WO2020241511A1 - Head-up display, method for manufacturing same, and method for manufacturing illuminating device - Google Patents

Head-up display, method for manufacturing same, and method for manufacturing illuminating device Download PDF

Info

Publication number
WO2020241511A1
WO2020241511A1 PCT/JP2020/020370 JP2020020370W WO2020241511A1 WO 2020241511 A1 WO2020241511 A1 WO 2020241511A1 JP 2020020370 W JP2020020370 W JP 2020020370W WO 2020241511 A1 WO2020241511 A1 WO 2020241511A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light emitting
chip
wavelength
light
Prior art date
Application number
PCT/JP2020/020370
Other languages
French (fr)
Japanese (ja)
Inventor
裕輝 春山
千秋 渋谷
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2021522320A priority Critical patent/JPWO2020241511A1/ja
Publication of WO2020241511A1 publication Critical patent/WO2020241511A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • B60K35/231Head-up displays [HUD] characterised by their arrangement or structure for integration into vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/60Instruments characterised by their location or relative disposition in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K37/00Dashboards
    • B60K37/20Dashboard panels

Definitions

  • the present disclosure relates to a head-up display, a method for manufacturing a head-up display, and a method for manufacturing a lighting device.
  • a lighting device that generates white light is used as the light source for the backlight of the display of the head-up display.
  • white light is formed by passing blue light emitted by a chip of a blue light emitting diode through a yellow phosphor.
  • a luminaire having a blue light emitting diode chip and a phosphor covering the chip to generate white light. It is provided with a display that emits display light when illuminated by the lighting device.
  • a head-up display is provided in which the wavelength of light output from the chip is 452 nm or more and 468 nm or less.
  • FIG. 1A and the like for the sake of easy viewing, there are cases where a reference reference numeral is only partially attached to a plurality of parts having the same attribute.
  • FIG. 1A is a perspective view showing the internal configuration of the head-up display 1 according to the embodiment from above.
  • FIG. 1B is a diagram schematically showing a vehicle-mounted state of the head-up display 1 when viewed from the side of the vehicle. Note that in FIG. 1A, the illustration of some components of the head-up display 1 is omitted.
  • the X direction (second direction), the Y direction, and the Z direction (first direction), which are three directions orthogonal to each other, are defined in the right-handed system.
  • the Z direction is the vertical direction
  • the positive side is the upper side
  • the negative side is the lower side.
  • the head-up display 1 is mounted in the instrument panel 9 of the vehicle.
  • the head-up display 1 may be mounted in a direction in which the Y direction of FIG. 1A substantially corresponds to the vehicle width direction.
  • the head-up display 1 includes a case 2, a TFT (Thin Film Transistor) panel unit 3, mirrors 4 and 5, and a backlight unit 6.
  • TFT Thin Film Transistor
  • the case 2 forms the housing of the head-up display 1.
  • the case 2 is a lower case that forms the lower part of the housing of the head-up display 1.
  • the case 2 is combined with an upper case (not shown in FIG. 1A).
  • Case 2 is formed of a highly heat-conducting material such as aluminum. Case 2 includes a heat dissipation portion 21 as shown in FIG. 1A.
  • the heat radiating portion 21 is formed on the outer surface of the case 2 (the surface exposed to the outside).
  • the heat radiating portion 21 has a function of radiating heat generated from the backlight unit 6.
  • the heat radiating portion 21 releases heat to the air flowing outside the case 2.
  • the TFT panel unit 3 is a display device that uses the light from the backlight unit 6 as a backlight and emits image light according to the display image.
  • the TFT panel unit 3 has a color filter (not shown).
  • the display image is arbitrary, and may be, for example, an image representing navigation information, various vehicle information, and the like.
  • the TFT panel unit 3 is fixed to the case 2.
  • the TFT panel unit 3 is fastened with screws 90 at two locations on both sides in the X direction.
  • FIG. 2 is a perspective view of the TFT panel unit 3 in a single item state
  • FIG. 3 is an exploded perspective view of the TFT panel unit 3.
  • the TFT panel unit 3 includes a TFT holder 31, a TFT panel 32, a diffusion sheet 33, and a TFT cover 34.
  • the TFT holder 31 is fixed to the case 2 as described above.
  • the TFT holder 31 holds the TFT panel 32.
  • the TFT panel 32 is a dot matrix type TFT (Thin Film Transistor) panel or the like.
  • the TFT panel 32 is provided so that the long side direction corresponds to the X direction.
  • the TFT cover 34 is fitted and coupled to the TFT holder 31.
  • the TFT panel 32 and the diffusion sheet 33 are held between the TFT cover 34 and the TFT holder 31 in the Y direction.
  • the mirrors 4 and 5 reflect the image light emitted from the TFT panel unit 3 and emit the image light (display light) from the outlet provided in the upper case (not shown), and windshield the vehicle VC. Direct to glass WS (an example of a transmission / reflection part).
  • glass WS an example of a transmission / reflection part
  • two mirrors 4 and 5 are provided, but the number of mirrors is arbitrary.
  • the mirror 4 is a flat mirror and the mirror 5 is a concave mirror.
  • the mirror 5 may be rotatably supported with respect to the case 2 so that the vertical position of the area exposed to the image light on the windshield glass WS can be adjusted.
  • the display image obtained by the irradiation is in front of the windshield glass WS.
  • Virtual image display) VI can be seen.
  • the driver can visually recognize the display image VI by superimposing it on the front scenery, and can grasp the vehicle information and the like in a mode in which the line of sight movement is small, and the convenience and safety are improved.
  • the backlight unit 6 is provided behind the TFT panel unit 3 (negative side in the Y direction).
  • the backlight unit 6 cooperates with the TFT panel unit 3 to generate image light.
  • the backlight unit 6 is fixed to the case 2.
  • FIG. 4 is a perspective view of the backlight unit 6 in a single item state
  • FIG. 5 is an exploded perspective view of the backlight unit 6.
  • the backlight unit 6 includes a light emitting element body 8 (an example of a lighting device).
  • the backlight unit 6 has a function of emitting light from the light emitting element body 8 to the TFT panel unit 3 and transferring the heat generated by the light emitting element body 8 to the heat radiating portion 21.
  • the backlight unit 6 includes a lens cover 61, a first lens spring 62, a condenser lens 63 (an example of a lens), a diffuser plate 64 (an example of a lens), a lens holder 65, and a second lens spring 66. , A lens array 67 (an example of a lens), a light emitting substrate 68, and a control substrate 69.
  • the lens cover 61 covers the front surface (positive side in the Y direction) of the backlight unit 6.
  • the lens cover 61 has an opening 611 from which the condenser lens 63 is exposed.
  • the lens cover 61 is fitted and coupled to the lens holder 65.
  • the lens cover 61 has claws 612 extending in the negative direction in the Y direction at four corners, and is fitted and coupled to the lens holder 65 by the claws 612.
  • the first lens spring 62 is in the form of a leaf spring, and is provided between the lens cover 61 and the condenser lens 63 in the Y direction.
  • the first lens springs 62 are provided in pairs in the vertical direction.
  • Each of the first lens springs 62 is fixed to the upper side and the lower side side surfaces of the lens cover 61.
  • Each of the first lens springs 62 urges the condenser lens 63 together with the diffuser plate 64 toward the lens holder 65.
  • the first lens spring 62 has a function of defining the positions of the condenser lens 63 and the diffuser plate 64 in the Y direction with respect to the lens holder 65.
  • the diffuser plate 64 and the condenser lens 63 diffuse and collect the light from the light emitting element body 8 that is incident through the lens array 67 toward the front surface (positive side in the Y direction) of the backlight unit 6. It has a function of emitting light.
  • the diffusion plate 64 is, for example, a plate shape formed of a translucent resin material and having at least one surface subjected to fine unevenness processing.
  • the diffuser plate 64 and the condenser lens 63 are held on the positive side of the lens holder 65 in the Y direction.
  • the diffuser plate 64 and the condenser lens 63 each have through holes 641,631 through which the pin portion 650 of the lens holder 65 passes, and the positions in the Z direction and the X direction with respect to the lens holder 65 are defined.
  • the lens holder 65 holds the diffuser plate 64 and the condenser lens 63, and also holds the lens array 67.
  • the lens holder 65 is fixed to the case 2.
  • the backlight unit 6 is fixed to the case 2 by fixing the lens holder 65 to the case 2.
  • the second lens spring 66 is in the form of a leaf spring and is fixed to the lens holder 65.
  • the second lens spring 66 has a function of urging the lens array 67 toward the light emitting substrate 68.
  • the lens array 67 is formed of a translucent resin material and is arranged so as to cover the positive side of the light emitting substrate 68 in the Y direction.
  • the lens array 67 includes a collimator portion 671 having a conical convex outer peripheral surface obtained by rotating a substantially parabolic disconnection.
  • the lens array 67 is located so as to face the light emitting element 8 mounted on the light emitting substrate 68, and transmits the light radiated from the light emitting element 8 to the positive side in the Y direction.
  • the outer shape of the lens array 67 is a rectangle (a rectangle whose long side is in the X direction) that is substantially the same as the outer shape of the TFT panel unit 3 (and the TFT panel 32).
  • the light emitting substrate 68 is provided behind the lens array 67 (on the negative side in the Y direction).
  • a plurality of light emitting element bodies 8 are mounted in an array on the surface of the light emitting substrate 68 on the side facing the lens array 67.
  • Each light emitting element 8 is one or a plurality of LEDs (Light Emitting Diodes).
  • the arrangement method and number of the light emitting element bodies 8 are arbitrary.
  • the light emitting element body 8 is provided so that the optical axis direction (Y direction) is perpendicular to the light emitting substrate 68.
  • the control board 69 is electrically connected to the light emitting board 68 and controls the lighting of a plurality of light emitting element bodies 8 provided on the light emitting board 68.
  • the present embodiment can be applied to a head-up display having an arbitrary structure as long as the light emitting element body 8 is provided.
  • the mirrors 4 and 5 are provided, but one or both of the mirrors 4 and 5 may be omitted.
  • FIG. 6 is a plan view showing an example of one light emitting device body 8
  • FIG. 7 is a cross-sectional view taken along the line AA of FIG.
  • one light emitting device 8 will be described.
  • the light emitting device 8 includes a chip 80 and a phosphor 82.
  • the chip 80 is a blue light emitting diode chip (die).
  • the phosphor 82 is, for example, a YAG (Yttrium aluminum garnet) -based yellow phosphor that covers the chip 80.
  • the phosphor 82 may be formed of a resin containing the phosphor.
  • the phosphor 82 is a ⁇ -sialon (SiAlON) -based green phosphor and a CASN (or SCASSN or 1113 phosphor) or KSF-based red phosphor instead of the yellow phosphor. And may be mixed.
  • the light emitting element body 8 also has a substrate 81, a reflective material 84, and the like.
  • the blue light emitted from the chip 80 becomes white when passing through the phosphor 82, and white light is emitted.
  • FIG. 8 is a diagram showing the characteristics related to the spectrum of the white light generated by the light emitting device 8, and the horizontal axis represents the wavelength and the vertical axis represents the relative emission intensity, and the characteristics are shown.
  • the white light generated by the light emitting element body 8 that is, the white light output from the chip 80 of the blue light emitting diode via the phosphor 82, preferably has a wavelength of 444 nm, as shown in FIG. It is 460 nm or less. In this case, high-quality white light with less yellowness is obtained, and the display quality of the head-up display 1 can be improved.
  • the phosphor 82 for converting the blue light from the chip 80 of the blue light emitting diode into white light is the same individual. If this is the case, the relationship between the wavelength of blue light from the chip 80 of the blue light emitting diode and the wavelength of white light obtained through the phosphor 82 is the same. That is, if the phosphor 82 is the same, the wavelength of blue light from the chip 80 of the blue light emitting diode and the wavelength of white light obtained through the phosphor 82 are in a proportional relationship.
  • FIG. 9 is a diagram showing the characteristics of the color filter of the TFT panel unit 3.
  • the horizontal axis represents the wavelength and the vertical axis represents the transmittance, and the characteristics are shown.
  • the color filter has a characteristic of transmittance with respect to the wavelength of light, that is, the transmittance increases monotonically as the wavelength increases from 450 nm to 500 nm.
  • the color filter shown in FIG. 9 has a characteristic that the transmittance monotonically increases by at least 3% or more as the wavelength increases from 450 nm to 500 nm.
  • the transmittance changes relatively significantly within the wavelength range of 444 nm or more and 460 nm, so that the change in the blue transmittance with respect to the change in the wavelength of white light becomes large. Therefore, even if the wavelength of the white light deviates slightly from the desired range, the white light tends to be yellowish.
  • each light emitting element body 8 of the backlight unit 6 adjusts a white point (hereinafter, also referred to as “white point adjustment”) so as to realize a desired white light with respect to the light passed through the above-mentioned color filter.
  • the brightness adjustment hereinafter, also referred to as “brightness adjustment”
  • the white point adjustment is a process of adjusting the tone of RGB to a desired white color by lowering the tone.
  • the brightness adjustment is a process of raising the brightness reduced due to the white point adjustment to a required level.
  • the wavelength of the white light generated by the light emitting element 8 by limiting the wavelength of the white light generated by the light emitting element 8 to 444 nm or more and 460 nm or less, the decrease in brightness caused by the White point adjustment is suppressed. be able to. As a result, the incidence of defective products can be appropriately reduced.
  • the white light generated by the light emitting element 8 is generated by passing the blue light emitted from the chip 80 of the blue light emitting diode through the phosphor 82. Therefore, when the white light output from the blue light emitting diode chip 80 via the phosphor 82 has a wavelength of 444 nm or more and 460 nm or less for a certain light emitting element body 8, the cause is only the chip 80. However, there may be other factors such as the phosphor 82 and the like. In general, it is difficult to take out only the chip 80 after covering the phosphor 82 and measure the wavelength of the blue light output from the chip 80.
  • the wavelength of blue light output from the chip 80 of the blue light emitting diode is limited to 452 nm or more and 468 nm or less.
  • the quality control of the light emitting device 8 can be performed in a manner in which other factors (for example, the phosphor 82) are excluded, as compared with the case where the wavelength of the white light obtained through the phosphor 82 is limited.
  • the backlight unit 6 satisfying the required quality can be efficiently manufactured.
  • the blue light emitting diode chip 80 in addition to limiting the wavelength of blue light output from the blue light emitting diode chip 80 to 452 nm or more and 468 nm or less, the blue light emitting diode chip 80 to the phosphor 82 It may be specified that the wavelength of the white light output via the LED is limited to 444 nm or more and 460 nm or less.
  • FIG. 10 is a schematic flowchart showing an outline of a method for manufacturing the light emitting element body 8.
  • the method for manufacturing the light emitting element body 8 includes a first inspection step S1, an assembly step S2, and a second inspection step S3.
  • the first inspection step S1 and the assembly step S2 do not have to be executed in parallel, and may be executed at different places. This also applies to the assembly process S2 and the second inspection process S3, and also applies to the first inspection process S1 and the second inspection process S3.
  • the first inspection step S1 includes steps from step S100 to step S112.
  • step S100 a chip of a blue light emitting diode to be inspected is prepared, and one of them is selected. For example, a plurality of blue light emitting diode chips to be inspected are prepared.
  • step S102 blue light is generated from the selected chip, and the wavelength of the blue light is measured.
  • step S104 it is determined whether or not the measured value of the wavelength is 452 nm or more and 468 nm or less based on the measurement result obtained in step S102. For example, it is determined whether or not the wavelength at which the peak of the spectrum is 452 nm or more and 468 nm or less. If the determination result is "YES”, the process proceeds to step S106, and if not, the process proceeds to step S108.
  • step S106 the chip selected in step S102 is determined as a non-defective product.
  • step S108 the chip selected in step S102 is determined as a defective product.
  • step S110 it is determined whether or not all the chips of the blue light emitting diode to be inspected have been selected. If the determination result is "YES”, the process ends, and if not, the process proceeds to step S112. In step S112, the next one chip is selected from the chips of the blue light emitting diode to be inspected, and the process is repeated from step S104.
  • the assembly step S2 includes the steps from step S200 to step S202.
  • step S200 a chip judged to be a non-defective product in the first inspection step S1 is selected.
  • step S202 the light emitting element body 8 is manufactured using the chip selected in step S200.
  • the chip selected in step S200 becomes a chip 80 that is sealed with a resin containing a phosphor and is covered with the phosphor 82.
  • the second inspection step S3 includes the steps from step S300 to step S302.
  • step S300 another inspection regarding the chromaticity range and the like is performed on the light emitting element body 8 obtained in step S202.
  • step S302 only the light emitting element 8 that satisfies the regulation in step S300 is ready to be shipped as a product of a predetermined model number.
  • the blue light emitting diode chip 80 whose measured value of the wavelength of the emitted light is 452 nm or more and 468 nm or less is used as a good product, and the good product chip 80 is used. Only the light emitting element 8 covered with the phosphor 82 can be shipped.
  • the measured value of the wavelength of light is 452 nm or more and 468 nm or less.
  • the head-up display 1 can be manufactured by using the light emitting element body 8 which has been inspected before shipment.
  • FIG. 11 is a schematic flowchart showing an outline of the manufacturing method of the head-up display 1.
  • step S400 the light emitting element body 8 to which a predetermined model number is assigned is prepared. That is, the light emitting element 8 manufactured from the chip 80 of the blue light emitting diode whose measured value of the wavelength of the emitted light is 452 nm or more and 468 nm or less is prepared.
  • step S402 the backlight unit 6 is assembled using the light emitting element body 8 prepared in step S400.
  • step S404 the head-up display 1 is assembled using the backlight unit 6 obtained in step S402.
  • step S406 the white point adjustment and the brightness adjustment described above are executed.
  • step S408 other necessary inspections and the like are performed, and only the head-up display 1 that meets the regulations can be shipped as a product of a predetermined model number.
  • the chip 80 of the blue light emitting diode whose measured value of the wavelength of the emitted light is 452 nm or more and 468 nm or less can be used for the backlight unit 6.
  • the possibility that the decrease in brightness after adjusting the white point becomes large can be reduced, and the yield is improved.
  • the possibility that the blue light emitting diode chip 80 itself is defective can be substantially eliminated, so that it is easy to take measures against defects. Become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The purpose of the present invention is to provide an illuminating device that satisfies required quality and can be efficiently manufactured, and efficiently manufacture an illuminating device and the like that satisfy required quality. Disclosed is a head-up display provided with: an illuminating device that has a blue light-emitting diode chip and a phosphor covering the chip, and generates white light; and a display instrument that emits display light by being illuminated by the illuminating device, wherein the wavelength of light emitted from the blue light-emitting diode chip is 452-468 nm inclusive.

Description

ヘッドアップディスプレイ、その製造方法、及び照明装置の製造方法Head-up display, its manufacturing method, and lighting equipment manufacturing method
 本開示は、ヘッドアップディスプレイ、ヘッドアップディスプレイの製造方法、及び照明装置の製造方法に関する。 The present disclosure relates to a head-up display, a method for manufacturing a head-up display, and a method for manufacturing a lighting device.
 ヘッドアップディスプレイの表示器のバックライトの光源として、白色光を発生する照明装置が使用される。このような照明装置は、青色発光ダイオードのチップが発した青色光が黄色蛍光体を通過することで白色光を形成する。 A lighting device that generates white light is used as the light source for the backlight of the display of the head-up display. In such a lighting device, white light is formed by passing blue light emitted by a chip of a blue light emitting diode through a yellow phosphor.
特開2013-214008号公報Japanese Unexamined Patent Publication No. 2013-214008
 しかしながら、上記のような従来技術では、照明装置の状態での要求品質により品質が管理されるため、要求品質を満たす照明装置を効率的に製造することが難しい。 However, in the conventional technology as described above, since the quality is controlled by the required quality in the state of the lighting device, it is difficult to efficiently manufacture the lighting device satisfying the required quality.
 そこで、本開示は、要求品質を満たしかつ効率的に製造可能な照明装置を提供すること、及び、要求品質を満たす照明装置等を効率的に製造することを目的とする。 Therefore, it is an object of the present disclosure to provide a lighting device that satisfies the required quality and can be efficiently manufactured, and to efficiently manufacture a lighting device or the like that meets the required quality.
 1つの側面では、青色発光ダイオードのチップと前記チップを覆う蛍光体を有し、白色光を発生する照明装置と、
 前記照明装置に照らされることで表示光を出射する表示器とを備え、
 前記チップから出力される光の波長は、452nm以上468nm以下である、ヘッドアップディスプレイが提供される。
On one side, a luminaire having a blue light emitting diode chip and a phosphor covering the chip to generate white light.
It is provided with a display that emits display light when illuminated by the lighting device.
A head-up display is provided in which the wavelength of light output from the chip is 452 nm or more and 468 nm or less.
 本開示によれば、要求品質を満たしかつ効率的に製造可能な照明装置を提供すること、及び、要求品質を満たす照明装置等を効率的に製造することが可能となる。 According to the present disclosure, it is possible to provide a lighting device that satisfies the required quality and can be efficiently manufactured, and to efficiently manufacture a lighting device or the like that meets the required quality.
一実施例によるヘッドアップディスプレイの内部構成を上側から示す斜視図である。It is a perspective view which shows the internal structure of the head-up display by one Example from the upper side. ヘッドアップディスプレイの車両搭載状態を車両側方視で概略的に示す図である。It is a figure which shows roughly the vehicle-mounted state of the head-up display in the vehicle side view. TFTパネルユニットの単品状態の斜視図である。It is a perspective view of the TFT panel unit as a single item. TFTパネルユニットの分解斜視図である。It is an exploded perspective view of the TFT panel unit. バックライトユニットの単品状態の斜視図である。It is a perspective view of the backlight unit in a single item state. バックライトユニットの分解斜視図である。It is an exploded perspective view of the backlight unit. 一の発光素子体の一例を示す平面図である。It is a top view which shows an example of one light emitting element body. 図6のラインA-Aに沿った断面図である。It is sectional drawing which follows the line AA of FIG. 発光素子体が発生する白色光のスペクトルに係る特性を示す図である。It is a figure which shows the characteristic which concerns on the spectrum of the white light generated by a light emitting element body. TFTパネルユニットのカラーフィルタの特性を示す図である。It is a figure which shows the characteristic of the color filter of a TFT panel unit. 発光素子体の製造方法の概要を示す概略フローチャートである。It is a schematic flowchart which shows the outline of the manufacturing method of a light emitting element body. ヘッドアップディスプレイの製造方法の概要を示す概略フローチャートである。It is a schematic flowchart which shows the outline of the manufacturing method of a head-up display.
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図1A等では、見易さのために、複数存在する同一属性の部位には、一部のみしか参照符号が付されていない場合がある。 Hereinafter, each embodiment will be described in detail with reference to the attached drawings. In addition, in FIG. 1A and the like, for the sake of easy viewing, there are cases where a reference reference numeral is only partially attached to a plurality of parts having the same attribute.
 [ヘッドアップディスプレイの構成]
 図1Aは、一実施例によるヘッドアップディスプレイ1の内部構成を上側から示す斜視図である。図1Bは、ヘッドアップディスプレイ1の車両搭載状態を車両側方視で概略的に示す図である。なお、図1Aでは、ヘッドアップディスプレイ1の一部の構成要素の図示は省略されている。図1Aには、右手系で、互いに直交する3方向であるX方向(第2方向)、Y方向、及びZ方向(第1方向)が定義されている。以下では、形式上、Z方向を上下方向とし、正側を上側とし、負側を下側とする。
[Head-up display configuration]
FIG. 1A is a perspective view showing the internal configuration of the head-up display 1 according to the embodiment from above. FIG. 1B is a diagram schematically showing a vehicle-mounted state of the head-up display 1 when viewed from the side of the vehicle. Note that in FIG. 1A, the illustration of some components of the head-up display 1 is omitted. In FIG. 1A, the X direction (second direction), the Y direction, and the Z direction (first direction), which are three directions orthogonal to each other, are defined in the right-handed system. In the following, formally, the Z direction is the vertical direction, the positive side is the upper side, and the negative side is the lower side.
 ヘッドアップディスプレイ1は、車両のインストルメントパネル9内に搭載される。ヘッドアップディスプレイ1は、図1AのY方向が車幅方向に略対応する向きで搭載されてよい。 The head-up display 1 is mounted in the instrument panel 9 of the vehicle. The head-up display 1 may be mounted in a direction in which the Y direction of FIG. 1A substantially corresponds to the vehicle width direction.
 ヘッドアップディスプレイ1は、ケース2と、TFT(Thin Film Transistor)パネルユニット3と、ミラー4,5と、バックライトユニット6とを含む。 The head-up display 1 includes a case 2, a TFT (Thin Film Transistor) panel unit 3, mirrors 4 and 5, and a backlight unit 6.
 ケース2は、ヘッドアップディスプレイ1の筐体を形成する。ケース2は、ヘッドアップディスプレイ1の筐体の下部を形成するロアケースである。なお、ケース2は、図1Aでは図示が省略されたアッパーケースと結合される。 The case 2 forms the housing of the head-up display 1. The case 2 is a lower case that forms the lower part of the housing of the head-up display 1. The case 2 is combined with an upper case (not shown in FIG. 1A).
 ケース2は、アルミ等のような伝熱性の高い材料により形成される。ケース2は、図1Aに示すように、放熱部位21を含む。放熱部位21は、ケース2の外側表面(外部に露出する表面)に形成される。放熱部位21は、バックライトユニット6から発生する熱を放熱する機能を有する。放熱部位21は、ケース2外を流れる空気に熱を放出する。 Case 2 is formed of a highly heat-conducting material such as aluminum. Case 2 includes a heat dissipation portion 21 as shown in FIG. 1A. The heat radiating portion 21 is formed on the outer surface of the case 2 (the surface exposed to the outside). The heat radiating portion 21 has a function of radiating heat generated from the backlight unit 6. The heat radiating portion 21 releases heat to the air flowing outside the case 2.
 TFTパネルユニット3は、バックライトユニット6からの光をバックライトとして利用して、表示画像に応じた画像光を出射する表示器である。TFTパネルユニット3は、カラーフィルタ(図示せず)を有する。なお、表示画像は、任意であり、例えばナビゲーション情報や各種の車両情報等を表す画像であってよい。 The TFT panel unit 3 is a display device that uses the light from the backlight unit 6 as a backlight and emits image light according to the display image. The TFT panel unit 3 has a color filter (not shown). The display image is arbitrary, and may be, for example, an image representing navigation information, various vehicle information, and the like.
 TFTパネルユニット3は、ケース2に固定される。例えば、TFTパネルユニット3は、図1Aに示すように、X方向の両側の2箇所でネジ90により締結される。 The TFT panel unit 3 is fixed to the case 2. For example, as shown in FIG. 1A, the TFT panel unit 3 is fastened with screws 90 at two locations on both sides in the X direction.
 図2は、TFTパネルユニット3の単品状態の斜視図であり、図3は、TFTパネルユニット3の分解斜視図である。 FIG. 2 is a perspective view of the TFT panel unit 3 in a single item state, and FIG. 3 is an exploded perspective view of the TFT panel unit 3.
 TFTパネルユニット3は、TFTホルダ31と、TFTパネル32と、拡散シート33と、TFTカバー34とを含む。TFTホルダ31は、上述のようにケース2に固定される。TFTホルダ31は、TFTパネル32を保持する。TFTパネル32は、ドットマトリクス型のTFT(Thin Film Transistor)パネル等である。TFTパネル32は、長辺方向がX方向に対応する向きで設けられる。TFTカバー34は、TFTホルダ31に嵌合結合される。Y方向でTFTカバー34とTFTホルダ31の間には、TFTパネル32及び拡散シート33が保持される。 The TFT panel unit 3 includes a TFT holder 31, a TFT panel 32, a diffusion sheet 33, and a TFT cover 34. The TFT holder 31 is fixed to the case 2 as described above. The TFT holder 31 holds the TFT panel 32. The TFT panel 32 is a dot matrix type TFT (Thin Film Transistor) panel or the like. The TFT panel 32 is provided so that the long side direction corresponds to the X direction. The TFT cover 34 is fitted and coupled to the TFT holder 31. The TFT panel 32 and the diffusion sheet 33 are held between the TFT cover 34 and the TFT holder 31 in the Y direction.
 ミラー4,5は、TFTパネルユニット3から出射される画像光を反射して、アッパーケース(図示せず)に設けられた出射口から画像光(表示光)を出射させ、車両VCのウインドシールドガラスWS(透過反射部の一例)に向かわせる。本実施例では、2つのミラー4,5が設けられるが、ミラーの数は任意である。本実施例では、一例として、ミラー4は、平面ミラーであり、ミラー5は、凹面ミラーである。ミラー5は、ウインドシールドガラスWSにおける画像光が当たる領域の上下位置が調整可能となるように、ケース2に対して回転可能に支持されてよい。 The mirrors 4 and 5 reflect the image light emitted from the TFT panel unit 3 and emit the image light (display light) from the outlet provided in the upper case (not shown), and windshield the vehicle VC. Direct to glass WS (an example of a transmission / reflection part). In this embodiment, two mirrors 4 and 5 are provided, but the number of mirrors is arbitrary. In this embodiment, as an example, the mirror 4 is a flat mirror and the mirror 5 is a concave mirror. The mirror 5 may be rotatably supported with respect to the case 2 so that the vertical position of the area exposed to the image light on the windshield glass WS can be adjusted.
 なお、ウインドシールドガラスWSに画像光が照射されると、図1Bに示すように、車両VCを運転する運転者にとっては、ウインドシールドガラスWSよりも前方に、当該照射によって得られた表示像(虚像表示)VIが見える。これにより、運転者は、前方風景と重畳させて表示像VIを視認でき、視線移動の少ない態様で車両情報等を把握でき、利便性及び安全性が向上する。 When the windshield glass WS is irradiated with image light, as shown in FIG. 1B, for the driver who drives the vehicle VC, the display image obtained by the irradiation is in front of the windshield glass WS. Virtual image display) VI can be seen. As a result, the driver can visually recognize the display image VI by superimposing it on the front scenery, and can grasp the vehicle information and the like in a mode in which the line of sight movement is small, and the convenience and safety are improved.
 バックライトユニット6は、TFTパネルユニット3の背後(Y方向の負側)に設けられる。バックライトユニット6は、TFTパネルユニット3と協動して、画像光を生成する。バックライトユニット6は、ケース2に固定される。 The backlight unit 6 is provided behind the TFT panel unit 3 (negative side in the Y direction). The backlight unit 6 cooperates with the TFT panel unit 3 to generate image light. The backlight unit 6 is fixed to the case 2.
[バックライトユニットの構成]
 図4は、バックライトユニット6の単品状態の斜視図であり、図5は、バックライトユニット6の分解斜視図である。
[Backlight unit configuration]
FIG. 4 is a perspective view of the backlight unit 6 in a single item state, and FIG. 5 is an exploded perspective view of the backlight unit 6.
 バックライトユニット6は、発光素子体8(照明装置の一例)を含む。バックライトユニット6は、発光素子体8からの光をTFTパネルユニット3へと出射するとともに、発光素子体8で発生する熱を放熱部位21に伝達する機能を有する。 The backlight unit 6 includes a light emitting element body 8 (an example of a lighting device). The backlight unit 6 has a function of emitting light from the light emitting element body 8 to the TFT panel unit 3 and transferring the heat generated by the light emitting element body 8 to the heat radiating portion 21.
 バックライトユニット6は、レンズカバー61と、第1レンズスプリング62と、集光レンズ63(レンズの一例)と、拡散板64(レンズの一例)と、レンズホルダ65と、第2レンズスプリング66と、レンズアレイ67(レンズの一例)と、発光基板68と、制御基板69とを含む。 The backlight unit 6 includes a lens cover 61, a first lens spring 62, a condenser lens 63 (an example of a lens), a diffuser plate 64 (an example of a lens), a lens holder 65, and a second lens spring 66. , A lens array 67 (an example of a lens), a light emitting substrate 68, and a control substrate 69.
 レンズカバー61は、バックライトユニット6の前面(Y方向の正側)を覆う。レンズカバー61は、集光レンズ63が露出する開口部611を有する。レンズカバー61は、レンズホルダ65に嵌合結合される。本実施例では、一例として、レンズカバー61は、4隅に、Y方向負側に延びる爪部612を有し、爪部612によりレンズホルダ65に嵌合結合される。 The lens cover 61 covers the front surface (positive side in the Y direction) of the backlight unit 6. The lens cover 61 has an opening 611 from which the condenser lens 63 is exposed. The lens cover 61 is fitted and coupled to the lens holder 65. In this embodiment, as an example, the lens cover 61 has claws 612 extending in the negative direction in the Y direction at four corners, and is fitted and coupled to the lens holder 65 by the claws 612.
 第1レンズスプリング62は、板ばねの形態であり、Y方向でレンズカバー61と集光レンズ63の間に設けられる。第1レンズスプリング62は、上下方向で対に設けられる。第1レンズスプリング62のそれぞれは、レンズカバー61の上辺及び下辺側の側面に固定される。第1レンズスプリング62のそれぞれは、集光レンズ63を拡散板64とともに、レンズホルダ65に向けて付勢する。このように、第1レンズスプリング62は、レンズホルダ65に対する集光レンズ63及び拡散板64のY方向の位置を規定する機能を有する。 The first lens spring 62 is in the form of a leaf spring, and is provided between the lens cover 61 and the condenser lens 63 in the Y direction. The first lens springs 62 are provided in pairs in the vertical direction. Each of the first lens springs 62 is fixed to the upper side and the lower side side surfaces of the lens cover 61. Each of the first lens springs 62 urges the condenser lens 63 together with the diffuser plate 64 toward the lens holder 65. As described above, the first lens spring 62 has a function of defining the positions of the condenser lens 63 and the diffuser plate 64 in the Y direction with respect to the lens holder 65.
 拡散板64及び集光レンズ63は、発光素子体8からの光であってレンズアレイ67を通って入射する光を、バックライトユニット6の前面(Y方向の正側)へと、拡散及び集光して出射する機能を有する。拡散板64は、例えば、透光性を有する樹脂材料から形成され、少なくとも一面に微細な凹凸加工が施された板状である。 The diffuser plate 64 and the condenser lens 63 diffuse and collect the light from the light emitting element body 8 that is incident through the lens array 67 toward the front surface (positive side in the Y direction) of the backlight unit 6. It has a function of emitting light. The diffusion plate 64 is, for example, a plate shape formed of a translucent resin material and having at least one surface subjected to fine unevenness processing.
 拡散板64及び集光レンズ63は、レンズホルダ65のY方向の正側に保持される。例えば、拡散板64及び集光レンズ63は、それぞれ、レンズホルダ65のピン部650が通る貫通穴641,631を有し、レンズホルダ65に対してZ方向及びX方向の位置が規定される。 The diffuser plate 64 and the condenser lens 63 are held on the positive side of the lens holder 65 in the Y direction. For example, the diffuser plate 64 and the condenser lens 63 each have through holes 641,631 through which the pin portion 650 of the lens holder 65 passes, and the positions in the Z direction and the X direction with respect to the lens holder 65 are defined.
 レンズホルダ65は、拡散板64及び集光レンズ63を保持するとともに、レンズアレイ67を保持する。レンズホルダ65は、ケース2に固定される。バックライトユニット6は、レンズホルダ65がケース2に固定されることで、ケース2に固定される。 The lens holder 65 holds the diffuser plate 64 and the condenser lens 63, and also holds the lens array 67. The lens holder 65 is fixed to the case 2. The backlight unit 6 is fixed to the case 2 by fixing the lens holder 65 to the case 2.
 第2レンズスプリング66は、板ばねの形態であり、レンズホルダ65に固定される。第2レンズスプリング66は、レンズアレイ67を発光基板68に向けて付勢する機能を有する。 The second lens spring 66 is in the form of a leaf spring and is fixed to the lens holder 65. The second lens spring 66 has a function of urging the lens array 67 toward the light emitting substrate 68.
 レンズアレイ67は、透光性の樹脂材料から形成され、発光基板68のY方向の正側を覆うように配置されている。レンズアレイ67は、略放物断線を回転して得られる円錐凸形状の外周面を有するコリメータ部671を含む。レンズアレイ67は、発光基板68に実装された発光素子体8に対向して位置し、発光素子体8から放射された光をY方向の正側へと透過させる。なお、レンズアレイ67の外形は、TFTパネルユニット3(及びTFTパネル32)の外形と略同様の矩形(X方向を長辺方向とする矩形)である。 The lens array 67 is formed of a translucent resin material and is arranged so as to cover the positive side of the light emitting substrate 68 in the Y direction. The lens array 67 includes a collimator portion 671 having a conical convex outer peripheral surface obtained by rotating a substantially parabolic disconnection. The lens array 67 is located so as to face the light emitting element 8 mounted on the light emitting substrate 68, and transmits the light radiated from the light emitting element 8 to the positive side in the Y direction. The outer shape of the lens array 67 is a rectangle (a rectangle whose long side is in the X direction) that is substantially the same as the outer shape of the TFT panel unit 3 (and the TFT panel 32).
 発光基板68は、レンズアレイ67の背後(Y方向の負側)に設けられる。発光基板68は、レンズアレイ67に対向する側の表面に、複数の発光素子体8がアレイ状に実装される。各発光素子体8は、1又は複数のLED(Light Emitting Diode)である。発光素子体8の配列方法や数は任意である。発光素子体8は、光軸方向(Y方向)が発光基板68に対して垂直になるように設けられる。 The light emitting substrate 68 is provided behind the lens array 67 (on the negative side in the Y direction). A plurality of light emitting element bodies 8 are mounted in an array on the surface of the light emitting substrate 68 on the side facing the lens array 67. Each light emitting element 8 is one or a plurality of LEDs (Light Emitting Diodes). The arrangement method and number of the light emitting element bodies 8 are arbitrary. The light emitting element body 8 is provided so that the optical axis direction (Y direction) is perpendicular to the light emitting substrate 68.
 制御基板69は、発光基板68と電気的に接続され、発光基板68に設けられる複数の発光素子体8の点灯を制御する。 The control board 69 is electrically connected to the light emitting board 68 and controls the lighting of a plurality of light emitting element bodies 8 provided on the light emitting board 68.
 なお、上述では、特定の構成のヘッドアップディスプレイ1が示されるが、本実施例は、発光素子体8を備える限り、任意の構造のヘッドアップディスプレイに適用可能である。例えば、上述では、ミラー4,5が設けられるが、ミラー4,5の一方又は双方が省略されてもよい。 Although the head-up display 1 having a specific configuration is shown above, the present embodiment can be applied to a head-up display having an arbitrary structure as long as the light emitting element body 8 is provided. For example, in the above description, the mirrors 4 and 5 are provided, but one or both of the mirrors 4 and 5 may be omitted.
[発光素子体の構成]
 図6は、一の発光素子体8の一例を示す平面図であり、図7は、図6のラインA-Aに沿った断面図である。以下、特に言及しない限り、一の発光素子体8について説明する。
[Structure of light emitting element body]
FIG. 6 is a plan view showing an example of one light emitting device body 8, and FIG. 7 is a cross-sectional view taken along the line AA of FIG. Hereinafter, unless otherwise specified, one light emitting device 8 will be described.
 発光素子体8は、図6及び図7に示すように、チップ80と、蛍光体82とを含む。チップ80は、青色発光ダイオードのチップ(ダイ)である。蛍光体82は、例えば、YAG(Yttrium Aluminum Garnet)系の黄色の蛍光体であり、チップ80を覆う。蛍光体82は、蛍光体を含有する樹脂により形成されてよい。また、蛍光体82は、黄色の蛍光体に代替して、βサイアロン(SiAlON)系の緑色の蛍光体と、CASN(若しくはSCASNあるいは1113蛍光体と呼ばれる蛍光体)やKSF系の赤色の蛍光体とを混合したものであってもよい。なお、発光素子体8は、その他、基板81や反射材84等を有する。 As shown in FIGS. 6 and 7, the light emitting device 8 includes a chip 80 and a phosphor 82. The chip 80 is a blue light emitting diode chip (die). The phosphor 82 is, for example, a YAG (Yttrium aluminum garnet) -based yellow phosphor that covers the chip 80. The phosphor 82 may be formed of a resin containing the phosphor. Further, the phosphor 82 is a β-sialon (SiAlON) -based green phosphor and a CASN (or SCASSN or 1113 phosphor) or KSF-based red phosphor instead of the yellow phosphor. And may be mixed. The light emitting element body 8 also has a substrate 81, a reflective material 84, and the like.
 このような発光素子体8によれば、チップ80から発される青色光は、蛍光体82を通ることで白色となり、白色光が発されることになる。 According to such a light emitting element body 8, the blue light emitted from the chip 80 becomes white when passing through the phosphor 82, and white light is emitted.
 図8は、発光素子体8が発生する白色光のスペクトルに係る特性を示す図であり、横軸に波長を取り、縦軸に相対発光強度を取り、当該特性が示される。 FIG. 8 is a diagram showing the characteristics related to the spectrum of the white light generated by the light emitting device 8, and the horizontal axis represents the wavelength and the vertical axis represents the relative emission intensity, and the characteristics are shown.
 本実施例では、発光素子体8が発生する白色光、すなわち、青色発光ダイオードのチップ80から蛍光体82を介して出力される白色光は、好ましくは、図8に示すように、波長が444nm以上460nm以下である。この場合、黄色みの少ない高品質な白色光となり、ヘッドアップディスプレイ1の表示の品質を高めることができる。 In this embodiment, the white light generated by the light emitting element body 8, that is, the white light output from the chip 80 of the blue light emitting diode via the phosphor 82, preferably has a wavelength of 444 nm, as shown in FIG. It is 460 nm or less. In this case, high-quality white light with less yellowness is obtained, and the display quality of the head-up display 1 can be improved.
 なお、ある一の発光素子体8と、他の一の発光素子体8との間の関係で、青色発光ダイオードのチップ80からの青色光を白色光にするための蛍光体82が、同じ個体であるならば、青色発光ダイオードのチップ80からの青色光の波長と、当該蛍光体82を通して得られる白色光の波長との関係は、同じである。すなわち、蛍光体82が同じならば、青色発光ダイオードのチップ80からの青色光の波長と、当該蛍光体82を通して得られる白色光の波長とは比例関係にある。 In addition, in the relationship between one light emitting element body 8 and another light emitting element body 8, the phosphor 82 for converting the blue light from the chip 80 of the blue light emitting diode into white light is the same individual. If this is the case, the relationship between the wavelength of blue light from the chip 80 of the blue light emitting diode and the wavelength of white light obtained through the phosphor 82 is the same. That is, if the phosphor 82 is the same, the wavelength of blue light from the chip 80 of the blue light emitting diode and the wavelength of white light obtained through the phosphor 82 are in a proportional relationship.
 図9は、TFTパネルユニット3のカラーフィルタの特性を示す図である。図9では、横軸に波長を取り、縦軸に透過率を取り、当該特性が示される。 FIG. 9 is a diagram showing the characteristics of the color filter of the TFT panel unit 3. In FIG. 9, the horizontal axis represents the wavelength and the vertical axis represents the transmittance, and the characteristics are shown.
 カラーフィルタは、光の波長に対する透過率の特性として、波長が450nmから500nmに増加するにつれて、透過率が単調増加する特性を有する。図9に示すカラーフィルタでは、波長が450nmから500nmに増加するにつれて、少なくとも3%以上、透過率が単調増加する特性を有する。 The color filter has a characteristic of transmittance with respect to the wavelength of light, that is, the transmittance increases monotonically as the wavelength increases from 450 nm to 500 nm. The color filter shown in FIG. 9 has a characteristic that the transmittance monotonically increases by at least 3% or more as the wavelength increases from 450 nm to 500 nm.
 このようなカラーフィルタを用いる場合、444nm以上460nmの波長の範囲内で、透過率が比較的大きく変化するので、白色光の波長の変化に対する青色の透過率の変化が大きくなる。このため、白色光の波長が所望の範囲内からわずかに逸脱しても、白色光が黄色みを帯びやすい傾向となる。 When such a color filter is used, the transmittance changes relatively significantly within the wavelength range of 444 nm or more and 460 nm, so that the change in the blue transmittance with respect to the change in the wavelength of white light becomes large. Therefore, even if the wavelength of the white light deviates slightly from the desired range, the white light tends to be yellowish.
 ところで、バックライトユニット6の各発光素子体8は、上述のカラーフィルタを通した光に関して、所望の白色光が実現されるように、ホワイトポイントの調整(以下、「White point調整」とも称する)と、輝度の調整(以下、「輝度調整」とも称する)とを順に受ける。 By the way, each light emitting element body 8 of the backlight unit 6 adjusts a white point (hereinafter, also referred to as “white point adjustment”) so as to realize a desired white light with respect to the light passed through the above-mentioned color filter. And the brightness adjustment (hereinafter, also referred to as "brightness adjustment") are received in order.
 White point調整は、RGBの諧調をより落とすことで所望の白に合わせ込む処理である。輝度調整は、White point調整に起因して低下した輝度を、必要なレベルまで引き上げる処理である。 The white point adjustment is a process of adjusting the tone of RGB to a desired white color by lowering the tone. The brightness adjustment is a process of raising the brightness reduced due to the white point adjustment to a required level.
 このようなWhite point調整及び輝度調整を行うことで、初期状態(調整前)での色度が所望の色度範囲から若干外れていても、必要な輝度を確保しつつ、色度を所望の色度範囲内に収めることができる。 By performing such white point adjustment and brightness adjustment, even if the chromaticity in the initial state (before adjustment) is slightly out of the desired chromaticity range, the chromaticity is desired while ensuring the required brightness. It can be kept within the chromaticity range.
 しかしながら、初期状態(調整前)での色度が所望の色度範囲から比較的大きく外れる場合、White point調整後の輝度低下が大きくなる。この結果、輝度調整で、低下した輝度を必要なレベルまで引き上げることができた場合でも、電流値が規定より高くなり、不良品となる。 However, if the chromaticity in the initial state (before adjustment) deviates relatively greatly from the desired chromaticity range, the brightness decrease after the white point adjustment becomes large. As a result, even if the reduced brightness can be raised to a required level by adjusting the brightness, the current value becomes higher than the specified value, resulting in a defective product.
 この点、本実施例によれば、上述のように、発光素子体8が発生する白色光の波長を444nm以上460nm以下に制限することで、White point調整に起因して生じる輝度の低下を抑えることができる。この結果、不良品の発生率を適切に低減できる。 In this regard, according to the present embodiment, as described above, by limiting the wavelength of the white light generated by the light emitting element 8 to 444 nm or more and 460 nm or less, the decrease in brightness caused by the White point adjustment is suppressed. be able to. As a result, the incidence of defective products can be appropriately reduced.
 ところで、本実施例では、上述のように、発光素子体8が発生する白色光は、青色発光ダイオードのチップ80から発される青色光を、蛍光体82を通すことで生成されている。従って、ある一の発光素子体8に関して、青色発光ダイオードのチップ80から蛍光体82を介して出力される白色光が、波長が444nm以上460nm以下に収まっていない場合、その原因は、チップ80のみならず、蛍光体82等のような他の要因がありうる。一般的に、蛍光体82を覆った後にチップ80だけを取り出して、チップ80から出力される青色光の波長を測定することは難しい。 By the way, in this embodiment, as described above, the white light generated by the light emitting element 8 is generated by passing the blue light emitted from the chip 80 of the blue light emitting diode through the phosphor 82. Therefore, when the white light output from the blue light emitting diode chip 80 via the phosphor 82 has a wavelength of 444 nm or more and 460 nm or less for a certain light emitting element body 8, the cause is only the chip 80. However, there may be other factors such as the phosphor 82 and the like. In general, it is difficult to take out only the chip 80 after covering the phosphor 82 and measure the wavelength of the blue light output from the chip 80.
 この点を鑑み、本実施例では、青色発光ダイオードのチップ80から出力される青色光の波長を、452nm以上468nm以下に制限する。これにより、蛍光体82を通して得られる白色光の波長を制限する場合よりも、他の要因(例えば蛍光体82)を排した態様で、発光素子体8の品質管理を行うことができる。この結果、要求品質を満たすバックライトユニット6を効率的に製造できる。 In view of this point, in this embodiment, the wavelength of blue light output from the chip 80 of the blue light emitting diode is limited to 452 nm or more and 468 nm or less. As a result, the quality control of the light emitting device 8 can be performed in a manner in which other factors (for example, the phosphor 82) are excluded, as compared with the case where the wavelength of the white light obtained through the phosphor 82 is limited. As a result, the backlight unit 6 satisfying the required quality can be efficiently manufactured.
 ただし、本実施例においても、要求品質として、青色発光ダイオードのチップ80から出力される青色光の波長を、452nm以上468nm以下に制限することに加えて、青色発光ダイオードのチップ80から蛍光体82を介して出力される白色光の波長を、444nm以上460nm以下に制限することが、規定されてもよい。 However, also in this embodiment, as a required quality, in addition to limiting the wavelength of blue light output from the blue light emitting diode chip 80 to 452 nm or more and 468 nm or less, the blue light emitting diode chip 80 to the phosphor 82 It may be specified that the wavelength of the white light output via the LED is limited to 444 nm or more and 460 nm or less.
 次に、発光素子体8の製造方法、及び、ヘッドアップディスプレイ1の製造方法を概説する。 Next, the manufacturing method of the light emitting element body 8 and the manufacturing method of the head-up display 1 will be outlined.
 図10は、発光素子体8の製造方法の概要を示す概略フローチャートである。 FIG. 10 is a schematic flowchart showing an outline of a method for manufacturing the light emitting element body 8.
 発光素子体8の製造方法は、第1検査工程S1と、組み付け工程S2と、第2検査工程S3を含む。なお、第1検査工程S1と組み付け工程S2とは、並列して実行される必要はなく、別々の場所で実行されてもよい。これは、組み付け工程S2と第2検査工程S3についても同様であり、また、第1検査工程S1と第2検査工程S3についても同様である。 The method for manufacturing the light emitting element body 8 includes a first inspection step S1, an assembly step S2, and a second inspection step S3. The first inspection step S1 and the assembly step S2 do not have to be executed in parallel, and may be executed at different places. This also applies to the assembly process S2 and the second inspection process S3, and also applies to the first inspection process S1 and the second inspection process S3.
 第1検査工程S1は、ステップS100からステップS112までの工程を含む。 The first inspection step S1 includes steps from step S100 to step S112.
 ステップS100では、検査対象の青色発光ダイオードのチップを準備し、そのうちの、1つを選択する。なお、検査対象の青色発光ダイオードのチップは、例えば複数個準備される。 In step S100, a chip of a blue light emitting diode to be inspected is prepared, and one of them is selected. For example, a plurality of blue light emitting diode chips to be inspected are prepared.
 ステップS102では、選択したチップから青色光を発生させ、当該青色光の波長を測定する。 In step S102, blue light is generated from the selected chip, and the wavelength of the blue light is measured.
 ステップS104では、ステップS102で得た測定結果に基づいて、波長の測定値が452nm以上468nm以下であるか否かを判定する。例えば、スペクトルのピークとなる波長が452nm以上468nm以下であるか否かを判定する。判定結果が“YES”の場合、ステップS106に進み、それ以外の場合は、ステップS108に進む。 In step S104, it is determined whether or not the measured value of the wavelength is 452 nm or more and 468 nm or less based on the measurement result obtained in step S102. For example, it is determined whether or not the wavelength at which the peak of the spectrum is 452 nm or more and 468 nm or less. If the determination result is "YES", the process proceeds to step S106, and if not, the process proceeds to step S108.
 ステップS106では、ステップS102で選択したチップを良品として判断する。 In step S106, the chip selected in step S102 is determined as a non-defective product.
 ステップS108では、ステップS102で選択したチップを不良品として判断する。 In step S108, the chip selected in step S102 is determined as a defective product.
 ステップS110では、検査対象の青色発光ダイオードのチップのすべてが選択済みか否かを判定する。判定結果が“YES”の場合、終了し、それ以外の場合は、ステップS112に進む。
 ステップS112では、検査対象の青色発光ダイオードのチップのうちから、次の1つのチップを選択して、ステップS104から繰り返す。
In step S110, it is determined whether or not all the chips of the blue light emitting diode to be inspected have been selected. If the determination result is "YES", the process ends, and if not, the process proceeds to step S112.
In step S112, the next one chip is selected from the chips of the blue light emitting diode to be inspected, and the process is repeated from step S104.
 組み付け工程S2は、ステップS200からステップS202までの工程を含む。 The assembly step S2 includes the steps from step S200 to step S202.
 ステップS200は、第1検査工程S1で良品と判断されたチップを選択する。 In step S200, a chip judged to be a non-defective product in the first inspection step S1 is selected.
 ステップS202では、ステップS200で選択したチップを用いて、発光素子体8を製造する。なお、この際、ステップS200で選択したチップは、蛍光体を含む樹脂により封止され、蛍光体82で覆われたチップ80となる。 In step S202, the light emitting element body 8 is manufactured using the chip selected in step S200. At this time, the chip selected in step S200 becomes a chip 80 that is sealed with a resin containing a phosphor and is covered with the phosphor 82.
 第2検査工程S3は、ステップS300からステップS302までの工程を含む。 The second inspection step S3 includes the steps from step S300 to step S302.
 ステップS300では、ステップS202で得られた発光素子体8について、色度範囲等に関する他の検査を行う。 In step S300, another inspection regarding the chromaticity range and the like is performed on the light emitting element body 8 obtained in step S202.
 ステップS302では、ステップS300で規定を満たした発光素子体8だけを、所定の型番の製品として出荷可能な状態とする。 In step S302, only the light emitting element 8 that satisfies the regulation in step S300 is ready to be shipped as a product of a predetermined model number.
 図10に示す製造方法によれば、発する光の波長の測定値が452nm以上468nm以下であることが検査により確認された青色発光ダイオードのチップ80だけが、良品として用いられ、当該良品のチップ80が蛍光体82で覆われた発光素子体8だけが出荷可能な状態とされる。 According to the manufacturing method shown in FIG. 10, only the blue light emitting diode chip 80 whose measured value of the wavelength of the emitted light is 452 nm or more and 468 nm or less is used as a good product, and the good product chip 80 is used. Only the light emitting element 8 covered with the phosphor 82 can be shipped.
 従って、図10で示す製造方法で製造された発光素子体8(すなわち所定の型番が付与された発光素子体8)を利用すれば、光の波長の測定値が452nm以上468nm以下であることについて出荷前に検査済みである発光素子体8を用いて、ヘッドアップディスプレイ1を製造できる。 Therefore, if the light emitting device 8 manufactured by the manufacturing method shown in FIG. 10 (that is, the light emitting device 8 to which a predetermined model number is assigned) is used, the measured value of the wavelength of light is 452 nm or more and 468 nm or less. The head-up display 1 can be manufactured by using the light emitting element body 8 which has been inspected before shipment.
 図11は、ヘッドアップディスプレイ1の製造方法の概要を示す概略フローチャートである。 FIG. 11 is a schematic flowchart showing an outline of the manufacturing method of the head-up display 1.
 ステップS400では、所定の型番が付与された発光素子体8を準備する。すなわち、発する光の波長の測定値が452nm以上468nm以下であることが検査により確認された青色発光ダイオードのチップ80から製造された発光素子体8を準備する。 In step S400, the light emitting element body 8 to which a predetermined model number is assigned is prepared. That is, the light emitting element 8 manufactured from the chip 80 of the blue light emitting diode whose measured value of the wavelength of the emitted light is 452 nm or more and 468 nm or less is prepared.
 ステップS402では、ステップS400で準備した発光素子体8を用いて、バックライトユニット6を組み立てる。 In step S402, the backlight unit 6 is assembled using the light emitting element body 8 prepared in step S400.
 ステップS404では、ステップS402で得たバックライトユニット6を用いて、ヘッドアップディスプレイ1を組み立てる。 In step S404, the head-up display 1 is assembled using the backlight unit 6 obtained in step S402.
 ステップS406では、上述したWhite point調整及び輝度調整を実行する。 In step S406, the white point adjustment and the brightness adjustment described above are executed.
 ステップS408では、他の必要な検査等を行い、規定を満たしたヘッドアップディスプレイ1だけを、所定の型番の製品として出荷可能な状態とする。 In step S408, other necessary inspections and the like are performed, and only the head-up display 1 that meets the regulations can be shipped as a product of a predetermined model number.
 図11に示す製造方法によれば、発する光の波長の測定値が452nm以上468nm以下であることが検査により確認された青色発光ダイオードのチップ80のみを、バックライトユニット6に用いることができる。これにより、かかるバックライトユニット6において、White point調整後の輝度低下が大きくなる可能性を低減でき、歩留まりが向上する。また、輝度調整の結果、電流値が規定より高くなり、不良品となった場合でも、青色発光ダイオードのチップ80自体が不良品である可能性を実質的に排除できるので、不具合対策が容易となる。 According to the manufacturing method shown in FIG. 11, only the chip 80 of the blue light emitting diode whose measured value of the wavelength of the emitted light is 452 nm or more and 468 nm or less can be used for the backlight unit 6. As a result, in the backlight unit 6, the possibility that the decrease in brightness after adjusting the white point becomes large can be reduced, and the yield is improved. Further, even if the current value becomes higher than the specified value as a result of the brightness adjustment and the product becomes defective, the possibility that the blue light emitting diode chip 80 itself is defective can be substantially eliminated, so that it is easy to take measures against defects. Become.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes can be made within the scope described in the claims. It is also possible to combine all or a plurality of the components of the above-described embodiment.
1 ヘッドアップディスプレイ
2 ケース
3 TFTパネルユニット
4 ミラー
5 ミラー
6 バックライトユニット
8 発光素子体
9 インストルメントパネル
21 放熱部位
31 TFTホルダ
32 TFTパネル
33 拡散シート
34 TFTカバー
61 レンズカバー
62 第1レンズスプリング
63 集光レンズ
64 拡散板
65 レンズホルダ
66 第2レンズスプリング
67 レンズアレイ
68 発光基板
69 制御基板
80 チップ
82 蛍光体
1 Head-up display 2 Case 3 TFT panel unit 4 Mirror 5 Mirror 6 Backlight unit 8 Light emitting element body 9 Instrument panel 21 Heat dissipation part 31 TFT holder 32 TFT panel 33 Diffusion sheet 34 TFT cover 61 Lens cover 62 First lens spring 63 Condensing lens 64 Diffusing plate 65 Lens holder 66 Second lens spring 67 Lens array 68 Light emitting substrate 69 Control substrate 80 Chip 82 Fluorescent film

Claims (6)

  1.  青色発光ダイオードのチップと前記チップを覆う蛍光体を有し、白色光を発生する照明装置と、
     前記照明装置に照らされることで表示光を出射する表示器とを備え、
     前記チップから出力される光の波長は、452nm以上468nm以下である、ヘッドアップディスプレイ。
    A lighting device that has a blue light emitting diode chip and a phosphor that covers the chip and generates white light.
    It is provided with a display that emits display light when illuminated by the lighting device.
    A head-up display in which the wavelength of light output from the chip is 452 nm or more and 468 nm or less.
  2.  前記表示器は、カラーフィルタを有し、
     前記カラーフィルタは、光の波長に対する透過率の特性として、波長が450nmから500nmに増加するにつれて、少なくとも3%以上、透過率が単調増加する特性を有する、請求項1に記載のヘッドアップディスプレイ。
    The display has a color filter and
    The head-up display according to claim 1, wherein the color filter has a characteristic that the transmittance with respect to a wavelength of light increases monotonically by at least 3% or more as the wavelength increases from 450 nm to 500 nm.
  3.  前記チップから前記蛍光体を介して出力される白色光の波長は、444nm以上460nm以下である、請求項1又は2に記載のヘッドアップディスプレイ。 The head-up display according to claim 1 or 2, wherein the wavelength of white light output from the chip via the phosphor is 444 nm or more and 460 nm or less.
  4.  青色発光ダイオードのチップと前記チップを覆う蛍光体を有し、白色光を発生する照明装置と、
     前記照明装置に照らされることで表示光を出射する表示器とを備え、
     前記チップは、光の波長の測定値が452nm以上468nm以下であることについて出荷前に検査済みである、ヘッドアップディスプレイ。
    A lighting device that has a blue light emitting diode chip and a phosphor that covers the chip and generates white light.
    It is provided with a display that emits display light when illuminated by the lighting device.
    The chip is a head-up display that has been inspected before shipment for a measured value of wavelength of light of 452 nm or more and 468 nm or less.
  5.  光の波長の測定値が452nm以上468nm以下であることについて検査済みである青色発光ダイオードのチップが蛍光体により覆われた照明装置を準備し、
     前記照明装置を組み付けることを含む、ヘッドアップディスプレイの製造方法。
    A lighting device in which the chip of the blue light emitting diode, which has been inspected for the measured value of the wavelength of light of 452 nm or more and 468 nm or less, is covered with a phosphor is prepared.
    A method of manufacturing a head-up display, which comprises assembling the lighting device.
  6.  青色発光ダイオードのチップに対して、光の波長の測定値が452nm以上468nm以下であるか否かを検査し、
     光の波長の測定値が452nm以上468nm以下であることが検査により確認された前記青色発光ダイオードのチップを蛍光体で覆い、
     前記蛍光体で覆われた前記チップを、所定の型番として分類することを含む、照明装置の製造方法。
    The blue light emitting diode chip is inspected to see if the measured value of the wavelength of light is 452 nm or more and 468 nm or less.
    The chip of the blue light emitting diode whose measured value of the wavelength of light was confirmed to be 452 nm or more and 468 nm or less by inspection was covered with a phosphor.
    A method for manufacturing a lighting device, which comprises classifying the chip covered with the phosphor as a predetermined model number.
PCT/JP2020/020370 2019-05-24 2020-05-22 Head-up display, method for manufacturing same, and method for manufacturing illuminating device WO2020241511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522320A JPWO2020241511A1 (en) 2019-05-24 2020-05-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-097729 2019-05-24
JP2019097729 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020241511A1 true WO2020241511A1 (en) 2020-12-03

Family

ID=73553413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020370 WO2020241511A1 (en) 2019-05-24 2020-05-22 Head-up display, method for manufacturing same, and method for manufacturing illuminating device

Country Status (2)

Country Link
JP (1) JPWO2020241511A1 (en)
WO (1) WO2020241511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7528348B1 (en) 2023-07-31 2024-08-05 京セラ株式会社 Virtual image display device and mobile object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076749A (en) * 2007-09-21 2009-04-09 Toyoda Gosei Co Ltd Led apparatus, and method of manufacturing the same
US20130062637A1 (en) * 2011-09-14 2013-03-14 Express Imaging Systems, Llc Apparatus, method to enhance color contrast in phosphor-based solid state lights
JP2015091915A (en) * 2013-10-04 2015-05-14 三菱化学株式会社 Light emitting device, and wavelength conversion member
JP2015222384A (en) * 2014-05-23 2015-12-10 大日本印刷株式会社 Liquid crystal display device and color filter
JP2017151403A (en) * 2016-02-23 2017-08-31 株式会社デンソー Head-up display device
JP2018021193A (en) * 2016-07-26 2018-02-08 三菱ケミカル株式会社 Sintered phosphor, light-emitting device, illumination device, image display device and indicator lamp for vehicle
JP2018078285A (en) * 2016-10-31 2018-05-17 日亜化学工業株式会社 Light-emitting device
JP2019078685A (en) * 2017-10-26 2019-05-23 株式会社ブイ・テクノロジー Led chip inspection method, inspection device therefor, and led display manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076749A (en) * 2007-09-21 2009-04-09 Toyoda Gosei Co Ltd Led apparatus, and method of manufacturing the same
US20130062637A1 (en) * 2011-09-14 2013-03-14 Express Imaging Systems, Llc Apparatus, method to enhance color contrast in phosphor-based solid state lights
JP2015091915A (en) * 2013-10-04 2015-05-14 三菱化学株式会社 Light emitting device, and wavelength conversion member
JP2015222384A (en) * 2014-05-23 2015-12-10 大日本印刷株式会社 Liquid crystal display device and color filter
JP2017151403A (en) * 2016-02-23 2017-08-31 株式会社デンソー Head-up display device
JP2018021193A (en) * 2016-07-26 2018-02-08 三菱ケミカル株式会社 Sintered phosphor, light-emitting device, illumination device, image display device and indicator lamp for vehicle
JP2018078285A (en) * 2016-10-31 2018-05-17 日亜化学工業株式会社 Light-emitting device
JP2019078685A (en) * 2017-10-26 2019-05-23 株式会社ブイ・テクノロジー Led chip inspection method, inspection device therefor, and led display manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7528348B1 (en) 2023-07-31 2024-08-05 京セラ株式会社 Virtual image display device and mobile object

Also Published As

Publication number Publication date
JPWO2020241511A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US11231568B2 (en) Illumination apparatus
US9746710B2 (en) Quantum dot light source device, backlight module, and liquid crystal display device
US7182481B2 (en) Lighting apparatus
US7738054B2 (en) Liquid crystal display device
JP5270160B2 (en) Lighting system
CN114730044A (en) Directional lighting device and privacy display
JP4399663B2 (en) LED lighting device
KR100644935B1 (en) Planar light-emitting device
KR100987545B1 (en) Reflector frame, flat light source device provided with the reflector frame, and display device using the flat light source device
US20120188759A1 (en) Color correction method for illumination light, and light source module and lighting device using this color correction method
JP2006286639A (en) Light emitting device having a plurality of overlapping panels forming recess for emitting light
JP4816437B2 (en) Light source device and liquid crystal display device using the same
TWI671574B (en) Light source module and display appartus
US20060181866A1 (en) Multi-chip light emitting diode unit, and backlight unit and liquid crystal display device employing the same
WO2010146905A1 (en) Light-emitting module, ligfhting device, displaying device, and television-receiver device
JP2010528432A (en) White light backlight using color LED light source efficiently and similar products
KR20120127077A (en) Color converting device and method for manufacturing the same
JP2009506501A (en) Direct type backlight with light source for bifunctional spectrometer
MX2012009374A (en) Lighting device, display apparatus, and television receiver.
US20100001653A1 (en) Optical lighting device
JP2007086387A (en) On-vehicle display device
WO2020241511A1 (en) Head-up display, method for manufacturing same, and method for manufacturing illuminating device
JP2005338325A (en) Display apparatus
JP2008268680A (en) Display device
US11009644B2 (en) Optical system with diffusers and honeycomb condensers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522320

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814595

Country of ref document: EP

Kind code of ref document: A1