WO2020111545A1 - 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 - Google Patents
양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 Download PDFInfo
- Publication number
- WO2020111545A1 WO2020111545A1 PCT/KR2019/014740 KR2019014740W WO2020111545A1 WO 2020111545 A1 WO2020111545 A1 WO 2020111545A1 KR 2019014740 W KR2019014740 W KR 2019014740W WO 2020111545 A1 WO2020111545 A1 WO 2020111545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- nickel
- lithium
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/463—Aluminium based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
- C01P2006/82—Compositional purity water content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode comprising the positive electrode active material, and a lithium secondary battery. More specifically, the present invention relates to a positive electrode active material having reduced powder hygroscopicity, a positive electrode and a lithium secondary battery including the positive electrode active material by doping a specific doping element into a high content nickel-containing lithium transition metal oxide.
- lithium secondary batteries having high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and widely used.
- the lithium secondary battery is oxidized when lithium ions are inserted/detached from the positive electrode and negative electrode while the organic electrolyte or the polymer electrolyte is charged between the positive electrode and the negative electrode made of an active material capable of intercalations and deintercalation. Electrical energy is produced by the reduction reaction with.
- lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (such as LiMnO 2 or LiMn 2 O 4 ), lithium iron phosphate compound (LiFePO 4 ), etc. were used.
- a part of nickel (Ni) is replaced with cobalt (Co) or manganese (Mn)/aluminum (Al).
- a lithium composite metal oxide hereinafter simply referred to as'NCM-based lithium composite transition metal oxide'or'NCA-based lithium composite transition metal oxide'
- NCM-based/NCA-based lithium composite transition metal oxide has limited capacity and has limited application.
- Ni nickel
- NCM-based/NCA-based lithium oxide In order to improve this problem, recently, studies have been conducted to increase the content of nickel (Ni) in NCM-based/NCA-based lithium oxide.
- Ni nickel
- the nickel in the NCM-based / NCA based lithium oxide according to the Ni content is increased are present in Ni 3 + for thermal stability. Accordingly, the NCM-based/NCA-based lithium oxide becomes unstable, and the moisture in the air or the solvent in the electrolyte and the nickel in the NCM-based/NCA-based lithium oxide react to generate a hydroxy group, whereby a large amount of moisture is present in the positive electrode active material. There was.
- the hydroxy group generated in the positive electrode active material reacts with a binder contained in the positive electrode active material layer to cause gelation, thereby lowering the uniformity of the positive electrode active material layer to reduce the electrode and electrode internals.
- a binder contained in the positive electrode active material layer to cause gelation, thereby lowering the uniformity of the positive electrode active material layer to reduce the electrode and electrode internals.
- the first technical problem of the present invention is that the nickel-cobalt-manganese-based lithium transition metal oxide containing high content of nickel is doped with two or more doping elements in a specific ratio, thereby absorbing moisture. It is to provide a reduced positive electrode active material.
- the second technical problem of the present invention is to provide a positive electrode for a lithium secondary battery comprising a positive electrode active material with reduced water absorption.
- the third technical problem of the present invention is to provide a lithium secondary battery comprising the positive electrode for a lithium secondary battery.
- the present invention includes a nickel-cobalt-manganese-based lithium transition metal oxide containing 60 mol% or more of nickel relative to the total number of moles of metal excluding lithium, and the nickel-cobalt-manganese-based lithium transition metal oxide is a doping element M 1 (the doping element M 1 is a metal element containing Al) and the doping element M 2 (the doping element M 2 is Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au, and Si) are doped by one or more metal elements selected from the group consisting of), the nickel-cobalt-manganese system
- the lithium transition metal oxide provides a positive electrode active material containing doping element M 1 at 100 to 10,000 ppm, and doping elements M 1 and M 2 included at a weight ratio of 50:50 to 99:1.
- a positive electrode current collector including a positive electrode active material layer formed on the positive electrode current collector, provides a positive electrode comprising the positive electrode active material according to the present invention.
- the positive electrode active material suppresses hygroscopicity to absorb moisture in the air. Can be.
- the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the volume cumulative amount in a particle size distribution curve of particles.
- the average particle diameter (D 50 ) can be measured, for example, using a laser diffraction method.
- the laser diffraction method can generally measure a particle diameter of several mm from a submicron region, and can obtain results of high reproducibility and high resolution.
- the positive electrode active material for a secondary battery according to the present invention includes a nickel-cobalt-manganese-based lithium transition metal oxide containing 60 mol% or more of nickel, based on the total number of moles of metal excluding lithium, and the nickel-cobalt-manganese-based lithium transition metal
- the oxide is doped element M 1 (the doped element M 1 is a metal element containing Al) and doped element M 2 (the doped element M 2 is Mg, La, Ti, Zn, B, W, Ni, Co, Doped with Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au and Si).
- the nickel-cobalt-manganese-based lithium transition metal oxide contains doping element M 1 at 100 to 10,000 ppm, and doping elements M 1 and M 2 are contained at a weight ratio of 50:50 to 99:1.
- the nickel-cobalt-manganese-based lithium transition metal oxide according to the present invention contains nickel in an amount of 60 mol% or more based on the total number of moles of metal excluding lithium.
- the content of nickel contained in the nickel-cobalt-manganese-based lithium transition metal oxide is less than the above range, the capacity of the positive electrode active material is reduced, and thus there is a problem that it cannot be applied to an electrochemical device requiring high capacity.
- the higher the content of nickel in the above range the battery containing it may exhibit high capacity characteristics.
- the content of nickel increases, the content of cobalt and/or manganese decreases relatively, and thus charge and discharge efficiency may decrease.
- the positive electrode active material is, relative to the total number of moles of transition metal elements excluding lithium, the content of nickel is 60 mol% or more, preferably 60 mol% to 90 mol%, more preferably 70 mol% to 90 mol%, most Preferably it is included in 80 mol% to 85 mol%.
- the nickel-cobalt-manganese-based lithium transition metal oxide has a cobalt content of 0 mol% to 35 mol%, preferably 3 mol% to 20 mol%, most preferably with respect to the total number of moles of metal elements excluding lithium. It may contain 5 mol% to 10 mol%.
- the content of the cobalt is out of the above range and the content of cobalt exceeds 35 mol%, the cost of the raw material increases as a whole due to the high content of cobalt, and a problem that the reversible capacity is somewhat decreased may occur.
- the nickel-cobalt-manganese-based lithium transition metal oxide has a manganese content of 0 mol% to 35 mol%, preferably 3 mol% to 20 mol%, most preferably with respect to the total number of moles of metal elements excluding lithium. It may contain 5 mol% to 10 mol%. When the content of the manganese is included in the above range, structural stability of the active material may be improved.
- nickel-cobalt-manganese-based lithium transition metal oxide is doped with doping elements M 1 and M 2 .
- the doping element M 1 is a metal element containing Al
- the doping element M 2 is Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, one or more selected from the group consisting of Au and Si, preferably one or more selected from the group consisting of Mg, La and Ti, more preferably Mg , La and Ti may include at least two selected from the group consisting of, most preferably Mg, La and Ti.
- the nickel-cobalt-manganese-based lithium transition metal oxide contains doping element M 1 , the moisture in which the positive electrode active material absorbs moisture in the air due to improved structural stability of the nickel-cobalt-manganese-based lithium transition metal oxide Hygroscopicity can be suppressed.
- the present invention by doping the nickel-cobalt-manganese-based lithium transition metal oxides with doping elements M 1 and M 2 in a specific ratio, as well as suppressing moisture absorption of the positive electrode active material according to structural stability improvement, capacity characteristics The effect of improving can be further achieved.
- the nickel-cobalt-manganese-based lithium transition metal oxide contains the doping element M 2
- the structural stability of the nickel-cobalt-manganese-based lithium transition metal oxide is improved to improve capacity characteristics when applied to the battery. Can be.
- the doping element M 1 may be included in 100 to 10,000 ppm, preferably 1,000 to 10,000 ppm, and most preferably 3,000 to 5,000 ppm, based on 100 parts by weight of the nickel-cobalt-manganese lithium transition metal oxide. have. When the content of the doping element M 1 satisfies the above range, the effect of inhibiting moisture absorption can be maximized.
- the content of the doping element M 1 is less than the above range, it is impossible to achieve a moisture absorbent inhibiting effect of the positive electrode active material, and when it exceeds the above range, the energy density is lowered and the lifespan characteristic is applied when applied to the battery. It may degrade.
- the doping elements M 1 and M 2 may be included in a weight ratio of 50:50 to 99:1, preferably 60:40 to 80:20, most preferably 70:30 to 80:20. have.
- the doping elements M 1 and M 2 satisfy the weight ratio in the above range, the hygroscopicity of the positive electrode active material may be further suppressed, and when applied to the battery, capacity characteristics may be improved.
- the weight ratio of the doping elements M 1 and M 2 is out of the above range, and the proportion of the doping element M 1 exceeds the above range, capacity characteristics may be inferior, and the proportion of the doping element M 1 may be less than the above range. In this case, the effect of suppressing the hygroscopicity of the positive electrode active material by doping the doping element is inferior.
- the nickel-cobalt-manganese-based lithium transition metal oxide is represented by the following Chemical Formula 1.
- M1 is a doping element substituted at a transition metal site in a nickel-cobalt-manganese-based lithium transition metal oxide, and may be a metal element containing Al.
- the nickel-cobalt-manganese-based lithium transition metal oxide includes the doping element M 1 and the doping element M 2 , and the doping element M 2 is Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au and Si.
- M 1 is Al
- M 2 may include one or more metal elements selected from the group consisting of Mg, La, and Ti, most preferably, M 1 is Al, and M 2 is Mg, La and Ti are all included.
- the 1+a represents a molar ratio of lithium in a nickel-cobalt-manganese-based lithium transition metal oxide, and may be 0 ⁇ a ⁇ 0.3, preferably 0 ⁇ a ⁇ 0.15.
- the x represents the molar ratio of the nickel element in the nickel-cobalt-manganese-based lithium transition metal oxide, 0.60 ⁇ x ⁇ 1, preferably 0.60 ⁇ x ⁇ 0.90, more preferably 0.70 ⁇ x ⁇ 0.90, most preferably May be 0.80 ⁇ x ⁇ 0.85.
- the y represents a molar ratio of cobalt in a nickel-cobalt-manganese-based lithium transition metal oxide, and may be 0 ⁇ y ⁇ 0.35, preferably 0 ⁇ y ⁇ 0.1.
- the z represents a manganese molar ratio in the nickel-cobalt-manganese-based lithium transition metal oxide, and may be 0 ⁇ z ⁇ 0.35, preferably 0 ⁇ z ⁇ 0.1.
- the w represents the molar ratio of the doping element M 1 in the nickel-cobalt-manganese-based lithium transition metal oxide, 0 ⁇ w ⁇ 0.01, preferably 0.002 ⁇ w ⁇ 0.007, more preferably 0.003 ⁇ w ⁇ 0.006, most Preferably it may be 0.003 ⁇ w ⁇ 0.005.
- the molar ratio of the doping element M 1 in the nickel-cobalt-manganese lithium transition metal oxide satisfies the above range. It is possible to obtain a positive electrode active material with reduced moisture absorption.
- the v represents the molar ratio of the doping element M 2 in the nickel-cobalt-manganese-based lithium transition metal oxide, 0 ⁇ v ⁇ 0.005, preferably 0.001 ⁇ v ⁇ 0.005, more preferably 0.002 ⁇ v ⁇ 0.004, most Preferably it may be 0.002 ⁇ v ⁇ 0.003.
- the molar ratio of the doping element M 2 in the nickel-cobalt-manganese lithium transition metal oxide satisfies the above range.
- a positive electrode active material with improved capacity retention can be obtained.
- the total content of lithium by-products containing at least any one of lithium carbonate may be 0.5 parts by weight or less, preferably 0.1 to 0.4 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material.
- the positive electrode active material in which moisture absorption is suppressed by doping the doping elements M 1 and M 2 as in the present invention, as the structural stability of the positive electrode active material is improved, side reaction between the positive electrode active material and moisture in the air, or the positive electrode active material and the electrolyte solution By reducing, the hydroxy group present in the positive electrode active material is reduced, whereby the amount of lithium hydroxide generated by the reaction of the lithium present on the surface of the positive electrode active material and the hydroxy group can be reduced.
- the positive electrode active material may satisfy Equation 1 below.
- A1 is the content of lithium carbonate present on the surface of the positive electrode active material measured after leaving the positive electrode active material in an environment of relative humidity (Relative Humidity, RH) 60%, 25° C. for 1 day.
- A0 is the initial content of lithium carbonate present on the surface of the positive electrode active material measured before the above-mentioned standing of the positive electrode active material.
- the production amount of lithium hydroxide is reduced according to the suppression of moisture absorption, and accordingly, the reaction amount of LiOH and CO 2 is also reduced, so that the content of lithium carbonate may also be reduced.
- the nickel-cobalt-manganese lithium transition metal oxide is Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, and may further include a coating layer comprising at least one coating element selected from the group consisting of one or more elements selected from the group consisting of S.
- the contact between the nickel-cobalt-manganese-based lithium transition metal oxide represented by the formula (1) and the electrolyte contained in the lithium secondary battery is blocked by the coating layer, so that side reaction occurrence is suppressed, so the lifespan characteristics when applied to the battery Improve it.
- the content of the coating element in the coating layer is 100 ppm to 10,000 ppm, preferably 200 ppm to 5,000, based on the total weight of the nickel-cobalt-manganese lithium transition metal oxide. ppm.
- the total weight of the nickel-cobalt-manganese-based lithium transition metal oxide when a coating element is included in the above range, side reaction with the electrolyte is more effectively suppressed, and lifespan characteristics are further improved when applied to a battery Can be.
- the coating layer may be formed on the entire surface of the nickel-cobalt-manganese-based lithium transition metal oxide, or may be partially formed. Specifically, when the coating layer is partially formed on the surface of the nickel-cobalt-manganese-based lithium transition metal oxide, 5% or more and less than 100% of the total surface area of the nickel-cobalt-manganese-based lithium transition metal oxide, preferably May be formed in an area of 20% or more and less than 100%.
- the average particle diameter (D 50 ) of the nickel-cobalt-manganese-based lithium transition metal oxide may be 8 ⁇ m to 15 ⁇ m, preferably 9 ⁇ m to 14 ⁇ m, and most preferably 10 ⁇ m to 13 ⁇ m.
- excellent electrode density and energy density may be realized.
- the positive electrode active material may be a commercially available nickel-cobalt-manganese-based lithium transition metal oxide, or may be prepared by a method of manufacturing a nickel-cobalt-manganese-based lithium transition metal oxide known in the art.
- the nickel-cobalt-manganese-based lithium transition metal oxide represented by Chemical Formula 1 is mixed with a nickel-cobalt-manganese-based precursor and a lithium raw material, a doping element M 1 raw material, and a doping element M 2 raw material It can be produced by a firing method.
- the nickel-cobalt-manganese precursor may be a hydroxide of nickel-manganese-cobalt, oxyhydroxide, carbonate, an organic complex, or a nickel-manganese-cobalt hydroxide containing dope element M 2 , oxyhydroxide, carbonate, or organic complex.
- the nickel-cobalt-manganese precursor may be [Ni x Co y Mn z ](OH) 2 , [Ni y Co z Mn w ]O ⁇ OH, but is not limited thereto.
- the lithium raw material is lithium-containing carbonate (for example, lithium carbonate), hydrate (for example, lithium hydroxide I hydrate (LiOH ⁇ H 2 O), etc.), hydroxide (for example, lithium hydroxide, etc.), nitrate (for example For example, lithium nitrate (LiNO 3 ), etc., chloride (eg, lithium chloride (LiCl), etc.) may be used, but is not limited thereto.
- the doping element M 1 raw material may be Al-containing cargo, hydroxide, oxyhydroxide, sulfate, carbonate, halide, sulfide, acetate, carboxylate, or combinations thereof, for example, AlSO 4 , AlCl 3 , It may be Al-isopropoxide (Al-isopropoxide), AlNO 3 , but is not limited thereto.
- the doping element M 2 raw material is Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, It may be an oxide, hydroxide, oxyhydroxide, carbonate, sulfate, halide, sulfide, acetate, carboxylate or a combination thereof, etc., comprising at least one doping element M 2 selected from the group consisting of Pt, Au, and Si, eg For example, MgO, Mg(OH) 2 , MgSO 4 , Mg(NO 3 ) 2 , TiO 2 , La 2 CO 3 and the like, but is not limited thereto.
- the firing may be performed at 600 to 1000°C, preferably 700 to 900°C for 5 to 30 hours, preferably 10 to 20 hours.
- the positive electrode active material includes a coating layer
- a process of performing heat treatment after mixing by adding the coating material after the firing may be additionally performed.
- the coating material is Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb.
- the coating layer may be formed using a method known in the art, for example, wet coating, dry coating, plasma coating or ALD (Atomic Layer Deposition).
- the heat treatment for forming the coating layer may be performed at 100°C to 700°C, preferably 300°C to 450°C for 1 to 15 hours, preferably 3 to 8 hours.
- the positive electrode according to the present invention includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, wherein the positive electrode active material layer includes the positive electrode active material according to the present invention, and if necessary, a conductive material and/or Or a binder.
- the positive electrode active material may be included in an amount of 80 to 99 parts by weight, more specifically 85 to 98.5 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material layer. When included in the above-mentioned content range, it can exhibit excellent capacity characteristics.
- the positive electrode current collector is not particularly limited as long as it does not cause a chemical change in the battery and has conductivity.
- stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on aluminum or stainless steel surfaces , Surface treatment with silver or the like can be used.
- the positive electrode current collector may have a thickness of usually 3 to 500 ⁇ m, and may form fine irregularities on the current collector surface to increase the adhesive force of the positive electrode active material.
- it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
- the conductive material is used to impart conductivity to the electrode, and in a battery configured, it can be used without particular limitation as long as it has electronic conductivity without causing chemical changes.
- Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or a conductive polymer, such as a polyphenylene derivative, and the like, or a mixture of two or more of them may be used.
- the conductive material may be included in 0.1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material layer.
- the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
- Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluorine rubber, or various copolymers thereof, and one of these may be used alone or as a mixture of two or more.
- the binder may be included in 0.1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode active
- the positive electrode of the present invention can be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above. Specifically, the positive electrode material prepared by dissolving or dispersing the positive electrode active material and, optionally, the binder and/or the conductive material in a solvent may be applied onto the positive electrode current collector, followed by drying and rolling.
- the solvent may be a solvent generally used in the art, dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or Water and the like, and among these, one kind alone or a mixture of two or more kinds can be used. It is sufficient that the amount of the solvent used can be adjusted so that the positive electrode mixture has an appropriate viscosity in consideration of the coating thickness of the slurry and the production yield.
- DMSO dimethyl sulfoxide
- isopropyl alcohol isopropyl alcohol
- NMP N-methylpyrrolidone
- acetone acetone
- Water Water and the like, and among these, one kind alone or a mixture of two or more kinds can be used. It is sufficient that the amount of the solvent used can be adjusted so that the positive electrode mixture has an appropriate viscosity in consideration of the coating thickness of the slurry and the production yield.
- the positive electrode may be produced by casting the positive electrode mixture on a separate support, and then laminating the film obtained by peeling from the support on the positive electrode current collector.
- the present invention can manufacture an electrochemical device comprising the anode.
- the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
- the lithium secondary battery includes a positive electrode, a negative electrode located opposite to the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so a detailed description is omitted, Hereinafter, only the rest of the configuration will be described in detail.
- the lithium secondary battery may further include a battery container for housing the electrode assembly of the positive electrode, the negative electrode and the separator, and a sealing member for sealing the battery container.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
- the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
- the negative electrode current collector may have a thickness of usually 3 ⁇ m to 500 ⁇ m, and, like the positive electrode current collector, may form fine irregularities on the surface of the current collector to enhance the bonding force of the negative electrode active material.
- it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
- the negative active material layer optionally includes a binder and a conductive material together with the negative active material.
- a compound capable of reversible intercalation and deintercalation of lithium may be used.
- Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
- Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy or Al alloy;
- a complex containing the metal compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and the like, and any one or a mixture of two or more thereof may be used.
- a metal lithium thin film may be used as the negative electrode active material.
- both low crystalline carbon and high crystalline carbon may be used as the carbon material.
- Soft carbon and hard carbon are typical examples of low-crystalline carbon, and amorphous or plate-like, scaly, spherical or fibrous natural graphite or artificial graphite, and kissy graphite are examples of high-crystalline carbon. graphite), pyrolytic carbon, mesophase pitch based carbon fibers, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch derived cokes).
- the negative electrode active material may be included in 80 parts by weight to 99 parts by weight based on 100 parts by weight of the total weight of the negative electrode active material layer.
- the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is usually added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the total weight of the negative electrode active material layer.
- binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber, and various copolymers thereof.
- PVDF polyvinylidene fluoride
- CMC carboxymethyl cellulose
- EPDM ethylene-propylene-diene polymer
- sulfonated-EPDM st
- the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the total weight of the negative electrode active material layer.
- the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
- graphite such as natural graphite or artificial graphite
- Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
- Conductive fibers such as carbon fibers and metal fibers
- Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder
- Conductive whiskey such as zinc oxide and potassium titanate
- Conductive metal oxides such as titanium oxide
- Conductive materials such as polyphenylene derivatives
- the negative electrode active material layer is prepared by coating and drying a negative electrode active material prepared by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent, and drying the negative electrode material. After casting on a support, the film obtained by peeling from the support can be produced by lamination on a negative electrode current collector.
- the negative electrode active material layer is, for example, a negative electrode active material, and optionally a negative electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent, and then drying or casting the negative electrode mixture on a separate support. Then, it may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
- the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and is usually used as a separator in a lithium secondary battery, and can be used without particular limitation. It is desirable to have low resistance and excellent electrolyte-moisturizing ability. Specifically, porous polymer films such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer and ethylene/methacrylate copolymer, etc. A laminate structure of two or more layers of may be used.
- a conventional porous non-woven fabric for example, a high-melting point glass fiber, a polyethylene terephthalate fiber or the like may be used.
- a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single layer or multilayer structure.
- examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like, which can be used in the manufacture of lithium secondary batteries. It does not work.
- the electrolyte may include an organic solvent and a lithium salt.
- the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
- the organic solvent methyl acetate (methyl acetate), ethyl acetate (ethyl acetate), ⁇ -butyrolactone ( ⁇ -butyrolactone), ⁇ -caprolactone ( ⁇ -caprolactone), such as ester solvents; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate (propylene carbonate, PC) and other carbonate-based solvents; Alcohol-based solvents such as ethyl alcohol and
- carbonate-based solvents are preferred, and cyclic carbonates (for example, ethylene carbonate or propylene carbonate) having high ionic conductivity and high dielectric constant that can improve the charge and discharge performance of the battery, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
- the mixture of the cyclic carbonate and the chain carbonate in a volume ratio of about 1:1 to about 1:9 may be used to exhibit excellent electrolyte performance.
- the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
- the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
- LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like can be used.
- the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can be effectively moved.
- the electrolyte includes haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
- haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
- Ethylphosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
- One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may also be included. At this time, the additive may be included in 0.1 to 5 parts by weight based on 100 parts by weight of the total electrolyte.
- the lithium secondary battery comprising the positive electrode active material according to the present invention as described above stably exhibits excellent discharge capacity, output characteristics and life characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
- HEV hybrid electric vehicle
- a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
- the battery module or battery pack includes a power tool;
- An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Alternatively, it can be used as a power supply for any one or more medium-to-large devices among power storage systems.
- EV electric vehicle
- PHEV plug-in hybrid electric vehicle
- the appearance of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical, prismatic, pouch or coin type using a can.
- the lithium secondary battery according to the present invention can be used not only for a battery cell used as a power source for a small device, but also as a unit battery for a medium-to-large battery module including a plurality of battery cells.
- NiSO 4 , CoSO 4 , MnSO 4 , AlCl 3 , MgCl 2 , TiCl 4 and LaCl 3 are nickel:cobalt:manganese:aluminum:magnesium:lanthanum:titanium molar ratio 8:1:1:0.03:0.004:0.004:0.002 Dissolved in ion-exchanged water in such an amount to prepare a transition metal aqueous solution of 0.01M.
- the container containing the transition metal powder aqueous solution was connected to a 10L batch reactor set at 50°C.
- an aqueous solution of ammonium at a concentration of 0.2M and an aqueous solution of sodium hydroxide at a concentration of 0.1% were prepared and connected to the reactor, respectively.
- nitrogen gas was purged to the reactor at a rate of 10 L/min to remove dissolved oxygen in the water, and the reactor was composed of a non-oxidizing atmosphere.
- the transition metal aqueous solution was added to the reactor at a rate of 100 mL/min, an aqueous sodium hydroxide solution 50 mL/min, and an ammonium aqueous solution at a rate of 100 mL/min to coprecipitate for 5 hours to precipitate particles of the transition metal hydroxide.
- the particles of the precipitated transition metal hydroxide were separated, washed with water, and dried at 80° C. for 3 hours to prepare a positive electrode active material precursor.
- the positive electrode active material precursor prepared above and LiOH were mixed so that the molar ratio of Me:Li was 1:1.05, and calcined at 1,000°C for 5 hours in an oxygen atmosphere to prepare a positive electrode active material.
- Transition metal by dissolving NiSO 4 , CoSO 4 , MnSO 4 , AlCl 3 and MgCl 2 in ion-exchanged water in an amount such that the molar ratio of nickel:cobalt:manganese:aluminum:magnesium is 8:1:1:0.03:0.004
- An aqueous solution was prepared, and a positive electrode active material was prepared in the same manner as in Example 1, except that this was used.
- Transition metal by dissolving NiSO 4 , CoSO 4 , MnSO 4 , AlCl 3 and LaCl 3 in ion exchange water in an amount such that the molar ratio of nickel:cobalt:manganese:aluminum:lanthanum is 8:1:1:0.03:0.002
- An aqueous solution was prepared, and a positive electrode active material was prepared in the same manner as in Example 1, except that this was used.
- Transition metal by dissolving NiSO 4 , CoSO 4 , MnSO 4 , AlCl 3 and TiCl 4 in ion exchange water in an amount such that the molar ratio of nickel:cobalt:manganese:aluminum:titanium is 8:1:1:0.03:0.004
- An aqueous solution was prepared, and a positive electrode active material was prepared in the same manner as in Example 1, except that this was used.
- a transition metal aqueous solution was prepared by dissolving in ion-exchanged water, and a positive electrode active material was prepared in the same manner as in Example 1, except for using this.
- a transition metal aqueous solution was prepared by dissolving in ion-exchanged water, and a positive electrode active material was prepared in the same manner as in Example 1, except for using this.
- NiSO 4 , CoSO 4 , MnSO 4 , AlCl 3 TiCl 4 and LaCl 3 have a molar ratio of nickel:cobalt:manganese:aluminum:titanium:lanthanum of 8:1:1:0.03:0.004:0.002
- a transition metal aqueous solution was prepared by dissolving in exchange water, and a positive electrode active material was prepared in the same manner as in Example 1, except for using this.
- a transition metal aqueous solution was prepared by dissolving NiSO 4 , CoSO 4 and MnSO 4 in ion-exchanged water in an amount such that the molar ratio of nickel:cobalt:manganese is 8:1:1, and except for using this, the above operation was carried out.
- a positive electrode active material was prepared in the same manner as in Example 1.
- NiSO 4 , CoSO 4 , MnSO 4 And AlCl 3 was dissolved in ion-exchanged water in an amount such that the molar ratio of nickel:cobalt:manganese:aluminum was 8:1:1:0.03, and an aqueous solution of a transition metal was prepared, except for using this.
- a positive electrode active material was prepared in the same manner as 1.
- NiSO 4 , CoSO 4 , MnSO 4 , MgCl 2 , TiCl 4 and LaCl 3 in an amount such that the molar ratio of nickel:cobalt:manganese:magnesium:lanthanum:titanium is 8:1:1:0.004:0.004:0.002
- a transition metal aqueous solution was prepared by dissolving in ion-exchanged water, and a positive electrode active material was prepared in the same manner as in Example 1, except for using this.
- NiSO 4 , CoSO 4 , MnSO 4 , AlCl 3 , MgCl 2 , TiCl 4 and LaCl 3 are nickel:cobalt:manganese:aluminum:magnesium:lanthanum:titanium: molar ratio 8:1:1:0.01:0.01:0.01:0.01:0.01:0.01
- a positive electrode active material was prepared in the same manner as in Example 1, except that the aqueous solution of a transition metal of 0.01 M was dissolved in an amount of ion exchanged water to prepare an aqueous solution.
- the positive electrode active materials prepared in Examples 1 to 7 and Comparative Examples 1 to 4 were left in the air at the same condition of 25° C. and 60% humidity, and the positive electrode immediately after the preparation of the positive electrode active material and after 24 hours after standing.
- the moisture content of the active material was analyzed through a moisture absorption measurement device (Karl fischer water determination, Mettler Toledo, Germany), and the results are shown in Table 1 below.
- pH titration was performed using pH metromh as a pH meter. Specifically, 10 g of the positive electrode active material powder prepared in Examples 1 to 7 and Comparative Examples 1 to 4 and 100 mL of distilled water were stirred. PH titration was performed while adding 0.1 N HCl solution to the solution.
- the secondary battery was manufactured using the same method as follows, except that the positive electrode active materials prepared in Examples 1 to 3 and 5 and Comparative Examples 1 to 4, respectively, were used. Specifically, the positive electrode active material, carbon black conductive material, and polyvinylidene fluoride binder prepared in Examples 1 to 3 and 5 and Comparative Examples 1 to 4, respectively, were mixed in a weight ratio of 97:1:2, and N -Mixed in a methyl pyrrolidone solvent to prepare a positive electrode composition. The positive electrode forming composition was applied to an aluminum current collector having a thickness of 8 ⁇ m, dried, and roll-pressed to prepare a positive electrode.
- the lithium secondary batteries of Examples 1 to 3 and 5 and Comparative Examples 1 to 4 prepared as described above were charged at a constant current of 0.2C at 25°C to 4.25V at 0.005C cut off. Thereafter, discharge was performed to 2.5 V with a constant current of 0.2 C, and the discharge capacity at this time was measured. Subsequently, the secondary batteries prepared in Examples 1 to 3, 5 and Comparative Examples 1 to 4 obtained above were left at 25° C., RH 60% for 24 hours to prepare moisture-absorbed samples, and the capacity after moisture absorption. Was measured. On the other hand, the secondary battery immediately after manufacture was separately manufactured, and the capacity was measured immediately after manufacture, and it is shown in Table 3 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
본 발명은 리튬을 제외한 금속 총 몰수에 대하여, 60몰% 이상의 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물을 포함하며, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1(상기 도핑원소 M1은 Al을 포함하는 금속 원소임) 및 도핑원소 M2(상기 도핑원소 M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상의 금속 원소임)에 의해 도핑된 것이고, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1을 100 내지 10,000 ppm으로 포함하고, 도핑원소 M1 및 M2가 50:50 내지 99:1의 중량비로 포함된 양극 활물질, 상기 양극 활물질의 제조방법 및 상기 양극 활물질을 포함하는 양극 및 이차전지에 관한 것입니다.
Description
관련출원과의 상호 인용
본 출원은 2018년 11월 30일자 한국특허출원 제10-2018-0152743호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다. 보다 구체적으로는, 본 발명은 고함량 니켈-함유 리튬 전이금속 산화물에 특정 도핑원소를 도핑함으로써, 분체 흡습성이 저하된 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, 리튬 니켈 산화물(LiNiO2)의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 그러나, 종래의 개발된 NCM계/NCA계 리튬 복합 전이금속 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계/NCA계 리튬 산화물에서 니켈(Ni)의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 고함량 니켈(High-Ni)을 포함하는 NCM계/NCA계 리튬 산화물의 경우, Ni 함량 증가에 따라 NCM계/NCA계 리튬 산화물 중의 니켈이 안정성이 열위한 Ni3
+로 존재하게 된다. 이에 따라, NCM계/NCA계 리튬 산화물이 불안정해지고, 공기 중의 수분 또는 전해액 중 용매와 NCM계/NCA계 리튬 산화물 중 니켈이 반응하여 하이드록시기를 생성하게 되어, 양극 활물질 내에 수분이 다량 존재한다는 문제점이 있었다. 더불어, 수분이 다량 존재하는 양극 활물질을 적용 시, 양극 활물질 내에 생성된 하이드록시기는 양극 활물질층에 포함되는 바인더와 반응하여 겔화를 일으키게 되므로, 양극 활물질 층의 균일성을 저하시켜 전극 및 전극 내부의 접착력 감소를 불러오고, 셀의 용량 미발현 및 출력 감소 등의 문제를 야기한다는 문제점이 있었다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 고함량의 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물이 2종 이상의 도핑원소를 특정 비율로 도핑됨으로써, 수분 흡수성이 저하된 양극 활물질을 제공하는 것이다.
본 발명의 제2 기술적 과제는 수분 흡수성이 저하된 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공하는 것이다.
본 발명의 제3 기술적 과제는 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명은 리튬을 제외한 금속 총 몰수에 대하여, 60몰% 이상의 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물을 포함하며, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1(상기 도핑원소 M1은 Al을 포함하는 금속 원소임) 및 도핑원소 M2(상기 도핑원소 M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상의 금속 원소임)에 의해 도핑된 것이고, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1을 100 내지 10,000 ppm으로 포함하고, 도핑원소 M1 및 M2가 50:50 내지 99:1의 중량비로 포함된, 양극 활물질을 제공한다.
또한, 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하며, 상기 양극 본 발명에 따른 양극 활물질을 포함하는 것인 양극을 제공한다.
또한, 본 발명에 따른 양극을 포함하는, 리튬 이차전지를 제공한다.
본 발명에 따르면, 고함량 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물에 2종 이상의 도핑 원소를 특정 함량 및 비율로 도핑함으로써, 상기 양극 활물질이 공기 중의 수분을 흡습하는 흡습성을 억제할 수 있다.
또한, 양극 활물질의 수분 흡습성을 억제함에 따라, 고함량 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물의 표면에 존재하는 리튬과 수분의 반응에 의한 LiOH 등 리튬 부산물의 생성을 저감할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서 전체에서, 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
양극 활물질
본 발명에 따른 이차전지용 양극 활물질은 리튬을 제외한 금속 총 몰수에 대하여, 60몰% 이상의 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물을 포함하며, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1(상기 도핑원소 M1은 Al을 포함하는 금속 원소임) 및 도핑원소 M2(상기 도핑원소 M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상의 금속 원소임)에 의해 도핑된 것이고, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1을 100 내지 10,000 ppm으로 포함하고, 도핑원소 M1 및 M2가 50:50 내지 99:1의 중량비로 포함된 것이다.
이를 보다 자세하게 설명하면, 본 발명에 따른 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 리튬을 제외한 금속 총 몰수에 대하여 니켈을 60 몰% 이상으로 포함한다. 이때, 상기 니켈-코발트-망간계 리튬 전이금속 산화물 내에 포함되는 니켈의 함량이 상기 범위 미만인 경우, 양극 활물질의 용량이 감소하여 고용량을 필요로 하는 전기 화학 소자에 적용할 수 없는 문제점이 있다. 상기 범위 내에서 니켈의 함량이 높을수록, 이를 포함하는 전지는 고용량 특성을 나타낼 수 있다. 다만, 니켈의 함량이 높을수록 코발트 및/또는 망간의 함량은 상대적으로 감소하게 되고, 이에 따라 충방전 효율 등이 저하될 수 있다. 이에, 상기 양극 활물질은 리튬을 제외한 전이금속 원소 총 몰수에 대하여, 니켈의 함량이 60 몰% 이상, 바람직하게는 60 몰% 내지 90 몰%, 더 바람직하게는 70몰% 내지 90몰%, 가장 바람직하게는 80몰% 내지 85몰%로 포함한다.
또한, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 리튬을 제외한 금속 원소 총 몰수에 대하여, 코발트의 함량이 0몰% 내지 35몰%, 바람직하게는 3몰% 내지 20 몰%, 가장 바람직하게는 5몰% 내지 10몰%로 포함할 수 있다. 이때, 상기 코발트의 함량이 상기 범위를 벗어나 코발트의 함량이 35몰%를 초과하는 경우, 고함량의 코발트로 인해 원료 물질의 비용이 전체적으로 증가하며, 가역 용량이 다소 감소하는 문제점이 발생할 수 있다.
또한, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 리튬을 제외한 금속 원소 총 몰수에 대하여, 망간의 함량이 0몰% 내지 35몰%, 바람직하게는 3몰% 내지 20 몰%, 가장 바람직하게는 5몰% 내지 10몰%로 포함할 수 있다. 상기 망간의 함량이 상기 범위로 포함될 경우, 활물질의 구조 안정성을 개선할 수 있다.
또한, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1 및 M2에 의해 도핑된 것이다.
이때, 상기 도핑원소 M1은 Al을 포함하는 금속 원소이고, 상기 도핑원소 M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상, 바람직하게는 Mg, La 및 Ti로 이루어진 군에서 선택된 1종 이상, 더 바람직하게는 Mg, La 및 Ti로 이루어진 군에서 선택된 2종 이상, 가장 바람직하게는 Mg, La 및 Ti를 모두 포함할 수 있다.
예를 들면, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은 도핑원소 M1을 포함함에 따라 니켈-코발트-망간계 리튬 전이금속 산화물의 구조 안정성 개선으로 인해 양극 활물질이 공기 중의 수분을 흡습하는 수분 흡습성을 억제할 수 있다.
그러나, 상기 니켈-코발트-망간계 리튬 전이금속 산화물이 도핑원소 M1으로만 도핑될 경우, 용량 유지성이 열위할 수 있다.
본발명에 따르면, 상기 니켈-코발트-망간계 리튬 전이금속 산화물에 도핑원소 M1 및 M2를 특정 비율로 도핑함으로써, 구조 안정성 개선에 따라 양극 활물질의 수분 흡습성을 억제할 뿐만 아니라, 용량 특성을 개선하는 효과를 더욱 달성할 수 있다.
예를 들면, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은 도핑원소 M2을 포함함에 따라 니켈-코발트-망간계 리튬 전이금속 산화물의 구조 안정성이 개선되어 이를 전지에 적용시 용량 특성을 개선할 수 있다.
상기 도핑원소 M1은, 상기 니켈-코발트-망간계 리튬 전이금속 산화물 총 중량 100 중량부에 대하여, 100 내지 10,000 ppm, 바람직하게는 1,000 내지 10,000 ppm, 가장 바람직하게는 3,000 내지 5,000 ppm으로 포함될 수 있다. 상기 도핑원소 M1의 함량이 상기 범위를 만족할 때, 수분 흡습성 억제 효과가 극대화될 수 있다.
예를 들면, 상기 도핑원소 M1의 함량이 상기 범위 미만일 경우, 양극 활물질의 수분 흡습성 억제효과를 달성할 수 없고, 상기 범위를 초과할 경우, 에너지 밀도가 저하되어 이를 전지에 적용시 수명 특성이 저하될 수 있다.
또한, 상기 도핑원소 M1 및 M2가 50:50 내지 99:1의 중량비, 바람직하게는 60:40 내지 80:20의 중량비, 가장 바람직하게는 70:30 내지 80:20의 중량비로 포함될 수 있다. 예를 들면, 상기 도핑원소 M1 및 M2가 상기 범위의 중량비를 만족할 경우, 상기 양극 활물질의 흡습성이 더욱 억제될 수 있고, 이를 전지에 적용시 용량 특성을 개선할 수 있다.
반면, 상기 도핑원소 M1 및 M2의 중량비가 상기 범위를 벗어나,도핑원소 M1의 비율이 상기 범위를 초과할 경우, 용량 특성이 열위해질 수 있고, 도핑원소 M1의 비율이 상기 범위 미만일 경우, 도핑원소를 도핑함에 따른 양극 활물질의 흡습성 억제 효과가 열위해진다.
바람직하게는 상기 니켈-코발트-망간계 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 것이다.
[화학식 1]
Li1+a[NixCoyMnzM1
wM2
v]O2
상기 화학식 1에서, 상기 M1은 니켈-코발트-망간계 리튬 전이금속 산화물 내의 전이금속 사이트(site)에 치환된 도핑원소이며, Al을 포함하는 금속 원소일 수 있다.
상기 니켈-코발트-망간계 리튬 전이금속 산화물은 상기 도핑원소 M1과 도핑원소 M2를 포함하고, 상기 도핑원소 M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상의 금속 원소이다. 바람직하게는 상기 M1은 Al이고, 상기 M2는 Mg, La 및 Ti로 이루어진 군에서 선택된 1종 이상의 금속 원소를 포함할 수 있고, 가장 바람직하게는 상기 M1은 Al이고, 상기 M2는 Mg, La 및 Ti를 모두 포함한다.
한편, 상기 1+a는 니켈-코발트-망간계 리튬 전이금속 산화물 내의 리튬의 몰비를 나타내는 것으로, 0≤a≤0.3, 바람직하게는 0≤a≤0.15일 수 있다.
상기 x는 니켈-코발트-망간계 리튬 전이금속 산화물 내의 니켈 원소의 몰비를 나타내는 것으로, 0.60≤x<1, 바람직하게는 0.60≤x≤0.90, 더 바람직하게는 0.70≤x≤0.90, 가장 바람직하게는 0.80≤x≤0.85일 수 있다.
상기 y는 니켈-코발트-망간계 리튬 전이금속 산화물 내의 코발트 몰비를 나타내는 것으로, 0<y<0.35, 바람직하게는, 0<y≤0.1일 수 있다.
상기 z는 니켈-코발트-망간계 리튬 전이금속 산화물 내의 망간 몰비를 나타내는 것으로, 0<z<0.35, 바람직하게는, 0<z≤0.1일 수 있다.
니켈-코발트-망간계 리튬 전이금속 산화물 내의 전이금속 몰비 x, y, z가 상기 범위를 만족할 때, 에너지 밀도가 우수하고, 고용량 특성을 나타내는 양극 활물질을 얻을 수 있다.
상기 w는 니켈-코발트-망간계 리튬 전이금속 산화물 내의 도핑원소 M1의 몰비를 나타내는 것으로, 0<w≤0.01, 바람직하게는 0.002≤w≤0.007, 더 바람직하게는 0.003≤w≤0.006, 가장 바람직하게는 0.003≤w≤0.005일 수 있다. 상기 니켈-코발트-망간계 리튬 전이금속 산화물 내의 도핑 원소 M1의 몰비가 상기 범위를 만족할 때. 수분 흡습성이 억제된 양극 활물질을 얻을 수 있다.
상기 v는 니켈-코발트-망간계 리튬 전이금속 산화물 내의 도핑원소 M2의 몰비를 나타내는 것으로, 0<v≤0.005, 바람직하게는 0.001≤v≤0.005, 더 바람직하게는 0.002≤v≤0.004, 가장 바람직하게는 0.002≤v≤0.003일 수 있다. 상기 니켈-코발트-망간계 리튬 전이금속 산화물 내의 도핑 원소 M2의 몰비가 상기 범위를 만족할 때. 용량 유지율이 향상된 양극 활물질을 얻을 수 있다.
니켈-코발트-망간계 리튬 전이금속 산화물 내의 도핑원소 몰비 w, v가 상기 범위를 만족하고, w≥v이고, 1≤w/v≤15일 경우, 수분 흡습성이 억제될 뿐만 아니라, 용량 유지율이 개선된 양극 활물질을 얻을 수 있다.
보다 구체적으로는, 상기 화학식 1로 표시되는 니켈-코발트-망간계 리튬 전이금속 산화물은, Li1
+
a[NixCoyMnzAlw(Mgv1Lav2Tiv3)]O2 (이때, v1+v2+v3=v이고, w:(v1+v2+v3)=50:50 내지 99:1임)일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 상기 양극 활물질을 상대습도(Relative Humidity, RH) 60%, 25℃의 환경에서 1일 동안 방치한 후 상기 양극 활물질 표면에 존재하는 수산화 리튬 및 탄산 리튬 중 적어도 어느 하나를 포함하는 리튬 부산물의 총 함량이 양극 활물질 총 중량 100 중량부에 대하여 0.5 중량부 이하, 바람직하게는 0.1 내지 0.4 중량부일 수 있다.
본 발명과 같이 도핑원소 M1 및 M2를 도핑함에 따라 수분 흡습성이 억제된 양극 활물질의 경우, 양극 활물질의 구조 안정성이 개선됨에 따라 양극 활물질과 공기 중의 수분, 또는 양극 활물질과 전해액과의 부반응이 감소하여 양극 활물질 내 존재하는 하이드록시기가 저감되고, 이로 인하여 양극 활물질의 표면에 존재하는 리튬과, 하이드록시기의 반응에 의해 생성되는 수산화 리튬의 생성량이 저감될 수 있다.
바람직하게는, 상기 양극 활물질은 하기 식 1을 만족할 수 있다.
[식 1]
1.0 ≤ (A1/A0) ≤ 1.8
상기 식 1에서, 상기 A1은 상기 양극 활물질을 상대습도(Relative Humidity, RH) 60%, 25℃의 환경에서 1일 동안 방치한 후 측정한 양극 활물질의 표면에 존재하는 탄산 리튬의 함량이며, 상기 A0는 양극 활물질의 상기 방치 전에 측정한 양극 활물질의 표면에 존재하는 탄산 리튬의 초기 함량임.
예를 들면, 상기와 같이 수분 흡습 억제에 따라 수산화 리튬의 생성량이 저감되고, 이에 따라 LiOH와 CO2의 반응량 또한 저감되어 탄산 리튬의 함량 또한 저감되는 것일 수 있다.
또한, 상기 니켈-코발트-망간계 리튬 전이금속 산화물은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소로 이루어진 군에서 선택되는 적어도 하나 이상의 코팅 원소를 포함하는 코팅층을 더 포함할 수 있다. 예를 들면, 상기 코팅층에 의해 상기 화학식 1로 표시되는 니켈-코발트-망간계 리튬 전이금속 산화물과 리튬 이차전지에 포함되는 전해액과의 접촉이 차단되어 부반응 발생이 억제되므로, 전지에 적용 시 수명 특성을 향상시킬 수 있다.
상기와 같이, 코팅 원소를 추가로 포함할 경우, 상기 코팅층 내 코팅 원소의 함량은 상기 니켈-코발트-망간계 리튬 전이금속 산화물 전체 중량에 대하여, 100 ppm 내지 10,000 ppm, 바람직하게는 200 ppm 내지 5,000 ppm일 수 있다. 예를 들면, 상기 니켈-코발트-망간계 리튬 전이금속 산화물 전체 중량에 대하여, 상기 범위로 코팅 원소를 포함할 경우, 전해액과의 부반응 발생이 더욱 효과적으로 억제되고, 전지에 적용 시 수명 특성이 더욱 향상될 수 있다.
상기 코팅층은 상기 니켈-코발트-망간계 리튬 전이금속 산화물의 표면 전체에 형성될 수도 있고, 부분적으로 형성될 수도 있다. 구체적으로, 상기 니켈-코발트-망간계 리튬 전이금속 산화물의 표면에 상기 코팅층이 부분적으로 형성될 경우, 상기 니켈-코발트-망간계 리튬 전이금속 산화물의 전체 표면적 중 5% 이상 100% 미만, 바람직하게는 20% 이상 100% 미만의 면적으로 형성될 수 있다.
상기 니켈-코발트-망간계 리튬 전이금속 산화물의 평균 입경(D50)은 8㎛ 내지 15㎛, 바람직하게는 9㎛ 내지 14㎛, 가장 바람직하게는 10㎛ 내지 13㎛일 수 있다. 상기 니켈-코발트-망간계 리튬 전이금속 산화물의 평균 입경(D50)이 상기 범위를 만족할 경우, 우수한 전극 밀도 및 에너지 밀도를 구현할 수 있다.
양극 활물질의 제조 방법
한편, 상기 양극 활물질은 시판되는 니켈-코발트-망간계 리튬 전이금속 산화물을 구입하여 사용하거나, 당해 기술 분야에 알려진 니켈-코발트-망간계 리튬 전이금속 산화물의 제조방법에 의해 제조된 것일 수 있다.
예를 들면, 상기 화학식 1로 표시되는 니켈-코발트-망간계 리튬 전이금속 산화물은 니켈-코발트-망간계 전구체와 리튬원료물질, 도핑원소 M1 원료물질 및 도핑원소 M2 원료물질을 혼합한 후 소성하는 방법으로 제조될 수 있다.
상기 니켈-코발트-망간계 전구체는 니켈-망간-코발트의 수산화물, 옥시 수산화물, 카보네이트, 유기착물 또는 도핑 원소 M2를 포함하는 니켈-망간-코발트의 수산화물, 옥시 수산화물, 카보네이트, 유기 착물일 수 있다. 예를 들면, 상기 니켈-코발트-망간계 전구체는 [NixCoyMnz](OH)2, [NiyCozMnw]O·OH 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬 원료물질은 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 도핑원소 M1 원료물질은 Al을 포함하는 화물, 수산화물, 옥시수산화물, 황산염, 탄산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 도핑원소 M2 원료물질은 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au, 및 Si로 이루어진 군으로부터 선택된 1종 이상의 도핑원소 M2를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, MgO, Mg(OH)2
, MgSO4, Mg(NO3)2, TiO2, La2CO3 등일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 소성은 600 내지 1000℃, 바람직하게는 700 내지 900℃에서 5 내지 30시간, 바람직하게는 10 내지 20 시간 동안 수행될 수 있다.
한편, 상기 양극 활물질이 코팅층을 포함할 경우, 상기 소성 이후에 코팅원료물질을 추가하여 혼합한 후 열처리를 수행하는 공정을 추가로 수행할 수 있다.
상기 코팅원료물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, ZnO, Al2O3, Al(OH)3, AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, TiO2, WO3, AlF, H2BO3, HBO2, H3BO3, H2B4O7
, B2O3, C6H5B(OH)2, (C6H5O)3B, [(CH3(CH2)3O)3B, C3H9B3O6, (C3H7O3)B, Li3WO4, (NH4)10W12O41·5H2O, NH4H2PO4
등일 수 있으나, 이에 제한되는 것은 아니다.
상기 코팅층 형성은 당해 기술 분야에 알려진 방법을 이용할 수 있으며, 예를 들면, 습식 코팅법, 건식 코팅법, 플라즈마 코팅법 또는 ALD(Atomic Layer Deposition) 등을 이용할 수 있다.
상기 코팅층 형성을 위한 열처리는 100℃ 내지 700℃, 바람직하게는 300℃ 내지 450℃에서 1 내지 15시간, 바람직하게는 3 내지 8시간 동안 수행될 수 있다.
양극
다음으로, 본 발명에 따른 리튬 이차전지용 양극에 대해서 설명한다.
본 발명에 따른 양극은, 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하며, 이때, 상기 양극 활물질층은 본 발명에 따른 양극 활물질을 포함하며, 필요에 따라 도전재 및/또는 바인더를 포함한다.
이때, 상기 양극 활물질은 상술한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
상기 양극 활물질은 양극 활물질층 총 중량 100 중량부에 대하여 80 내지 99중량부, 보다 구체적으로는 85 내지 98.5중량부의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량 100 중량부에 대하여 0.1 내지 15 중량부로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량 100 중량부에 대하여 0.1 내지 15 중량부로 포함될 수 있다.
본 발명의 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및/또는 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 합재를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 합재가 적절한 점도를 갖도록 조절될 수 있는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극활물질은 음극 활물질층의 총 중량 100 중량부에 대하여 80 중량부 내지 99중량부로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 총 중량 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 총 중량 100 중량부에 대하여 10 중량부 이하, 바람직하게는 5 중량부 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 도포하고 건조함으로써 제조되거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 도포하고 건조하거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2
. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량 100 중량부에 대하여 0.1 내지 5 중량부로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
NiSO4, CoSO4, MnSO4, AlCl3, MgCl2, TiCl4 및 LaCl3를 니켈:코발트:망간:알루미늄:마그네슘:란타늄:티타늄의 몰비가 8:1:1:0.03:0.004:0.004:0.002이 되도록 하는 양으로 이온 교환수 중에 녹여 0.01M의 전이금속 수용액을 준비하였다.
상기 전이금속 분체 수용액이 담겨있는 용기를 50℃로 설정된 10L의 배치식 반응기에 연결하였다. 추가로, 0.2M 농도의 암모늄 수용액과, 0.1% 농도의 수산화나트륨 수용액을 준비하여 각각 상기 반응기에 연결하였다. 상기 반응기에 탈이온수 1L를 넣은 뒤 질소가스를 반응기에 10L/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고, 상기 반응기 내를 비산화 분위기로 조성하였다.
이후, 상기 전이금속 수용액을 100mL/분, 수산화 나트륨 수용액을 50mL/분, 암모늄 수용액을 100mL/분의 속도로 반응기에 각각 투입하여 5 시간 동안 공침 반응시켜 전이금속 수산화물의 입자를 침전시켰다. 침전된 전이금속 수산화물의 입자를 분리하셔 수세 후, 80℃에서 3시간 동안 건조하여 양극 활물질 전구체를 제조하였다.
상기에서 제조한 양극 활물질 전구체와 LiOH를 Me:Li의 몰비가 1:1.05이 되도록 혼합하고, 산소 분위기에서 1,000℃로 5시간 소성하여 양극활물질을 제조하였다.
실시예 2
NiSO4, CoSO4, MnSO4, AlCl3 및 MgCl2를 니켈:코발트:망간:알루미늄:마그네슘의 몰비가 8:1:1:0.03:0.004의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 3
NiSO4, CoSO4, MnSO4, AlCl3 및 LaCl3를 니켈:코발트:망간:알루미늄:란타늄의 몰비가 8:1:1:0.03:0.002의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 4
NiSO4, CoSO4, MnSO4, AlCl3 및 TiCl4를 니켈:코발트:망간:알루미늄:티타늄의 몰비가 8:1:1:0.03:0.004의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 5
NiSO4, CoSO4, MnSO4, AlCl3, MgCl2 및 LaCl3를 니켈:코발트:망간:알루미늄:마그네슘:란타늄의 몰비가 8:1:1:0.03:0.004:0.002의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 6
NiSO4, CoSO4, MnSO4, AlCl3, MgCl2 및 TiCl4를 니켈:코발트:망간:알루미늄:마그네슘:티타늄의 몰비가 8:1:1:0.03:0.004:0.004의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 7
NiSO4, CoSO4, MnSO4, AlCl3 TiCl4 및 LaCl3를 니켈:코발트:망간:알루미늄:티타늄:란타늄의 몰비가 8:1:1:0.03:0.004:0.002의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 1
NiSO4, CoSO4 및 MnSO4를 니켈:코발트:망간의 몰비가 8:1:1의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 2
NiSO4, CoSO4, MnSO4
및 AlCl3를 니켈:코발트:망간:알루미늄의 몰비가 8:1:1:0.03의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 3
NiSO4, CoSO4, MnSO4, MgCl2, TiCl4 및 LaCl3를 니켈:코발트:망간:마그네슘:란타늄:티타늄의 몰비가 8:1:1:0.004:0.004:0.002의 몰비가 되도록 하는 양으로 이온 교환수 중에 녹여 전이금속 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 4
NiSO4, CoSO4, MnSO4, AlCl3, MgCl2, TiCl4 및 LaCl3를 니켈:코발트:망간:알루미늄:마그네슘:란타늄:티타늄의 몰비가 8:1:1:0.01:0.01:0.01:0.01이 되도록 하는 양으로 이온 교환수 중에 녹여 0.01M의 전이금속 수용액을 수용액을 준비하였고, 이를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실험예 1: 흡습량 측정
상기 실시예 1~7 및 비교예 1~4에서 제조한 양극 활물질의 흡습량을 평가하였다.
구체적으로, 실시예 1~7 및 비교예 1~4에서 제조한 양극 활물질을 25℃, 습도 60%의 동일한 조건에서 대기 중에 방치하였고, 양극 활물질의 제조 직후와 방치 후 24시간이 경과한 후의 양극 활물질의 수분 함유량을 흡습량 측정 장치(Karl fischer water determination, Mettler Toledo 社, Germany)를 통하여 분석하였으며, 그 결과는 하기 표 1에 나타내었다.
제조 직후(ppm) | 흡습 이후(ppm) | |
실시예 1 | 181 | 584 |
실시예 2 | 175 | 654 |
실시예 3 | 173 | 666 |
실시예 4 | 180 | 589 |
실시예 5 | 168 | 595 |
실시예 6 | 183 | 640 |
실시예 7 | 166 | 598 |
비교예 1 | 167 | 994 |
비교예 2 | 147 | 664 |
비교예 3 | 168 | 1004 |
비교예 4 | 170 | 764 |
상기 표 1에 나타난 바와 같이, 실시예 1~7에서 제조한 양극 활물질의 흡습량이 비교예 2와 같이 Al만을 도핑한 경우의 양극 활물질의 흡습량보다 동등 우위의 결과를 나타내는 것을 확인할 수 있었다. 특히, 비교예 1, 3, 4와 같이 도핑원소로서 Al을 포함하지 않는 경우에 비해서는 수분 흡습량이 현저히 개선된 것을 확인할 수 있었다.
실험예 2: 잔류 리튬 측정
실시예 1~6 및 비교예 1, 2, 4에서 제조한 양극 활물질의 표면에 존재하는 잔류 리튬의 함량을 측정하기 위해, pH meter로서 pH metromh를 이용하여 pH 적정(pH titration)을 수행하였다. 구체적으로, 실시예 1~7 및 비교예 1~4에서 제조한 양극활물질 분말 10g과, 증류수 100mL를 교반하였다. 상기 용액에 0.1N의 HCl 용액을 가하면서, pH 적정을 수행하였다.
상기 양극활물질의 제조 직후의 pH 적정을 수행하였고, 이때 양극활물질 표면의 잔류 리튬의 함량을 기록하였다. 이어서, 제조 후 25℃, RH 60%에서 24시간 동안 방치한 후, pH 적정을 수행하였고, 이때의 양극 활물질 표면의 잔류 리튬의 함량을 기록하였다. 그 결과는 하기 표 2에 나타내었다.
제조 직후 | 흡습 후 | ||||
LiOH(wt%) | Li2CO3(wt%) | LiOH(wt%) | Li2CO3(wt%) | A1/A0 | |
실시예 1 | 0.42 | 0.12 | 0.22 | 0.15 | 1.25 |
실시예 2 | 0.43 | 0.11 | 0.27 | 0.17 | 1.55 |
실시예 3 | 0.45 | 0.10 | 0.30 | 0.18 | 1.80 |
실시예 4 | 0.39 | 0.10 | 0.28 | 0.16 | 1.60 |
실시예 5 | 0.41 | 0.11 | 0.31 | 0.17 | 1.55 |
실시예 6 | 0.42 | 0.10 | 0.29 | 0.15 | 1.50 |
비교예 1 | 0.43 | 0.10 | 0.40 | 0.21 | 2.10 |
비교예 2 | 0.36 | 0.10 | 0.33 | 0.17 | 1.70 |
비교예 4 | 0.41 | 0.11 | 0.30 | 0.21 | 1.91 |
상기 표 2에 나타난 바와 같이, 실시예 1~6 및 비교예 2에서 제조한 양극 활물질의 경우, 비교예 1에서 제조한 양극 활물질에 비해 흡습 후 탄산 리튬의 생성률이 비교예 1에 비해 감소된 것을 확인할 수 있었다.
한편, 비교예 4에서 제조한 양극 활물질의 경우, 도핑원소로서 Al을 포함하지 않음에 따라 Al을 포함하는 실시예 1~6 및 비교예 2에 비해서는 흡습 후 탄산리튬의 생성률이 높은 것을 확인할 수 있었다.
실험예 3: 용량 측정
상기 실시예 1~3, 5, 비교예 1~4에서 제조한 양극 활물질을 이용하여 리튬 이차전지를 제조한 후, 상기 이차전지의 용량 특성을 비교하였다.
이때, 이차전지는 상기 실시예 1~3, 5 및 비교예 1~4에서 각각 제조한 양극 활물질을 사용하는 것을 제외하고는 하기와 같이 동일한 방법을 이용하여 제조하였다. 구체적으로, 상기 실시예 1~3, 5 및 비교예 1~4에서 각각 제조한 양극 활물질, 카본블랙 도전재, 및 폴리비닐리덴 플루오라이드 바인더를 97:1:2의 중량비로 혼합하고, 이를 N-메틸피롤리돈 용매 중에서 혼합하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 두께가 8㎛인 알루미늄 집전체에 도포한 후, 건조하고, 롤 프레스를 실시하여 양극을 제조하였다. 이어서, 음극 활물질로서 인조흑연, 카본블랙 도전재, 및 바인더로서 카르복시메틸셀룰로우즈, 스티렌 부타디엔 고무를 95:1:1:3의 중량비로 혼합하여 용매인 순수에 첨가하여 음극 활물질 슬러리를 제조하였다. 이를 두께가 15㎛인 구리 집전체 상에 도포하고 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다. 상기에서 제조한 양극과 음극을 폴리프로필렌/폴리에틸렌 분리막과 함께 적층하여 통상적인 방법으로 폴리머형 전지를 제조한 다음, 이를 전지 케이스에 넣고 에틸렌카보네이트, 디에틸카보네이트 및 디메틸카보네이트를 혼합한 혼합 용매에 1M의 LiPF6를 용해시킨 전해액을 주입하여, 상기 실시예 1~3, 5 및 비교예 1~4에 따른 리튬 이차전지를 제조하였다.
상기와 같이 제조한 실시예 1~3, 5 및 비교예 1~4의 리튬 이차전지 각각에 대하여 25℃에서 0.2C의 정전류로 4.25V까지 0.005C cut off로 충전하였다. 이후, 0.2C 정전류로 2.5V까지 방전을 하고, 이때의 방전 용량을 측정하였다. 이어서, 상기에서 수득한 실시예 1~3, 5 및 비교예 1~4에서 제조한 이차전지를 25℃, RH 60%에서 24시간 동안 방치하여 수분 흡습된 샘플을 제조하였고, 수분 흡습 이후의 용량을 측정하였다. 한편, 제조 직후의 이차전지는 별도로 제조하여, 제조 직후 용량을 측정하였고, 이를 하기 표 3에 나타내었다.
제조 직후 용량(mAh/g) | 흡습 이후 용량 (mAh/g) | |
실시예 1 | 208.2 | 206.8 |
실시예 2 | 208.3 | 206.5 |
실시예 3 | 207.5 | 205.0 |
실시예 5 | 208.3 | 206.1 |
비교예 1 | 209.3 | 204.5 |
비교예 2 | 207.7 | 205.8 |
비교예 3 | 208.1 | 206.4 |
비교예 4 | 208.0 | 206.1 |
상기 표 3에 나타난 바와 같이, 도핑원소를 포함하지 않은 비교예 1에 비해 실시예 1~3 및 5의 이차전지의 흡습 이후 용량 특성이 높은 것을 확인할 수 있었다. 한편, 도핑원소로서 Al만 도핑한 비교예 2에 비해서 Al 뿐만 추가 도핑원소를 포함하는 실시예 1~3 및 5의 이차전지가 흡습 이후 우수한 용량을 나타내는 것을 확인할 수 있었다.
Claims (9)
- 리튬을 제외한 금속 총 몰수에 대하여, 60몰% 이상의 니켈을 포함하는 니켈-코발트-망간계 리튬 전이금속 산화물을 포함하며,상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1(상기 도핑원소 M1은 Al을 포함하는 금속 원소임) 및 도핑원소 M2(상기 도핑원소 M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상의 금속 원소임)에 의해 도핑된 것이고,상기 니켈-코발트-망간계 리튬 전이금속 산화물은, 도핑원소 M1을 100 내지 10,000 ppm으로 포함하고,도핑원소 M1 및 M2가 50:50 내지 99:1의 중량비로 포함된 양극 활물질.
- 제1항에 있어서,상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 것인 양극 활물질.[화학식 1]Li1+a[NixCoyMnzM1 wM2 v]O2상기 화학식 1에서,M1은 Al을 포함하는 금속 원소이고,M2는 Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군에서 선택된 1종 이상의 금속 원소이고,0≤a≤0.3, 0.60≤x<1, 0<y<0.35, 0<z<0.35, 0<w≤0.01, 0<v≤0.005임.
- 제1항에 있어서,상기 M2는 Mg, La, 및 Ti로 이루어진 군에서 선택된 1종 이상의 금속 원소인 양극 활물질.
- 제2항에 있어서,상기 화학식 1에서 w≥v이고, 1≤w/v≤15인 양극 활물질.
- 제1항에 있어서,상기 양극 활물질은 하기 식 1을 만족하는 것인 양극 활물질.[식 1]1.0 ≤ (A1/A0) ≤ 1.8상기 A1은 상기 양극 활물질을 상대습도(Relative Humidity, RH) 60%, 25℃의 환경에서 1일 동안 방치한 후 측정한 양극 활물질의 표면에 존재하는 탄산 리튬의 함량이며, 상기 A0는 양극 활물질의 상기 방치 전에 측정한 양극 활물질의 표면에 존재하는 탄산 리튬의 초기 함량임.
- 제5항에 있어서,상기 양극 활물질을 상대습도(Relative Humidity, RH) 60%, 25℃의 환경에서 1일 동안 방치한 후 상기 양극 활물질 표면에 존재하는 수산화 리튬 및 탄산 리튬 중 적어도 어느 하나를 포함하는 리튬 부산물의 총함량은 양극 활물질 총 중량 100 중량부에 대하여 0.5 중량부 이하인 양극 활물질.
- 제1항에 있어서,상기 양극 활물질의 평균 입경(D50)은 8 내지 15㎛인 양극 활물질.
- 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하며,상기 양극 활물질층은 제1항 내지 제7항 중 어느 한 항에 따른 양극 활물질을 포함하는 것인 양극.
- 제8항에 따른 양극을 포함하는 리튬 이차전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19890594.5A EP3872902A4 (en) | 2019-11-01 | Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material | |
JP2021531030A JP7191420B2 (ja) | 2018-11-30 | 2019-11-01 | 正極活物質、前記正極活物質を含む正極及びリチウム二次電池 |
CN201980078101.1A CN113692659A (zh) | 2018-11-30 | 2019-11-01 | 正极活性材料及包含该正极活性材料的正极和锂二次电池 |
US17/297,823 US20220045322A1 (en) | 2018-11-30 | 2019-11-01 | Positive Electrode Active Material, and Positive Electrode and Lithium Secondary Battery Which Include the Positive Electrode Active Material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0152743 | 2018-11-30 | ||
KR1020180152743A KR102724456B1 (ko) | 2018-11-30 | 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020111545A1 true WO2020111545A1 (ko) | 2020-06-04 |
Family
ID=70854060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014740 WO2020111545A1 (ko) | 2018-11-30 | 2019-11-01 | 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220045322A1 (ko) |
JP (1) | JP7191420B2 (ko) |
CN (1) | CN113692659A (ko) |
WO (1) | WO2020111545A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111933930A (zh) * | 2020-08-13 | 2020-11-13 | 松山湖材料实验室 | 一种正极活性材料及其制备方法、二次电池正极、锂电池 |
CN113178558A (zh) * | 2021-04-27 | 2021-07-27 | 安徽锂桥新材料有限公司 | 一种复合锰基正极材料及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115974176A (zh) * | 2022-12-14 | 2023-04-18 | 桂林理工大学 | 一种镍酸锂正极材料的取代掺杂改性方法 |
CN117913350B (zh) * | 2024-01-15 | 2024-09-20 | 高能时代(广东横琴)新能源科技有限公司 | 一种用于正极的固态电解质材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004111076A (ja) * | 2002-09-13 | 2004-04-08 | Sony Corp | 正極活物質及び非水電解質二次電池 |
JP2012506110A (ja) * | 2008-10-17 | 2012-03-08 | 成都晶元新材料技術有限公司 | ニッケル・コバルト・マンガン系多元素ドーピングしたリチウムイオン電池用正極材料及びその製造方法 |
JP2015191847A (ja) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質の製造方法 |
KR20180067775A (ko) * | 2016-12-12 | 2018-06-21 | 주식회사 포스코 | 리튬 이차전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 |
KR20180121267A (ko) * | 2017-04-28 | 2018-11-07 | 삼성전자주식회사 | 양극 활물질, 이를 채용한 양극과 리튬 이차 전지, 및 상기 양극 활물질의 제조방법 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4016453B2 (ja) * | 1997-07-18 | 2007-12-05 | 株式会社日立製作所 | 電極及びこれを用いた電池 |
JP2004171909A (ja) * | 2002-11-20 | 2004-06-17 | Ngk Insulators Ltd | リチウム二次電池 |
JP5405941B2 (ja) * | 2008-08-19 | 2014-02-05 | 日立マクセル株式会社 | 電気化学素子用電極および非水二次電池 |
KR101363443B1 (ko) * | 2009-06-17 | 2014-02-14 | 히다치 막셀 가부시키가이샤 | 전기 화학 소자용 전극 및 그것을 사용한 전기 화학 소자 |
JP2011023335A (ja) * | 2009-06-18 | 2011-02-03 | Hitachi Maxell Ltd | 非水二次電池用電極および非水二次電池 |
CN102754253A (zh) * | 2010-01-21 | 2012-10-24 | 住友金属矿山株式会社 | 非水电解质二次电池用正极活性物质、其制造方法以及使用其的非水电解质二次电池 |
KR101367393B1 (ko) * | 2010-12-20 | 2014-02-24 | 히다치 막셀 가부시키가이샤 | 비수 2차 전지 |
JP5978014B2 (ja) * | 2012-06-07 | 2016-08-24 | 日立マクセル株式会社 | 非水二次電池 |
CN104703921B (zh) * | 2012-10-17 | 2018-01-12 | 户田工业株式会社 | Li‑Ni复合氧化物颗粒粉末和非水电解质二次电池 |
KR102311460B1 (ko) * | 2014-11-21 | 2021-10-08 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
JP6931965B2 (ja) * | 2015-08-21 | 2021-09-08 | 株式会社日本触媒 | リチウムイオン二次電池 |
KR102665408B1 (ko) * | 2016-04-15 | 2024-05-09 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
CN109004175B (zh) * | 2018-02-26 | 2020-09-18 | 宁德新能源科技有限公司 | 正极极片和锂离子电池 |
CN108899497A (zh) * | 2018-06-25 | 2018-11-27 | 宁德新能源科技有限公司 | 正极材料和包含所述正极材料的电化学装置 |
-
2019
- 2019-11-01 US US17/297,823 patent/US20220045322A1/en active Pending
- 2019-11-01 JP JP2021531030A patent/JP7191420B2/ja active Active
- 2019-11-01 WO PCT/KR2019/014740 patent/WO2020111545A1/ko unknown
- 2019-11-01 CN CN201980078101.1A patent/CN113692659A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004111076A (ja) * | 2002-09-13 | 2004-04-08 | Sony Corp | 正極活物質及び非水電解質二次電池 |
JP2012506110A (ja) * | 2008-10-17 | 2012-03-08 | 成都晶元新材料技術有限公司 | ニッケル・コバルト・マンガン系多元素ドーピングしたリチウムイオン電池用正極材料及びその製造方法 |
JP2015191847A (ja) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質の製造方法 |
KR20180067775A (ko) * | 2016-12-12 | 2018-06-21 | 주식회사 포스코 | 리튬 이차전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 |
KR20180121267A (ko) * | 2017-04-28 | 2018-11-07 | 삼성전자주식회사 | 양극 활물질, 이를 채용한 양극과 리튬 이차 전지, 및 상기 양극 활물질의 제조방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111933930A (zh) * | 2020-08-13 | 2020-11-13 | 松山湖材料实验室 | 一种正极活性材料及其制备方法、二次电池正极、锂电池 |
CN113178558A (zh) * | 2021-04-27 | 2021-07-27 | 安徽锂桥新材料有限公司 | 一种复合锰基正极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3872902A1 (en) | 2021-09-01 |
KR20200065856A (ko) | 2020-06-09 |
JP2022513681A (ja) | 2022-02-09 |
JP7191420B2 (ja) | 2022-12-19 |
US20220045322A1 (en) | 2022-02-10 |
CN113692659A (zh) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019147017A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019221497A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019103363A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019168301A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019083221A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2020145639A1 (ko) | 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 | |
WO2019143047A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2021154021A1 (ko) | 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2020111543A1 (ko) | 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2019059647A2 (ko) | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020111545A1 (ko) | 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 | |
WO2021015511A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2022092906A1 (ko) | 양극 활물질 및 이의 제조방법 | |
WO2022039576A1 (ko) | 양극 활물질의 제조방법 | |
WO2020122511A1 (ko) | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2021187907A1 (ko) | 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2020004988A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2022092477A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 | |
WO2021101281A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2022203434A1 (ko) | 양극 활물질의 제조방법 | |
WO2019194609A1 (ko) | 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019078685A2 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020145638A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질 | |
WO2019093864A2 (ko) | 리튬 코발트계 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지 | |
WO2022169271A1 (ko) | 양극 활물질 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19890594 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021531030 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019890594 Country of ref document: EP Effective date: 20210528 |