2 The S1 solution prepared in Example 2 is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
  • the solid thus obtained is then dried in an oven for 12 hours at 120 ° C., then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C. for 2 hours.
  • the catalyst precursor F ' is obtained.
  • the catalyst precursor thus obtained is dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
  • the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
  • Catalyst F is obtained, the characteristics of which are shown in Tables 1 and 2 below.
  • All the catalysts contain the target contents during the impregnation, i.e. 15% of nickel element (characterized by Fluorescence X) relative to the total weight of the catalyst, and the% of added copper (characterized by Fluorescence X) .
  • the amount of alloy obtained after the calcination step and then the reduction step was determined by X-ray diffraction analysis (XRD) on samples of the catalyst in powder form.
  • the amount of metallic nickel obtained after the reduction step was determined by X-ray diffraction (XRD) analysis on samples of the catalyst in powder form. Between the reduction step and throughout the duration of the XRD characterization, the catalysts are never vented.
  • XRD X-ray diffraction
  • the reduction rate was calculated by calculating the area of the Ni 0 line located around 52 ° 2Q, on all the diffractograms of each sample of catalyst analyzed, then by subtracting the signal present from ambient temperature under the line. at 52 ° and which is due to alumina.
  • Table 1 collates the reduction rates or even the metallic nickel content Ni ° (expressed in% by weight relative to the total weight of active Ni, ie without taking into account the nickel which makes up the alloy) for all catalysts A to F characterized by DRX after a reduction step at 170 ° C for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst F (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C. for 16 hours under a flow of hydrogen). At room temperature on all the catalysts, after calcination, containing copper and nickel, we detect alumina in delta and theta form, and large lines of NiO and CuO.
  • Ni 0 In order to evaluate the rate of reducibility and therefore the formation of Ni 0 , the area of the Ni 0 line located around 52 ° 2Q is measured, on all the diffractograms, by subtracting the signal present from ambient temperature under the line at 52 ° and which is due to the alumina. It is thus possible to determine the relative percentage of Ni 0 crystallized after reduction.
  • Table 1 below recapitulates the reducibility rates or else the Ni ° content for all the catalysts characterized by DRX after reduction at 170 ° C. for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst F (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C. for 15 hours under a flow of hydrogen).
  • Catalysts A to F described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the feed to be selectively hydrogenated is as follows: 8% wt styrene (supplier Sigma Aldrich®, purity 99%), 8% wt isoprene (supplier Sigma Aldrich®, purity 99%), 84% wt n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis essence.
  • the selective hydrogenation reaction is carried out in a 500 mL autoclave made of stainless steel, fitted with mechanical stirring with magnetic drive and capable of operating under a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C and 200 ° C.
  • n-heptane supplier VWR®, purity> 99% chromanorm HPLC
  • a quantity of 3 mL of catalyst are added in an autoclave.
  • the autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen.
  • the catalyst is first reduced in situ, at 170 ° C for 90 minutes under a hydrogen flow of 1 L / h / g (temperature rise ramp of 1 ° C / min) for catalysts A to F (which corresponds here to step f) of the preparation process according to the invention according to one embodiment). Then the autoclave is brought to the test temperature equal to 30 ° C.
  • the progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane.
  • the hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • catalytic activities measured for catalysts A to F are reported in Table 3 below. They are related to the catalytic activity (AHYD1) measured for catalyst E.
  • catalyst F prepared without the presence of NiCu was tested prepared under conventional reduction conditions (at a temperature of 400 ° C for 16 hours under hydrogen flow).
  • Example 11 Catalytic tests: performance in hydrogenation of toluene
  • Catalysts A to F described in the examples above are also tested against the reaction of hydrogenation of toluene.
  • the selective hydrogenation reaction is carried out in the same autoclave as that described in Example 10.
  • n-heptane supplier VWR®, purity> 99% chromanorm HPLC
  • a quantity of 3 mL of catalyst are added in an autoclave.
  • the autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen.
  • the catalyst is first reduced in situ, at 170 ° C for 90 minutes under a hydrogen flow of 1 L / h / g (temperature rise ramp of 1 ° C / min) for catalysts A to F (which corresponds here to step f) of the preparation process according to the invention according to one embodiment).
  • n-heptane supplied by n-heptane
  • the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the test temperature equal to 80 ° C.
  • time t 0
  • approximately 26 g of toluene supplied into the autoclave (the initial composition of the reaction mixture is then toluene 6% wt / n-heptane 94% wt) and agitation is started at 1600 rpm.
  • the pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
  • the progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the toluene is completely hydrogenated to methylcyclohexane.
  • the hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • Catalytic activity is expressed in moles of H2 consumed per minute and per gram of Ni.
  • catalytic activities measured for catalysts A to F are reported in Table 3 below. They are related to the catalytic activity (AHYD2) measured for catalyst E.
  • AHYD2 catalytic activity measured for catalyst E.
  • catalyst F prepared without the presence of NiCu was tested, prepared under conventional reduction conditions (at a temperature of 400 ° C. for 16 hours under hydrogen flow).
  • Catalysts A and B due to the crust distribution of Ni and the presence of the NiCu alloy, which makes it possible to have approximately 90% of the Ni in its reduced form from 170 ° C, exhibit activities of the same order of magnitude that catalyst F reduced at 400 ° C for 16h.
  • Catalyst F reduced at 170 ° C is not at all active because it does not have Ni in its reduced form.
  • Catalysts C, D and E have a homogeneous distribution of Ni throughout the grain (use of AL-2 alumina not in accordance with the invention for C and steps of the preparation process not in accordance with D and E) and present from during an activity well behind catalysts A and B in AHYD1 and AHYD2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a catalyst comprising nickel, copper and an alumina support, said catalyst being characterized in that: - the nickel is distributed both in a shell at the periphery of the support and in the core of the support, the thickness of the shell being between 2% and 15% of the diameter of the catalyst; - the nickel density ratio of the shell to the core is strictly greater than 3; - the shell comprises more than 25% by weight of nickel element relative to the total weight of nickel contained in the catalyst; - the molar ratio of nickel to copper is between 0.5 and 5; - at least some of the nickel and copper is in the form of a nickel-copper alloy; - the nickel content in the nickel-copper alloy is between 0.5 and 15 wt % of nickel element relative to the total weight of the catalyst; - the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm. Fig. 1 AA%%%dshell BB%%%shell CC%%%dcore DD%%%core ep%%%thickness

Description

CATALYSEUR COMPRENANT UNE PHASE ACTIVE DE NICKEL REPARTIE EN CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN
CROUTE ET UN ALLIAGE NICKEL CUIVRE CRUST AND A NICKEL COPPER ALLOY
Domaine technique Technical area
La présente invention concerne un catalyseur métallique supporté à base de nickel et de cuivre destiné particulièrement à l’hydrogénation des hydrocarbures insaturés, et plus particulièrement, d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation des aromatiques. The present invention relates to a supported metal catalyst based on nickel and copper intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, the selective hydrogenation of polyunsaturated compounds or the hydrogenation of aromatics.
Etat de la technique State of the art
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3- butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la fraction essence C5+ (essences contenant des composés hydrocarbonés ayant 5 atomes de carbone ou plus), en particulier des composés styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. Monounsaturated organic compounds, such as ethylene and propylene, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, propadiene and methylacetylene (or propyne), 1-2-butadiene and 1-3 - butadiene, vinylacetylene and ethylacetylene, and other polyunsaturated compounds whose boiling point corresponds to the C5 + gasoline fraction (gasolines containing hydrocarbon compounds having 5 or more carbon atoms), in particular styrenic or indene compounds . These polyunsaturated compounds are very reactive and lead to side reactions in the polymerization units. It is therefore necessary to eliminate them before upgrading these cuts.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It enables the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes.
Les catalyseurs d'hydrogénation sélective sont généralement à base de métaux du groupe VIII du tableau périodique, de préférence le palladium ou le nickel. Le métal se présente sous la forme de particules métalliques déposées sur un support. La teneur en métal, la taille des particules de métal et la répartition de la phase active dans le support font partie des critères qui ont une importance sur l'activité et la sélectivité des catalyseurs. The selective hydrogenation catalysts are generally based on metals from group VIII of the periodic table, preferably palladium or nickel. The metal is in the form of metal particles deposited on a support. The metal content, the size of the metal particles and the distribution of the active phase in the support are among the criteria which have an importance on the activity and the selectivity of the catalysts.
La répartition macroscopique des particules métalliques dans le support constitue un critère important, principalement dans le cadre de réactions rapides et consécutives telles que les hydrogénations sélectives. Il est généralement souhaitable que ces éléments se situent dans une croûte à la périphérie du support afin d’éviter les problèmes de transfert de matière intragranulaire pouvant conduire à des défauts d’activité et une perte de sélectivité. De tels catalyseurs sont aussi appelé catalyseurs "eggshell" selon la terminologie anglo-saxonne.The macroscopic distribution of the metal particles in the support constitutes an important criterion, mainly in the context of rapid and consecutive reactions such as selective hydrogenations. It is generally desirable that these elements be located in a crust at the periphery of the support in order to avoid problems of intragranular material transfer which can lead to defects in activity and loss of selectivity. Such catalysts are also called “eggshell” catalysts according to English terminology.
De tels catalyseurs sont largement connus dans le cas des catalyseurs d'hydrogénation sélective à base de palladium. En effet, grâce à la faible teneur en palladium (généralement inférieure à 1 % en poids (1 % pds) de palladium par rapport au catalyseur) et des procédés de préparation adaptés, une croûte fine de palladium à la périphérie des grains de support peut être obtenue (FR2922784, US2010/217052). Such catalysts are widely known in the case of selective hydrogenation catalysts based on palladium. In fact, thanks to the low palladium content (generally less than 1% by weight (1% by weight) of palladium relative to the catalyst) and the suitable preparation methods, a thin crust of palladium at the periphery of the support grains can be obtained (FR2922784, US2010 / 217052).
Il est souvent proposé de substituer le palladium par le nickel, métal moins actif que le palladium qu'il est donc nécessaire de disposer en plus grande quantité dans le catalyseur. Ainsi, les catalyseurs à base de nickel ont généralement une teneur en métal entre 5 et 50 % pds de nickel par rapport au catalyseur. Dans ces catalyseurs, le nickel est généralement réparti de façon homogène au sein du support. Une des voies d'amélioration possible de ces catalyseurs en termes d'activité et de sélectivité est de contrôler la répartition du nickel au sein du support en déposant le nickel de façon plus concentrée sur une croûte, à la périphérie du support. De tels catalyseurs sont connus de l'état de l'art. It is often proposed to replace palladium with nickel, a less active metal than palladium which it is therefore necessary to have in a larger quantity in the catalyst. Thus, nickel-based catalysts generally have a metal content of between 5 and 50% by weight of nickel relative to the catalyst. In these catalysts, the nickel is generally distributed homogeneously within the support. One of the possible ways of improving these catalysts in terms of activity and selectivity is to control the distribution of nickel within the support by depositing the nickel in a more concentrated manner on a crust, at the periphery of the support. Such catalysts are known from the state of the art.
Le document US 4 519 951 décrit un catalyseur de type « eggshell » avec du nickel sur un support poreux ayant un volume poreux des pores dont la taille est inférieure à 11 ,7 nm d'au moins 0,2 ml/g et un volume poreux des pores dont la taille est supérieure à 11 ,7 nm d'au moins 0,1 ml/g. Plus de 50 % du nickel se trouve dans une croûte dont l’épaisseur est égale à 0,15 fois le rayon du support. Ce catalyseur est utilisé pour l'hydrogénation de matières grasses. Document US Pat. No. 4,519,951 describes an “eggshell” type catalyst with nickel on a porous support having a pore volume of the pores the size of which is less than 11.7 nm of at least 0.2 ml / g and a pore volume of at least 0.2 ml / g. porous pores larger than 11.7nm in size of at least 0.1ml / g. More than 50% of nickel is found in a crust 0.15 times the radius of the support thickness. This catalyst is used for the hydrogenation of fat.
Le document CN 101890351 décrit un catalyseur supporté de nickel dans lequel plus de 90 % du nickel se trouve dans une croûte de 700 pm d’épaisseur. Le catalyseur est préparé en utilisant une solution ammoniacale pour dissoudre le sel de nickel. Ces catalyseurs sont utilisés dans une application d'hydrogénation sélective. CN 101890351 describes a supported nickel catalyst in which more than 90% of the nickel is found in a 700 µm thick crust. The catalyst is prepared using an ammoniacal solution to dissolve the nickel salt. These catalysts are used in a selective hydrogenation application.
Le document U S2012/0065442 décrit un catalyseur supporté de nickel dans lequel la distribution de la taille des cristallites de nickel est bimodale avec 30 à 70% des cristallites de nickel ayant une taille moyenne (diamètre) de 1 ,0 à 2,5 nm, les cristallites de nickel restants ayant une taille moyenne (diamètre) de 3,0 à 4,5 nm. Le nickel est reparti à la fois sur une croûte d'une épaisseur de 3 à 15 % du diamètre et à cœur, le ratio de concentration en nickel entre la croûte et le cœur étant compris entre 3,0 : 1 et 1 ,3 : 1. Au moins 75 % du volume poreux se trouve dans des pores ayant une taille de plus de 5,0 nm. Objets de l’invention Document U S2012 / 0065442 describes a supported nickel catalyst in which the size distribution of the nickel crystallites is bimodal with 30 to 70% of the nickel crystallites having an average size (diameter) of 1.0 to 2.5 nm , the remaining nickel crystallites having an average size (diameter) of 3.0-4.5 nm. The nickel is distributed both on a crust with a thickness of 3 to 15% of the diameter and at the core, the nickel concentration ratio between the crust and the core being between 3.0: 1 and 1, 3: 1. At least 75% of the pore volume is in pores having a size greater than 5.0 nm. Objects of the invention
De manière surprenante, la Demanderesse a découvert qu'en appliquant un traitement hydrothermal spécifique après l’ajout d’un additif organique particulier sur un catalyseur à base de nickel et de cuivre (et dans lequel on forme un alliage à base de nickel et de cuivre sur le support) comprenant un support d’alumine obtenu selon une méthode bien particulière, on obtient un catalyseur dans lequel au moins une partie du nickel est répartie sur une croûte à la périphérie du support, l’autre partie du nickel étant répartie au cœur du catalyseur. Sans vouloir être lié par une quelconque théorie, le traitement hydrothermal réalisé après l’étape de mise en contact d’un additif organique spécifique sur le catalyseur à base de nickel et de cuivre sur un support d’alumine particulier, ayant subi un traitement hydrothermal en présence d’une solution acide, semble faire migrer au moins en partie le nickel de l'intérieur du support à la périphérie du support formant ainsi une croûte de nickel. De plus, il a été constaté par la Demanderesse que lors de la préparation du catalyseur, la réalisation d’une étape de mise en contact du support avec une solution contenant simultanément un précurseur métallique à base de cuivre et un précurseur métallique à base de nickel suivie d’une étape de séchage et de réduction en présence d’un gaz réducteur à basse température (comprise entre 150°C et 250°C) permet d’obtenir un alliage de nickel- cuivre (sous forme réduite) qui permet de manière inattendue d’améliorer fortement la réductibilité de la phase active de nickel sur le support. Par ailleurs, la présence de cuivre dans le catalyseur permet de maintenir une bonne activité et une durée de vie plus longue du catalyseur lorsque ce dernier est mis en contact avec une charge hydrocarbonée comprenant du soufre. En effet, par rapport au nickel, le cuivre présent dans le catalyseur capte plus facilement les composés soufrés compris dans la charge, ce qui limite l’empoisonnement irréversible des sites actifs. Surprisingly, the Applicant has discovered that by applying a specific hydrothermal treatment after the addition of a particular organic additive to a catalyst based on nickel and copper (and in which an alloy based on nickel and copper is formed. copper on the support) comprising an alumina support obtained according to a very specific method, a catalyst is obtained in which at least part of the nickel is distributed over a crust at the periphery of the support, the other part of the nickel being distributed in catalyst core. Without wishing to be bound by any theory, the hydrothermal treatment carried out after the step of bringing a specific organic additive into contact with the nickel and copper-based catalyst on a particular alumina support, which has undergone a hydrothermal treatment in the presence of an acid solution, seems to cause the nickel to migrate at least in part from the interior of the support to the periphery of the support, thus forming a nickel crust. In addition, it has been observed by the Applicant that during the preparation of the catalyst, carrying out a step of bringing the support into contact with a solution simultaneously containing a metallic precursor based on copper and a metallic precursor based on nickel. followed by a drying and reduction step in the presence of a reducing gas at low temperature (between 150 ° C and 250 ° C) makes it possible to obtain a nickel-copper alloy (in reduced form) which allows unexpectedly greatly improve the reducibility of the active phase of nickel on the support. Furthermore, the presence of copper in the catalyst makes it possible to maintain good activity and a longer lifetime of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur. In fact, compared to nickel, the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which limits the irreversible poisoning of the active sites.
La présente invention concerne ainsi un nouveau type de catalyseur qui, de par son procédé de préparation spécifique, permet d’obtenir un catalyseur comprenant des performances au moins aussi bonnes, voir meilleures, en terme d’activité et de sélectivité dans le cadre des réactions d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation des aromatiques polyinsaturés, tout en utilisant une quantité de phase de nickel inférieure que celle utilisée typiquement dans l’état de la technique, ce qui est due à une meilleure répartition de la phase active de nickel dans le support, rendant cette dernière plus accessible aux réactifs. The present invention thus relates to a new type of catalyst which, by virtue of its specific preparation process, makes it possible to obtain a catalyst comprising performance at least as good, or even better, in terms of activity and selectivity in the context of the reactions. selective hydrogenation of polyunsaturated compounds or hydrogenation of polyunsaturated aromatics, while using a lower quantity of nickel phase than that typically used in the state of the art, which is due to a better distribution of the active phase of nickel in the support, making the latter more accessible to reagents.
Un premier objet selon l’invention concerne un catalyseur comprenant du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, et d’un second élément métallique de cuivre, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que : A first object according to the invention relates to a catalyst comprising nickel and copper, at a rate of 1 and 50% by weight of nickel element relative to the total weight of the catalyst, and of a second metallic element of copper, at a rate of 0.5 to 15% by weight of element copper relative to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that:
le nickel est réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte étant comprise entre 2% et 15% du diamètre du catalyseur ; the nickel is distributed both over a crust at the periphery of the support, and at the heart of the support, the thickness of said crust being between 2% and 15% of the diameter of the catalyst;
le ratio de densité en nickel entre la croûte et le cœur est supérieur strictement à 3 ; ladite croûte comprend plus de 25% en poids élément nickel par rapport au poids total de nickel contenu dans le catalyseur ; the nickel density ratio between the crust and the core is strictly greater than 3; said crust comprises more than 25% by weight of the element nickel relative to the total weight of nickel contained in the catalyst;
le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 ; the molar ratio between nickel and copper is between 0.5 and 5;
au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre ; at least part of the nickel and copper is in the form of a nickel-copper alloy;
la teneur en nickel comprise dans l’alliage nickel-cuivre est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur, the nickel content in the nickel-copper alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst,
la taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est comprise entre 7 et 25 nm. the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm.
Avantageusement, le ratio de densité en nickel entre la croûte et le cœur est supérieur ou égal à 3,5. Advantageously, the nickel density ratio between the crust and the core is greater than or equal to 3.5.
Avantageusement, ladite croûte comprend plus de 40% en poids élément nickel par rapport au poids total de nickel contenu dans le catalyseur. Advantageously, said crust comprises more than 40% by weight of the nickel element relative to the total weight of nickel contained in the catalyst.
Avantageusement, l’intervalle de transition entre le cœur et la croûte du catalyseur est compris entre 0,05% et 3% du diamètre du catalyseur. Advantageously, the transition interval between the core and the crust of the catalyst is between 0.05% and 3% of the diameter of the catalyst.
Avantageusement, la taille des particules de nickel dans le catalyseur est comprise entre 8 et 23 nm. Advantageously, the size of the nickel particles in the catalyst is between 8 and 23 nm.
Avantageusement, la teneur en soufre du support d’alumine est comprise entre 0,001% et 2% poids par rapport au poids total du support d’alumine, et la teneur en sodium dudit support d’alumine est comprise entre 0,001% et 2% poids par rapport au poids total dudit gel d'alumine. Advantageously, the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content of said alumina support is between 0.001% and 2% by weight. relative to the total weight of said alumina gel.
Avantageusement, l'épaisseur de ladite croûte est comprise entre 2,5% et 12% du diamètre du catalyseur; Advantageously, the thickness of said crust is between 2.5% and 12% of the diameter of the catalyst;
Avantageusement, le ratio de densité en nickel entre la croûte et le cœur est compris entre 3,8 et 15. Un autre objet selon l’invention concerne un procédé de préparation d’un catalyseur selon l’invention, ledit procédé étant caractérisé en ce que : Advantageously, the nickel density ratio between the crust and the core is between 3.8 and 15. Another object according to the invention relates to a process for preparing a catalyst according to the invention, said process being characterized in that:
a) on approvisionne un gel d’alumine ; a) an alumina gel is supplied;
b) on met en forme le gel d’alumine de l’étape a) ; b) shaping the alumina gel from step a);
c) on soumet le gel d’alumine mis en forme obtenu à l’issue de l’étape b) à un traitement thermique comprenant au moins une étape de traitement hydrothermal dans un autoclave en présence d’une solution acide, à une température comprise entre 100 et 800°C, et au moins une étape de calcination, à une température comprise entre 400 et 1500°C, réalisée après l'étape de traitement hydrothermal, pour obtenir un support d’alumine ; c) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature of between 100 and 800 ° C, and at least one calcination step, at a temperature between 400 and 1500 ° C, carried out after the hydrothermal treatment step, to obtain an alumina support;
d) on réalise l’enchaînement des sous-étapes suivantes : d) the sequence of the following sub-steps is carried out:
d1) on met en contact le support d’alumine avec au moins un précurseur de nickel pour obtenir un précurseur de catalyseur, d1) the alumina support is brought into contact with at least one nickel precursor to obtain a catalyst precursor,
d2) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape d1) à une température inférieure à 250°C ; d2) the catalyst precursor obtained at the end of step d1) is dried at a temperature below 250 ° C;
d3) on met en contact le précurseur de catalyseur séché obtenu à l’issue de l’étape d2) avec au moins une solution contenant au moins un additif organique choisi parmi les aldéhydes renfermant 1 à 14 atomes de carbone par molécule, les cétones ou polycétones renfermant 3 à 18 atomes de carbone par molécule, les éthers et les esters renfermant 2 à 14 atomes de carbone par molécule, les alcools ou polyalcools renfermant 1 à 14 atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant 1 à 14 atomes de carbone par molécule, le ratio molaire entre l’additif organique et le nickel étant supérieur à 0,05 mol/mol ; d3) the dried catalyst precursor obtained at the end of step d2) is brought into contact with at least one solution containing at least one organic additive chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol;
d4) on réalise un traitement hydrothermal du précurseur de catalyseur obtenu à l’issue de l’étape d3) à une température comprise entre 100 et 200°C pendant une durée comprise entre 30 minutes et 5 heures sous flux gazeux comprenant entre 5 et 650 grammes d'eau par kg de gaz sec ; d4) a hydrothermal treatment of the catalyst precursor obtained at the end of step d3) is carried out at a temperature between 100 and 200 ° C for a period of between 30 minutes and 5 hours under a gas flow comprising between 5 and 650 grams of water per kg of dry gas;
e) on réalise l’enchaînement des sous-étapes suivantes : e) the sequence of the following sub-steps is carried out:
e1) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de cuivre et un précurseur de nickel à une concentration en nickel voulue pour obtenir sur le catalyseur final une teneur comprise entre 0,5 et 15 % poids en élément nickel par rapport au poids total du catalyseur final ; e2) on réalise au moins une étape de séchage du précurseur de catalyseur obtenu à l’issue de l’étape e1) à une température inférieure à 250°C ; e1) the alumina support is brought into contact with at least one solution containing at least one copper precursor and one nickel precursor at a desired nickel concentration in order to obtain a content of between 0.5 and 15% on the final catalyst weight of nickel element relative to the total weight of the final catalyst; e2) at least one step of drying the catalyst precursor obtained at the end of step e1) is carried out at a temperature below 250 ° C;
les étapes d) et e) étant réalisées séparément dans un ordre indifférent, f) on réduit le précurseur de catalyseur issu des étapes d) et e), ou e) et d), par mise en contact dudit précurseur de catalyseur avec un gaz réducteur à une température supérieure ou égale à 150°C et inférieure à 250°C. steps d) and e) being carried out separately in any order, f) the catalyst precursor resulting from steps d) and e), or e) and d) is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C.
Avantageusement, le précurseur de cuivre est choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. Advantageously, the copper precursor is chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or fluoride. copper.
Avantageusement, le procédé comprend en outre une étape de calcination d2’) du précurseur de catalyseur séché obtenu à l’issue de l’étape d2), sous flux gazeux comprenant une quantité d’eau inférieure strictement à 150 grammes d'eau par kg de gaz sec à une température comprise entre 250°C et 1000°C. Advantageously, the method further comprises a calcination step d2 ′) of the dried catalyst precursor obtained at the end of step d2), under a gas stream comprising a quantity of water strictly less than 150 grams of water per kg. of dry gas at a temperature between 250 ° C and 1000 ° C.
Avantageusement, à l’étape d3), l’additif organique est choisi parmi l'acide formique, le formaldéhyde, l'acide acétique, l’acide citrique, l’acide oxalique, l’acide glycolique, l’acide malonique, l'éthanol, le méthanol, le formiate d'éthyle, le formiate de méthyle, le paraldéhyde, l'acétaldéhyde, l’acide gamma-valérolactone, le glucose, le sorbitol et le trioxane. Advantageously, in step d3), the organic additive is chosen from formic acid, formaldehyde, acetic acid, citric acid, oxalic acid, glycolic acid, malonic acid, l ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose, sorbitol and trioxane.
Avantageusement, le ratio molaire entre l’additif organique et le nickel est compris entre 0,1 et 5 mol/mol. Advantageously, the molar ratio between the organic additive and the nickel is between 0.1 and 5 mol / mol.
Un autre objet selon l’invention concerne un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur selon l’invention. Another object according to the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst according to the invention.
Un autre objet selon l’invention concerne un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/( composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire (V.V.H.) comprise entre 0,05 et 50 h 1, en présence d’un catalyseur selon l’invention. Description de la figure Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, said process being carried out in phase gas or in liquid phase, at a temperature between 30 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume speed (VVH) of between 0.05 and 50 h 1 , in the presence of a catalyst according to the invention. Description of figure
La figure 1 est un schéma représentant la répartition du nickel dans le catalyseur. L’axe des abscisses correspond à l’épaisseur du catalyseur, mesurée depuis le bord du catalyseur (en pm). L’axe des ordonnées correspond à la densité en nickel (en gramme de Ni / mm3). Le nickel est réparti à la fois sur une croûte en périphérie du support, d’épaisseur ep1 , et à cœur du support. La densité en nickel sur la croûte dcr0ute est supérieure à la densité en nickel au cœur du support dcoeur- L’intervalle de transition entre le cœur et la croûte du catalyseur a une épaisseur notée ep2-ep1. FIG. 1 is a diagram showing the distribution of nickel in the catalyst. The abscissa axis corresponds to the thickness of the catalyst, measured from the edge of the catalyst (in µm). The y-axis corresponds to the nickel density (in grams of Ni / mm 3 ). The nickel is distributed both on a crust at the periphery of the support, of thickness ep1, and at the heart of the support. The density of nickel on the crust cr0 ute is greater than the nickel density in the heart of the core of carrier - The transition interval between the heart and the crust of the catalyst has a thickness denoted ep2-ep1.
Description détaillée de l’invention Detailed description of the invention
1. Définitions 1. Definitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. In the following, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, editor CRC press, editor in chief D.R. Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm, c'est à dire 0,002 pm; par mésopores les pores dont le diamètre est supérieur ou égal à 2 nm, c'est à dire 0,002 pm et inférieur ou égal à 50 nm, c'est à dire 0,05 pm et par macropores les pores dont le diamètre est supérieur à 50 nm, c'est à dire 0,05 pm. In the present description, according to the IUPAC convention, micropores are understood to mean pores whose diameter is less than 2 nm, ie 0.002 μm; by mesopores the pores whose diameter is greater than or equal to 2 nm, i.e. 0.002 μm and less than or equal to 50 nm, i.e. 0.05 μm and by macropores the pores whose diameter is greater than 50 nm, i.e. 0.05 µm.
Afin d'analyser la répartition de la phase métallique sur le support, on mesure une épaisseur de croûte par microsonde de Castaing (ou microanalyse par microsonde électronique). L'appareil utilisé est un CAMECA XS100, équipé de quatre cristaux monochromateurs permettant l'analyse simultanée de quatre éléments. La technique d'analyse par microsonde de Castaing consiste en la détection de rayonnement X émis par un solide après excitation de ses éléments par un faisceau d'électrons de hautes énergies. Pour les besoins de cette caractérisation, les grains de catalyseur sont enrobés dans des plots de résine époxy. Ces plots sont polis jusqu'à atteindre la coupe au diamètre des billes ou extrudés puis métallisés par dépôt de carbone en évaporateur métallique. La sonde électronique est balayée le long du diamètre de cinq billes ou extrudés pour obtenir le profil de répartition moyen des éléments constitutifs des solides. Cette méthode, bien connue de l’Homme du métier, est définie dans la publication de L. Sorbier et al.“Measurement of palladium crust thickness on catalyst by EPMA” Materials Science and Engineering 32 (2012). Elle permet d’établir le profil de répartition d’un élément donné, ici le Nickel, au sein du grain. Par ailleurs, la concentration en Ni est définie pour chaque mesure et donc pour chaque pas d’analyse. La densité de Ni au sein du grain est donc définie comme la concentration de Ni par mm3. In order to analyze the distribution of the metallic phase on the support, a crust thickness is measured by Castaing microprobe (or microanalysis by electron microprobe). The device used is a CAMECA XS100, equipped with four monochromator crystals allowing the simultaneous analysis of four elements. The Castaing microprobe analysis technique consists of the detection of X radiation emitted by a solid after excitation of its elements by a beam of high energy electrons. For the purposes of this characterization, the catalyst grains are coated in pads of epoxy resin. These pads are polished until they reach the cut to the diameter of the balls or extruded and then metallized by depositing carbon in a metallic evaporator. The electronic probe is scanned along the diameter of five balls or extrudates to obtain the average distribution profile of the constituent elements of the solids. This method, well known to those skilled in the art, is defined in the publication by L. Sorbier et al. “Measurement of palladium crust thickness on catalyst by EPMA” Materials Science and Engineering 32 (2012). It establishes the distribution profile of a given element, here Nickel, within the grain. Furthermore, the Ni concentration is defined for each measurement and therefore for each analysis step. The density of Ni within the grain is therefore defined as the concentration of Ni per mm 3 .
Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™. The total pore volume is measured by mercury porosimetry according to standard ASTM D4284-92 with a wetting angle of 140 °, for example by means of an Autopore III ™ model device from the Microméritics ™ brand.
La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03, méthode décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academie Press, 1999. The BET specific surface is measured by physisorption with nitrogen according to the ASTM D3663-03 standard, method described in the work Rouquerol F .; Rouquerol J .; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academie Press, 1999.
On définit également le diamètre médian mésoporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume mésoporeux, de taille inférieure à ce diamètre constituent 50% du volume mésoporeux total déterminé par intrusion au porosimètre à mercure. The mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion with a mercury porosimeter.
On entend par « taille des particules de nickel » le diamètre des cristallites de nickel sous forme oxyde. Le diamètre des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43° (c’est-à-dire selon la direction cristallographique [200]) à l’aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 11 , 102-113 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size», J. I. Langford and A. J. C. Wilson. The term “size of the nickel particles” is understood to mean the diameter of the crystallites of nickel in oxide form. The diameter of the crystallites of nickel in oxide form is determined by X-ray diffraction, from the width of the diffraction line located at the angle 2theta = 43 ° (that is to say according to the crystallographic direction [200 ]) using the Scherrer relation. This method, used in X-ray diffraction on powders or polycrystalline samples which relates the width at mid-height of the diffraction peaks to the size of the particles, is described in detail in the reference: Appl. Cryst. (1978), 11, 102-113 “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, J. I. Langford and A. J. C. Wilson.
La teneur en nickel et en cuivre est mesurée par fluorescence X. The nickel and copper content is measured by X-ray fluorescence.
2. Catalyseur 2. Catalyst
L'invention porte sur un catalyseur comprenant du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, et d’un second élément métallique de cuivre, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que : le nickel est réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de croûte (appelée aussi ep1) étant comprise entre 2% et 15% du diamètre du catalyseur, de préférence entre 2,5% et 12% du diamètre du catalyseur, de façon encore plus préférée entre 3% et 10 % du diamètre du catalyseur et de façon encore plus préférée entre 3% et 7,5% du diamètre du catalyseur ; The invention relates to a catalyst comprising nickel and copper, in an amount of 1 and 50% by weight of nickel element relative to the total weight of the catalyst, and a second metallic element of copper, in an amount of 0.5. at 15% by weight of copper element relative to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that: the nickel is distributed both on a crust at the periphery of the support, and at the heart of the support, the crust thickness (also called ep1) being between 2% and 15% of the diameter of the catalyst, preferably between 2.5 % and 12% of the diameter of the catalyst, even more preferably between 3% and 10% of the diameter of the catalyst and even more preferably between 3% and 7.5% of the diameter of the catalyst;
le ratio de densité en nickel entre la croûte et le cœur (appelé aussi ici dcr0ute/dcoeur) est supérieur strictement à 3, de préférence supérieur à 3,5 et de préférence compris entre 3,8 et 15 ; the nickel density ratio between the crust and the core (also referred to here as crust / core) is strictly greater than 3, preferably greater than 3.5 and preferably between 3.8 and 15;
ladite croûte comprend plus de 25% en poids en élément nickel par rapport au poids total de nickel contenu dans le catalyseur, de préférence plus de 40% en poids, plus préférentiellement entre 45% et 90% en poids, et encore plus préférentiellement entre 60% et 90% en poids ; said crust comprises more than 25% by weight of nickel element relative to the total weight of nickel contained in the catalyst, preferably more than 40% by weight, more preferably between 45% and 90% by weight, and even more preferably between 60 % and 90% by weight;
le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol, de préférence compris entre 0,7 et 4,5 mol/mol, plus préférentiellement entre 0,9 et 4 mol/mol ; the molar ratio between nickel and copper is between 0.5 and 5 mol / mol, preferably between 0.7 and 4.5 mol / mol, more preferably between 0.9 and 4 mol / mol;
au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre, répondant avantageusement à la formule NixCuy avec x compris entre 0,1 et 0,9 et y compris entre 0,1 et 0,9 ; at least part of the nickel and the copper is in the form of a nickel-copper alloy, advantageously corresponding to the formula Ni x Cu y with x ranging between 0.1 and 0.9 and including between 0.1 and 0.9;
la teneur en nickel comprise dans l’alliage cuivre-nickel est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur, de préférence entre 1 et 12% en poids, et plus préférentiellement entre 1 et 10% en poids ; the nickel content included in the copper-nickel alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst, preferably between 1 and 12% by weight, and more preferably between 1 and 10% by weight;
la taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est comprise entre 7 et 25 nm, de préférence entre 8 et 23 nm. the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm, preferably between 8 and 23 nm.
Avantageusement, l’intervalle de transition entre le cœur et la croûte du catalyseur (appelé aussi ici intervalle de transition cœur/croûte, ou ep2-ep1 d’après les notations de la figure 1), lié à la variation de la densité de nickel mesurée sur l’épaisseur du catalyseur depuis le bord du catalyseur jusqu’au centre du catalyseur, est très abrupte. De préférence, l’intervalle de transition cœur/ croûte est compris entre 0,05 % et 3 % du diamètre du catalyseur, de préférence entre 0,5 % et 2,5 % du diamètre du catalyseur. Advantageously, the transition interval between the core and the crust of the catalyst (also called here the core / crust transition interval, or ep2-ep1 according to the notations in FIG. 1), linked to the variation in the density of nickel measured over the thickness of the catalyst from the edge of the catalyst to the center of the catalyst is very steep. Preferably, the core / crust transition interval is between 0.05% and 3% of the diameter of the catalyst, preferably between 0.5% and 2.5% of the diameter of the catalyst.
La teneur en nickel dans ledit catalyseur selon l'invention est avantageusement comprise entre 1 et 50 % poids par rapport au poids total du catalyseur, plus préférentiellement entre 2 et 40 % poids et encore plus préférentiellement entre 3 et 35 % poids et encore plus préférentiellement 5 et 25% poids par rapport au poids total du catalyseur The nickel content in said catalyst according to the invention is advantageously between 1 and 50% by weight relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% by weight relative to the total weight of the catalyst
La teneur en cuivre est comprise entre 0,5 et 15 % en poids en élément cuivre par rapport au poids total du catalyseur, de préférence comprise entre 0,5 et 12 % poids, de manière préférée comprise entre 0,75 et 10 % poids, et encore plus préférentiellement entre 1 et 9 % en poids. The copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst, preferably between 0.5 and 12% by weight, so preferred between 0.75 and 10% by weight, and even more preferably between 1 and 9% by weight.
Le catalyseur selon l’invention peut être qualifié comme catalyseur « semi egg-shell » dans lequel la concentration du nickel est plus élevée en périphérie du support que dans le cœur du support, ladite concentration du nickel dans le cœur du support étant non nulle. The catalyst according to the invention can be qualified as a "semi egg-shell" catalyst in which the concentration of nickel is higher at the periphery of the support than in the core of the support, said concentration of nickel in the core of the support being non-zero.
La surface spécifique du catalyseur est généralement comprise entre 10 m2/g et 200 m2/g, de préférence entre 25 m2/g et 110 m2/g, de façon plus préférée entre 40 m2/g et 100 m2/g. The specific surface of the catalyst is generally between 10 m 2 / g and 200 m 2 / g, preferably between 25 m 2 / g and 110 m 2 / g, more preferably between 40 m 2 / g and 100 m 2 / g.
Le volume poreux total du catalyseur est généralement compris entre 0,1 et 1 ml/g, de préférence compris entre 0,2 ml/g et 0,8 ml/g, et de manière particulièrement préférée compris entre 0,3 ml/g et 0,7 ml/g. The total pore volume of the catalyst is generally between 0.1 and 1 ml / g, preferably between 0.2 ml / g and 0.8 ml / g, and particularly preferably between 0.3 ml / g and 0.7 ml / g.
La taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est comprise entre 7 et 25 nm, de préférence entre 8 et 23 nm. The size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm, preferably between 8 and 23 nm.
La phase active du catalyseur ne comprend pas de métal du groupe VIB. Elle ne comprend notamment pas de molybdène ou de tungstène. The active phase of the catalyst does not contain a metal from group VIB. In particular, it does not include molybdenum or tungsten.
Ledit catalyseur (et le support utilisé pour la préparation du catalyseur) est sous forme de grains ayant avantageusement un diamètre compris entre 0,5 et 10 mm. Les grains peuvent avoir toutes les formes connues de l'Homme du métier, par exemple la forme de billes (ayant de préférence un diamètre compris entre 1 et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, le catalyseur (et le support utilisé pour la préparation du catalyseur) sont sous forme d'extrudés de diamètre compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm et de longueur comprise entre 0,5 et 20 mm. On entend par « diamètre» des extrudés le diamètre du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobé. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur. Said catalyst (and the support used for the preparation of the catalyst) is in the form of grains advantageously having a diameter of between 0.5 and 10 mm. The grains can have all the shapes known to those skilled in the art, for example the shape of balls (preferably having a diameter of between 1 and 8 mm), of extrudates, of tablets, of hollow cylinders. Preferably, the catalyst (and the support used for the preparation of the catalyst) are in the form of extrudates with a diameter of between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1, 0 and 2.5 mm and length between 0.5 and 20 mm. The term “diameter” of the extrudates is understood to mean the diameter of the circle circumscribing the cross section of these extrudates. The catalyst can advantageously be presented in the form of cylindrical, multilobed, trilobal or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all the methods known from the prior art.
3. Support 3. Support
Les caractéristiques de l’alumine, mentionnées dans cette section, correspondent aux caractéristiques de l’alumine avant imprégnation de la phase active de nickel, i.e. le support d’alumine obtenu à l’issue de l’étape c) du procédé de préparation du catalyseur selon l’invention. Selon l’invention, le support est une alumine c'est-à-dire que le support comporte au moins 95%, de préférence au moins 98%, et de manière particulièrement préférée au moins 99% poids d'alumine par rapport au poids du support. L’alumine présente généralement une structure cristallographique du type alumine delta, gamma ou thêta, seule ou en mélange. Selon l'invention, le support d’alumine, peut comprendre des impuretés telles que les oxydes de métaux des groupes MA, INB, IVB, NB, NIA, IVA selon la classification CAS, de préférence la silice, le dioxyde de titane, le dioxyde de zirconium, l'oxyde de zinc, l'oxyde de magnésium et l'oxyde de calcium, ou encore des métaux alcalins, de préférence le lithium, le sodium ou le potassium, et/ou les alcalino-terreux, de préférence le magnésium, le calcium, le strontium ou le baryum ou encore du soufre. The characteristics of alumina, mentioned in this section, correspond to the characteristics of the alumina before impregnation of the active phase with nickel, ie the alumina support obtained at the end of step c) of the process for preparing the catalyst according to the invention. According to the invention, the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and particularly preferably at least 99% by weight of alumina relative to the weight support. The alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or as a mixture. According to the invention, the alumina support may comprise impurities such as oxides of metals from groups MA, INB, IVB, NB, NIA, IVA according to the CAS classification, preferably silica, titanium dioxide, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, preferably magnesium, calcium, strontium or barium or even sulfur.
Avantageusement, la teneur en soufre du support d’alumine est comprise entre 0,001 % et 2% poids par rapport au poids total du support d’alumine, et la teneur en sodium dudit support d’alumine est comprise entre 0,001 % et 2% poids par rapport au poids total dudit gel d'alumine. Advantageously, the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content of said alumina support is between 0.001% and 2% by weight. relative to the total weight of said alumina gel.
La surface spécifique de l’alumine est généralement comprise entre 10 m2/g et 250 m2/g, de préférence entre 30 m2/g et 200 m2/g, de façon plus préférée entre 50 m2/g et 150m2/g. The specific surface of the alumina is generally between 10 m 2 / g and 250 m 2 / g, preferably between 30 m 2 / g and 200 m 2 / g, more preferably between 50 m 2 / g and 150 m 2 / g.
Le volume poreux de l’alumine est généralement compris entre 0, 1 ml/g et 1 ,2 ml/g, de préférence compris entre 0,3 ml/g et 0,9 ml/g, et de manière très préférée compris entre 0,5 ml/g et 0,9 ml/g. The pore volume of the alumina is generally between 0.1 ml / g and 1.2 ml / g, preferably between 0.3 ml / g and 0.9 ml / g, and very preferably between 0.5 ml / g and 0.9 ml / g.
Procédé de préparation du catalyseur Process for preparing the catalyst
Un autre objet selon l’invention concerne un procédé de préparation d’un catalyseur selon l’invention comprenant au moins les étapes suivantes : Another object according to the invention relates to a process for preparing a catalyst according to the invention comprising at least the following steps:
a) on approvisionne un gel d’alumine ; a) an alumina gel is supplied;
b) on met en forme le gel d’alumine de l’étape a) ; b) shaping the alumina gel from step a);
c) on soumet le gel d’alumine mis en forme obtenu à l’issue de l’étape b) à un traitement thermique comprenant au moins une étape de traitement hydrothermal dans un autoclave en présence d’une solution acide, à une température comprise entre 100 et 800°C, et au moins une étape de calcination, à une température comprise entre 400 et 1500°C, réalisée après l'étape de traitement hydrothermal, pour obtenir un support d’alumine ; c) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature of between 100 and 800 ° C, and at least one calcination step, at a temperature between 400 and 1500 ° C, carried out after the hydrothermal treatment step, to obtain an alumina support;
d) on réalise l’enchaînement des sous-étapes suivantes : d) the sequence of the following sub-steps is carried out:
d1) on met en contact le support d’alumine avec au moins un précurseur de nickel pour obtenir un précurseur de catalyseur, d2) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape d1) à une température inférieure à 250°C ; d1) the alumina support is brought into contact with at least one nickel precursor to obtain a catalyst precursor, d2) the catalyst precursor obtained at the end of step d1) is dried at a temperature below 250 ° C .;
d2’) optionnellement, on réalise un traitement thermique du précurseur de catalyseur séché obtenu à l’issue de l’étape d2) à une température comprise entre 250 et 1000°C pour obtenir un précurseur de catalyseur calciné ; d2 ’) optionally, a heat treatment of the dried catalyst precursor obtained at the end of step d2) is carried out at a temperature between 250 and 1000 ° C to obtain a calcined catalyst precursor;
d3) on met en contact le précurseur de catalyseur séché obtenu à l’issue de l’étape d2) (éventuellement calciné obtenu à l’issue de l’étape d2’) avec au moins une solution contenant au moins un additif organique choisi parmi les aldéhydes renfermant 1 à 14 atomes de carbone par molécule, les cétones ou polycétones renfermant 3 à 18 atomes de carbone par molécule, les éthers et les esters renfermant 2 à 14 atomes de carbone par molécule, les alcools ou polyalcools renfermant 1 à 14 atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant 1 à 14 atomes de carbone par molécule, le ratio molaire entre l’additif organique et le nickel étant supérieur à 0,05 mol/mol ; d3) the dried catalyst precursor obtained at the end of step d2) (optionally calcined obtained at the end of step d2 ') is brought into contact with at least one solution containing at least one organic additive chosen from among aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 atoms carbon per molecule and the carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol;
d4) on réalise un traitement hydrothermal du précurseur de catalyseur obtenu à l’issue de l’étape d3) à une température comprise entre 100 et 200°C pendant une durée comprise entre 30 minutes et 5 heures sous flux gazeux comprenant entre 5 et 650 grammes d'eau par kg de gaz sec ; d4) a hydrothermal treatment of the catalyst precursor obtained at the end of step d3) is carried out at a temperature between 100 and 200 ° C for a period of between 30 minutes and 5 hours under a gas flow comprising between 5 and 650 grams of water per kg of dry gas;
d5) optionnellement, on réalise une étape de séchage entre 50 et 200°C du précurseur de catalyseur obtenu à l’issue de l’étape d4) sous flux gazeux comprenant une quantité d’eau inférieure strictement à 5 grammes d'eau par kilogramme de gaz sec ; e) on réalise l’enchaînement des sous-étapes suivantes : d5) optionally, a drying step is carried out between 50 and 200 ° C of the catalyst precursor obtained at the end of step d4) under a gas flow comprising a quantity of water strictly less than 5 grams of water per kilogram dry gas; e) the sequence of the following sub-steps is carried out:
e1) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de cuivre et un précurseur de nickel à une concentration en nickel voulue pour obtenir sur le catalyseur final une teneur comprise entre 0,5 et 15 % poids en élément nickel par rapport au poids total du catalyseur final ; e1) the alumina support is brought into contact with at least one solution containing at least one copper precursor and one nickel precursor at a desired nickel concentration in order to obtain a content of between 0.5 and 15% on the final catalyst weight of nickel element relative to the total weight of the final catalyst;
e2) on réalise au moins une étape de séchage du précurseur de catalyseur obtenu à l’issue de l’étape e1) à une température inférieure à 250°C ; e2) at least one step of drying the catalyst precursor obtained at the end of step e1) is carried out at a temperature below 250 ° C;
e3) optionnellement, on réalise un traitement thermique du précurseur de catalyseur obtenu à l’issue de l’étape e2) à une température comprise entre 250 et 1000°C, en présence ou non d’eau ; e3) optionally, a heat treatment of the catalyst precursor obtained at the end of step e2) is carried out at a temperature between 250 and 1000 ° C, in the presence or absence of water;
les étapes d) et e) étant réalisées séparément dans un ordre indifférent, steps d) and e) being carried out separately in any order,
f) on réduit le précurseur de catalyseur issu des étapes d) et e), ou e) et d), par mise en contact dudit précurseur de catalyseur avec un gaz réducteur à une température supérieure ou égale à 150°C et inférieure à 250°C. L’ordre des étapes de a) à f) n’est pas permutable, à l’exception des 2 étapes d) et e) qui sont permutables entre-elles. f) the catalyst precursor resulting from steps d) and e), or e) and d) is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C. The order of steps a) to f) is not permutable, with the exception of the 2 steps d) and e) which are permutable between them.
Des étapes intermédiaires peuvent s’intercaler (notamment des étapes de séchages supplémentaires) et certaines étapes peuvent être effectuées plusieurs fois de suite (par exemple l’étape d1). Enfin, il est possible d’ajouter des étapes supplémentaires avant utilisation du catalyseur à l’issue de l’étape f). Intermediate steps can be inserted (in particular additional drying steps) and some steps can be carried out several times in a row (for example step d1). Finally, it is possible to add additional steps before using the catalyst at the end of step f).
De préférence, on réalise une étape de séchage puis une étape de calcination à l’issue de l’étape b) de mise en forme (mais avant la réalisation de l’étape c). Preferably, a drying step is carried out followed by a calcination step at the end of step b) of shaping (but before carrying out step c).
De préférence, les étapes les étapes d2’) et d5) ne sont pas optionnelles. Preferably, steps d2 ′) and d5) are not optional.
De préférence l’étape d) et effectuée avant l’étape e). Preferably step d) and carried out before step e).
Les étapes a) à f) dudit procédé de préparation sont décrites en détail ci-après. Steps a) to f) of said preparation process are described in detail below.
Etape a) - Gel d’alumine Step a) - Alumina gel
Le catalyseur selon l'invention comprend un support alumine qui est obtenu à partir d'une alumine gel (ou gel d'alumine) qui comprend essentiellement un précurseur du type oxy(hydroxyde) d'aluminium (AIO(OH)) - également dénommé boehmite. The catalyst according to the invention comprises an alumina support which is obtained from an alumina gel (or alumina gel) which essentially comprises a precursor of the aluminum oxy (hydroxide) type (AIO (OH)) - also called boehmite.
Selon l'invention, le gel d'alumine (ou autrement dénommé gel de boehmite) est synthétisé par précipitation de solutions basiques et/ou acides de sels d'aluminium induite par changement de pH ou tout autre méthode connue de l'Homme de métier (P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J.L. Le Loarer, J. P. Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, K.S.W. Sing, J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002, pp. 1591-1677). According to the invention, the alumina gel (or otherwise called boehmite gel) is synthesized by precipitation of basic and / or acidic solutions of aluminum salts induced by change in pH or any other method known to those skilled in the art. (P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL Le Loarer, JP Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, KSW Sing, J. Weitkamp, Wiley- VCH, Weinheim, Germany, 2002, pp. 1591-1677).
Généralement la réaction de précipitation est effectuée à une température comprise entre 5°C et 80°C et à un pH compris entre 6 et 10. De manière préférée la température est comprise entre 35°C et 70°C et le pH est compris entre 6 et 10. Generally the precipitation reaction is carried out at a temperature between 5 ° C and 80 ° C and at a pH between 6 and 10. Preferably the temperature is between 35 ° C and 70 ° C and the pH is between 6 and 10.
Selon un mode de réalisation, l'alumine gel est obtenue par mise en contact d'une solution aqueuse d'un sel acide d'aluminium avec une solution basique. Par exemple le sel acide d'aluminium est choisi dans le groupe constitué par le sulfate d'aluminium, le nitrate d'aluminium ou le chlorure d'aluminium et de manière préférée, ledit sel acide est le sulfate d'aluminium. La solution basique est préférentiellement choisi parmi la soude ou la potasse. Alternativement, on peut mettre en contact une solution alcaline de sels d'aluminium qui peuvent être choisis dans le groupe constitué par l'aluminate de sodium et l'aluminate de potassium avec une solution acide. Dans une variante très préférée, le gel est obtenu par mise en contact d'une solution d'aluminate de sodium avec de l'acide nitrique. La solution d'aluminate de sodium présente avantageusement une concentration comprise entre 105 et 10 1 mol.L 1 et de manière préférée cette concentration est comprise entre 10 4 et 10 2 mol.L 1. Selon un autre mode de réalisation, l'alumine gel est obtenue par mise en contact d'une solution aqueuse de sels acides d'aluminium avec une solution alcaline de sels d'aluminium.
Figure imgf000016_0001
According to one embodiment, the alumina gel is obtained by bringing an aqueous solution of an acidic aluminum salt into contact with a basic solution. For example, the acidic aluminum salt is chosen from the group consisting of aluminum sulphate, aluminum nitrate or aluminum chloride and preferably said acid salt is aluminum sulphate. The basic solution is preferably chosen from soda or potash. Alternatively, an alkaline solution of aluminum salts which can be chosen from the group consisting of sodium aluminate and potassium aluminate can be brought into contact with an acid solution. In a very preferred variant, the gel is obtained by bringing a solution of sodium aluminate into contact with nitric acid. The solution of sodium aluminate advantageously has a concentration of between 10 5 and 10 1 mol.L 1 and preferably this concentration is between 10 4 and 10 2 mol.L 1 . According to another embodiment, the alumina gel is obtained by bringing an aqueous solution of acidic aluminum salts into contact with an alkaline solution of aluminum salts.
Figure imgf000016_0001
Le support peut avantageusement être mis en forme par toute technique connue de l'Homme du métier. La mise en forme peut être réalisée par exemple par malaxage-extrusion, par pastillage, par la méthode de la coagulation en goutte (oil-drop), par granulation au plateau tournant ou par toute autre méthode bien connue de l'Homme du métier. Les catalyseurs selon l'invention peuvent éventuellement être fabriqués et employés sous la forme d'extrudés, de tablettes, de billes. La méthode de mise en forme avantageuse selon l'invention est l'extrusion et les formes d'extrudés préférées sont cylindriques, cylindriques torsadées ou multilobées (2, 3, 4 ou 5 lobes par exemple). The support can advantageously be shaped by any technique known to those skilled in the art. The shaping can be carried out for example by kneading-extrusion, by pelletizing, by the drop coagulation method (oil-drop), by granulation on a turntable or by any other method well known to those skilled in the art. The catalysts according to the invention can optionally be manufactured and used in the form of extrudates, tablets or beads. The advantageous shaping method according to the invention is extrusion and the preferred extrudate shapes are cylindrical, twisted cylindrical or multilobed (2, 3, 4 or 5 lobes for example).
Dans un mode de réalisation particulier, le gel d'alumine obtenu à l’issue de l’étape a) est soumis à une étape de malaxage de préférence dans un milieu acide. L'acide mis en œuvre peut être par exemple de l'acide nitrique. Cette étape est réalisée au moyen d'outils connus tels que des malaxeurs bras en Z, des malaxeurs à meules, des mono ou bi-vis continues permettant la transformation du gel en un produit ayant la consistance d'une pâte. Selon un mode de réalisation avantageux, on apporte un ou plusieurs composés dits "agents porogènes" dans le milieu de malaxage. Ces composés présentent la propriété de se dégrader par chauffage et créer ainsi une porosité dans le support. Par exemple on peut utiliser comme composés porogènes la farine de bois, le charbon de bois, des goudrons, des matières plastiques. La pâte ainsi obtenue après malaxage est passée au travers d’une filière d'extrusion. Généralement les extrudés ont un diamètre compris 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm et de longueur comprise entre 0,5 et 20 mm. Ces extrudés peuvent être de forme cylindrique, multilobée (par exemple trilobée ou quadrilobée). In a particular embodiment, the alumina gel obtained at the end of step a) is subjected to a mixing step, preferably in an acidic medium. The acid used can be, for example, nitric acid. This step is carried out by means of known tools such as Z-arm mixers, grindstone mixers, continuous mono or twin screws allowing the transformation of the gel into a product having the consistency of a paste. According to an advantageous embodiment, one or more compounds called “pore-forming agents” are introduced into the mixing medium. These compounds have the property of degrading on heating and thus creating porosity in the support. For example, wood flour, charcoal, tars and plastics can be used as pore-forming compounds. The paste thus obtained after kneading is passed through an extrusion die. Generally the extrudates have a diameter of 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and a length of between 0.5 and 20 mm . These extrudates can be cylindrical, multilobed (for example trilobed or quadrilobed).
Après sa mise en forme, le support est éventuellement séché avant de subir le traitement hydrothermal selon l'étape c) du procédé. Par exemple le séchage est effectué à une température comprise entre 50 et 200°C. Le support séché est éventuellement calciné avant de subir le traitement hydrothermal selon l'étape c) du procédé. Par exemple, la calcination est effectuée à une température comprise entre 200 et 1000°C, en présence ou non d'un flux d'air contenant jusqu’à 150 d’eau par kilogramme d’air sec. Etape c ) - Traitement thermique After its shaping, the support is optionally dried before undergoing the hydrothermal treatment according to step c) of the process. For example, drying is carried out at a temperature between 50 and 200 ° C. The dried support is optionally calcined before undergoing the hydrothermal treatment according to step c) of the process. For example, the calcination is carried out at a temperature between 200 and 1000 ° C., in the presence or absence of an air flow containing up to 150 water per kilogram of dry air. Step c) - Heat treatment
Le support obtenu à l’issue de l’étape b) subit ensuite une étape de traitement thermique qui permet de lui conférer des propriétés physiques répondant à l'application envisagée. The support obtained at the end of step b) then undergoes a heat treatment step which allows it to give it physical properties corresponding to the envisaged application.
On désigne par le terme "traitement hydrothermal", un traitement par passage en autoclave en présence d'eau à une température supérieure à la température ambiante. The term “hydrothermal treatment” denotes a treatment by passage in an autoclave in the presence of water at a temperature above ambient temperature.
Au cours de ce traitement hydrothermal, on peut traiter de différentes manières l'alumine mise en forme. Ainsi, on peut imprégner l'alumine d'une solution acide, préalablement à son passage à l'autoclave, le traitement hydrothermal de l'alumine pouvant être fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non. Cette imprégnation, avant le traitement hydrothermal, peut être effectuée à sec ou par immersion de l'alumine dans une solution aqueuse acide. Par imprégnation à sec, on entend une mise en contact de l'alumine avec un volume de solution inférieur ou égal au volume poreux total de l'alumine traitée. De préférence, l'imprégnation est réalisée à sec. During this hydrothermal treatment, the shaped alumina can be treated in different ways. Thus, the alumina can be impregnated with an acid solution, prior to its passage in the autoclave, the hydrothermal treatment of the alumina being able to be carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the liquid. autoclave which may or may not be acidic. This impregnation, before the hydrothermal treatment, can be carried out dry or by immersing the alumina in an acidic aqueous solution. The term “dry impregnation” is understood to mean bringing the alumina into contact with a volume of solution less than or equal to the total pore volume of the alumina treated. Preferably, the impregnation is carried out dry.
On peut également traiter le support extrudé sans imprégnation préalable par une solution acide, l'acidité étant dans ce cas apportée par le liquide aqueux de l'autoclave. The extruded support can also be treated without prior impregnation with an acid solution, the acidity in this case being provided by the aqueous liquid in the autoclave.
La solution aqueuse acide comprend au moins un composé acide permettant de dissoudre au moins une partie de l'alumine des extrudés. On entend par "composé acide permettant de dissoudre au moins une partie de l'alumine des extrudés", tout composé acide qui, mis en contact avec les extrudés d'alumine, réalise la mise en solution d'au moins une partie des ions aluminium. L'acide doit, de préférence, dissoudre au moins 0,5 % en poids d'alumine des extrudés d'alumine. The acidic aqueous solution comprises at least one acidic compound making it possible to dissolve at least part of the alumina of the extrudates. The term “acidic compound making it possible to dissolve at least part of the alumina of the extrudates” is understood to mean any acid compound which, brought into contact with the alumina extrudates, brings about the dissolution of at least part of the aluminum ions. . The acid should preferably dissolve at least 0.5% by weight of the alumina of the alumina extrudates.
De préférence, cet acide est choisi parmi les acides forts tels que l'acide nitrique, l'acide chlorhydrique, l'acide perchlorique, l'acide sulfurique ou un acide faible mis en œuvre à une concentration telle que sa solution aqueuse présente un pH inférieur à 4, tel que l'acide acétique, ou un mélange de ces acides. Preferably, this acid is chosen from strong acids such as nitric acid, hydrochloric acid, perchloric acid, sulfuric acid or a weak acid used at a concentration such that its aqueous solution has a pH less than 4, such as acetic acid, or a mixture of these acids.
Selon un mode préféré, on réalise le traitement hydrothermal en présence d'acide nitrique et d'acide acétique pris seul ou en mélange. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande de brevet EP-A-0 387 109. According to a preferred embodiment, the hydrothermal treatment is carried out in the presence of nitric acid and acetic acid taken alone or as a mixture. The autoclave is preferably an autoclave with a rotary basket such as that defined in patent application EP-A-0 387 109.
Le traitement hydrothermal peut également être réalisé sous pression de vapeur saturante ou sous une pression partielle de vapeur d'eau au moins égale à 70 % de la pression de vapeur saturante correspondant à la température de traitement. The hydrothermal treatment can also be carried out under saturating vapor pressure or under a partial pressure of water vapor at least equal to 70% of the saturated vapor pressure corresponding to the treatment temperature.
De préférence le traitement hydrothermal est conduit à une température comprise entre 100 et 800°C, de préférence entre 200 et 700°C, de préférence entre 30 minutes et 8 heures, plus préférentiellement entre 30 minutes et 3 heures. Preferably the hydrothermal treatment is carried out at a temperature of between 100 and 800 ° C, preferably between 200 and 700 ° C, preferably between 30 minutes and 8 hours, more preferably between 30 minutes and 3 hours.
De préférence, l'étape de calcination qui a lieu après le traitement hydrothermal par passage en autoclave se déroule à une température généralement comprise entre 400 et 1500°C, de préférence entre 800 et 1300°C, de préférence pendant 1 et 5 heures sous air dont la teneur en eau est généralement comprise entre 0 et 700 g d’eau par kilogramme d’air sec. Preferably, the calcination step which takes place after the hydrothermal treatment by autoclaving takes place at a temperature generally between 400 and 1500 ° C, preferably between 800 and 1300 ° C, preferably for 1 and 5 hours in air, the water content of which is generally between 0 and 700 g of water per kilogram of dry air.
A l’issue de l’étape c), l’alumine obtenue présente les propriétés texturales spécifiques telles que décrites ci-avant. At the end of step c), the alumina obtained exhibits the specific textural properties as described above.
Etape d) Step d)
L’étape d) comprend les sous-étapes suivantes. Step d) includes the following substeps.
Etape d1) - Mise en contact du support avec un précurseur de la phase active de nickelStep d1) - Bringing the support into contact with a precursor of the active phase of nickel
La mise en contact du support avec une solution contenant un précurseur de la phase active de nickel, conformément à la mise en œuvre de l’étape d1), peut être réalisée par imprégnation, à sec ou en excès, ou encore par dépôt - précipitation, selon des méthodes bien connues de l'Homme du métier. The contacting of the support with a solution containing a precursor of the active phase of nickel, in accordance with the implementation of step d1), can be carried out by impregnation, dry or in excess, or by deposition - precipitation. , according to methods well known to those skilled in the art.
Ladite étape d1) est préférentiellement réalisée par imprégnation du support consistant par exemple en la mise en contact du support avec au moins une solution aqueuse contenant un précurseur de nickel. Le pH de ladite solution pourra être modifié par l'ajout éventuel d'un acide ou d’une base. Said step d1) is preferably carried out by impregnation of the support consisting, for example, of bringing the support into contact with at least one aqueous solution containing a nickel precursor. The pH of said solution can be modified by the possible addition of an acid or a base.
De manière préférée, ladite étape d1) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support avec au moins une solution, contenant, de préférence constituée de, au moins un précurseur du nickel, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du support à imprégner. Preferably, said step d1) is carried out by dry impregnation, which consists in bringing the support into contact with at least one solution, containing, preferably consisting of, at least one precursor of nickel, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
De manière préférée, ledit précurseur de nickel est introduit en solution aqueuse, par exemple sous forme de nitrate, de carbonate, d'acétate, de chlorure, d'oxalate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support. De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, le chlorure de nickel, l'acétate de nickel ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel. Preferably, said nickel precursor is introduced in aqueous solution, for example in the form of nitrate, carbonate, acetate, chloride, oxalate, complexes formed by a polyacid or an acid-alcohol and its salts, of complexes formed with acetylacetonates, or of any other inorganic derivative soluble in aqueous solution, which is brought into contact with said support. Preferably, nickel precursor, nickel nitrate, nickel chloride, nickel acetate or nickel hydroxycarbonate are advantageously used. Very preferably, the nickel precursor is nickel nitrate.
Selon une autre variante, la solution aqueuse peut contenir de l’ammoniaque ou des ions ammonium NH4 +. According to another variant, the aqueous solution may contain ammonia or NH 4 + ammonium ions.
La concentration en nickel en solution est ajustée selon le type imprégnation (imprégnation à sec ou en excès) et le volume poreux du support de façon à obtenir pour le catalyseur supporté, une teneur en nickel comprise entre 1 et 50 % poids en élément nickel par rapport au poids total du catalyseur, plus préférentiellement entre 2 et 45 % poids et encore plus préférentiellement entre 3 et 35 % poids et encore plus préférentiellement 5 et 25 % poids. The nickel concentration in solution is adjusted according to the type of impregnation (dry impregnation or in excess) and the pore volume of the support so as to obtain, for the supported catalyst, a nickel content of between 1 and 50% by weight of nickel element per report to the total weight of the catalyst, more preferably between 2 and 45% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% by weight.
Etape d2) - Séchaae Step d2) - Séchaae
L’étape de séchage est effectuée sous flux gazeux comprenant une quantité d’eau inférieure à 150 grammes d'eau par kilogramme de gaz sec, de préférence inférieure à 50 g d’eau par kilogramme de gaz sec, à une température inférieure à 250°C, de préférence comprise entre 15 et 240°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. The drying step is carried out under a gas flow comprising a quantity of water less than 150 grams of water per kilogram of dry gas, preferably less than 50 g of water per kilogram of dry gas, at a temperature below 250 ° C, preferably between 15 and 240 ° C, more preferably between 30 and 220 ° C, even more preferably between 50 and 200 ° C, and even more preferably between 70 and 180 ° C, for a period typically between between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
Le gaz peut contenir de l’oxygène, de l’azote ou un gaz inerte et de préférence le gaz est l’air.
Figure imgf000019_0001
The gas can contain oxygen, nitrogen or an inert gas and preferably the gas is air.
Figure imgf000019_0001
L’étape de calcination optionnelle est effectuée sous flux gazeux comprenant une quantité d’eau inférieure à 150 grammes d'eau par kilogramme de gaz sec, de préférence inférieure à 50 g d’eau par kilogramme de gaz sec, à une température comprise entre 250°C et 1000°C, de préférence entre 250 et 750°C. La durée de ce traitement thermique est généralement comprise entre 15 minutes et 10 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. The optional calcination step is carried out under a gas stream comprising a quantity of water less than 150 grams of water per kilogram of dry gas, preferably less than 50 g of water per kilogram of dry gas, at a temperature between 250 ° C and 1000 ° C, preferably between 250 and 750 ° C. The duration of this heat treatment is generally between 15 minutes and 10 hours. Longer durations are not excluded, but do not necessarily bring improvement.
Le gaz peut contenir de l’oxygène, de l’azote ou un gaz inerte et de préférence le gaz est de l’air. The gas may contain oxygen, nitrogen or an inert gas and preferably the gas is air.
A l’issue des étapes d2) ou d2’), le nickel est réparti de façon homogène sur le support. At the end of steps d2) or d2 ’), the nickel is distributed homogeneously on the support.
Etape d3) - Additif Step d3) - Addendum
Selon l’étape d3) du procédé de préparation du catalyseur, on met en contact le précurseur de catalyseur obtenu à l’issue de l’étape d2), éventuellement à l’issue de l’étape d2’), avec au moins une solution comprenant au moins un additif organique choisi parmi les aldéhydes renfermant de 1 à 14 atomes de carbone par molécule (de préférence de 2 à 12), les cétones ou polycétones renfermant de 3 à 18 (de préférence de 3 à 12) atomes de carbone par molécule, les éthers ou les esters renfermant de 2 à 14 (de préférence de 3 à 12) atomes de carbone par molécule, les alcools ou polyalcools renfermant de 1 à 14 (de préférence de 2 à 12) atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant de 1 à 14 (de préférence de 1 à 12) atomes de carbone par molécule. L’additif organique peut être composé d’une combinaison des différents groupes fonctionnels cités ci-dessus. According to step d3) of the process for preparing the catalyst, the catalyst precursor obtained at the end of step d2), optionally at the end of step d2 ′), is brought into contact with at least one solution comprising at least one organic additive chosen from aldehydes containing from 1 to 14 carbon atoms per molecule (preferably from 2 to 12), ketones or polyketones containing from 3 to 18 (preferably from 3 to 12) carbon atoms per molecule, ethers or esters containing from 2 to 14 (preferably from 3 to 12) carbon atoms per molecule, alcohols or polyalcohols containing from 1 to 14 (preferably from 2 to 12) carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing from 1 to 14 (preferably from 1 to 12) carbon atoms per molecule. The organic additive can be composed of a combination of the various functional groups mentioned above.
De préférence, l’additif organique est choisi parmi l'acide formique HCOOH, le formaldéhyde CH20, l'acide acétique CH3COOH, l’acide citrique, l’acide oxalique, l’acide glycolique (HOOC-CH2-OH), l’acide malonique (HOOC-CH2-COOH), l'éthanol, le méthanol, le formiate d'éthyle HCOOC2H5, le formiate de méthyle HCOOCH3, le paraldéhyde (CH3-CHO)3, l'acétaldéhyde C2H40, l’acide gamma-valérolactone (C5H802), le glucose, le sorbitol et le trioxane. Preferably, the organic additive is chosen from formic acid HCOOH, formaldehyde CH 2 0, acetic acid CH 3 COOH, citric acid, oxalic acid, glycolic acid (HOOC-CH2-OH ), malonic acid (HOOC-CH 2 -COOH), ethanol, methanol, ethyl formate HCOOC 2 H 5 , methyl formate HCOOCH 3 , paraldehyde (CH 3 -CHO) 3 , l acetaldehyde C 2 H 4 0, gamma-valerolactone acid (C 5 H 8 0 2 ), glucose, sorbitol and trioxane.
De manière particulièrement préférée, l’additif organique est l’acide formique. Most preferably, the organic additive is formic acid.
Il est essentiel que l’étape d’ajout de l’additif organique sur le catalyseur (étape d3)) soit réalisée après l’étape de mise en contact du support avec le précurseur de la phase active de nickel. It is essential that the step of adding the organic additive to the catalyst (step d3)) is carried out after the step of bringing the support into contact with the precursor of the active phase of nickel.
De manière préférée, ladite étape d3) est réalisée par imprégnation du précurseur de catalyseur obtenu à l'issue de la mise en œuvre de l’étape d2) ou de l’étape d2’), avec une solution comprenant au moins un additif organique tel que cité ci-avant. L’imprégnation est généralement effectuée en solution aqueuse ou en solution organique ou en suspension dans la solution aqueuse ou organique, de préférence en solution aqueuse. Lorsque l'on opère en solution ou suspension organique, on utilisera à titre de solvant organique de préférence un alcool ou polyalcool, glycol ou polyglycol. Preferably, said step d3) is carried out by impregnating the catalyst precursor obtained at the end of the implementation of step d2) or of step d2 ′), with a solution comprising at least one organic additive as mentioned above. Impregnation is generally carried out in aqueous solution or in organic solution or in suspension in aqueous or organic solution, preferably in aqueous solution. When the operation is carried out in an organic solution or suspension, an alcohol or polyalcohol, glycol or polyglycol will preferably be used as organic solvent.
De manière préférée, ladite étape d3) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le précurseur de catalyseur obtenu à l'issue de la mise en œuvre de l’étape d2) ou de l’étape d2’), avec une solution comprenant au moins un additif organique tel que cité ci-avant, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du précurseur de catalyseur à imprégner. Preferably, said step d3) is carried out by dry impregnation, which consists in bringing the catalyst precursor obtained at the end of the implementation of step d2) or of step d2 ′) into contact, with a solution comprising at least one organic additive as mentioned above, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the catalyst precursor to be impregnated.
L’imprégnation est généralement réalisée à une température entre 0 et 50°C, de préférence entre 10 et 40°C, et de manière particulièrement préférée à température ambiante. The impregnation is generally carried out at a temperature between 0 and 50 ° C, preferably between 10 and 40 ° C, and particularly preferably at room temperature.
Selon l’invention, le ratio molaire entre l’additif organique et le nickel est supérieur à 0,05 mol/mol, de préférence compris entre 0,1 et 5 mol/mol, plus préférentiellement compris entre 0,12 et 3 mol/mol, et de façon encore plus préférée compris entre 0,15 et 2,5 mol/mol. According to the invention, the molar ratio between the organic additive and the nickel is greater than 0.05 mol / mol, preferably between 0.1 and 5 mol / mol, more preferably between 0.12 and 3 mol / mol, and even more preferably between 0.15 and 2.5 mol / mol.
Etape d4) Traitement hydrothermal Step d4) Hydrothermal treatment
Selon l’étape d4) du procédé de préparation du catalyseur selon l’invention, on effectue un traitement hydrothermal du produit issu de l'étape d3) à une température comprise entre 100°C et 200°C, de préférence entre 130°C et 170°C, et plus particulièrement autour de 150°C, sous flux gazeux comprenant entre 5 et 650 grammes d'eau par kilogramme de gaz sec, de préférence entre 7 et 150 grammes d’eau par kilogramme de gaz sec, de façon encore plus préférée entre 10 et 50 grammes d’eau par kilogramme de gaz sec. Le gaz peut contenir de l’oxygène, de l’azote ou un gaz inerte et de préférence le gaz est de l’air. According to step d4) of the process for preparing the catalyst according to the invention, a hydrothermal treatment of the product from step d3) is carried out at a temperature of between 100 ° C and 200 ° C, preferably between 130 ° C. and 170 ° C, and more particularly around of 150 ° C, under a gas flow comprising between 5 and 650 grams of water per kilogram of dry gas, preferably between 7 and 150 grams of water per kilogram of dry gas, even more preferably between 10 and 50 grams of water per kilogram of dry gas. The gas may contain oxygen, nitrogen or an inert gas and preferably the gas is air.
La durée du traitement hydrothermal est généralement entre 30 minutes et 5 heures, de préférence entre 1 à 3 heures. The duration of the hydrothermal treatment is generally between 30 minutes and 5 hours, preferably between 1 and 3 hours.
Etape d5) - Séchage ( optionnelle ) Step d5) - Drying (optional)
L’étape d4) peut être suivie d’une étape d5) de séchage entre 50 et 200°C sous flux gazeux comprenant une quantité d’eau inférieure strictement à 5 grammes d'eau par kilogramme de gaz sec, avantageusement pendant une durée comprise entre 30 minutes et 5 heures, de préférence entre 1 à 3 heures. Step d4) can be followed by a step d5) of drying between 50 and 200 ° C under a gas flow comprising a quantity of water strictly less than 5 grams of water per kilogram of dry gas, advantageously for a period of time between between 30 minutes and 5 hours, preferably between 1 and 3 hours.
Le gaz peut contenir de l’oxygène, de l’azote ou un gaz inerte et de préférence le gaz est de l’air. The gas may contain oxygen, nitrogen or an inert gas and preferably the gas is air.
A l’issue de l’étape d4) ou éventuellement de l’étape d5), on obtient un catalyseur «semi egg-shell » tel que représenté schématiquement en figure 1 et dont les caractéristiques sont décrites ci-dessus. At the end of step d4) or optionally of step d5), a "semi egg-shell" catalyst is obtained as shown schematically in Figure 1 and whose characteristics are described above.
Etape e) Step e)
L’étape e) comprend les sous-étapes suivantes. Step e) comprises the following sub-steps.
Etape e 1 ) Mise en contact d’un précurseur de nickel et d’un précurseur de cuiyre Step e 1) Contacting a nickel precursor and a copper precursor
Le dépôt du nickel et du cuivre sur le support d’alumine peut être réalisé par imprégnation, à sec ou en excès, ou encore par dépôt - précipitation, selon des méthodes bien connues de l'Homme du métier. The deposition of nickel and copper on the alumina support can be carried out by impregnation, dry or in excess, or by deposition - precipitation, according to methods well known to those skilled in the art.
Ladite étape e1) est préférentiellement réalisée par imprégnation du précurseur de catalyseur consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, comprenant, de préférence étant constituée de, au moins un précurseur de nickel et au moins un précurseur de cuivre au moins partiellement à l'état dissous, ou encore en la mise en contact dudit précurseur de catalyseur avec au moins une solution colloïdale comprenant, de préférence étant constituée de, au moins un précurseur du nickel et d’un précurseur de cuivre sous forme oxydées (nanoparticules d’oxyde, d’oxy(hydroxyde) ou d’hydroxyde du nickel et de cuivre) ou sous forme réduites (nanoparticules métalliques du nickel et de cuivre à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution peut être modifié par l'ajout éventuel d'un acide ou d’une base. Said step e1) is preferably carried out by impregnation of the catalyst precursor consisting, for example, of bringing said support into contact with at least one solution, aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent, comprising, preferably consisting of, at least one nickel precursor and at least one copper precursor at least partially in the dissolved state, or alternatively by bringing said catalyst precursor into contact with at least one colloidal solution comprising, preferably consisting of, at least one nickel precursor and one copper precursor in oxidized form (nanoparticles oxide, oxy (hydroxide) or hydroxide of nickel and copper) or in reduced form (metallic nanoparticles of nickel and copper in the reduced state). Preferably, the solution is aqueous. The pH of this solution can be modified by the optional addition of an acid or a base.
De manière préférée, ladite étape e1) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du précurseur de catalyseur avec une solution, comprenant, de préférence constituée de, au moins un précurseur du nickel et au moins un précurseur de cuivre, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du support à imprégner. Preferably, said step e1) is carried out by dry impregnation, which consists in bringing the support of the catalyst precursor into contact with a solution, preferably comprising at least one precursor of nickel and at least one precursor of nickel. copper, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
Lorsque le précurseur de nickel est introduit en solution aqueuse, on utilise avantageusement un précurseur de nickel sous forme de nitrate, de carbonate, d'acétate, de chlorure, d’hydroxyde, d’hydroxycarbonate, d'oxalate, de sulfate, de formiate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, de complexes tétrammine ou hexammine, ou encore de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit précurseur de catalyseur. De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, l’hydroxyde de nickel, le carbonate de nickel, le chlorure de nickel, ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel, le carbonate de nickel ou le hydroxyde de nickel. When the nickel precursor is introduced in aqueous solution, a nickel precursor is advantageously used in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, sulfate, formate. , of complexes formed by a polyacid or an acid-alcohol and its salts, of complexes formed with acetylacetonates, of tetrammine or hexammine complexes, or even of any other inorganic derivative soluble in aqueous solution, which is brought into contact with said precursor of catalyst. Preferably, nickel precursor, nickel nitrate, nickel hydroxide, nickel carbonate, nickel chloride or nickel hydroxycarbonate are advantageously used. Very preferably, the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
Lorsque le précurseur de cuivre est introduit en solution aqueuse, on utilise avantageusement un précurseur de cuivre sous forme minérale ou organique. Sous forme minérale, le précurseur de cuivre peut être choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. De manière très préférée, le sel précurseur du cuivre est le nitrate de cuivre. When the copper precursor is introduced in aqueous solution, a copper precursor in mineral or organic form is advantageously used. In mineral form, the copper precursor can be chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or copper fluoride. Very preferably, the copper precursor salt is copper nitrate.
Selon l’invention, le précurseur de nickel est approvisionnée à l’étape e1) à une concentration voulue pour obtenir sur le catalyseur final (i.e. obtenu à l’issue de l’étape f) de réduction ou de l’étape g) de passivation si cette dernière est effectuée) une teneur comprise entre 0,5 et 10 % poids en élément nickel par rapport au poids total du catalyseur final, de préférence entre 0,5 et 8% en poids, plus préférentiellement entre 1 et 7% en poids, encore plus préférentiellement entre 1 et 5% en poids. According to the invention, the nickel precursor is supplied to step e1) at a desired concentration to obtain on the final catalyst (ie obtained at the end of step f) reduction or step g) of passivation if the latter is carried out) a content of between 0.5 and 10% by weight of nickel element relative to the total weight of the final catalyst, preferably between 0.5 and 8% by weight, more preferably between 1 and 7% by weight weight, even more preferably between 1 and 5% by weight.
Les quantités du ou des précurseurs de cuivre introduites dans la solution selon l’étape e1) sont choisies de telle manière que la teneur totale en cuivre est comprise entre 0,5 et 15 % en poids en élément cuivre par rapport au poids total du catalyseur final (i.e. obtenu à l’issue de l’étape f) de réduction ou de l’étape g) de passivation si cette dernière est effectuée), de préférence comprise entre 0,5 et 12 % poids, de manière préférée comprise entre 0,75 et 10 % poids, et encore plus préférentiellement entre 1 et 9% en poids. The quantities of the copper precursor (s) introduced into the solution according to step e1) are chosen such that the total copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst final (ie obtained at the end of step f) of reduction or of step g) of passivation if the latter is carried out), of preferably between 0.5 and 12% by weight, preferably between 0.75 and 10% by weight, and even more preferably between 1 and 9% by weight.
Etape e2) Séchage du support imprégné Step e2) Drying of the impregnated support
L’étape e2) de séchage du support imprégné est effectuée à une température inférieure à 250°C, de préférence comprise entre 15 et 180°C, plus préférentiellement entre 30 et 160°C, encore plus préférentiellement entre 50 et 150°C, et de manière encore plus préférentielle entre 70 et 140°C, typiquement pendant une durée comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. Step e2) of drying the impregnated support is carried out at a temperature below 250 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, typically for a period of between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.
Figure imgf000023_0001
The drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
Figure imgf000023_0001
Le précurseur de catalyseur séché peut subir une étape complémentaire de traitement thermique, avant l’étape f) de réduction, à une température comprise entre 250 et 1000°C et de préférence entre 250 et 750°C, typiquement pendant une durée comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. Des durées de traitement plus longues ne sont pas exclues, mais n’apportent pas nécessaire d’amélioration. The dried catalyst precursor can undergo an additional heat treatment step, before reduction step f), at a temperature between 250 and 1000 ° C and preferably between 250 and 750 ° C, typically for a period of between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer durations of treatment are not excluded, but do not necessarily bring improvement.
On entend par « traitement thermique » le traitement en température respectivement sans présence ou en présence d'eau. Dans ce dernier cas, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. Plusieurs cycles combinés sans présence ou avec présence d'eau peuvent être réalisés. Après ce ou ces traitement(s), le précurseur de catalyseur comprend du nickel sous forme oxyde, c’est-à-dire sous forme NiO. The term “heat treatment” is understood to mean treatment at temperature respectively without the presence or in the presence of water. In the latter case, the contact with the water vapor can take place at atmospheric pressure or at autogenous pressure. Several combined cycles without the presence or with the presence of water can be carried out. After this or these treatment (s), the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
En cas de présence d’eau, la teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec. Etape f) Réduction par un gaz réducteur In the event of the presence of water, the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably, between 250 and 650 grams per kilogram of dry air. Step f) Reduction by reducing gas
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue une étape de traitement réducteur f) en présence d’un gaz réducteur de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique. Cette étape est avantageusement réalisée in-situ c'est- à-dire après le chargement du catalyseur dans un réacteur d’hydrogénation. Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. La réalisation in-situ du traitement réducteur du catalyseur permet de s’affranchir d’une étape supplémentaire de passivation du catalyseur par un composé oxygéné ou par le C02, ce qui est nécessairement le cas lorsque le catalyseur est préparé en réalisant un traitement réducteur ex-situ, c’est-à-dire en dehors du réacteur utilisé pour l’hydrogénation de composés aromatiques ou polyaromatiques. En effet, lorsque le traitement réducteur est réalisé ex-situ, il est nécessaire de réaliser une étape de passivation afin de préserver la phase métallique du catalyseur en présence d’air (lors des opérations de transport et de chargement du catalyseur dans le réacteur d’hydrogénation), puis de réaliser une étape nouvelle étape de réduction du catalyseur. Prior to the use of the catalyst in the catalytic reactor and the implementation of a hydrogenation process, a reducing treatment step f) is carried out in the presence of a reducing gas so as to obtain a catalyst comprising nickel in less partially in metallic form. This step is advantageously carried out in situ, that is to say after loading the catalyst into a hydrogenation reactor. This treatment makes it possible to activate said catalyst and to form metal particles, in particular nickel in the zero valent state. Carrying out in situ the reducing treatment of the catalyst eliminates the need for an additional step of passivation of the catalyst with an oxygenated compound or with C0 2 , which is necessarily the case when the catalyst is prepared by performing a reducing treatment ex-situ, that is to say outside the reactor used for the hydrogenation of aromatic or polyaromatic compounds. Indeed, when the reducing treatment is carried out ex-situ, it is necessary to carry out a passivation step in order to preserve the metallic phase of the catalyst in the presence of air (during the operations of transporting and loading the catalyst into the reactor d. 'hydrogenation), then to carry out a new step of reduction of the catalyst.
Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables. The reducing gas is preferably hydrogen. The hydrogen can be used pure or as a mixture (for example a mixture of hydrogen / nitrogen, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
Selon un aspect essentiel du procédé de préparation selon l’invention, ledit traitement réducteur est réalisé à une température supérieure ou égale à 150°C et inférieure à 250°C, de préférence comprise entre 160 et 230°C, et plus préférentiellement entre 170 et 220°C. La durée du traitement réducteur est comprise entre 5 minutes et moins de 5 heures, de préférence entre 10 minutes et 4 heures, et encore plus préférentiellement entre 10 minutes et 110 minutes. According to an essential aspect of the preparation process according to the invention, said reducing treatment is carried out at a temperature greater than or equal to 150 ° C and less than 250 ° C, preferably between 160 and 230 ° C, and more preferably between 170 and 220 ° C. The duration of the reducing treatment is between 5 minutes and less than 5 hours, preferably between 10 minutes and 4 hours, and even more preferably between 10 minutes and 110 minutes.
La présence de l’alliage de nickel-cuivre au moins partiellement sous forme réduite permet de recourir à des conditions opératoires de réduction de la phase active de nickel moins sévères que dans l’art antérieur et permet ainsi de réaliser directement l’étape de réduction au sein du réacteur dans lequel on souhaite réaliser l’hydrogénation de composés insaturés ou aromatiques. The presence of the nickel-copper alloy at least partially in reduced form makes it possible to use operating conditions for reducing the active phase of nickel which are less severe than in the prior art and thus makes it possible to carry out the reduction step directly. within the reactor in which it is desired to carry out the hydrogenation of unsaturated or aromatic compounds.
Par ailleurs, la présence de cuivre dans le catalyseur permet de conserver une bonne activité du catalyseur et une bonne durée de vie du catalyseur lorsque ce dernier est mis en contact avec une charge hydrocarbonée comprenant du soufre. En effet, par rapport au nickel, le cuivre présent dans le catalyseur capte plus facilement les composés soufrés compris dans la charge, ce qui limite l’empoisonnement irréversible des sites actifs. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min. Moreover, the presence of copper in the catalyst makes it possible to maintain good activity of the catalyst and a good lifetime of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur. Indeed, compared to nickel, the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which limits the irreversible poisoning of the active sites. The rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
Le débit d'hydrogène, exprimé en L/heure/gramme de précurseur de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de précurseur de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de précurseur de catalyseur. The hydrogen flow rate, expressed in L / hour / gram of catalyst precursor is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst precursor , even more preferably between 0.1 and 5 L / hour / gram of catalyst precursor.
Etape Q) Passivation (optionnelle) Step Q) Passivation (optional)
Le catalyseur préparé selon le procédé selon l'invention peut avantageusement subir une étape de passivation par un composé soufré qui permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run-away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l’activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier The catalyst prepared according to the process according to the invention can advantageously undergo a step of passivation by a sulfur compound which makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways during the start-up of new catalysts ("run-away" according to Anglo-Saxon terminology). Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity. The passivation step is carried out by implementing methods known to those skilled in the art.
L'étape de passivation par un composé soufré est généralement effectuée à une température comprise entre 20 et 350°C, de préférence entre 40 et 200°C, pendant 10 à 240 minutes. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-R S-S-R2-OH tel que le di-thio-di-éthanol de formule HO-C2H4-S-S-C2H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport au poids total du catalyseur. The passivation step with a sulfur compound is generally carried out at a temperature of between 20 and 350 ° C, preferably between 40 and 200 ° C, for 10 to 240 minutes. The sulfur compound is, for example, chosen from the following compounds: thiophene, thiophane, alkylmonosulphides such as dimethylsulphide, diethylsulphide, dipropylsulphide and propylmethylsulphide or else an organic disulphide of formula HO-R SSR 2 -OH such as di-thio-di-ethanol of formula HO-C 2 H 4 -SSC 2 H 4 -OH (often called DEODS). The sulfur content is generally between 0.1 and 2% by weight of said element relative to the total weight of the catalyst.
Dans un mode de réalisation selon l’invention, la préparation du catalyseur est effectuée ex- situ, c'est-à-dire avant chargement du catalyseur dans l'unité réactionnelle du procédé d'hydrogénation sélective ou d’hydrogénation des aromatiques. In one embodiment according to the invention, the preparation of the catalyst is carried out ex situ, that is to say before loading the catalyst into the reaction unit of the process for the selective hydrogenation or hydrogenation of aromatics.
Procédé d’hydrogénation sélective Selective hydrogenation process
La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/( composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description. A subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenics, contained in a charge of 'hydrocarbons having a final boiling point of less than or equal at 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at a volume speed hourly between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by the preparation process as described above in the description.
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3- butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. Monounsaturated organic compounds, such as ethylene and propylene, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, propadiene and methylacetylene (or propyne), 1-2-butadiene and 1-3 - butadiene, vinylacetylene and ethylacetylene, and other polyunsaturated compounds whose boiling point corresponds to the C5 + cut (hydrocarbon compounds having at least 5 carbon atoms), in particular diolefinic or styrenic or indene compounds. These polyunsaturated compounds are very reactive and lead to side reactions in the polymerization units. It is therefore necessary to eliminate them before upgrading these cuts.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques. Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It enables the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracked gasolines used as feed, selective hydrogenation also allows the alkenylaromatics to be selectively hydrogenated to aromatics by avoiding the hydrogenation of the aromatic rings.
La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique. Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+. The hydrocarbon feed treated in the selective hydrogenation process has a final boiling point of 300 ° C or less and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound. The term “polyunsaturated compounds” means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function. More particularly, the feed is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5 + cut.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent. The C2 steam cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain steam cracking C2 cuts, between 0.1 and 1% by weight of C3 compounds can also be present.
La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthyl acétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent. The C3 steam cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methyl acetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds can also be present.
Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4. A C2 - C3 cut can also be advantageously used for carrying out the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane. This charge can also contain between 0.1 and 2% by weight of C4 compounds.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. The C4 steam cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition by weight: 1% by weight of butane, 46.5% by weight of butene, 51% by weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds can also be present.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes. The C5 steam cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre. Steam cracking gasoline or pyrolysis gasoline, advantageously used for carrying out the selective hydrogenation process according to the invention, corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300 ° C, from preferably between 10 and 250 ° C. Polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrene compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.). Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts). For example, a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all of the compounds forming 100%. It also contains 0 to 1000 ppm by weight of sulfur, preferably 0 to 500 ppm by weight of sulfur.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage. Preferably, the polyunsaturated hydrocarbon feed treated in accordance with the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracked gasoline.
Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques. The selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons. For example, when said feedstock is a C2 cut, the selective hydrogenation process aims to selectively hydrogenate acetylene. When said feedstock is a C3 cut, the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene. In the case of a C4 cut, the aim is to eliminate the butadiene, vinylacetylene (VAC) and butyne, in the case of a C5 cut, the aim is to eliminate the pentadienes. When said feed is a steam cracked gasoline, the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefin compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to the corresponding aromatic compounds while avoiding the hydrogenation of the aromatic rings.
La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré injections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The technological implementation of the selective hydrogenation process is for example carried out by injection, in an ascending or descending current, of the feed of polyunsaturated hydrocarbons and of hydrogen in at least one fixed bed reactor. Said reactor may be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred. The polyunsaturated hydrocarbon feedstock can advantageously be diluted by one or more re-injections of the effluent, coming from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor. reactor in order to limit the temperature gradient in the reactor. The technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor. The hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur. The selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5 + cuts from steam cracking can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the carbonated for cuts C2 and C2-C3. A liquid phase reaction lowers the energy cost and increases the cycle time of the catalyst.
D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h 1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire comprise entre 100 et 40000 h 1 pour un procédé réalisé en phase gazeuse. In general, the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300 ° C is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed (defined as ratio of the volume flow rate of feed to the volume of the catalyst) of between 0.1 and 200 h 1 for a process carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed of between 100 and 40,000 h 1 for a process carried out in the gas phase.
Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h 1, de préférence entre 1 et 50 h 1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa. In one embodiment according to the invention, when carrying out a selective hydrogenation process in which the feed is a steam cracked gasoline comprising polyunsaturated compounds, the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally included between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0, the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1 and the pressure is generally between 0, 3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,0 et 7,0 MPa. Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(com posés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,5 et 4,0 MPa. More preferably, a selective hydrogenation process is carried out in which the feed is a steam cracking gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa. Even more preferably, a selective hydrogenation process is carried out in which the feed is a steam-cracked gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur. The hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h 1, de préférence entre 500 et 30000 h 1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa. In another embodiment according to the invention, when carrying out a selective hydrogenation process in which the feed is a C2 steam cracking cut and / or a C2-C3 steam cracking cut comprising polyunsaturated compounds, the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the speed hourly volume (VVH) is generally between 100 and 40,000 h 1 , preferably between 500 and 30,000 h 1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa .
Procédé d’hydrogénation des aromatiques Aromatics hydrogenation process
La présente invention a également pour objet un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C. Ladite charge d’hydrocarbures contenant au moins un composé aromatique ou polyaromatique peut être choisi parmi les coupes pétrolières ou pétrochimiques suivantes : le reformat du reformage catalytique, le kérosène, le gazole léger, le gazole lourd, les distillais de craquage, tels que l’huile de recyclage de FCC, le gazole d’unité de cokéfaction, les distillais d’hydrocraquage. A subject of the present invention is also a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C. , and preferably between 20 and 450 ° C. Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical cuts: reformate from catalytic reforming, kerosene, light gas oil, heavy gas oil, cracked distillates, such as recycle oil from FCC, gas oil from coking unit, hydrocracking distillates.
La teneur en composés aromatiques ou polyaromatiques contenus dans la charge d’hydrocarbures traitée dans le procédé d’hydrogénation selon l’invention est généralement compris entre 0,1 et 80% en poids, de préférence entre 1 et 50% en poids, et de manière particulièrement préférée entre 2 et 35% en poids, le pourcentage étant basé sur le poids total de la charge d’hydrocarbures. Les composés aromatiques présents dans ladite charge d’hydrocarbures sont par exemple le benzène ou des alkylaromatiques tels que le toluène, l'éthylbenzène, l'o-xylène, le m-xylène, ou le p-xylène, ou encore des aromatiques ayant plusieurs noyaux aromatiques (polyaromatiques) tels que le naphtalène. La teneur en soufre ou en chlore de la charge est généralement inférieure à 5000 ppm poids de soufre ou de chlore, de préférence inférieure à 100 ppm poids, et de manière particulièrement préférée inférieure à 10 ppm poids. The content of aromatic or polyaromatic compounds contained in the hydrocarbon feed treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed. The aromatic compounds present in said hydrocarbon feed are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, o-xylene, m-xylene, or p-xylene, or else aromatics having several aromatic (polyaromatic) rings such as naphthalene. The sulfur or chlorine content of the feed is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
La mise en œuvre technologique du procédé d’hydrogénation des composés aromatiques ou polyaromatiques est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré- injection (s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation des aromatiques, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation des aromatiques selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is, for example, carried out by injection, in ascending or descending current, of the hydrocarbon feed and hydrogen in at least one fixed bed reactor. Said reactor may be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred. The hydrocarbon feedstock can advantageously be diluted by one or more re-injection (s) of the effluent, coming from said reactor where the aromatic hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the reactor. the outlet of the reactor in order to limit the temperature gradient in the reactor. The technological implementation of the aromatics hydrogenation process according to the invention can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a reactor of the type. slurry. The hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
L'hydrogénation des composés aromatiques ou polyaromatiques peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. D'une manière générale, l'hydrogénation des composés aromatiques ou polyaromatiques s'effectue à une température comprise entre 30 et 350°C, de préférence entre 50 et 325°C, à une pression comprise entre 0,1 et 20 MPa, de préférence entre 0,5 et 10 MPa, à un ratio molaire hydrogène/(com posés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 et 50 h 1, de préférence entre 0,1 et 10 h 1 d’une charge d'hydrocarbures contenant des composés aromatiques ou polyaromatiques et ayant un point d'ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C. The hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase. In general, the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature between 30 and 350 ° C, preferably between 50 and 325 ° C, at a pressure between 0.1 and 20 MPa, from preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume speed of between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon feed containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C .
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés aromatiques et de maintenir un excès d’hydrogène en sortie de réacteur. The hydrogen flow rate is adjusted in order to have it in sufficient quantity to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20% en mole, de préférence supérieure à 40% en mole, de manière plus préférée supérieure à 80% en mole, et de manière particulièrement préférée supérieure à 90 % en mole des composés aromatiques ou polyaromatiques contenus dans la charge hydrocarbonée. La conversion se calcule en divisant la différence entre les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures. The conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatics contained in the hydrocarbon feed. The conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the produced by the total moles of aromatic or polyaromatic compounds in the hydrocarbon feed.
Selon une variante particulière du procédé selon l’invention, on réalise un procédé d’hydrogénation du benzène d’une charge d’hydrocarbures, tel que le reformat issu d’une unité de reformage catalytique. La teneur en benzène dans ladite charge d’hydrocarbures est généralement comprise entre 0,1 et 40% poids, de préférence entre 0,5 et 35% poids, et de manière particulièrement préférée entre 2 et 30% poids, le pourcentage en poids étant basé sur le poids total de la charge d’hydrocarbures. According to a particular variant of the process according to the invention, a process is carried out for the hydrogenation of benzene from a hydrocarbon feed, such as the reformate obtained from a catalytic reforming unit. The benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the oil charge.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 10 ppm poids de soufre ou chlore respectivement, et de préférence inférieure à 2 ppm poids. The sulfur or chlorine content of the feed is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
L'hydrogénation du benzène contenu dans la charge d’hydrocarbures peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. Lorsqu’elle est réalisée en phase liquide, un solvant peut être présent, tel que le cyclohexane, l’heptane, l’octane. D'une manière générale, l'hydrogénation du benzène s'effectue à une température comprise entre 30 et 250°C, de préférence entre 50 et 200°C, et de manière plus préférée entre 80 et 180°C, à une pression comprise entre 0,1 et 10 MPa, de préférence entre 0,5 et 4 MPa, à un ratio molaire hydrogène/(benzène) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 et 50 h 1, de préférence entre 0,5 et 10 h 1. The hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase. When it is carried out in the liquid phase, a solvent may be present, such as cyclohexane, heptane, octane. In general, the hydrogenation of benzene is carried out at a temperature between 30 and 250 ° C, preferably between 50 and 200 ° C, and more preferably between 80 and 180 ° C, at a pressure of between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at an hourly volume speed of between 0.05 and 50 h 1 , of preferably between 0.5 and 10 h 1 .
La conversion du benzène est généralement supérieure à 50% en mole, de préférence supérieure à 80% en mole, de manière plus préférée supérieure à 90% en mole et de manière particulièrement préférée supérieure à 98 % en mole. The conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
L’invention va maintenant être illustré via les exemples ci-après qui ne sont nullement limitatifs. The invention will now be illustrated via the examples below which are in no way limiting.
Exemples Examples
Exemple 1 : Préparation de l’alumine AL-1 Example 1: Preparation of AL-1 alumina
Un gel d’alumine est synthétisé via un mélange d’aluminate de sodium et de sulfate d’aluminium. La réaction de précipitation se fait à une température de 60°C, à un pH de 9, durant 60 minutes et sous une agitation de 200 tr/min. An alumina gel is synthesized using a mixture of sodium aluminate and aluminum sulfate. The precipitation reaction is carried out at a temperature of 60 ° C., at a pH of 9, for 60 minutes and with stirring at 200 rpm.
Le gel ainsi obtenu subit un malaxage sur un malaxeur bras en Z pour fournir la pâte. L’extrusion est réalisée par passage de la pâte à travers une filière munie d’orifices de diamètre 1 ,6 mm en forme de trilobé. Les extrudés ainsi obtenus sont séchés sous flux d’air sec à 150°C pendant 12 heures puis calciné à 450°C sous flux d’air sec pendant 5 heures. L’extrudé subit un traitement hydrothermal à 650°C en présence d'une solution aqueuse contenant de l’acide acétique à 6,5% poids par rapport au poids d”alumine pendant 3 heures en autoclave, puis est calciné sous air sec à 1000°C pendant 2 heures en réacteur tubulaire. On obtient l’alumine AL-1. The gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste. The extrusion is carried out by passing the paste through a die provided with orifices of diameter 1.6 mm in the shape of a trilobe. The extrudates thus obtained are dried under a flow of dry air at 150 ° C. for 12 hours and then calcined at 450 ° C. under a flow of dry air for 5 hours. The extrude undergoes a hydrothermal treatment at 650 ° C in the presence of an aqueous solution containing acetic acid at 6.5% by weight relative to the weight of alumina for 3 hours. in an autoclave, then calcined in dry air at 1000 ° C. for 2 hours in a tubular reactor. AL-1 alumina is obtained.
L’alumine AL-1 présente une surface spécifique de 80 m2/g, un volume poreux (déterminé par porosimétrie au Hg) de 0,85 mL/g et un diamètre mésoporeux de 35 nm. AL-1 alumina has a specific surface area of 80 m 2 / g, a pore volume (determined by Hg porosimetry) of 0.85 mL / g and a mesoporous diameter of 35 nm.
La teneur en sodium est de 0,0350% en poids par rapport au poids total de l’alumine et la teneur en soufre est de 0,15% en poids par rapport au poids total de l’alumine. The sodium content is 0.0350% by weight based on the total weight of the alumina and the sulfur content is 0.15% by weight based on the total weight of the alumina.
Exemple 1 bis : Préparation de l’alumine AL-2 Example 1a: Preparation of AL-2 alumina
Un gel d’alumine est synthétisé via un mélange d’aluminate de sodium et de sulfate d’aluminium. La réaction de précipitation se fait à une température de 60°C, à un pH de 9, durant 60 minutes et sous une agitation de 200 tr/min. An alumina gel is synthesized using a mixture of sodium aluminate and aluminum sulfate. The precipitation reaction is carried out at a temperature of 60 ° C., at a pH of 9, for 60 minutes and with stirring at 200 rpm.
Le gel ainsi obtenu subit un malaxage sur un malaxeur bras en Z pour fournir la pâte. L’extrusion est réalisée par passage de la pâte à travers une filière munie d’orifices de diamètre 1 ,6 mm en forme de trilobé. Les extrudés ainsi obtenus sont séchés sous flux d’air sec à 150°C pendant 12 heures puis calciné à 450°C sous flux d’air sec pendant 5 heures. The gel thus obtained undergoes mixing on a Z-arm mixer to provide the paste. The extrusion is carried out by passing the paste through a die provided with orifices of 1.6 mm diameter in the shape of a trilobe. The extrudates thus obtained are dried under a flow of dry air at 150 ° C for 12 hours and then calcined at 450 ° C under a flow of dry air for 5 hours.
On obtient l’alumine AL-2. The AL-2 alumina is obtained.
L’alumine AL-2 présente une surface spécifique de 250 m2/g, un volume poreux (déterminé par porosimétrie au Hg) de 0,7 mL/g et un diamètre médian mésoporeux de 12 nm. AL-2 alumina has a specific surface area of 250 m 2 / g, a pore volume (determined by Hg porosimetry) of 0.7 mL / g and a median mesoporous diameter of 12 nm.
La teneur en sodium est de 0,0350% en poids par rapport au poids total de l’alumine et la teneur en soufre est de 0,15% en poids par rapport au poids total de l’alumine.
Figure imgf000033_0001
The sodium content is 0.0350% by weight relative to the total weight of the alumina and the sulfur content is 0.15% by weight relative to the total weight of the alumina.
Figure imgf000033_0001
La solution aqueuse de précurseurs de Ni (solution S1) utilisée pour la préparation du catalyseur A est préparée en dissolvant 43,5 grammes (g) de nitrate de nickel (NiN03, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S1 dont la concentration en Ni est de 350 g de Ni par litre de solution. The aqueous solution of Ni precursors (solution S1) used for the preparation of catalyst A is prepared by dissolving 43.5 grams (g) of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. The solution S1 is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
Exemple 2bis : Préparation d’une solution aqueuse des précurseurs de l’alliage NiCu (5%Ni)Example 2a: Preparation of an aqueous solution of the precursors of the NiCu alloy (5% Ni)
La solution aqueuse de précurseurs de Ni (solution S2) est préparée en dissolvant 14,5 g de nitrate de nickel (NiN03, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S2 dont la concentration en Ni est de 116,6 g de Ni par litre de solution. Le précurseur de nitrate de cuivre est ensuite ajouté afin d’avoir un ratio molaire Ni/Cu dans la gamme revendiquée selon l’invention et notamment un ratio molaire Ni/Cu de 3 et 1 selon les exemples. Exemple 3 : Préparation d’un catalyseur A selon invention (conforme) The aqueous solution of Ni precursors (solution S2) is prepared by dissolving 14.5 g of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. Solution S2 is obtained, the Ni concentration of which is 116.6 g of Ni per liter of solution. The copper nitrate precursor is then added in order to have an Ni / Cu molar ratio within the range claimed according to the invention and in particular a Ni / Cu molar ratio of 3 and 1 according to the examples. Example 3: Preparation of a catalyst A according to the invention (in accordance)
La solution S1 préparée à l’exemple 2 est imprégnée à sec, en l’ajoutant goutte-à-goutte, sur 10 g d'alumine AL-1 obtenue selon l’exemple 1. The S1 solution prepared in Example 2 is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. L’air sec utilisé dans cet exemple et dans tous les exemples ci-dessous contient moins de 5 grammes d’eau par kilogramme d’air. On obtient le précurseur de catalyseur A’. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours. The dry air used in this example and all of the examples below contains less than 5 grams of water per kilogram of air. Catalyst A 'precursor is obtained.
Le précurseur de catalyseur ainsi obtenu est imprégné à sec avec une solution aqueuse contenant de l’acide formique avec le ratio molaire HCOOH/Ni égal à 1 mol/mol. The catalyst precursor thus obtained is dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
A l'issue de l'imprégnation de la solution aqueuse contenant l’acide formique, le précurseur de catalyseur subit un traitement thermique à 150°C, pendant 2 heures sous un flux d’air contenant 50 grammes d’eau par kilogramme d’air sec avec un débit de 1 L/h/g de catalyseur, puis pendant 1 heure à 120°C sous flux d’air sec. At the end of the impregnation of the aqueous solution containing formic acid, the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
Ensuite la solution S2, préparée à l’exemple 2 bis, est ajoutée au précurseur de catalyseur. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Then solution S2, prepared in Example 2a, is added to the catalyst precursor. The Ni content targeted in this step is 5% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 9 ci-après. The catalyst precursor is then reduced under the conditions as described in Example 9 below.
On obtient le catalyseur A dont les caractéristiques sont reportées dans les tableaux 1 et 2 ci-dessous. Catalyst A is obtained, the characteristics of which are shown in Tables 1 and 2 below.
Exemple 4 : Préparation d’un catalyseur B selon invention (conforme) Example 4: Preparation of a catalyst B according to the invention (in accordance)
La solution S2, préparée à l’exemple 2 bis, est imprégnée à sec, en l’ajoutant goutte-à- goutte, sur 10 g d'alumine AL-1 obtenue selon l’exemple 1. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. On obtient le précurseur de catalyseur B’. Solution S2, prepared in Example 2a, is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1. The Ni content referred to in this step is 5% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours. The catalyst B 'precursor is obtained.
Ensuite, la solution S1 préparée à l’exemple 2 est imprégnée à sec, en l’ajoutant goutte-à- goutte, au précurseur de catalyseur B’. Then, the S1 solution prepared in Example 2 is dry impregnated, adding it dropwise, to the catalyst precursor B '.
Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le précurseur de catalyseur ainsi obtenu est ensuite imprégné à sec avec une solution aqueuse contenant de l’acide formique avec le ratio molaire HCOOH/Ni égal à 1 mol/mol. A l'issue de l'imprégnation de la solution aqueuse contenant l’acide formique, le précurseur de catalyseur subit un traitement thermique à 150°C, pendant 2 heures sous un flux d’air contenant 50 grammes d’eau par kilogramme d’air sec avec un débit de 1 L/h/g de catalyseur, puis pendant 1 heure à 120°C sous flux d’air sec. The catalyst precursor thus obtained is then dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol. At the end of the impregnation of the aqueous solution containing formic acid, the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 9 ci-après. The catalyst precursor is then reduced under the conditions as described in Example 9 below.
On obtient le catalyseur B dont les caractéristiques sont reportées dans les tableaux 1 et 2 ci-dessous. Catalyst B is obtained, the characteristics of which are shown in Tables 1 and 2 below.
Exemple 5 : Préparation d’un catalyseur C non-conforme à l’invention Example 5: Preparation of a catalyst C not in accordance with the invention
La solution S2, préparée à l’exemple 2 bis, est imprégnée à sec, en l’ajoutant goutte-à- goutte, sur 10 g d'alumine AL-2 obtenue selon l’exemple 1 bis. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. On obtient le précurseur de catalyseur C’. Solution S2, prepared in Example 2 bis, is dry impregnated, by adding it dropwise, onto 10 g of AL-2 alumina obtained according to Example 1 bis. The Ni content targeted in this step is 5% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours. The catalyst precursor C 'is obtained.
Ensuite, la solution S1 préparée à l’exemple 2 est imprégnée à sec, en l’ajoutant goutte-à- goutte, le précurseur de catalyseur final. Then, the S1 solution prepared in Example 2 is dry impregnated, adding it dropwise, the final catalyst precursor.
Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le précurseur de catalyseur ainsi obtenu est ensuite imprégné à sec avec une solution aqueuse contenant de l’acide formique avec le ratio molaire HCOOH/Ni égal à 1 mol/mol. The catalyst precursor thus obtained is then dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
A l'issue de l'imprégnation de la solution aqueuse contenant l’acide formique, le précurseur de catalyseur subit un traitement thermique à 150°C, pendant 2 heures sous un flux d’air contenant 50 grammes d’eau par kilogramme d’air sec avec un débit de 1 L/h/g de catalyseur, puis pendant 1 heure à 120°C sous flux d’air sec. At the end of the impregnation of the aqueous solution containing formic acid, the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 9 ci-après. The catalyst precursor is then reduced under the conditions as described in Example 9 below.
On obtient le catalyseur C dont les caractéristiques sont reportées dans les tableaux 1 et 2 ci-dessous. Catalyst C is obtained, the characteristics of which are shown in Tables 1 and 2 below.
Exemple 6 : Préparation d’un catalyseur D (non-conforme) Example 6: Preparation of a catalyst D (non-compliant)
La solution S2, préparée à l’exemple 2 bis, est imprégnée à sec, en l’ajoutant goutte-à- goutte, sur 10 g d'alumine AL-1 obtenue selon l’exemple 1. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. On obtient le précurseur de catalyseur D’. Solution S2, prepared in Example 2a, is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1. The Ni content referred to in this step is 5% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C. for 2 hours. The catalyst precursor D 'is obtained.
Ensuite, la solution S1 préparée à l’exemple 2 est imprégnée à sec, en l’ajoutant goutte-à- goutte, le précurseur de catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Then, the S1 solution prepared in Example 2 is dry impregnated, adding it dropwise, the final catalyst precursor. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 9 ci-après. The catalyst precursor is then reduced under the conditions as described in Example 9 below.
On obtient le catalyseur D dont les caractéristiques sont reportées dans les tableaux 1 et 2 ci-dessous. Catalyst D is obtained, the characteristics of which are shown in Tables 1 and 2 below.
Exemple 7 : Préparation d’un catalyseur E (non-conforme) Example 7: Preparation of a catalyst E (non-compliant)
La solution S2, préparée à l’exemple 2 bis, est imprégnée à sec, en l’ajoutant goutte-à- goutte, sur 10 g d'alumine AL-1 obtenue selon l’exemple 1. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Solution S2, prepared in Example 2a, is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1. The Ni content referred to in this step is 5% by weight of Ni relative to the weight of the final catalyst. The solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
On obtient le précurseur de catalyseur E’. The catalyst precursor E 'is obtained.
Ensuite la solution S1 préparée à l’exemple 2 est imprégnée à sec, en l’ajoutant goutte-à- goutte, le précurseur E’. Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Then the S1 solution prepared in Example 2 is impregnated to dryness, adding it dropwise, the precursor E ’. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le précurseur de catalyseur ainsi obtenu est imprégné à sec avec une solution aqueuse contenant de l’acide formique avec le ratio molaire HCOOH/Ni égal à 1 mol/mol. The catalyst precursor thus obtained is dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C, then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 9 ci-après. The catalyst precursor is then reduced under the conditions as described in Example 9 below.
On obtient le catalyseur E dont les caractéristiques sont reportées dans les tableaux 1 et 2 ci-dessous. Catalyst E is obtained, the characteristics of which are shown in Tables 1 and 2 below.
Exemple 8 : Préparation d’un catalyseur F (non-conforme) Example 8: Preparation of a catalyst F (non-compliant)
La solution S1 préparée à l’exemple 2 est imprégnée à sec, en l’ajoutant goutte-à-goutte, sur 10 g d'alumine AL-1 obtenue selon l’exemple 1. The S1 solution prepared in Example 2 is dry impregnated, by adding it dropwise, onto 10 g of AL-1 alumina obtained according to Example 1.
Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. On obtient le précurseur de catalyseur F’. Le précurseur de catalyseur ainsi obtenu est imprégné à sec avec une solution aqueuse contenant de l’acide formique avec le ratio molaire HCOOH/Ni égal à 1 mol/mol. The solid thus obtained is then dried in an oven for 12 hours at 120 ° C., then calcined under a flow of dry air of 1 L / h / g of catalyst at 450 ° C. for 2 hours. The catalyst precursor F 'is obtained. The catalyst precursor thus obtained is dry impregnated with an aqueous solution containing formic acid with the HCOOH / Ni molar ratio equal to 1 mol / mol.
A l'issue de l'imprégnation de la solution aqueuse contenant l’acide formique, le précurseur de catalyseur subit un traitement thermique à 150°C, pendant 2 heures sous un flux d’air contenant 50 grammes d’eau par kilogramme d’air sec avec un débit de 1 L/h/g de catalyseur, puis pendant 1 heure à 120°C sous flux d’air sec. At the end of the impregnation of the aqueous solution containing formic acid, the catalyst precursor undergoes a heat treatment at 150 ° C. for 2 hours under a flow of air containing 50 grams of water per kilogram of dry air with a flow rate of 1 L / h / g of catalyst, then for 1 hour at 120 ° C. under a flow of dry air.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 9 ci-après. On obtient le catalyseur F dont les caractéristiques sont reportées dans les tableaux 1 et 2 ci-dessous. The catalyst precursor is then reduced under the conditions as described in Example 9 below. Catalyst F is obtained, the characteristics of which are shown in Tables 1 and 2 below.
Exemple 9 : Caractérisation Example 9: Characterization
Tous les catalyseurs contiennent les teneurs visées lors de l’imprégnation c'est-à-dire 15% en élément nickel (caractérisé par Fluorescence X) par rapport au poids total du catalyseur, et le % de cuivre ajouté (caractérisé par Fluorescence X). All the catalysts contain the target contents during the impregnation, i.e. 15% of nickel element (characterized by Fluorescence X) relative to the total weight of the catalyst, and the% of added copper (characterized by Fluorescence X) .
La quantité d’alliage obtenue après l’étape de calcination puis l’étape de réduction a été déterminée par analyse par diffraction des rayons X (DRX) sur des échantillons de catalyseur sous forme de poudre. The amount of alloy obtained after the calcination step and then the reduction step was determined by X-ray diffraction analysis (XRD) on samples of the catalyst in powder form.
La quantité de nickel sous forme métallique obtenue après l’étape de réduction a été déterminée par analyse par diffraction des rayons X (DRX) sur des échantillons de catalyseur sous forme de poudre. Entre l’étape de réduction et pendant toute la durée de la caractérisation par DRX les catalyseurs ne sont jamais remis à l’air libre. Les diagrammes de diffraction sont obtenus par analyse radiocristallographique au moyen d'un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Ka1 du cuivre (l = 1 ,5406 The amount of metallic nickel obtained after the reduction step was determined by X-ray diffraction (XRD) analysis on samples of the catalyst in powder form. Between the reduction step and throughout the duration of the XRD characterization, the catalysts are never vented. The diffraction patterns are obtained by radiocrystallographic analysis using a diffractometer using the classical powder method with the Ka1 radiation of copper (l = 1, 5406
A). AT).
Le taux de réduction a été calculé en calculant l’aire de la raie de Ni0 située vers 52°2Q, sur l’ensemble des diffractogrammes de chaque échantillon de catalyseur analysé, puis en soustrayant le signal présent dès la température ambiante sous la raie à 52° et qui est dû à l’alumine. The reduction rate was calculated by calculating the area of the Ni 0 line located around 52 ° 2Q, on all the diffractograms of each sample of catalyst analyzed, then by subtracting the signal present from ambient temperature under the line. at 52 ° and which is due to alumina.
La tableau 1 ci-après rassemble les taux de réduction ou encore la teneur en nickel métallique Ni° (exprimée en % poids par rapport au poids total de Ni actif, i.e. sans prendre en compte le nickel qui compose l’alliage) pour tous les catalyseurs A à F caractérisés par DRX après une étape de réduction à 170°C pendant 90 minutes sous flux d’hydrogène. Ces valeurs ont également été comparées avec le taux de réduction obtenu pour le catalyseur F (Ni seul) après une étape de réduction classique (c’est-à-dire à une température de 400C° pendant 16 heures sous flux d’hydrogène). A température ambiante sur tous les catalyseurs, après calcination, contenant du cuivre et du nickel, nous détectons de l’alumine sous forme delta et thêta, et des grandes raies de NiO et de CuO. Table 1 below collates the reduction rates or even the metallic nickel content Ni ° (expressed in% by weight relative to the total weight of active Ni, ie without taking into account the nickel which makes up the alloy) for all catalysts A to F characterized by DRX after a reduction step at 170 ° C for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst F (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C. for 16 hours under a flow of hydrogen). At room temperature on all the catalysts, after calcination, containing copper and nickel, we detect alumina in delta and theta form, and large lines of NiO and CuO.
Nous détectons par ailleurs après réduction une raie correspondant à l’alliage sous forme NÎO,76CUO,24. We also detect after reduction a line corresponding to the alloy in the form NÎO, 76CUO, 24.
Afin d’évaluer le taux de réductibilité et donc la formation du Ni0, on mesure l’aire de la raie de Ni0 située vers 52°2Q, sur l’ensemble des diffractogrammes, en soustrayant le signal présent dès la température ambiante sous la raie à 52° et qui est dû à l’alumine. On peut ainsi déterminer le pourcentage relatif de Ni0 cristallisé après la réduction. Le tableau 1 ci-dessous récapitule les taux de réductibilité ou encore la teneur en Ni° pour tous les catalyseurs caractérisés par DRX après réduction à 170°C pendant 90 minutes sous flux d’hydrogène. Ces valeurs ont également été comparées avec le taux de réduction obtenu pour le catalyseur F (Ni seul) après une étape de réduction classique (c’est-à-dire à une température de 400C° pendant 15 heures sous flux d’hydrogène). In order to evaluate the rate of reducibility and therefore the formation of Ni 0 , the area of the Ni 0 line located around 52 ° 2Q is measured, on all the diffractograms, by subtracting the signal present from ambient temperature under the line at 52 ° and which is due to the alumina. It is thus possible to determine the relative percentage of Ni 0 crystallized after reduction. Table 1 below recapitulates the reducibility rates or else the Ni ° content for all the catalysts characterized by DRX after reduction at 170 ° C. for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst F (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C. for 15 hours under a flow of hydrogen).
Figure imgf000038_0001
Figure imgf000038_0001
Tableau 1 : Caractéristiques des catalyseurs A à F
Figure imgf000039_0001
Table 1: Characteristics of catalysts A to F
Figure imgf000039_0001
*T aille des particules des 15% du Nickel qui ne composent pas l’alliage. Tableau 2 : Caractéristiques des catalyseurs A à F Exemple 10 : Tests catalytiques : performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (A ym) * The particles of the 15% of Nickel which do not make up the alloy. Table 2: Characteristics of catalysts A to F Example 10: Catalytic tests: performance in selective hydrogenation of a mixture containing styrene and isoprene (A y m)
Les catalyseurs A à F décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène. Catalysts A to F described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
La composition de la charge à hydrogéner sélectivement est la suivante : 8 % pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 % pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 % pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse. The composition of the feed to be selectively hydrogenated is as follows: 8% wt styrene (supplier Sigma Aldrich®, purity 99%), 8% wt isoprene (supplier Sigma Aldrich®, purity 99%), 84% wt n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC). This composition corresponds to the initial composition of the reaction mixture. This mixture of model molecules is representative of a pyrolysis essence.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C. The selective hydrogenation reaction is carried out in a 500 mL autoclave made of stainless steel, fitted with mechanical stirring with magnetic drive and capable of operating under a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C and 200 ° C.
Dans un autoclave sont ajoutés 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC) et une quantité de 3 mL de catalyseur. L’autoclave est fermé et purgé. Ensuite l’autoclave est pressurisé sous 35 bar (3,5 MPa) d’hydrogène. Le catalyseur est d’abord réduit in situ, à 170 °C pendant 90 minutes sous un flux d'hydrogène de 1 L/h/g (rampe de montée en température de 1 °C/min) pour les catalyseurs A à F (ce qui correspond ici à l’étape f) du procédé de préparation selon l’invention selon un mode de réalisation). Ensuite l’autoclave est porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. 214 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC) and a quantity of 3 mL of catalyst are added in an autoclave. The autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen. The catalyst is first reduced in situ, at 170 ° C for 90 minutes under a hydrogen flow of 1 L / h / g (temperature rise ramp of 1 ° C / min) for catalysts A to F ( which corresponds here to step f) of the preparation process according to the invention according to one embodiment). Then the autoclave is brought to the test temperature equal to 30 ° C. At time t = 0, about 30 g of a mixture containing styrene, isoprene, n-heptane are introduced into the autoclave. The reaction mixture then has the composition described above and the stirring is started at 1600 rpm. The pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
Un autre test a été effectué pour le catalyseur F, mais avec une température de réduction du catalyseur de 400°C pendant 16 heures dans un réacteur en flux traversé en ex situ. Another test was performed for catalyst F, but with a catalyst reduction temperature of 400 ° C for 16 hours in an ex situ cross-flow reactor.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni. The progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. The hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
Les activités catalytiques mesurées pour les catalyseurs A à F sont reportées dans le tableau 3 ci-après. Elles sont rapportées à l’activité catalytique (AHYD1) mesurée pour le catalyseur E. Pour comparaison, le catalyseur F préparé sans la présence de NiCu, a été testé préparé dans les conditions classiques de réduction (à une température de 400°C pendant 16 heures sous flux d’hydrogène). The catalytic activities measured for catalysts A to F are reported in Table 3 below. They are related to the catalytic activity (AHYD1) measured for catalyst E. For comparison, catalyst F prepared without the presence of NiCu, was tested prepared under conventional reduction conditions (at a temperature of 400 ° C for 16 hours under hydrogen flow).
Exemple 11 : Tests catalytiques : performances en hydrogénation du toluène
Figure imgf000041_0001
Example 11: Catalytic tests: performance in hydrogenation of toluene
Figure imgf000041_0001
Les catalyseurs A à F décrits dans les exemples ci-dessus sont également testés vis-à-vis de la réaction d'hydrogénation du toluène. Catalysts A to F described in the examples above are also tested against the reaction of hydrogenation of toluene.
La réaction d'hydrogénation sélective est opérée dans le même autoclave que celui décrit à l’exemple 10. The selective hydrogenation reaction is carried out in the same autoclave as that described in Example 10.
Dans un autoclave sont ajoutés 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC) et une quantité de 3 mL de catalyseur. L’autoclave est fermé et purgé. Ensuite l’autoclave est pressurisé sous 35 bar (3,5 MPa) d’hydrogène. Le catalyseur est d’abord réduit in situ, à 170 °C pendant 90 minutes sous un flux d'hydrogène de 1 L/h/g (rampe de montée en température de 1 °C/min) pour les catalyseurs A à F (ce qui correspond ici à l’étape f) du procédé de préparation selon l’invention selon un mode de réalisation). Après l’ajout de 216 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 80°C. Au temps t=0, environ 26 g de toluène (fournisseur SDS®, pureté > 99,8%) sont introduits dans l’autoclave (la composition initiale du mélange réactionnel est alors toluène 6 % pds / n-heptane 94 % pds) et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. 214 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC) and a quantity of 3 mL of catalyst are added in an autoclave. The autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen. The catalyst is first reduced in situ, at 170 ° C for 90 minutes under a hydrogen flow of 1 L / h / g (temperature rise ramp of 1 ° C / min) for catalysts A to F ( which corresponds here to step f) of the preparation process according to the invention according to one embodiment). After the addition of 216 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the test temperature equal to 80 ° C. At time t = 0, approximately 26 g of toluene (supplier SDS®, purity> 99.8%) are introduced into the autoclave (the initial composition of the reaction mixture is then toluene 6% wt / n-heptane 94% wt) and agitation is started at 1600 rpm. The pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le toluène est totalement hydrogéné en méthylcyclohexane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni. The progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the toluene is completely hydrogenated to methylcyclohexane. The hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor. Catalytic activity is expressed in moles of H2 consumed per minute and per gram of Ni.
Les activités catalytiques mesurées pour les catalyseurs A à F sont reportées dans le tableau 3 ci-après. Elles sont rapportées à l’activité catalytique (AHYD2) mesurée pour le catalyseur E. Pour comparaison le catalyseur F préparé sans la présence de NiCu, a été testé préparé dans les conditions classiques de réduction (à une température de 400°C pendant 16 heures sous flux d’hydrogène).
Figure imgf000042_0001
The catalytic activities measured for catalysts A to F are reported in Table 3 below. They are related to the catalytic activity (AHYD2) measured for catalyst E. For comparison, catalyst F prepared without the presence of NiCu, was tested, prepared under conventional reduction conditions (at a temperature of 400 ° C. for 16 hours under hydrogen flow).
Figure imgf000042_0001
contenant du styrène et de l'isoprène (AHYDI) et en hydrogénation du toluène (AHYD2) containing styrene and isoprene (A H YDI) and hydrogenating toluene (A H YD2)
Ceci montre bien les performances améliorées des catalyseurs A et B selon l’invention, par rapport aux catalyseurs C à F non conformes. Les catalyseurs A et B du fait de la répartition en croûte du Ni et de la présence de l’alliage NiCu, qui permet d’avoir environ 90% du Ni sous sa forme réduite dès 170°C, présentent des activités du même ordre de grandeur que le catalyseur F réduit à 400°C pendant 16h. This clearly shows the improved performance of catalysts A and B according to the invention, compared to catalysts C to F which do not conform. Catalysts A and B due to the crust distribution of Ni and the presence of the NiCu alloy, which makes it possible to have approximately 90% of the Ni in its reduced form from 170 ° C, exhibit activities of the same order of magnitude that catalyst F reduced at 400 ° C for 16h.
Le catalyseur F réduit à 170°C n’est pas du tout actif car il ne présente pas de Ni sous sa forme réduite. Les catalyseurs C, D et E ont une répartition homogène du Ni dans tout le grain (utilisation de l’alumine AL-2 non conforme selon l’invention pour C et étapes du procédés de préparation non conformes pour D et E) et présentent dès lors une activité bien en retrait des catalyseurs A et B en AHYD1 et AHYD2. Catalyst F reduced at 170 ° C is not at all active because it does not have Ni in its reduced form. Catalysts C, D and E have a homogeneous distribution of Ni throughout the grain (use of AL-2 alumina not in accordance with the invention for C and steps of the preparation process not in accordance with D and E) and present from during an activity well behind catalysts A and B in AHYD1 and AHYD2.

Claims

REVENDICATIONS
1. Catalyseur comprenant du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, et d’un second élément métallique de cuivre, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que : 1. Catalyst comprising nickel and copper, in an amount of 1 and 50% by weight of nickel element relative to the total weight of the catalyst, and of a second metallic element of copper, in an amount of 0.5 to 15% in weight of copper element relative to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that:
- le nickel est réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte étant comprise entre 2% et 15% du diamètre du catalyseur ; the nickel is distributed both over a crust at the periphery of the support, and at the core of the support, the thickness of said crust being between 2% and 15% of the diameter of the catalyst;
- le ratio de densité en nickel entre la croûte et le cœur est supérieur strictement à 3 ; - the nickel density ratio between the crust and the core is strictly greater than 3;
- ladite croûte comprend plus de 25% en poids élément nickel par rapport au poids total de nickel contenu dans le catalyseur ; - Said crust comprises more than 25% by weight of the nickel element relative to the total weight of nickel contained in the catalyst;
- le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol ; - the molar ratio between nickel and copper is between 0.5 and 5 mol / mol;
- au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre ; - at least part of the nickel and copper is in the form of a nickel-copper alloy;
- la teneur en nickel comprise dans l’alliage nickel-cuivre est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur, - the nickel content in the nickel-copper alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst,
- la taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est comprise entre 7 et 25 nm. the size of the nickel particles, measured in oxide form, in the catalyst is between 7 and 25 nm.
2. Catalyseur selon la revendication 1 , dans lequel le ratio de densité en nickel entre la croûte et le cœur est supérieur ou égal à 3,5. 2. Catalyst according to claim 1, in which the nickel density ratio between the crust and the core is greater than or equal to 3.5.
3. Catalyseur selon l’une des revendications 1 ou 2, dans lequel ladite croûte comprend plus de 40% en poids élément nickel par rapport au poids total de nickel contenu dans le catalyseur. 3. Catalyst according to one of claims 1 or 2, wherein said crust comprises more than 40% by weight of the element nickel relative to the total weight of nickel contained in the catalyst.
4. Catalyseur selon l’une quelconque des revendications 1 à 3, dans lequel l’intervalle de transition entre le cœur et la croûte du catalyseur est compris entre 0,05% et 3% du diamètre du catalyseur. 4. Catalyst according to any one of claims 1 to 3, wherein the transition interval between the core and the catalyst crust is between 0.05% and 3% of the diameter of the catalyst.
5. Catalyseur selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la taille des particules de nickel dans le catalyseur est comprise entre 8 et 23 nm. 5. Catalyst according to any one of claims 1 to 4, characterized in that the size of the nickel particles in the catalyst is between 8 and 23 nm.
6. Catalyseur selon l’une quelconque des revendications 1 à 5, dans lequel la teneur en soufre du support d’alumine est comprise entre 0,001% et 2% poids par rapport au poids total du support d’alumine, et la teneur en sodium dudit support d’alumine est comprise entre 0,001% et 2% poids par rapport au poids total dudit gel d'alumine. 6. Catalyst according to any one of claims 1 to 5, wherein the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support, and the sodium content. of said alumina support is between 0.001% and 2% by weight relative to the total weight of said alumina gel.
7. Catalyseur selon l’une quelconque des revendications 1 à 6, caractérisé en ce que l'épaisseur de ladite croûte est comprise entre 2,5% et 12% du diamètre du catalyseur; 7. Catalyst according to any one of claims 1 to 6, characterized in that the thickness of said crust is between 2.5% and 12% of the diameter of the catalyst;
8. Catalyseur selon l’une quelconque des revendications 1 à 7, caractérisé en ce que le ratio de densité en nickel entre la croûte et le cœur est compris entre 3,8 et 15. 8. Catalyst according to any one of claims 1 to 7, characterized in that the nickel density ratio between the crust and the core is between 3.8 and 15.
9. Procédé de préparation d’un catalyseur selon l’une quelconque des revendications 1 à 8, ledit procédé étant caractérisé en ce que : 9. Process for preparing a catalyst according to any one of claims 1 to 8, said process being characterized in that:
a) on approvisionne un gel d’alumine ; a) an alumina gel is supplied;
b) on met en forme le gel d’alumine de l’étape a) ; b) shaping the alumina gel from step a);
c) on soumet le gel d’alumine mis en forme obtenu à l’issue de l’étape b) à un traitement thermique comprenant au moins une étape de traitement hydrothermal dans un autoclave en présence d’une solution acide, à une température comprise entre 100 et 800°C, et au moins une étape de calcination, à une température comprise entre 400 et 1500°C, réalisée après l'étape de traitement hydrothermal, pour obtenir un support d’alumine ; c) the shaped alumina gel obtained at the end of step b) is subjected to a heat treatment comprising at least one hydrothermal treatment step in an autoclave in the presence of an acid solution, at a temperature of between 100 and 800 ° C, and at least one calcination step, at a temperature between 400 and 1500 ° C, carried out after the hydrothermal treatment step, to obtain an alumina support;
d) on réalise l’enchaînement des sous-étapes suivantes : d) the sequence of the following sub-steps is carried out:
d1) on met en contact le support d’alumine avec au moins un précurseur de nickel pour obtenir un précurseur de catalyseur, d1) the alumina support is brought into contact with at least one nickel precursor to obtain a catalyst precursor,
d2) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape d1) à une température inférieure à 250°C ; d2) the catalyst precursor obtained at the end of step d1) is dried at a temperature below 250 ° C;
d3) on met en contact le précurseur de catalyseur séché obtenu à l’issue de l’étape d2) avec au moins une solution contenant au moins un additif organique choisi parmi les aldéhydes renfermant 1 à 14 atomes de carbone par molécule, les cétones ou polycétones renfermant 3 à 18 atomes de carbone par molécule, les éthers et les esters renfermant 2 à 14 atomes de carbone par molécule, les alcools ou polyalcools renfermant 1 à 14 atomes de carbone par molécule et les acides carboxyliques ou polyacides carboxyliques renfermant 1 à 14 atomes de carbone par molécule, le ratio molaire entre l’additif organique et le nickel étant supérieur à 0,05 mol/mol ; d3) the dried catalyst precursor obtained at the end of step d2) is brought into contact with at least one solution containing at least one organic additive chosen from aldehydes containing 1 to 14 carbon atoms per molecule, ketones or polyketones containing 3 to 18 carbon atoms per molecule, ethers and esters containing 2 to 14 carbon atoms per molecule, alcohols or polyalcohols containing 1 to 14 carbon atoms per molecule and carboxylic acids or polycarboxylic acids containing 1 to 14 carbon atoms per molecule, the molar ratio between the organic additive and the nickel being greater than 0.05 mol / mol;
d4) on réalise un traitement hydrothermal du précurseur de catalyseur obtenu à l’issue de l’étape d3) à une température comprise entre 100 et 200°C pendant une durée comprise entre 30 minutes et 5 heures sous flux gazeux comprenant entre 5 et 650 grammes d'eau par kg de gaz sec ; d4) a hydrothermal treatment of the catalyst precursor obtained at the end of step d3) is carried out at a temperature between 100 and 200 ° C for a period of between 30 minutes and 5 hours under a gas flow comprising between 5 and 650 grams of water per kg of dry gas;
e) on réalise l’enchaînement des sous-étapes suivantes : e1) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de cuivre et un précurseur de nickel à une concentration en nickel voulue pour obtenir sur le catalyseur final une teneur comprise entre 0,5 et 15 % poids en élément nickel par rapport au poids total du catalyseur final ; e) the sequence of the following sub-steps is carried out: e1) the alumina support is brought into contact with at least one solution containing at least one copper precursor and one nickel precursor at a desired nickel concentration in order to obtain a content of between 0.5 and 15% on the final catalyst weight of nickel element relative to the total weight of the final catalyst;
e2) on réalise au moins une étape de séchage du précurseur de catalyseur obtenu à l’issue de l’étape e1) à une température inférieure à 250°C ; e2) at least one step of drying the catalyst precursor obtained at the end of step e1) is carried out at a temperature below 250 ° C;
les étapes d) et e) étant réalisées séparément dans un ordre indifférent, steps d) and e) being carried out separately in any order,
f) on réduit le précurseur de catalyseur issu des étapes d) et e), ou e) et d), par mise en contact dudit précurseur de catalyseur avec un gaz réducteur à une température supérieure ou égale à 150°C et inférieure à 250°C. f) the catalyst precursor resulting from steps d) and e), or e) and d) is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C.
10. Procédé selon la revendication 9, dans lequel le précurseur de cuivre est choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. 10. The method of claim 9, wherein the copper precursor is selected from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, l copper iodide or copper fluoride.
11. Procédé selon l’une des revendications 9 ou 11 , lequel procédé comprenant en outre une étape de calcination d2’) du précurseur de catalyseur séché obtenu à l’issue de l’étape d2), sous flux gazeux comprenant une quantité d’eau inférieure strictement à 150 grammes d'eau par kg de gaz sec à une température comprise entre 250°C et 1000°C.11. Method according to one of claims 9 or 11, which method further comprising a calcination step d2 ′) of the dried catalyst precursor obtained at the end of step d2), under a gas stream comprising a quantity of water strictly less than 150 grams of water per kg of dry gas at a temperature between 250 ° C and 1000 ° C.
12. Procédé selon l’une quelconque des revendications 9 à 11 , dans lequel à l’étape d3) l’additif organique est choisi parmi l'acide formique, le formaldéhyde, l'acide acétique, l’acide citrique, l’acide oxalique, l’acide glycolique, l’acide malonique, l'éthanol, le méthanol, le formiate d'éthyle, le formiate de méthyle, le paraldéhyde, l'acétaldéhyde, l’acide gamma-valérolactone, le glucose, le sorbitol et le trioxane. 12. Method according to any one of claims 9 to 11, wherein in step d3) the organic additive is chosen from formic acid, formaldehyde, acetic acid, citric acid, acid. oxalic acid, glycolic acid, malonic acid, ethanol, methanol, ethyl formate, methyl formate, paraldehyde, acetaldehyde, gamma-valerolactone acid, glucose, sorbitol and trioxane.
13. Procédé selon l’une quelconque des revendications 9 à 12, dans lequel le ratio molaire entre l’additif organique et le nickel est compris entre 0,1 et 5 mol/mol. 13. A method according to any one of claims 9 to 12, wherein the molar ratio between the organic additive and the nickel is between 0.1 and 5 mol / mol.
14. Procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur selon l’une quelconque des revendications 1 à 8. 14. Process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in phase gas, in the presence of a catalyst according to any one of claims 1 to 8.
15. Procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/( composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 et 50 h 1, en présence d’un catalyseur selon l’une quelconque des revendications 1 à 8. 15. Process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, said process being carried out in gas phase or in liquid phase, at a temperature between 30 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume speed between 0, 05 and 50 h 1 , in the presence of a catalyst according to any one of claims 1 to 8.
PCT/EP2020/070079 2019-07-31 2020-07-16 Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy WO2021018601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1908723 2019-07-31
FR1908723A FR3099386B1 (en) 2019-07-31 2019-07-31 CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST AND A NICKEL COPPER ALLOY

Publications (1)

Publication Number Publication Date
WO2021018601A1 true WO2021018601A1 (en) 2021-02-04

Family

ID=68807007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070079 WO2021018601A1 (en) 2019-07-31 2020-07-16 Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy

Country Status (2)

Country Link
FR (1) FR3099386B1 (en)
WO (1) WO2021018601A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021239496A1 (en) * 2020-05-29 2021-12-02 IFP Energies Nouvelles Method for preparing a catalyst containing an active nickel phase distributed in a shell and a nickel-copper alloy
FR3110863A1 (en) * 2020-05-29 2021-12-03 IFP Energies Nouvelles PROCESS FOR PREPARATION OF A CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY
WO2022002675A1 (en) * 2020-07-03 2022-01-06 IFP Energies Nouvelles Method for preparing a selective hydrogenation catalyst obtained from molten salts and a nickel-copper alloy
WO2022002674A1 (en) * 2020-07-03 2022-01-06 IFP Energies Nouvelles Method for preparing a catalyst obtained from molten salts and a nickel-copper alloy for the hydrogenation of aromatic compounds

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519951A (en) 1983-07-05 1985-05-28 Uop Inc. Selective reduction of fatty materials using a supported group VIII metal in eggshell distribution
EP0387109A1 (en) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Process for the preparation of activated alumina agglomerates, as-produced agglomerates and apparatus for their preparation
US5948942A (en) * 1994-12-13 1999-09-07 Intevep, S.A. Bimetallic catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
FR2922784A1 (en) 2007-10-29 2009-05-01 Inst Francais Du Petrole New catalyst comprising palladium, alkaline and alkaline-earth metal, and porous support comprising refractory oxide having silica, alumina and silica-alumina, useful e.g. in selective hydrogenation process using charge e.g. ketone
FR2927267A1 (en) * 2008-02-07 2009-08-14 Inst Francais Du Petrole SELECTIVE HYDROGENATION CATALYST AND PROCESS FOR PREPARING THE SAME
US20100217052A1 (en) 2007-05-31 2010-08-26 Sud-Chemie Ag Catalyst For The Selective Hydrogenation Of Acetylenic Hydrocarbons And Method For Producing Said Catalyst
CN101890351A (en) 2009-05-21 2010-11-24 中国石油化工股份有限公司 Eggshell type nickel-based catalyst
US20120065442A1 (en) 2009-05-07 2012-03-15 Reinhard Geyer Hydrogenation of aromatics and other unsaturated organic compounds
FR3064500A1 (en) * 2017-03-29 2018-10-05 IFP Energies Nouvelles SELECTIVE HYROGENATION MULTILAYER CATALYST
FR3076746A1 (en) * 2018-01-15 2019-07-19 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A PARTICULAR CATALYST OF SELECTIVE HYDROGENATION BY MIXING AND IMPREGNATION

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519951A (en) 1983-07-05 1985-05-28 Uop Inc. Selective reduction of fatty materials using a supported group VIII metal in eggshell distribution
EP0387109A1 (en) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Process for the preparation of activated alumina agglomerates, as-produced agglomerates and apparatus for their preparation
US5948942A (en) * 1994-12-13 1999-09-07 Intevep, S.A. Bimetallic catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
US20100217052A1 (en) 2007-05-31 2010-08-26 Sud-Chemie Ag Catalyst For The Selective Hydrogenation Of Acetylenic Hydrocarbons And Method For Producing Said Catalyst
FR2922784A1 (en) 2007-10-29 2009-05-01 Inst Francais Du Petrole New catalyst comprising palladium, alkaline and alkaline-earth metal, and porous support comprising refractory oxide having silica, alumina and silica-alumina, useful e.g. in selective hydrogenation process using charge e.g. ketone
FR2927267A1 (en) * 2008-02-07 2009-08-14 Inst Francais Du Petrole SELECTIVE HYDROGENATION CATALYST AND PROCESS FOR PREPARING THE SAME
US20120065442A1 (en) 2009-05-07 2012-03-15 Reinhard Geyer Hydrogenation of aromatics and other unsaturated organic compounds
CN101890351A (en) 2009-05-21 2010-11-24 中国石油化工股份有限公司 Eggshell type nickel-based catalyst
FR3064500A1 (en) * 2017-03-29 2018-10-05 IFP Energies Nouvelles SELECTIVE HYROGENATION MULTILAYER CATALYST
FR3076746A1 (en) * 2018-01-15 2019-07-19 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A PARTICULAR CATALYST OF SELECTIVE HYDROGENATION BY MIXING AND IMPREGNATION

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D.R. LIDE: "CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
J. I. LANGFORDA. J. C. WILSON: "Scherrer after sixty years: A survey and some new results in the détermination of crystallite size", APPL. CRYST., vol. 11, 1978, pages 102 - 113
L. SORBIER ET AL.: "Measurement of palladium crust thickness on catalyst by EPMA", MATERIALS SCIENCE AND ENGINEERING, vol. 32, 2012
MIN KANG ET AL: "Gamma-alumina supported Cu-Ni bimetallic catalysts: Characterization and selective hydrogenation of 1,3-butadiene", CANADIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 80, no. 1, 1 February 2002 (2002-02-01), US, pages 63 - 70, XP055672478, ISSN: 0008-4034, DOI: 10.1002/cjce.5450800107 *
P. EUZENP. RAYBAUDX. KROKIDISH. TOULHOATJ.L. LE LOARERJ.P. JOLIVETC. FROIDEFOND: "Handbook of Porous Solids", 2002, WILEY-VCH, article "Alumina", pages: 1591 - 1677
ROUQUEROL F.ROUQUEROL J.SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021239496A1 (en) * 2020-05-29 2021-12-02 IFP Energies Nouvelles Method for preparing a catalyst containing an active nickel phase distributed in a shell and a nickel-copper alloy
FR3110864A1 (en) * 2020-05-29 2021-12-03 IFP Energies Nouvelles PROCESS FOR PREPARING A CATALYST COMPRISING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST AND A NICKEL COPPER ALLOY
FR3110863A1 (en) * 2020-05-29 2021-12-03 IFP Energies Nouvelles PROCESS FOR PREPARATION OF A CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY
WO2022002675A1 (en) * 2020-07-03 2022-01-06 IFP Energies Nouvelles Method for preparing a selective hydrogenation catalyst obtained from molten salts and a nickel-copper alloy
WO2022002674A1 (en) * 2020-07-03 2022-01-06 IFP Energies Nouvelles Method for preparing a catalyst obtained from molten salts and a nickel-copper alloy for the hydrogenation of aromatic compounds
FR3112088A1 (en) * 2020-07-03 2022-01-07 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A SELECTIVE HYDROGENATION CATALYST OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY
FR3112087A1 (en) * 2020-07-03 2022-01-07 IFP Energies Nouvelles PROCESS FOR PREPARING A CATALYST FOR HYDROGENATION OF AROMATIC COMPOUNDS OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY

Also Published As

Publication number Publication date
FR3099386A1 (en) 2021-02-05
FR3099386B1 (en) 2021-07-16

Similar Documents

Publication Publication Date Title
EP4003588B1 (en) Preparation process of a catalyst comprising an active nickel phase distributed in a shell
EP4003587B1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell and a nickel-copper alloy
WO2021018601A1 (en) Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy
EP3740309B1 (en) Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading
WO2020148132A1 (en) Method for preparing a selective hydrogenation catalyst comprising a step of forming a ni-cu alloy in post-impregnation
EP3911439A1 (en) Process for preparing a selective hydrogenation catalyst, comprising a step of forming a ni-cu alloy in pre-impregnation
FR3080298A1 (en) PROCESS FOR THE PREPARATION OF A BIMETALLIC CATALYST BASED ON NICKEL AND COPPER FOR THE HYDROGENATION OF AROMATIC COMPOUNDS
WO2021018602A1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
EP4003591A1 (en) Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy
FR3080300A1 (en) PROCESS FOR THE PREPARATION OF A BIMETALLIC CATALYST BASED ON NICKEL AND PLATINUM OR PALLADIUM
WO2021018603A1 (en) Catalyst comprising an active nickel sulfur phase distributed in a shell
WO2020148134A1 (en) Method for preparing a catalyst for the hydrogenation of aromatics, comprising a step of forming a ni-cu alloy in post-impregnation
EP4157517A1 (en) Method for preparing a catalyst containing an active nickel phase distributed in a shell and a nickel-copper alloy
WO2021239491A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a crust obtained from molten salts
FR3110863A1 (en) PROCESS FOR PREPARATION OF A CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST OBTAINED FROM MELTED SALTS AND A NICKEL COPPER ALLOY
FR3110865A1 (en) PROCESS FOR PREPARING A CATALYST COMPRISING AN ACTIVE PHASE OF NICKEL IN THE FORM OF SMALL PARTICLES DISTRIBUTED INTO A CRUST AND A NICKEL COPPER ALLOY
WO2024017703A1 (en) Method for preparing a catalyst containing an active nickel phase and a nickel-copper alloy
EP4157521A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a shell
WO2022002675A1 (en) Method for preparing a selective hydrogenation catalyst obtained from molten salts and a nickel-copper alloy
EP4373611A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a shell via hexanol impregnation
WO2023001642A1 (en) Method for preparing a catalyst comprising a nickel active phase distributed in a crust via impregnation of heptanol
FR3110862A1 (en) PROCESS FOR PREPARING A CATALYST CONTAINING AN ACTIVE PHASE OF NICKEL IN THE FORM OF SMALL PARTICLES DISTRIBUTED INTO A CRUST
FR3132647A1 (en) METHOD FOR PREPARING A CATALYST COMPRISING AN ACTIVE PHASE OF PALLADIUM AND COPPER
EP3911440A1 (en) Process for preparing a catalyst for the hydrogenation of aromatics, comprising a step of forming a ni-cu alloy in pre-impregnation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20739702

Country of ref document: EP

Kind code of ref document: A1