WO2020138346A1 - Soft intraocular lens material and soft intraocular lens - Google Patents

Soft intraocular lens material and soft intraocular lens Download PDF

Info

Publication number
WO2020138346A1
WO2020138346A1 PCT/JP2019/051262 JP2019051262W WO2020138346A1 WO 2020138346 A1 WO2020138346 A1 WO 2020138346A1 JP 2019051262 W JP2019051262 W JP 2019051262W WO 2020138346 A1 WO2020138346 A1 WO 2020138346A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
intraocular lens
mass
parts
soft intraocular
Prior art date
Application number
PCT/JP2019/051262
Other languages
French (fr)
Japanese (ja)
Inventor
隆廣 夛田
響子 村瀬
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to CN202211547679.7A priority Critical patent/CN115975105B/en
Priority to JP2020562440A priority patent/JP6963739B2/en
Priority to EP19903132.9A priority patent/EP3904408A4/en
Priority to CN201980082920.3A priority patent/CN113195563B/en
Publication of WO2020138346A1 publication Critical patent/WO2020138346A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1696Having structure for blocking or reducing amount of light transmitted, e.g. glare reduction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/16965Lens includes ultraviolet absorber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the present invention relates to a soft intraocular lens material and a soft intraocular lens.
  • the intraocular lens includes an optical section that exhibits a refractive power and a support section that fixes the position of the optical section inside the capsule.
  • the inserted intraocular lens restores its original shape again in the capsule, and the support portion is pressed against the capsule to stabilize the position in the capsule.
  • This intraocular lens is desired to have high flexibility and shape recovery in order to make the incision of the lens capsule as small as possible (see Patent Documents 1 to 3, for example).
  • a soft resin made of silicone, hydrophobic (meth)acrylate, hydrophilic (meth)acrylate or the like is widely used.
  • hydrophobic (meth)acrylates are widely used because there are few cases of post-cataract occurrence after surgery.
  • the hydrophobic (meth)acrylate is not well compatible with water, and a phenomenon called glistening, in which a small amount of water in the lens aggregates into dots and appears bright, tends to occur. Therefore, the combined use of a hydrophobic (meth)acrylate and a hydrophilic (meth)acrylate is indispensable for producing a soft intraocular lens material.
  • the conventional soft intraocular lens material has room for improvement in compatibility between the above-mentioned flexibility and shape recoverability and reduction of glistening.
  • the present application aims to provide a new soft intraocular lens material that has both flexibility and shape recovery and reduction of glistening. From another point of view, this application aims at providing a soft intraocular lens using this soft intraocular lens material.
  • the soft intraocular lens material provided by the technique disclosed herein is obtained by polymerizing a polymerizable component having polymerizability, and the polymerizable component includes an aromatic ring-containing methacrylate (A) and an alkoxy group-containing acrylate (B). ), a hydroxy group-containing acrylate (C), and a crosslinkable (meth)acrylate (D). And when the said polymeric component is 100 mass parts, the said acrylate (B) containing an alkoxy group is 30 mass parts or more.
  • the conventional soft intraocular lens material is made to sufficiently contain the hydrophilic (meth)acrylate in order to suppress the occurrence of glistening.
  • the hydrophilic (meth)acrylate can suppress the occurrence of glistening by creating an environment in which the aqueous humor does not easily aggregate in the voids of the polymer, but has the trade-off of increasing the hardness of the polymer.
  • the hydrophilicity of the soft intraocular lens material is increased, moisture in the air is absorbed and the shape and physical properties of the lens are likely to change, which makes the handling of the intraocular lens difficult.
  • a monomer component capable of suppressing the occurrence of glistenings such as known polymethylmethacrylate (PMMA) in the hydrophobic (meth)acrylate
  • PMMA polymethylmethacrylate
  • the polymer obtained is a hard material that cannot be folded when the lens is constructed, and is difficult to use.
  • the aromatic ring-containing methacrylate (A) is 40 parts by mass or more and 52 parts by mass or less, when the polymerization component is 100 parts by mass. With such a configuration, it is possible to preferably suppress the occurrence of glistening without impairing the flexibility suitable for folding the soft intraocular lens material.
  • the alkoxy group-containing acrylate (B) is 35 parts by mass or more and 46 parts by mass or less when the polymerization component is 100 parts by mass. With such a configuration, it is possible to favorably achieve both flexibility and shape recoverability and reduction of glistening.
  • the hydroxy group-containing acrylate (C) is 8 parts by mass or more and 12 parts by mass or less when the polymerization component is 100 parts by mass.
  • the total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) is 100 parts by mass of the polymerization component. , 75 parts by mass or more and 90 parts by mass or less.
  • a combination of an aromatic ring-containing methacrylate and a non-aromatic ring-containing alkoxyacrylate forms a polymer having a skeleton effective for reducing glistening. Conceivable. As a result, it is possible to reduce the glistening in a state where the content of the hard hydrophilic (meth)acrylate is suppressed, and it is possible to balance the physical characteristics and the reduction of the glistening at a high level.
  • the aromatic ring-containing methacrylate (A) has the following general formula (1):
  • R1 is a linear or branched alkylene group having 1 to 8 carbon atoms, and X indicates that the element is absent or is an oxygen atom; This makes it possible to enhance the above effects while realizing the high refractive index and flexibility of the soft intraocular lens material.
  • the alkoxy group-containing acrylate (B) has the following general formula (2):
  • R2 is a methyl group or an ethyl group, and n is an integer of 1 to 4;
  • the hydroxy group-containing acrylate (C) has the following general formula (3):
  • R3 is a linear or branched alkylene group having 1 to 8 carbon atoms; As a result, the above effect can be enhanced.
  • the above-mentioned polymerization component contains a monomer having an ultraviolet absorbing ability.
  • the above-mentioned polymerization component contains a monomer having a yellow coloring ability.
  • the above soft intraocular lens materials have excellent flexibility and a glistening suppression effect. Such characteristics are particularly suitable for use as a material for forming a soft intraocular lens that is kept implanted in the eyeball and then immersed in aqueous humor for a long period of time. Therefore, in another aspect, the technology disclosed herein provides a soft intraocular lens manufactured using the soft intraocular lens material described in any of the above.
  • FIG. 1 is a diagram illustrating a configuration of a one-piece type soft intraocular lens according to an embodiment.
  • 1A is a plan view and FIG. 1B is a side view.
  • the soft intraocular lens 1 includes an optical section 10 having a predetermined refractive power, and a pair of support sections 20 for supporting the optical section 10 in the eye.
  • the optical part 10 and the support part 20 are integrally molded from the same raw material resin composition.
  • the optical unit 10 has, for example, a circular shape having a diameter D of about 5.5 mm to 7 mm, typically about 6 mm in a plan view.
  • the direction orthogonal to the diameter D direction of the optical unit 10 is called the thickness direction.
  • the optical unit 10 has a biconvex lens shape that protrudes toward both sides (both sides in the thickness direction) in a side view.
  • the thickness of the optical unit 10 can be determined based on the refractive index of the material forming the optical unit 10, the desired refractive power required for the optical unit 10, and the like.
  • the thickness of the optical part 10 may be, for example, 300 ⁇ m or more, and 400 ⁇ m or more, for example, at the center O of the circular optical part 10.
  • the thickness of the optical unit 10 is, for example, about 1000 ⁇ m or less, and may be, for example, 900 ⁇ m or less, for example, 700 ⁇ m or less, 600 ⁇ m or so (about ⁇ 10%).
  • the shape of the optical unit 10 is not limited to this.
  • the shape of the optical unit 10 may be, for example, an elliptical shape or a similar elliptical shape in a plan view.
  • the shape of the optical unit 10 may be, for example, a plano-convex lens shape in which only one surface protrudes and the other surface is flat in a side view, or one surface protrudes and the other surface has a concave convex shape. It may have a meniscus lens shape or the like.
  • the support portion 20 is formed so as to project outward from the peripheral edge of the optical portion 10.
  • the pair of support parts 20 are formed with respect to the optical part 10 so as to be point-symmetrical with the center O of the optical part 10 as an axis of symmetry.
  • the support portion 20 has a loop shape with one end free.
  • the supporting portion 20 includes, in the vicinity of the connecting portion with the optical portion 10, a bending portion 20a that is largely bent in the plane of the lens portion.
  • the support portion 20 is configured to be further bendable in the bending portion 20a in a direction in which the free end portion approaches the center O.
  • the distance L between the free ends of the pair of support portions 20 is, for example, about 11.5 mm to 13.5 mm, typically about 12 mm to 13 mm.
  • the shape of the support portion 20 is not limited to this.
  • the optical unit 10 and the support unit 20 may be made of the same material or may be made of different materials.
  • both the optical section 10 and the support section 20 may be made of the same soft intraocular lens material.
  • This soft intraocular lens material is composed by polymerizing a polymerizable component having polymerizability.
  • the polymerization component for constituting the soft intraocular lens material is essentially an aromatic ring-containing methacrylate (A), an alkoxy group-containing acrylate (B), a hydroxy group-containing acrylate (C), and a crosslinkable (meth). ) Acrylate (D).
  • the soft intraocular lens material corresponds to the monomer unit corresponding to the aromatic ring-containing methacrylate (A), the monomer unit corresponding to the alkoxy group-containing acrylate (B), and the hydroxy group-containing acrylate (C). It is composed of a (meth)acrylate copolymer containing a monomer unit and a monomer unit corresponding to the crosslinkable (meth)acrylate (D).
  • the “(meth)acrylate copolymer” is a polymer which is generally called a so-called “acrylic polymer”, and includes a polymerizable unsaturated double bond in one molecular structure (meth).
  • a polymer containing a monomer unit derived from a monomer having at least one acryloyl group hereinafter sometimes referred to as a (meth)acrylate monomer.
  • the (meth)acrylate copolymer typically has a total of 50% by mass or more (preferably 75% by mass or more, more preferably 80% by mass) of monomer units derived from a (meth)acrylate monomer in one molecular structure.
  • (meth)acrylate is a term that comprehensively means acrylate and methacrylate.
  • each polymerization component will be described.
  • the present inventors have found that the combined use of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) has an effect of achieving both a high level of appropriate physical properties and suppression of glistening. However, it is used as a main polymerization component. In other words, the aromatic ring-containing methacrylate monomer (A) and the alkoxy group-containing acrylate (B) cooperate to contribute to achieving both appropriate physical properties and a glistening suppressing effect.
  • the methacrylate-based polymerization component has a relatively high concentration in the vicinity of the surface of the polymerized product as compared with the acrylate-based polymerization component. It has been shown that it may exist (see, for example, WO 2019/138952).
  • a polymer generally called a hydrophobic acrylic polymer has many water-absorbing substances even if it is less than 1%, and a general-purpose intraocular lens is based on this slight water-absorbing property. It is considered that listening is occurring.
  • the aromatic ring-containing methacrylate (A) disclosed herein can exhibit high hydrophobicity similar to PMMA when polymerized at a high concentration.
  • the aromatic ring-containing methacrylate (A) is polymerized at a high concentration in the vicinity of the surface to form a hydrophobic surface, which effectively contributes to the reduction of glistening.
  • the alkoxy group-containing acrylate (B) and the hydroxy group-containing acrylate (C), which can have hydrophilicity can be present in relatively high concentration in the vicinity of the center of the polymer, thereby reducing glistening on the surface of the polymer. It is believed that the polymer is imparted with good flexibility and shape recoverability while suppressing the above.
  • the polymerizable aromatic ring-containing methacrylate (A) a compound containing at least one aromatic hydrocarbon group in its structure can be used.
  • the methacrylate monomer containing an aromatic ring imparts a function of increasing the refractive index of the intraocular lens to the polymer.
  • the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, a biphenyl ring and a heterocycle.
  • the heterocycle include a morpholine ring, a piperidine ring, a pyrrolidine ring and a piperazine ring.
  • aromatic ring-containing methacrylic monomer examples include benzyl methacrylate, phenyl methacrylate, o-phenylphenol methacrylate, phenoxy methacrylate, ethylene glycol phenyl ether methacrylate, diethylene glycol phenyl ether methacrylate, propylene glycol phenyl ether methacrylate, and ethylene oxide.
  • Modified phenyl ring such as nonylphenol methacrylate, ethylene oxide modified cresol methacrylate, phenol ethylene oxide modified methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, methoxybenzyl methacrylate, chlorobenzyl methacrylate, cresyl methacrylate, and polystyryl methacrylate; hydroxy Examples thereof include those having a naphthalene ring such as ethylated ⁇ -naphthol methacrylate, 2-naphthoethyl methacrylate and 2-(4-methoxy-1-naphthoxy)ethyl methacrylate; those having a biphenyl ring such as biphenyl methacrylate.
  • aromatic ring-containing methacrylate monomers may be contained alone or in combination of two or more.
  • the ratio of the polymerizable aromatic ring-containing methacrylate monomer in the (meth)acrylate copolymer is not limited to this, but for example, the ratio of the total of the four types of polymerization components (A) to (D) described above may be used. When it is 100 parts by mass, for example, it can be about 35 parts by mass or more, preferably about 40 parts by mass or more, and for example, about 42 parts by mass or more.
  • the ratio of the aromatic ring-containing methacrylate monomer (A) can be, for example, about 55 parts by mass or less, preferably 52 parts by mass or less, and for example, about 50 parts by mass or less.
  • the aromatic ring-containing (meth)acrylic monomer is more preferably a methacrylate monomer having a relatively low glass transition point.
  • the methacrylate monomer is preferable that the methacrylate monomer is
  • R1 represents a linear or branched alkylene group having 1 to 8 carbon atoms
  • X represents an element not present (that is, a single bond) or an oxygen atom.
  • alkylene group examples include methylene group, ethylene group, n-propylene group, isopropylene group, cyclopropylene group, n-butylene group, isobutylene group, s-butylene group, t-butylene group, cyclobutylene.
  • n-pentylene group 1-methyl-n-butylene group, 2-methyl-n-butylene group, 3-methyl-n-butylene group, 1,1-dimethyl-n-propylene group, 1,2-dimethyl It may be -n-propylene group, 2,2-dimethyl-n-propylene group, 1-ethyl-n-propylene group, cyclopentylene group, n-hexylene group and the like. From the viewpoint of reducing the water absorption of the polymer, X is more preferably a single bond.
  • Preferred examples of such a methacrylate monomer component include benzyl methacrylate, phenylethyl methacrylate, ethylene glycol monophenyl ether methacrylate, diethylene glycol monophenyl ether methacrylate, and tetraethylene glycol monophenyl ether methacrylate.
  • the alkoxy group-containing acrylate (B) is, for example, an acrylate monomer component represented by the following formula: CH 2 ⁇ CHCOOR 2 , wherein R 2 is a functional group and/or a substituent containing an alkoxy group at least in part. It is a monomer.
  • the alkoxy group is, for example, an alkoxy group having 1 to 5 carbon atoms (hereinafter referred to simply as “C 1-5 ”) or C 1-4 , typically C 1 , C 2 , C 3 or the like. It is good to be a group. Specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, a pentyloxy group, an allyloxy group and the like, and a functional group partially containing these.
  • alkoxy group-containing acrylate examples include ethylene glycol monomethyl ether acrylate, ethylene glycol monoethyl ether acrylate, ethylene glycol monobutyl acrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monoethyl ether acrylate, and diethylene glycol monobutyl ether.
  • alkoxy group-containing acrylate (B) preferably contains, for example, an acrylate represented by the following general formula (2).
  • R2 is a methyl group or an ethyl group
  • n is an integer of 1 to 4.
  • examples of such compounds include ethoxy group monomethyl ether acrylate containing 1 to 4 ethoxy groups, ethoxy group monoethyl ether acrylate containing 1 to 4 ethoxy groups, and the like.
  • ethylene glycol monomethyl ether acrylate (2-methoxyethyl acrylate: MEA), ethylene glycol monoethyl ether acrylate (2-ethoxyethyl acrylate: EEA), diethylene glycol monomethyl ether acrylate (2-(2-ethoxyethoxy)methyl acrylate: EEMA ) And diethylene glycol monoethyl ether acrylate (2-(2-ethoxyethoxy)emethyl acrylate: EEEA).
  • MEA ethylene glycol monomethyl ether acrylate
  • MEA ethylene glycol monoethyl ether acrylate
  • EEA diethylene glycol monomethyl ether acrylate
  • EEMA diethylene glycol monoethyl ether acrylate
  • EEEA diethylene glycol monoethyl ether acrylate
  • EEEA diethylene glycol monoethyl ether acrylate (2-(2-ethoxyethoxy)emethyl acrylate
  • the proportion of the alkoxy group-containing acrylate (B) in the polymerization components may be about 30 parts by mass or more, for example, when the total of the four kinds of polymerization components (A) to (D) is 100 parts by mass. Yes, and preferably about 35 parts by weight or more, for example about 38 parts by weight or more.
  • the proportion of the alkoxy group-containing acrylate (B) can be, for example, about 50 parts by mass or less, preferably 46 parts by mass or less, and for example, about 40 parts by mass or less.
  • the hydroxy group-containing acrylate (C) has a function of increasing the hydrophilicity of the (meth)acrylate copolymer, creating an environment in which aqueous humor does not easily aggregate in the voids of the copolymer, and suppressing generation of glistenings.
  • the hydroxy group-containing acrylate (C) has the following general formula (3): It is preferable to include a compound represented by However, in the formula, R3 is a linear or branched alkylene group having 1 to 8 carbon atoms.
  • Examples of such a polymerization component include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 6-hydroxyhexyl acrylate, 2,3-dihydroxypropyl acrylate, 8-hydroxyoctyl acrylate and the like. Can be mentioned. Among them, 2-hydroxyethyl acrylate (HEA), 4-hydroxybutyl acrylate (HBA) and the like are preferably used. These may include any one kind alone, or may include two or more kinds in combination.
  • the ratio of the hydroxy group-containing acrylate (C) in the (meth)acrylate copolymer is not strictly limited.
  • the hydroxy group-containing acrylate (C) can be, for example, about 5 parts by mass or more, preferably about 8 parts by mass or more, and for example, about 9 parts by mass or more.
  • the proportion of the hydroxy group-containing acrylate (C) which can greatly affect the physical properties such as the shape and water content of the inner lens, is small.
  • the proportion of the hydroxy group-containing acrylate (C) can be, for example, approximately 15 parts by mass or less (less than 15 parts by mass), preferably 12 parts by mass or less or 11.5 parts by mass or less, for example, about It may be 11 parts by mass or less.
  • the crosslinkable (meth)acrylate (D) may be a bifunctional (meth)acrylate or a trifunctional or higher functional poly(meth)acrylate.
  • trifunctional to hexafunctional monomers are generally used for the purpose of introducing a crosslinking point.
  • the more functional groups the higher the hardness of the polymer.
  • the crosslinkable (meth)acrylate (D) may have a configuration not containing a polyfunctional (meth)acrylate having four or more functional groups.
  • bifunctional (meth)acrylate examples include 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol diacrylate.
  • the trifunctional (meth)acrylate examples include trimethylolpropane tri(meth)acrylate, tris(2-acryloyloxyethyl)isocyanurate, and ethylene oxide-modified trimethylolpropane tri(meth)acrylate.
  • the crosslinkable acrylic monomer component is preferably about 50% by mass or more, and about 60% by mass.
  • At least 70% by weight for example, at least about 70% by weight, at least about 80% by weight, preferably at least about 90% by weight, for example, substantially 100% by weight.
  • the ratio of the crosslinkable (meth)acrylate (D) in the (meth)acrylate copolymer is not strictly limited.
  • the crosslinkable (meth)acrylate (D) when the total of the four types of polymerization components (A) to (D) is 100 parts by mass, the crosslinkable (meth)acrylate ( The ratio of D) can be, for example, about 1 part by mass or more, preferably about 3 parts by mass or more, and for example, about 4 parts by mass or more.
  • an excessive amount of the crosslinkable (meth)acrylate (D) is not preferable because the hardness of the soft intraocular lens material may be too high.
  • the proportion of the crosslinkable (meth)acrylate (D) may be 10 parts by mass or less, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and for example, 5 parts by mass or less. ..
  • a methacrylic monomer with respect to the total number M A of acrylic monomers is preferably 0.2 or more, more preferably 0.4 or more. For example, it may be 0.5 or more.
  • the value of M M / M A is preferably 1.2 or less, more preferably 1.1 or less, for example, it may be 1 or less.
  • the total amount of the four types of polymerization components (A) to (D) is 100% by mass.
  • the total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) may be 75 parts by mass or more, 80 parts by mass or more is appropriate, 81 parts by mass or more, It may be 82 parts by mass or more, 83 parts by mass or more, or 85 parts by mass or more.
  • the total amount of the hydroxy group-containing acrylate (C) and the crosslinkable (meth)acrylate (D) may be 25 parts by mass or less, 20 parts by mass or less is appropriate, 19 parts by mass or less, or 18 It may be less than or equal to 17 parts by mass, or less than or equal to 15 parts by mass.
  • the total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) is 90 parts by mass or less, for example, 89 parts by mass or less, It is preferable to keep the amount to about 88 parts by mass or less.
  • the total amount of the hydroxy group-containing acrylate (C) and the crosslinkable (meth)acrylate (D) may be 10 parts by mass or more, for example, 11 parts by mass or more, or 12 parts by mass or more. Accordingly, the soft intraocular lens material having a simpler configuration makes it possible to realize a soft intraocular lens in which physical properties and low glistening properties are compatible at a high level.
  • the (meth)acrylate copolymer constituting the soft intraocular lens material may include a polymerization component corresponding to a constitutional unit other than the above, as long as the essence of the technology disclosed herein is not impaired.
  • aromatic ring-containing acrylates and alkoxy group-containing acrylates corresponding to the above-mentioned aromatic ring-containing methacrylate (A), alkoxy group-containing acrylate (B) and hydroxy group-containing acrylate (C), respectively. It may be a methacrylate and a hydroxy group-containing methacrylate. However, since these polymerization components may impair the balance of the above-mentioned polymerization components (A) to (C), the corresponding aromatic ring-containing methacrylate (A), alkoxy group-containing acrylate (B), and hydroxy group-containing acrylate.
  • the proportion is 10% by mass or less, preferably 5% by mass or less, for example, 3% by mass or less, relative to (C). It is preferable that the aromatic ring-containing acrylate, the alkoxy group-containing methacrylate, and the hydroxy group-containing methacrylate are not included.
  • examples of the other polymerization component include a monomer represented by the following formula: CH 2 ⁇ C(R 1 )COOR 2 .
  • R 1 in the above formula is a hydrogen atom (H) or a methyl group (CH 3 ).
  • R 2 in the above formula is a linear, branched or cyclic hydrocarbon group having 1 to 20 carbon atoms (C1 to 20). From the viewpoint of imparting flexibility, it is preferable that R 2 contains an alkyl(meth)acrylate which is, for example, a C1-12, typically C1-10, preferably C2-8, for example C3-5 alkyl group.
  • alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate and tert-butyl (meth)acrylate.
  • the alkyl (meth)acrylate component is not preferable because it may impair the balance of the above-mentioned polymerization components (A) to (C). Therefore, when the alkyl (meth)acrylate component is included, it is considered appropriate that the amount of the polymerization component is about 10 parts by mass when the total amount of the polymerization component is 100 parts by mass.
  • the proportion of the alkyl (meth)acrylate component is typically about 5 parts by mass or less, for example, 3 parts by mass or less, and 1 part by mass or less, for example, a configuration that does not substantially include is more suitable.
  • an ultraviolet absorption monomer component having an ultraviolet absorption ability and having a copolymerizability with the above-mentioned polymerization components (A) to (D).
  • the crystalline lens has a property of not easily transmitting ultraviolet rays, whereas the soft intraocular lens can transmit ultraviolet rays, and thus there is a risk of damaging the retina. Therefore, by including an ultraviolet absorbing monomer component having an ultraviolet absorbing ability as the sub-monomer component, the ultraviolet absorbing ability can be imparted to the (meth)acrylate copolymer constituting the soft intraocular lens 1. This makes it possible to suppress damage to the retina and reduce the risk of UV-induced eye diseases such as macular degeneration and keratitis.
  • ultraviolet absorbing monomer means all monomers having a functional group having an ultraviolet absorbing ability.
  • the functional group having an ultraviolet absorbing ability means a group of functional atomic groups having an absorption spectrum in the ultraviolet region.
  • Such a functional group having an ultraviolet absorbing ability may be a generic term for an alkyl residue, a carboxylic acid residue, an alcohol residue, an amino residue, an acyl group, etc. of an ultraviolet absorbing compound which is widely used as an ultraviolet absorber.
  • the ultraviolet absorbing functional group broadly includes an atomic group obtained by removing a hydrogen atom from a carboxyl group, a hydroxyl group, an amino group or the like in an ultraviolet absorbing compound, an acyl group in the ultraviolet absorbing compound, or the like. More specifically, a benzotriazole-based monomer component, a benzophenone-based monomer component, a salicylic acid-based monomer component, and a cyanoacrylate-based monomer component can be preferably used as the ultraviolet absorbing monomer component.
  • the UV-absorbing monomer component is contained in a proportion of about 0.1 to 1 part by mass when the total amount of the polymerizing components is 100 parts by mass. This is because if the proportion of the UV-absorbing monomer component is too low than 0.1% by mass, the UV-absorbing ability of the soft intraocular lens 1 may be too low to function effectively. If the proportion of the ultraviolet absorbing monomer component is more than 1% by mass, the soft intraocular lens 1 may be discolored due to a change in physical properties or a change with time.
  • the ratio of the ultraviolet absorbing monomer component is typically about 0.15 to 0.7% by mass, and more preferably about 0.2 to 0.5% by mass.
  • the lens since the lens has a yellowish tint, it has the property of partially suppressing the transmission of the opposite color, blue light. Therefore, it is preferable that the (meth)acrylate copolymer disclosed herein is also colored with a yellow dye or a red dye to adjust the color vision.
  • a colorant a known azo compound, a pyrazole compound or the like which has copolymerizability with the above-mentioned (meth)acrylate monomer component and is used as a colorant for this kind of soft intraocular lens is used. It can be used as appropriate.
  • the blending amount of these can be appropriately determined from the relationship with the above-mentioned polymerization components. For example, it may be contained in an amount of about 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the polymerization component.
  • the compound used to form the (meth)acrylate copolymer include a polymerization initiator.
  • a radical polymerization initiator composed of benzoin ethers or amines can be preferably used.
  • a polymerization initiator represented by 2,2-azobisisobutyronitrile, azobisdimethylvaleronitrile, benzoin, methylorthobenzoylbenzoate, or the like can be used.
  • the blending amount of these can be appropriately determined from the relationship with the above-mentioned polymerization components. For example, it may be contained in an amount of about 0.01 to 1 part by mass with respect to 100 parts by mass of the polymerizing component.
  • the method for obtaining the soft intraocular lens material is not particularly limited, and as a method for synthesizing a known (meth)acrylate copolymer, such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method, or a photopolymerization method.
  • a known polymerization method can be appropriately adopted.
  • a solution polymerization method in which a mixed monomer composition in which the above-mentioned polymerization components are appropriately mixed is polymerized can be preferably used.
  • a conventionally known manufacturing method such as a so-called cast molding method or lathe cutting method can be appropriately adopted.
  • a mold having a cavity (void) corresponding to the shape of the target soft intraocular lens 1 is prepared, and the raw material composition (raw material monomer solution) is supplied to the mold.
  • the raw material composition may be polymerized in the mold.
  • the mixed monomer composition corresponding to the composition of the target soft intraocular lens 1 is polymerized into a sheet shape (including a plate shape, etc.), and the polymerized sheet-shaped soft eye is formed.
  • the inner lens material may be cut into a soft intraocular lens having a desired shape. The cutting may be performed by freezing a sheet-shaped soft intraocular lens material.
  • the soft intraocular lens material disclosed herein has significantly reduced the occurrence of glistenings. For example, when artificially generating glistenings, the number and area of bright spots observed with a microscope are reduced. For example, as conditions for artificially generating glistenings, it is possible to keep the temperature at 60° C. in a wet state and then change the temperature to 25° C.
  • the wet state can be understood as a state in which the soft intraocular lens material is immersed in pure water.
  • glistening can be generated in a shorter time.
  • ultrapure water having an electric resistivity of 15 M ⁇ cm or more at 25° C. or an electric conductivity of 0.058 ⁇ S/cm or less is preferably used as pure water.
  • the holding time of the lens material in a high temperature environment of 60° C. can be about 2 hours, for example. As a result, water can be sufficiently absorbed while the polymer structure of the lens material is relaxed. In other words, the lens material can absorb supersaturated water.
  • this soft intraocular lens material is changed (cooled) to 25°C.
  • the polymer structure of the lens material is shrunk (the water absorption rate is lowered), and the water left in the polymer structure in the room temperature environment is aggregated in the minute gaps.
  • the lens material after cooling may be kept at 25° C. for about 24 hours. As a result, glistening can be acceleratedly generated.
  • the temperature conditions of “60° C.” and “25° C.”, which are the temperature conditions for the occurrence of glistening can be allowed a fluctuation or error of about ⁇ 2° C.
  • the entire lens material becomes cloudy or that bright spots are significantly generated over the entire lens material.
  • the number of bright spots of glistening confirmed by microscope observation for the conventional soft intraocular lens material can be, for example, 1000/mm 2 or more per unit area. Also, for example, the area of glistenings found in lens material having a diameter of about 6 mm can be greater than 0.05 mm 2 .
  • the combination of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) preferably suppresses glistening.
  • the number of bright spots of glistening per unit area by microscopic observation is suppressed to 400 pieces/mm 2 or less.
  • the area of glistenings is confirmed lens material having a diameter of about 6 mm, 0.05 mm 2 or less (e.g., 0.045 mm 2 or less, more 0.043 mm 2 or less) may be.
  • the soft intraocular lens material disclosed herein can be moderately flexibly adjusted without being too soft or too hard, that is, the international rubber hardness is 40 or more and 60 or less, which is optimal for folding the lens.
  • Such appropriate flexibility is also realized by an appropriate combination of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B).
  • the soft intraocular lens material disclosed herein while maintaining an appropriate flexibility, the occurrence of glistening is suppressed, the flexibility and glistening resistance are compatible, a new soft eye. It can be said that it is an inner lens material.
  • the soft intraocular lens 1 disclosed herein is composed of the (meth)acrylate copolymer having the above-mentioned configuration, the foldable flexibility and the elastic restoring force are the same as those of the conventional soft intraocular lens. It is preferably provided similarly to the lens.
  • the soft intraocular lens 1 disclosed herein is further reduced in occurrence of glistenings. From this, it can be said that the soft intraocular lens 1 has excellent affinity in the living environment. Further, the soft intraocular lens 1 is restored to its original shape when it is folded into a small size and when it is unfolded as soon as the folding force is released.
  • the soft intraocular lens 1 disclosed herein can be particularly suitably used as a soft intraocular lens in which the soft intraocular lens 1 is slightly bent by a dedicated insertion tool and inserted into the eye.
  • the technology disclosed herein can preferably provide this intraocular lens insertion system.
  • the intraocular lens insertion system includes the soft intraocular lens 1 described above and an injector.
  • the injector has, for example, a syringe-type injector body and a plunger.
  • the width of the internal space of the injector main body is reduced on the distal end side, and the soft intraocular lens 1 is configured to be folded in the width direction by passing through the internal space.
  • the soft intraocular lens 1 is preset inside the injector body in a flat state.
  • the soft intraocular lens 1 is bent so as to be folded, and the soft intraocular lens 1 is discharged to the outside through the discharge port at the tip of the injector together with the lubricant.
  • the injector may be composed of, for example, only the cartridge portion that is the portion from the housing portion that houses the soft intraocular lens 1 to the ejection port that ejects the soft intraocular lens 1 in the injector body.
  • the cartridge unit may be configured to be attachable to and detachable from the injector body, for example.
  • the following polymerizable monomers were prepared in a composition shown in Table 1, and a polymerization initiator was added and mixed uniformly to obtain a raw material composition for intraocular lenses of Examples 1 to 19 and Comparative Examples 1 to 13. I prepared things.
  • the raw material compositions of Examples 11 to 13 and Comparative Examples 11 and 13 contained two kinds of alkoxy group-containing acrylates (B), but the raw material compositions of the other examples were aromatic ring-containing methacrylate (A). , An alkoxy group-containing acrylate (B), a hydrophilic monomer (C), and a crosslinkable monomer (D).
  • this raw material composition was poured into a mold provided with a biconvex lens type piloty and a mold (flat plate), respectively, and polymerized under the conditions of 60° C. for 12 hours and 100° C. for 12 hours.
  • a soft lens molded body for glistening evaluation of each example was obtained.
  • the flat polymer was cut into a 1.5 cm square and a thickness of 1 mm to obtain an intraocular lens material for the evaluation of international rubber hardness in each example.
  • BZMA benzyl methacrylate
  • EGPEMA ethylene glycol monophenyl ether methacrylate
  • EGPEA ethylene glycol monophenyl ether acrylate
  • PEMA phenylethyl methacrylate
  • PEA phenylethyl acrylate
  • HBA 4-Hydroxybutyl acrylate
  • HEA 2-Hydroxyethyl acrylate
  • HEMA 2-Hydroxyethyl methacrylate
  • BDDA 1,4-butanediol diacrylate
  • NDDA 1,9-nonanediol diacrylate
  • TMPTA trimethylolpropane triacrylate
  • IRHD measurement The international rubber hardness (IRHD) of the intraocular lens material for evaluation (1.5 cm square) of each example was measured.
  • GS-680sel type A durometer specified in JIS K6253:2012 manufactured by Teclock Co., Ltd. is used, and it is subjected to the M method (medium size micro size test) of ISO48:2010 (JIS K6253-2).
  • the plane hardness was measured accordingly.
  • the lower limit of IRHD is "30", and hardness less than IRHD30 cannot be measured.
  • the soft lens molded body of each example After the glistening is generated in an accelerated manner, the number and area of bright spots of the glistening are calculated by performing microscope observation and image analysis, and the glistening characteristics are calculated. evaluated.
  • the soft lens molded body has an optical portion with a diameter of about 6 mm and a thickness of 0.6 mm, and is provided with a pair of supporting portions on the periphery thereof.
  • the acceleration condition for the occurrence of glistening is that the soft lens molding of each example is immersed in ultrapure water, held for 2 hours in a heating environment of 60° C., and then allowed to stand at room temperature for 24 hours. did.
  • a stereo microscope SMZ1500 manufactured by Nikon Corporation and a digital camera DS-Vi1 manufactured by Nikon Corporation are used, and these are controlled by using image integration software NIS-Elements, thereby providing a soft evaluation.
  • a plane image (800 ⁇ 600 pixels) of the lens molded body was acquired.
  • the observation field of view was set so that the bent portions of the support portion of the soft lens molded body were diagonally arranged in the image, and the optical portion was largely arranged over the entire surface of the image.
  • ImageJ developed by National Institutes of Health (NIH) was used for image analysis.
  • the number of bright spots and the area of bright spots were calculated by image analysis according to the following procedure.
  • the Adjust (correction) submenu by adjusting the upper limit of the Threshold level to 255 and the lower limit to 40, a binary value that converts pixels in the threshold range of the image into black and other pixels into white was made.
  • the image of the soft lens molded body is binarized so that the outline and the bright points are approximately black and the other portions are white.
  • using the ellipse area selection tool button in the Image (image) menu select the area (inside the contour) of the optical part of the binarized soft lens molding image to create an analysis area (Create Selection) did.
  • the number and area of objects (black dots indicating bright spots) in the selected area were measured.
  • the number of particles (particle count) calculated from this submenu was taken as the number of bright spots, and the total particle area (total particle area) was taken as the total area of bright spots.
  • Examples 1 to 10 include BZMA which is an aromatic ring-containing methacrylic monomer, MEA which is an aromatic ring-free alkoxy group-containing acrylic monomer, and HBA which is a hydrophilic acrylic monomer.
  • BZMA which is an aromatic ring-containing methacrylic monomer
  • MEA which is an aromatic ring-free alkoxy group-containing acrylic monomer
  • HBA which is a hydrophilic acrylic monomer.
  • BDDA which is a crosslinkable acrylic monomer
  • the main component (maximum component) of the main polymerization components is BZMA, which is an aromatic ring-containing monomer, or MEA, which is a non-aromatic ring-containing monomer. did it.
  • the main polymerization components are an aromatic ring-containing methacrylic monomer and an aromatic ring-free alkoxy group-containing acrylic monomer
  • the glistening does not always involve hydrophilic monomers. It was confirmed that the higher the content of, the more the content was not reduced. It can be seen that the preferable combination of the aromatic ring-containing methacrylic monomer and the aromatic ring-free alkoxy group-containing acrylic monomer also contributes to the reduction of glistening.
  • Comparative Example 1 when the total amount of the polymerization components is 100 parts by mass and the MEA which is an acrylic monomer in the main polymerization components is less than 30 parts by mass, IRHD exceeds 60. It was confirmed that the polymer may become too hard in some cases. It can be said that it is desirable to account for 30 parts by mass or more of the softer acrylic component among the main polymerization components.
  • Example 11 the HBA used as the hydrophilic monomer is changed to HEA in Example 11 and HEMA in Comparative Example 2.
  • HEA which is the same acrylic monomer component as HBA
  • Comparative Example 2 the result was that glistening abnormally occurred. This is considered to be because the presence of the hydrophilic methacrylic monomer component on the surface of the polymer did not favorably form the hydrophobic surface of BZMA and could not successfully suppress glistening.
  • crosslinkable monomer NDDA having a large number of carbon atoms is used in Example 12 and trifunctional TMPTA is used in Example 13 in place of BDDA having a small number of carbon atoms and bifunctional.
  • TMPTA trifunctional TMPTA
  • Example 13 in place of BDDA having a small number of carbon atoms and bifunctional.
  • crosslinkable monomer even when the number of functional groups, the length of the monomer chain, and the like were changed, the flexibility of the soft intraocular lens material and the effect of suppressing glistening were not significantly changed. It has been found that various kinds of crosslinkable monomers can be used in combination with the above-mentioned polymerizable monomers without being limited in kind.
  • Example 14 in place of MEA, which is the aromatic ring-free alkoxy group-containing acrylic monomer, in Example 14, the same aromatic ring-free alkoxy group-containing acrylic monomer EEEA was used.
  • EEEA which is the same methacrylates
  • BA and BMA which are alkyl group-containing (meth)acrylate monomers
  • Example 18 to 19 and Comparative Examples 7 to 8 instead of BZMA, which is an aromatic ring-containing methacrylate, in Example 18 and Comparative Example 7, EGPEMA and EGPEA were used, and in Example 19 and Comparative Example 8, PEMA and PEA are used respectively.
  • EPGEMA or PEMA which is an aromatic ring-containing methacrylate
  • PEMA and PEA are used respectively.
  • EPGEMA or PEMA which is an aromatic ring-containing methacrylate
  • a soft intraocular lens material having both excellent physical properties and a glistening suppressing effect was obtained.
  • Comparative Examples 7 to 8 using these acrylates EGPEA and PEA the polymers obtained were too soft, and the IRHD could not be measured. It has been found that when the aromatic ring-containing monomer to be combined with the aromatic ring-free alkoxy group-containing acrylic monomer is not a methacrylic monomer, it becomes difficult to handle the soft intraocular lens material.
  • the IRHD tends to be a low value of less than 40, and although the flexibility of the soft intraocular lens is high, it takes time to recover the shape of the folded lens in the capsule, or the shape cannot be recovered completely. It was confirmed that there was a risk. At the same time, there is a concern that the lens is likely to be damaged when it is ejected from the injector.
  • the soft intraocular lens of Comparative Example 12 although IRHD was appropriate at 40, it was found that glistening was likely to occur and physical properties and low glistening properties were not compatible.
  • a soft intraocular lens material is constituted by combining an aromatic ring-containing methacrylic monomer, an aromatic ring-free alkoxy group-containing acrylic monomer, and a hydrophilic acrylic monomer. was confirmed to be essential.
  • Intraocular lens 10 Optical part 20

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are a soft intraocular lens material and a soft intraocular lens, which achieve flexibility and shape recoverability as well as reduction of glistening. The soft intraocular lens material is obtained through polymerization of polymerizable components having polymerizability, the polymerizable components including: an aromatic ring-containing methacrylate (A); an alkoxy group-containing acrylate (B); a hydroxy group-containing acrylate (C); and a cross-linkable (meth)acrylate (D). With respect to 100 parts by mass of the polymerizable components, the proportion of the alkoxy group-containing acrylate (B) is 30 parts by mass or more. The proportion of the aromatic ring-containing methacrylate (A) preferably 40-52 parts by mass. The proportion of the alkoxy group-containing acrylate (B) is preferably 35-46 parts by mass.

Description

軟質眼内レンズ材料および軟質眼内レンズSoft intraocular lens material and soft intraocular lens
 本発明は、軟質眼内レンズ材料および軟質眼内レンズに関する。
 本出願は2018年12月28日に出願された国際出願PCT/JP2018/048610号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a soft intraocular lens material and a soft intraocular lens.
This application claims priority based on International Application PCT/JP2018/048610 filed December 28, 2018, the entire content of which is incorporated herein by reference.
 白内障の治療方法の一つとして、従来より、白く濁った水晶体を水晶体嚢から摘出し、水晶体に代わって屈折力を担う眼内レンズ(Intraocular Lens:IOL)を嚢内に挿入する方法が広く採用されている。眼内レンズは、屈折力を発現する光学部と、光学部の位置を嚢内で固定する支持部とを備えている。眼内レンズの挿入に際しては、例えば、光学部と支持部とが一体成型された1ピース型の眼内レンズを用意し、インジェクタと呼ばれる挿入器具を使用して、眼内レンズを折り畳んだ状態で眼内に挿入するようにしている。挿入された眼内レンズは、嚢内で再び元の形状に復元し、支持部が嚢に押し当てられることで嚢内での位置が安定される。この眼内レンズは、水晶体嚢の切開創を可能な限り小さくするため、高い柔軟性と形状回復性とを備えることが望まれている(例えば特許文献1~3参照)。 As one of the treatment methods for cataract, conventionally, a method in which a cloudy white crystalline lens is removed from the lens capsule and an intraocular lens (IOL) that plays a role of refractive power instead of the crystalline lens is inserted into the capsule has been widely adopted. ing. The intraocular lens includes an optical section that exhibits a refractive power and a support section that fixes the position of the optical section inside the capsule. When inserting the intraocular lens, for example, prepare a one-piece intraocular lens in which the optical part and the support part are integrally molded, and use the insertion instrument called an injector to fold the intraocular lens. It is designed to be inserted into the eye. The inserted intraocular lens restores its original shape again in the capsule, and the support portion is pressed against the capsule to stabilize the position in the capsule. This intraocular lens is desired to have high flexibility and shape recovery in order to make the incision of the lens capsule as small as possible (see Patent Documents 1 to 3, for example).
国際公開第2018/021455号公報International Publication No. 2018/021455 日本国特許出願公開平成11第56998号公報Japanese Patent Application Publication No. Heisei 11 56998 国際公開第2016/121804号公報International Publication No. 2016/121804
 このような折り畳み可能な軟質眼内レンズの構成材料として、シリコーン、疎水性(メタ)アクリレートおよび親水性(メタ)アクリレート等からなる軟質樹脂が汎用されている。なかでも、術後に後発白内障の発生事例が少ないことから、疎水性の(メタ)アクリレートが広く採用されている。ここで、疎水性(メタ)アクリレートは水分との馴染みが悪く、レンズ内のわずかな水分が点状に凝集して輝いて見えるグリスニングと呼ばれる現象が生じやすい。そのため、軟質眼内レンズ材料の作製には、疎水性(メタ)アクリレートと親水性(メタ)アクリレートとの併用が欠かせない。しかしながら、従来の軟質眼内レンズ材料には、上記の柔軟性および形状回復性と、グリスニングの低減との両立に改善の余地があった。また、これらを両立できる軟質眼内レンズ材料の多様性も潜在的に求められている。 As a constituent material of such a foldable soft intraocular lens, a soft resin made of silicone, hydrophobic (meth)acrylate, hydrophilic (meth)acrylate or the like is widely used. Among them, hydrophobic (meth)acrylates are widely used because there are few cases of post-cataract occurrence after surgery. Here, the hydrophobic (meth)acrylate is not well compatible with water, and a phenomenon called glistening, in which a small amount of water in the lens aggregates into dots and appears bright, tends to occur. Therefore, the combined use of a hydrophobic (meth)acrylate and a hydrophilic (meth)acrylate is indispensable for producing a soft intraocular lens material. However, the conventional soft intraocular lens material has room for improvement in compatibility between the above-mentioned flexibility and shape recoverability and reduction of glistening. There is also a potential demand for a variety of soft intraocular lens materials that can satisfy both of these requirements.
 本出願は、上記従来技術の事情に鑑み、柔軟性および形状回復性と、グリスニングの低減とが両立された新しい軟質眼内レンズ材料を提供することを目的とする。また他の観点から、本出願は、この軟質眼内レンズ材料を用いた軟質眼内レンズを提供することを目的とする。 In view of the circumstances of the above-mentioned conventional technology, the present application aims to provide a new soft intraocular lens material that has both flexibility and shape recovery and reduction of glistening. From another point of view, this application aims at providing a soft intraocular lens using this soft intraocular lens material.
 ここに開示される技術によって提供される軟質眼内レンズ材料は、重合性を有する重合成分を重合させてなり、上記重合成分は、芳香族環含有メタクリレート(A)と、アルコキシ基含有アクリレート(B)と、ヒドロキシ基含有アクリレート(C)と、架橋性(メタ)アクリレート(D)と、を含む。そして、上記重合成分を100質量部としたとき、上記アルコキシ基含有アクリレート(B)は、30質量部以上である。 The soft intraocular lens material provided by the technique disclosed herein is obtained by polymerizing a polymerizable component having polymerizability, and the polymerizable component includes an aromatic ring-containing methacrylate (A) and an alkoxy group-containing acrylate (B). ), a hydroxy group-containing acrylate (C), and a crosslinkable (meth)acrylate (D). And when the said polymeric component is 100 mass parts, the said acrylate (B) containing an alkoxy group is 30 mass parts or more.
 本発明者らが従来の軟質眼内レンズ材料について詳細に検証した結果、以下の事象を確認した。すなわち、従来の軟質眼内レンズ材料は、グリスニングの発生を抑制するために親水性の(メタ)アクリレートを十分に含むようにしている。しかしながら、親水性の(メタ)アクリレートは、ポリマーの空隙に房水が凝集しにくい環境を作り出すことでグリスニングの発生を抑制し得るものの、重合体の硬度を高めるという背反を生じる。また、軟質眼内レンズ材料の親水性が高まると空気中の水分を吸収してレンズの形状や物性が変化し易くなり、これにより眼内レンズの取扱い性が困難になっていた。なお、疎水性(メタ)アクリレートの中にも、公知のポリメチルメタクリレート(PMMA)等のようにグリスニングの発生を抑制し得るモノマー成分は存在し得るものの、このようなモノマー成分を用いて得られるポリマーは、レンズを構成した場合に折り畳みができない程の硬い材料であり使用することは困難である。 As a result of the detailed examination by the inventors of the conventional soft intraocular lens material, the following phenomenon was confirmed. That is, the conventional soft intraocular lens material is made to sufficiently contain the hydrophilic (meth)acrylate in order to suppress the occurrence of glistening. However, the hydrophilic (meth)acrylate can suppress the occurrence of glistening by creating an environment in which the aqueous humor does not easily aggregate in the voids of the polymer, but has the trade-off of increasing the hardness of the polymer. Further, when the hydrophilicity of the soft intraocular lens material is increased, moisture in the air is absorbed and the shape and physical properties of the lens are likely to change, which makes the handling of the intraocular lens difficult. Although there may be a monomer component capable of suppressing the occurrence of glistenings such as known polymethylmethacrylate (PMMA) in the hydrophobic (meth)acrylate, it can be obtained by using such a monomer component. The polymer obtained is a hard material that cannot be folded when the lens is constructed, and is difficult to use.
 そこで、本発明者らが鋭意検討した結果、芳香族環を備えるメタクリレートモノマーと芳香族環を備えないアルコキシアクリレートとを組み合わせて用いることで、軟質眼内レンズ材料に適した柔軟性および形状回復性(以下、単に「物理的特性」という場合がある。)を損ねることなくグリスニングの抑制効果が発現され、親水性モノマーの機能の一部を代替できることを見出し、本願発明を完成するに至った。ただし、十分な柔軟性を確保する点においては、メタクリレート成分に比較して軟質なアルコキシ基含有アクリレート(B)は30質量部以上含まれることが肝要となる。これにより、柔軟性および形状回復性と、グリスニングの低減とが両立された軟質眼内レンズ材料が提供される。 Therefore, as a result of intensive studies by the present inventors, by using a methacrylate monomer having an aromatic ring and an alkoxy acrylate having no aromatic ring in combination, flexibility and shape recoverability suitable for a soft intraocular lens material are obtained. (Hereinafter, it may be simply referred to as "physical property".) It was found that the effect of suppressing glistening is exhibited without impairing the physical properties, and a part of the function of the hydrophilic monomer can be substituted, and the present invention has been completed. .. However, in terms of ensuring sufficient flexibility, it is important that the alkoxy group-containing acrylate (B), which is softer than the methacrylate component, is contained in an amount of 30 parts by mass or more. This provides a soft intraocular lens material that has both flexibility and shape recoverability and reduced glistening.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記重合成分を100質量部としたとき、上記芳香族環含有メタクリレート(A)は、40質量部以上52質量部以下である。このような構成によって、軟質眼内レンズ材料の折り畳みに適した柔軟性を損ねることなく、グリスニングの発生を好適に抑制することができる。 In a preferred embodiment of the soft intraocular lens material disclosed herein, the aromatic ring-containing methacrylate (A) is 40 parts by mass or more and 52 parts by mass or less, when the polymerization component is 100 parts by mass. With such a configuration, it is possible to preferably suppress the occurrence of glistening without impairing the flexibility suitable for folding the soft intraocular lens material.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記重合成分を100質量部としたとき、上記アルコキシ基含有アクリレート(B)は、35質量部以上46質量部以下である。このような構成によって、柔軟性および形状回復性と、グリスニングの低減とを好適に両立することができる。 In a preferred embodiment of the soft intraocular lens material disclosed herein, the alkoxy group-containing acrylate (B) is 35 parts by mass or more and 46 parts by mass or less when the polymerization component is 100 parts by mass. With such a configuration, it is possible to favorably achieve both flexibility and shape recoverability and reduction of glistening.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記重合成分を100質量部としたとき、上記ヒドロキシ基含有アクリレート(C)は、8質量部以上12質量部以下である。親水性アクリレートの使用をこのように少量に抑制することにより、軟質眼内レンズの柔軟性および形状回復性の低下をよりよく低減することができる。 In a preferred embodiment of the soft intraocular lens material disclosed herein, the hydroxy group-containing acrylate (C) is 8 parts by mass or more and 12 parts by mass or less when the polymerization component is 100 parts by mass. By suppressing the use of the hydrophilic acrylate in such a small amount, it is possible to better reduce the deterioration of the flexibility and shape recovery of the soft intraocular lens.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記重合成分を100質量部としたとき、上記芳香族環含有メタクリレート(A)と、上記アルコキシ基含有アクリレート(B)との総量は、75質量部以上90質量部以下である。ここに開示される軟質眼内レンズ材料に因ると、芳香族環含有メタクリレートと非芳香族環含有アルコキシアクリレートとの組み合わせにより、グリスニングの低減に有効な骨格を有する重合体が形成されると考えられる。その結果、硬質な親水性(メタ)アクリレートの含有を抑制した状態でグリスニングを低減でき、物理的特性とグリスニングの低減とを高いレベルでバランスすることができる。 In a preferred embodiment of the soft intraocular lens material disclosed herein, the total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) is 100 parts by mass of the polymerization component. , 75 parts by mass or more and 90 parts by mass or less. According to the soft intraocular lens material disclosed herein, a combination of an aromatic ring-containing methacrylate and a non-aromatic ring-containing alkoxyacrylate forms a polymer having a skeleton effective for reducing glistening. Conceivable. As a result, it is possible to reduce the glistening in a state where the content of the hard hydrophilic (meth)acrylate is suppressed, and it is possible to balance the physical characteristics and the reduction of the glistening at a high level.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記芳香族環含有メタクリレート(A)は、以下の一般式(1):
Figure JPOXMLDOC01-appb-C000004
ただし、式中、R1は炭素数1~8の直鎖状または分岐鎖状のアルキレン基であり、Xは元素が存在しないか酸素原子であることを示す;で表されるメタクリレートを含む。これにより、軟質眼内レンズ材料の高い屈折率と柔軟性とを実現しながら、上記効果をより良く高めることができる。
In a preferred embodiment of the soft intraocular lens material disclosed herein, the aromatic ring-containing methacrylate (A) has the following general formula (1):
Figure JPOXMLDOC01-appb-C000004
However, in the formula, R1 is a linear or branched alkylene group having 1 to 8 carbon atoms, and X indicates that the element is absent or is an oxygen atom; This makes it possible to enhance the above effects while realizing the high refractive index and flexibility of the soft intraocular lens material.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記アルコキシ基含有アクリレート(B)は、以下の一般式(2):
Figure JPOXMLDOC01-appb-C000005
ただし、式中、R2はメチル基またはエチル基であり、nは1~4の整数である;で表されるアクリレートを含む。これにより、上記効果をより良く高めることができる。
In one preferable embodiment of the soft intraocular lens material disclosed herein, the alkoxy group-containing acrylate (B) has the following general formula (2):
Figure JPOXMLDOC01-appb-C000005
However, in the formula, R2 is a methyl group or an ethyl group, and n is an integer of 1 to 4; As a result, the above effect can be enhanced.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記ヒドロキシ基含有アクリレート(C)は、以下の一般式(3):
Figure JPOXMLDOC01-appb-C000006
ただし、式中、R3は炭素数1~8の直鎖状または分岐鎖状のアルキレン基である;で表されるアクリレートを含む。これにより、上記効果をより良く高めることができる。
In a preferred embodiment of the soft intraocular lens material disclosed herein, the hydroxy group-containing acrylate (C) has the following general formula (3):
Figure JPOXMLDOC01-appb-C000006
However, in the formula, R3 is a linear or branched alkylene group having 1 to 8 carbon atoms; As a result, the above effect can be enhanced.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記重合成分は、紫外線吸収能を備えるモノマーを含む。これにより、紫外線に由来する眼病発生のリスクを低減することができる軟質眼内レンズが提供される。 In a preferred embodiment of the soft intraocular lens material disclosed herein, the above-mentioned polymerization component contains a monomer having an ultraviolet absorbing ability. Thereby, a soft intraocular lens that can reduce the risk of the occurrence of eye diseases caused by ultraviolet rays is provided.
 ここに開示される軟質眼内レンズ材料の好ましい一態様において、上記重合成分は、黄色着色能を備えるモノマーを含む。これにより、青色光の透過を一部抑制し、水晶体による視覚と違和感のない自然な視覚を提供することができる。 In a preferred embodiment of the soft intraocular lens material disclosed herein, the above-mentioned polymerization component contains a monomer having a yellow coloring ability. As a result, it is possible to partially suppress the transmission of blue light and provide natural vision that is not unnatural to the vision of the crystalline lens.
 以上の軟質眼内レンズ材料は、優れた柔軟性とグリスニング抑制効果とを備えている。このような特性は、眼球内に埋植されたのち房水に浸漬された状態が長期にわたって維持される軟質眼内レンズを構成する材料として用いると特に好適である。そこで、他の側面において、ここに開示される技術は、上記のいずれかに記載された軟質眼内レンズ材料を用いて作製された、軟質眼内レンズを提供する。 The above soft intraocular lens materials have excellent flexibility and a glistening suppression effect. Such characteristics are particularly suitable for use as a material for forming a soft intraocular lens that is kept implanted in the eyeball and then immersed in aqueous humor for a long period of time. Therefore, in another aspect, the technology disclosed herein provides a soft intraocular lens manufactured using the soft intraocular lens material described in any of the above.
一実施形態に係る1ピース型の眼内レンズの構成を模式的に説明する(a)平面図と(b)側面図である。It is a (a) top view and a (b) side view which explain typically composition of a 1 piece type intraocular lens concerning one embodiment.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(軟質眼内レンズの組成等)以外の事柄であって、本発明の実施に必要な事柄(軟質眼内レンズの基本的な形態等)は、本明細書に記載された発明の実施についての教示と、出願時の技術常識とに基づいて、当業者は理解することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、数値範囲を示す「A~B」との表記は、特に断りのない限り、「A以上B以下」を意味するものとする。 A preferred embodiment of the present invention will be described below. Incidentally, matters other than matters particularly referred to in the present specification (composition of the soft intraocular lens, etc.), and matters necessary for carrying out the present invention (basic form of the soft intraocular lens, etc.), A person skilled in the art can understand based on the teaching for carrying out the invention described in this specification and the common general knowledge as of the filing. The present invention can be carried out based on the contents disclosed in this specification and the common general technical knowledge in the field. Further, in the following drawings, members/sites having the same operation may be described with the same reference numerals, and redundant description may be omitted or simplified. Further, the notation “A to B” indicating a numerical range means “A or more and B or less” unless otherwise specified.
 図1は、一実施形態に係る1ピース型の軟質眼内レンズの構成を説明する図である。図1の(a)は平面図であり、(b)は側面図である。軟質眼内レンズ1は、所定の屈折力を有する光学部10と、光学部10を眼内で支持するための一対の支持部20とを備えている。光学部10と支持部20とは、同一の原料樹脂組成物から一体的に成形されている。 FIG. 1 is a diagram illustrating a configuration of a one-piece type soft intraocular lens according to an embodiment. 1A is a plan view and FIG. 1B is a side view. The soft intraocular lens 1 includes an optical section 10 having a predetermined refractive power, and a pair of support sections 20 for supporting the optical section 10 in the eye. The optical part 10 and the support part 20 are integrally molded from the same raw material resin composition.
 光学部10は、例えば平面視で、概ね直径Dが5.5mm~7mm程度、典型的には6mm程度の円形を有している。光学部10の直径D方向に直交する方向を、厚み方向という。また、光学部10は、側面視で、例えば両面に(厚み方向の両側に)向けて突出した両凸レンズ形状を有している。光学部10の厚みは、光学部10を構成する材料の屈折率と、光学部10に求められる所望の屈折力等に基づいて決定することができる。光学部10の厚みは、円形の光学部10の中心Oにおいて、例えば、300μm以上、一例として400μm以上であってよい。また、光学部10の厚みは、例えば1000μm以下程度であり、例えば900μm以下、一例として700μm以下、600μm程度(±10%程度)であってよい。しかしながら、光学部10の形状はこれに限定されない。光学部10の形状は、例えば、平面視で楕円形や類楕円形であってよい。また、光学部10の形状は、例えば側面視で、一方の面のみが突出し、他方の面は平坦な平凸レンズ形状であってよく、あるいは、一方の面が突出し、他方の面は凹んだ凸メニスカスレンズ形状等であってもよい。 The optical unit 10 has, for example, a circular shape having a diameter D of about 5.5 mm to 7 mm, typically about 6 mm in a plan view. The direction orthogonal to the diameter D direction of the optical unit 10 is called the thickness direction. Further, the optical unit 10 has a biconvex lens shape that protrudes toward both sides (both sides in the thickness direction) in a side view. The thickness of the optical unit 10 can be determined based on the refractive index of the material forming the optical unit 10, the desired refractive power required for the optical unit 10, and the like. The thickness of the optical part 10 may be, for example, 300 μm or more, and 400 μm or more, for example, at the center O of the circular optical part 10. Further, the thickness of the optical unit 10 is, for example, about 1000 μm or less, and may be, for example, 900 μm or less, for example, 700 μm or less, 600 μm or so (about ±10%). However, the shape of the optical unit 10 is not limited to this. The shape of the optical unit 10 may be, for example, an elliptical shape or a similar elliptical shape in a plan view. The shape of the optical unit 10 may be, for example, a plano-convex lens shape in which only one surface protrudes and the other surface is flat in a side view, or one surface protrudes and the other surface has a concave convex shape. It may have a meniscus lens shape or the like.
 支持部20は、光学部10の周縁から外方に向けて突出するように形成されている。一対の支持部20は、光学部10の中心Oを対称軸として、点対照となるように光学部10に対して形成されている。支持部20は、一端が自由端のループ形状を有している。支持部20は、光学部10との接続部の近傍において、レンズ部の平面内で大きく屈曲した屈曲部20aをそれぞれ備えている。支持部20は、屈曲部20aにおいて、自由端部を中心Oに近づける方向にさらに屈曲可能に構成されている。一対の支持部20の自由端の間の距離Lは、例えば11.5mm~13.5mm程度であり、典型的には12mm~13mm程度である。しかしながら、支持部20の形状はこれに限定されない。光学部10および支持部20は、同一の材料によって構成されていてもよいし、異なる材料によって構成されていてもよい。ここに開示される軟質眼内レンズ1は、例えば、光学部10および支持部20がともに、同一の軟質眼内レンズ材料によって構成されていてもよい。 The support portion 20 is formed so as to project outward from the peripheral edge of the optical portion 10. The pair of support parts 20 are formed with respect to the optical part 10 so as to be point-symmetrical with the center O of the optical part 10 as an axis of symmetry. The support portion 20 has a loop shape with one end free. The supporting portion 20 includes, in the vicinity of the connecting portion with the optical portion 10, a bending portion 20a that is largely bent in the plane of the lens portion. The support portion 20 is configured to be further bendable in the bending portion 20a in a direction in which the free end portion approaches the center O. The distance L between the free ends of the pair of support portions 20 is, for example, about 11.5 mm to 13.5 mm, typically about 12 mm to 13 mm. However, the shape of the support portion 20 is not limited to this. The optical unit 10 and the support unit 20 may be made of the same material or may be made of different materials. In the soft intraocular lens 1 disclosed herein, for example, both the optical section 10 and the support section 20 may be made of the same soft intraocular lens material.
 この軟質眼内レンズ材料は、重合性を有する重合成分を重合させることで構成されている。軟質眼内レンズ材料を構成するための重合成分は、本質的に、芳香族環含有メタクリレート(A)と、アルコキシ基含有アクリレート(B)と、ヒドロキシ基含有アクリレート(C)と、架橋性(メタ)アクリレート(D)と、を含む。換言すれば、軟質眼内レンズ材料は、香族環含有メタクリレート(A)に対応するモノマー単位と、アルコキシ基含有アクリレート(B)に対応するモノマー単位と、ヒドロキシ基含有アクリレート(C)に対応するモノマー単位と、架橋性(メタ)アクリレート(D)に対応するモノマー単位とを含む、(メタ)アクリレート共重合体によって構成されている。 This soft intraocular lens material is composed by polymerizing a polymerizable component having polymerizability. The polymerization component for constituting the soft intraocular lens material is essentially an aromatic ring-containing methacrylate (A), an alkoxy group-containing acrylate (B), a hydroxy group-containing acrylate (C), and a crosslinkable (meth). ) Acrylate (D). In other words, the soft intraocular lens material corresponds to the monomer unit corresponding to the aromatic ring-containing methacrylate (A), the monomer unit corresponding to the alkoxy group-containing acrylate (B), and the hydroxy group-containing acrylate (C). It is composed of a (meth)acrylate copolymer containing a monomer unit and a monomer unit corresponding to the crosslinkable (meth)acrylate (D).
 なお、この明細書において「(メタ)アクリレート共重合体」とは、いわゆる「アクリル系ポリマー」と総称されているポリマーであり、一つの分子構造中に重合性不飽和二重結合を含む(メタ)アクリロイル基を少なくとも一つ有するモノマーに由来するモノマー単位(以下、(メタ)アクリレートモノマーという場合がある。)を含む重合物をいう。(メタ)アクリレート共重合体は、典型的には、一つの分子構造中に(メタ)アクリレートモノマーに由来するモノマー単位を合計で50質量%以上(好ましくは75質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上、例えば95質量%以上)の割合で含む重合体をいう。なお、「(メタ)アクリレート」とはアクリレートおよびメタクリレートを包括的に意味する用語である。以下、各重合成分について説明する。 In addition, in this specification, the “(meth)acrylate copolymer” is a polymer which is generally called a so-called “acrylic polymer”, and includes a polymerizable unsaturated double bond in one molecular structure (meth). ) A polymer containing a monomer unit derived from a monomer having at least one acryloyl group (hereinafter sometimes referred to as a (meth)acrylate monomer). The (meth)acrylate copolymer typically has a total of 50% by mass or more (preferably 75% by mass or more, more preferably 80% by mass) of monomer units derived from a (meth)acrylate monomer in one molecular structure. % Or more, particularly preferably 90% by mass or more, for example 95% by mass or more). In addition, "(meth)acrylate" is a term that comprehensively means acrylate and methacrylate. Hereinafter, each polymerization component will be described.
 本発明者らは、芳香族環含有メタクリレート(A)とアルコキシ基含有アクリレート(B)との併用が、適度な物理的特性とグリスニング抑制とを高度なレベルで両立する作用を有することを知見し、主たる重合成分として用いるようにしている。換言すれば、芳香族環含有メタクリレートモノマー(A)とアルコキシ基含有アクリレート(B)は、協働することで、適度な物理的特性とグリスニング抑制効果との両立に寄与する。このような機構の詳細は明らかではないものの、本発明者らのこれまでの検討によると、メタクリレート系の重合成分は、アクリレート系の重合成分よりも重合物の表面近傍で相対的に高濃度に存在し得ることが明らかとなっている(例えば、国際公開第2019/138952号参照)。また、一般に疎水性アクリル系ポリマーと呼ばれる重合物であっても、1%に満たない程度ではあるが吸水性を備えるものが多く、汎用の眼内レンズにおいてはこの僅かな吸水性に基づいてグリスニングが発生していると考えられる。これに対し、ここに開示される芳香族環含有メタクリレート(A)は高濃度に重合するとPMMAと類似した高い疎水性を発揮し得る。そのため、ここに開示される構成によると、表面近傍で芳香族環含有メタクリレート(A)が高濃度に重合して疎水性の表面を形成し、グリスニングの低減に効果的に寄与するものと考えられる。また、親水性を備え得るアルコキシ基含有アクリレート(B)やヒドロキシ基含有アクリレート(C)を重合物の中心近傍に相対的に高濃度に存在させることができ、重合物の表面におけるグリスニングの低減を抑制するとともに、重合物に良好な柔軟性および形状回復性を付与しているものと考えられる。 The present inventors have found that the combined use of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) has an effect of achieving both a high level of appropriate physical properties and suppression of glistening. However, it is used as a main polymerization component. In other words, the aromatic ring-containing methacrylate monomer (A) and the alkoxy group-containing acrylate (B) cooperate to contribute to achieving both appropriate physical properties and a glistening suppressing effect. Although details of such a mechanism are not clear, according to the studies conducted by the present inventors so far, the methacrylate-based polymerization component has a relatively high concentration in the vicinity of the surface of the polymerized product as compared with the acrylate-based polymerization component. It has been shown that it may exist (see, for example, WO 2019/138952). In addition, even a polymer generally called a hydrophobic acrylic polymer has many water-absorbing substances even if it is less than 1%, and a general-purpose intraocular lens is based on this slight water-absorbing property. It is considered that listening is occurring. In contrast, the aromatic ring-containing methacrylate (A) disclosed herein can exhibit high hydrophobicity similar to PMMA when polymerized at a high concentration. Therefore, according to the configuration disclosed herein, it is considered that the aromatic ring-containing methacrylate (A) is polymerized at a high concentration in the vicinity of the surface to form a hydrophobic surface, which effectively contributes to the reduction of glistening. To be Further, the alkoxy group-containing acrylate (B) and the hydroxy group-containing acrylate (C), which can have hydrophilicity, can be present in relatively high concentration in the vicinity of the center of the polymer, thereby reducing glistening on the surface of the polymer. It is believed that the polymer is imparted with good flexibility and shape recoverability while suppressing the above.
 重合性の芳香族環含有メタクリレート(A)としては、その構造中に少なくとも一つの芳香族炭化水素基を含む化合物を用いることができる。芳香族環を含有するメタクリレートモノマーは、重合体に眼内レンズの屈折率を高める機能を付与する。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、ビフェニル環、複素環などが挙げられる。複素環としては、モルホリン環、ピペリジン環、ピロリジン環、ピペラジン環などが挙げられる。芳香族環含有メタクリルモノマーとしては、例えば、具体的には、ベンジルメタクリレート、フェニルメタクリレート、o-フェニルフェノールメタクリレート、フェノキシメタクリレート、エチレングリコールフェニルエーテルメタクリレート、ジエチレングリコールフェニルエーテルメタクリレート、プロピレングリコールフェニルエーテルメタクリレート、エチレンオキサイド変性ノニルフェノールメタクリレート、エチレンオキサイド変性クレゾールメタクリレート、フェノールエチレンオキサイド変性メタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、メトキシベンジルメタクリレート、クロロベンジルメタクリレート、クレジルメタクリレート、ポリスチリルメタクリレート等のベンゼン環を有するもの;ヒドロキシエチル化β-ナフトールメタクリレート、2-ナフトエチルメタクリレート、2-(4-メトキシ-1-ナフトキシ)エチルメタクリレート等のナフタレン環を有するもの;ビフェニルメタクリレートなどのビフェニル環を有するもの等が挙げられる。これら芳香族環含有メタクリレートモノマーは、1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。(メタ)アクリレート共重合体に占める重合性芳香族環含有メタクリレートモノマーの割合は、これに限定されるものではないが、例えば、上記(A)~(D)の4種の重合成分の合計を100質量部としたとき、例えば、大凡35質量部以上とすることができ、約40質量部以上が好ましく、例えば約42質量部以上であってよい。芳香族環含有メタクリレートモノマー(A)の割合は、例えば、大凡55質量部以下とすることができ、52質量部以下が好ましく、例えば約50質量部以下であってよい。 As the polymerizable aromatic ring-containing methacrylate (A), a compound containing at least one aromatic hydrocarbon group in its structure can be used. The methacrylate monomer containing an aromatic ring imparts a function of increasing the refractive index of the intraocular lens to the polymer. Examples of the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, a biphenyl ring and a heterocycle. Examples of the heterocycle include a morpholine ring, a piperidine ring, a pyrrolidine ring and a piperazine ring. Specific examples of the aromatic ring-containing methacrylic monomer include benzyl methacrylate, phenyl methacrylate, o-phenylphenol methacrylate, phenoxy methacrylate, ethylene glycol phenyl ether methacrylate, diethylene glycol phenyl ether methacrylate, propylene glycol phenyl ether methacrylate, and ethylene oxide. Modified phenyl ring such as nonylphenol methacrylate, ethylene oxide modified cresol methacrylate, phenol ethylene oxide modified methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, methoxybenzyl methacrylate, chlorobenzyl methacrylate, cresyl methacrylate, and polystyryl methacrylate; hydroxy Examples thereof include those having a naphthalene ring such as ethylated β-naphthol methacrylate, 2-naphthoethyl methacrylate and 2-(4-methoxy-1-naphthoxy)ethyl methacrylate; those having a biphenyl ring such as biphenyl methacrylate. These aromatic ring-containing methacrylate monomers may be contained alone or in combination of two or more. The ratio of the polymerizable aromatic ring-containing methacrylate monomer in the (meth)acrylate copolymer is not limited to this, but for example, the ratio of the total of the four types of polymerization components (A) to (D) described above may be used. When it is 100 parts by mass, for example, it can be about 35 parts by mass or more, preferably about 40 parts by mass or more, and for example, about 42 parts by mass or more. The ratio of the aromatic ring-containing methacrylate monomer (A) can be, for example, about 55 parts by mass or less, preferably 52 parts by mass or less, and for example, about 50 parts by mass or less.
 ところで、芳香族環含有メタクリレートモノマーを単位として含む高分子は、芳香族環の大きな構造に由来して硬度が高くなる傾向があることが知られている。したがって、香環含有(メタ)アクリルモノマーは、ガラス転移点が相対的に低いメタクリレートモノマーであることがより好ましい。このような芳香族環含有メタクリレート(A)としては、なかでも以下の一般式(1):
Figure JPOXMLDOC01-appb-C000007
で示されるメタクリレートモノマーであることが好ましい。ただし、式中、R1は炭素数1~8の直鎖状または分岐鎖状のアルキレン基であり、Xは元素が存在しない(つまり単結合である)か酸素原子であることを示す。アルキレン基としては、例えば、具体的にはメチレン基、エチレン基、n-プロピレン基、イソプロピレン基、シクロプロピレン基、n-ブチレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、シクロブチレン基、n-ペンチレン基、1-メチル-n-ブチレン基、2-メチル-n-ブチレン基、3-メチル-n-ブチレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、1-エチル-n-プロピレン基、シクロペンチレン基、n-ヘキシレン基等であり得る。重合物の吸水性を低減する観点からは、Xは単結合であることがより好ましい。このようなメタクリレートモノマー成分のなかでも好適な一例として、ベンジルメタクリレート、フェニルエチルメタクリレート、エチレングリコールモノフェニルエーテルメタクリレート、ジエチレングリコールモノフェニルエーテルメタクリレート、テトラエチレングリコールモノフェニルエーテルメタクリレート等が挙げられる。
By the way, it is known that a polymer containing an aromatic ring-containing methacrylate monomer as a unit tends to have high hardness due to the large structure of the aromatic ring. Therefore, the aromatic ring-containing (meth)acrylic monomer is more preferably a methacrylate monomer having a relatively low glass transition point. As such an aromatic ring-containing methacrylate (A), among others, the following general formula (1):
Figure JPOXMLDOC01-appb-C000007
It is preferable that the methacrylate monomer is However, in the formula, R1 represents a linear or branched alkylene group having 1 to 8 carbon atoms, and X represents an element not present (that is, a single bond) or an oxygen atom. Specific examples of the alkylene group include methylene group, ethylene group, n-propylene group, isopropylene group, cyclopropylene group, n-butylene group, isobutylene group, s-butylene group, t-butylene group, cyclobutylene. Group, n-pentylene group, 1-methyl-n-butylene group, 2-methyl-n-butylene group, 3-methyl-n-butylene group, 1,1-dimethyl-n-propylene group, 1,2-dimethyl It may be -n-propylene group, 2,2-dimethyl-n-propylene group, 1-ethyl-n-propylene group, cyclopentylene group, n-hexylene group and the like. From the viewpoint of reducing the water absorption of the polymer, X is more preferably a single bond. Preferred examples of such a methacrylate monomer component include benzyl methacrylate, phenylethyl methacrylate, ethylene glycol monophenyl ether methacrylate, diethylene glycol monophenyl ether methacrylate, and tetraethylene glycol monophenyl ether methacrylate.
 アルコキシ基含有アクリレート(B)は、例えば、次式:CH=CHCOOR;で表されるアクリレートモノマー成分であって、Rが少なくとも一部にアルコキシ基を含む官能基および/または置換基であるモノマーである。アルコキシ基としては、例えば、炭素数が1~5(以下、単に「C1-5」のように示す。)やC1-4、典型的にはCやC、C等のアルコキシ基であるとよい。具体的には、メトキシ基、エトキシ基、プロポキシ基、t-ブトキシ基、ペンチルオキシ基、アリルオキシ基等およびこれらを一部に含む官能基が挙げられる。 The alkoxy group-containing acrylate (B) is, for example, an acrylate monomer component represented by the following formula: CH 2 ═CHCOOR 2 , wherein R 2 is a functional group and/or a substituent containing an alkoxy group at least in part. It is a monomer. The alkoxy group is, for example, an alkoxy group having 1 to 5 carbon atoms (hereinafter referred to simply as “C 1-5 ”) or C 1-4 , typically C 1 , C 2 , C 3 or the like. It is good to be a group. Specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, a pentyloxy group, an allyloxy group and the like, and a functional group partially containing these.
 このようなアルコキシ基含有アクリレートとしては、例えば、具体的には、エチレングリコールモノメチルエーテルアクリレート、エチレングリコールモノエチルエーテルアクリレート、エチレングリコールモノブチルアクリレート、ジエチレングリコールモノメチルエーテルアクリレート、ジエチレングリコールモノエチルエーテルアクリレート、ジエチレングリコールモノブチルエーテルアクリレート、ジプロピレングルコールメチルエーテルアクリレート、ジプロピレングルコールエチルエーテルアクリレート、トリエチレングリコールモノメチルエーテルアクリレート、トリエチレングリコールモノエチルエーテルアクリレート、テトラエチレングリコールモノメチルエーテルアクリレート、テトラエチレングリコールモノエチルエーテルアクリレート、ポリエチレングリコールモノメチルエーテルアクリレート、ポリエチレングリコールモノエチルエーテルアクリレート、2-(2-エチルヘキサオキシ)エチルアクリレート等のアルコキシ基含有アクリレートが挙げられる。好ましくは、アルコキシ基含有アクリレート(B)は、例えば、以下の一般式(2)で表されるアクリレートを含むことが好ましい。 Specific examples of such an alkoxy group-containing acrylate include ethylene glycol monomethyl ether acrylate, ethylene glycol monoethyl ether acrylate, ethylene glycol monobutyl acrylate, diethylene glycol monomethyl ether acrylate, diethylene glycol monoethyl ether acrylate, and diethylene glycol monobutyl ether. Acrylate, dipropylene glycol methyl ether acrylate, dipropylene glycol ethyl ether acrylate, triethylene glycol monomethyl ether acrylate, triethylene glycol monoethyl ether acrylate, tetraethylene glycol monomethyl ether acrylate, tetraethylene glycol monoethyl ether acrylate, polyethylene glycol Examples thereof include alkoxy group-containing acrylates such as monomethyl ether acrylate, polyethylene glycol monoethyl ether acrylate, and 2-(2-ethylhexaoxy)ethyl acrylate. Preferably, the alkoxy group-containing acrylate (B) preferably contains, for example, an acrylate represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
ただし、式中、R2はメチル基またはエチル基であり、nは1~4の整数である。このような化合物としては、一例として、エトキシ基を1~4つ含有するエトキシ基モノメチルエーテルアクリレート、エトキシ基を1~4つ含有するエトキシ基モノエチルエーテルアクリレート等が挙げられる。中でも、エチレングリコールモノメチルエーテルアクリレート(2-メトキシエチルアクリレート:MEA)、エチレングリコールモノエチルエーテルアクリレート(2-エトキシエチルアクリレート:EEA)、ジエチレングリコールモノメチルエーテルアクリレート(2-(2-エトキシエトキシ)メチルアクリレート:EEMA)、ジエチレングリコールモノエチルエーテルアクリレート(2-(2-エトキシエトキシ)エメチルアクリレート:EEEA)の使用が好ましい。これらは、いずれか1種を単独で含んでもよいし、2種以上を組み合わせて含むようにしてもよい。重合成分に占めるアルコキシ基含有アクリレート(B)の割合は、例えば、上記(A)~(D)の4種の重合成分の合計を100質量部としたとき、大凡30質量部以上とすることができ、約35質量部以上が好ましく、例えば約38質量部以上であってよい。アルコキシ基含有アクリレート(B)の割合は、例えば、大凡50質量部以下とすることができ、46質量部以下が好ましく、例えば約40質量部以下であってよい。
Figure JPOXMLDOC01-appb-C000008
However, in the formula, R2 is a methyl group or an ethyl group, and n is an integer of 1 to 4. Examples of such compounds include ethoxy group monomethyl ether acrylate containing 1 to 4 ethoxy groups, ethoxy group monoethyl ether acrylate containing 1 to 4 ethoxy groups, and the like. Among them, ethylene glycol monomethyl ether acrylate (2-methoxyethyl acrylate: MEA), ethylene glycol monoethyl ether acrylate (2-ethoxyethyl acrylate: EEA), diethylene glycol monomethyl ether acrylate (2-(2-ethoxyethoxy)methyl acrylate: EEMA ) And diethylene glycol monoethyl ether acrylate (2-(2-ethoxyethoxy)emethyl acrylate: EEEA). These may include any one kind alone, or may include two or more kinds in combination. The proportion of the alkoxy group-containing acrylate (B) in the polymerization components may be about 30 parts by mass or more, for example, when the total of the four kinds of polymerization components (A) to (D) is 100 parts by mass. Yes, and preferably about 35 parts by weight or more, for example about 38 parts by weight or more. The proportion of the alkoxy group-containing acrylate (B) can be, for example, about 50 parts by mass or less, preferably 46 parts by mass or less, and for example, about 40 parts by mass or less.
 ヒドロキシ基含有アクリレート(C)は、(メタ)アクリレート共重合体の親水性を高め、共重合体の空隙に房水が凝集しにくい環境を作り出し、グリスニングの発生を抑制する機能を有する。ヒドロキシ基含有アクリレート(C)としては、以下の一般式(3):
Figure JPOXMLDOC01-appb-C000009
で表される化合物を含むことが好ましい。ただし、式中、R3は炭素数1~8の直鎖状または分岐鎖状のアルキレン基である。このような重合成分としては、一例として、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、6-ヒドロキシヘキシルアクリレート、2,3-ジヒドロキシプロピルアクリレート、8-ヒドロキシオクチルアクリレート等が挙げられる。中でも、2-ヒドロキシエチルアクリレート(HEA)、4-ヒドロキシブチルアクリレート(HBA)等の使用が好ましい。これらは、いずれか1種を単独で含んでもよいし、2種以上を組み合わせて含むようにしてもよい。
The hydroxy group-containing acrylate (C) has a function of increasing the hydrophilicity of the (meth)acrylate copolymer, creating an environment in which aqueous humor does not easily aggregate in the voids of the copolymer, and suppressing generation of glistenings. The hydroxy group-containing acrylate (C) has the following general formula (3):
Figure JPOXMLDOC01-appb-C000009
It is preferable to include a compound represented by However, in the formula, R3 is a linear or branched alkylene group having 1 to 8 carbon atoms. Examples of such a polymerization component include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 6-hydroxyhexyl acrylate, 2,3-dihydroxypropyl acrylate, 8-hydroxyoctyl acrylate and the like. Can be mentioned. Among them, 2-hydroxyethyl acrylate (HEA), 4-hydroxybutyl acrylate (HBA) and the like are preferably used. These may include any one kind alone, or may include two or more kinds in combination.
 (メタ)アクリレート共重合体に占めるヒドロキシ基含有アクリレート(C)の割合は厳密には制限されない。例えば、眼内レンズのグリスニングを好適に抑制するとの観点からは、上記(A)~(D)の4種の重合成分の合計を100質量部としたとき、ヒドロキシ基含有アクリレート(C)の割合は、例えば、大凡5質量部以上とすることができ、約8質量部以上が好ましく、例えば約9質量部以上であってよい。しかしながら、ここに開示される技術においては、上記の芳香族環含有メタクリレートモノマー(A)とアルコキシ基含有アクリレート(B)とが、より緩和された条件でグリスニングの発生を抑制することから、眼内レンズの形状や含水量等の物性を大きく左右しうるヒドロキシ基含有アクリレート(C)の割合は、少ない方が好ましい。かかる観点から、ヒドロキシ基含有アクリレート(C)の割合は、例えば、大凡15質量部以下(15質量部未満)とすることができ、12質量部以下や11.5質量部以下が好ましく、例えば約11質量部以下であってよい。 The ratio of the hydroxy group-containing acrylate (C) in the (meth)acrylate copolymer is not strictly limited. For example, from the viewpoint of suitably suppressing the glistening of the intraocular lens, when the total of the four types of polymerization components (A) to (D) is 100 parts by mass, the hydroxy group-containing acrylate (C) The ratio can be, for example, about 5 parts by mass or more, preferably about 8 parts by mass or more, and for example, about 9 parts by mass or more. However, in the technique disclosed herein, since the aromatic ring-containing methacrylate monomer (A) and the alkoxy group-containing acrylate (B) suppress the occurrence of glistening under more relaxed conditions, It is preferable that the proportion of the hydroxy group-containing acrylate (C), which can greatly affect the physical properties such as the shape and water content of the inner lens, is small. From such a viewpoint, the proportion of the hydroxy group-containing acrylate (C) can be, for example, approximately 15 parts by mass or less (less than 15 parts by mass), preferably 12 parts by mass or less or 11.5 parts by mass or less, for example, about It may be 11 parts by mass or less.
 架橋性(メタ)アクリレート(D)としては、2官能(メタ)アクリレートや、3官能以上の多官能(メタ)アクリレートであってよい。一般的なポリマー設計において架橋点を導入する目的では、3官能~6官能のモノマーが汎用されている。しかしながら、官能基が増えるほど重合物の硬度は高くなり得る。軟質眼内レンズ材料において架橋点を導入する場合は、適切な硬度とともに高い柔軟性を備えることが求められることから、2官能または3官能の(メタ)アクリレートを用いることが好ましい。また、架橋性(メタ)アクリレート(D)は、4官能以上の多官能(メタ)アクリレートは含まない構成であってよい。 The crosslinkable (meth)acrylate (D) may be a bifunctional (meth)acrylate or a trifunctional or higher functional poly(meth)acrylate. In the general polymer design, trifunctional to hexafunctional monomers are generally used for the purpose of introducing a crosslinking point. However, the more functional groups, the higher the hardness of the polymer. When introducing a crosslinking point in a soft intraocular lens material, it is preferable to use a bifunctional or trifunctional (meth)acrylate since it is required to have appropriate flexibility and high flexibility. Further, the crosslinkable (meth)acrylate (D) may have a configuration not containing a polyfunctional (meth)acrylate having four or more functional groups.
 このような2官能(メタ)アクリレートとしては、例えば、具体的には、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどが挙げられる。3官能(メタ)アクリレートとしては、例えば、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。なかでも、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートのいずれかを用いることが好ましい。なお、これに限定されるものではないが、架橋性(メタ)アクリレート(D)の総量を100質量%としたとき、架橋性アクリルモノマー成分が約50質量%以上であることが好ましく、約60質量%以上がより好ましく、例えば約70質量%以上、約80質量%以上、約90質量%以上が好ましく、例えば実質的に100質量%であってよい。これにより、軟質眼内レンズ材料の物性を安定して向上させることができる。 Specific examples of such a bifunctional (meth)acrylate include 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol diacrylate. (Meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth) ) Acrylate, tetramethylene glycol di(meth)acrylate, ethylene oxide modified bisphenol A di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, etc. Can be mentioned. Specific examples of the trifunctional (meth)acrylate include trimethylolpropane tri(meth)acrylate, tris(2-acryloyloxyethyl)isocyanurate, and ethylene oxide-modified trimethylolpropane tri(meth)acrylate. To be Among them, it is preferable to use any one of 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. Although not limited to this, when the total amount of the crosslinkable (meth)acrylate (D) is 100% by mass, the crosslinkable acrylic monomer component is preferably about 50% by mass or more, and about 60% by mass. It is more preferably at least 70% by weight, for example, at least about 70% by weight, at least about 80% by weight, preferably at least about 90% by weight, for example, substantially 100% by weight. Thereby, the physical properties of the soft intraocular lens material can be stably improved.
 (メタ)アクリレート共重合体に占める架橋性(メタ)アクリレート(D)の割合は厳密には制限されない。例えば、軟質眼内レンズのグリスニングを好適に抑制するとの観点からは、上記(A)~(D)の4種の重合成分の合計を100質量部としたとき、架橋性(メタ)アクリレート(D)の割合は、例えば、大凡1質量部以上とすることができ、約3質量部以上が好ましく、例えば約4質量部以上であってよい。しかしながら、架橋性(メタ)アクリレート(D)の量が過剰となると、軟質眼内レンズ材料の硬度が高くなりすぎる虞があるために好ましくない。かかる点において、架橋性(メタ)アクリレート(D)の割合は、10質量部以下であってよく、10質量部以下が好ましく、8質量部以下がより好ましく、例えば5質量部以下であってよい。 The ratio of the crosslinkable (meth)acrylate (D) in the (meth)acrylate copolymer is not strictly limited. For example, from the viewpoint of suitably suppressing the glistening of the soft intraocular lens, when the total of the four types of polymerization components (A) to (D) is 100 parts by mass, the crosslinkable (meth)acrylate ( The ratio of D) can be, for example, about 1 part by mass or more, preferably about 3 parts by mass or more, and for example, about 4 parts by mass or more. However, an excessive amount of the crosslinkable (meth)acrylate (D) is not preferable because the hardness of the soft intraocular lens material may be too high. In this respect, the proportion of the crosslinkable (meth)acrylate (D) may be 10 parts by mass or less, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and for example, 5 parts by mass or less. ..
 上述の芳香族環含有メタクリレート(A)、アルコキシ基含有アクリレート(B)、ヒドロキシ基含有アクリレート(C)および架橋性(メタ)アクリレート(D)において、アクリルモノマーの合計のモル数Mに対するメタクリルモノマーの合計のモル数MをM/Mとしたとき、これに限定されるものではないが、M/Mの値は、0.2以上が好ましく、0.4以上がより好ましく、例えば0.5以上であるとよい。また、M/Mの値は、1.2以下が好ましく、1.1以下がより好ましく、例えば1以下であるとよい。 In the above-mentioned aromatic ring-containing methacrylate (A), alkoxy group-containing acrylate (B), hydroxy group-containing acrylate (C) and crosslinkable (meth)acrylate (D), a methacrylic monomer with respect to the total number M A of acrylic monomers. When the total number of moles M M of M M /M A is not limited to this, the value of M M /M A is preferably 0.2 or more, more preferably 0.4 or more. For example, it may be 0.5 or more. The value of M M / M A is preferably 1.2 or less, more preferably 1.1 or less, for example, it may be 1 or less.
 また、芳香族環含有メタクリレート(A)とアルコキシ基含有アクリレート(B)の組合せの効果をよりよく発揮する観点からは、上記(A)~(D)の4種の重合成分の合計を100質量部としたとき、芳香族環含有メタクリレート(A)とアルコキシ基含有アクリレート(B)との総量は、75質量部以上であってよく、80質量部以上が適切であり、81質量部以上や、82質量部以上、83質量部以上や、85質量部以上であってよい。換言すると、ヒドロキシ基含有アクリレート(C)と架橋性(メタ)アクリレート(D)との総量は、25質量部以下であってよく、20質量部以下が適切であり、19質量部以下や、18質量部以下、17質量部以下や、15質量部以下であってよい。 Further, from the viewpoint of better exerting the effect of the combination of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B), the total amount of the four types of polymerization components (A) to (D) is 100% by mass. The total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) may be 75 parts by mass or more, 80 parts by mass or more is appropriate, 81 parts by mass or more, It may be 82 parts by mass or more, 83 parts by mass or more, or 85 parts by mass or more. In other words, the total amount of the hydroxy group-containing acrylate (C) and the crosslinkable (meth)acrylate (D) may be 25 parts by mass or less, 20 parts by mass or less is appropriate, 19 parts by mass or less, or 18 It may be less than or equal to 17 parts by mass, or less than or equal to 15 parts by mass.
 しかしながら、親水性モノマー成分や架橋性モノマー成分の含有を考慮すると、芳香族環含有メタクリレート(A)とアルコキシ基含有アクリレート(B)との総量は、90質量部以下、例えば89質量部以下や、88質量部以下程度に留めることが好ましい。換言すると、ヒドロキシ基含有アクリレート(C)と架橋性(メタ)アクリレート(D)との総量は、10質量部以上、例えば11質量部以上や、12質量部以上であってよい。これにより、よりシンプルな構成の軟質眼内レンズ材料によって、物理的特性と低グリスニング特性とが高度なレベルで両立された軟質眼内レンズを実現することができる。 However, considering the content of the hydrophilic monomer component or the crosslinkable monomer component, the total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) is 90 parts by mass or less, for example, 89 parts by mass or less, It is preferable to keep the amount to about 88 parts by mass or less. In other words, the total amount of the hydroxy group-containing acrylate (C) and the crosslinkable (meth)acrylate (D) may be 10 parts by mass or more, for example, 11 parts by mass or more, or 12 parts by mass or more. Accordingly, the soft intraocular lens material having a simpler configuration makes it possible to realize a soft intraocular lens in which physical properties and low glistening properties are compatible at a high level.
 また、ここに開示される技術の本質を損なわない範囲において、軟質眼内レンズ材料を構成する(メタ)アクリレート共重合体は、上記以外の構成単位に対応する重合成分を含むことができる。 Further, the (meth)acrylate copolymer constituting the soft intraocular lens material may include a polymerization component corresponding to a constitutional unit other than the above, as long as the essence of the technology disclosed herein is not impaired.
 その他の重合成分としては、例えば、上述の芳香族環含有メタクリレート(A)、アルコキシ基含有アクリレート(B)、およびヒドロキシ基含有アクリレート(C)にそれぞれ対応する、芳香族環含有アクリレート、アルコキシ基含有メタクリレート、およびヒドロキシ基含有メタクリレートであり得る。しかしながら、これらの重合成分は、上記(A)~(C)の重合成分のバランスを損ない得るため、対応する芳香族環含有メタクリレート(A)、アルコキシ基含有アクリレート(B)、およびヒドロキシ基含有アクリレート(C)に対してそれぞれ10質量%以下、好ましくは5質量%以下、例えば3質量%以下の割合とすることが好ましい。芳香族環含有アクリレート、アルコキシ基含有メタクリレート、およびヒドロキシ基含有メタクリレートは含まない構成であることが好ましい。 As other polymerization components, for example, aromatic ring-containing acrylates and alkoxy group-containing acrylates corresponding to the above-mentioned aromatic ring-containing methacrylate (A), alkoxy group-containing acrylate (B) and hydroxy group-containing acrylate (C), respectively. It may be a methacrylate and a hydroxy group-containing methacrylate. However, since these polymerization components may impair the balance of the above-mentioned polymerization components (A) to (C), the corresponding aromatic ring-containing methacrylate (A), alkoxy group-containing acrylate (B), and hydroxy group-containing acrylate. It is preferable that the proportion is 10% by mass or less, preferably 5% by mass or less, for example, 3% by mass or less, relative to (C). It is preferable that the aromatic ring-containing acrylate, the alkoxy group-containing methacrylate, and the hydroxy group-containing methacrylate are not included.
 さらに、その他の重合成分としては、例えば、次式:CH=C(R)COOR;で表されるモノマーが挙げられる。ここで、上式中のRは、水素原子(H)またはメチル基(CH)である。また、上式中のRは炭素数1~20(C1~20)の直鎖状、分岐鎖状、または環状の炭化水素基である。柔軟性付与の観点から、Rは、例えばC1~12、典型的にはC1~10、好ましくはC2~8、例えばC3~5のアルキル基であるアルキル(メタ)アクリレートを含むことが好ましい。このようなアルキル(メタ)アクリレートとしては、例えば、具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、tert-ペンチル(メタ)アクリレ-ト、ヘキシル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の直鎖状、分岐鎖状、および環状のアルキル(メタ)アクリレートが挙げられる。これらアルキル(メタ)アクリレートは、1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。 Furthermore, examples of the other polymerization component include a monomer represented by the following formula: CH 2 ═C(R 1 )COOR 2 . Here, R 1 in the above formula is a hydrogen atom (H) or a methyl group (CH 3 ). R 2 in the above formula is a linear, branched or cyclic hydrocarbon group having 1 to 20 carbon atoms (C1 to 20). From the viewpoint of imparting flexibility, it is preferable that R 2 contains an alkyl(meth)acrylate which is, for example, a C1-12, typically C1-10, preferably C2-8, for example C3-5 alkyl group. Specific examples of such alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate and tert-butyl (meth)acrylate. Acrylate, isobutyl (meth)acrylate, n-pentyl (meth)acrylate, tert-pentyl (meth)acrylate, hexyl (meth)acrylate, 2-methylbutyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth) Linear such as acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, stearyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate , Branched chain, and cyclic alkyl (meth)acrylates. These alkyl (meth)acrylates may be contained alone or in combination of two or more.
 アルキル(メタ)アクリレート成分の過剰な含有は、上記重合成分(A)~(C)のバランスを損ない得るために好ましくない。したがって、アルキル(メタ)アクリレート成分を含む場合は、重合成分の総量を100質量部としたとき10質量部程度の割合で含まれることが適切と考えられる。アルキル(メタ)アクリレート成分の割合は、典型的には5質量部以下程度、例えば3質量部以下、1質量部以下、例えば実質的に含まない構成がより好適である。 Excessive inclusion of the alkyl (meth)acrylate component is not preferable because it may impair the balance of the above-mentioned polymerization components (A) to (C). Therefore, when the alkyl (meth)acrylate component is included, it is considered appropriate that the amount of the polymerization component is about 10 parts by mass when the total amount of the polymerization component is 100 parts by mass. The proportion of the alkyl (meth)acrylate component is typically about 5 parts by mass or less, for example, 3 parts by mass or less, and 1 part by mass or less, for example, a configuration that does not substantially include is more suitable.
 また、その他の重合成分として、紫外線吸収能を有し、上記の重合成分(A)~(D)に対する共重合性を有する紫外線吸収性モノマー成分を含むことができる。水晶体は紫外線を透過させ難い性質を有するのに対し、軟質眼内レンズは紫外線を透過し得るため、網膜を損傷する危険性がある。そこで、副モノマー成分として、紫外線吸収能を有する紫外線吸収性モノマー成分を含むことで、軟質眼内レンズ1を構成する(メタ)アクリレート共重合体に対し、紫外線吸収能を付与することができる。これにより、網膜の損傷を抑制したり、また、黄斑変性症や角膜炎等といった紫外線に由来する眼病が発生するリスクを低減することができる。なお、「紫外線吸収性モノマー」とは、紫外線吸収能を有する官能基を有するモノマー全般を意味する。また、紫外線吸収能を有する官能基としては、紫外線領域に吸収スペクトルを有する一群の機能原子団を意味する。このような紫外線吸収能を有する官能基は、広く紫外線吸収剤として用いられる紫外線吸収性化合物のアルキル残基やカルボン酸残基、アルコール残基、アミノ残基、アシル基などの総称であり得る。一例では、紫外線吸収性官能基としては、広く紫外線吸収性化合物中のカルボキシル基や水酸基、アミノ基などから水素原子を除いた原子団や紫外線吸収性化合物中のアシル基等を包含する。より具体的には、紫外線吸収性モノマー成分としては、ベンゾトリアゾール系モノマー成分、ベンゾフェノン系モノマー成分、サリチル酸系モノマー成分、シアノアクリレート系モノマー成分を好ましく用いることができる。 Further, as another polymerization component, it is possible to include an ultraviolet absorption monomer component having an ultraviolet absorption ability and having a copolymerizability with the above-mentioned polymerization components (A) to (D). The crystalline lens has a property of not easily transmitting ultraviolet rays, whereas the soft intraocular lens can transmit ultraviolet rays, and thus there is a risk of damaging the retina. Therefore, by including an ultraviolet absorbing monomer component having an ultraviolet absorbing ability as the sub-monomer component, the ultraviolet absorbing ability can be imparted to the (meth)acrylate copolymer constituting the soft intraocular lens 1. This makes it possible to suppress damage to the retina and reduce the risk of UV-induced eye diseases such as macular degeneration and keratitis. In addition, "ultraviolet absorbing monomer" means all monomers having a functional group having an ultraviolet absorbing ability. Further, the functional group having an ultraviolet absorbing ability means a group of functional atomic groups having an absorption spectrum in the ultraviolet region. Such a functional group having an ultraviolet absorbing ability may be a generic term for an alkyl residue, a carboxylic acid residue, an alcohol residue, an amino residue, an acyl group, etc. of an ultraviolet absorbing compound which is widely used as an ultraviolet absorber. In one example, the ultraviolet absorbing functional group broadly includes an atomic group obtained by removing a hydrogen atom from a carboxyl group, a hydroxyl group, an amino group or the like in an ultraviolet absorbing compound, an acyl group in the ultraviolet absorbing compound, or the like. More specifically, a benzotriazole-based monomer component, a benzophenone-based monomer component, a salicylic acid-based monomer component, and a cyanoacrylate-based monomer component can be preferably used as the ultraviolet absorbing monomer component.
 紫外線吸収性モノマー成分は、重合成分の総量を100質量部としたとき0.1~1質量部程度の割合で含まれることが適切と考えられる。紫外線吸収性モノマー成分の割合が0.1質量%よりも少なすぎると、上記の軟質眼内レンズ1の紫外線吸収能が低くなりすぎて有効に機能しない可能性があるからである。また、紫外線吸収性モノマー成分の割合が1質量%よりも多すぎると、上記の軟質眼内レンズ1が物性変化や経時変化等により変色する可能性があるためである。紫外線吸収性モノマー成分の割合は、典型的には0.15~0.7質量%程度、例えば0.2~0.5質量%程度がより好適である。 It is considered appropriate that the UV-absorbing monomer component is contained in a proportion of about 0.1 to 1 part by mass when the total amount of the polymerizing components is 100 parts by mass. This is because if the proportion of the UV-absorbing monomer component is too low than 0.1% by mass, the UV-absorbing ability of the soft intraocular lens 1 may be too low to function effectively. If the proportion of the ultraviolet absorbing monomer component is more than 1% by mass, the soft intraocular lens 1 may be discolored due to a change in physical properties or a change with time. The ratio of the ultraviolet absorbing monomer component is typically about 0.15 to 0.7% by mass, and more preferably about 0.2 to 0.5% by mass.
 また、水晶体は黄色味を帯びているため、反対色である青色光の透過を一部抑制する性質を有する。したがって、ここに開示される(メタ)アクリレート共重合体についても黄色系色素や赤色系色素等により着色されて、色覚調整が施されていることが好ましい。このような着色剤としては、上記の(メタ)アクリレートモノマー成分に対する共重合性を有し、この種の軟質眼内レンズの着色剤として使用されている公知のアゾ系化合物、ピラゾール系化合物等を適宜使用することができる。これらは、上記の重合成分との関係から適宜配合量を決定することができる。例えば、重合成分100質量部に対して、約0.001~0.1質量部程度の範囲で含むことができる。 Also, since the lens has a yellowish tint, it has the property of partially suppressing the transmission of the opposite color, blue light. Therefore, it is preferable that the (meth)acrylate copolymer disclosed herein is also colored with a yellow dye or a red dye to adjust the color vision. As such a colorant, a known azo compound, a pyrazole compound or the like which has copolymerizability with the above-mentioned (meth)acrylate monomer component and is used as a colorant for this kind of soft intraocular lens is used. It can be used as appropriate. The blending amount of these can be appropriately determined from the relationship with the above-mentioned polymerization components. For example, it may be contained in an amount of about 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the polymerization component.
 (メタ)アクリレート共重合体を構成するために用いるその他の化合物としては、例えば、重合開始剤が挙げられる。重合開始剤としては、例えば、ベンゾインエーテル類やアミン類からなるラジカル重合開始剤を好ましく用いることができる。一例として、具体的には、2,2-アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ベンゾイン、メチルオルソベンゾイルベンゾエート等に代表される重合開始剤を用いることができる。これらは、上記の重合成分との関係から適宜配合量を決定することができる。例えば、重合成分100質量部に対して、約0.01~1質量部程度の範囲で含むことができる。 Other examples of the compound used to form the (meth)acrylate copolymer include a polymerization initiator. As the polymerization initiator, for example, a radical polymerization initiator composed of benzoin ethers or amines can be preferably used. As an example, specifically, a polymerization initiator represented by 2,2-azobisisobutyronitrile, azobisdimethylvaleronitrile, benzoin, methylorthobenzoylbenzoate, or the like can be used. The blending amount of these can be appropriately determined from the relationship with the above-mentioned polymerization components. For example, it may be contained in an amount of about 0.01 to 1 part by mass with respect to 100 parts by mass of the polymerizing component.
 軟質眼内レンズ材料を得る方法は特に限定されず、溶液重合法、エマルション重合法、バルク重合法、懸濁重合法、光重合法等の、公知の(メタ)アクリレート共重合体の合成手法として知られている各種の重合方法を適宜採用することができる。中でも、例えば、上記重合成分が適宜配合された混合モノマー組成物を重合させる、溶液重合法を好ましく用いることができる。また、軟質眼内レンズ1の製造には、いわゆるキャストモールド製法や旋盤切削法(lathe cutting)等の従来公知の製造方法を適宜採用することができる。例えば、キャストモールド製法では、具体的には、目的の軟質眼内レンズ1の形状に対応したキャビティ(空隙)を備える鋳型を用意し、この鋳型に原料組成物(原料モノマー溶液)を供給して、鋳型内で原料組成物を重合させるとよい。例えば、切削法では、具体的には、目的の軟質眼内レンズ1の組成に対応した混合モノマー組成物をシート状(板状等を含む。)に重合させ、重合されたシート状の軟質眼内レンズ材料を切削することで所望の形状の軟質眼内レンズに加工するとよい。切削は、シート状の軟質眼内レンズ材料を凍結して実施するとよい。 The method for obtaining the soft intraocular lens material is not particularly limited, and as a method for synthesizing a known (meth)acrylate copolymer, such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method, or a photopolymerization method. Various known polymerization methods can be appropriately adopted. Among them, for example, a solution polymerization method in which a mixed monomer composition in which the above-mentioned polymerization components are appropriately mixed is polymerized can be preferably used. For manufacturing the soft intraocular lens 1, a conventionally known manufacturing method such as a so-called cast molding method or lathe cutting method can be appropriately adopted. For example, in the cast mold manufacturing method, specifically, a mold having a cavity (void) corresponding to the shape of the target soft intraocular lens 1 is prepared, and the raw material composition (raw material monomer solution) is supplied to the mold. The raw material composition may be polymerized in the mold. For example, in the cutting method, specifically, the mixed monomer composition corresponding to the composition of the target soft intraocular lens 1 is polymerized into a sheet shape (including a plate shape, etc.), and the polymerized sheet-shaped soft eye is formed. The inner lens material may be cut into a soft intraocular lens having a desired shape. The cutting may be performed by freezing a sheet-shaped soft intraocular lens material.
 ここに開示される軟質眼内レンズ材料は、グリスニングの発生が顕著に低減されている。例えば、人工的にグリスニングを発生させた場合、顕微鏡で観察される輝点の数およびその面積が、低減されている。例えば、人工的にグリスニングを発生させる条件としては、湿潤状態で60℃に保持したのち25℃にまで温度変化させることが挙げられる。 The soft intraocular lens material disclosed herein has significantly reduced the occurrence of glistenings. For example, when artificially generating glistenings, the number and area of bright spots observed with a microscope are reduced. For example, as conditions for artificially generating glistenings, it is possible to keep the temperature at 60° C. in a wet state and then change the temperature to 25° C.
 湿潤状態とは、例えば、軟質眼内レンズ材料を純水に浸漬させた状態として把握することができる。軟質眼内レンズ材料を生理食塩水等ではなく純水に浸漬させることで、グリスニングをより短時間で発生させることができる。本明細書では、純水として、25℃における電気抵抗率が15MΩ・cm以上、あるいは、電気伝導率が0.058μS/cm以下、の超純水を好ましく採用している。レンズ材料の60℃の高温環境での保持時間は、例えば約2時間を目安とすることができる。これにより、レンズ材料のポリマー構造を弛緩させた状態で水分を十分に吸収させることができる。言い換えれば、レンズ材料に過飽和の水分を吸水させることができる。 The wet state can be understood as a state in which the soft intraocular lens material is immersed in pure water. By dipping the soft intraocular lens material in pure water instead of physiological saline or the like, glistening can be generated in a shorter time. In the present specification, ultrapure water having an electric resistivity of 15 MΩ·cm or more at 25° C. or an electric conductivity of 0.058 μS/cm or less is preferably used as pure water. The holding time of the lens material in a high temperature environment of 60° C. can be about 2 hours, for example. As a result, water can be sufficiently absorbed while the polymer structure of the lens material is relaxed. In other words, the lens material can absorb supersaturated water.
 その後、この軟質眼内レンズ材料を25℃にまで温度変化(冷却)させる。このことにより、レンズ材料のポリマー構造を収縮させて(吸水率を低下させて)、室温環境でポリマー構造に取り残された水分を微小な間隙に凝集させる。冷却後のポリマー構造とグリスニングの発生状態とを安定させるために、冷却後のレンズ材料は25℃で約24時間保持するとよい。このことにより、グリスニングを促進的に発生させることができる。
 なお、上記のグリスニング発生のための温度条件である「60℃」および「25℃」との温度は、±2℃程度の変動または誤差は許容され得る。
Then, the temperature of this soft intraocular lens material is changed (cooled) to 25°C. As a result, the polymer structure of the lens material is shrunk (the water absorption rate is lowered), and the water left in the polymer structure in the room temperature environment is aggregated in the minute gaps. In order to stabilize the polymer structure after cooling and the state of occurrence of glistening, the lens material after cooling may be kept at 25° C. for about 24 hours. As a result, glistening can be acceleratedly generated.
It should be noted that the temperature conditions of “60° C.” and “25° C.”, which are the temperature conditions for the occurrence of glistening, can be allowed a fluctuation or error of about ±2° C.
 このとき、従来の軟質眼内レンズ材料は、レンズ材料の全体が白濁したり、レンズ材料の全体にわたって輝点の顕著な発生が確認される。従来の軟質眼内レンズ材料について顕微鏡観察で確認されるグリスニングの輝点の数は、例えば、単位面積当たり1000個/mm以上となり得る。また例えば、直径約6mmのレンズ材料に確認されるグリスニングの面積は、0.05mm超過となり得る。これに対し、ここに開示される軟質眼内レンズ材料は、親水性アクリレートに加えて、芳香族環含有メタクリレート(A)およびアルコキシ基含有アクリレート(B)の組合せがグリスニングを好適に抑制する。その結果、顕微鏡観察による単位面積当たりのグリスニングの輝点の数が、400個/mm以下に抑制される。また例えば、直径約6mmのレンズ材料に確認されるグリスニングの面積は、0.05mm以下(例えば、0.045mm以下、さらには0.043mm以下)となり得る。 At this time, in the conventional soft intraocular lens material, it is confirmed that the entire lens material becomes cloudy or that bright spots are significantly generated over the entire lens material. The number of bright spots of glistening confirmed by microscope observation for the conventional soft intraocular lens material can be, for example, 1000/mm 2 or more per unit area. Also, for example, the area of glistenings found in lens material having a diameter of about 6 mm can be greater than 0.05 mm 2 . On the other hand, in the soft intraocular lens material disclosed herein, in addition to the hydrophilic acrylate, the combination of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) preferably suppresses glistening. As a result, the number of bright spots of glistening per unit area by microscopic observation is suppressed to 400 pieces/mm 2 or less. Further, for example, the area of glistenings is confirmed lens material having a diameter of about 6 mm, 0.05 mm 2 or less (e.g., 0.045 mm 2 or less, more 0.043 mm 2 or less) may be.
 併せて、ここに開示される軟質眼内レンズ材料は、国際ゴム硬さがレンズの折畳みに最適な40以上60以下と、柔らかすぎず硬すぎずに適度に柔軟に調整され得る。このような適切な柔軟性も、芳香族環含有メタクリレート(A)およびアルコキシ基含有アクリレート(B)の適切な組合せによって実現されている。これにより、ここに開示される軟質眼内レンズ材料は、適度な柔軟性を維持しながら、グリスニングの発生が抑制されている、柔軟性と耐グリスニング特性とが両立された、新しい軟質眼内レンズ材料であるといえる。 In addition, the soft intraocular lens material disclosed herein can be moderately flexibly adjusted without being too soft or too hard, that is, the international rubber hardness is 40 or more and 60 or less, which is optimal for folding the lens. Such appropriate flexibility is also realized by an appropriate combination of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B). Thereby, the soft intraocular lens material disclosed herein, while maintaining an appropriate flexibility, the occurrence of glistening is suppressed, the flexibility and glistening resistance are compatible, a new soft eye. It can be said that it is an inner lens material.
 なお、ここに開示される軟質眼内レンズ1は、上述の構成の(メタ)アクリレート共重合体により構成されていることから、折り畳み可能な柔軟性と、弾性復元力とが従来の軟質眼内レンズと同様に好適に備えられている。そしてここに開示される軟質眼内レンズ1は、さらに、グリスニングの発生が低減されている。このことから、軟質眼内レンズ1は、生体環境内での親和性に優れているといえる。また、軟質眼内レンズ1は、小さく折り畳んでも、折り畳み力が解消されると直ちに展開されてもとの形状に回復する。このことにより、ここに開示される軟質眼内レンズ1は、専用挿入器具にて小さく屈曲されて眼内に挿入される形態の軟質眼内レンズとして特に好適に利用することができる。かかる観点から、ここに開示される技術は、この眼内レンズ挿入システムを好ましく提供することができる。 In addition, since the soft intraocular lens 1 disclosed herein is composed of the (meth)acrylate copolymer having the above-mentioned configuration, the foldable flexibility and the elastic restoring force are the same as those of the conventional soft intraocular lens. It is preferably provided similarly to the lens. The soft intraocular lens 1 disclosed herein is further reduced in occurrence of glistenings. From this, it can be said that the soft intraocular lens 1 has excellent affinity in the living environment. Further, the soft intraocular lens 1 is restored to its original shape when it is folded into a small size and when it is unfolded as soon as the folding force is released. As a result, the soft intraocular lens 1 disclosed herein can be particularly suitably used as a soft intraocular lens in which the soft intraocular lens 1 is slightly bent by a dedicated insertion tool and inserted into the eye. From this point of view, the technology disclosed herein can preferably provide this intraocular lens insertion system.
 具体的には図示しないが、眼内レンズ挿入システムは、上述の軟質眼内レンズ1と、インジェクタとを備えている。インジェクタは、例えば、シリンジ型のインジェクタ本体とプランジャとを有している。インジェクタ本体は、先端側で内部空間の幅が縮小されており、軟質眼内レンズ1はこの内部空間を通過することで幅方向に小さく折り畳まれるように構成されている。軟質眼内レンズ1は、インジェクタ本体の内部に、平坦な状態で予めセットされている。軟質眼内レンズ1を嚢内等に挿入する際には、インジェクタ本体に粘弾性物質等からなる潤滑剤等を供給したのち、インジェクタ本体にプランジャを押し込む。このことによって、軟質眼内レンズ1を折り畳むように屈曲させ、潤滑剤とともにインジェクタの先端の排出口から軟質眼内レンズ1を外部に排出する。これにより、軟質眼内レンズ1を眼球の水晶体嚢に簡便に挿入することができる。なお、インジェクタは、例えば、上記のインジェクタ本体のうち、軟質眼内レンズ1を収容する収容部から、軟質眼内レンズ1を排出する排出口までの部分であるカートリッジ部のみから構成されていてもよい。カートリッジ部は、例えば、インジェクタ本体に対して着脱可能に構成されてもよい。 Although not specifically shown, the intraocular lens insertion system includes the soft intraocular lens 1 described above and an injector. The injector has, for example, a syringe-type injector body and a plunger. The width of the internal space of the injector main body is reduced on the distal end side, and the soft intraocular lens 1 is configured to be folded in the width direction by passing through the internal space. The soft intraocular lens 1 is preset inside the injector body in a flat state. When inserting the soft intraocular lens 1 into the capsule or the like, a lubricant or the like made of a viscoelastic substance or the like is supplied to the injector body, and then the plunger is pushed into the injector body. As a result, the soft intraocular lens 1 is bent so as to be folded, and the soft intraocular lens 1 is discharged to the outside through the discharge port at the tip of the injector together with the lubricant. This allows the soft intraocular lens 1 to be easily inserted into the lens capsule of the eyeball. It should be noted that the injector may be composed of, for example, only the cartridge portion that is the portion from the housing portion that houses the soft intraocular lens 1 to the ejection port that ejects the soft intraocular lens 1 in the injector body. Good. The cartridge unit may be configured to be attachable to and detachable from the injector body, for example.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to the specific examples.
 重合成分として、下記の重合性モノマーを表1に示す配合で用意し、重合開始剤を加えて均一に混合することで、実施例1~19および比較例1から13の眼内レンズ用原料組成物を用意した。なお、実施例11~13および比較例11,13の原料組成物は2種類のアルコキシ基含有アクリレート(B)を含むが、その他の例の原料組成物については、芳香族環含有メタクリレート(A)、アルコキシ基含有アクリレート(B)、親水性モノマー(C)、および、架橋性モノマー(D)をそれぞれ1種類ずつ含む。そしてこの原料組成物を、両凸レンズ型のピロティを備える鋳型と、型枠(平板)と、にそれぞれ流し込み、60℃で12時間、100℃で12時間の条件で重合させた。これにより、まず、各例のグリスニング評価用の軟質レンズ成型体を得た。また、平板状の重合体については、1.5cm角、厚さ1mmに切断することで、各例の国際ゴム硬さ評価用の眼内レンズ材料とした。 As a polymerization component, the following polymerizable monomers were prepared in a composition shown in Table 1, and a polymerization initiator was added and mixed uniformly to obtain a raw material composition for intraocular lenses of Examples 1 to 19 and Comparative Examples 1 to 13. I prepared things. The raw material compositions of Examples 11 to 13 and Comparative Examples 11 and 13 contained two kinds of alkoxy group-containing acrylates (B), but the raw material compositions of the other examples were aromatic ring-containing methacrylate (A). , An alkoxy group-containing acrylate (B), a hydrophilic monomer (C), and a crosslinkable monomer (D). Then, this raw material composition was poured into a mold provided with a biconvex lens type piloty and a mold (flat plate), respectively, and polymerized under the conditions of 60° C. for 12 hours and 100° C. for 12 hours. As a result, first, a soft lens molded body for glistening evaluation of each example was obtained. The flat polymer was cut into a 1.5 cm square and a thickness of 1 mm to obtain an intraocular lens material for the evaluation of international rubber hardness in each example.
 芳香族環含有モノマーとしては、以下の6種を用意した。
  BZMA  :ベンジルメタクリレート
  EGPEMA:エチレングリコールモノフェニルエーテルメタクリレート
  EGPEA :エチレングリコールモノフェニルエーテルアクリレート
  PEMA  :フェニルエチルメタクリレート
  PEA   :フェニルエチルアクリレート
The following six types were prepared as the aromatic ring-containing monomer.
BZMA: benzyl methacrylate EGPEMA: ethylene glycol monophenyl ether methacrylate EGPEA: ethylene glycol monophenyl ether acrylate PEMA: phenylethyl methacrylate PEA: phenylethyl acrylate
 芳香族環非含有モノマーとしては、以下の7種を用意した。
  MEA :2-メトキシエチルアクリレート
  EEEA:2-(2-エトキシエトキシ)エチルアクリレート
  MEMA:2-メトキシエチルメタクリレート
  EEMA:2-エトキシエチルメタクリレート
  EA  :n-エチルアクリレート
  BA  :n-ブチルアクリレート
  BMA :n-ブチルメタクリレート
The following seven types were prepared as the aromatic ring-free monomers.
MEA: 2-methoxyethyl acrylate EEEA: 2-(2-ethoxyethoxy)ethyl acrylate MEMA: 2-methoxyethyl methacrylate EEMA: 2-ethoxyethyl methacrylate EA: n-ethyl acrylate BA: n-butyl acrylate BMA: n-butyl Methacrylate
 親水性モノマーとしては、以下の3種を用意した。
  HBA :4-ヒドロキシブチルアクリレート
  HEA :2-ヒドロキシエチルアクリレート
  HEMA:2-ヒドロキシエチルメタクリレート
 架橋性モノマーとしては、以下の3種を用意した。
  BDDA :1,4―ブタンジオールジアクリレート
  NDDA :1,9―ノナンジオールジアクリレート
  TMPTA:トリメチロールプロパントリアクリレート
The following three types were prepared as hydrophilic monomers.
HBA: 4-Hydroxybutyl acrylate HEA: 2-Hydroxyethyl acrylate HEMA: 2-Hydroxyethyl methacrylate The following three types of crosslinkable monomers were prepared.
BDDA: 1,4-butanediol diacrylate NDDA: 1,9-nonanediol diacrylate TMPTA: trimethylolpropane triacrylate
[IRHDの測定]
 各例の評価用眼内レンズ材料(1.5cm角)について、国際ゴム硬さ(IRHD)を測定した。デュロメータとしては、株式会社テクロック製のGS-680sel(JIS K6253:2012に規定されるタイプAデュロメータ)を用い、ISO48:2010(JIS K6253-2)のM法(中硬さ用マイクロサイズ試験)に準じて、平面硬さを測定した。国際ゴム硬さの測定は、各例の軟質レンズ成型体を、温度:21~23℃、湿度:30~70%RHの試験環境で1時間以上慣らしたのち、試験数:n=5にてゴム硬さを測定することで実施した。得られた国際ゴム硬さから算術平均値を算出し、下記表1の当該欄に示した。なお、IRHDは、下限が「30」であり、IRHD30未満の硬度については測定できない。
[IRHD measurement]
The international rubber hardness (IRHD) of the intraocular lens material for evaluation (1.5 cm square) of each example was measured. As the durometer, GS-680sel (type A durometer specified in JIS K6253:2012) manufactured by Teclock Co., Ltd. is used, and it is subjected to the M method (medium size micro size test) of ISO48:2010 (JIS K6253-2). The plane hardness was measured accordingly. International rubber hardness is measured by acclimatizing the soft lens molding of each example in a test environment of temperature: 21 to 23°C, humidity: 30 to 70% RH for 1 hour or more, and then the number of tests: n = 5 It was carried out by measuring the rubber hardness. An arithmetic mean value was calculated from the obtained international rubber hardness and shown in the relevant column of Table 1 below. The lower limit of IRHD is "30", and hardness less than IRHD30 cannot be measured.
[グリスニング抑制の評価]
 各例の評価用の軟質レンズ成型体について、促進的にグリスニングを発生させたのち、顕微鏡観察および画像解析を行うことによりグリスニングの輝点の数と面積とを算出し、グリスニング特性を評価した。軟質レンズ成型体は、光学部の直径が約6mm、厚さ0.6mmであり、その周縁に一対の支持部が備えられている。グリスニング発生のための促進条件は、各例の軟質レンズ成型体を超純水に浸漬させた状態で、60℃の加熱環境で2時間保持し、次いで、室温で24時間静置するものとした。これは、嚢内を模した湿潤環境において、レンズ成型体に対し高温から低温への急激な温度変化を付与することでレンズ成型体の吸水率を急激に低下させ、ポリマー構造内に局所的に水分が取り残される状況を作り出すものである。超純水としては、電気抵抗率が16MΩ・cm以上(25℃)に管理されている超純水(通常は18MΩ・cm以上)を用いた。なお、室温環境は25±2℃に管理されている。
[Evaluation of glistening suppression]
For the evaluation soft lens molded body of each example, after the glistening is generated in an accelerated manner, the number and area of bright spots of the glistening are calculated by performing microscope observation and image analysis, and the glistening characteristics are calculated. evaluated. The soft lens molded body has an optical portion with a diameter of about 6 mm and a thickness of 0.6 mm, and is provided with a pair of supporting portions on the periphery thereof. The acceleration condition for the occurrence of glistening is that the soft lens molding of each example is immersed in ultrapure water, held for 2 hours in a heating environment of 60° C., and then allowed to stand at room temperature for 24 hours. did. This is because in a humid environment simulating the inside of a capsule, the water absorption rate of the lens molded body is drastically reduced by imparting a rapid temperature change from a high temperature to a low temperature to the lens molded body, and water is locally absorbed in the polymer structure. It creates a situation where is left behind. As the ultrapure water, ultrapure water (usually 18 MΩ·cm or more) whose electric resistivity is controlled to 16 MΩ·cm or more (25° C.) was used. The room temperature environment is controlled at 25±2°C.
 顕微鏡観察には、株式会社ニコン製の実体顕微鏡SMZ1500と、株式会社ニコン製のデジタルカメラDS-Vi1とを用い、これらを画像統合ソフトウェアNIS-Elementsを使用して制御することで、評価用の軟質レンズ成型体の平面画像(800×600ピクセル)を取得した。画像には、軟質レンズ成型体の支持部の屈曲部が対角に配置され、光学部が画像の全面に大きく配置されるように、観察視野を設定した。画像解析には、アメリカ国立衛生研究所(NIH)開発のImage Jを用いた。 For microscope observation, a stereo microscope SMZ1500 manufactured by Nikon Corporation and a digital camera DS-Vi1 manufactured by Nikon Corporation are used, and these are controlled by using image integration software NIS-Elements, thereby providing a soft evaluation. A plane image (800×600 pixels) of the lens molded body was acquired. The observation field of view was set so that the bent portions of the support portion of the soft lens molded body were diagonally arranged in the image, and the optical portion was largely arranged over the entire surface of the image. ImageJ developed by National Institutes of Health (NIH) was used for image analysis.
 実体顕微鏡の観察条件は、以下の通りである。
  モード設定:手動露光
  露光時間:30m/s
  ゲイン:1.00×
  コントラスト設定:標準
  照明:暗視野(光量最大)
  調光ダイヤル:光量最大
  倍率:15倍(対物レンズ1×,接眼レンズ10×,ズーム1.5×)
The observation conditions of the stereoscopic microscope are as follows.
Mode setting: Manual exposure Exposure time: 30m/s
Gain: 1.00x
Contrast setting: Standard lighting: Dark field (maximum light intensity)
Light control dial: maximum light intensity Magnification: 15 times (objective lens 1x, eyepiece lens 10x, zoom 1.5x)
 画像解析による輝点の数と輝点の面積の算出は、以下の手順で行った。
 まず、撮像した軟質レンズ成型体の平面画像をImage Jに取り込み、Image(画像)メニューのType(画像タイプ)サブメニューの「8-bit」処理を施すことにより、画像を8ビットグレースケールに変換した。次いで、Adjust(補正)サブメニューにおいて、Threshold(閾値)レベルの上限を255、下限を40に調整することで、画像の閾値範囲のピクセルを黒色に、それ以外のピクセルを白色に変換する二値化を行った。これにより、軟質レンズ成型体の画像は、おおよそ、輪郭および輝点が黒色に、その他の部分が白色に二値化される。その後、Image(画像)メニューの楕円領域選択ツールボタンを使用し、二値化した軟質レンズ成型体像の光学部の領域(輪郭の内側)を選択することで、解析領域を作成(Create Selection)した。
The number of bright spots and the area of bright spots were calculated by image analysis according to the following procedure.
First, convert the image into 8-bit grayscale by importing the imaged flat image of the molded soft lens into Image J and performing "8-bit" processing of the Type (image type) submenu of the Image (image) menu. did. Then, in the Adjust (correction) submenu, by adjusting the upper limit of the Threshold level to 255 and the lower limit to 40, a binary value that converts pixels in the threshold range of the image into black and other pixels into white Was made. As a result, the image of the soft lens molded body is binarized so that the outline and the bright points are approximately black and the other portions are white. After that, using the ellipse area selection tool button in the Image (image) menu, select the area (inside the contour) of the optical part of the binarized soft lens molding image to create an analysis area (Create Selection) did.
 次に、Analyze(解析)メニューのAnalyze Particles(粒子解析)サブメニューを用いることで、上記選択領域内の対象物(輝点を示す黒色点)の数および面積を計測した。このサブメニューにより算出された、粒子数(particle count)を輝点の数とし、粒子面積の合計(total particle area)を輝点の総面積とした。 Next, by using the Analyze Particles sub-menu of the Analyze menu, the number and area of objects (black dots indicating bright spots) in the selected area were measured. The number of particles (particle count) calculated from this submenu was taken as the number of bright spots, and the total particle area (total particle area) was taken as the total area of bright spots.
 そして、得られた輝点の数と面積とからグリスニング抑制効果を、下記表2に示す指標に基づいて評価し、その結果を表2の「官能評価」の欄に示した。なお、粒子面積の合計はピクセル単位で表示されるため、画像の倍率から求められる1mm=約96ピクセルとの関係から、総面積をmm単位に換算した。参考のため、総面積の算出結果を表1に示した。 Then, the glistening suppression effect was evaluated from the obtained number and area of bright spots based on the index shown in Table 2 below, and the result is shown in the column of "sensory evaluation" in Table 2. Since the total particle area is displayed in pixel units, the total area was converted to mm 2 units from the relationship of 1 mm=about 96 pixels obtained from the magnification of the image. For reference, the calculation result of the total area is shown in Table 1.
[評価]
 以上のIRHDとグリスニング抑制の評価結果から、IRHDが40以上60以下であって、グリスニングの官能評価の結果がAであった軟質眼内レンズ材料を、適切な柔軟性等の機械的特性とグリスニング抑制効果とを備える良品(OK)と評価し、IRHDが40未満または60超過であったり、グリスニングの官能評価の結果がBまたはCの場合を不良品(NG)とし、その結果を表1の「評価」の欄に示した。
[Evaluation]
From the above evaluation results of IRHD and glistening suppression, the soft intraocular lens material having an IRHD of 40 or more and 60 or less and a sensory evaluation result of glistening of A was used for appropriate mechanical properties such as flexibility. The product is evaluated as a good product (OK) having the effect of suppressing the glistening, and the case where the IRHD is less than 40 or more than 60 or the result of the sensory evaluation of the glistening is B or C is regarded as a defective product (NG), and the result is obtained. Is shown in the "Evaluation" column of Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1に示されるように、実施例1~10は、芳香族環含有メタクリルモノマーであるBZMAと、芳香族環非含有アルコキシ基含有アクリルモノマーであるMEAと、親水性アクリルモノマーであるHBAと、架橋性アクリルモノマーであるBDDAとを組み合わせ、これらの配合を様々に変化させて用いた例である。このようなモノマーの組合せとすることで、適切な物理的特性とグリスニング抑制効果とを両立した軟質眼内レンズ材料が得られることが確認された。また、主たる重合成分のうち主成分(最大成分)は、芳香族環含有モノマーであるBZMAと芳香族環非含有モノマーであるMEAのいずれであっても、良好な特性が実現されることが確認できた。さらに、例えば実施例6~8等の比較からわかるように、主たる重合成分が芳香族環含有メタクリルモノマーと芳香族環非含有アルコキシ基含有アクリルモノマーである系では、グリスニングは、必ずしも親水性モノマーの含有量が多いほど低減されるものではないことが確認できた。芳香族環含有メタクリルモノマーと芳香族環非含有アルコキシ基含有アクリルモノマーとの好適な組合せが、グリスニングの低減にも寄与していることが伺える。 As shown in Table 1, Examples 1 to 10 include BZMA which is an aromatic ring-containing methacrylic monomer, MEA which is an aromatic ring-free alkoxy group-containing acrylic monomer, and HBA which is a hydrophilic acrylic monomer. This is an example in which BDDA, which is a crosslinkable acrylic monomer, is used in combination and the composition thereof is variously changed. It has been confirmed that by using such a combination of monomers, it is possible to obtain a soft intraocular lens material having both appropriate physical properties and a glistening suppressing effect. In addition, it was confirmed that good characteristics are realized regardless of whether the main component (maximum component) of the main polymerization components is BZMA, which is an aromatic ring-containing monomer, or MEA, which is a non-aromatic ring-containing monomer. did it. Further, as can be seen from the comparison of Examples 6 to 8 and the like, in a system in which the main polymerization components are an aromatic ring-containing methacrylic monomer and an aromatic ring-free alkoxy group-containing acrylic monomer, the glistening does not always involve hydrophilic monomers. It was confirmed that the higher the content of, the more the content was not reduced. It can be seen that the preferable combination of the aromatic ring-containing methacrylic monomer and the aromatic ring-free alkoxy group-containing acrylic monomer also contributes to the reduction of glistening.
 ただし、比較例1に示すように、重合成分の全体を100質量部としたとき、主たる重合成分のうちのアクリル系モノマーであるMEAが30質量部を下回ると、IRHDが60を超過してしまい重合体が硬くなりすぎる場合があることが確認できた。主たる重合成分のうち、より軟質なアクリル成分については、30質量部以上を占めることが望ましいといえる。 However, as shown in Comparative Example 1, when the total amount of the polymerization components is 100 parts by mass and the MEA which is an acrylic monomer in the main polymerization components is less than 30 parts by mass, IRHD exceeds 60. It was confirmed that the polymer may become too hard in some cases. It can be said that it is desirable to account for 30 parts by mass or more of the softer acrylic component among the main polymerization components.
 これに対し、親水性モノマーとして用いていたHBAを、実施例11ではHEAに、比較例2ではHEMAに変化させている。親水性モノマーとして、HBAと同じアクリルモノマー成分であるHEAを用いた実施例11では、実施例1~10と同様に適切な柔軟性とグリスニング抑制効果とを両立した軟質眼内レンズ材料が得られることがわかった。しかしながら、親水性モノマーとして、メタクリルモノマー成分であるHEMAを用いた比較例2では、グリスニングが異常に発生してしまう結果となった。これは、重合物の表面に親水性のメタクリルモノマー成分が存在することで、BZMAによる疎水性表面が好適に形成されず、グリスニングを上手く抑制できなかったためであると考えられる。芳香族環含有メタクリルモノマーと芳香族環非含有アルコキシ基含有アクリルモノマーとを主従合成分とする系においては、親水性モノマーとしてメタクリル系モノマーを混合すると、グリスニングの発生を好適に抑制できないことがわかった。 On the other hand, the HBA used as the hydrophilic monomer is changed to HEA in Example 11 and HEMA in Comparative Example 2. In Example 11 in which HEA, which is the same acrylic monomer component as HBA, was used as the hydrophilic monomer, a soft intraocular lens material having both appropriate flexibility and a glistening suppression effect was obtained as in Examples 1-10. I found out that However, in Comparative Example 2 in which HEMA that is a methacrylic monomer component was used as the hydrophilic monomer, the result was that glistening abnormally occurred. This is considered to be because the presence of the hydrophilic methacrylic monomer component on the surface of the polymer did not favorably form the hydrophobic surface of BZMA and could not successfully suppress glistening. In a system in which an aromatic ring-containing methacrylic monomer and an aromatic ring-free alkoxy group-containing acrylic monomer are used as main and secondary synthetic components, when a methacrylic monomer is mixed as a hydrophilic monomer, the occurrence of glistening cannot be suppressed appropriately. all right.
 また、架橋性モノマーとして2官能で炭素数の少ないBDDAに代えて、実施例12では炭素数の多いNDDAを、実施例13では3官能のTMPTAを用いている。架橋性モノマーについては、官能基数やモノマー鎖の長さ等が変化した場合であっても、軟質眼内レンズ材料の柔軟性やグリスニング抑制効果に大きな変化は見られなかった。架橋性モノマーは、特に種類に制限されることなく、様々なものを上記の重合性モノマーと組み合わせて用いることができることがわかった。 Further, as the crosslinkable monomer, NDDA having a large number of carbon atoms is used in Example 12 and trifunctional TMPTA is used in Example 13 in place of BDDA having a small number of carbon atoms and bifunctional. Regarding the crosslinkable monomer, even when the number of functional groups, the length of the monomer chain, and the like were changed, the flexibility of the soft intraocular lens material and the effect of suppressing glistening were not significantly changed. It has been found that various kinds of crosslinkable monomers can be used in combination with the above-mentioned polymerizable monomers without being limited in kind.
 また、実施例14、比較例3~6では、芳香族環非含有アルコキシ基含有アクリルモノマーであるMEAに代えて、実施例14では同じ芳香族環非含有アルコキシ基含有アクリルモノマーであるEEEAを、比較例3~4では同メタクリレートであるMEMAとEEMAとを、比較例5~6ではアルキル基含有(メタ)アクリレートモノマーであるBA、BMAを用いている。MEAと同じアルコキシアクリレートモノマー成分であるEEEAを用いた実施例14では、実施例1~10と同様に適切な柔軟性とグリスニング抑制効果とを両立した軟質眼内レンズ材料が得られることがわかった。しかしながら、アルコキシアクリレートモノマーに代えて、アルコキシメタクリレートモノマーであるMEMAやEEMAを用いた比較例3,4、さらにアルキルメタクリレートモノマーであるBMAを用いた比較例6では、IRHDが大幅に上昇し、軟質眼内レンズ材料の柔軟性が失われてしまうことが確認された。一方で、アルキルアクリレートモノマーを用いた比較例5では、柔軟性は良好であったものの、グリスニングの発生を好適に抑制できないことがわかった。 Further, in Example 14 and Comparative Examples 3 to 6, in place of MEA, which is the aromatic ring-free alkoxy group-containing acrylic monomer, in Example 14, the same aromatic ring-free alkoxy group-containing acrylic monomer EEEA was used. In Comparative Examples 3 to 4, MEMA and EEMA, which are the same methacrylates, are used, and in Comparative Examples 5 to 6, BA and BMA, which are alkyl group-containing (meth)acrylate monomers, are used. It was found that in Example 14 using EEEA, which is the same alkoxy acrylate monomer component as MEA, it is possible to obtain a soft intraocular lens material having both appropriate flexibility and a glistening suppressing effect, as in Examples 1 to 10. It was However, in Comparative Examples 3 and 4 using MEMA and EEMA which are alkoxymethacrylate monomers instead of the alkoxyacrylate monomer, and Comparative Example 6 which uses BMA which is an alkylmethacrylate monomer, IRHD is significantly increased and the soft eye It was confirmed that the flexibility of the inner lens material was lost. On the other hand, in Comparative Example 5 using the alkyl acrylate monomer, it was found that although the flexibility was good, the occurrence of glistenings could not be suppressed appropriately.
 なお、実施例15~17に示すように、芳香族環非含有アルコキシ基含有アクリルモノマーであれば、MEAやEEEA等の異なる2種以上のモノマー成分を併用して用いても、同様の効果が得られることが確認できた。
 これらのことから、モノマー成分が、アクリレートであるかメタクリレートであるは、形成される重合体の物理的特性やグリスニング特性に大きな影響を与えることが確認できた。
As shown in Examples 15 to 17, the same effect can be obtained even if two or more different monomer components such as MEA and EEEA are used in combination as long as they are acrylic monomers containing no aromatic ring and containing an alkoxy group. It was confirmed that it was obtained.
From these, it was confirmed that whether the monomer component was acrylate or methacrylate had a great influence on the physical properties and glistening properties of the polymer formed.
 次いで、実施例18~19、比較例7~8では、芳香族環含有メタクリレートであるBZMAに代えて、実施例18および比較例7では、EGPEMAとEGPEAを、実施例19および比較例8では、PEMAとPEAをそれぞれ用いている。芳香族環含有メタクリレートであるEGPEMAまたはPEMAを用いた実施例18~19では、優れた物理的特性とグリスニング抑制効果とが両立された軟質眼内レンズ材料が得られることがわかった。しかしながら、これらのアクリレートであるEGPEAとPEAを用いた比較例7~8では、得られた重合体が柔らかくなりすぎて、IRHDの測定ができなかった。芳香族環非含有アルコキシ基含有アクリルモノマーに組み合わせる芳香族環含有モノマーは、メタクリルモノマーとしないと、軟質眼内レンズ材料の取り扱い性が困難となることがわかった。 Then, in Examples 18 to 19 and Comparative Examples 7 to 8, instead of BZMA, which is an aromatic ring-containing methacrylate, in Example 18 and Comparative Example 7, EGPEMA and EGPEA were used, and in Example 19 and Comparative Example 8, PEMA and PEA are used respectively. In Examples 18 to 19 using EPGEMA or PEMA which is an aromatic ring-containing methacrylate, it was found that a soft intraocular lens material having both excellent physical properties and a glistening suppressing effect was obtained. However, in Comparative Examples 7 to 8 using these acrylates EGPEA and PEA, the polymers obtained were too soft, and the IRHD could not be measured. It has been found that when the aromatic ring-containing monomer to be combined with the aromatic ring-free alkoxy group-containing acrylic monomer is not a methacrylic monomer, it becomes difficult to handle the soft intraocular lens material.
 以上のように、各モノマー成分がアクリレートモノマーであるか、メタクリレートモノマーであるかによって、得られる軟質眼内レンズ材料の性状が大きく変わることが見て取れる。ここで、比較例9~13では、芳香族環含有モノマー、芳香族環非含有モノマー、親水性モノマーおよび架橋性モノマーのアクリレートおよびメタクリレートとの組合せを様々に変化させた。その結果、例えば、芳香族環含有モノマーとしてEGPEAを用いた場合、比較例9~11、13に示されるように、芳香族環非含有モノマーとして、EA、EEMA、およびこれらの組合せのいずれを用いても、IRHDが40に満たない低い値となりやすく、軟質眼内レンズの柔軟性は高いものの、折り畳まれたレンズの嚢内での形状回復に時間を要したり、形状が回復しきらなかったりする虞が生じることが確認できた。同時に、インジェクタからの射出時にレンズが傷つきやすくなることも懸念される。なお、比較例12の軟質眼内レンズについては、IRHDが40と適切であるものの、グリスニングが発生しやすく、物理的特性と低グリスニング特性とを両立できていないことがわかった。以上のことから、用いるモノマーの組合せが少しでも異なることで、IRHDおよび/またはグリスニング抑制効果のバランスが失われ、高品質な軟質眼内レンズ材料は提供されないことがわかった。これらのことから、ここに開示される技術においては、芳香族環含有メタクリルモノマー、芳香族環非含有アルコキシ基含有アクリルモノマー、および親水性アクリルモノマーを組合せて、軟質眼内レンズ材料を構成することが肝要であることが確認できた。 As described above, it can be seen that the properties of the obtained soft intraocular lens material greatly change depending on whether each monomer component is an acrylate monomer or a methacrylate monomer. Here, in Comparative Examples 9 to 13, combinations of the aromatic ring-containing monomer, the aromatic ring-free monomer, the hydrophilic monomer and the crosslinkable monomer with acrylate and methacrylate were variously changed. As a result, for example, when EGPEA was used as the aromatic ring-containing monomer, as shown in Comparative Examples 9 to 11 and 13, any of EA, EEMA, and combinations thereof were used as the aromatic ring-free monomer. However, the IRHD tends to be a low value of less than 40, and although the flexibility of the soft intraocular lens is high, it takes time to recover the shape of the folded lens in the capsule, or the shape cannot be recovered completely. It was confirmed that there was a risk. At the same time, there is a concern that the lens is likely to be damaged when it is ejected from the injector. Regarding the soft intraocular lens of Comparative Example 12, although IRHD was appropriate at 40, it was found that glistening was likely to occur and physical properties and low glistening properties were not compatible. From the above, it was found that even if the combination of monomers used was slightly different, the balance of the IRHD and/or glistening suppression effect was lost, and a high quality soft intraocular lens material was not provided. From these things, in the technique disclosed here, a soft intraocular lens material is constituted by combining an aromatic ring-containing methacrylic monomer, an aromatic ring-free alkoxy group-containing acrylic monomer, and a hydrophilic acrylic monomer. Was confirmed to be essential.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 The specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 1 眼内レンズ
 10 光学部
 20 支持部
 20a 屈曲部
1 Intraocular lens 10 Optical part 20 Support part 20a Bending part

Claims (11)

  1.  重合性を有する重合成分を重合させてなる軟質眼内レンズ材料であって、
     前記重合成分は、
      芳香族環含有メタクリレート(A)と、
      アルコキシ基含有アクリレート(B)と、
      ヒドロキシ基含有アクリレート(C)と、
      架橋性(メタ)アクリレート(D)と、
    を含み、
     前記重合成分を100質量部としたとき、前記アルコキシ基含有アクリレート(B)の割合は、30質量部以上である、軟質眼内レンズ材料。
    A soft intraocular lens material obtained by polymerizing a polymerizable component having a polymerizable property,
    The polymerization component is
    Aromatic ring-containing methacrylate (A),
    An alkoxy group-containing acrylate (B),
    A hydroxy group-containing acrylate (C),
    A crosslinkable (meth)acrylate (D),
    Including,
    A soft intraocular lens material in which the ratio of the alkoxy group-containing acrylate (B) is 30 parts by mass or more when the polymerization component is 100 parts by mass.
  2.  前記重合成分を100質量部としたとき、前記芳香族環含有メタクリレート(A)は、40質量部以上52質量部以下である、請求項1に記載の軟質眼内レンズ材料。 The soft intraocular lens material according to claim 1, wherein the aromatic ring-containing methacrylate (A) is 40 parts by mass or more and 52 parts by mass or less when the polymerization component is 100 parts by mass.
  3.  前記重合成分を100質量部としたとき、前記アルコキシ基含有アクリレート(B)は、35質量部以上46質量部以下である、請求項1または2に記載の軟質眼内レンズ材料。 The soft intraocular lens material according to claim 1 or 2, wherein the alkoxy group-containing acrylate (B) is 35 parts by mass or more and 46 parts by mass or less when the polymerization component is 100 parts by mass.
  4.  前記重合成分を100質量部としたとき、前記ヒドロキシ基含有アクリレート(C)は、8質量部以上12質量部以下である、請求項1~3のいずれか1項に記載の軟質眼内レンズ材料。 The soft intraocular lens material according to any one of claims 1 to 3, wherein the hydroxy group-containing acrylate (C) is 8 parts by mass or more and 12 parts by mass or less when the polymerization component is 100 parts by mass. ..
  5.  前記重合成分を100質量部としたとき、前記芳香族環含有メタクリレート(A)と、前記アルコキシ基含有アクリレート(B)との総量は、75質量部以上90質量部以下である、請求項1~4のいずれか1項に記載の軟質眼内レンズ材料。 The total amount of the aromatic ring-containing methacrylate (A) and the alkoxy group-containing acrylate (B) is 75 parts by mass or more and 90 parts by mass or less, when the polymerization component is 100 parts by mass. 4. The soft intraocular lens material according to any one of 4 above.
  6.  前記芳香族環含有メタクリレート(A)は、以下の一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    ただし、式中、R1は炭素数1~8の直鎖状または分岐鎖状のアルキレン基であり、Xは元素が存在しないか酸素原子であることを示す;で表されるメタクリレートを含む、請求項1~5のいずれか1項に記載の軟質眼内レンズ材料。
    The aromatic ring-containing methacrylate (A) has the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    However, in the formula, R1 represents a linear or branched alkylene group having 1 to 8 carbon atoms, and X represents the absence of an element or an oxygen atom; Item 6. The soft intraocular lens material according to any one of items 1 to 5.
  7.  前記アルコキシ基含有アクリレート(B)は、以下の一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    ただし、式中、R2はメチル基またはエチル基であり、nは1~4の整数である;で表されるアクリレートを含む、請求項1~5のいずれか1項に記載の軟質眼内レンズ材料。
    The alkoxy group-containing acrylate (B) has the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    However, in the formula, R2 is a methyl group or an ethyl group, and n is an integer of 1 to 4; The soft intraocular lens according to any one of claims 1 to 5, including an acrylate represented by material.
  8.  前記ヒドロキシ基含有アクリレート(C)は、以下の一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    ただし、式中、R3は炭素数1~8の直鎖状または分岐鎖状のアルキレン基である;で表されるアクリレートを含む、請求項1~7のいずれか1項に記載の軟質眼内レンズ材料。
    The hydroxy group-containing acrylate (C) has the following general formula (3):
    Figure JPOXMLDOC01-appb-C000003
    However, in the formula, R3 is a linear or branched alkylene group having 1 to 8 carbon atoms; and the soft intraocular body according to any one of claims 1 to 7 containing an acrylate represented by Lens material.
  9.  前記重合成分は、紫外線吸収能を備えるモノマーを含む、請求項1~8のいずれか1項に記載の軟質眼内レンズ材料。 The soft intraocular lens material according to any one of claims 1 to 8, wherein the polymerized component contains a monomer having an ultraviolet absorbing ability.
  10.  前記重合成分は、黄色着色能を備えるモノマーを含む、請求項1~9のいずれか1項に記載の軟質眼内レンズ材料。 The soft intraocular lens material according to any one of claims 1 to 9, wherein the polymerization component contains a monomer having a yellow coloring ability.
  11.  請求項1~10のいずれか1項に記載された眼内レンズ材料を用いて作製された、軟質眼内レンズ。 A soft intraocular lens manufactured using the intraocular lens material according to any one of claims 1 to 10.
PCT/JP2019/051262 2018-12-28 2019-12-26 Soft intraocular lens material and soft intraocular lens WO2020138346A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202211547679.7A CN115975105B (en) 2018-12-28 2019-12-26 Soft intraocular lens material and soft intraocular lens
JP2020562440A JP6963739B2 (en) 2018-12-28 2019-12-26 Soft intraocular lens material and soft intraocular lens
EP19903132.9A EP3904408A4 (en) 2018-12-28 2019-12-26 Soft intraocular lens material and soft intraocular lens
CN201980082920.3A CN113195563B (en) 2018-12-28 2019-12-26 Soft intraocular lens material and soft intraocular lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048610 2018-12-28
JPPCT/JP2018/048610 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138346A1 true WO2020138346A1 (en) 2020-07-02

Family

ID=71129585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051262 WO2020138346A1 (en) 2018-12-28 2019-12-26 Soft intraocular lens material and soft intraocular lens

Country Status (4)

Country Link
EP (1) EP3904408A4 (en)
JP (2) JP6963739B2 (en)
CN (1) CN113195563B (en)
WO (1) WO2020138346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527567A (en) * 2021-07-26 2021-10-22 康小林 Hydrophobic non-glare high refractive index ophthalmic polymeric materials
JP2022001320A (en) * 2018-12-28 2022-01-06 株式会社ニデック Soft intraocular lens material and soft intraocular lens
FR3126880A1 (en) * 2020-09-17 2023-03-17 Acrylian ACRYLIC COPOLYMER FOR THE MAKING OF INTRAOCULAR LENSES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116965768B (en) * 2023-07-07 2024-01-19 中山大学中山眼科中心 System for automatically and quantitatively analyzing degree of inflammation of anterior chamber in eye

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280464A (en) * 1988-05-06 1989-11-10 Menikon:Kk Polymerizable dye for coloring ocular lens and production of colored ocular lens material formed using the same dye and colored ocular lens material
JPH07157523A (en) * 1993-12-10 1995-06-20 Menicon Co Ltd Soft lens material for ophthalmic use
JPH08173522A (en) * 1994-12-26 1996-07-09 Menicon Co Ltd Optic lens material
JPH1156998A (en) 1997-08-20 1999-03-02 Menicon Co Ltd Material for soft inside eye lens
WO2006095750A1 (en) * 2005-03-09 2006-09-14 Hoya Corporation (meth)acrylate compound, process for production of the compound, (meth)acrylate copolymer, process for production of the copolymer, and soft intraocular lens
WO2016121804A1 (en) 2015-01-29 2016-08-04 株式会社メニコン Material for intraocular lenses and method for preserving material for intraocular lenses
WO2018021455A1 (en) 2016-07-28 2018-02-01 株式会社メニコン Material for intraocular lenses
WO2019138952A1 (en) 2018-01-09 2019-07-18 株式会社ニデック Intraocular lens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967093B2 (en) * 1995-02-23 1999-10-25 ホーヤ株式会社 Flexible intraocular lens
NZ336670A (en) * 1997-12-02 2001-02-23 Hoya Healthcare Corp Intraocular lens with soft copolymer optic portion and hard polymer haptic portion
US8247511B2 (en) * 1999-04-12 2012-08-21 Advanced Vision Science, Inc. Water plasticized high refractive index polymer for ophthalmic applications
US6281319B1 (en) * 1999-04-12 2001-08-28 Surgidev Corporation Water plasticized high refractive index polymer for ophthalmic applications
EP2591025B1 (en) * 2010-07-05 2016-10-05 Dave, Jagrat Natavar Polymeric composition for ocular devices
CN106729975B (en) * 2015-11-19 2020-04-14 爱博诺德(北京)医疗科技股份有限公司 Material for producing artificial lens
CN106901871B (en) * 2015-12-23 2021-08-24 爱博诺德(北京)医疗科技股份有限公司 Intraocular lens with one or more additional portions
CN113195563B (en) * 2018-12-28 2022-12-23 株式会社尼德克 Soft intraocular lens material and soft intraocular lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280464A (en) * 1988-05-06 1989-11-10 Menikon:Kk Polymerizable dye for coloring ocular lens and production of colored ocular lens material formed using the same dye and colored ocular lens material
JPH07157523A (en) * 1993-12-10 1995-06-20 Menicon Co Ltd Soft lens material for ophthalmic use
JPH08173522A (en) * 1994-12-26 1996-07-09 Menicon Co Ltd Optic lens material
JPH1156998A (en) 1997-08-20 1999-03-02 Menicon Co Ltd Material for soft inside eye lens
WO2006095750A1 (en) * 2005-03-09 2006-09-14 Hoya Corporation (meth)acrylate compound, process for production of the compound, (meth)acrylate copolymer, process for production of the copolymer, and soft intraocular lens
WO2016121804A1 (en) 2015-01-29 2016-08-04 株式会社メニコン Material for intraocular lenses and method for preserving material for intraocular lenses
WO2018021455A1 (en) 2016-07-28 2018-02-01 株式会社メニコン Material for intraocular lenses
WO2019138952A1 (en) 2018-01-09 2019-07-18 株式会社ニデック Intraocular lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001320A (en) * 2018-12-28 2022-01-06 株式会社ニデック Soft intraocular lens material and soft intraocular lens
JP7336064B2 (en) 2018-12-28 2023-08-31 株式会社ニデック Soft intraocular lens materials and soft intraocular lenses
FR3126880A1 (en) * 2020-09-17 2023-03-17 Acrylian ACRYLIC COPOLYMER FOR THE MAKING OF INTRAOCULAR LENSES
CN113527567A (en) * 2021-07-26 2021-10-22 康小林 Hydrophobic non-glare high refractive index ophthalmic polymeric materials
CN113527567B (en) * 2021-07-26 2023-01-24 康小林 Hydrophobic non-glare high refractive index ophthalmic polymeric materials

Also Published As

Publication number Publication date
JPWO2020138346A1 (en) 2021-09-09
JP2022001320A (en) 2022-01-06
JP7336064B2 (en) 2023-08-31
CN113195563A (en) 2021-07-30
JP6963739B2 (en) 2021-11-10
EP3904408A1 (en) 2021-11-03
EP3904408A4 (en) 2022-08-10
CN113195563B (en) 2022-12-23
CN115975105A (en) 2023-04-18

Similar Documents

Publication Publication Date Title
JP7336064B2 (en) Soft intraocular lens materials and soft intraocular lenses
KR101513131B1 (en) Ophthalmic and otorhinolaryngological device materials
KR102295439B1 (en) (meth)acrylamid polymers for contact lens and intraocular lens
JP5363683B2 (en) Low refractive ophthalmic acrylic device materials with high refractive index
US20060281888A1 (en) Ophthalmic and otorhinolaryngological device materials
CN105793303B (en) Soft hydrophobic acrylic acid's material
ES2676743T3 (en) Acrylic ophthalmic materials with high refractive index and minimized glare
TWI449520B (en) Ophthalmic and otorhinolaryngological device materials containing phenylene-siloxane macromers
CA2621456A1 (en) Biocompatible polymeric compositions for use in making anterior chamber intraocular lenses
TW440590B (en) High refractive index ophthalmic device materials
JP2022095900A (en) Hydrophobic intraocular lens
CA2295809A1 (en) Ophthalmic lens polymers
ES2750562T3 (en) Hydrophobic acrylate-acrylamide copolymers for ophthalmic devices
JP2020537570A (en) Intraocular lens
CN106999629B (en) Low water content acrylate-acrylamide copolymers for ophthalmic devices
EP2941445B1 (en) Flexible, high refractive index hydrophobic copolymer
JP7223284B2 (en) intraocular lens
JP2019056086A (en) Gel composition
CN115975105B (en) Soft intraocular lens material and soft intraocular lens
JP2008521553A (en) Biocompatible polymer for use in the manufacture of posterior chamber intraocular lenses
JP2019136319A (en) Soft acrylic intraocular lens material, and intraocular lens
JP7253139B2 (en) soft intraocular lens
KR102452916B1 (en) Materials for intraocular lenses
JP2019210345A (en) Polymer material and intraocular lens
US8263721B2 (en) Ophthalmic and otorhinolaryngological device materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903132

Country of ref document: EP

Effective date: 20210728