WO2020255558A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2020255558A1
WO2020255558A1 PCT/JP2020/017434 JP2020017434W WO2020255558A1 WO 2020255558 A1 WO2020255558 A1 WO 2020255558A1 JP 2020017434 W JP2020017434 W JP 2020017434W WO 2020255558 A1 WO2020255558 A1 WO 2020255558A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
semiconductor element
power conversion
conversion device
mounting surface
Prior art date
Application number
PCT/JP2020/017434
Other languages
French (fr)
Japanese (ja)
Inventor
寛明 飯田
祥吾 時田
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to CN202080035276.7A priority Critical patent/CN113906663A/en
Priority to US17/619,835 priority patent/US12074532B2/en
Priority to JP2021527416A priority patent/JP7551608B2/en
Publication of WO2020255558A1 publication Critical patent/WO2020255558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device in which a resin case is fixed to a radiator of a semiconductor element.
  • the power conversion device is arranged between the battery and the motor, for example, and controls the power stored in the battery and supplies it to the motor.
  • a semiconductor device that constitutes a part of a power conversion device there is a conventional technique disclosed in Patent Document 1.
  • the semiconductor device disclosed in Patent Document 1 includes a semiconductor element, a radiator that dissipates heat generated by the semiconductor element, a resin case that houses the semiconductor element, and a sealing member that seals the semiconductor element. , Including.
  • the heat radiating body includes a top plate portion having a mounting surface on which the semiconductor element is mounted, and fins provided on the opposite surface of the mounting surface.
  • the resin case includes a bottom plate portion when it has an facing surface facing the mounting surface, and a side wall portion extending upward from the peripheral edge of the bottom plate portion.
  • a plurality of protrusions are provided on the mounting surface of the base plate of the radiator.
  • the plurality of protrusions are located in an annular shape at predetermined intervals.
  • An adhesive is applied to the mounting surface along a plurality of protrusions.
  • the top plate of the heat radiating body and the bottom plate of the resin case are fixed to each other by screws. The distance between the bottom plate and the top plate is kept constant according to the amount of protrusion of the protrusion.
  • the process of sealing the semiconductor element will be described.
  • the semiconductor element is sealed by pouring a gel-like sealing member into a region surrounded by a side wall portion in the case and curing the sealing member.
  • the coefficient of thermal expansion differs between the material of the case and the material of the radiator.
  • the case is made of resin.
  • the resin When the case is removed from the mold and cooled, the resin may shrink and the case may warp.
  • the gap between the facing surface of the bottom plate portion of the case and the mounting surface of the top plate portion of the radiator body is widened.
  • the sealing member In the process of sealing the semiconductor element housed in the case, if a gel-like sealing member is poured into the case, the sealing member may leak to the outside through a gap between the mounting surface of the radiator and the facing surface of the case. There is. A structure that prevents leakage of the sealing member is desired.
  • An object of the present invention is to provide a technique capable of preventing a sealing member for sealing a semiconductor element from leaking from between a resin case and a radiator.
  • the semiconductor element a radiator having a mounting surface on which the semiconductor element is mounted, and the semiconductor having a contact surface in close contact with the mounting surface and the semiconductor.
  • It includes a resin case that houses the element and a sealing member that seals the semiconductor element in the case.
  • the case and the radiator are each provided with a fixing portion for fixing each other.
  • the mounting surface of the heat radiating body is provided with a first surrounding portion that surrounds the semiconductor element when viewed from a direction along the normal of the mounting surface.
  • the close contact surface of the case is provided with a second surrounding portion that surrounds the semiconductor element when viewed from a direction along the normal of the close contact surface.
  • a power conversion device is provided in which the first surrounding portion and the second surrounding portion are fitted to each other in an uneven shape.
  • either one of the first surrounding portion and the second surrounding portion is composed of a continuous groove portion.
  • the other is composed of a continuous protrusion that can be fitted into the groove.
  • the groove portion has a rectangular shape and is composed of a pair of long side portions parallel to each other and a pair of short side portions parallel to each other.
  • the cross-sectional shape of the short side portion is a taper shape that widens from the bottom of the short side portion toward the opening.
  • the protruding portion has a shape along the groove portion.
  • each of the fixing portions is located only in the center of the case in the longitudinal direction.
  • the fixing portion of the radiator body is provided with a through hole.
  • the fixing portion of the case is provided with a penetrating portion penetrating the through hole integrally with the case, and the dimension of the tip of the penetrating portion is larger than the inner diameter of the through hole.
  • the power conversion device has a radiator having a mounting surface on which a semiconductor element is mounted, and a contact surface that is in close contact with the mounting surface, and houses the semiconductor element. It has a case made of resin.
  • the mounting surface of the heat radiating body is provided with a first surrounding portion that surrounds the semiconductor element when viewed from the direction along the normal direction of the mounting surface.
  • the close contact surface of the case is provided with a second surrounding portion that surrounds the semiconductor element when viewed from the direction along the normal direction of the close contact surface.
  • the first surrounding portion and the second surrounding portion are fitted to each other in an uneven shape.
  • the mounting surface of the case and the contact surface of the resin case are provided with uneven portions that are fitted to each other. These uneven portions surround the semiconductor element when viewed from the direction along the normal direction of the surface. Therefore, when the sealing member for sealing the semiconductor element is poured into the resin case, even if the sealing member penetrates between the mounting surface and the close contact surface, the sealing member fits in an uneven shape. It is blocked by the matching siege. It is possible to prevent the sealing member from leaking without using an adhesive.
  • the case and the radiator can keep each other in a predetermined position.
  • one of the first siege and the second siege is composed of a continuous annular groove and the other is a continuous protrusion that can be fitted with the groove. ,It is configured. Compared with the case where irregularities are formed intermittently on the mounting surface and the close contact surface, the sealing member can be dammed more reliably.
  • the groove portion has a rectangular shape and is composed of a pair of long side portions parallel to each other and a pair of short side portions parallel to each other.
  • the cross-sectional shape of the short side portion is a taper shape that widens from the bottom of the short side portion toward the opening.
  • the protruding portion has a shape along the groove portion.
  • the fixing portion is located only in the center of the case in the longitudinal direction. If only one end in the longitudinal direction is fixed, the other end of the case will be lifted with respect to the heat radiating body, and the distance between the other end of the case and the heat radiating body will be widened. On the other hand, if the fixed portion is located in the center, both ends are raised, but the distance between each end and the radiator can be narrowed.
  • a through hole is provided in the fixed portion of the radiator.
  • the fixed portion of the case is provided with a penetrating portion penetrating the through hole integrally with the case, and the tip of the shaft portion is larger than the inner diameter of the through hole. Therefore, the penetrating portion does not come out from the through hole.
  • the case can be integrally formed with the heat radiating body. Fastening members such as screws are not required, and the number of parts can be reduced.
  • FIG. 5A is a cross-sectional view taken along the line 5a-5a.
  • FIG. 5B is a cross-sectional view taken along the line 5b-5b.
  • FIG. 5C is a cross-sectional view taken along the line 5c-5c.
  • FIG. 6A is a diagram illustrating a case configured integrally with the radiator according to a comparative example.
  • FIG. 6B is a diagram illustrating a case configured integrally with the radiator according to the embodiment.
  • FIG. 1 shows a power module 11 constituting the power conversion device 10.
  • the power conversion device 10 is mounted on a vehicle, for example, and is arranged between the battery and the motor to control the electric power stored in the battery and supply the electric power to the motor.
  • the power module 11 includes a generator 31 (hereinafter referred to as a first semiconductor 31) for extracting power from the engine, a voltage control unit 32 (hereinafter referred to as a second semiconductor 32), and a traction controller 33 (hereinafter referred to as a second semiconductor 32).
  • It has a resin case 50 that houses 33, a sealing member 12 that seals the first semiconductors 31 to the third semiconductor 33, and a circuit board 13 that controls a motor. ..
  • the circuit board 13 and the first semiconductor 31 to the third semiconductor 33 are electrically connected by a terminal 14 provided on the case 30.
  • the power module 11 is mounted on the upper part of the housing 20 of the power conversion device 10.
  • a flow path 21 through which a refrigerant for cooling the radiator 40 flows flows is provided on the upper surface 20a of the housing 20.
  • the flow path 21 is open upward and is blocked by the radiator 40.
  • the opening of the flow path 21 has a rectangular shape.
  • a sealing member 15 is provided along the edge 22 of the opening of the flow path 21.
  • the portions of the seal member 15 extending in the longitudinal direction are a pair of long sides 15a and 15a.
  • recesses 23 On the outside of the pair of long sides 15a and 15a, recesses 23 that open toward the heat radiating body 40 are formed, respectively.
  • Screw holes 24 are formed at the four corners of the edge 22 of the opening.
  • the inner surface of the flow path 21 is a bottom surface 25 having a refrigerant introduction port 25a and a refrigerant discharge port 25b, a pair of long wall surfaces 26 and 26 extending in the longitudinal direction and facing each other, and extending in the lateral direction to each other. It is composed of a pair of short wall surfaces 27, 27 facing each other.
  • the refrigerant flows along the long wall surfaces 26, 26.
  • the heat radiating body 40 is provided on a top plate portion 42 having a mounting surface 41 on which the first semiconductor 31 to the third semiconductor 33 can be mounted and a lower surface 43 on the opposite side of the mounting surface 41, and the flow path 21 is provided. It has fins 44 that can come into contact with the refrigerant flowing through the surface. The lower surface 43 of the top plate portion 42 comes into contact with the edge 22 of the opening of the flow path 21.
  • the case 50 has a bottom plate portion 52 having a close contact surface 51 that can be brought into close contact with the mounting surface 41 of the heat radiating body 40, a peripheral wall portion 54 provided on an upper surface 53 opposite to the close contact surface 51, and a peripheral wall portion 54. It has two partition portions 55 and 55 that partition the area surrounded by.
  • the bottom plate portion 52 is provided with a first exposed hole 52a into which the first semiconductor 31 can be exposed. Similarly, the bottom plate portion 52 is provided with a second exposed hole 52b from which the second semiconductor 32 can be exposed and a third exposed hole 52c from which the third semiconductor 33 can be exposed.
  • Fixing holes 45 are formed at the four corners of the top plate portion 42 of the heat radiating body 40.
  • Fixing holes 56 are formed at the four corners of the bottom plate portion 52 of the case 50.
  • a fastening member such as a screw 16 penetrates the fixing holes 56 and 45 and is fastened to the screw hole 24. As a result, the heat radiating body 40 and the case 50 are fixed to the upper surface 20a of the housing 20.
  • Fixing holes 13a are formed at the four corners of the circuit board 13. Screw holes 54a are formed at the four corners of the peripheral wall portion 54. A fastening member such as a screw 17 penetrates the fixing hole 13a and fastens to the screw hole 54a. As a result, the circuit board 13 is fixed to the upper end surface 54b of the peripheral wall portion 54 of the case 50.
  • the mounting surface 41 of the heat radiating body 40 and the contact surface 51 of the case 50 that can be in close contact with the mounting surface 41 are fitted to each other by the uneven fitting structure 18.
  • the fitting structure 18 is formed on a continuous annular groove portion 60 (first surrounding portion) formed on the mounting surface 41 of the top plate portion 42 of the heat radiating body 40 and a groove portion formed on the contact surface 51 of the heat radiating body 40. It is composed of an annular protruding portion 70 (second surrounding portion) that can be fitted to the 60.
  • the groove portion 60 has a rectangular shape when viewed from the direction along the normal of the mounting surface 41, and has a pair of long groove portions 61 (long side portions) parallel to each other and a pair of short groove portions 62 (short sides) parallel to each other. Part) and.
  • the protruding portion 70 surrounds the first exposed hole 52a to the third exposed hole 52c.
  • the projecting portion 70 has a rectangular shape when viewed from the direction along the normal direction of the contact surface 51, and has a pair of long projecting portions 71 (long side portions) parallel to each other and a pair of short projecting portions parallel to each other. 72 (short side portion) and.
  • fitting structure 18 a structure in which a protruding portion 70 is formed in the heat radiating body 40 and a groove portion 60 is formed in the case 50 may be adopted. Further, as the fitting structure 18, a configuration in which a plurality of uneven portions are intermittently positioned in an annular shape may be adopted.
  • the two partition portions 55, 55 divide the inner region of the peripheral wall portion 54 into the first region 57 to the third region 59.
  • the first semiconductor 31 exposed from the first exposed hole 52a is located in the first region 57.
  • a second semiconductor 32 exposed from the second exposed hole 52b is located in the second region 58.
  • a third semiconductor 33 exposed from the third exposed hole 52c is located in the third region 59.
  • FIG. 5A shows a cross section of the fitting structure 18 including the long groove portion 61 and the long protrusion portion 71.
  • the long groove portion 61 has a rectangular cross section, and has a first bottom surface 63 parallel to the mounting surface 41 and a pair of first side surfaces extending from both ends of the first bottom surface 63 toward the mounting surface 41. It has 64 and 64. Each of the first side surfaces 64 is orthogonal to the mounting surface 41 of the top plate portion 42 of the radiator body 40.
  • Each of the long protrusions 71 has a first contact surface 73 that is in contact with the first bottom surface 63, and second contact surfaces 74 and 74 that are in contact with the first side surfaces 64 and 64. have.
  • FIG. 5B shows a cross section of the fitting structure 18 including the short groove portion 62 and the short protrusion portion 72.
  • the cross-sectional shape of the short groove portion 62 is a tapered shape that widens from the second bottom surface 65 (bottom) of the short groove portion 62 toward the opening.
  • the short groove portion 62 is an inwardly inclined surface 66 that is inclined inward with respect to one end 65a of the inside of the second bottom surface 65 (the direction approaching the center C (see FIG. 4) of the radiator 40 and the case 50). And an outwardly inclined surface 67 that is inclined outward with the other end 65b on the outside of the bottom surface 25 (in the direction away from the center C) as a base point.
  • the second bottom surface 65 is parallel to the mounting surface 41.
  • the short protrusion 72 has a shape along the short groove 62 described above.
  • the short protrusion 72 includes a tip surface 75 in contact with the second bottom surface 65, an inward surface 76 in contact with the inwardly inclined surface 66, and an outer contact surface 77 in contact with the outwardly inclined surface 67. have.
  • the other short groove portion 62 and the short protrusion portion 72 have the same configuration. The description is omitted.
  • the cross-sectional shape of the short groove portion 62 and the short protruding portion 72 may be not only the trapezoidal shape shown in the embodiment but also a polygonal shape such as a triangle.
  • the heat radiating body 40 and the case 50 have fixing portions 80 and 56 for fixing each other, respectively.
  • the fixing portion 46 of the heat radiating body 40 is provided integrally with the heat radiating body 40 on the side surface 47 in the longitudinal direction of the top plate portion 42.
  • the fixing portion 46 of the heat radiating body 40 is provided with a through hole 46a penetrating in the thickness direction of the top plate portion 42.
  • FIGS. 2 and 3 show a case 50 and a heat radiating body 40 that are separate from each other, but the case 50 is integrally formed with the heat radiating body 40. That is, the heat radiating body 40 is placed on the mold of the case 50, and the resin is poured into the mold to obtain the case 50 integrated with the heat radiating body 40.
  • the fixing portion 80 of the case 50 is provided integrally with the case 50 on the side surface 52d of the bottom plate portion 52 in the longitudinal direction.
  • the fixing portion 80 of the case 50 has a base portion 81 provided on the side surface 52d of the bottom plate portion 52, and a penetrating portion 82 extending from the base portion 81 to the heat radiating body 40 and penetrating through the through hole 46a. ..
  • the dimension L of the tip 83 of the through portion 82 is larger than the inner diameter D of the through hole 46a.
  • the case 50 and the heat radiating body 40 may be formed separately and fixed to each other by a fastening member such as a screw.
  • the power conversion device 10 has a radiator 40 having a mounting surface 41 on which a semiconductor element is mounted, and a contact surface 51 in close contact with the mounting surface 41, and houses the semiconductor element. It has a case 50 made of resin.
  • a groove 60 (first surrounding portion) surrounding the semiconductor element is provided on the mounting surface 41 of the heat radiating body 40.
  • a protruding portion 70 (second surrounding portion) that surrounds the semiconductor element is provided on the contact surface 51 of the case 50.
  • the groove portion 60 and the protrusion portion 70 are fitted to each other in an uneven shape (see FIGS. 5 (a) and 5 (b)).
  • the gel-like sealing member 12 is poured into the first region 57. Even if the sealing member 12 penetrates between the mounting surface 41 and the close contact surface 51, the sealing member 12 is blocked by the groove portion 60 and the protruding portion 70 which are fitted in an uneven shape. Therefore, it is possible to prevent the sealing member 12 from leaking without using an adhesive.
  • the case 50 and the radiator 40 can be kept in a predetermined position with each other.
  • the groove 60 is continuously formed.
  • the protrusion 70 is continuously configured. For example, as compared with a fitting structure in which irregularities are intermittently formed on both the mounting surface 41 and the contact surface 51, the sealing member that has penetrated between the case 50 and the heat radiating body 40 is more reliably blocked. be able to.
  • the displacement in the longitudinal direction is larger than that in the lateral direction. That is, the pair of short protrusions 72, 72 are displaced in the longitudinal direction so as to approach each other.
  • the cross sections of the short groove portions 102, 102 of the heat radiating body 101 are rectangular.
  • the cross sections of the short protrusions 104, 104 of the case 103 are rectangular.
  • the side surfaces 105 and 105 of the short groove portion 102 are orthogonal to the mounting surface 108.
  • the side surfaces 106, 106 of the short protrusion 104 are orthogonal to the close contact surface 107.
  • the case 103 shrinks after molding the case 103, the case 103 is deformed so that the short protrusions 104 and 104 come close to each other. Due to the warp of the case 103, the short protrusions 104 and 104 are caught by the short groove portions 102 and 102. As the case 103 warps, the radiator 101 also warps.
  • the short groove portion 62 has an inwardly inclined surface 66 inclined inward and an outwardly inclined surface 67 inclined outward.
  • the short protrusion 72 has an inner contact surface 76 that is in contact with the inwardly inclined surface 66, and an outer contact surface 77 that is in contact with the outerly inclined surface 67.
  • the fixing portion 80 of the case 50 is located at the center of the case 50 in the longitudinal direction. If the fixing portion 80 is provided at one end 50a in the longitudinal direction, the other end 50b of the case 50 will be lifted with respect to the heat radiating body 40, and the distance between the other end 50b of the case 50 and the heat radiating body 40 will be greatly widened. .. On the other hand, if the fixing portion 80 is located at the center of the case 50, both ends are raised, but the distance between the respective end portions 50a and 50b and the heat radiating body 40 can be narrowed.
  • the fixing portion 46 of the heat radiating body 40 is provided with a through hole 46a penetrating in the thickness direction of the top plate portion 42.
  • the fixing portion 80 of the case 50 has a penetrating portion 82 penetrating through the through hole 46a.
  • the dimension L of the tip 83 of the through portion 82 is larger than the inner diameter D of the through hole 46a. Therefore, the through portion 82 cannot be removed from the through hole 46a.
  • the case 50 can be integrally formed with the heat radiating body 40. Fastening members such as screws are not required, and the number of parts can be reduced.
  • the tip 83 of the penetrating portion 82 fits into the recess 23 formed in the upper surface 20a of the housing 20.
  • the recess 23 has a role of positioning when the power module 11 is attached to the housing 20.
  • the power conversion device according to the present invention can be mounted on vehicles other than hybrid vehicles as well as other vehicles. That is, the present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.
  • the power conversion device of the present invention is suitable for a four-wheeled vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a technique that is capable of preventing a sealing member that seals a semiconductor element from leaking from between a resin case and a heat dissipation body. A power conversion device (10) includes a heat dissipation body (40) that has a mounting surface (41) on which semiconductor elements (31 to 33) are mounted, a resin case (50) that has an adhesion surface (51) that is adhered to the mounting surface (41) and accommodates the semiconductor elements (31 to 33), and a sealing member (12) that seals the semiconductor elements (31 to 33) in the case (50). The heat dissipation body (40) has, on the mounting surface (41), a first surrounding portion (60) that surrounds the semiconductor elements (31 to 33). The case (50) has, on the adhesion surface (51), a second surrounding portion (70) that surrounds the semiconductor elements (31 to 33). The first surrounding portion (60) and the second surrounding portion (70) engage with each other through corresponding recesses and protrusions.

Description

電力変換装置Power converter
 本発明は、半導体素子の放熱体に対して樹脂製のケースが固定されている電力変換装置に関する。 The present invention relates to a power conversion device in which a resin case is fixed to a radiator of a semiconductor element.
 電力変換装置は、例えばバッテリとモータの間に配置されバッテリで貯えた電力を制御してモータへ供給する。電力変換装置の一部を構成する半導体装置として、特許文献1に開示された従来技術がある。 The power conversion device is arranged between the battery and the motor, for example, and controls the power stored in the battery and supplies it to the motor. As a semiconductor device that constitutes a part of a power conversion device, there is a conventional technique disclosed in Patent Document 1.
 特許文献1に開示された半導体装置は、半導体素子と、半導体素子が発する熱を放熱する放熱体と、半導体素子を収容している樹脂ケースと、半導体素子を封止している封止部材と、を含んでいる。 The semiconductor device disclosed in Patent Document 1 includes a semiconductor element, a radiator that dissipates heat generated by the semiconductor element, a resin case that houses the semiconductor element, and a sealing member that seals the semiconductor element. , Including.
 放熱体は、半導体素子が取り付けられている取付面を有している天板部と、取付面の反対面に設けられているフィンと、を含んでいる。 The heat radiating body includes a top plate portion having a mounting surface on which the semiconductor element is mounted, and fins provided on the opposite surface of the mounting surface.
 樹脂ケースは、取付面に対向している対向面を有していると底板部と、底板部の周縁から上方に延びている側壁部と、を含んでいる。 The resin case includes a bottom plate portion when it has an facing surface facing the mounting surface, and a side wall portion extending upward from the peripheral edge of the bottom plate portion.
 放熱体に対してケースを固定する工程について説明する。放熱体のベース板の実装面には、複数の突起部が設けられている。複数の突起部は、所定の間隔を空けて環状に位置している。実装面には、複数の突起部に沿って接着剤が塗布されている。放熱体の天板部と、樹脂ケースの底板部とは、ねじにより互いに固定されている。突起部の突出量に応じて底板部と、天板部との間隔は一定に保たれる。 The process of fixing the case to the radiator will be explained. A plurality of protrusions are provided on the mounting surface of the base plate of the radiator. The plurality of protrusions are located in an annular shape at predetermined intervals. An adhesive is applied to the mounting surface along a plurality of protrusions. The top plate of the heat radiating body and the bottom plate of the resin case are fixed to each other by screws. The distance between the bottom plate and the top plate is kept constant according to the amount of protrusion of the protrusion.
 半導体素子を封止する工程について説明する。ケースのなかの側壁部に囲われている領域にゲル状の封止部材を流し込み、封止部材が硬化することにより、半導体素子は封止される。 The process of sealing the semiconductor element will be described. The semiconductor element is sealed by pouring a gel-like sealing member into a region surrounded by a side wall portion in the case and curing the sealing member.
特開2005-322784号公報Japanese Unexamined Patent Publication No. 2005-322784
 ケースの素材と、放熱体の素材とは、熱膨張係数が異なる。ケースは樹脂製である。ケースが金型から取り出されて冷却されると、樹脂が収縮して、ケースが反ることがある。例えば、ケースの底板部に反りが生じると、ケースの底板部の対向面と、放熱体の天板部の実装面との隙間が広がる。ケースに収納された半導体素子を封止する工程において、ケース内にゲル状の封止部材を流し込むと、放熱体の実装面と、ケースの対向面との隙間から封止部材が外部に漏れる虞がある。封止部材の漏れを防止する構造が望まれる。 The coefficient of thermal expansion differs between the material of the case and the material of the radiator. The case is made of resin. When the case is removed from the mold and cooled, the resin may shrink and the case may warp. For example, when the bottom plate portion of the case is warped, the gap between the facing surface of the bottom plate portion of the case and the mounting surface of the top plate portion of the radiator body is widened. In the process of sealing the semiconductor element housed in the case, if a gel-like sealing member is poured into the case, the sealing member may leak to the outside through a gap between the mounting surface of the radiator and the facing surface of the case. There is. A structure that prevents leakage of the sealing member is desired.
 本発明は、半導体素子を封止する封止部材が、樹脂製のケースと放熱体との間から漏れることを防止できる技術の提供を課題とする。 An object of the present invention is to provide a technique capable of preventing a sealing member for sealing a semiconductor element from leaking from between a resin case and a radiator.
 請求項1による発明によれば、半導体素子と、この半導体素子が実装されている実装面を有している放熱体と、前記実装面に密着している密着面を有していると共に前記半導体素子を収納している樹脂製のケースと、このケース内で前記半導体素子を封止している封止部材と、を含んでおり、
 前記ケースと、前記放熱体とには、それぞれ、互いを固定するための固定部が設けられている、電力変換装置において、
 前記放熱体の前記実装面には、前記実装面の法線に沿う方向から見て、前記半導体素子を囲っている第1の包囲部が設けられており、
 前記ケースの前記密着面には、前記密着面の法線に沿う方向から見て、前記半導体素子を囲っている第2の包囲部が設けられており、 
 前記第1の包囲部及び前記第2の包囲部は、互いに凹凸状に嵌合している、ことを特徴とする電力変換装置が提供される。
According to the invention of claim 1, the semiconductor element, a radiator having a mounting surface on which the semiconductor element is mounted, and the semiconductor having a contact surface in close contact with the mounting surface and the semiconductor. It includes a resin case that houses the element and a sealing member that seals the semiconductor element in the case.
In a power conversion device, the case and the radiator are each provided with a fixing portion for fixing each other.
The mounting surface of the heat radiating body is provided with a first surrounding portion that surrounds the semiconductor element when viewed from a direction along the normal of the mounting surface.
The close contact surface of the case is provided with a second surrounding portion that surrounds the semiconductor element when viewed from a direction along the normal of the close contact surface.
A power conversion device is provided in which the first surrounding portion and the second surrounding portion are fitted to each other in an uneven shape.
 請求項2に記載のごとく、好ましくは、前記第1の包囲部と前記第2の包囲部とのいずれか一方は、連続している溝部によって構成され、
 他方は、前記溝部に嵌合可能な連続している突出部によって構成されている。
As described in claim 2, preferably, either one of the first surrounding portion and the second surrounding portion is composed of a continuous groove portion.
The other is composed of a continuous protrusion that can be fitted into the groove.
 請求項3に記載のごとく、好ましくは、前記溝部が設けられている面の法線に沿う方向から見て、
 前記溝部は、矩形状であり、互いに平行な一対の長辺部と、互いに平行な一対の短辺部と、から構成され、
 前記短辺部の断面形状は、前記短辺部の底から開口に向かって、幅広となるテーパ状であり、
 前記突出部は、前記溝部に沿った形状を呈している。
As described in claim 3, preferably, when viewed from the direction along the normal of the surface on which the groove is provided,
The groove portion has a rectangular shape and is composed of a pair of long side portions parallel to each other and a pair of short side portions parallel to each other.
The cross-sectional shape of the short side portion is a taper shape that widens from the bottom of the short side portion toward the opening.
The protruding portion has a shape along the groove portion.
 請求項4に記載のごとく、好ましくは、各々の前記固定部は、ケースの長手方向の中央のみに位置している。 As described in claim 4, preferably, each of the fixing portions is located only in the center of the case in the longitudinal direction.
 請求項5に記載のごとく、好ましくは、前記放熱体の前記固定部には、貫通穴が設けられており、
 前記ケースの前記固定部には、前記貫通穴を貫通する貫通部がケースと一体に設けられており、前記貫通部の先端の寸法は、前記貫通穴の内径よりも大きい。
As described in claim 5, preferably, the fixing portion of the radiator body is provided with a through hole.
The fixing portion of the case is provided with a penetrating portion penetrating the through hole integrally with the case, and the dimension of the tip of the penetrating portion is larger than the inner diameter of the through hole.
 請求項1では、電力変換装置は、半導体素子が実装されている実装面を有している放熱体と、実装面に密着している密着面を有していると共に半導体素子を収納している樹脂製のケースと、を有している。放熱体の実装面には、実装面の法線方向に沿う方向から見て、半導体素子を囲っている第1の包囲部が設けられている。ケースの密着面には、密着面の法線方向に沿う方向から見て、半導体素子を囲っている第2の包囲部が設けられている。第1の包囲部と第2の包囲部は、互いに凹凸状に嵌合している。 According to claim 1, the power conversion device has a radiator having a mounting surface on which a semiconductor element is mounted, and a contact surface that is in close contact with the mounting surface, and houses the semiconductor element. It has a case made of resin. The mounting surface of the heat radiating body is provided with a first surrounding portion that surrounds the semiconductor element when viewed from the direction along the normal direction of the mounting surface. The close contact surface of the case is provided with a second surrounding portion that surrounds the semiconductor element when viewed from the direction along the normal direction of the close contact surface. The first surrounding portion and the second surrounding portion are fitted to each other in an uneven shape.
 即ち、ケースの実装面と、樹脂ケースの密着面とには、それぞれ、互いに嵌合している凹凸状の部位が設けられている。これらの凹凸状の部位は、面の法線方向に沿う方向から見て、半導体素子を囲っている。そのため、半導体素子を封止するための封止部材を樹脂ケースに流し込んだ際に、封止部材が、実装面と密着面との間に浸入しても、封止部材は、凹凸状に嵌合している包囲部に堰き止められる。接着剤を用いることなく、封止部材が漏れることを防止できる。 That is, the mounting surface of the case and the contact surface of the resin case are provided with uneven portions that are fitted to each other. These uneven portions surround the semiconductor element when viewed from the direction along the normal direction of the surface. Therefore, when the sealing member for sealing the semiconductor element is poured into the resin case, even if the sealing member penetrates between the mounting surface and the close contact surface, the sealing member fits in an uneven shape. It is blocked by the matching siege. It is possible to prevent the sealing member from leaking without using an adhesive.
 加えて、第1の包囲部及び第2の包囲部は、凹凸状に嵌合しているため、ケースと放熱体とは、互いを所定に位置に留めることができる。 In addition, since the first surrounding portion and the second surrounding portion are fitted in an uneven shape, the case and the radiator can keep each other in a predetermined position.
 請求項2では、第1の包囲部と第2の包囲部とのいずれか一方は、連続している環状の溝部によって構成され、他方は、溝部と嵌め合い可能な連続している突出部によって、構成されている。実装面及び密着面に断続的に凹凸が形成されている場合と比較すると、封止部材をより確実に堰き止めることができる。 In claim 2, one of the first siege and the second siege is composed of a continuous annular groove and the other is a continuous protrusion that can be fitted with the groove. ,It is configured. Compared with the case where irregularities are formed intermittently on the mounting surface and the close contact surface, the sealing member can be dammed more reliably.
 請求項3では、溝部は、矩形状であり、互いに平行な一対の長辺部と、互いに平行な一対の短辺部と、から構成されている。短辺部の断面形状は、短辺部の底から開口に向かって、幅広となるテーパ状である。突出部は、溝部に沿った形状を呈している。ケースに反りが生じる場合、短手方向よりも、長手方向への変位が大きい。即ち、短手方向に延びている部位が、長手方向に大きく変位する。短辺部の溝部は、ケースと放熱体との境界に近づくほど幅広となっている。短辺部における溝部と突出部との嵌合は外れやすくなる。ケースの反りに伴って、放熱体が反ることを防止することができる。 In claim 3, the groove portion has a rectangular shape and is composed of a pair of long side portions parallel to each other and a pair of short side portions parallel to each other. The cross-sectional shape of the short side portion is a taper shape that widens from the bottom of the short side portion toward the opening. The protruding portion has a shape along the groove portion. When the case is warped, the displacement in the longitudinal direction is larger than that in the lateral direction. That is, the portion extending in the lateral direction is largely displaced in the longitudinal direction. The groove on the short side becomes wider as it approaches the boundary between the case and the radiator. The fitting between the groove and the protrusion on the short side is easy to come off. It is possible to prevent the radiator from warping due to the warping of the case.
 請求項4では、固定部は、ケースの長手方向の中央のみに位置している。仮に、長手方向の一端のみを固定してしまうと、ケースの他端が放熱体に対して浮き上がり、ケースの他端と放熱体との間隔が広がってしまう。一方、固定部が中央に位置していれば、両端が浮き上がるが、各々の端部と放熱体との間隔を狭めることができる。 In claim 4, the fixing portion is located only in the center of the case in the longitudinal direction. If only one end in the longitudinal direction is fixed, the other end of the case will be lifted with respect to the heat radiating body, and the distance between the other end of the case and the heat radiating body will be widened. On the other hand, if the fixed portion is located in the center, both ends are raised, but the distance between each end and the radiator can be narrowed.
 請求項5では、放熱体の固定部には、貫通穴が設けられている。ケースの固定部は、貫通穴を貫通する貫通部がケースと一体に設けられており、軸部の先端は、貫通穴の内径よりも大きい。そのため、貫通部は、貫通穴から抜けない。ケースの形成する際に、ケースを、放熱体と一体に構成することができる。ねじ等の締結部材が不要となり、部品点数を減らすことができる。 In claim 5, a through hole is provided in the fixed portion of the radiator. The fixed portion of the case is provided with a penetrating portion penetrating the through hole integrally with the case, and the tip of the shaft portion is larger than the inner diameter of the through hole. Therefore, the penetrating portion does not come out from the through hole. When forming the case, the case can be integrally formed with the heat radiating body. Fastening members such as screws are not required, and the number of parts can be reduced.
実施例による電力変換装置を構成するパワーモジュールの断面図である。It is sectional drawing of the power module which comprises the power conversion apparatus by an Example. 図1に示されたパワーモジュールの分解斜視図である。It is an exploded perspective view of the power module shown in FIG. 図2に示された放熱体の実装面と、ケースの密着面とについて説明する図である。It is a figure explaining the mounting surface of the radiator shown in FIG. 2 and the contact surface of a case. 図1に示されたケースの上面を見下ろした図である。It is the figure which looked down on the upper surface of the case shown in FIG. 図5(a)は、5a-5a線断面図である。図5(b)は、5b-5b線断面図である。図5(c)は、5c-5c線断面図である。FIG. 5A is a cross-sectional view taken along the line 5a-5a. FIG. 5B is a cross-sectional view taken along the line 5b-5b. FIG. 5C is a cross-sectional view taken along the line 5c-5c. 図6(a)は、比較例による、放熱体と一体に構成されたケースを説明する図である。図6(b)は、実施例による、放熱体と一体に構成されたケースを説明する図である。FIG. 6A is a diagram illustrating a case configured integrally with the radiator according to a comparative example. FIG. 6B is a diagram illustrating a case configured integrally with the radiator according to the embodiment.
 本発明の実施の形態を添付図に基づいて以下に説明する。 An embodiment of the present invention will be described below with reference to the attached figure.
 図1には、電力変換装置10 を構成するパワーモジュール11が示されている。電力変換装置10は、例えば車両に搭載され、バッテリとモータの間に配置されバッテリで貯えた電力を制御してモータへ供給する。 FIG. 1 shows a power module 11 constituting the power conversion device 10. The power conversion device 10 is mounted on a vehicle, for example, and is arranged between the battery and the motor to control the electric power stored in the battery and supply the electric power to the motor.
 図1及び図2を参照する。パワーモジュール11は、エンジンから電力を取り出すためのジェネレータ31(以下、第1の半導体31とする)と、電圧制御ユニット32(以下、第2の半導体32とする)と、トラクションコントローラ33(以下、第3の半導体33とする)と、第1の半導体31~第3の半導体33が実装されて半導体31~33から発する熱を放熱する放熱体40と、第1の半導体31~第3の半導体33を収納している樹脂製のケース50と、第1の半導体31~第3の半導体33を封止している封止部材12と、モータを制御する回路基板13と、を有している。回路基板13と、第1の半導体31~第3の半導体33とは、ケース30に設けられた端子14によって電気的に接続している。 Refer to FIGS. 1 and 2. The power module 11 includes a generator 31 (hereinafter referred to as a first semiconductor 31) for extracting power from the engine, a voltage control unit 32 (hereinafter referred to as a second semiconductor 32), and a traction controller 33 (hereinafter referred to as a second semiconductor 32). The third semiconductor 33), the radiator 40 to which the first semiconductors 31 to the third semiconductors 33 are mounted and dissipate the heat generated from the semiconductors 31 to 33, and the first semiconductors 31 to the third semiconductors. It has a resin case 50 that houses 33, a sealing member 12 that seals the first semiconductors 31 to the third semiconductor 33, and a circuit board 13 that controls a motor. .. The circuit board 13 and the first semiconductor 31 to the third semiconductor 33 are electrically connected by a terminal 14 provided on the case 30.
 パワーモジュール11は、電力変換装置10の筐体20の上部に実装されている。筐体20の上面20aには、放熱体40を冷却する冷媒が流れる流路21が設けられている。流路21は、上方に向かって開いており、放熱体40によって塞がれている。 The power module 11 is mounted on the upper part of the housing 20 of the power conversion device 10. A flow path 21 through which a refrigerant for cooling the radiator 40 flows flows is provided on the upper surface 20a of the housing 20. The flow path 21 is open upward and is blocked by the radiator 40.
 図2を参照する。流路21の開口は、矩形状を呈している。流路21の開口の縁22に沿って、シール部材15が設けられている。シール部材15のなかの、長手方向に延びる部位を一対の長辺15a、15aとする。一対の長辺15a、15aの外側には、それぞれ、放熱体40に向かって開いた凹部23が形成されている。開口の縁22の四隅には、ねじ穴24が空けられている。 Refer to Fig. 2. The opening of the flow path 21 has a rectangular shape. A sealing member 15 is provided along the edge 22 of the opening of the flow path 21. The portions of the seal member 15 extending in the longitudinal direction are a pair of long sides 15a and 15a. On the outside of the pair of long sides 15a and 15a, recesses 23 that open toward the heat radiating body 40 are formed, respectively. Screw holes 24 are formed at the four corners of the edge 22 of the opening.
 流路21の内面は、冷媒の導入口25a及び排出口25bを有する底面25と、長手方向に延びており互いに対向している一対の長壁面26、26と、短手方向に延びており互いに対向している一対の短壁面27、27と、によって構成されている。冷媒は、長壁面26、26に沿って流れる。 The inner surface of the flow path 21 is a bottom surface 25 having a refrigerant introduction port 25a and a refrigerant discharge port 25b, a pair of long wall surfaces 26 and 26 extending in the longitudinal direction and facing each other, and extending in the lateral direction to each other. It is composed of a pair of short wall surfaces 27, 27 facing each other. The refrigerant flows along the long wall surfaces 26, 26.
 放熱体40の素材として、例えば、ニッケルメッキ加工された銅を採用できる。放熱体40は、第1の半導体31~第3の半導体33を実装可能な実装面41を有している天板部42と、実装面41の反対側の下面43に設けられて流路21を流れる冷媒と接触可能なフィン44と、を有している。天板部42の下面43は、流路21の開口の縁22と当接する。 As the material of the radiator 40, for example, nickel-plated copper can be adopted. The heat radiating body 40 is provided on a top plate portion 42 having a mounting surface 41 on which the first semiconductor 31 to the third semiconductor 33 can be mounted and a lower surface 43 on the opposite side of the mounting surface 41, and the flow path 21 is provided. It has fins 44 that can come into contact with the refrigerant flowing through the surface. The lower surface 43 of the top plate portion 42 comes into contact with the edge 22 of the opening of the flow path 21.
 ケース50は、放熱体40の実装面41に密着可能な密着面51を有している底板部52と、密着面51とは反対側の上面53に設けられた周壁部54と、周壁部54に囲われた領域を仕切る2つの仕切部55、55と、を有している。 The case 50 has a bottom plate portion 52 having a close contact surface 51 that can be brought into close contact with the mounting surface 41 of the heat radiating body 40, a peripheral wall portion 54 provided on an upper surface 53 opposite to the close contact surface 51, and a peripheral wall portion 54. It has two partition portions 55 and 55 that partition the area surrounded by.
 底板部52には、第1の半導体31が露出可能な第1の露出穴52aが空けられている。同様に、底板部52には、第2の半導体32が露出可能な第2の露出穴52bと、第3の半導体33が露出可能な第3の露出穴52cが空けられている。 The bottom plate portion 52 is provided with a first exposed hole 52a into which the first semiconductor 31 can be exposed. Similarly, the bottom plate portion 52 is provided with a second exposed hole 52b from which the second semiconductor 32 can be exposed and a third exposed hole 52c from which the third semiconductor 33 can be exposed.
 放熱体40の天板部42の四隅には、固定穴45が空けられている。ケース50の底板部52の四隅には、固定穴56が空けられている。ねじ16等の締結部材は、固定穴56、45を貫通し、ねじ穴24と締結する。これにより、放熱体40及びケース50は、筐体20の上面20aに固定される。 Fixing holes 45 are formed at the four corners of the top plate portion 42 of the heat radiating body 40. Fixing holes 56 are formed at the four corners of the bottom plate portion 52 of the case 50. A fastening member such as a screw 16 penetrates the fixing holes 56 and 45 and is fastened to the screw hole 24. As a result, the heat radiating body 40 and the case 50 are fixed to the upper surface 20a of the housing 20.
 回路基板13の四隅は、固定穴13aが空けられている。周壁部54の四隅には、ねじ穴54aが空けられている。ねじ17等の締結部材は、固定穴13aを貫通し、ねじ穴54aと締結する。これにより、回路基板13は、ケース50の周壁部54の上端面54bに固定される。 Fixing holes 13a are formed at the four corners of the circuit board 13. Screw holes 54a are formed at the four corners of the peripheral wall portion 54. A fastening member such as a screw 17 penetrates the fixing hole 13a and fastens to the screw hole 54a. As a result, the circuit board 13 is fixed to the upper end surface 54b of the peripheral wall portion 54 of the case 50.
 図3を参照する。放熱体40の実装面41と、実装面41に密着可能なケース50の密着面51とは、凹凸状の嵌合構造18により、互いに嵌合している。嵌合構造18は、放熱体40の天板部42の実装面41に形成された連続的な環状の溝部60(第1の包囲部)と、放熱体40の密着面51に形成されて溝部60に嵌合可能な環状の突出部70(第2の包囲部)と、からなる。 Refer to FIG. The mounting surface 41 of the heat radiating body 40 and the contact surface 51 of the case 50 that can be in close contact with the mounting surface 41 are fitted to each other by the uneven fitting structure 18. The fitting structure 18 is formed on a continuous annular groove portion 60 (first surrounding portion) formed on the mounting surface 41 of the top plate portion 42 of the heat radiating body 40 and a groove portion formed on the contact surface 51 of the heat radiating body 40. It is composed of an annular protruding portion 70 (second surrounding portion) that can be fitted to the 60.
 溝部60は、実装面41の法線に沿う方向から見て、矩形状を呈しており、互いに平行な一対の長溝部61(長辺部)と、互いに平行な一対の短溝部62(短辺部)と、を有している。 The groove portion 60 has a rectangular shape when viewed from the direction along the normal of the mounting surface 41, and has a pair of long groove portions 61 (long side portions) parallel to each other and a pair of short groove portions 62 (short sides) parallel to each other. Part) and.
 突出部70は、第1の露出穴52a~第3の露出穴52cを囲っている。突出部70は、密着面51の法線方向に沿う方向から見て、矩形状を呈しており、互いに平行な一対の長突出部71(長辺部)と、互いに平行な一対の短突出部72(短辺部)と、を有している。  The protruding portion 70 surrounds the first exposed hole 52a to the third exposed hole 52c. The projecting portion 70 has a rectangular shape when viewed from the direction along the normal direction of the contact surface 51, and has a pair of long projecting portions 71 (long side portions) parallel to each other and a pair of short projecting portions parallel to each other. 72 (short side portion) and.
 なお、嵌合構造18として、放熱体40に突出部70を形成し、ケース50に溝部60を形成するものを採用してもよい。さらに、嵌合構造18として、複数の凹凸部が断続的に環状に位置する構成を採用してもよい。 As the fitting structure 18, a structure in which a protruding portion 70 is formed in the heat radiating body 40 and a groove portion 60 is formed in the case 50 may be adopted. Further, as the fitting structure 18, a configuration in which a plurality of uneven portions are intermittently positioned in an annular shape may be adopted.
 図4を参照する。2つの仕切部55、55は、周壁部54の内側の領域を第1の領域57~第3の領域59に区画している。第1の領域57には、第1の露出穴52aから露出した第1の半導体31が位置している。第2の領域58には、第2の露出穴52bから露出した第2の半導体32が位置している。第3の領域59には、第3の露出穴52cから露出した第3の半導体33が位置している。底板部52の上面53の法線に沿う方向から見て(図4参照)、突出部70は、周壁部54を囲っている。 Refer to FIG. The two partition portions 55, 55 divide the inner region of the peripheral wall portion 54 into the first region 57 to the third region 59. The first semiconductor 31 exposed from the first exposed hole 52a is located in the first region 57. A second semiconductor 32 exposed from the second exposed hole 52b is located in the second region 58. A third semiconductor 33 exposed from the third exposed hole 52c is located in the third region 59. When viewed from the direction along the normal line of the upper surface 53 of the bottom plate portion 52 (see FIG. 4), the protruding portion 70 surrounds the peripheral wall portion 54.
 図5(a)には、長溝部61及び長突出部71からなる嵌合構造18の断面が示されている。長溝部61の断面は、矩形状であり、実装面41に対して平行な第1の底面63と、この第1の底面63の両端から実装面41側に延びている一対の第1の側面64、64と、を有している。各々の第1の側面64は、放熱体40の天板部42の実装面41に対して直交している。 FIG. 5A shows a cross section of the fitting structure 18 including the long groove portion 61 and the long protrusion portion 71. The long groove portion 61 has a rectangular cross section, and has a first bottom surface 63 parallel to the mounting surface 41 and a pair of first side surfaces extending from both ends of the first bottom surface 63 toward the mounting surface 41. It has 64 and 64. Each of the first side surfaces 64 is orthogonal to the mounting surface 41 of the top plate portion 42 of the radiator body 40.
 各々の長突出部71は、第1の底面63に当接している第1の当接面73と、第1の側面64、64に当接している第2の当接面74、74と、を有している。 Each of the long protrusions 71 has a first contact surface 73 that is in contact with the first bottom surface 63, and second contact surfaces 74 and 74 that are in contact with the first side surfaces 64 and 64. have.
 図5(b)には、短溝部62及び短突出部72からなる嵌合構造18の断面が示されている。短溝部62の断面形状は、短溝部62の第2の底面65(底)から開口に向かって、幅広となるテーパ状である。 FIG. 5B shows a cross section of the fitting structure 18 including the short groove portion 62 and the short protrusion portion 72. The cross-sectional shape of the short groove portion 62 is a tapered shape that widens from the second bottom surface 65 (bottom) of the short groove portion 62 toward the opening.
 詳細には、短溝部62は、第2の底面65の内側(放熱体40及びケース50の中心C(図4参照)に近づく方向)の一端65aを基点として内側に傾いている内傾面66と、底面25の外側(中心Cから遠ざかる方向)の他端65bを基点として外側に傾いている外傾面67と、を有している。第2の底面65は、実装面41に対して平行である。 Specifically, the short groove portion 62 is an inwardly inclined surface 66 that is inclined inward with respect to one end 65a of the inside of the second bottom surface 65 (the direction approaching the center C (see FIG. 4) of the radiator 40 and the case 50). And an outwardly inclined surface 67 that is inclined outward with the other end 65b on the outside of the bottom surface 25 (in the direction away from the center C) as a base point. The second bottom surface 65 is parallel to the mounting surface 41.
 短突出部72は、上記の短溝部62に沿った形状である。短突出部72は、第2の底面65に当接している先端面75と、内傾面66に当接している内接面76と、外傾面67に当接している外接面77と、を有している。 The short protrusion 72 has a shape along the short groove 62 described above. The short protrusion 72 includes a tip surface 75 in contact with the second bottom surface 65, an inward surface 76 in contact with the inwardly inclined surface 66, and an outer contact surface 77 in contact with the outwardly inclined surface 67. have.
 他の短溝部62、短突出部72も同様の構成である。説明は省略する。短溝部62、短突出部72の断面の形状は、実施例に示した台形状だけでなく、例えば、三角形などの多角形の形状であってもよい。 The other short groove portion 62 and the short protrusion portion 72 have the same configuration. The description is omitted. The cross-sectional shape of the short groove portion 62 and the short protruding portion 72 may be not only the trapezoidal shape shown in the embodiment but also a polygonal shape such as a triangle.
 図2、図3を参照する。放熱体40と、ケース50とは、それぞれ、互いを固定するための固定部80、56を有している。放熱体40の固定部46は、天板部42の長手方向の側面47に放熱体40と一体に設けられている。放熱体40の固定部46には、天板部42の厚み方向に貫通している貫通穴46aが空けられている。 Refer to FIGS. 2 and 3. The heat radiating body 40 and the case 50 have fixing portions 80 and 56 for fixing each other, respectively. The fixing portion 46 of the heat radiating body 40 is provided integrally with the heat radiating body 40 on the side surface 47 in the longitudinal direction of the top plate portion 42. The fixing portion 46 of the heat radiating body 40 is provided with a through hole 46a penetrating in the thickness direction of the top plate portion 42.
 嵌合構造18の説明の便宜上、図2及び図3には、互いに別個のケース50及び放熱体40が示されているが、ケース50は、放熱体40と一体に構成されている。即ち、ケース50の金型に放熱体40が載置し、金型に樹脂を流し込むことにより、放熱体40と一体となったケース50が得られる。 For convenience of explanation of the fitting structure 18, FIGS. 2 and 3 show a case 50 and a heat radiating body 40 that are separate from each other, but the case 50 is integrally formed with the heat radiating body 40. That is, the heat radiating body 40 is placed on the mold of the case 50, and the resin is poured into the mold to obtain the case 50 integrated with the heat radiating body 40.
 図3、図5(c)を参照する。ケース50の固定部80は、底板部52の長手方向の側面52dにケース50と一体に設けられている。ケース50の固定部80は、底板部52の側面52dに設けられている基部81と、基部81から放熱体40へ延びて貫通穴46aを貫通している貫通部82と、を有している。貫通部82の先端83の寸法Lは、貫通穴46aの内径Dよりも大きい。なお、ケース50と、放熱体40とを別個に形成して、ねじ等の締結部材により、互いを固定してもよい。 Refer to FIGS. 3 and 5 (c). The fixing portion 80 of the case 50 is provided integrally with the case 50 on the side surface 52d of the bottom plate portion 52 in the longitudinal direction. The fixing portion 80 of the case 50 has a base portion 81 provided on the side surface 52d of the bottom plate portion 52, and a penetrating portion 82 extending from the base portion 81 to the heat radiating body 40 and penetrating through the through hole 46a. .. The dimension L of the tip 83 of the through portion 82 is larger than the inner diameter D of the through hole 46a. The case 50 and the heat radiating body 40 may be formed separately and fixed to each other by a fastening member such as a screw.
 実施例の効果について説明する。 The effect of the examples will be explained.
 図3、図4を参照する。電力変換装置10は、半導体素子が実装されている実装面41を有している放熱体40と、実装面41に密着している密着面51を有していると共に半導体素子を収納している樹脂製のケース50と、を有している。放熱体40の実装面41には、半導体素子を囲っている溝部60(第1の包囲部)が設けられている。ケース50の密着面51には、半導体素子を囲っている突出部70(第2の包囲部)が設けられている。溝部60と突出部70は、互いに凹凸状に嵌合している(図5(a)、図5(b)参照)。 Refer to FIGS. 3 and 4. The power conversion device 10 has a radiator 40 having a mounting surface 41 on which a semiconductor element is mounted, and a contact surface 51 in close contact with the mounting surface 41, and houses the semiconductor element. It has a case 50 made of resin. A groove 60 (first surrounding portion) surrounding the semiconductor element is provided on the mounting surface 41 of the heat radiating body 40. A protruding portion 70 (second surrounding portion) that surrounds the semiconductor element is provided on the contact surface 51 of the case 50. The groove portion 60 and the protrusion portion 70 are fitted to each other in an uneven shape (see FIGS. 5 (a) and 5 (b)).
 図1、図4を参照する。第1の半導体31を封止する場合、第1の領域57にゲル状の封止部材12を流し込む。仮に、封止部材12が、実装面41と密着面51との間に浸入しても、封止部材12は、凹凸状に嵌合している溝部60及び突出部70に堰き止められる。そのため、接着剤を用いることなく、封止部材12が漏れることを防止できる。 Refer to FIGS. 1 and 4. When sealing the first semiconductor 31, the gel-like sealing member 12 is poured into the first region 57. Even if the sealing member 12 penetrates between the mounting surface 41 and the close contact surface 51, the sealing member 12 is blocked by the groove portion 60 and the protruding portion 70 which are fitted in an uneven shape. Therefore, it is possible to prevent the sealing member 12 from leaking without using an adhesive.
 加えて、溝部60及び突出部70は、凹凸状に嵌合しているため、ケース50と放熱体40とは、互いを所定に位置に留めることができる。 In addition, since the groove 60 and the protrusion 70 are fitted in an uneven shape, the case 50 and the radiator 40 can be kept in a predetermined position with each other.
 図3を参照する。溝部60は連続して構成されている。突出部70は連続して構成されている。例えば、実装面41及び密着面51の双方の面に断続的に凹凸が形成された嵌合構造と比較すると、ケース50と放熱体40との間に浸入した封止部材をより確実に堰き止めることができる。 Refer to FIG. The groove 60 is continuously formed. The protrusion 70 is continuously configured. For example, as compared with a fitting structure in which irregularities are intermittently formed on both the mounting surface 41 and the contact surface 51, the sealing member that has penetrated between the case 50 and the heat radiating body 40 is more reliably blocked. be able to.
 図4を参照する。ケース30に反りが生じる場合、短手方向よりも、長手方向への変位が大きい。即ち、一対の短突出部72、72が、互いに近づくように長手方向に変位する。 Refer to FIG. When the case 30 is warped, the displacement in the longitudinal direction is larger than that in the lateral direction. That is, the pair of short protrusions 72, 72 are displaced in the longitudinal direction so as to approach each other.
 図6(a)を参照する。比較例では、放熱体101の短溝部102、102の断面は、矩形状である。ケース103の短突出部104、104の断面は、矩形状である。短溝部102の側面105、105は、実装面108に対して直交している。短突出部104の側面106、106は、密着面107に対して直交している。 Refer to FIG. 6 (a). In the comparative example, the cross sections of the short groove portions 102, 102 of the heat radiating body 101 are rectangular. The cross sections of the short protrusions 104, 104 of the case 103 are rectangular. The side surfaces 105 and 105 of the short groove portion 102 are orthogonal to the mounting surface 108. The side surfaces 106, 106 of the short protrusion 104 are orthogonal to the close contact surface 107.
 ケース103の成形後に、冷却したケース103が収縮する場合、ケース103は、短突出部104、104同士が近づくように変形する。このケース103の反りにより、短突出部104、104は、短溝部102、102に引っ掛かる。ケース103の反りに伴って、放熱体101も反ってしまう。 When the cooled case 103 shrinks after molding the case 103, the case 103 is deformed so that the short protrusions 104 and 104 come close to each other. Due to the warp of the case 103, the short protrusions 104 and 104 are caught by the short groove portions 102 and 102. As the case 103 warps, the radiator 101 also warps.
 図5(b)を参照する。短溝部62は、内側に傾いている内傾面66と、外側に傾いている外傾面67と、を有している。短突出部72は、内傾面66に当接している内接面76と、外傾面67に当接している外接面77と、を有している。 Refer to FIG. 5 (b). The short groove portion 62 has an inwardly inclined surface 66 inclined inward and an outwardly inclined surface 67 inclined outward. The short protrusion 72 has an inner contact surface 76 that is in contact with the inwardly inclined surface 66, and an outer contact surface 77 that is in contact with the outerly inclined surface 67.
 図6(b)を参照する。いずれの側面66、67、76、77も傾いているため、内径面66は、内接面76に対して摺動しやすくなる。先端面75及び外接面77の角78は、外傾面67に接触しにくくなる。短溝部62と短突出部72との嵌合は外れやすくなる。ケース50の反りに伴って、放熱体40が反ることを防止することができる。 Refer to FIG. 6 (b). Since all of the side surfaces 66, 67, 76, and 77 are tilted, the inner diameter surface 66 tends to slide with respect to the inscribed surface 76. The corners 78 of the tip surface 75 and the circumscribed surface 77 are less likely to come into contact with the circumscribed surface 67. The fitting of the short groove portion 62 and the short protrusion portion 72 is likely to come off. It is possible to prevent the radiator 40 from warping due to the warping of the case 50.
 図4、図6(b)を参照する。ケース50の固定部80は、ケース50の長手方向の中央に位置している。仮に、長手方向の一端50aに固定部80を設けてしまうと、ケース50の他端50bが放熱体40に対して浮き上がり、ケース50の他端50bと放熱体40との間隔が大きく広がってしまう。一方、固定部80がケース50の中央に位置していれば、両端が浮き上がるが、各々の端部50a、50bと放熱体40との間隔を狭めることができる。 Refer to FIGS. 4 and 6 (b). The fixing portion 80 of the case 50 is located at the center of the case 50 in the longitudinal direction. If the fixing portion 80 is provided at one end 50a in the longitudinal direction, the other end 50b of the case 50 will be lifted with respect to the heat radiating body 40, and the distance between the other end 50b of the case 50 and the heat radiating body 40 will be greatly widened. .. On the other hand, if the fixing portion 80 is located at the center of the case 50, both ends are raised, but the distance between the respective end portions 50a and 50b and the heat radiating body 40 can be narrowed.
 図5(c)を参照する。放熱体40の固定部46には、天板部42の厚み方向に貫通している貫通穴46aが空けられている。ケース50の固定部80は、貫通穴46aを貫通している貫通部82と、を有している。貫通部82の先端83の寸法Lは、貫通穴46aの内径Dよりも大きい。そのため、貫通部82は、貫通穴46aから抜けない。ケース50を形成する際に、ケース50を放熱体40と一体に構成することができる。ねじ等の締結部材が不要となり、部品点数を減らすことができる。 Refer to FIG. 5 (c). The fixing portion 46 of the heat radiating body 40 is provided with a through hole 46a penetrating in the thickness direction of the top plate portion 42. The fixing portion 80 of the case 50 has a penetrating portion 82 penetrating through the through hole 46a. The dimension L of the tip 83 of the through portion 82 is larger than the inner diameter D of the through hole 46a. Therefore, the through portion 82 cannot be removed from the through hole 46a. When forming the case 50, the case 50 can be integrally formed with the heat radiating body 40. Fastening members such as screws are not required, and the number of parts can be reduced.
 図2、図5(c)を参照する。貫通部82の先端83は、筐体20の上面20aに形成された凹部23に嵌っている。凹部23は、パワーモジュール11を筐体20に取り付ける際の位置決めの役割を有する。 Refer to FIGS. 2 and 5 (c). The tip 83 of the penetrating portion 82 fits into the recess 23 formed in the upper surface 20a of the housing 20. The recess 23 has a role of positioning when the power module 11 is attached to the housing 20.
 尚、本発明による電力変換装置は、ハイブリッド車両以外の車両の他、他の乗り物にも搭載することができる。即ち、本発明の作用及び効果を奏する限りにおいて、本発明は、実施例に限定されるものではない。 The power conversion device according to the present invention can be mounted on vehicles other than hybrid vehicles as well as other vehicles. That is, the present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.
 本発明の電力変換装置は、四輪車に好適である。 The power conversion device of the present invention is suitable for a four-wheeled vehicle.
 10…電力変換装置
11…パワーモジュール
12…封止部材
18…嵌合構造
31…ジェネレータ(第1の半導体)
32…電圧制御ユニット(第2の半導体)
33…トラクションコントローラ(第3の半導体)
40…放熱体
41…実装面
42…天板部
46…固定部、46a…貫通穴
47…側面
50…ケース
51…密着面
52…底板部
60…溝部(第1の包囲部)
61…長溝部(長辺部)
62…短溝部(短辺部)
63…第1の底面
64…第1の側面
65…第2の底面、65a…一端、65b…他端
66…内傾面
67…外傾面
70…突出部(第2の包囲部)
71…長突出部(長辺部)
72…短突出部(短辺部)
73…第1の当接面
74…第2の当接面
75…先端面
76…内接面
77…外接面
78…角
80…固定部
81…基部
82…貫通部
83…先端
C…ケースの中心
L…先端の寸法
D…貫通穴の内径
10 ... Power conversion device 11 ... Power module 12 ... Sealing member 18 ... Fitting structure 31 ... Generator (first semiconductor)
32 ... Voltage control unit (second semiconductor)
33 ... Traction controller (third semiconductor)
40 ... Heat radiator 41 ... Mounting surface 42 ... Top plate portion 46 ... Fixed portion, 46a ... Through hole 47 ... Side surface 50 ... Case 51 ... Adhesion surface 52 ... Bottom plate portion 60 ... Groove portion (first surrounding portion)
61 ... Long groove part (long side part)
62 ... Short groove part (short side part)
63 ... 1st bottom surface 64 ... 1st side surface 65 ... 2nd bottom surface, 65a ... one end, 65b ... other end 66 ... inward tilting surface 67 ... outward tilting surface 70 ... protruding portion (second surrounding portion)
71 ... Long protrusion (long side)
72 ... Short protrusion (short side)
73 ... First contact surface 74 ... Second contact surface 75 ... Tip surface 76 ... Inner contact surface 77 ... Outer contact surface 78 ... Corner 80 ... Fixed portion 81 ... Base 82 ... Penetration portion 83 ... Tip C ... Case Center L ... Tip dimension D ... Inner diameter of through hole

Claims (5)

  1.  半導体素子と、この半導体素子が実装されている実装面を有している放熱体と、前記実装面に密着している密着面を有していると共に前記半導体素子を収納している樹脂製のケースと、このケース内で前記半導体素子を封止している封止部材と、を含んでおり、
     前記ケースと、前記放熱体とには、それぞれ、互いを固定するための固定部が設けられている、電力変換装置において、
     前記放熱体の前記実装面には、前記実装面の法線に沿う方向から見て、前記半導体素子を囲っている第1の包囲部が設けられており、
     前記ケースの前記密着面には、前記密着面の法線に沿う方向から見て、前記半導体素子を囲っている第2の包囲部が設けられており、 
     前記第1の包囲部及び前記第2の包囲部は、互いに凹凸状に嵌合している、ことを特徴とする電力変換装置。
    A semiconductor element, a radiator having a mounting surface on which the semiconductor element is mounted, and a resin material having a contact surface in close contact with the mounting surface and accommodating the semiconductor element. It includes a case and a sealing member that seals the semiconductor element in the case.
    In a power conversion device, the case and the radiator are each provided with a fixing portion for fixing each other.
    The mounting surface of the heat radiating body is provided with a first surrounding portion that surrounds the semiconductor element when viewed from a direction along the normal of the mounting surface.
    The close contact surface of the case is provided with a second surrounding portion that surrounds the semiconductor element when viewed from the direction along the normal of the close contact surface.
    A power conversion device, wherein the first surrounding portion and the second surrounding portion are fitted to each other in an uneven shape.
  2.  前記第1の包囲部と前記第2の包囲部とのいずれか一方は、連続している溝部によって構成され、
     他方は、前記溝部に嵌合可能な連続している突出部によって構成されている、ことを特徴とする請求項1記載の電力変換装置。
    One of the first siege and the second siege is composed of continuous grooves.
    The power conversion device according to claim 1, wherein the other is composed of continuous protrusions that can be fitted into the groove.
  3.  前記溝部が設けられている面の法線に沿う方向から見て、
     前記溝部は、矩形状であり、互いに平行な一対の長辺部と、互いに平行な一対の短辺部と、から構成され、
     前記短辺部の断面形状は、前記短辺部の底から開口に向かって、幅広となるテーパ状であり、
     前記突出部は、前記溝部に沿った形状を呈している、ことを特徴とする請求項2に記載の電力変換装置。
    Seen from the direction along the normal of the surface where the groove is provided
    The groove portion has a rectangular shape and is composed of a pair of long side portions parallel to each other and a pair of short side portions parallel to each other.
    The cross-sectional shape of the short side portion is a taper shape that widens from the bottom of the short side portion toward the opening.
    The power conversion device according to claim 2, wherein the protruding portion has a shape along the groove.
  4.  各々の前記固定部は、ケースの長手方向の中央のみに位置している、ことを特徴とする請求項1~請求項3のいずれか1項記載の電力変換装置。 The power conversion device according to any one of claims 1 to 3, wherein each of the fixing portions is located only in the center of the case in the longitudinal direction.
  5.  前記放熱体の前記固定部には、貫通穴が設けられており、
     前記ケースの前記固定部には、前記貫通穴を貫通する貫通部がケースと一体に設けられており、前記貫通部の先端の寸法は、前記貫通穴の内径よりも大きい、ことを特徴とする請求項1~請求項4のいずれか1項記載の電力変換装置。
    A through hole is provided in the fixed portion of the heat radiating body.
    The fixing portion of the case is provided with a penetrating portion penetrating the through hole integrally with the case, and the dimension of the tip of the penetrating portion is larger than the inner diameter of the through hole. The power conversion device according to any one of claims 1 to 4.
PCT/JP2020/017434 2019-06-21 2020-04-23 Power conversion device WO2020255558A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080035276.7A CN113906663A (en) 2019-06-21 2020-04-23 Power conversion device
US17/619,835 US12074532B2 (en) 2019-06-21 2020-04-23 Power conversion device
JP2021527416A JP7551608B2 (en) 2019-06-21 2020-04-23 Power Conversion Equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019115610 2019-06-21
JP2019-115610 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020255558A1 true WO2020255558A1 (en) 2020-12-24

Family

ID=74037236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017434 WO2020255558A1 (en) 2019-06-21 2020-04-23 Power conversion device

Country Status (4)

Country Link
US (1) US12074532B2 (en)
JP (1) JP7551608B2 (en)
CN (1) CN113906663A (en)
WO (1) WO2020255558A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213202B1 (en) * 2022-01-17 2024-02-28 Siemens Aktiengesellschaft Power module
US12075601B2 (en) * 2022-06-03 2024-08-27 Vitesco Technologies USA, LLC Heat dissipation structure for inverter ground screws of a belt starter generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553617A (en) * 1978-06-21 1980-01-11 Hitachi Ltd Metallic base for hybrid integrated circuit
JPS61147554A (en) * 1984-12-21 1986-07-05 Toshiba Corp Hybrid ic module
JP2004349614A (en) * 2003-05-26 2004-12-09 Mitsubishi Electric Corp Semiconductor device
JP2006081312A (en) * 2004-09-09 2006-03-23 Keihin Corp Power drive unit
WO2018055667A1 (en) * 2016-09-20 2018-03-29 三菱電機株式会社 Semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419713A (en) * 1993-12-06 1995-05-30 Berg Electronics Electrical connector with self-retained boardlock
JP2004103846A (en) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp Semiconductor device for electric power
TWI278975B (en) * 2003-03-04 2007-04-11 Siliconware Precision Industries Co Ltd Semiconductor package with heatsink
US7022916B1 (en) * 2003-05-21 2006-04-04 Emc Corporation Techniques for controlling movement of a set of cables
JP4137840B2 (en) 2004-05-10 2008-08-20 三菱電機株式会社 Power semiconductor device
JP5061717B2 (en) * 2007-05-18 2012-10-31 富士電機株式会社 Semiconductor module and method for manufacturing semiconductor module
JP5071405B2 (en) * 2009-02-13 2012-11-14 三菱電機株式会社 Power semiconductor device
DE112012006656B4 (en) * 2012-07-05 2021-08-05 Mitsubishi Electric Corporation Semiconductor device
WO2016016985A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Semiconductor device
JP2016054249A (en) * 2014-09-04 2016-04-14 三菱電機株式会社 Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553617A (en) * 1978-06-21 1980-01-11 Hitachi Ltd Metallic base for hybrid integrated circuit
JPS61147554A (en) * 1984-12-21 1986-07-05 Toshiba Corp Hybrid ic module
JP2004349614A (en) * 2003-05-26 2004-12-09 Mitsubishi Electric Corp Semiconductor device
JP2006081312A (en) * 2004-09-09 2006-03-23 Keihin Corp Power drive unit
WO2018055667A1 (en) * 2016-09-20 2018-03-29 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP7551608B2 (en) 2024-09-17
CN113906663A (en) 2022-01-07
US20220345049A1 (en) 2022-10-27
JPWO2020255558A1 (en) 2020-12-24
US12074532B2 (en) 2024-08-27

Similar Documents

Publication Publication Date Title
CA2273474C (en) Electronic circuit device and method of fabricating the same
US8310830B2 (en) Electronic device and frequency converter of motor
US8363408B2 (en) Electronic device and frequency converter of motor
JP4429251B2 (en) Power converter
KR100215300B1 (en) Heat sink
EP1841305B1 (en) Electronic control device
WO2020255558A1 (en) Power conversion device
US11056864B2 (en) Electrical junction box
US20020093092A1 (en) Power semiconductor module and cooling element for holding the power semiconductor module
CN111261597A (en) Semiconductor element package with high voltage-resistant insulation structure
JP7047929B2 (en) Semiconductor device
JP2007067067A (en) Resin injection type power circuit unit
JP7160216B2 (en) semiconductor equipment
KR20200065351A (en) Insulation and cooling structure for semiconductor device packaging
US20220216130A1 (en) Semiconductor module
US20230269913A1 (en) Electronic device and electronic device manufacturing method
KR101209464B1 (en) A electronic device module for bldc blower motor of vehicle
CN112806108B (en) Control device
JP2023044318A (en) Electronic equipment
JP2022075284A (en) Semiconductor device
US20240164066A1 (en) In-vehicle device
KR102180032B1 (en) Motor drive device
JP4642804B2 (en) PWM module
JP2022050058A (en) Semiconductor device and manufacturing method thereof
KR20200025215A (en) Electronic control unit, ECU

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827332

Country of ref document: EP

Kind code of ref document: A1