WO2020235293A1 - アーク溶接方法及びアーク溶接装置 - Google Patents

アーク溶接方法及びアーク溶接装置 Download PDF

Info

Publication number
WO2020235293A1
WO2020235293A1 PCT/JP2020/017615 JP2020017615W WO2020235293A1 WO 2020235293 A1 WO2020235293 A1 WO 2020235293A1 JP 2020017615 W JP2020017615 W JP 2020017615W WO 2020235293 A1 WO2020235293 A1 WO 2020235293A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
welding wire
short
arc
power value
Prior art date
Application number
PCT/JP2020/017615
Other languages
English (en)
French (fr)
Inventor
駿 佐藤
範幸 松岡
将 古和
晶 中川
潤司 藤原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021520668A priority Critical patent/JP7499433B2/ja
Priority to EP20810279.8A priority patent/EP3974093B1/en
Priority to CN202080036730.0A priority patent/CN113891772B/zh
Publication of WO2020235293A1 publication Critical patent/WO2020235293A1/ja
Priority to US17/520,770 priority patent/US20220055135A1/en
Priority to JP2024078284A priority patent/JP2024099058A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0732Stabilising of the arc current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes

Definitions

  • the present invention relates to an arc welding method and an arc welding apparatus.
  • Patent Document 1 describes an arc welding apparatus that calculates the amount of change in welding voltage per predetermined time and determines the amount of change in welding voltage per predetermined time and the threshold for determining the constriction of droplets. The control method is disclosed.
  • the present invention has been made in view of this point, and an object of the present invention is to suppress the generation of sputtering when a short circuit is opened.
  • the first invention provides an arc welding method that alternately includes a short-circuit period in which a short-circuit state occurs in which the welding wire and the base metal are short-circuited and an arc period in which an arc is generated between the welding wire and the base metal. It is targeted.
  • the arc welding method includes a step of integrating the electric current supplied to the welding wire within a predetermined period to calculate an integrated electric power value after the welding wire is short-circuited, and the integrated electric power value is more than a predetermined threshold value. When it is large, it includes a step of reducing the welding current supplied to the welding wire.
  • the integrated power value within a predetermined period is calculated. Then, when the integrated power value is larger than a predetermined threshold value, the welding current is reduced.
  • the welding current is reduced before the short circuit is opened, and the amount of heat input to the welding wire is reduced. As a result, it is possible to suppress the occurrence of spatter when the short circuit is opened.
  • the calculation of the integrated power value is started after a predetermined time has elapsed after the welding wire is short-circuited.
  • the calculation of the integrated power value is started after a predetermined time has elapsed after the welding wire is short-circuited, for example, after the short circuit becomes stable.
  • the integrated value of the power can be calculated excluding the period when the short circuit is not stable.
  • the integrated power value is calculated after the welding wire is short-circuited and the welding current starts to increase. To start.
  • the calculation of the integrated power value is started after the welding current starts to increase after the welding wire is short-circuited. As a result, an appropriate amount of heat can be given to the welding wire even when the welding voltage changes.
  • the fourth invention is described in any one of the first to the third, after the welding wire is short-circuited and the welding current starts to increase, or after the short-circuiting and a predetermined time have elapsed. It has a process of backfeeding the welding wire.
  • the welding wire is fed back after the welding wire is short-circuited and the welding current starts to increase, or after the short-circuiting and a predetermined time have elapsed. As a result, it is possible to prevent the welding wire from buckling.
  • the fifth invention may further include, in claim 1, a step of determining whether or not the integrated power value is larger than a predetermined threshold value.
  • the predetermined threshold value may be a fixed value. Further, this fixed value may be determined for each welding condition.
  • the sixth invention performs welding including alternately and repeatedly a short-circuit period in which a short-circuit state occurs in which the welding wire and the base metal are short-circuited and an arc period in which an arc occurs between the welding wire and the base metal. It is intended for arc welding equipment. Then, after the welding wire is short-circuited, a calculation unit that integrates the power supplied to the welding wire within a predetermined period to calculate the integrated power value, and a case where the integrated power value is larger than a predetermined threshold value. Also provided with a control unit that reduces the welding current supplied to the welding wire.
  • the calculation unit calculates the integrated power value within a predetermined period after the welding wire is short-circuited.
  • the control unit reduces the welding current when the integrated power value is larger than a predetermined threshold value.
  • the welding current is reduced before the short circuit is opened, and the amount of heat input to the welding wire is reduced. As a result, it is possible to suppress the occurrence of spatter when the short circuit is opened.
  • the seventh invention includes a plurality of arc welding devices according to the sixth invention, and the cables on the ground side of the plurality of arc welding devices are connected to the base metal, respectively.
  • the cables on the ground side in the plurality of arc welding devices are connected to the base metal, respectively.
  • the welding current at the time of short-circuit opening is reduced based on the integrated value of the electric power supplied to the welding wire, that is, the amount of heat input actually applied to the welding wire.
  • the control to reduce the welding current before opening the short circuit between the welding wire and the base metal is ensured based on the integrated power value. It can be carried out.
  • control unit may further determine whether or not the integrated power value is larger than a predetermined threshold value.
  • the predetermined threshold value may be a fixed value. Further, this fixed value may be determined for each welding condition.
  • the arc welding apparatus 10 has a short-circuit period in which a short-circuit state occurs in which the welding wire 34, which is a consumable electrode, and the base metal 35, which is the object to be welded, are short-circuited, and the welding wire 34 and the base metal 35 are connected to each other. Welding is performed by alternately and repeatedly including an arc period in which an arc is generated in between.
  • the arc welding device 10 includes a first rectifying unit 11, a first switching unit 12, a transformer 13, a second rectifying unit 14, a second switching unit 15, a resistor 16, a reactor 17, and a welding current detection. It has a unit 18, a welding voltage detection unit 19, and a control unit 20.
  • the first rectifying unit 11 rectifies the input voltage input from the input power supply S outside the arc welding device 10.
  • the first switching unit 12 adjusts the output of the first rectifying unit 11 by a switching operation.
  • the transformer 13 converts the output of the first switching unit 12 into an output suitable for welding.
  • the second rectifying unit 14 rectifies the output of the transformer 13.
  • the second switching unit 15 adjusts the output of the second rectifying unit 14 by a switching operation.
  • the resistor 16 is connected in parallel with the second switching unit 15.
  • the reactor 17 is connected in series with the second switching unit 15.
  • the reactor 17 smoothes the output of the second switching unit 15.
  • the welding current detection unit 18 detects the welding current supplied between the welding wire 34 and the base metal 35. A detection signal indicating the welding current detected by the welding current detection unit 18 is transmitted to the control unit 20.
  • the welding voltage detection unit 19 detects the welding voltage supplied between the welding wire 34 and the base metal 35. A detection signal indicating the welding voltage detected by the welding voltage detection unit 19 is transmitted to the control unit 20.
  • the arc welding device 10 is connected to a welding torch 30, a base material 35, a wire feeding unit 32, and a setting unit 25 to form an arc welding system.
  • the welding torch 30 is provided with a welding tip 31 for supplying electric power to the welding wire 34.
  • the wire feeding unit 32 feeds the welding wire 34 by controlling the constant feeding at a predetermined feeding speed or by feeding the welding wire 34 in the direction of the base metal 35. It controls the feed such as the feed control of the forward feed and the reverse feed, in which the feed and the reverse feed are alternately sent in the opposite direction.
  • welding is performed by alternately generating a short-circuit state and an arc state while alternately repeating the forward feed and the reverse feed as the feed of the welding wire 34. This is to be done, and forward feed and reverse feed are periodically performed to mechanically generate a short-circuit state and an arc state alternately.
  • the normal feed and the reverse feed may not be switched periodically, and the normal feed and the reverse feed may be switched according to the state of the welding phenomenon. Specifically, as the feed of the welding wire 34, when the welding wire 34 and the base metal 35 are short-circuited and become a short-circuited state, the welding wire 34 is fed back, and when the short-circuit is opened and the base metal 35 is in an arc state, a normal feeding is performed. is there.
  • the setting unit 25 is used to set welding conditions in the arc welding device 10.
  • the welding output of the arc welding device 10 is supplied to the welding wire 34 via the welding tip 31. Then, an arc 36 is generated between the welding wire 34 and the base metal 35 by the welding output of the arc welding apparatus 10, and welding is performed.
  • the control unit 20 transmits a signal between each part of the arc welding device 10 and a device outside the arc welding device 10.
  • each part of the arc welding apparatus 10 is a first switching part 12, a second switching part 15, a welding current detecting part 18, and a welding voltage detecting part 19.
  • the devices outside the arc welding device 10 are a wire feeding unit 32 and a setting unit 25.
  • the control unit 20 outputs a control signal to the first switching unit 12 and the second switching unit 15 to control the welding output.
  • the control unit 20 outputs a control signal to the wire feeding unit 32 to control the wire feeding speed.
  • the control unit 20 is composed of a processor and a memory that is electrically connected to the processor and stores programs and information for operating the processor.
  • the control unit 20 has a calculation unit 21.
  • the calculation unit 21 integrates the electric power supplied to the welding wire 34 within a predetermined period to calculate the integrated electric power value.
  • the electric power supplied to the welding wire is calculated based on the product of the welding current and the welding voltage.
  • the control unit 20 compares the welding voltage detected by the welding voltage detection unit 19 with a preset threshold voltage. Then, when the welding voltage is equal to or less than the threshold voltage, it is determined that the welding voltage is in a short-circuited state. On the other hand, when the welding voltage exceeds the threshold voltage, it is determined to be in the arc state.
  • control of the welding current by the control unit 20 will be described below.
  • the control unit 20 reduces the welding current to the initial current by adjusting the output of the first switching unit 12. At this time, the second switching unit 15 is maintained in a conductive state.
  • the control unit 20 adjusts the output of the first switching unit 12 so that the welding current increases at a predetermined current increase rate from the time t2 to the time t3.
  • the operation of the wire feeding unit 32 is controlled to reverse the welding wire 34.
  • the welding wire 34 may be fed back after the short circuit has elapsed and a predetermined time has elapsed (after the short circuit has stabilized).
  • the short-circuit opening between the welding wire 34 and the base metal 35 can be promoted.
  • the droplet formation on the tip side of the welding wire 34 becomes more stable, and the welding wire The stability of droplet transfer from 34 to the base material 35 is improved.
  • constant feeding may be controlled at a predetermined feeding speed without reverse feeding of the welding wire 34.
  • the calculation unit 21 integrates the electric power between the time t2 and the time t4 and calculates the integrated electric power value. Specifically, the calculation of the integrated power value is started after the welding current starts to increase after the welding wire 34 is short-circuited. For example, the calculation unit 21 detects an increase in the welding current, receives the increase in the welding current, and starts calculating the integrated power value. Instead of this, for example, the calculation unit 21 detects the passage of time in which the welding current is expected to increase, and in response to this, starts calculating the power integrated value.
  • the calculation of the integrated power value may be started after a predetermined time has elapsed from the short circuit of the welding wire 34, for example, after the short circuit has stabilized.
  • the calculation of the integrated power value may be started between the time t1 and the time t2.
  • the calculation unit 21 may detect the passage of a predetermined time and start calculating the integrated power value in response to the detection.
  • the control unit 20 determines whether the integrated power value is larger than the predetermined threshold value P. In the example shown in FIG. 2, the integrated power value is larger than the threshold value P at time t3. When the integrated power value is larger than the predetermined threshold value P, the control unit 20 switches the second switching unit 15 from the conductive state to the cutoff state to reduce the welding current supplied to the welding wire 34.
  • the opening of the short circuit between the welding wire 34 and the base metal 35 is detected.
  • the control unit 20 adjusts the output of the first switching unit 12 so that the welding current becomes a predetermined current.
  • the second switching unit 15 is maintained in a conductive state. Then, at time t4, the short circuit is opened and the state shifts to the arc state.
  • the integration of the integrated power value resets the integrated power value when the threshold value P is exceeded in the short-circuit period, and the integration ends. If the integrated power value does not exceed the threshold value P, the integrated power value is reset by the arc determination that determines the arc state, and the integration is completed.
  • the welding current is reduced before the short circuit is opened, and the amount of heat input to the welding wire 34 is reduced based on the integrated amount of the electric power supplied to the welding wire 34. I try to do it. As a result, it is possible to suppress the occurrence of spatter when the short circuit is opened.
  • the integrated current value shows three peak values of P1, P2, and P3. Therefore, for example, assuming that P1 having the largest integrated current value is set as the threshold value, when the integrated current values are P2 and P3, it is below the threshold value P1. Therefore, the control unit 20 does not reduce the welding current supplied to the welding wire 34 at the time when the integrated current values are P2 and P3.
  • the integrated power value is larger than the threshold value P. Therefore, if short-circuit welding is continued without lowering the welding current at the times when the integrated current values P2 and P3 are reached, the amount of heat input when the short-circuit is opened is large and spatter occurs.
  • the control unit 20 reduces the welding current at a timing when it is not necessary to reduce the amount of heat input before the time when the integrated current values become P1 and P2. As a result, the amount of heat input varies.
  • a plurality of arc welding devices 10 are provided (two in the example shown in FIG. 4).
  • the cables on the ground side of the two arc welding devices 10 are connected to one base material 35.
  • a plurality of arc welding devices 10 perform welding on a common base material 35 that is electrically conductive or a base material 35 on a common jig (not shown).
  • the arc 36 is generated from the two arc welding devices 10 at the same time.
  • the welding current at the time of short-circuit opening is reduced based on the integrated value of the electric power supplied to the welding wire 34, that is, the amount of heat input actually applied to the welding wire 34. ing.
  • the present invention is extremely useful and has high industrial applicability because it has a highly practical effect of suppressing the occurrence of spatter when the short circuit is opened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)

Abstract

アーク溶接装置は、溶接ワイヤと母材とが短絡する短絡状態が生じる短絡期間と溶接ワイヤと母材との間にアークが発生するアーク状態が生じるアーク期間とを交互に繰り返して溶接を行う。算出部は、溶接ワイヤが短絡した後で、所定の期間内に溶接ワイヤに供給された電力を積算して電力積算値を算出する。制御部は、電力積算値が所定の閾値よりも大きい場合に、溶接ワイヤfに供給する溶接電流を低下させる。

Description

アーク溶接方法及びアーク溶接装置
 本発明は、アーク溶接方法及びアーク溶接装置に関するものである。
 特許文献1には、溶接電圧の所定時間あたりの変化量を算出し、溶接電圧の所定時間あたりの変化量と溶滴のくびれ判定閾値とに基づいて溶滴のくびれ判定を行うアーク溶接装置の制御方法が開示されている。
 具体的に、溶接ワイヤと母材側溶融部との間でくびれ(いわゆるネック)が発生すると、ネック部分では断面積が小さくなるため抵抗値が増加する。このため、ネックが生じてくると、短絡制御で電流増加を一定にしているにも関わらず溶接電圧の変化量が大きくなる。そこで、電圧変化量に基づいてネックの発生を検知すると、短絡開放直前に溶接電流を低下させ、スパッタの発生を抑制するようにしている。
特許4760053号公報
 しかしながら、例えば、銅やアルミのような抵抗が小さい溶接ワイヤを用いた場合、くびれが発生したとしても、くびれに起因する溶接電圧の変化量が小さく、また、ばらつきも大きいため、くびれの有無を誤判定するおそれがある。
 例えば、くびれが発生しているのにくびれ無しと誤判定した場合には、溶接電流を低下させることなく短絡溶接が継続されるので、短絡開放時の入熱量が大きくなり、スパッタが発生してしまうという問題がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、短絡開放時のスパッタの発生を抑えることにある。
 第1の発明は、溶接ワイヤと母材とが短絡する短絡状態が生じる短絡期間と溶接ワイヤと母材との間にアークが発生するアーク状態が生じるアーク期間とを交互に含むアーク溶接方法を対象としている。アーク溶接方法は、前記溶接ワイヤが短絡した後で、所定の期間内に該溶接ワイヤに供給された電力を積算して電力積算値を算出する工程と、前記電力積算値が所定の閾値よりも大きい場合に、前記溶接ワイヤに供給する溶接電流を低下させる工程とを備えている。
 第1の発明では、溶接ワイヤが短絡した後で、所定の期間内における電力積算値を算出する。そして、電力積算値が所定の閾値よりも大きい場合に、溶接電流を低下させるようにしている。
 このように、溶接ワイヤに供給された電力の積算量に基づいて、短絡開放前に溶接電流を低下させ、溶接ワイヤに与える入熱量を少なくするようにしている。これにより、短絡開放時のスパッタの発生を抑えることができる。
 また、くびれの発生を検知することなく、短絡開放前に溶接電流を低下させるようにしているので、くびれの有無を誤判定したことに起因する不具合を回避することができる。
 第2の発明は、第1の発明において、前記電力積算値を算出する工程では、前記溶接ワイヤが短絡してから所定時間が経過した後で、該電力積算値の算出を開始する。
 第2の発明では、溶接ワイヤが短絡してから所定時間が経過した後、例えば、短絡が安定してから電力積算値の算出を開始するようにしている。これにより、短絡が安定していない期間を除外して、電力の積算値を算出することができる。
 第3の発明は、第1又は第2の発明において、前記電力積算値を算出する工程では、前記溶接ワイヤが短絡してから前記溶接電流が上昇し始めた後で、該電力積算値の算出を開始する。
 第3の発明では、溶接ワイヤが短絡してから溶接電流が上昇し始めた後、電力積算値の算出を開始するようにしている。これにより、溶接電圧に変化があった場合でも、溶接ワイヤに対して適正な熱量を与えることができる。
 第4の発明は、第1乃至第3のうち何れか1つにおいて、前記溶接ワイヤが短絡してから前記溶接電流が上昇し始めた後、又は短絡して所定時間が経過した後で、該溶接ワイヤを逆送する工程を備えている。
 第4の発明では、溶接ワイヤが短絡してから溶接電流が上昇し始めた後、又は短絡して所定時間が経過した後で、溶接ワイヤを逆送するようにしている。これにより、溶接ワイヤが座屈するのを抑えることができる。
 第5の発明は、請求項1において、さらに、電力積算値が所定の閾値よりも大きいかどうかを決定する工程を備えてもよい。所定の閾値は、固定値であってもよい。また、この固定値は溶接条件毎に定まるものであっても良い。
 第6の発明は、溶接ワイヤと母材とが短絡する短絡状態が生じる短絡期間と溶接ワイヤと母材との間にアークが発生するアーク状態が生じるアーク期間とを交互に繰り返し含む溶接を行うアーク溶接装置を対象としている。そして、前記溶接ワイヤが短絡した後で、所定の期間内に該溶接ワイヤに供給された電力を積算して電力積算値を算出する算出部と、前記電力積算値が所定の閾値よりも大きい場合に、前記溶接ワイヤに供給する溶接電流を低下させる制御部とを備えている。
 第6の発明では、算出部は、溶接ワイヤが短絡した後で、所定の期間内における電力積算値を算出する。制御部は、電力積算値が所定の閾値よりも大きい場合に溶接電流を低下させる。
 このように、溶接ワイヤに供給された電力の積算量に基づいて、短絡開放前に溶接電流を低下させ、溶接ワイヤに与える入熱量を少なくするようにしている。これにより、短絡開放時のスパッタの発生を抑えることができる。
 第7の発明は、第6の発明に記載のアーク溶接装置を複数備え、前記複数のアーク溶接装置におけるグランド側のケーブルが、前記母材にそれぞれ接続されている。
 第7の発明では、複数のアーク溶接装置におけるグランド側のケーブルを、母材にそれぞれ接続している。ここで、複数のアーク溶接装置では、溶接ワイヤに供給する電力の積算値、つまり、実際に溶接ワイヤに与えている入熱量に基づいて、短絡開放時の溶接電流を低下させている。
 そのため、一方のアーク溶接装置で発生したノイズの影響が、母材を介して他方のアーク溶接装置に及んだ場合や、溶接ワイヤがアルミや銅を含む低抵抗値の材料であるために電圧変化が小さく、電圧の検出が正確にできなくなり、くびれの判定が正確にできない場合でも、電力積算値に基づいて、溶接ワイヤと母材との短絡開放前に溶接電流を低下させる制御を確実に行うことができる。
 第8の発明は、第6の発明において、制御部は、さらに、電力積算値が所定の閾値よりも大きいかどうかを決定してもよい。所定の閾値は、固定値であってもよい。また、この固定値は溶接条件毎に定まるものであっても良い。
 本発明によれば、短絡開放時のスパッタの発生を抑えることができる。
本実施形態に係るアーク溶接装置の概略構成を示すブロック図である。 アーク溶接時の溶接電圧、溶接電流、及び電力積算値の出力波形を示す図である。 電流積算値及び電力積算値の出力波形を示す図である。 本変形例に係るアーク溶接装置の概略構成を示すブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 図1に示すように、アーク溶接装置10は、消耗電極である溶接ワイヤ34と溶接対象物である母材35とが短絡する短絡状態が生じる短絡期間と、溶接ワイヤ34と母材35との間にアークが発生するアーク状態が生じるアーク期間とを交互に繰り返し含む溶接を行う。
 アーク溶接装置10は、第1整流部11と、第1スイッチング部12と、変圧器13と、第2整流部14と、第2スイッチング部15と、抵抗16と、リアクトル17と、溶接電流検出部18と、溶接電圧検出部19と、制御部20とを有する。
 第1整流部11は、アーク溶接装置10の外部にある入力電源Sから入力された入力電圧を整流する。第1スイッチング部12は、スイッチング動作により第1整流部11の出力を調整する。変圧器13は、第1スイッチング部12の出力を溶接に適した出力に変換する。
 第2整流部14は、変圧器13の出力を整流する。第2スイッチング部15は、スイッチング動作により第2整流部14の出力を調整する。抵抗16は、第2スイッチング部15と並列に接続されている。
 リアクトル17は、第2スイッチング部15と直列に接続されている。リアクトル17は、第2スイッチング部15の出力を平滑化する。
 溶接電流検出部18は、溶接ワイヤ34と母材35との間に供給される溶接電流を検出する。溶接電流検出部18で検出された溶接電流を示す検出信号は、制御部20に送信される。
 溶接電圧検出部19は、溶接ワイヤ34と母材35の間に供給される溶接電圧を検出する。溶接電圧検出部19で検出された溶接電圧を示す検出信号は、制御部20に送信される。
 アーク溶接装置10には、溶接トーチ30と、母材35と、ワイヤ送給部32と、設定部25が接続され、アーク溶接システムを構成している。
 溶接トーチ30には、溶接ワイヤ34に電力を供給するための溶接チップ31が設けられている。ワイヤ送給部32は、制御部20からの信号に基づいて、溶接ワイヤ34の送給として、所定の送給速度での一定送給制御または、溶接ワイヤ34を母材35の方向に送る正送と正送とは逆方向に送る逆送とを交互に行う正送と逆送の送給制御等の送給の制御を行う。
 正送と逆送の送給制御の送給の制御を行う場合は、溶接ワイヤ34の送給として正送と逆送を交互に繰り返しながら、短絡状態とアーク状態を交互に発生させて溶接を行うこととなり、正送と逆送を周期的に行って、機械的に短絡状態とアーク状態を交互に発生させる。
 なお、周期的な正送と逆送の切替えは行わず、溶接現象の状態に応じて正送と逆送の送給切り替えを行っても良い。具体的には、溶接ワイヤ34の送給として、溶接ワイヤ34と母材35とが短絡して短絡状態となったら逆送し、短絡が開放されてアーク状態となったら正送を行うものである。
 また、設定部25は、アーク溶接装置10に溶接条件を設定するために用いられる。
 アーク溶接装置10の溶接出力は、溶接チップ31を介して溶接ワイヤ34に供給される。そして、アーク溶接装置10の溶接出力により、溶接ワイヤ34と母材35との間にアーク36を発生させて溶接を行う。
 制御部20は、アーク溶接装置10の各部と、アーク溶接装置10の外部にある装置との間において信号の伝送を行う。図1に示す例では、アーク溶接装置10の各部は、第1スイッチング部12、第2スイッチング部15、溶接電流検出部18、溶接電圧検出部19である。また、アーク溶接装置10の外部にある装置は、ワイヤ送給部32及び設定部25である。
 制御部20は、第1スイッチング部12及び第2スイッチング部15に制御信号を出力して溶接出力を制御する。制御部20は、ワイヤ送給部32に制御信号を出力して、ワイヤ送給速度を制御する。
 制御部20は、プロセッサと、プロセッサと電気的に接続されてプロセッサを動作させるためのプログラムや情報を記憶するメモリとによって構成される。制御部20は、算出部21を有する。
 算出部21は、溶接ワイヤ34が短絡した後で、所定の期間内に溶接ワイヤ34に供給された電力を積算して電力積算値を算出する。なお、溶接ワイヤに供給される電力は、溶接電流と溶接電圧との積に基づいて算出する。
 制御部20は、溶接電圧検出部19によって検出された溶接電圧を、予め設定された閾値電圧と比較する。そして、溶接電圧が閾値電圧以下である場合には、短絡状態であると判定する。一方、溶接電圧が閾値電圧を超える場合には、アーク状態であると判定する。
 以下、制御部20による溶接電流の制御について説明する。
 図2に示すように、時刻t1で、短絡状態であると判定されると、制御部20は、第1スイッチング部12の出力を調整することにより、溶接電流を初期電流まで減少させる。このとき、第2スイッチング部15は、導通状態のまま維持される。
 その後、制御部20は、時刻t2から時刻t3までの間、溶接電流が予め定められた電流増加速度で増加するように、第1スイッチング部12の出力を調整する。このとき、ワイヤ送給部32の動作を制御して、溶接ワイヤ34を逆送させる。または、短絡して所定時間が経過した後(短絡が安定した後)で、溶接ワイヤ34を逆送させてもよい。短絡期間中に溶接ワイヤを逆送させることで、溶接ワイヤ34と母材35との短絡開放を促進させることができる。また、特に、周期的な正送と逆送の切替えによる溶接ワイヤ34の正送と逆送の送給制御を行うことにより、溶接ワイヤ34の先端側の溶滴形成がより安定し、溶接ワイヤ34から母材35への溶滴移行の安定性が向上する。
 なお、溶接ワイヤ34の正送と逆送の送給制御を行わなくてもよい。例えば、溶接ワイヤ34の逆送を行わない所定の送給速度での一定送給の制御としてもよい。
 算出部21は、時刻t2から時刻t4までの間で、電力を積算して電力積算値を算出する。具体的には、溶接ワイヤ34が短絡してから溶接電流が上昇し始めた後で、電力積算値の算出を開始する。例えば、算出部21は、溶接電流の上昇を検知し、それを受けて、電力積算値の算出を開始する。これに代えて、例えば、算出部21は、溶接電流が上昇すると見込まれる時間の経過を検知し、それを受けて、電力積算値の算出を開始する。
 なお、電力積算値の算出は、溶接ワイヤ34が短絡してから所定時間が経過した後、例えば、短絡が安定してから開始すればよい。例えば、時刻t1から時刻t2までの間で、電力積算値の算出を開始してもよい。算出部21は、所定時間の経過を検知し、それを受けて電力積算値の算出を開始してもよい。
 制御部20は、電力積算値が所定の閾値Pよりも大きいかを判定する。図2に示す例では、時刻t3のときに、電力積算値が閾値Pよりも大きくなっている。制御部20は、電力積算値が所定の閾値Pよりも大きい場合に、第2スイッチング部15を導通状態から遮断状態に切り換えることで、溶接ワイヤ34に供給する溶接電流を低下させる。
 時刻t4では、溶接ワイヤ34と母材35との短絡の開放が検出される。制御部20は、溶接電流が予め定められた電流となるように、第1スイッチング部12の出力を調整する。このとき、第2スイッチング部15は、導通状態のまま維持される。そして、時刻t4では、短絡が開放されてアーク状態に移行する。
 ここで、電力積算値の積算は、短絡期間において閾値Pを超えた時点で、電力積算値をリセットし、積算を終了する。なお、電力積算値が閾値Pを超えなかった場合、アーク状態と判定するアーク判定で電力積算値をリセットし、積算を終了する。
 以上のように、本実施形態に係るアーク溶接装置10では、溶接ワイヤ34に供給された電力の積算量に基づいて、短絡開放前に溶接電流を低下させ、溶接ワイヤ34に与える入熱量を少なくするようにしている。これにより、短絡開放時のスパッタの発生を抑えることができる。
 〈電流積算値と電力積算値との比較〉
 以下、電力積算値の代わりに、溶接電流を積算した電流積算値を用いた場合でも、同様の制御を行うことができるかについて検討した。
 図3に示すように、電流積算値は、P1、P2、P3の3つのピーク値を示している。そのため、例えば、電流積算値が最も大きいP1を閾値とすると、電流積算値がP2、P3のときには、閾値P1を下回っている。そのため、制御部20は、電流積算値がP2、P3となる時刻において、溶接ワイヤ34に供給する溶接電流を低減させることはない。
 しかしながら、電流積算値がP2、P3となる時刻において、電力積算値のピーク値を見ると、電力積算値は、閾値Pよりも大きくなっている。そのため、電流積算値P2、P3となる時刻において、溶接電流を低下させることなく短絡溶接を継続すると、短絡開放時の入熱量が大きく、スパッタが発生してしまう。
 一方、電流積算値が最も小さいP3を閾値とすると、制御部20は、電流積算値がP1、P2となる時刻よりも前に、入熱量を下げる必要がないタイミングで溶接電流を低下させてしまうことになり、入熱量がばらついてしまう。
 以上の検討結果より、溶接ワイヤ34に供給する溶接電流を低下させるタイミングを、電力積算値に基づいて判定した方が、電流積算値に基づいて判定した場合に比べて、入熱量を下げるタイミングで効果的に溶接電流を下げることができ、短絡期間中の入熱量がより安定し、短絡開放時のスパッタの発生を抑える上で有利であることが分かる。
 《変形例》
 図4に示すように、アーク溶接装置10は、複数台設けられている(図4に示す例では2台)。2台のアーク溶接装置10のグランド側のケーブルは、1つの母材35に接続されている。具体的には、電気的に導通している共通の母材35、または共通の冶具(図示せず)上の母材35に対して、複数台のアーク溶接装置10により溶接を行う。これにより、2台のアーク溶接装置10から同時にアーク36を発生させている。
 ここで、本実施形態のアーク溶接装置10では、溶接ワイヤ34に供給する電力の積算値、つまり、実際に溶接ワイヤ34に与えている入熱量に基づいて、短絡開放時の溶接電流を低下させている。
 そのため、他の溶接としての一方のアーク溶接装置10で発生したノイズの影響が、母材35を介して他方のアーク溶接装置10に及んだ場合や、溶接ワイヤ34がアルミや銅を含む低抵抗値の材料であるために電圧変化が小さく、電圧の検出が正確にできなくなり、くびれの判定が正確にできない場合でも、電力積算値に基づいて、溶接ワイヤ34と母材35との短絡開放前に溶接電流を低下させる制御を確実に行うことができる。
 以上説明したように、本発明は、短絡開放時のスパッタの発生を抑えることができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。
 10  アーク溶接装置
 20  制御部
 21  算出部
 32  ワイヤ送給部
 34  溶接ワイヤ
 35  母材

Claims (8)

  1.  溶接ワイヤと母材とが短絡する短絡状態が生じる短絡期間と前記溶接ワイヤと前記母材との間にアークが発生するアーク状態が生じるアーク期間とを交互に繰り返し含むアーク溶接方法であって、
     前記溶接ワイヤが短絡した後で、所定の期間内に該溶接ワイヤに供給された電力を積算して電力積算値を算出する工程と、
     前記電力積算値が所定の閾値よりも大きい場合に、前記溶接ワイヤに供給する溶接電流を低下させる工程とを備えたアーク溶接方法。
  2.  請求項1において、
     前記電力積算値を算出する工程では、前記溶接ワイヤが短絡してから所定時間が経過した後で、該電力積算値の算出を開始するアーク溶接方法。
  3.  請求項1又は2において、
     前記電力積算値を算出する工程では、前記溶接ワイヤが短絡してから前記溶接電流が上昇し始めた後で、該電力積算値の算出を開始するアーク溶接方法。
  4.  請求項1乃至3のうち何れか1つにおいて、
     前記溶接ワイヤが短絡してから前記溶接電流が上昇し始めた後、又は短絡して所定時間が経過した後で、該溶接ワイヤを逆送する工程を備えたアーク溶接方法。
  5.  請求項1において、さらに、前記電力積算値が前記所定の閾値よりも大きいかどうかを決定する工程を備え、
     前記所定の閾値は、固定値であるアーク溶接方法。
  6.  溶接ワイヤと母材とが短絡する短絡状態が生じる短絡期間と前記溶接ワイヤと前記母材との間にアークが発生するアーク状態が生じるアーク期間とを交互に繰り返し含む溶接を行うアーク溶接装置であって、
     前記溶接ワイヤが短絡した後で、所定の期間内に該溶接ワイヤに供給された電力を積算して電力積算値を算出する算出部と、
     前記電力積算値が所定の閾値よりも大きい場合に、前記溶接ワイヤに供給する溶接電流を低下させる制御部とを備えたアーク溶接装置。
  7.  請求項6に記載のアーク溶接装置を複数備え、
     前記複数のアーク溶接装置におけるグランド側のケーブルが、前記母材にそれぞれ接続されているアーク溶接装置。
  8.  請求項6において、前記制御部は、さらに、前記電力積算値が前記所定の閾値よりも大きいかどうかを決定し、
     前記所定の閾値は、固定値であるアーク溶接装置。
PCT/JP2020/017615 2019-05-22 2020-04-24 アーク溶接方法及びアーク溶接装置 WO2020235293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021520668A JP7499433B2 (ja) 2019-05-22 2020-04-24 アーク溶接方法及びアーク溶接装置
EP20810279.8A EP3974093B1 (en) 2019-05-22 2020-04-24 Arc welding method and arc welding device
CN202080036730.0A CN113891772B (zh) 2019-05-22 2020-04-24 电弧焊接方法以及电弧焊接装置
US17/520,770 US20220055135A1 (en) 2019-05-22 2021-11-08 Arc welding method and arc welding device
JP2024078284A JP2024099058A (ja) 2019-05-22 2024-05-13 アーク溶接方法及びアーク溶接装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019096140 2019-05-22
JP2019-096140 2019-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/520,770 Continuation US20220055135A1 (en) 2019-05-22 2021-11-08 Arc welding method and arc welding device

Publications (1)

Publication Number Publication Date
WO2020235293A1 true WO2020235293A1 (ja) 2020-11-26

Family

ID=73458090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017615 WO2020235293A1 (ja) 2019-05-22 2020-04-24 アーク溶接方法及びアーク溶接装置

Country Status (5)

Country Link
US (1) US20220055135A1 (ja)
EP (1) EP3974093B1 (ja)
JP (2) JP7499433B2 (ja)
CN (1) CN113891772B (ja)
WO (1) WO2020235293A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230142671A1 (en) * 2021-11-10 2023-05-11 Lincoln Global, Inc. Welding or additive manufacturing system with discontinuous electrode feeding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970469A (ja) * 1982-10-14 1984-04-20 Mitsubishi Electric Corp 直流ア−ク溶接装置
JP2006122912A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接装置
JP4760053B2 (ja) 2005-02-28 2011-08-31 パナソニック株式会社 アーク溶接装置の制御方法およびアーク溶接装置
JP2013094840A (ja) * 2011-11-04 2013-05-20 Daihen Corp 消耗電極アーク溶接のくびれ検出制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214399A (ja) * 2009-03-16 2010-09-30 Daihen Corp アーク溶接方法
US10040142B2 (en) * 2013-03-15 2018-08-07 Lincoln Global, Inc. Variable polarity pulse with constant droplet size
JP6023991B2 (ja) * 2014-02-14 2016-11-09 パナソニックIpマネジメント株式会社 アーク溶接方法
EP3357624B1 (en) * 2015-09-30 2020-08-26 Daihen Corporation Arc welding device and arc welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970469A (ja) * 1982-10-14 1984-04-20 Mitsubishi Electric Corp 直流ア−ク溶接装置
JP2006122912A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接装置
JP4760053B2 (ja) 2005-02-28 2011-08-31 パナソニック株式会社 アーク溶接装置の制御方法およびアーク溶接装置
JP2013094840A (ja) * 2011-11-04 2013-05-20 Daihen Corp 消耗電極アーク溶接のくびれ検出制御方法

Also Published As

Publication number Publication date
JP7499433B2 (ja) 2024-06-14
CN113891772A (zh) 2022-01-04
JPWO2020235293A1 (ja) 2020-11-26
EP3974093A1 (en) 2022-03-30
EP3974093A4 (en) 2022-12-21
US20220055135A1 (en) 2022-02-24
CN113891772B (zh) 2023-10-24
EP3974093B1 (en) 2024-05-29
JP2024099058A (ja) 2024-07-24

Similar Documents

Publication Publication Date Title
US9415457B2 (en) Method to control an arc welding system to reduce spatter
US9333581B2 (en) Apparatus and method for energy replacement in a welding waveform during welding
WO2014140759A2 (en) Apparatus and method for welding with ac waveform
CN111745264B (zh) 电弧焊接电路的实时电阻监测
MX2011009275A (es) Sistemas y metodos para la deteccion de corto circuito.
JP2024099058A (ja) アーク溶接方法及びアーク溶接装置
JP4739874B2 (ja) 消耗電極アーク溶接のくびれ検出制御方法
JP7556681B2 (ja) 時間に基づく短絡応答
JP4815966B2 (ja) アーク溶接システム
US20220055136A1 (en) Arc welding method and arc welding device
CA2815440A1 (en) Method to control an arc welding system to reduce spatter
KR20190013522A (ko) 원격 스위치 동작의 용접 전원 공급 식별
JP4545483B2 (ja) くびれ検出時電流急減機能付溶接電源及び溶接装置
JP2004042100A (ja) アーク溶接の短絡判別方法
JP7489582B2 (ja) アーク溶接方法およびアーク溶接装置
US10821535B2 (en) Short circuit welding using self-shielded electrode
JP2013010131A (ja) 消耗電極アーク溶接のくびれ検出制御方法
JP7198558B2 (ja) パルスアーク溶接制御方法
JPS60177963A (ja) ア−ク溶接法
JPH0696194B2 (ja) 短絡アーク溶接の波形制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202147054437

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2020810279

Country of ref document: EP

Effective date: 20211222