WO2020105861A1 - Method for reusing plastic from and recovering valuable metals from plated waste plastic - Google Patents
Method for reusing plastic from and recovering valuable metals from plated waste plasticInfo
- Publication number
- WO2020105861A1 WO2020105861A1 PCT/KR2019/012540 KR2019012540W WO2020105861A1 WO 2020105861 A1 WO2020105861 A1 WO 2020105861A1 KR 2019012540 W KR2019012540 W KR 2019012540W WO 2020105861 A1 WO2020105861 A1 WO 2020105861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plastic
- copper
- solution
- plastics
- plated
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
- B29B2017/0213—Specific separating techniques
- B29B2017/0268—Separation of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2355/00—Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
- C08J2355/02—Acrylonitrile-Butadiene-Styrene [ABS] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/143—Feedstock the feedstock being recycled material, e.g. plastics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/52—Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a method of recycling plastics and valuable metals using plated plastics, and more specifically, to separate and collect plated metals (nickel, copper, and chromium) from by-products or plated waste plastics generated in the plating process. , It relates to a method of separating and recovering plastics. The process is simple, and it is easy to remove metal impurities such as Na and Ca as impurities, and utilizes plated plastics that can recover high-purity plastics, copper, nickel, and chromium. It relates to a method of recycling plastics and recovering valuable metals.
- Plating ABS plastic is not only high in hardness, but also glossy, and is widely used as exterior materials for automobiles, electrical and electronic products, and household products.
- the plastic silver plating layer is plated from the inside in the order of copper-nickel-chrome.
- the adhesion of chromium to the plastic is not good, so first plating copper and nickel on the plastic and then plating chromium on the surface ABS Manufacture plastic exterior materials.
- waste-plated ABS plastic is inevitably generated as a large amount of waste automobiles and waste electrical and electronic products where plated ABS plastic was used as an exterior material.
- the waste-plated ABS plastic generated in such a large amount is a valuable secondary resource for Korea, a resource-poor country, because it contains useful metals such as chromium, nickel, and copper as well as plastics.
- a technique that has been applied commercially for the recycling of waste-plated ABS plastic so far is to cut the waste-plated ABS plastic to an appropriate size and then pulverize to remove the plating layer from the ABS plastic surface and then recycle the plastic as raw material.
- the pulverization is performed to remove the plating layer from the waste-plated ABS plastic, 1 there are many fine plastic powders, so the plastic loss is serious, and the operating environment due to the fine powder is bad, 2 the components of the plating layer
- useful metals such as phosphorus copper, nickel, and chromium cannot be recovered.
- the total recovery technology that simultaneously recovers and recycles useful metals such as copper, nickel, and chromium, as well as plastics as a main component from waste-plated ABS plastic, which is a useful resource, not only maximizes recycling of resources, but also poisonous chemicals It is required as an alternative that satisfies environmental protection simultaneously by suppressing the use and emission of drugs.
- the present invention seeks to provide a method for efficiently recovering useful metal resources and plastics from plated waste plastics.
- the present invention for solving the above problems relates to a method for recycling plastics and recovering valuable metals, comprising: a first step of separating a plastic material and a metal ion solution (etching treatment solution) after acid treatment of the plated waste plastics; Recovering ABS, PC and mixtures thereof from the separated plastic material, and recovering chromium metal, copper compound powder, and nickel carbonate powder from the metal ion solution.
- etching treatment solution metal ion solution
- the present invention has an object to provide a recycled plastic recovered by the above method.
- the present invention has an object to provide a chromium metal recovered by the above method.
- an object of the present invention is to provide a copper compound powder comprising copper chloride powder and / or copper carbonate powder recovered by the above method.
- the present invention has an object to provide a nickel carbonate powder recovered by the above method.
- the present invention is very eco-friendly as it can efficiently recover and recycle useful plastics and metals from the discarded industrial waste, plated waste plastics.
- FIG. 1 is a schematic diagram sequentially showing a method of recycling plastics and recovering valuable metals using plated waste plastic according to the present invention.
- Figure 2 is a schematic diagram showing the separation of the plastic and valuable metal by using the etching solution from the plated plastic according to the present invention.
- Figure 3a is a schematic diagram for separating the plastic using the specific gravity selection from the mixed plastic according to the present invention.
- FIG. 3B is a photograph of ABS material plastic and PC material plastic obtained and recycled by specific gravity selection in Example 2.
- FIG. 4 is a schematic diagram for separating the etchant (Ni, Cu) and Cr from which the valuable metal is leached according to the present invention.
- FIG. 5 is a schematic view of separating Cu and Ni using an ion exchange resin from an etching solution (Ni, Cu) in which the valuable metal according to the present invention is leached.
- Figure 6 is a schematic diagram for recovering the separated Cu by using the ion exchange resin according to the present invention as a Cu compound or by adding Na 2 CO 3 to copper carbonate.
- FIG. 7 is a schematic view of recovering nickel into nickel carbonate powder by adding Na 2 CO 3 to Ni separated using the ion exchange resin according to the present invention.
- the present invention recovers high-value plastics (eg, acrylonitrile-butadiene-styrene (ABS) plastics, PC (polycarbonate) plastics, PC and ABS synthetic plastics, etc.) from plated waste plastics, and furthermore, copper metal , Nickel metal and chromium metal is an eco-friendly invention to recover and recycle.
- ABS acrylonitrile-butadiene-styrene
- PC polycarbonate plastics
- ABS synthetic plastics etc.
- the present invention is an acid treatment of the waste plastic plated with a metal containing copper, nickel, and chromium with an etching solution to form plastic suspended matter, metal ions and chromium precipitates that are not soluble in the acid from the waste plastic, and then separate and separate each of them.
- Plastic, copper, nickel and chromium can be recovered respectively by treatment.
- the present invention is a first step of producing an etching treatment solution by acid treatment of the plated waste plastic with an etching solution; A second step of removing and recovering a plastic float from the etching treatment liquid; A third step of filtering and removing the chromium metal as a precipitate by filtering the etching treatment liquid from which the suspended solids have been removed, thereby obtaining a leaching liquid; Four steps to adjust the pH of the leach solution; 5 steps of ion-exchanging the pH-adjusted leachate with an ion exchange resin to obtain an ion exchange treatment solution from which copper ions in the leachate are removed; 6 steps of recovering copper ions adsorbed on the ion exchange resin as a copper compound solution, and reacting the ion exchange treatment solution with sodium carbonate to produce and obtain nickel carbonate; And washing and drying the obtained nickel carbonate to obtain a nickel carbonate powder; a process including the same may be performed (refer to the schematic process schematic diagram of FIG. 1).
- the etching solution may include 10.00 to 25.00% by weight of sulfuric acid, 5 to 15% by weight of etching aid, and residual water, preferably 10.00 to 20.00% by weight of sulfuric acid, 7 to 12% by weight of etching aid, and At this time, if the concentration of the sulfuric acid is less than 10% by weight, the remaining amount of water may not readily dissolve metals such as copper and nickel contained in the waste plastic. In addition, if the concentration of the etching aid is less than 5% by weight, metals such as copper and nickel may not be dissolved well, and there may be a problem that the processing time increases, and when it exceeds 15% by weight, the process cost increases. There may be.
- the concentration of the etching aid is less than 5% by weight, metals such as copper and nickel may not be well dissolved, and there may be a problem that the process time increases, and if it exceeds 15% by weight, there may be a problem that the process cost increases. It is possible to use within the above range.
- the etching aid is a peroxide; Sodium sulfate (Na 2 SO 3 ); Alternatively, hydrogen peroxide and sodium sulfate may be included in a weight ratio of 1: 1 to 1.5, and preferably in a weight ratio of 1: 1 to 1.2.
- the acid-treated step of the etching treatment solution includes a plastic suspension, a leaching solution containing nickel ions and copper ions, and a precipitate, wherein the plastic suspension is ABS (acrylonitrile-butadiene-styrene) plastic, PC (polycarbonate) Material plastics, PC and ABS synthetic plastics (hereinafter referred to as "PC / ABS plastics") and other unavoidable impurities.
- the plastic suspension is ABS (acrylonitrile-butadiene-styrene) plastic, PC (polycarbonate) Material plastics, PC and ABS synthetic plastics (hereinafter referred to as "PC / ABS plastics") and other unavoidable impurities.
- the leachate may contain other unavoidable impurities in addition to nickel ions and copper ions
- the precipitate may contain chromium metal and other unavoidable impurities.
- the etching treatment solution of the acid-treated step 1 is 3 to 12% by weight of nickel (Ni), 6 to 14% by weight of copper (Cu), 0.10 to 2.5% by weight of chromium (Cr) and the remaining amount in scrap except liquid It may include a plastic float, preferably, 3.50 ⁇ 10.50% by weight of nickel in the scrap, 6.80 ⁇ 12.60% by weight of copper, 0.12 ⁇ 2.2% by weight of chromium, and a residual amount of plastic float, more preferably scrap It may include 3.58 to 10.20% by weight of nickel, 6.90 to 12.00% by weight of copper, 0.14 to 1.70% by weight of chromium, and a residual amount of plastic suspension.
- Ni nickel
- Cu copper
- Cr chromium
- the scrap is nickel, copper, chromium, and other unavoidable traces of impurities (eg, calcium, cobalt, iron, potassium, magnesium, sodium, tin, zinc, metal, plastic, or other plastic materials) Etc.).
- impurities eg, calcium, cobalt, iron, potassium, magnesium, sodium, tin, zinc, metal, plastic, or other plastic materials
- the second step is a step of recovering the plastic suspended solids from the etching treatment liquid, and the recovered plastic suspended solids may be recovered by plastics having different specific gravity (refer to the schematic process schematic diagrams of FIGS. 2 and 3).
- ABS material plastics have a specific gravity of 1.05 or less
- PC material plastics have a specific gravity greater than 1.18
- PC / ABS usually have a specific gravity of about 1.10 to 1.15. And recovering.
- the solution of the specific gravity of 1.06 to 1.09 and the specific gravity of 1.16 to 1.18 in step 2-1 may use an aqueous sulfuric acid solution, and the specific gravity may be adjusted by adjusting the sulfuric acid concentration of the aqueous sulfuric acid solution.
- an aqueous 12% by weight sulfuric acid solution has a specific gravity of about 1.08.
- step 3 filters the precipitated chromium metal (which is insoluble in the etching solution) from the etching treatment liquid from which the plastic suspended solids are removed and recovered, removes and removes the chromium metal from the etching treatment liquid, and recovers the leachate from which the precipitate is removed. It is a process to obtain.
- the filtering may be performed by a general filtering method used in the art, and for a preferred example, the filtering of the steps may be performed using a filter press (refer to the schematic process schematic diagram of FIG. 4).
- the leaching solution in three steps may include copper ions and nickel ions.
- the leachate may include 12,000 to 50,000 ppm of copper ions and 7,000 to 30,000 ppm of nickel ions, preferably 14,000 to 40,000 ppm of copper ions and 8,000 to 25,000 ppm of nickel ions, and more preferably 14,500 to 35,000 ppm of copper ions. And 8,500 to 25,000 ppm of nickel ions.
- the leach solution may contain other metal impurities in addition to copper ions and nickel ions.
- the leachate is 50 ppm or less of calcium (Ca) ion, 10 ppm or less of cobalt (Co) ion, 5 ppm or less of chromium (Cr) ion, 100 ppm or less of iron (Fe) ion, 5 ppm or less of potassium (K) ion, magnesium ( Mg) 5 ppm or less of ions, 40 ppm or less of sodium (Na) ions, 50 ppm or less of zinc (Zn) ions, and the leachate is preferably 25 ppm or less of Ca ions, 5 ppm or less of Co ions, 4 ppm or less of Cr ions, Fe ions 50 ppm or less, K ion 4 ppm or less, Mg ion 3.5 ppm or less, Na ion 25 ppm or less, Zn ion
- step 4 is a step of adjusting the pH before the ion exchange treatment of the leachate from which the precipitate has been removed.
- the leachate is strongly acidic with a pH of 0.7 or less, and it cannot be subjected to ion exchange treatment immediately. Therefore, NaOH is added to the leach solution to adjust the pH to 1.80 to 2.2, preferably to pH 1.90 to 2.1.
- the pH is less than 1.8, the pH is too low, and there may be a problem that the copper adsorption amount of the ion exchange resin is low during the ion exchange treatment or the process time increases.
- the pH exceeds 2.2 a part of nickel is adsorbed on the ion exchange resin. There may be a problem of nickel loss.
- step 5 is a process of obtaining an ion exchange treatment solution in which copper ions in the leach solution are removed by ion-exchanging the pH-adjusted leach solution with an ion exchange resin (refer to the schematic process schematic diagram of FIG. 5).
- the ion exchange treatment can be carried out by a general method used in the art, preferably by using HIDA (iminodiacetic acid) ion exchange resin, a preferred embodiment, for example, 1.0 ⁇ 1L per etchant
- HIDA iminodiacetic acid
- the copper ions can be separated from the leach by adsorbing copper ions on the ion exchange resin by circulating the etching solution in 1.5 L HIDA-based ion exchange resin for 1 to 4 hours, preferably 1.5 to 2.5 hours.
- the ion exchange treatment solution after the ion exchange treatment is performed may include a nickel ion content of 7,000 to 30,000 ppm, preferably a nickel ion content of 8,000 to 28,000 ppm, more preferably 8,500 to 26,000 ppm.
- the ion exchange treatment liquid may contain a very small amount of impurities in addition to nickel ions.
- the ion exchange treatment solution is 50 ppm or less of calcium (Ca) ion, 10 ppm or less of cobalt (Co) ion, 5 ppm or less of chromium (Cr) ion, 5 ppm or less of copper (Cu) ion, 100 ppm or less of iron (Fe) ion, potassium ( K) 5 ppm or less of ion, 5 ppm or less of magnesium (Mg) ion, 40 ppm or less of sodium (Na) ion, 50 ppm or less of zinc (Zn) ion, preferably 25 ppm or less of Ca ion, 5 ppm or less of Co ion, Cr ion 4 ppm or less, Cu ion 3 ppm or less, Fe ion 50 ppm or less, K ion 4 ppm or less,
- the recovery of the copper compound solution in step 6 is performed by pickling the ion-exchange resin adsorbed with copper ions with an acidic aqueous solution to obtain a solution containing CuCl 2 or CuSO 4 in the pickling solution pickled by the ion-exchange resin, and then filtering it.
- the copper metal can be recovered in the form of a copper compound of CuCl 2 or CuSO 4 by washing (refer to the schematic process schematic diagram of FIG. 6).
- the ion-exchange resin on which copper ions are adsorbed is pickled with an aqueous HCl solution at a concentration of 10 to 20% by weight, preferably HCl at a concentration of 10 to 15% by weight, to obtain an pickling solution containing CuCl 2 ,
- the ion exchange resin can be regenerated.
- the ion exchange resin adsorbed by copper ions is pickled with an H 2 SO 4 aqueous solution having a concentration of 10 to 20% by volume, preferably an H 2 SO 4 aqueous solution having a concentration of 10 to 15% by volume, and an acid containing CuSO 4 Obtaining a washing solution and regenerating the ion exchange resin; Generating and recovering copper carbonate (CuCO 3 ) by mixing, stirring, and reacting sodium carbonate (Na 2 CO 3 ) in the pickling solution containing CuSO 4 ; And washing and drying the recovered copper carbonate to obtain a copper carbonate powder; a copper compound may be recovered in the form of copper carbonate and copper metal may be recovered therefrom.
- the reaction for the production of copper carbonate (CuCO 3 ) is based on 100 parts by weight of the pickling solution containing CuSO 4 , the addition of sodium carbonate to the copper content in the pickling solution in a molar ratio of 1: 1 to 1: 1.5, preferably The addition of sodium carbonate to the copper content in the pickling solution can be reacted by mixing in a molar ratio of 1: 1.2 to 1: 1.4. At this time, if the amount of sodium carbonate used is less than 1: 1 molar ratio, the amount of copper carbonate may be reduced because the amount is too small, and if the amount of sodium carbonate used exceeds 1: 1.5 molar ratio, the process cost may increase. .
- the copper carbonate thus obtained may be recovered in powder form, and the copper content in the copper carbonate powder may be 20 to 30% by weight, preferably 22 to 27% by weight.
- the copper carbonate powder may include nickel, iron, potassium, and sodium in addition to copper, and preferably the copper carbonate powder may contain 100 ppm or less of nickel, 80 ppm or less of iron, 20 ppm or less of potassium, and 500 ppm or less of sodium in addition to copper. In addition, more preferably, it may contain 10 to 80 ppm of nickel, 0.1 to 55 ppm of iron, 0.5 to 15 ppm of potassium, and 10 to 340 ppm of sodium.
- copper recovered in the form of a copper compound may recover copper metal by a general method used in the art.
- the ion exchange treatment solution in which ion exchange treatment was performed in step 6 to remove copper ions from the leach solution includes nickel ions.
- the ion exchange treatment solution can react with sodium carbonate (Na 2 CO 3 ) to produce and obtain nickel carbonate. (See schematic process schematic diagram in FIG. 7).
- the reaction product containing nickel carbonate is filtered, and after the nickel carbonate is separated, it is washed and dried to obtain NiCO 3 in powder form.
- the obtained nickel carbonate may contain nickel in a high purity with a nickel content of 30 to 45% by weight, preferably 35 to 40% by weight.
- the obtained nickel carbonate powder may include aluminum, calcium, cobalt, chromium, copper, iron, magnesium, and sodium in addition to nickel carbonate, specifically aluminum 15 ppm or less, calcium 180 ppm or less, cobalt 20 ppm or less, chromium 10 ppm or less , 40ppm or less of copper, 50ppm or less of iron, 20ppm or less of magnesium, and 450ppm or less of sodium, more preferably 1 to 12ppm of aluminum, 20 to 120ppm of calcium, 0.5 to 15ppm of cobalt, 0.1 to 6ppm of chromium, and 5 to 30ppm of copper , 5 ⁇ 40ppm iron, 1 ⁇ 12ppm magnesium and 20 ⁇ 350ppm sodium can contain only a very small amount.
- High value-added plastics such as ABS, PC, and PC / ABS
- ABS high value-added plastics
- copper compounds such as chromium metal, copper chloride powder or copper carbonate powder and nickel carbonate powder can be recovered and recycled from the plated waste plastic
- copper metal and nickel metal can be recovered from the copper compounds and nickel carbonate powder.
- Example 1 the step of separating the plastic and the valuable metal was performed using an etchant from the plated plastic (see FIG. 2).
- an aqueous solution of sulfuric acid and aqueous hydrogen peroxide was mixed with water to prepare an etching solution containing 20% by weight of sulfuric acid, 10% by weight of hydrogen peroxide, and water of residual water.
- Etching was performed for a time.
- the mixed sulfuric acid aqueous solution and hydrogen peroxide solution in the etching solution are shown in Table 1 below.
- the etching treatment solution contained plastic suspended solids, sediment chromium metal, and copper, nickel and other metal impurities dissolved in the etching treatment solution.
- Table 1 shows the contents of plastic, chromium, nickel, and copper in the scrap except for the liquid phase of the etching treatment liquid.
- ABS, PC / ABS, and PC plastics are generally mixed, and when melted and recycled at one time, the properties of each plastic are mixed to lower the value of the product.
- the mixed plastics (ABS, PC / ABS, PC) as shown in FIG. 3 are prepared by preparing two solutions having a specific gravity of 1.07 and a specific gravity of 1.18 by adjusting the concentration of sulfuric acid, and then using these, ABS, PC / ABS in the mixed plastic. , PC was separated.
- the ABS material plastics float, and the PC material plastics and PC / ABS plastics having a specific gravity exceeding 1.07 precipitate. From this, the ABS material, which is a floating material, was obtained by separating and obtaining plastic, and then filtering the precipitate.
- Table 2 is a table showing the results of adjusting the specific gravity of the solution. Looking at the table, it can be seen that only ABS is floating at a specific gravity of 1.07, and PC / ABS and PC settle. At a specific gravity of 1.18, it can be seen that ABS and PC / ABS float and PC precipitates.
- ABS only pure ABS can be recovered at a specific gravity of 1.07
- PC / ABS can be recovered at a specific gravity of 1.18 after ABS removal and the rest of the PC can be recovered.
- ABS ABS / PC PC 1.07 floating Sedimentation Sedimentation 1.18 floating floating Sedimentation
- Example 1 After removing the plastic as a floating material in Example 1, the chromium metal was recovered as follows from the etching treatment solution (Samples 1 to 3).
- the etchant was filtered (filtered) to separate the precipitated chromium metal from the etchant.
- Table 3 shows the results of the component analysis of the etching treatment solution after filtering. Looking at Table 3, after filtering, it can be seen that there are almost no chromium components in the etching treatment solution.
- Example 4 Ion exchange treatment (separation of copper and nickel)
- Example 3 each of the etching treatment solutions (samples 1 to 3) containing chromium-free copper ions and nickel ions was subjected to ion exchange treatment to separate copper and nickel using ion exchange resin.
- the pH of the etching solution was adjusted to 2 by adding it to the etching solution using caustic soda.
- copper adsorbed on the ion exchange resin was recovered as a copper compound solution and copper carbonate was prepared by adding sodium carbonate to the recovered copper compound.
- a strong acidic solution having a concentration of 10% by volume or more is required.
- the solution is recovered as a solution of CuCl 2 , and an ion exchange resin using an aqueous organic acid solution having a concentration of 10% by volume or more.
- Desorption of the copper adsorbed to the recovered solution can be recovered in the form of organic copper.
- Example 5 the 10% by volume concentration of H 2 SO 4 accommodated was passed through an ion exchange resin adsorbed by copper to desorb copper and regenerate the ion exchange resin to recover the CuSO 4 solution.
- the prepared copper carbonate was washed 3 times using 1 L of distilled water and dried in an oven at 60 ° C. for 8 hours to obtain copper carbonate powder. Then, the components of the obtained copper carbonate were analyzed, and the results are shown in Table 6 below. Looking at Table 6, it can be seen that copper carbonate having a high purity of 25% by weight or more of Cu was produced.
- Na 2 CO 3 was added to the separated ion exchange treatment solution using an ion exchange resin to synthesize and obtain nickel carbonate.
- Example 4 after the ion exchange treatment, Na 2 CO 3 was added to the ion exchange treatment solution (samples 1 to 3) to prepare NiCO 3 .
- the amount of Na 2 CO 3 ratio is theoretically 1: NiCO 3 was synthesized and prepared by adding a proportion of 1.5: 1 instead of 1 ratio.
- NiCO 3 obtained by filtering was washed three times with 1 L of distilled water, and then dried in an oven at 60 ° C. for 8 hours to obtain NiCO 3 powder.
- ABS high value-added useful plastics
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
The present invention relates to a method for reusing plastic and recovering valuable metals using plated plastic and, more specifically, to a method for separating and recovering plated metals (nickel, copper, chromium) and separating and recovering plastic from by-products or plated waste plastic generated from a plating process, wherein the process is simple and metal impurities such as Na, Ca, etc. are easily removed as impurities such that high-purity plastic, copper, nickel, and chromium can be recovered.
Description
본 발명은 도금된 플라스틱을 활용한 플라스틱 재이용 및 유가금속 회수방법에 관한 것으로서, 더욱 상세하게는 도금 과정에서 발생된 부산물 또는 도금된 폐플라스틱으로부터 도금된 금속(니켈, 구리, 크롬)을 분리 회수하고, 플라스틱을 분리 회수하는 방법에 관한 것으로, 공정이 단순하며, 불순물로서 Na, Ca 등의 금속불순물의 제거가 용이하여 고순도의 플라스틱, 구리, 니켈 및 크롬을 회수할 수 있는 도금된 플라스틱을 활용한 플라스틱 재이용 및 유가금속 회수방법에 관한 것이다.The present invention relates to a method of recycling plastics and valuable metals using plated plastics, and more specifically, to separate and collect plated metals (nickel, copper, and chromium) from by-products or plated waste plastics generated in the plating process. , It relates to a method of separating and recovering plastics. The process is simple, and it is easy to remove metal impurities such as Na and Ca as impurities, and utilizes plated plastics that can recover high-purity plastics, copper, nickel, and chromium. It relates to a method of recycling plastics and recovering valuable metals.
도금 ABS 플라스틱은 경도가 높을 뿐만 아니라 광택이 유려하여 자동차, 전기전자 제품 그리고 생활제품의 외장재로 널리 사용되고 있다. 플라스틱은 도금 층은 안쪽으로부터 구리-니켈-크롬 순으로 도금되어 있다. 표면재료로서 경도가 높고 광택이 뛰어난 금속 크롬의 특성을 이용하여 도금 플라스틱 외장재를 제조함에 있어서 플라스틱에 대한 크롬의 접착력이 좋지 않으므로 먼저 플라스틱에 구리와 니켈을 도금한 다음 표면에 크롬을 도금하여 도금 ABS 플라스틱 외장재를 제조한다.Plating ABS plastic is not only high in hardness, but also glossy, and is widely used as exterior materials for automobiles, electrical and electronic products, and household products. The plastic silver plating layer is plated from the inside in the order of copper-nickel-chrome. When manufacturing a plated plastic exterior material using the properties of metal chromium with high hardness and excellent gloss as a surface material, the adhesion of chromium to the plastic is not good, so first plating copper and nickel on the plastic and then plating chromium on the surface ABS Manufacture plastic exterior materials.
한편 최근 들어 도금 ABS 플라스틱이 외장재로 사용되었던 폐자동차와 폐전기전자제품이 대량으로 발생함에 따라 필연적으로 폐도금 ABS 플라스틱이 대량으로 발생하고 있다. 이와 같이 대량으로 발생하는 폐도금 ABS 플라스틱에는 플라스틱뿐만 아니라 크롬, 니켈, 구리 등과 같은 유용금속이 함유되어 있기 때문에 자원 빈국인 우리나라로서는 매우 귀중한 2차 자원이다.On the other hand, in recent years, a large amount of waste-plated ABS plastic is inevitably generated as a large amount of waste automobiles and waste electrical and electronic products where plated ABS plastic was used as an exterior material. The waste-plated ABS plastic generated in such a large amount is a valuable secondary resource for Korea, a resource-poor country, because it contains useful metals such as chromium, nickel, and copper as well as plastics.
지금까지 폐도금 ABS 플라스틱의 재자원화를 위하여 상용적으로 적용되고 있는 기술은 폐도금 ABS 플라스틱을 적절한 크기로 절단한 다음 분쇄를 행하여 ABS 플라스틱 표면으로부터 도금 층을 제거한 다음 플라스틱을 원재료로 재활용하는 것이다. 그러나 이 방법은 폐도금 ABS 플라스틱으로부터 도금 층을 제거하기 위하여 분쇄를 행함에 따라 ① 미세한 플라스틱 분말의 발생이 많아서 플라스틱의 손실이 심각할 뿐만 아니라 미세분말로 인한 조업환경이 나쁘고, ② 도금 층의 성분인 구리, 니켈, 크롬 등과 같은 유용금속들을 회수하지 못하고 있다는 단점이 있다.A technique that has been applied commercially for the recycling of waste-plated ABS plastic so far is to cut the waste-plated ABS plastic to an appropriate size and then pulverize to remove the plating layer from the ABS plastic surface and then recycle the plastic as raw material. However, in this method, as the pulverization is performed to remove the plating layer from the waste-plated ABS plastic, ① there are many fine plastic powders, so the plastic loss is serious, and the operating environment due to the fine powder is bad, ② the components of the plating layer There is a disadvantage that useful metals such as phosphorus copper, nickel, and chromium cannot be recovered.
이러한 단점을 보완하기 위하여 대한민국 특허 10-0658697(등록일자 2006년12월11일, 출원번호 10-2004-0040951)에서는 염산용액(HCl 용액)과 염화제이철용액(FeCl3 용액)을 사용하여 폐도금 ABS 플라스틱으로부터 도금 층을 박리하고 플라스틱을 회수하는 기술이 제안되었으나 폐염산용액과 폐염화제이철용액이 대량으로 발생하여 환경문제를 야기하는 단점이 있다. 또한 플라스틱만 회수할 뿐, 도금 층으로부터 구리, 니켈, 크롬 등과 같은 유용금속들을 회수하지 못하고 있다는 단점이 있다.To compensate for this disadvantage, in Korean patent 10-0658697 (registration date December 11, 2006, application number 10-2004-0040951), waste plating using hydrochloric acid solution (HCl solution) and ferric chloride solution (FeCl 3 solution) A technique of peeling the plating layer from ABS plastic and recovering the plastic has been proposed, but there is a disadvantage in that a large amount of waste hydrochloric acid solution and waste ferric chloride solution occur, causing environmental problems. In addition, only plastics are recovered, and there is a disadvantage that useful metals such as copper, nickel, and chromium are not recovered from the plating layer.
한편 대한민국 등록특허 10-1521554호(등록일자 2015년05월13일, 출원번호 10-2013-0137910)에서는 인계 추출제 및 환원제를 이용하여 니켈을 침출하여 분리하고, 산성 에칭용액을 이용하여 구리를 추출하여 분리함으로써, 고순도의 니켈 산화물과 구리산화물을 선택적으로 회수하는 방법을 제안하였다. 본 방법은 공정이 복잡하고 니켈과 구리를 침출하고 분리하기 위하여 인계추출제 및 산성 에칭용액을 이용함으로서 플라스틱에 손상을 주어서 재활용을 어렵게 할 수 있다. 또한 금속은 회수하고 있지만 플라스틱은 회수하지 못하고 있다.Meanwhile, in Korean Patent Registration No. 10-1521554 (Registration Date May 13, 2015, Application No. 10-2013-0137910), nickel is leached and separated using a phosphorus-based extractant and a reducing agent, and copper is removed using an acidic etching solution. A method of selectively recovering high purity nickel oxide and copper oxide by extraction and separation is proposed. The method is complicated, and the use of a phosphorus extractant and an acid etching solution to leach and separate nickel and copper can damage plastics and make recycling difficult. Also, metal is being recovered, but plastic is not.
따라서 전술한 바와 같이 유용한 자원인 폐도금 ABS 플라스틱으로부터 주성분인 플라스틱뿐만 아니라 구리, 니켈, 크롬 등과 같은 유용금속들도 동시에 회수하여 재자원화하는 토탈 회수 기술이 자원의 재활용을 최대화할 뿐만 아니라 유독한 화학약품의 사용 및 배출의 억제에 따른 환경보호를 동시에 만족하는 대안으로 요구되고 있다.Therefore, as described above, the total recovery technology that simultaneously recovers and recycles useful metals such as copper, nickel, and chromium, as well as plastics as a main component from waste-plated ABS plastic, which is a useful resource, not only maximizes recycling of resources, but also poisonous chemicals It is required as an alternative that satisfies environmental protection simultaneously by suppressing the use and emission of drugs.
본 발명은 도금된 폐플라스틱으로부터 유용한 금속 자원 및 플라스틱을 효율적으로 회수하는 방법을 제공하고자 한다.The present invention seeks to provide a method for efficiently recovering useful metal resources and plastics from plated waste plastics.
상기 과제를 해결하기 위한 본 발명은 플라스틱 재이용 및 유가금속 회수방법에 관한 것으로서, 도금된 폐플라스틱을 산 처리한 후, 플라스틱 소재와 금속 이온 용해액(에칭 처리액)을 분리하는 1단계; 분리된 플라스틱 소재로부터 ABS, PC 및 이들의 혼합물을 회수하고, 상기 금속 이온 용해액으로부터 크롬금속, 구리화합물 분말 및 탄산니켈 분말을 회수하는 단계;를 포함하는 공정을 수행할 수 있다.The present invention for solving the above problems relates to a method for recycling plastics and recovering valuable metals, comprising: a first step of separating a plastic material and a metal ion solution (etching treatment solution) after acid treatment of the plated waste plastics; Recovering ABS, PC and mixtures thereof from the separated plastic material, and recovering chromium metal, copper compound powder, and nickel carbonate powder from the metal ion solution.
또한, 본 발명은 상기 방법으로 회수한 재활용 플라스틱을 제공하는데 목적이 있다.In addition, the present invention has an object to provide a recycled plastic recovered by the above method.
또한, 본 발명은 상기 방법으로 회수한 크롬금속을 제공하는데 목적이 있다.In addition, the present invention has an object to provide a chromium metal recovered by the above method.
또한, 본 발명은 상기 방법으로 회수한 염화구리 분말 및/또는 탄산구리 분말을 포함하는 구리화합물 분말을 제공하는데 목적이 있다.In addition, an object of the present invention is to provide a copper compound powder comprising copper chloride powder and / or copper carbonate powder recovered by the above method.
또한, 상기 구리화합물 분말로부터 회수한 구리금속을 제공하는데 목적이 있다.In addition, there is an object to provide a copper metal recovered from the copper compound powder.
또한, 본 발명은 상기 방법으로 회수한 탄산니켈 분말을 제공하는데 목적이 있다.In addition, the present invention has an object to provide a nickel carbonate powder recovered by the above method.
또한, 상기 탄산니켈 분말로부터 회수한 니켈금속을 제공하는데 목적이 있다.In addition, there is an object to provide a nickel metal recovered from the nickel carbonate powder.
본 발명은 버려지던 산업폐기물인 도금된 폐플라스틱으로부터 유용한 플라스틱 및 금속을 효율적으로 회수 및 재활용할 수 있는 바, 매우 친환경적이다.The present invention is very eco-friendly as it can efficiently recover and recycle useful plastics and metals from the discarded industrial waste, plated waste plastics.
도 1은 본 발명에 따른 도금된 폐플라스틱을 활용한 플라스틱 재이용 및 유가금속 회수방법을 순차적으로 도시한 모식도이다.1 is a schematic diagram sequentially showing a method of recycling plastics and recovering valuable metals using plated waste plastic according to the present invention.
도 2는 본 발명에 따른 도금된 플라스틱으로부터 에칭액을 이용하여 플라스틱과 유가금속을 분리한 것을 도시한 모식도이다.Figure 2 is a schematic diagram showing the separation of the plastic and valuable metal by using the etching solution from the plated plastic according to the present invention.
도 3a는 본 발명에 따른 혼재된 플라스틱으로부터 비중선별을 이용하여 플라스틱을 분리하는 모식도이다.Figure 3a is a schematic diagram for separating the plastic using the specific gravity selection from the mixed plastic according to the present invention.
도 3b는 실시예 2에서 비중선별하여 수득 및 재활용되는 ABS 소재 플라스틱 및 PC 소재 플라스틱을 찍은 사진이다.3B is a photograph of ABS material plastic and PC material plastic obtained and recycled by specific gravity selection in Example 2. FIG.
도 4는 본 발명에 따른 유가금속이 침출된 에칭액(Ni, Cu)과 Cr을 분리하는 모식도이다.4 is a schematic diagram for separating the etchant (Ni, Cu) and Cr from which the valuable metal is leached according to the present invention.
도 5는 본 발명에 따른 유가금속이 침출된 에칭액(Ni, Cu)으로부터 이온교환수지를 이용하여 Cu와 Ni을 분리하는 모식도이다.5 is a schematic view of separating Cu and Ni using an ion exchange resin from an etching solution (Ni, Cu) in which the valuable metal according to the present invention is leached.
도 6는 본 발명에 따른 이온교환수지를 이용하여 분리된 Cu를 Cu화합물로 회수하거나 Na2CO3를 첨가하여 탄산구리로 회수하는 모식도이다.Figure 6 is a schematic diagram for recovering the separated Cu by using the ion exchange resin according to the present invention as a Cu compound or by adding Na 2 CO 3 to copper carbonate.
도 7는 본 발명에 따른 이온교환수지를 이용하여 분리된 Ni를 Na2CO3를 첨가하여 니켈을 탄산니켈 분말로 회수하는 모식도이다.7 is a schematic view of recovering nickel into nickel carbonate powder by adding Na 2 CO 3 to Ni separated using the ion exchange resin according to the present invention.
본 발명을 이하에서 구체적으로 설명한다.The present invention is specifically described below.
본 발명은 도금된 폐플라스틱으로부터 고부가가지의 플라스틱(예를 들면, ABS(acrylonitrile-butadiene-styrene) 소재 플라스틱, PC(polycarbonate) 소재 플라스틱, PC와 ABS 합성 플라스틱 등)을 회수하고, 또한, 구리금속, 니켈금속 및 크롬금속을 회수하여 재활용하는 친환경적인 발명이다.The present invention recovers high-value plastics (eg, acrylonitrile-butadiene-styrene (ABS) plastics, PC (polycarbonate) plastics, PC and ABS synthetic plastics, etc.) from plated waste plastics, and furthermore, copper metal , Nickel metal and chromium metal is an eco-friendly invention to recover and recycle.
본 발명은 구리, 니켈 및 크롬을 포함하는 금속 등으로 도금된 폐플라스틱을 에칭액으로 산처리하여 폐플라스틱으로부터 플라스틱 부유물, 금속이온 및 산에 용해되지 않는 크롬 침전물을 형성시킨 후, 이들 각각을 분리 및 처리하여 플라스틱, 구리, 니켈 및 크롬을 각각 회수할 수 있다.The present invention is an acid treatment of the waste plastic plated with a metal containing copper, nickel, and chromium with an etching solution to form plastic suspended matter, metal ions and chromium precipitates that are not soluble in the acid from the waste plastic, and then separate and separate each of them. Plastic, copper, nickel and chromium can be recovered respectively by treatment.
구체적으로는 본 발명은 도금된 폐플라스틱을 에칭액으로 산처리하여 에칭 처리액을 제조하는 1단계; 상기 에칭 처리액으로부터 플라스틱 부유물을 제거 및 회수하는 2단계; 부유물이 제거된 에칭 처리액을 필터링하여 침전물인 크롬 금속을 제거 및 회수하여, 침출액을 수득하는 3단계; 상기 침출액의 pH를 조절하는 4단계; pH 조절된 침출액을 이온교환수지로 이온교환처리하여 침출액 내 구리이온이 제거된 이온교환 처리액을 수득하는 5단계; 이온교환수지에 흡착된 구리이온을 구리화합물 용액으로 회수하고, 이온교환 처리액을 탄산나트륨과 반응시켜 탄산니켈을 생성 및 수득하는 6단계; 및 수득한 탄산니켈을 세척 및 건조하여 탄산니켈 분말을 수득하는 7단계;를 포함하는 공정을 수행할 수 있다(도 1의 개략적인 공정 모식도 참조).Specifically, the present invention is a first step of producing an etching treatment solution by acid treatment of the plated waste plastic with an etching solution; A second step of removing and recovering a plastic float from the etching treatment liquid; A third step of filtering and removing the chromium metal as a precipitate by filtering the etching treatment liquid from which the suspended solids have been removed, thereby obtaining a leaching liquid; Four steps to adjust the pH of the leach solution; 5 steps of ion-exchanging the pH-adjusted leachate with an ion exchange resin to obtain an ion exchange treatment solution from which copper ions in the leachate are removed; 6 steps of recovering copper ions adsorbed on the ion exchange resin as a copper compound solution, and reacting the ion exchange treatment solution with sodium carbonate to produce and obtain nickel carbonate; And washing and drying the obtained nickel carbonate to obtain a nickel carbonate powder; a process including the same may be performed (refer to the schematic process schematic diagram of FIG. 1).
1단계에 있어서, 상기 에칭액은 황산 10.00 ~ 25.00 중량%, 에칭 보조제 5 ~ 15 중량% 및 잔량의 물을 포함할 수 있으며, 바람직하게는 황산 10.00 ~ 20.00 중량%, 에칭 보조제 7 ~ 12 중량% 및 잔량의 물을 이때, 상기 황산의 농도가 10 중량% 미만이면 폐플라스틱에 함유된 구리, 니켈 등의 금속이 잘 용해되지 않을 수 있다. 그리고, 상기 에칭 보조제의 농도가 5 중량% 미만이면 구리, 니켈 등의 금속이 잘 용해되지 않을 수 있으며, 공정시간이 증가하는 문제가 있을 수 있고, 15 중량%를 초과하면 공정비용이 증가하는 문제가 있을 수 있다. 또한, 에칭 보조제 농도가 5 중량% 미만이면 구리, 니켈 등의 금속이 잘 용해되지 않을 수 있으며, 공정시간이 증가하는 문제가 있을 수 있고, 15 중량%를 초과하면 공정비용이 증가하는 문제가 있을 수 있어, 상기 범위 내로 사용하는 것이 좋다.In step 1, the etching solution may include 10.00 to 25.00% by weight of sulfuric acid, 5 to 15% by weight of etching aid, and residual water, preferably 10.00 to 20.00% by weight of sulfuric acid, 7 to 12% by weight of etching aid, and At this time, if the concentration of the sulfuric acid is less than 10% by weight, the remaining amount of water may not readily dissolve metals such as copper and nickel contained in the waste plastic. In addition, if the concentration of the etching aid is less than 5% by weight, metals such as copper and nickel may not be dissolved well, and there may be a problem that the processing time increases, and when it exceeds 15% by weight, the process cost increases. There may be. In addition, if the concentration of the etching aid is less than 5% by weight, metals such as copper and nickel may not be well dissolved, and there may be a problem that the process time increases, and if it exceeds 15% by weight, there may be a problem that the process cost increases. It is possible to use within the above range.
그리고, 그리고, 상기 에칭 보조제는 과산화물; 황산나트륨(Na2SO3); 또는 과산화수소 및 황산나트륨 1 : 1 ~ 1.5 중량비로 포함할 수 있으며, 바람직하게는 1 : 1 ~ 1.2 중량비로 포함할 수 있다.And, the etching aid is a peroxide; Sodium sulfate (Na 2 SO 3 ); Alternatively, hydrogen peroxide and sodium sulfate may be included in a weight ratio of 1: 1 to 1.5, and preferably in a weight ratio of 1: 1 to 1.2.
산처리된 1단계의 상기 에칭 처리액은 플라스틱 부유물, 니켈 이온 및 구리 이온을 포함하는 침출액 및 침전물을 포함하며, 이때, 상기 플라스틱 부유물은 ABS(acrylonitrile-butadiene-styrene) 소재 플라스틱, PC(polycarbonate) 소재 플라스틱, PC와 ABS 합성 플라스틱(이하, "PC/ABS 플라스틱"으로 칭한다) 및 기타 불가피한 불순물을 포함할 수 있다. 또한, 상기 침출액은 니켈 이온 및 구리 이온 외에 기타 불가피한 불순물을 포함할 수 있으며, 상기 침전물에는 크롬 금속 및 기타 불가피한 불순물을 포함할 수 있다.The acid-treated step of the etching treatment solution includes a plastic suspension, a leaching solution containing nickel ions and copper ions, and a precipitate, wherein the plastic suspension is ABS (acrylonitrile-butadiene-styrene) plastic, PC (polycarbonate) Material plastics, PC and ABS synthetic plastics (hereinafter referred to as "PC / ABS plastics") and other unavoidable impurities. In addition, the leachate may contain other unavoidable impurities in addition to nickel ions and copper ions, and the precipitate may contain chromium metal and other unavoidable impurities.
산처리된 1단계의 상기 에칭 처리액은 액상을 제외한 스크랩(scrap) 내에 니켈(Ni) 3 ~ 12 중량%, 구리(Cu) 6 ~ 14 중량%, 크롬(Cr) 0.10 ~ 2.5 중량% 및 잔량의 플라스틱 부유물을 포함할 수 있으며, 바람직하게는 스크랩 내에 니켈 3.50 ~ 10.50 중량%, 구리 6.80 ~ 12.60 중량%, 크롬 0.12 ~ 2.2 중량% 및 잔량의 플라스틱 부유물을 포함할 수 있고, 더욱 바람직하게는 스크랩 내에 니켈 3.58 ~ 10.20 중량%, 구리 6.90 ~ 12.00 중량%, 크롬 0.14 ~ 1.70 중량% 및 잔량의 플라스틱 부유물을 포함할 수 있다.The etching treatment solution of the acid-treated step 1 is 3 to 12% by weight of nickel (Ni), 6 to 14% by weight of copper (Cu), 0.10 to 2.5% by weight of chromium (Cr) and the remaining amount in scrap except liquid It may include a plastic float, preferably, 3.50 ~ 10.50% by weight of nickel in the scrap, 6.80 ~ 12.60% by weight of copper, 0.12 ~ 2.2% by weight of chromium, and a residual amount of plastic float, more preferably scrap It may include 3.58 to 10.20% by weight of nickel, 6.90 to 12.00% by weight of copper, 0.14 to 1.70% by weight of chromium, and a residual amount of plastic suspension.
그리고, 상기 스크랩은 니켈, 구리, 크롬, 플라스틱 부유물 외에 기타 불가피한 극소량의 불순물(예를 들면, 칼슘, 코발트, 철, 칼륨, 마그네슘, 나트륨, 주석, 아연 등의 금속, ABS 또는 PC 소재 외의 플라스틱 소재 등)을 포함할 수도 있다.In addition, the scrap is nickel, copper, chromium, and other unavoidable traces of impurities (eg, calcium, cobalt, iron, potassium, magnesium, sodium, tin, zinc, metal, plastic, or other plastic materials) Etc.).
2단계는 에칭 처리액으로부터 플라스틱 부유물을 회수하는 단계인데, 회수한 플라스틱 부유물을 비중선별법으로 비중이 다른 플라스틱을 각각 회수할 수 있다(도 2 및 도 3의 개략적인 공정 모식도 참조).The second step is a step of recovering the plastic suspended solids from the etching treatment liquid, and the recovered plastic suspended solids may be recovered by plastics having different specific gravity (refer to the schematic process schematic diagrams of FIGS. 2 and 3).
구체적으로는, 상기 2단계에서 회수한 플라스틱 부유물을 비중 1.06 ~ 1.09의 용액에 투입 및 방치하는 2-1단계; 방치된 용액으로부터 부유물인 ABS 소재 플라스틱을 회수하는 2-2단계; ABS 소재 플라스틱이 회수된 용액의 비중을 1.16 ~ 1.18로 조절한 후, 방치하여 부유물인 PC와 ABS 합성 플라스틱(PC/ABS 플라스틱)을 회수하는 2-3단계; 및 PC와 ABS 합성 플라스틱이 회수된 용액으로부터 PC 소재 플라스틱을 회수하는 2-4단계;를 포함하는 공정을 더 수행하여 ABS 소재 플라스틱, PC 소재 플라스틱 및 PC/ABS 플라스틱을 각각 회수할 수 있다.Specifically, the 2-1 step of introducing and leaving the plastic suspended matter collected in the above step 2 in a solution having a specific gravity of 1.06 to 1.09; Step 2-2 of recovering the floating ABS material plastic from the neglected solution; Step 2-3 of adjusting the specific gravity of the solution from which the ABS material plastic is recovered to 1.16 to 1.18, and then recovering the floating PC and ABS synthetic plastic (PC / ABS plastic); And 2-4 steps of recovering the PC material plastic from the solution from which the PC and ABS synthetic plastics were recovered; respectively, the ABS material plastic, the PC material plastic, and the PC / ABS plastic may be recovered.
즉, ABS 소재 플라스틱은 비중이 1.05 이하이고, PC 소재 플라스틱은 비중이 1.18을 초과하며, PC/ABS는 보통 비중이 1.10 ~ 1.15 정도인 바, 이러한 비중 차이를 이용하여 이들 각각을 비중선별법으로 분리 및 회수하는 것이다.In other words, ABS material plastics have a specific gravity of 1.05 or less, PC material plastics have a specific gravity greater than 1.18, and PC / ABS usually have a specific gravity of about 1.10 to 1.15. And recovering.
그리고, 2단계에서 상기 2-1단계의 비중 1.06 ~ 1.09의 용액, 비중 1.16 ~ 1.18의 용액은 황산 수용액을 사용할 수 있으며, 황산 수용액의 황산 농도를 조절하여 비중을 조절할 수 있다. 예를 들면, 12 중량% 농도의 황산수용액은 비중이 약 1.08 정도이다.And, in step 2, the solution of the specific gravity of 1.06 to 1.09 and the specific gravity of 1.16 to 1.18 in step 2-1 may use an aqueous sulfuric acid solution, and the specific gravity may be adjusted by adjusting the sulfuric acid concentration of the aqueous sulfuric acid solution. For example, an aqueous 12% by weight sulfuric acid solution has a specific gravity of about 1.08.
다음으로, 3단계는 플라스틱 부유물이 제거 및 회수된 에칭 처리액으부터 침전물인 크롬 금속(에칭액에 불용성임)을 필터링시켜서 에칭 처리액으로부터 제거 및 크롬 금속을 분리, 회수하고, 침전물이 제거된 침출액을 수득하는 공정이다. 여기서, 상기 필터링은 당업계에서 사용하는 일반적인 필터링 방법으로 수행할 수 있으며, 바람직한 일례를 들면, 단계의 필터링은 필터프레스를 이용하여 필터링을 수행할 수 있다(도 4의 개략적인 공정 모식도 참조).Next, step 3 filters the precipitated chromium metal (which is insoluble in the etching solution) from the etching treatment liquid from which the plastic suspended solids are removed and recovered, removes and removes the chromium metal from the etching treatment liquid, and recovers the leachate from which the precipitate is removed. It is a process to obtain. Here, the filtering may be performed by a general filtering method used in the art, and for a preferred example, the filtering of the steps may be performed using a filter press (refer to the schematic process schematic diagram of FIG. 4).
그리고, 3단계의 상기 침출액은 구리이온 및 니켈이온을 포함할 수 있다. 상기 침출액은 구리이온 12,000 ~ 50,000ppm 및 니켈이온 7,000 ~ 30,000ppm을 포함할 수 있으며, 바람직하게는 구리이온 14,000 ~ 40,000ppm 및 니켈이온 8,000 ~ 25,000ppm을, 더욱 바람직하게는 구리이온 14,500 ~ 35,000ppm 및 니켈이온 8,500 ~ 25,000ppm을 포함할 수 있다.In addition, the leaching solution in three steps may include copper ions and nickel ions. The leachate may include 12,000 to 50,000 ppm of copper ions and 7,000 to 30,000 ppm of nickel ions, preferably 14,000 to 40,000 ppm of copper ions and 8,000 to 25,000 ppm of nickel ions, and more preferably 14,500 to 35,000 ppm of copper ions. And 8,500 to 25,000 ppm of nickel ions.
또한, 상기 침출액은 구리이온 및 니켈이온 외에 기타 금속 불순물을 포함할 수 있다. 구체적인 일례를 들면, 상기 침출액은 칼슘(Ca) 이온 50ppm 이하, 코발트(Co) 이온 10ppm 이하, 크롬(Cr) 이온 5ppm 이하, 철(Fe) 이온 100ppm 이하, 칼륨(K)이온 5ppm 이하, 마그네슘(Mg) 이온 5ppm 이하, 나트륨(Na) 이온 40ppm 이하, 아연(Zn) 이온 50ppm 이하로 포함할 수 있으며, 상기 침출액은 바람직하게는 Ca 이온 25ppm 이하, Co 이온 5ppm 이하, Cr 이온 4ppm 이하, Fe 이온 50ppm 이하, K 이온 4ppm 이하, Mg 이온 3.5ppm 이하, Na 이온 25ppm 이하, Zn 이온 20ppm 이하로 포함할 수 있고, 더욱 바람직하게는 상기 침출액은 Ca 이온 15ppm 이하, Co 이온 2ppm 이하, Cr 이온 2ppm 이하, Fe 이온 30ppm 이하, K 이온 2ppm 이하, Mg 이온 2.5ppm 이하, Na 이온 22ppm 이하, Zn 이온 10ppm 이하로 금속 불순물을 포함할 수 있다.In addition, the leach solution may contain other metal impurities in addition to copper ions and nickel ions. For a specific example, the leachate is 50 ppm or less of calcium (Ca) ion, 10 ppm or less of cobalt (Co) ion, 5 ppm or less of chromium (Cr) ion, 100 ppm or less of iron (Fe) ion, 5 ppm or less of potassium (K) ion, magnesium ( Mg) 5 ppm or less of ions, 40 ppm or less of sodium (Na) ions, 50 ppm or less of zinc (Zn) ions, and the leachate is preferably 25 ppm or less of Ca ions, 5 ppm or less of Co ions, 4 ppm or less of Cr ions, Fe ions 50 ppm or less, K ion 4 ppm or less, Mg ion 3.5 ppm or less, Na ion 25 ppm or less, Zn ion 20 ppm or less, more preferably, the leachate is Ca ion 15 ppm or less, Co ion 2 ppm or less, Cr ion 2 ppm or less , Fe ion 30ppm or less, K ion 2ppm or less, Mg ion 2.5ppm or less, Na ion 22ppm or less, Zn ion 10ppm or less, and metal impurities.
다음으로, 4단계는 침전물이 제거된 침출액을 이온교환처리 전 pH를 조절하는 단계로서, 상기 침출액은 pH가 0.7 이하로 강산성인 바, 이를 곧바로 이온교환처리할 수 없다. 따라서, 상기 침출액에 NaOH를 첨가하여 pH를 1.80 ~ 2.2 로, 바람직하게는 pH 1.90 ~ 2.1으로 조절한다. 이때, pH가 1.8 미만이면 pH가 너무 낮아서 이온교환처리시 이온교환수지의 구리 흡착량이 낮거나 공정시간이 증가하는 문제가 있을 수 있고, pH가 2.2 을 초과하면 이온교환수지에 니켈 일부가 흡착되어 니켈이 손실되는 문제가 있을 수 있다.Next, step 4 is a step of adjusting the pH before the ion exchange treatment of the leachate from which the precipitate has been removed. The leachate is strongly acidic with a pH of 0.7 or less, and it cannot be subjected to ion exchange treatment immediately. Therefore, NaOH is added to the leach solution to adjust the pH to 1.80 to 2.2, preferably to pH 1.90 to 2.1. At this time, if the pH is less than 1.8, the pH is too low, and there may be a problem that the copper adsorption amount of the ion exchange resin is low during the ion exchange treatment or the process time increases. When the pH exceeds 2.2, a part of nickel is adsorbed on the ion exchange resin. There may be a problem of nickel loss.
다음으로, 5단계는 pH 조절된 침출액을 이온교환수지로 이온교환처리하여 침출액 내 구리이온이 제거된 이온교환 처리액을 수득하는 공정이다(도 5의 개략적인 공정 모식도 참조).Next, step 5 is a process of obtaining an ion exchange treatment solution in which copper ions in the leach solution are removed by ion-exchanging the pH-adjusted leach solution with an ion exchange resin (refer to the schematic process schematic diagram of FIG. 5).
상기 이온교환처리는 당업계에서 사용하는 일반적인 방법으로 수행할 수 있으며, 바람직하게는 HIDA(iminodiacetic acid)계 이온교환수지를 사용하여 수행할 수 있으며, 바람직한 일구현예를 들면, 에칭액 1L 당 1.0 ~ 1.5L의 HIDA계 이온교환수지에 에칭액을 1 ~ 4시간 동안, 바람직하게는 1.5 ~ 2.5시간 동안 순환시켜서 이온교환수지에 구리이온을 흡착시켜서 침출액으로부터 구리이온을 분리할 수 있다.The ion exchange treatment can be carried out by a general method used in the art, preferably by using HIDA (iminodiacetic acid) ion exchange resin, a preferred embodiment, for example, 1.0 ~ 1L per etchant The copper ions can be separated from the leach by adsorbing copper ions on the ion exchange resin by circulating the etching solution in 1.5 L HIDA-based ion exchange resin for 1 to 4 hours, preferably 1.5 to 2.5 hours.
이온교환처리를 수행한 후의 이온교환 처리액은 니켈 이온 함량 7,000 ~ 30,000ppm, 바람직하게는 니켈 이온 함량 8,000 ~ 28,000ppm, 더욱 바람직하게는 8,500 ~ 26,000ppm을 포함할 수 있다.The ion exchange treatment solution after the ion exchange treatment is performed may include a nickel ion content of 7,000 to 30,000 ppm, preferably a nickel ion content of 8,000 to 28,000 ppm, more preferably 8,500 to 26,000 ppm.
또한, 상기 이온교환 처리액은 니켈이온 외에 극소량의 불순물을 포함할 수 있다. 구체적으로 상기 이온교환 처리액은 칼슘(Ca) 이온 50ppm 이하, 코발트(Co) 이온 10ppm 이하, 크롬(Cr) 이온 5ppm 이하, 구리(Cu) 이온 5ppm 이하, 철(Fe) 이온 100ppm 이하, 칼륨(K)이온 5ppm 이하, 마그네슘(Mg) 이온 5ppm 이하, 나트륨(Na) 이온 40ppm 이하, 아연(Zn) 이온 50ppm 이하로 포함할 수 있으며, 바람직하게는 Ca 이온 25ppm 이하, Co 이온 5ppm 이하, Cr 이온 4ppm 이하, Cu 이온 3ppm 이하, Fe 이온 50ppm 이하, K 이온 4ppm 이하, Mg 이온 3.5ppm 이하, Na 이온 25ppm 이하, Zn 이온 20ppm 이하로 포함할 수 있고, 더욱 바람직하게는 Ca 이온 10ppm 이하, Co 이온 2ppm 이하, Cr 이온 2ppm 이하, Cu 이온 2ppm 이하, Fe 이온 30ppm 이하, K 이온 2ppm 이하, Mg 이온 2.5ppm 이하, Na 이온 8ppm 이하, Zn 이온 10ppm 이하로 불순물을 포함할 수 있다.In addition, the ion exchange treatment liquid may contain a very small amount of impurities in addition to nickel ions. Specifically, the ion exchange treatment solution is 50 ppm or less of calcium (Ca) ion, 10 ppm or less of cobalt (Co) ion, 5 ppm or less of chromium (Cr) ion, 5 ppm or less of copper (Cu) ion, 100 ppm or less of iron (Fe) ion, potassium ( K) 5 ppm or less of ion, 5 ppm or less of magnesium (Mg) ion, 40 ppm or less of sodium (Na) ion, 50 ppm or less of zinc (Zn) ion, preferably 25 ppm or less of Ca ion, 5 ppm or less of Co ion, Cr ion 4 ppm or less, Cu ion 3 ppm or less, Fe ion 50 ppm or less, K ion 4 ppm or less, Mg ion 3.5 ppm or less, Na ion 25 ppm or less, Zn ion 20 ppm or less, more preferably Ca ion 10 ppm or less, Co ion 2 ppm or less, Cr ion 2 ppm or less, Cu ion 2 ppm or less, Fe ion 30 ppm or less, K ion 2 ppm or less, Mg ion 2.5 ppm or less, Na ion 8 ppm or less, Zn ion 10 ppm or less.
6단계의 구리화합물 용액의 회수는 구리이온이 흡착된 이온교환수지를 산성 수용액으로 산세하여, 이온교환수지를 산세한 산세액 내 CuCl2 또는 CuSO4를 포함하는 용액을 얻고 난 후, 이를 필터링, 세척하여 CuCl2 또는 CuSO4의 구리화합물 형태로 구리금속을 회수할 수 있다(도 6의 개략적인 공정 모식도 참조).The recovery of the copper compound solution in step 6 is performed by pickling the ion-exchange resin adsorbed with copper ions with an acidic aqueous solution to obtain a solution containing CuCl 2 or CuSO 4 in the pickling solution pickled by the ion-exchange resin, and then filtering it. The copper metal can be recovered in the form of a copper compound of CuCl 2 or CuSO 4 by washing (refer to the schematic process schematic diagram of FIG. 6).
좀 더 구체적으로는 구리이온이 흡착된 이온교환수지를 10 ~ 20 중량% 농도의 HCl 수용액으로, 바람직하게는 10 ~ 15 중량% 농도의 HCl 산세하여, CuCl2를 포함하는 산세액을 수득하고, 이온교환수지를 재생시킬 수 있다.More specifically, the ion-exchange resin on which copper ions are adsorbed is pickled with an aqueous HCl solution at a concentration of 10 to 20% by weight, preferably HCl at a concentration of 10 to 15% by weight, to obtain an pickling solution containing CuCl 2 , The ion exchange resin can be regenerated.
또한, 구리이온이 흡착된 이온교환수지를 10 ~ 20 부피% 농도의 H2SO4 수용액으로, 바람직하게는 10 ~ 15 부피% 농도의 H2SO4 수용액으로 산세하여, CuSO4를 포함하는 산세액을 수득하고, 이온교환수지를 재생하는 단계; 상기 CuSO4를 포함하는 산세액에 탄산나트륨(Na2CO3)을 혼합, 교반 및 반응시켜서 탄산동(CuCO3)을 생성 및 회수하는 단계; 및 회수한 탄산동을 세척, 건조하여 탄산동 분말을 수득하는 단계;를 포함하는 공정을 수행하여 탄산동 형태로 구리화합물을 회수 및 이로부터 구리금속을 회수할 수도 있다.In addition, the ion exchange resin adsorbed by copper ions is pickled with an H 2 SO 4 aqueous solution having a concentration of 10 to 20% by volume, preferably an H 2 SO 4 aqueous solution having a concentration of 10 to 15% by volume, and an acid containing CuSO 4 Obtaining a washing solution and regenerating the ion exchange resin; Generating and recovering copper carbonate (CuCO 3 ) by mixing, stirring, and reacting sodium carbonate (Na 2 CO 3 ) in the pickling solution containing CuSO 4 ; And washing and drying the recovered copper carbonate to obtain a copper carbonate powder; a copper compound may be recovered in the form of copper carbonate and copper metal may be recovered therefrom.
그리고, 상기 탄산동(CuCO3) 생성을 위한 반응은CuSO4를 포함하는 산세액 100 중량부에 대하여, 산세액 내 구리함유량 대비 탄산나트륨 첨가는 1:1 내지 1:1.5 의 몰비로, 바람직하게는 산세액 내 구리함유량 대비 탄산나트륨 첨가는 1:1.2 내지 1:1.4 몰비로 혼합하여 반응시킬 수 있다. 이때, 탄산나트륨 사용량이 1:1 몰비 미만이면 그 사용량이 너무 적어서 탄산동 생성량이 적어지는 문제가 있을 수 있고, 탄산나트륨 사용량이 1:1.5 몰비를 초과하여 사용하면 공정비용이 증가하는 문제가 있을 수 있다.In addition, the reaction for the production of copper carbonate (CuCO 3 ) is based on 100 parts by weight of the pickling solution containing CuSO 4 , the addition of sodium carbonate to the copper content in the pickling solution in a molar ratio of 1: 1 to 1: 1.5, preferably The addition of sodium carbonate to the copper content in the pickling solution can be reacted by mixing in a molar ratio of 1: 1.2 to 1: 1.4. At this time, if the amount of sodium carbonate used is less than 1: 1 molar ratio, the amount of copper carbonate may be reduced because the amount is too small, and if the amount of sodium carbonate used exceeds 1: 1.5 molar ratio, the process cost may increase. .
이렇게 수득된 탄산동은 분말 형태로 회수할 수 있으며, 탄산동 분말 내 구리 함량은 20 ~ 30 중량%, 바람직하게는 22 ~ 27 중량%일 수 있다. 그리고, 상기 탄산동 분말은 구리 외에 니켈, 철, 칼륨 및 나트륨을 포함할 수 있으며, 바람직하게는 탄산동 분말은 구리 외에 니켈 100ppm 이하, 철 80ppm 이하, 칼륨 20ppm 이하, 나트륨 500ppm 이하로 포함할 수 있으며, 더욱 바람직하게는 니켈 10 ~ 80ppm, 철 0.1 ~ 55ppm, 칼륨 0.5 ~ 15ppm 및 나트륨 10 ~ 340ppm을 포함할 수도 있다.The copper carbonate thus obtained may be recovered in powder form, and the copper content in the copper carbonate powder may be 20 to 30% by weight, preferably 22 to 27% by weight. In addition, the copper carbonate powder may include nickel, iron, potassium, and sodium in addition to copper, and preferably the copper carbonate powder may contain 100 ppm or less of nickel, 80 ppm or less of iron, 20 ppm or less of potassium, and 500 ppm or less of sodium in addition to copper. In addition, more preferably, it may contain 10 to 80 ppm of nickel, 0.1 to 55 ppm of iron, 0.5 to 15 ppm of potassium, and 10 to 340 ppm of sodium.
그리고, 구리화합물 형태(상기 CuCl2, CuSO4 또는 CuCO3)로 회수된 구리는 당업계에서 사용하는 일반적인 방법으로 구리금속을 회수할 수 있다.In addition, copper recovered in the form of a copper compound (the CuCl 2 , CuSO 4 or CuCO 3 ) may recover copper metal by a general method used in the art.
6단계에서 이온교환 처리되어 침출액 내 구리이온이 제거된 이온교환 처리액에는 니켈이온을 포함하는데, 상기 이온교환 처리액은 탄산나트륨(Na2CO3)과 반응시켜 탄산니켈을 생성 및 수득할 수 있다(도 7의 개략적인 공정 모식도 참조).The ion exchange treatment solution in which ion exchange treatment was performed in step 6 to remove copper ions from the leach solution includes nickel ions. The ion exchange treatment solution can react with sodium carbonate (Na 2 CO 3 ) to produce and obtain nickel carbonate. (See schematic process schematic diagram in FIG. 7).
그리고, 탄산니켈을 포함하는 반응생성액을 필터링하여, 탄산니켈을 분리시킨 후, 이를 세척, 건조시켜서 분말형태의 NiCO3을 수득할 수 있다. 수득된 탄산니켈은 니켈 함량이 30 ~ 45 중량%, 바람직하게는 35 ~ 40 중량%로 니켈을 고순도로 포함할 수 있다.Then, the reaction product containing nickel carbonate is filtered, and after the nickel carbonate is separated, it is washed and dried to obtain NiCO 3 in powder form. The obtained nickel carbonate may contain nickel in a high purity with a nickel content of 30 to 45% by weight, preferably 35 to 40% by weight.
그리고, 수득된 탄산니켈 분말은 탄산니켈 외에 알루미늄, 칼슘, 코발트, 크롬, 구리, 철, 마그네슘 및 나트륨을 포함할 수 있으며, 구체적으로는 알루미늄 15ppm 이하, 칼슘 180ppm 이하, 코발트 20ppm 이하, 크롬 10ppm 이하, 구리 40ppm 이하, 철 50ppm 이하, 마그네슘 20ppm 이하 및 나트륨 450ppm 이하로 포함할 수 있으며, 더욱 바람직하게는 알루미늄 1 ~ 12ppm, 칼슘 20 ~ 120ppm, 코발트 0.5 ~ 15ppm, 크롬 0.1 ~ 6ppm, 구리 5 ~ 30ppm, 철 5 ~ 40ppm, 마그네슘 1 ~ 12ppm 및 나트륨 20 ~ 350ppm으로 극소량만 포함할 수 있다.In addition, the obtained nickel carbonate powder may include aluminum, calcium, cobalt, chromium, copper, iron, magnesium, and sodium in addition to nickel carbonate, specifically aluminum 15 ppm or less, calcium 180 ppm or less, cobalt 20 ppm or less, chromium 10 ppm or less , 40ppm or less of copper, 50ppm or less of iron, 20ppm or less of magnesium, and 450ppm or less of sodium, more preferably 1 to 12ppm of aluminum, 20 to 120ppm of calcium, 0.5 to 15ppm of cobalt, 0.1 to 6ppm of chromium, and 5 to 30ppm of copper , 5 ~ 40ppm iron, 1 ~ 12ppm magnesium and 20 ~ 350ppm sodium can contain only a very small amount.
앞서 설명한 방법으로 도금된 폐플라스틱으로부터 ABS, PC, PC/ABS와 같은 고부가가치의 플라스틱을 회수, 재활용할 수 있다. 또한, 도금된 폐플라스틱으로부터 크롬금속, 염화구리 분말 또는 탄산동 분말 등의 구리화합물, 탄산니켈 분말을 회수, 재활용할 수 있으며, 상기 구리화합물, 탄산니켈 분말로부터 구리금속과 니켈금속을 회수할 수도 있다.High value-added plastics, such as ABS, PC, and PC / ABS, can be recovered and recycled from the plated waste plastics by the method described above. In addition, copper compounds such as chromium metal, copper chloride powder or copper carbonate powder and nickel carbonate powder can be recovered and recycled from the plated waste plastic, and copper metal and nickel metal can be recovered from the copper compounds and nickel carbonate powder. have.
이하 본 발명을 실시예를 통하여 더욱 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명의 이해를 돕기 위한 것이며, 본 발명의 권리범위를 하기 실시예에 의해 한정하여 해석해서는 안된다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are intended to help the understanding of the present invention, and should not be construed as limiting the scope of the present invention by the following examples.
[실시예][Example]
실시예 1 : 산 처리(에칭 처리)Example 1: Acid treatment (etching treatment)
도 1에서 도시한 바와 같은 본 발명에 따른 도금된 플라스틱을 활용한 플라스틱 재이용 및 유가금속 회수방법을 구성하는 모식도에서 도금된 플라스틱을 에칭하여 플라스틱과 유가금속을 분리하는 실험을 진행하였다.In the schematic diagram constituting the method for recycling plastics and recovering valuable metals using the plated plastics according to the present invention as shown in FIG. 1, an experiment was conducted to separate the plastics and valuable metals by etching the plated plastics.
실시예 1은 도금된 플라스틱으로부터 에칭액을 이용하여 플라스틱과 유가금속을 분리하는 단계를 실시하였다(도 2 참조).In Example 1, the step of separating the plastic and the valuable metal was performed using an etchant from the plated plastic (see FIG. 2).
실험은 황산 수용액 및 과산화수소 수용액 및 물을 혼합하여, 황산 20 중량%, 과산화수소 10 중량% 및 잔령의 물을 포함하는 에칭액을 제조하였고, 상기 에칭액 5L에 도금된 플라스틱 3가지 샘플 2kg을 각각 투입하여 8시간 동안 에칭(산처리)를 진행하였다. 이때, 에칭액 내 황산 수용액 및 과산화수소 용액 혼합 중량은 하기 표 1과 같다.In the experiment, an aqueous solution of sulfuric acid and aqueous hydrogen peroxide was mixed with water to prepare an etching solution containing 20% by weight of sulfuric acid, 10% by weight of hydrogen peroxide, and water of residual water. Etching (acid treatment) was performed for a time. At this time, the mixed sulfuric acid aqueous solution and hydrogen peroxide solution in the etching solution are shown in Table 1 below.
그리고, 도금된 플라스틱을 에칭 처리한 에칭 처리액을 방치한 후, 에칭 처리액은 플라스틱 부유물, 침전물인 크롬금속 및 에칭 처리액에 용해된 구리, 니켈 외 기타 금속불순물 등을 포함했다.Then, after leaving the etching treatment solution which etched the plated plastic, the etching treatment solution contained plastic suspended solids, sediment chromium metal, and copper, nickel and other metal impurities dissolved in the etching treatment solution.
그리고, 도금이 제거된 플라스틱은 에칭액 상부로 부유하여 이를 회수하였다.Then, the plastic from which the plating had been removed floated on top of the etchant and was recovered.
상기 에칭 처리액의 액상을 제외한 스크랩 내 플라스틱, 크롬, 니켈 및 구리의 함량을 하기 표 1에 나타내었다.Table 1 shows the contents of plastic, chromium, nickel, and copper in the scrap except for the liquid phase of the etching treatment liquid.
구분division | 품명Product Name | 에칭 전 무게(g)Weight before etching (g) | 에칭 후 무게(g)Weight after etching (g) | 무게 감소율(%)Weight reduction rate (%) | 스크랩 내 함유율(중량%)Content in scrap (% by weight) |
샘플 1Sample 1 | 플라스틱 스크랩Plastic scrap | 2,0002,000 | 1,608.81,608.8 | 19.5619.56 | -- |
스크랩 Ni 무게Scrap Ni weight | -- | 158.4158.4 | -- | 7.97.9 | |
스크랩 Cu 무게Scrap Cu weight | -- | 226226 | -- | 11.311.3 | |
잔사Cr무게Residual Cr Weight | -- | 6.86.8 | -- | 0.340.34 | |
샘플 2 |
플라스틱 스크랩Plastic scrap | 2,0002,000 | 1,759.481,759.48 | 12.0212.02 | -- |
스크랩 Ni 무게Scrap Ni weight | -- | 72.5572.55 | -- | 3.623.62 | |
스크랩 Cu 무게Scrap Cu weight | -- | 140.4140.4 | -- | 7.027.02 | |
잔사Cr무게Residual Cr Weight | -- | 27.5427.54 | -- | 1.381.38 | |
샘플 3Sample 3 | 플라스틱 스크랩Plastic scrap | 2,0002,000 | 1,570.141,570.14 | 21.4921.49 | -- |
스크랩 Ni 무게Scrap Ni weight | -- | 199.68199.68 | -- | 9.989.98 | |
스크랩 Cu 무게Scrap Cu weight | -- | 227.01227.01 | -- | 11.3511.35 | |
잔사Cr무게Residual Cr Weight | -- | 3.163.16 | -- | 0.160.16 | |
종합Synthesis | 플라스틱 스크랩Plastic scrap | 2,0002,000 | 1,646.151,646.15 | 17.6917.69 | -- |
스크랩 Ni 무게Scrap Ni weight | -- | 143.55143.55 | -- | 7.177.17 | |
스크랩 Cu 무게Scrap Cu weight | -- | 197.80197.80 | -- | 9.899.89 | |
잔사Cr무게Residual Cr Weight | -- | 12.5012.50 | -- | 0.630.63 |
표 1을 보면 샘플 1은 에칭 전 2Kg의 도금된 플라스틱이 에칭 후 80.44 중량%의 플라스틱과 7.9 중량%의 니켈, 11.3 중량%의 구리, 0.34 중량%의 크롬으로 분리된 것을 알 수 있다.Looking at Table 1, it can be seen that in Sample 1, 2Kg of plated plastic before etching was separated into 80.44% by weight of plastic, 7.9% by weight of nickel, 11.3% by weight of copper, and 0.34% by weight of chromium after etching.
샘플 2은 에칭 전 2Kg의 도금된 플라스틱이 에칭 후 87.92 중량%의 플라스틱과 3.62 중량%의 니켈, 7.02 중량%의 구리, 1.38 중량%의 크롬으로 분리된 것을 알 수 있다.In Sample 2, it can be seen that 2Kg of the plated plastic before etching was separated into 87.92% by weight of plastic and 3.62% by weight of nickel, 7.02% by weight of copper, and 1.38% by weight of chromium after etching.
샘플 3은 에칭 전 2Kg의 도금된 플라스틱이 에칭 후 78.51 중량%의 플라스틱과 9.98 중량%의 니켈, 11.35 중량%의 구리, 0.16 중량%의 크롬으로 분리된 것을 알 수 있다.In Sample 3, it can be seen that 2Kg of the plated plastic before etching was separated into 78.51% by weight plastic and 9.98% by weight nickel, 11.35% by weight copper, and 0.16% by weight chromium after etching.
그리고, 상기 표 1을 살펴보면, 에칭액 내 황산 수용액 대비하여 과산화수소 수용액의 중량비가 증가하면, 크롬 금속 함량이 증가하고, 니켈 및 구리 함량은 감소하는 경향이 있음을 확인할 수 있다.And, looking at Table 1, it can be seen that when the weight ratio of the aqueous hydrogen peroxide solution is increased compared to the aqueous sulfuric acid solution in the etching solution, the chromium metal content increases and the nickel and copper content tends to decrease.
실시예 2 : 플라스틱 부유물의 비중선별 처리Example 2: Specific gravity sorting treatment of plastic suspended solids
실시예 1에서 회수한 플라스틱은 일반적으로 ABS, PC/ABS, PC 등의 플라스틱이 혼재되어 있어 이를 한 번에 용융하여 재활용 할 경우 각각의 플라스틱의 성질이 혼재되어 상품의 가치가 저하된다.In the plastics recovered in Example 1, ABS, PC / ABS, and PC plastics are generally mixed, and when melted and recycled at one time, the properties of each plastic are mixed to lower the value of the product.
이에 ABS, PC/ABS, PC 등의 플라스틱을 분리하여 재활용플라스틱의 상품적 가치를 높여주는 공정이 필요하다.Therefore, it is necessary to separate the plastics of ABS, PC / ABS, PC, etc. to increase the product value of recycled plastics.
도 3에서와 같이 혼재된 플라스틱(ABS, PC/ABS, PC)은 황산의 농도를 조절하여 비중 1.07 및 비중 1.18인 2가지 용액을 제조한 후, 이를 이용하여 혼재된 플라스틱에서 ABS, PC/ABS, PC를 분리하였다.The mixed plastics (ABS, PC / ABS, PC) as shown in FIG. 3 are prepared by preparing two solutions having a specific gravity of 1.07 and a specific gravity of 1.18 by adjusting the concentration of sulfuric acid, and then using these, ABS, PC / ABS in the mixed plastic. , PC was separated.
구체적으로 플라스틱 부유물을 비중 1.07인 황산 수용액에 투입 및 방치하면 ABS 소재 플라스틱은 부유하고, 비중이 1.07을 초과하는 PC 소재 플라스틱 및 PC/ABS 플라스틱은 침전하였다. 이로부터 부유물인 ABS 소재를 플라스틱을 분리 및 수득하고한 후, 침전물을 필터링하여 수득하였다.Specifically, when the plastic suspended solids are introduced and left in an aqueous sulfuric acid solution having a specific gravity of 1.07, the ABS material plastics float, and the PC material plastics and PC / ABS plastics having a specific gravity exceeding 1.07 precipitate. From this, the ABS material, which is a floating material, was obtained by separating and obtaining plastic, and then filtering the precipitate.
다음으로, 상기 침전물을 비중 1.07인 황산 수용액에 투입 및 방치하였다.Next, the precipitate was charged and left in an aqueous sulfuric acid solution having a specific gravity of 1.07.
그 결과, PC/ABS 플라스틱이 부유하였고, PC 소재 플라스틱은 침전하였다.As a result, the PC / ABS plastic was suspended, and the PC material plastic precipitated.
하기 표 2는 용액의 비중을 조절한 결과를 나타낸 표이다. 표를 보면 비중 1.07에서 ABS만 부유하고 PC/ABS 및 PC는 침전하는 것을 알 수 있다. 비중 1.18에서 ABS 및 PC/ABS 부유하고 PC는 침전하는 것을 알 수 있다.Table 2 below is a table showing the results of adjusting the specific gravity of the solution. Looking at the table, it can be seen that only ABS is floating at a specific gravity of 1.07, and PC / ABS and PC settle. At a specific gravity of 1.18, it can be seen that ABS and PC / ABS float and PC precipitates.
즉 비중 1.07에서 순수한 ABS만 회수할 수 있으며, ABS 제거 후 비중 1.18에서 PC/ABS를 회수하고 나머지 PC를 회수할 수 있다.In other words, only pure ABS can be recovered at a specific gravity of 1.07, and PC / ABS can be recovered at a specific gravity of 1.18 after ABS removal and the rest of the PC can be recovered.
그리고, 최종적으로 회수, 건조시킨 후, 가공하여 재활용된 최종 ABS 소재 플라스틱 및 PC 소재 플라스틱의 사진을 도 3b에 나타내었다.And, after the final recovery, drying, processing and recycling of the final ABS material plastic and PC material plastic is shown in Figure 3b.
비중importance | ABSABS | ABS/PCABS / PC | PCPC |
1.071.07 | 부유floating | 침전Sedimentation | 침전Sedimentation |
1.181.18 | 부유floating | 부유floating | 침전Sedimentation |
실시예 3 : 크롬금속 회수Example 3: Recovery of chromium metal
실시예 1에서 부유물인 플라스틱을 제거한 후 에칭 처리액(샘플 1 ~ 3)으로부터 하기와 같이 크롬금속을 회수하였다.After removing the plastic as a floating material in Example 1, the chromium metal was recovered as follows from the etching treatment solution (Samples 1 to 3).
도 4에 나타낸 바와 같이 크롬 금속의 경우 에칭 처리액의 주요성분인 황산에 불용하므로 이온이 아닌 금속 형태로 존재하며, 니켈 및 구리의 경우 황산에 용해되어 에칭 처리액 내 이온으로 혼재되어 있다.As shown in Fig. 4, in the case of chromium metal, it is insoluble in sulfuric acid, which is a main component of the etching treatment solution, and thus exists in a metal form rather than ions. In the case of nickel and copper, it is dissolved in sulfuric acid and mixed with ions in the etching treatment solution.
도 4와 같이 에칭 처리액을 필터링(여과)하여, 침전물인 크롬금속을 에칭 처리액으로부터 분리하였다.As shown in FIG. 4, the etchant was filtered (filtered) to separate the precipitated chromium metal from the etchant.
그리고, 하기 표 3은 필터링한 후의 에칭 처리액의 성분 분석을 수행한 결과를 나타낸 것이다. 표 3을 살펴보면, 필터링된 후, 에칭 처리액 내 크롬 성분은 거의 없는 것을 확인할 수 있다.And, Table 3 below shows the results of the component analysis of the etching treatment solution after filtering. Looking at Table 3, after filtering, it can be seen that there are almost no chromium components in the etching treatment solution.
시료명Sample name | 샘플1Sample 1 |
샘플2 |
샘플3Sample 3 |
Ni (ppm)Ni (ppm) | 1480014800 | 1040010400 | 1660016600 |
Ca (ppm)Ca (ppm) | 1212 | 2 2 | 33 |
Co (ppm)Co (ppm) | 1One | 0 0 | 00 |
Cr (ppm)Cr (ppm) | 1One | 2 2 | 00 |
Cu (ppm)Cu (ppm) | 2150021500 | 17000 17000 | 1530015300 |
Fe (ppm)Fe (ppm) | 1One | 29 29 | 22 |
K (ppm)K (ppm) | 1 One | 2 2 | 0 0 |
Mg (ppm)Mg (ppm) | 22 | 0 0 | 00 |
Na (ppm)Na (ppm) | 99 | 5 5 | 2222 |
P (ppm)P (ppm) | TraceTrace | 0 0 | 00 |
Sn (ppm)Sn (ppm) | TraceTrace | 0 0 | 00 |
Zn (ppm)Zn (ppm) | 1One | 2 2 | 1One |
실시예 4 : 이온교환처리(구리 및 니켈의 분리)Example 4: Ion exchange treatment (separation of copper and nickel)
실시예 3에서 크롬이 제거된 구리이온 및 니켈이온 함유한 에칭 처리액(샘플 1 ~ 3) 각각을 이온교환수지를 이용하여 구리와 니켈을 분리하는 이온교환처리를 수행하였다.In Example 3, each of the etching treatment solutions (samples 1 to 3) containing chromium-free copper ions and nickel ions was subjected to ion exchange treatment to separate copper and nickel using ion exchange resin.
구리 및 니켈이 포함된 에칭 처리액은 초기 pH 0.7 이하의 강산성이므로 이 상태에서 이온교환수지를 이용하여 구리 및 니켈을 분리할 수 없다. 따라서, 가성소다를 이용하여 에칭액에 첨가하여 에칭액의 pH를 2로 조절하였다.Since the etching solution containing copper and nickel is strongly acidic having an initial pH of 0.7 or less, copper and nickel cannot be separated using an ion exchange resin in this state. Therefore, the pH of the etching solution was adjusted to 2 by adding it to the etching solution using caustic soda.
다음으로, pH2로 조절된 에칭 처리액 5L를 iminodiacetic acid계 이온교환수지 5L에 2시간 동안 순환시켜서, 이온교환수지에 구리를 흡착시켰다.Next, 5 L of the etching treatment solution adjusted to pH 2 was circulated in 5 L of iminodiacetic acid-based ion exchange resin for 2 hours to adsorb copper on the ion exchange resin.
그리고, 이온교환수지를 통과한 이온교환 처리액의 성분을 분석한 결과를 하기 표 4에 타나내었다.Then, the results of analyzing the components of the ion-exchange treatment solution that passed through the ion-exchange resin are shown in Table 4 below.
상기 표 3과 하기 표 4를 비교하였을 때 표 3에서 에칭액 내 존재하는 10000ppm 이상의 구리 이온은 이온교환수지에 흡착되고 통과한 이온교환 처리액은 표 4와 같이 이온교환 처리액 내 구리이온이 거의 존재하지 않는 것을 확인할 수 있었다.When comparing Table 3 and Table 4, the copper ions of 10000ppm or more present in the etching solution in Table 3 are adsorbed to the ion exchange resin and the ion exchange treatment solution passed there is almost copper ions in the ion exchange treatment solution as shown in Table 4. It was confirmed that it does not.
시료명Sample name | 샘플1Sample 1 |
샘플2 |
샘플3Sample 3 |
Ni (ppm)Ni (ppm) | 1470014700 | 1010010100 | 1610016100 |
Ca (ppm)Ca (ppm) | 1010 | 2 2 | 33 |
Co (ppm)Co (ppm) | 1One | 0 0 | 00 |
Cr (ppm)Cr (ppm) | 1One | 2 2 | 00 |
Cu (ppm)Cu (ppm) | 1One | 00 | 1One |
Fe (ppm)Fe (ppm) | 1One | 25 25 | 22 |
K (ppm)K (ppm) | 1 One | 2 2 | 0 0 |
Mg (ppm)Mg (ppm) | 22 | 0 0 | 00 |
Na (ppm)Na (ppm) | 88 | 5 5 | 2020 |
P (ppm)P (ppm) | TraceTrace | 0 0 | 00 |
Sn (ppm)Sn (ppm) | TraceTrace | 0 0 | 00 |
Zn (ppm)Zn (ppm) | 1One | 2 2 | 1One |
실시예 5 : 이온교환수지로부터 구리 회수Example 5: Copper recovery from ion exchange resin
도 6에 나타낸 바와 같이, 이온교환수지에 흡착된 구리를 구리화합물 용액으로 회수 및 회수된 구리화합물을 탄산나트륨을 첨가하여 탄산동을 제조하였다.As shown in Fig. 6, copper adsorbed on the ion exchange resin was recovered as a copper compound solution and copper carbonate was prepared by adding sodium carbonate to the recovered copper compound.
구체적으로는 실시예 4의 이온교환수지에 흡착된 구리를 탈착하기 위해서 농도 10 부피% 이상 농도의 강산성용액이 필요하다. 예를 들어 10 부피% 농도 이상의 HCl 수용액을 이용하여 이온교환수지에 흡착된 구리를 탈착하여 회수한 용액의 경우 CuCl2의 용액으로 회수가 되고, 10 부피% 농도 이상의 유기산 수용액을 이용하여 이온교환수지에 흡착된 구리를 탈착시키면 회수된 용액의 경우 유기산동 형태로 회수할 수 있다.Specifically, in order to desorb the copper adsorbed on the ion exchange resin of Example 4, a strong acidic solution having a concentration of 10% by volume or more is required. For example, in the case of a solution recovered by desorbing copper adsorbed on the ion exchange resin using an aqueous HCl solution having a concentration of 10% by volume or more, the solution is recovered as a solution of CuCl 2 , and an ion exchange resin using an aqueous organic acid solution having a concentration of 10% by volume or more. Desorption of the copper adsorbed to the recovered solution can be recovered in the form of organic copper.
실시예 5에서는 10 부피% 농도의 H2SO4 수용용을 구리가 흡착된 이온교환수지에 통과시켜 구리를 탈착 및 이온교환수지를 재생시키고 CuSO4 용액을 회수하였다.In Example 5, the 10% by volume concentration of H 2 SO 4 accommodated was passed through an ion exchange resin adsorbed by copper to desorb copper and regenerate the ion exchange resin to recover the CuSO 4 solution.
다음으로, 회수된 CuSO4 용액은 표 5와 같이 기타 불순물이 없는 고순도의 CuSO4 용액을 회수할 수 있었다.Next, the recovered CuSO 4 solution was able to recover a high purity CuSO 4 solution free of other impurities as shown in Table 5.
시료명Sample name | 샘플 1Sample 1 |
샘플 2 |
샘플 3Sample 3 |
Ni (ppm)Ni (ppm) | 1010 | 88 | 88 |
Ca (ppm)Ca (ppm) | TraceTrace | TraceTrace | TraceTrace |
Co (ppm)Co (ppm) | TraceTrace | TraceTrace | TraceTrace |
Cr (ppm)Cr (ppm) | TraceTrace | TraceTrace | TraceTrace |
Cu (ppm)Cu (ppm) | 2010020100 | 1650016500 | 1440014400 |
Fe (ppm)Fe (ppm) | TraceTrace | 33 | TraceTrace |
K (ppm)K (ppm) |
Trace |
2 2 | 1One |
Mg (ppm)Mg (ppm) | TraceTrace | Trace Trace | TraceTrace |
Na (ppm)Na (ppm) | 22 | 22 | 1One |
P (ppm)P (ppm) | TraceTrace | TraceTrace | TraceTrace |
Sn (ppm)Sn (ppm) | TraceTrace | TraceTrace | TraceTrace |
Zn (ppm)Zn (ppm) | TraceTrace | TraceTrace | TraceTrace |
다음으로, 회수된 CuSO4 용액에 Na2CO3를 첨가하여 탄산동으로 합성하였다.CuSO4 용액은 pH가 1이하로 낮아 Na2CO3의 첨가량은 CuSO4를 포함하는 산세액 내 구리 함유량 대비 이론적인 1:1의 몰비율이 아닌 1:1.5의 몰비율로 첨가하여 탄산동을 제조하였다.Next, Na 2 CO 3 was added to the recovered CuSO 4 solution and synthesized with copper carbonate. The pH of the CuSO 4 solution was lower than 1, so that the amount of Na 2 CO 3 added was compared to the copper content in the pickling solution containing CuSO 4 . Copper carbonate was prepared by adding at a molar ratio of 1: 1.5 rather than a theoretical 1: 1 molar ratio.
제조된 탄산동은 1L의 증류수를 이용하여 3회 세척하여 주고 60℃의 오븐에서 8시간 건조 후 탄산동 분말을 수득하였다. 그리고, 수득한 탄산동의 성분을 분석하였고, 그 결과를 하기 표 6에 나타내었다. 표 6을 살펴보면, Cu 함량 25 중량% 이상의 고순도의 탄산동이 제조된 것을 확인할 수 있다.The prepared copper carbonate was washed 3 times using 1 L of distilled water and dried in an oven at 60 ° C. for 8 hours to obtain copper carbonate powder. Then, the components of the obtained copper carbonate were analyzed, and the results are shown in Table 6 below. Looking at Table 6, it can be seen that copper carbonate having a high purity of 25% by weight or more of Cu was produced.
시료명Sample name | 샘플1Sample 1 |
샘플2 |
샘플3Sample 3 |
Ni (ppm)Ni (ppm) | 8181 | 5252 | 5555 |
Cu (ppm)Cu (ppm) | 251500251500 | 252200252200 | 250200250200 |
Fe (ppm)Fe (ppm) | 1414 | 5151 | 22 |
K (ppm)K (ppm) | 55 | 77 | 1010 |
Na (ppm)Na (ppm) | 210210 | 320320 | 152152 |
실시예 6 : 탄산니켈 분말 제조(니켈 회수)Example 6: Preparation of nickel carbonate powder (nickel recovery)
도 7에 나타낸 바와 같이 이온교환수지를 이용하여 분리된 이온교환 처리액에 Na2CO3를 첨가하여 탄산니켈을 합성 및 수득하였다.As shown in FIG. 7, Na 2 CO 3 was added to the separated ion exchange treatment solution using an ion exchange resin to synthesize and obtain nickel carbonate.
실시예 4에서 이온교환 처리한 후의 이온교환 처리액(샘픔 1 ~ 3)에 Na2CO3을 첨가하여 NiCO3를 제조하였다. Na2CO3의 첨가량은 이론적 비인 1:1의 비율이 아닌 1:1.5의 비율로 첨가하여 NiCO3을 합성 및 제조하였다.In Example 4, after the ion exchange treatment, Na 2 CO 3 was added to the ion exchange treatment solution (samples 1 to 3) to prepare NiCO 3 . The amount of Na 2 CO 3 ratio is theoretically 1: NiCO 3 was synthesized and prepared by adding a proportion of 1.5: 1 instead of 1 ratio.
다음으로, 필터링 하여 얻은 NiCO3을 1L의 증류수로 3회 세척한 다음, 60℃의 오븐에서 8시간 건조 후 NiCO3 분말을 수득하였다.Next, NiCO 3 obtained by filtering was washed three times with 1 L of distilled water, and then dried in an oven at 60 ° C. for 8 hours to obtain NiCO 3 powder.
그리고, 수득한 탄산니켈 분말의 성분을 분석하였고, 이를 하기 표 7에 나타내었다. 표 7을 살펴보면, 탄산니켈 분말 내 Ni 함량 35 중량% 이상인 고순도 NiCO3분말이 수득된 것을 알 수 있다.Then, the components of the obtained nickel carbonate powder were analyzed and are shown in Table 7 below. Looking at Table 7, it can be seen that a high purity NiCO 3 powder having a Ni content of 35 wt% or more in the nickel carbonate powder was obtained.
품명 Product Name | 단위unit | 샘플 1Sample 1 |
샘플 2 |
샘플 3Sample 3 |
NiNi | 중량%weight% | 36.036.0 | 36.436.4 | 35.835.8 |
AlAl | ppmppm | 1212 | 1111 | 88 |
CaCa | 108108 | 107107 | 8787 | |
CoCo | 1414 | 55 | 1010 | |
CrCr | 55 | 22 | 1One | |
CuCu | 2525 | 2727 | 1717 | |
FeFe | 2929 | 3535 | 2727 | |
MgMg | 99 | 88 | 88 | |
NaNa | 240240 | 320320 | 178178 |
상기 실시예를 통하여, 본 발명의 플라스틱 재이용 및 유가금속 회수방법이 도금된 폐플라스틱으로부터 고부가가치의 유용한 플라스틱(ABS, PC, PC/ABS)를 재활용할 수 있을 뿐만 아니라, 크롬, 구리 및 니켈을 회수 및 재활용할 수 있음을 확인할 수 있었다.Through the above embodiment, it is possible not only to recycle high value-added useful plastics (ABS, PC, PC / ABS) from waste plastics plated with the method of recycling plastics and recovering valuable metals of the present invention, but also chromium, copper and nickel. It was confirmed that it can be recovered and recycled.
Claims (17)
- 도금된 폐플라스틱을 에칭액으로 산처리하여 에칭 처리액을 제조하는 1단계;A first step of producing an etching treatment solution by acid treatment of the plated waste plastic with an etching solution;상기 에칭 처리액으로부터 플라스틱 부유물을 제거 및 회수하는 2단계;A second step of removing and recovering a plastic float from the etching treatment liquid;부유물이 제거된 에칭 처리액을 필터링하여 침전물인 크롬 금속을 제거 및 회수하여, 침출액을 수득하는 3단계;A third step of filtering and removing the chromium metal as a precipitate by filtering the etching treatment liquid from which the suspended solids have been removed, thereby obtaining a leaching liquid;상기 침출액의 pH를 조절하는 4단계;Four steps to adjust the pH of the leach solution;pH 조절된 침출액을 이온교환수지로 이온교환처리하여 침출액 내 구리이온이 제거된 이온교환 처리액을 수득하는 5단계;5 steps of ion-exchanging the pH-adjusted leachate with an ion exchange resin to obtain an ion exchange treatment solution from which copper ions in the leachate are removed;이온교환수지에 흡착된 구리이온을 구리화합물 용액으로 회수하고, 이온교환 처리액을 탄산나트륨과 반응시켜 탄산니켈을 생성 및 수득하는 6단계; 및6 steps of recovering copper ions adsorbed on the ion exchange resin as a copper compound solution, and reacting the ion exchange treatment solution with sodium carbonate to produce and obtain nickel carbonate; And수득한 탄산니켈을 세척 및 건조하여 탄산니켈 분말을 수득하는 7단계;Washing and drying the obtained nickel carbonate to obtain a nickel carbonate powder;를 포함하는 공정을 수행하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.A method of recycling plastics and recovering valuable metals from plated waste plastic, characterized by performing a process comprising a.
- 제1항에 있어서, 1단계의 상기 에칭액은 황산 10.00 ~ 25.00 중량%, 과산화 및 황산나트륨 중에서 선택된 1종 이상을 포함하는 에칭 보조제 5 ~ 15 중량% 및 잔량의 물을 포함하며,The method of claim 1, wherein the etchant in the first step comprises 1 to 15 to 25.00% by weight of sulfuric acid, 5 to 15% by weight of etching aid containing at least one selected from peroxide and sodium sulfate, and the balance of water,상기 에칭 보조제는 과산화물; 황산나트륨(Na2SO3); 또는 과산화수소 및 황산나트륨 1 : 1 ~ 1.5 중량비로 포함하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The etching aid is a peroxide; Sodium sulfate (Na 2 SO 3 ); Or hydrogen peroxide and sodium sulfate 1: 1 to 1.5, characterized in that it contains a weight ratio of plastic recycling and valuable metals recovery method from the plated waste plastic.
- 제1항에 있어서, 산처리된 1단계의 상기 에칭 처리액은 플라스틱 부유물, 니켈 이온 및 구리 이온을 포함하는 침출액 및 침전물을 포함하며,The method of claim 1, wherein the acid-treated step of the etching treatment solution includes a plastic suspension, a leaching solution containing nickel ions and copper ions, and a precipitate,상기 침전물은 크롬 금속을 포함하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The sediment is a method of recycling plastics and valuable metals from plated waste plastics, characterized in that it contains chromium metal.
- 제3항에 있어서, 상기 에칭 처리액은 액상을 제외한 스크랩(scrap) 내 니켈(Ni) 3 ~ 12 중량%, 구리(Cu) 6 ~ 14 중량%, 크롬(Cr) 0.10 ~ 2.5 중량%, 잔량의 플라스틱 부유물 및 기타 불가피한 극소량의 불순물을 포함하는 것을 특징으로 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The method according to claim 3, wherein the etching treatment liquid is 3 to 12% by weight of nickel (Ni) in scrap, excluding liquid, 6 to 14% by weight of copper (Cu), 0.10 to 2.5% by weight of chromium (Cr), and remaining amount A method of recycling plastics and recovering valuable metals from plated waste plastics, characterized by containing plastic floats and other inevitable traces of impurities.
- 제1항에 있어서, 2단계는 상기 에칭 처리액으로부터 회수한 플라스틱 부유물은 ABS(acrylonitrile-butadiene-styrene) 소재 플라스틱, PC(polycarbonate) 소재 플라스틱, PC와 ABS 합성 플라스틱 및 기타 불가피한 불순물을 포함하는 것을 특징으로 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The method of claim 1, wherein the second step is that the plastic suspension recovered from the etching treatment solution includes ABS (acrylonitrile-butadiene-styrene) plastic, PC (polycarbonate) plastic, PC and ABS synthetic plastic, and other inevitable impurities. It is a method of recycling plastic and recovering valuable metals from plated waste plastics.
- 제1항에 있어서, 2단계에서 회수한 플라스틱 부유물을 비중 1.06 ~ 1.12의 용액에 투입 및 방치하는 2-1단계;According to claim 1, Step 2-1 of putting and leaving the plastic suspended solids collected in step 2 in a solution having a specific gravity of 1.06 to 1.12;방치된 용액으로부터 부유물인 ABS 소재 플라스틱을 회수하는 2-2단계;Step 2-2 of recovering the floating ABS material plastic from the neglected solution;ABS 소재 플라스틱이 회수된 용액의 비중을 1.16 ~ 1.18로 조절한 후, 방치하여 부유물인 PC와 PC/ABS 합성 플라스틱을 회수하는 2-3단계; 및Step 2-3 of adjusting the specific gravity of the solution from which the ABS material plastic is recovered to 1.16 to 1.18, and then recovering the floating PC and PC / ABS synthetic plastic; AndPC와 PC/ABS 합성 플라스틱이 회수된 용액으로부터 PC 소재 플라스틱을 회수하는 2-4단계;를 포함하는 공정을 더 수행하여,Step 2-4 to recover the PC material plastic from the solution from which the PC and PC / ABS synthetic plastics were recovered;ABS 소재 플라스틱, PC 소재 플라스틱 및 PC와 ABS 합성 플라스틱을 각각 분리 및 회수하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.A method of recycling plastics and recovering valuable metals from plated waste plastics, characterized by separating and recovering ABS material plastic, PC material plastic, and PC and ABS synthetic plastic, respectively.
- 제1항에 있어서, 3단계의 필터링은 필터프레스를 이용하여 침출액 내 크롬 금속을 회수하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.[3] The method of claim 1, wherein the filtering of the three stages uses a filter press to recover chromium metal in the leachate.
- 제1항에 있어서, 4단계는 침출액에 NaOH를 첨가하여 pH를 1.8 ~ 2.2로 조절하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The method of claim 1, wherein the fourth step is a method of recycling plastics and recovering valuable metals from plated waste plastics, characterized in that pH is adjusted to 1.8 to 2.2 by adding NaOH to the leachate.
- 제1항에 있어서, 6단계의 구리화합물 용액의 회수는The method of claim 1, wherein the recovery of the copper compound solution in step 6 is구리이온이 흡착된 이온교환수지를 8 ~ 20 중량% 농도의 HCl 수용액으로 산세하여, CuCl2를 포함하는 산세액을 수득하고, 이온교환수지를 재생하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The ion-exchange resin with copper ions adsorbed is pickled with an aqueous HCl solution at a concentration of 8 to 20% by weight to obtain a pickling solution containing CuCl 2 , and the plastic is reused from plated waste plastics characterized in that the ion-exchange resin is regenerated. And valuable metal recovery methods.
- 제1항에 있어서, 6단계의 구리화합물 용액의 회수는The method of claim 1, wherein the recovery of the copper compound solution in step 6 is구리이온이 흡착된 이온교환수지를 8 ~ 20 중량% 농도의 H2SO4 수용액으로 산세하여, CuSO4를 포함하는 산세액을 수득하고, 이온교환수지를 재생하는 단계; 및Pickling an ion exchange resin with copper ions adsorbed thereon with an aqueous solution of H 2 SO 4 at a concentration of 8 to 20% by weight to obtain an pickling solution containing CuSO 4 and regenerating the ion exchange resin; And상기 CuSO4를 포함하는 산세액에 탄산나트륨(Na2CO3)을 혼합, 교반 및 반응시켜서 탄산동(CuCO3)을 생성 및 회수하는 단계; 및Generating and recovering copper carbonate (CuCO 3 ) by mixing, stirring, and reacting sodium carbonate (Na 2 CO 3 ) in the pickling solution containing CuSO 4 ; And회수한 탄산동을 세척, 건조하여 탄산동 분말을 수득하는 단계;Washing and drying the recovered copper carbonate to obtain copper carbonate powder;를 포함하는 공정을 더 수행하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.A method of recycling plastics and recovering valuable metals from plated waste plastics, further comprising a process comprising a.
- 제11항에 있어서, 상기 CuSO4를 포함하는 산세액에 탄산나트륨(Na2CO3)을 혼합은 CuSO4를 포함하는 산세액 내 구리 함유량 대비 탄산나트륨을 1:1 ~ 1:1.5 몰비로 혼합하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.That the mixture to 1.5 molar ratio according to claim 11, wherein the sodium carbonate in acid tax including the CuSO 4 (Na 2 CO 3) the mixture is prepared acid tax content of the copper containing CuSO 4 Sodium carbonate 1: 1 to 1 Method for recycling plastics and recovering valuable metals from plated waste plastics.
- 제11항에 있어서, 수득된 탄산동 분말 내 구리 함량이 20 ~ 30 중량%인 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.12. The method of claim 11, wherein the copper content in the obtained copper carbonate powder is 20 to 30% by weight, and plastic recycling and valuable metals are recovered from the plated waste plastic.
- 제1항에 있어서, 6단계는 이온교환처리액 내 니켈 함유량 대비 탄산나트룸을 1:1 ~ 1:1.5 몰비로 혼합하는 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The method of claim 1, wherein the sixth step is a method of recycling plastics and recovering valuable metals from plated waste plastics, characterized in that the sodium carbonate in the ion exchange treatment solution is mixed at a molar ratio of 1: 1 to 1: 1.5.
- 제1항에 있어서, 7단계의 탄산니켈 분말 내 니켈 함량이 30 ~ 45 중량%인 것을 특징으로 하는 도금된 폐플라스틱으로부터 플라스틱 재이용 및 유가금속 회수방법.The method of claim 1, wherein the nickel content in the nickel carbonate powder of step 7 is 30 to 45% by weight, and the method of recycling plastics and recovering valuable metals from the plated waste plastics.
- 제1항의 방법으로 도금된 폐플라스틱으로부터 재생된 구리화합물로서, 상기 구리화합물은 염화구리 분말 또는 탄산동 분말을 포함하는 것을 특징으로 하는 구리화합물.A copper compound regenerated from waste plastic plated by the method of claim 1, wherein the copper compound comprises copper chloride powder or copper carbonate powder.
- 제1항의 방법으로 도금된 폐플라스틱으로부터 재생된 탄산니켈 분말.A nickel carbonate powder regenerated from waste plastic plated by the method of claim 1.
- 제1항의 방법으로 도금된 폐플라스틱으로부터 재생된 플라스틱으로서, 상기 재생된 플라스틱은 ABS 소재 플라스틱, PC 소재 플라스틱 및 PC/ABS 합성 플라스틱 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 재활용 플라스틱.A plastic recycled from waste plastic plated by the method of claim 1, wherein the recycled plastic comprises at least one selected from ABS plastic, PC plastic and PC / ABS synthetic plastic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980002160.0A CN112585203B (en) | 2018-11-23 | 2019-09-26 | Method for regenerating plastic from electroplating waste plastic and recovering valuable metal |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180145903 | 2018-11-23 | ||
KR10-2018-0145903 | 2018-11-23 | ||
KR10-2018-0168751 | 2018-12-24 | ||
KR1020180168751A KR101983354B1 (en) | 2018-11-23 | 2018-12-24 | Recycling of and valuable metal using plated plastic |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105861A1 true WO2020105861A1 (en) | 2020-05-28 |
Family
ID=66656815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/012540 WO2020105861A1 (en) | 2018-11-23 | 2019-09-26 | Method for reusing plastic from and recovering valuable metals from plated waste plastic |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101983354B1 (en) |
CN (1) | CN112585203B (en) |
WO (1) | WO2020105861A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101983354B1 (en) * | 2018-11-23 | 2019-05-28 | 인천화학 주식회사 | Recycling of and valuable metal using plated plastic |
CN113881937B (en) * | 2021-10-08 | 2022-08-30 | 上海交通大学 | Process for recovering heavy metal from waste plastic electroplated part and plastic part |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090120768A (en) * | 2008-05-20 | 2009-11-25 | 주식회사 태원 | Manufacturing methods of basic copper carbonate used waste solutions copper chloride |
JP2010059539A (en) * | 2008-08-05 | 2010-03-18 | Astec Irie Co Ltd | Method for recycling waste plastic and etching waste liquid |
JP2010261071A (en) * | 2009-05-07 | 2010-11-18 | Toppan Printing Co Ltd | Method for recovering nickel from blanket for printing |
KR101465033B1 (en) * | 2014-06-18 | 2014-11-26 | 인천화학 주식회사 | Manufacture method of high purity nickel carbonate from waste nickel plating solution |
KR101887446B1 (en) * | 2017-12-27 | 2018-08-10 | 태형기업(주) | Total Recovery Method of Valuable Materials from Surface-Coated Plastic Waste |
KR101983354B1 (en) * | 2018-11-23 | 2019-05-28 | 인천화학 주식회사 | Recycling of and valuable metal using plated plastic |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101704959A (en) * | 2008-08-05 | 2010-05-12 | 株式会社亚斯泰克入江 | Method for recovering waste plastic and etching waste liquid |
CN103241803A (en) * | 2013-05-14 | 2013-08-14 | 广东新大禹环境工程有限公司 | Electroplating wastewater separating process |
CN103693711B (en) * | 2013-11-12 | 2015-11-04 | 郑州大学 | Utilize weak acidic ion-exchange fiber process nickeliferous/method of copper-contained electroplating waste water |
-
2018
- 2018-12-24 KR KR1020180168751A patent/KR101983354B1/en active IP Right Grant
-
2019
- 2019-09-26 WO PCT/KR2019/012540 patent/WO2020105861A1/en active Application Filing
- 2019-09-26 CN CN201980002160.0A patent/CN112585203B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090120768A (en) * | 2008-05-20 | 2009-11-25 | 주식회사 태원 | Manufacturing methods of basic copper carbonate used waste solutions copper chloride |
JP2010059539A (en) * | 2008-08-05 | 2010-03-18 | Astec Irie Co Ltd | Method for recycling waste plastic and etching waste liquid |
JP2010261071A (en) * | 2009-05-07 | 2010-11-18 | Toppan Printing Co Ltd | Method for recovering nickel from blanket for printing |
KR101465033B1 (en) * | 2014-06-18 | 2014-11-26 | 인천화학 주식회사 | Manufacture method of high purity nickel carbonate from waste nickel plating solution |
KR101887446B1 (en) * | 2017-12-27 | 2018-08-10 | 태형기업(주) | Total Recovery Method of Valuable Materials from Surface-Coated Plastic Waste |
KR101983354B1 (en) * | 2018-11-23 | 2019-05-28 | 인천화학 주식회사 | Recycling of and valuable metal using plated plastic |
Also Published As
Publication number | Publication date |
---|---|
KR101983354B1 (en) | 2019-05-28 |
CN112585203B (en) | 2023-08-15 |
CN112585203A (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sum | The recovery of metals from electronic scrap | |
WO2020105861A1 (en) | Method for reusing plastic from and recovering valuable metals from plated waste plastic | |
CN108070720B (en) | A kind of comprehensive recovering process of tin removal waste liquor | |
KR960009172B1 (en) | Method for concurrent production of copper powder and a metal chloride | |
CA2943483C (en) | Copper removal method for aqueous nickel chloride solution | |
CN101994008B (en) | Zinc-cobalt separation process for producing nickel-cobalt slag by zinc smelting purification | |
WO2015111761A1 (en) | A method for regenerating precursor raw material using waste positive electrode material of lithium ion battery, and precursor, positive electrode material, and lithium ion battery manufactured using raw material regenerated thereby | |
KR102603244B1 (en) | Method for recovering of valuable metals from waste battery | |
CN105132692A (en) | Method for recovering valuable metal from secondary copper electrolysis anode mud | |
KR20190065882A (en) | Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery | |
AU2021441266A1 (en) | Extraction of metals from lithium-ion battery material | |
WO1997025453B1 (en) | Process for electrowinning of copper matte | |
KR102324910B1 (en) | Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery | |
TWI835612B (en) | Method for producing aqueous solution containing nickel or cobalt | |
WO2001062989A1 (en) | Method for the recovery of nickel and/or cobalt | |
KR101692354B1 (en) | Recovering Method of high purity Tin from low Tin solution by cyclone electrowinning | |
KR101465032B1 (en) | Recycle process of high purity nickel powder from waste nickel plating solution and High purity nickel powder using that | |
JP2008106348A (en) | Method of separating and recovering zinc | |
KR940007372B1 (en) | Method of purification cobalt | |
WO2023128042A1 (en) | Hydrometallurgical method for recovering nickel sulfate | |
CN1156589C (en) | Dearsenifying method for Cu-Zn-Co material | |
CN115927849B (en) | Separation reagent and magnesium sulfate solution resource utilization method containing cobalt, iron, zinc, calcium and silicon | |
CA3211609C (en) | Method for producing aqueous solution containing nickel or cobalt | |
WO2023189211A1 (en) | Cobalt and nickel recovery method | |
CN114622098B (en) | Method for recycling high-purity cadmium from copper-cadmium-zinc slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19886793 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19886793 Country of ref document: EP Kind code of ref document: A1 |