WO2020105171A1 - Rotary compressor - Google Patents
Rotary compressorInfo
- Publication number
- WO2020105171A1 WO2020105171A1 PCT/JP2018/043177 JP2018043177W WO2020105171A1 WO 2020105171 A1 WO2020105171 A1 WO 2020105171A1 JP 2018043177 W JP2018043177 W JP 2018043177W WO 2020105171 A1 WO2020105171 A1 WO 2020105171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spring
- cylinder
- hole
- compression mechanism
- vane
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
Definitions
- the present invention relates to a rotary compressor, and more specifically to a spring fixing structure for pressing a vane against a piston.
- a conventional rotary compressor has an annular cylinder, a piston that rotates in a cylinder chamber formed in the cylinder, a vane that advances and retreats in a through hole that radially penetrates the cylinder, and the tip of the vane is the outer circumference of the piston. And a spring for pressing the vane so as to abut the surface.
- the spring is accommodated in a through hole formed in the cylinder in the radial direction so as to be expandable and contractible in the radial direction, and the end of the spring is screwed and held in a spiral groove formed on the inner peripheral surface of the through hole.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a rotary compressor that can improve insertability when screwing a spring into a through hole.
- a rotary compressor according to the present invention is a rotary compressor including a compression mechanism portion that compresses a refrigerant, and the compression mechanism portion includes an annular cylinder and a piston that rotates in a cylinder chamber formed in the cylinder. And a vane that advances and retracts in a through hole that radially penetrates the cylinder, and a spring that presses the vane so that the tip of the vane contacts the outer peripheral surface of the piston.
- the spring is fixed to the through hole by screwing the end turn part, which is the male screw part, into the female screw part formed on the inner peripheral surface of the through hole. It has a gripping part that is folded back into.
- the spring is provided with the grip portion, the insertability when screwing the spring into the through hole can be improved.
- FIG. 3 is a schematic vertical cross-sectional view of the rotary compressor according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic cross-sectional view of a compression mechanism portion of the rotary compressor according to Embodiment 1 of the present invention. It is a figure which shows the fixing structure of the spring of the rotary compressor in Embodiment 1 of this invention. It is a figure which shows the spring of FIG. It is the figure which looked at the end turn part of the spring of FIG. 3 from the rear end part side. It is a figure which shows the fixing structure of the spring of the rotary compressor in Embodiment 2 of this invention.
- Embodiment 1. 1 is a schematic vertical sectional view of a rotary compressor according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic transverse sectional view of a compression mechanism portion of the rotary compressor according to Embodiment 1 of the present invention.
- the rotary compressor is one of the components of a refrigerant circuit used in a heat pump device such as an air conditioner, a refrigerating device, a refrigerating device, or a water heater.
- the rotary compressor is a hermetic electric compressor, and has a configuration in which a compression mechanism section 3 and an electric mechanism section 2 for driving the compression mechanism section 3 via a rotary shaft 4 are arranged in a hermetic container 1. Have.
- the compression mechanism part 3 is arranged in the lower part of the closed container 1, and the electric mechanism part 2 is arranged in the upper part of the closed container 1.
- a space A is provided between the compression mechanism section 3 and the electric mechanism section 2.
- the closed container 1 is composed of, for example, a cylindrical central container 1a, an upper container 1b, and a lower container 1c.
- the upper container 1b is fitted in the upper opening of the central container 1a
- the lower container 1c is fitted in the lower opening of the central container 1a, so that the inside of the closed container 1 is in a hermetically sealed state.
- a discharge pipe 5 is connected to the upper container 1b.
- the discharge pipe 5 is a connection pipe for discharging the high-temperature and high-pressure gas refrigerant in the closed container 1 compressed by the compression mechanism unit 3 to the refrigerant pipe.
- Lubricating oil is stored in the lower part of the closed container 1, and the lubricating oil is pumped up by an oil supply mechanism (not shown) provided at the lower end of the rotary shaft 4 to supply the oil to the respective parts. Lubrication is maintained.
- the electric mechanism section 2 includes a stator 2a and a rotor 2b.
- the rotor 2b is fixed to the rotary shaft 4, and the rotary shaft 4 is rotated by the rotation of the rotor 2b, and the rotary power is transmitted to the compression mechanism unit 3.
- a gas hole 21 is formed in the rotor 2b so as to penetrate therethrough in the rotation axis direction.
- An air gap 22 is provided between the rotor 2b and the stator 2a.
- the gas holes 21 and the air gaps 22 are passages through which the refrigerant gas passes, and the refrigerant gas discharged from the compression mechanism section 3 moves above the electric mechanism section 2 through the passages, and the discharge pipe 5 Is discharged from the outside.
- the compression mechanism section 3 includes a first compression mechanism section 30A, a second compression mechanism section 30B, an upper bearing 40 arranged on the upper end surface of the first compression mechanism section 30A, and a lower end surface of the second compression mechanism section 30B.
- the lower bearing 50 and the intermediate plate 60 are provided.
- the upper bearing 40 includes a hollow cylindrical bearing portion 41 that rotatably supports the rotating shaft 4, and a flat plate annular end plate 42 that closes an upper end surface of a cylinder 31 described later.
- the lower bearing 50 includes a hollow cylindrical bearing portion 51 that rotatably supports the rotating shaft 4 and a flat plate-shaped end plate 52 that closes a lower end surface of a cylinder 31 described later.
- each of the end plate 42 and the end plate 52 is formed with a discharge port 42a and a discharge port 52a provided with a discharge valve that opens when a pressure in a compression chamber, which will be described later, becomes equal to or higher than a predetermined pressure.
- a muffler 43 and a muffler 53 are attached to the end plates 42 and 52 so as to cover the discharge ports.
- first compression mechanism section 30A and the second compression mechanism section 30B of the compression mechanism section 3 will be described. Since the first compression mechanism unit 30A and the second compression mechanism unit 30B have basically the same configuration, the first compression mechanism unit 30A will be described below as a representative.
- the first compression mechanism portion 30A includes an annular cylinder 31 having a through hole that penetrates in the rotation axis direction, a piston 32 that rotates in a cylinder chamber (described later) formed in the cylinder 31, and a vane 33.
- the upper bearing 40 and the intermediate plate 60 are disposed on both end surfaces of the cylinder 31 in the rotational axis direction, and the through hole is closed by the end plate 42 of the upper bearing 40 and the intermediate plate 60, so that the inside of the cylinder 31 is closed.
- a cylinder chamber 44 is formed in the.
- the piston 32 is housed in the cylinder chamber 44 in the cylinder 31 while being rotatably fitted to the eccentric portion 4a of the rotary shaft 4.
- a through hole 34 is formed in the cylinder 31 to penetrate the cylinder 31 in the radial direction.
- the through hole 34 has a front end communicating with the cylinder chamber 44 and a rear end opening to the outer peripheral surface of the cylinder 31.
- the vane 33 is arranged in the through hole 34 so as to be movable back and forth in the radial direction.
- a spring 35 is arranged radially outside the vane 33 in the through hole 34 and is pressed radially inward by the spring 35 so that the tip 33b of the vane 33 is always in contact with the piston 32. In this way, the tip end portion 33b of the vane 33 contacts the piston 32, whereby the inside of the cylinder chamber 44 is partitioned into the suction chamber 44a and the compression chamber 44b.
- the cylinder 31 is provided with a suction port 36 that penetrates the vane 33 in the radial direction on both sides, and a discharge notch 37 that communicates with a discharge port 42 a formed in an end plate 42 of the upper bearing 40.
- An outlet pipe 73 of the accumulator 70 which will be described later, is connected to the suction port 36 from the outside of the central container 1a of the closed container 1.
- the discharge notch 37 communicates with a discharge port 42 a formed in the end plate 42 of the upper bearing 40.
- the member that closes the through hole formed in the substantially center of the cylinder 31 of the second compression mechanism portion 30B is the intermediate plate 60 and the lower bearing 50, and the first compression mechanism portion 30A.
- other configurations are basically the same as those of the first compression mechanism portion 30A.
- the accumulator 70 includes a container 71, an inflow pipe 72, an outflow pipe 73, and an inner pipe 74 that communicates with the outflow pipe 73 inside the container 71.
- the accumulator 70 separates the refrigerant flowing into the container 71 from the inflow pipe 72 into a liquid refrigerant and a gas refrigerant.
- the separated gas medium flows out of the container 71 through the inner pipe 74, passes through the outflow pipe 73, and flows into the suction chamber 44 a of the cylinder chamber 44 from the suction port 36 of the cylinder 31.
- the operation of the rotary compressor according to the first embodiment will be described.
- the electric mechanism unit 2 rotates the rotating shaft 4.
- the eccentric portion 4a of the rotating shaft 4 rotates eccentrically in the cylinder chamber 44
- the piston 32 rotates eccentrically in the cylinder chamber 44.
- the gas refrigerant is sucked from the accumulator 70 into the suction chamber 44a of the cylinder chamber 44 through the suction port 36.
- the sucked gas refrigerant is compressed as the volume of the compression chamber 44b is gradually reduced as the piston 32 rotates.
- the compressed gas refrigerant When the compressed gas refrigerant reaches a predetermined pressure, it is discharged into the internal space B of the silencer 43 through the discharge notch 37 of the cylinder 31 through the discharge port 42a provided in the upper bearing 40.
- the gas refrigerant discharged into the internal space B of the silencer 43 is discharged into the space A in the closed container 1 from a discharge port (not shown) provided in the silencer 43.
- the gas refrigerant sucked from the accumulator 70 is compressed and discharged into the space inside the closed container 1.
- the rotation and rotation of the rotary shaft 4 causes the refrigerant gas to be sucked and compressed repeatedly.
- the gas refrigerant compressed in each of the first compression mechanism section 30A and the second compression mechanism section 30B and discharged into the space in the closed container is a gap formed in the electric mechanism section 2, that is, the gas hole 21 and the air. It reaches the upper part in the closed container 1 through the gap 22 and is discharged from the discharge pipe 5 to the refrigerant circuit.
- a flammable refrigerant such as R290 is used as the refrigerant, but the kind of the refrigerant is not limited to this.
- the characteristic structure of the first embodiment is the fixing structure of the spring 35.
- the fixing structure of the spring 35 will be described below.
- the first compression mechanism 30A and the second compression mechanism 30B have the same spring fixing structure. Therefore, in this specification, the fixing structure of the spring 35 will be described on behalf of the first compression mechanism portion 30A.
- FIG. 3 is a diagram showing a spring fixing structure of the rotary compressor according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing the spring of FIG.
- FIG. 5 is a view of the end turn portion of the spring of FIG. 3 viewed from the rear end side.
- the spring 35 is formed by spirally winding an elastic wire.
- the end turn portion 35a on the rear end side of the spring 35 has a larger diameter than the tip end portion 35b.
- a grip portion 35c is formed at the end of the end turn portion 35a.
- the grip portion 35c is configured by a folded portion in which the end of the end turn portion 35a is folded back in the inner diameter direction of the spring 35.
- a female screw portion 34a is formed on the radially outer inner peripheral surface of the through hole 34 in which the spring 35 is arranged.
- the end turn portion 35a, which is the male screw portion, is screwed into the female screw portion 34a, and the spring 35 passes through the through hole. It is fixed to 34.
- the depth H of the female screw portion 34a of the through hole 34 is larger than the wire diameter J of the spring 35.
- the diameter K of the female screw portion 34a is smaller than the diameter D of the end turn portion 35a of the spring 35.
- the operation of the grip portion 35c will be described.
- an operator grasps the outer periphery of the spring 35 and inserts the spring 35 into the through hole 34 from the outside in the radial direction.
- the end turn portion 35a is positioned at the radially outer end of the through hole 34, for example, the thumb and the index finger are inserted into the spring 35 to grip the grip portion 35c.
- the worker rotates the gripping portion while gripping the gripping portion 35c to rotate the spring 35 and screw the end turn portion 35a into the female screw portion 34a.
- the spring 35 is fixed to the through hole 34.
- by providing the spring 35 with the grip portion 35c it is possible to improve the insertability when the end turn portion 35a is rotationally inserted into the female screw portion 34a.
- the grip portion 35c is provided on the end turn portion 35a of the spring 35, the insertability when screwing the spring 35 into the female screw portion 34a can be improved.
- Embodiment 2 relates to positioning of the insertion position of the spring 35.
- the points of difference between the second embodiment and the first embodiment will be mainly described.
- FIG. 6 is a diagram showing a spring fixing structure of the rotary compressor according to the second embodiment of the present invention.
- the spring 35 is fixed by screwing the end turn portion 35a into the female screw portion 34a. Therefore, the insertion depth L1 of the spring 35 into the through hole 34 of the end turn portion 35a is equal to the radial depth of the female screw portion 34a. Limited by L2. That is, the maximum value of the insertion depth L1 becomes equal to the depth L2 of the female screw portion 34a. Therefore, the insertion depth L1 of the spring 35 can be limited by limiting the depth L2 of the female screw portion 34a.
- the amount of deformation of the spring 35 during operation is determined by the "cylinder inner diameter”, "piston outer diameter” and "vane length". As described above, the amount of deformation of the spring 35 during operation is determined, so that the spring 35 has a length and a spring constant that take the amount of deformation into consideration. Therefore, if the spring 35 is inserted deeper than necessary into the through hole 34, that is, if the insertion depth L1 is too long, the spring 35 will be installed in the through hole 34 in a state of being compressed more than necessary. .. At the time of operation, the amount of deformation is further added to the state, and therefore, there is a high possibility that the spring 35 will be overstressed and broken.
- the insertion depth L1 of the spring 35 can be limited by limiting the depth L2 of the female screw portion 34a as described above.
- the female screw portion 34a is provided in a depth range where the generation of excessive stress on the spring 35 can be avoided.
- the depth L2 of the female screw portion 34a is set to a length that allows the amount of deformation of the spring 35 during operation in a state where the spring 35 is inserted to the radially inner end of the female screw portion 34a. ing. As a result, the margin of the fatigue strength design of the spring 35 can be reduced.
- the same effect as that of the first embodiment can be obtained, and the insertion depth L1 of the spring 35 can be limited by the depth L2 of the female screw portion 34a. Therefore, by setting the depth L2 of the female screw portion 34a to a length that allows the amount of deformation of the spring 35 during operation in a state where the spring 35 is inserted to the radially inner end of the female screw portion 34a, The margin of the fatigue strength design of the spring 35 can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Disclosed is a rotary compressor equipped with a compression mechanism part for compressing a refrigerant, wherein the compression mechanism part is provided with: an annular cylinder; a piston that rotates within a cylinder chamber formed inside the cylinder; a vane that moves forward and backward in a through-hole bored in the cylinder in the radial direction; and a spring that pushes the vane so as to cause the leading end thereof to abut the outer circumferential surface of the piston. In the spring, an end coil part thereof, which forms a male thread portion and which is located opposite to the vane, is screwed into a female thread portion formed in the inner circumferential surface of the through-hole so as to cause the spring to be fixed in the through-hole. The spring has a grip part that is formed by folding back the end of the end coil part in the inner radial direction of the spring.
Description
この発明は、ロータリ式圧縮機に関し、さらに詳しくは、ベーンをピストンへ押し当てるためのスプリングの固定構造に関するものである。
The present invention relates to a rotary compressor, and more specifically to a spring fixing structure for pressing a vane against a piston.
従来のロータリ式圧縮機は、環状のシリンダと、シリンダ内に形成されたシリンダ室内で回転するピストンと、シリンダを径方向に貫通する貫通穴内を進退するベーンと、ベーンの先端部がピストンの外周面に当接するようにベーンを押圧するスプリングとを備えている。スプリングは、シリンダに径方向に形成された貫通穴に径方向に伸縮自在に収容されており、スプリングの端部が貫通穴の内周面に形成された螺旋状の溝にねじ込まれて保持されている(例えば、特許文献1参照)。
A conventional rotary compressor has an annular cylinder, a piston that rotates in a cylinder chamber formed in the cylinder, a vane that advances and retreats in a through hole that radially penetrates the cylinder, and the tip of the vane is the outer circumference of the piston. And a spring for pressing the vane so as to abut the surface. The spring is accommodated in a through hole formed in the cylinder in the radial direction so as to be expandable and contractible in the radial direction, and the end of the spring is screwed and held in a spiral groove formed on the inner peripheral surface of the through hole. (See, for example, Patent Document 1).
特許文献1のロータリ式圧縮機では、組立時にスプリングの端部を貫通穴の内周面に形成された螺旋状の溝にねじ込む必要があるが、ねじ込む際の挿入性については明らかにされていない。
In the rotary compressor of Patent Document 1, it is necessary to screw the end of the spring into the spiral groove formed on the inner peripheral surface of the through hole at the time of assembly, but the insertability when screwing is not clarified. ..
この発明は、上記のような課題を解決するためになされたものであり、スプリングを貫通穴にねじ込む際の挿入性を向上することが可能なロータリ式圧縮機を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotary compressor that can improve insertability when screwing a spring into a through hole.
この発明に係るロータリ式圧縮機は、冷媒を圧縮する圧縮機構部を備えたロータリ式圧縮機であって、圧縮機構部は、環状のシリンダと、シリンダ内に形成されたシリンダ室内で回転するピストンと、シリンダを径方向に貫通する貫通穴内を進退するベーンと、ベーンの先端部がピストンの外周面に当接するようにベーンを押圧するスプリングとを備え、スプリングのベーンと反対側の端部であってオネジ部となる座巻部が、貫通穴の内周面に形成されたメネジ部にねじ込まれてスプリングが貫通穴に固定されており、スプリングは、座巻部の端がスプリングの内径方向に折り返された把持部を有するものである。
A rotary compressor according to the present invention is a rotary compressor including a compression mechanism portion that compresses a refrigerant, and the compression mechanism portion includes an annular cylinder and a piston that rotates in a cylinder chamber formed in the cylinder. And a vane that advances and retracts in a through hole that radially penetrates the cylinder, and a spring that presses the vane so that the tip of the vane contacts the outer peripheral surface of the piston. The spring is fixed to the through hole by screwing the end turn part, which is the male screw part, into the female screw part formed on the inner peripheral surface of the through hole. It has a gripping part that is folded back into.
この発明によれば、スプリングに把持部を設けたので、スプリングを貫通穴にねじ込む際の挿入性を向上できる。
According to this invention, since the spring is provided with the grip portion, the insertability when screwing the spring into the through hole can be improved.
以下、この発明の実施の形態に係るロータリ式圧縮機について図面を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成部品の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。
Hereinafter, a rotary compressor according to an embodiment of the present invention will be described with reference to the drawings. Here, in the following drawings, including FIG. 1, those denoted by the same reference numerals are the same or equivalent, and are common to all text of the embodiments described below. The forms of the components shown in the full text of the specification are merely examples, and the forms are not limited to the forms described in the specification.
実施の形態1.
図1は、この発明の実施の形態1におけるロータリ式圧縮機の模式的な縦断面図である。図2は、この発明の実施の形態1におけるロータリ式圧縮機の圧縮機構部の模式的な横断面図である。
ロータリ式圧縮機は、例えば空調機、冷蔵装置、冷凍装置または給湯機等のヒートポンプ機器に採用される冷媒回路の構成要素の一つとなるものである。ロータリ式圧縮機は密閉型の電動圧縮機であり、密閉容器1内に、圧縮機構部3と、圧縮機構部3を回転軸4を介して駆動する電動機構部2とが配置された構成を有する。圧縮機構部3は密閉容器1内の下部に配置され、電動機構部2は密閉容器1内の上部に配置されている。圧縮機構部3と電動機構部2との間には空間Aを有している。この実施の形態1におけるロータリ式圧縮機は、圧縮機構部3が2つのシリンダを有するツインロータリー形の回転圧縮機を例に説明するが、これに限るものではなく、シリンダが1つまたは3つ以上のものでもよい。Embodiment 1.
1 is a schematic vertical sectional view of a rotary compressor according toEmbodiment 1 of the present invention. FIG. 2 is a schematic transverse sectional view of a compression mechanism portion of the rotary compressor according to Embodiment 1 of the present invention.
The rotary compressor is one of the components of a refrigerant circuit used in a heat pump device such as an air conditioner, a refrigerating device, a refrigerating device, or a water heater. The rotary compressor is a hermetic electric compressor, and has a configuration in which acompression mechanism section 3 and an electric mechanism section 2 for driving the compression mechanism section 3 via a rotary shaft 4 are arranged in a hermetic container 1. Have. The compression mechanism part 3 is arranged in the lower part of the closed container 1, and the electric mechanism part 2 is arranged in the upper part of the closed container 1. A space A is provided between the compression mechanism section 3 and the electric mechanism section 2. The rotary compressor according to the first embodiment will be described by taking a twin rotary type rotary compressor in which the compression mechanism unit 3 has two cylinders as an example, but the present invention is not limited to this, and one or three cylinders are provided. The above may be used.
図1は、この発明の実施の形態1におけるロータリ式圧縮機の模式的な縦断面図である。図2は、この発明の実施の形態1におけるロータリ式圧縮機の圧縮機構部の模式的な横断面図である。
ロータリ式圧縮機は、例えば空調機、冷蔵装置、冷凍装置または給湯機等のヒートポンプ機器に採用される冷媒回路の構成要素の一つとなるものである。ロータリ式圧縮機は密閉型の電動圧縮機であり、密閉容器1内に、圧縮機構部3と、圧縮機構部3を回転軸4を介して駆動する電動機構部2とが配置された構成を有する。圧縮機構部3は密閉容器1内の下部に配置され、電動機構部2は密閉容器1内の上部に配置されている。圧縮機構部3と電動機構部2との間には空間Aを有している。この実施の形態1におけるロータリ式圧縮機は、圧縮機構部3が2つのシリンダを有するツインロータリー形の回転圧縮機を例に説明するが、これに限るものではなく、シリンダが1つまたは3つ以上のものでもよい。
1 is a schematic vertical sectional view of a rotary compressor according to
The rotary compressor is one of the components of a refrigerant circuit used in a heat pump device such as an air conditioner, a refrigerating device, a refrigerating device, or a water heater. The rotary compressor is a hermetic electric compressor, and has a configuration in which a
密閉容器1は、例えば、円筒形状の中央容器1aと、上容器1bと、下容器1cとで構成されている。中央容器1aの上方の開口部に上容器1bが嵌入され、中央容器1aの下方の開口部に下容器1cが嵌入されており、密閉容器1の内部は密閉状態となっている。上容器1bには、吐出管5が接続されている。吐出管5は、圧縮機構部3によって圧縮された密閉容器1内の高温高圧のガス冷媒を冷媒配管に吐出させるための接続管である。
The closed container 1 is composed of, for example, a cylindrical central container 1a, an upper container 1b, and a lower container 1c. The upper container 1b is fitted in the upper opening of the central container 1a, and the lower container 1c is fitted in the lower opening of the central container 1a, so that the inside of the closed container 1 is in a hermetically sealed state. A discharge pipe 5 is connected to the upper container 1b. The discharge pipe 5 is a connection pipe for discharging the high-temperature and high-pressure gas refrigerant in the closed container 1 compressed by the compression mechanism unit 3 to the refrigerant pipe.
密閉容器1の下部には潤滑油が蓄えられ、回転軸4の下端部に設けられた給油機構(図示せず)で潤滑油を汲み上げて各部に油を供給することで、圧縮機構部3の潤滑が保たれている。
Lubricating oil is stored in the lower part of the closed container 1, and the lubricating oil is pumped up by an oil supply mechanism (not shown) provided at the lower end of the rotary shaft 4 to supply the oil to the respective parts. Lubrication is maintained.
電動機構部2は、固定子2aと、回転子2bとを備えている。回転子2bは回転軸4に固定されており、回転子2bの回転により回転軸4が回転し、圧縮機構部3に回転動力が伝達される。回転子2bには、回転軸方向に貫通するガス穴21が形成されている。また、回転子2bと固定子2aとの間にはエアギャップ22が設けられている。ガス穴21およびエアギャップ22は冷媒ガスを通過させる流路であり、圧縮機構部3から吐出された冷媒ガスが、この流路を通過して電動機構部2の上方へ移動し、吐出管5から外部に吐出される。
The electric mechanism section 2 includes a stator 2a and a rotor 2b. The rotor 2b is fixed to the rotary shaft 4, and the rotary shaft 4 is rotated by the rotation of the rotor 2b, and the rotary power is transmitted to the compression mechanism unit 3. A gas hole 21 is formed in the rotor 2b so as to penetrate therethrough in the rotation axis direction. An air gap 22 is provided between the rotor 2b and the stator 2a. The gas holes 21 and the air gaps 22 are passages through which the refrigerant gas passes, and the refrigerant gas discharged from the compression mechanism section 3 moves above the electric mechanism section 2 through the passages, and the discharge pipe 5 Is discharged from the outside.
圧縮機構部3は、第1圧縮機構部30Aと、第2圧縮機構部30Bと、第1圧縮機構部30Aの上端面に配置された上軸受40と、第2圧縮機構部30Bの下端面に配置された下軸受50と、中間板60とを備えている。
The compression mechanism section 3 includes a first compression mechanism section 30A, a second compression mechanism section 30B, an upper bearing 40 arranged on the upper end surface of the first compression mechanism section 30A, and a lower end surface of the second compression mechanism section 30B. The lower bearing 50 and the intermediate plate 60 are provided.
上軸受40は、回転軸4を回転自在に支持する中空円筒状の軸受部41と、後述のシリンダ31の上端面を閉塞する平板環状の端板42とから構成されている。下軸受50も同様に、回転軸4を回転自在に支持する中空円筒状の軸受部51と、後述のシリンダ31の下端面を閉塞する平板環状の端板52とから構成されている。また、端板42および端板52のそれぞれには、後述の圧縮室内が所定の圧力以上になった際に開く吐出弁を備えた吐出口42aおよび吐出口52aが形成されている。また、端板42および端板52のそれぞれには、吐出口を覆うように消音器43および消音器53が取り付けられている。
The upper bearing 40 includes a hollow cylindrical bearing portion 41 that rotatably supports the rotating shaft 4, and a flat plate annular end plate 42 that closes an upper end surface of a cylinder 31 described later. Similarly, the lower bearing 50 includes a hollow cylindrical bearing portion 51 that rotatably supports the rotating shaft 4 and a flat plate-shaped end plate 52 that closes a lower end surface of a cylinder 31 described later. Further, each of the end plate 42 and the end plate 52 is formed with a discharge port 42a and a discharge port 52a provided with a discharge valve that opens when a pressure in a compression chamber, which will be described later, becomes equal to or higher than a predetermined pressure. Further, a muffler 43 and a muffler 53 are attached to the end plates 42 and 52 so as to cover the discharge ports.
次に、圧縮機構部3の第1圧縮機構部30Aと第2圧縮機構部30Bの構成について説明する。第1圧縮機構部30Aと第2圧縮機構部30Bは基本的に同様の構成であるため、以下、第1圧縮機構部30Aを代表して説明する。
Next, the configurations of the first compression mechanism section 30A and the second compression mechanism section 30B of the compression mechanism section 3 will be described. Since the first compression mechanism unit 30A and the second compression mechanism unit 30B have basically the same configuration, the first compression mechanism unit 30A will be described below as a representative.
第1圧縮機構部30Aは、回転軸方向に貫通する貫通穴を有する環状のシリンダ31と、シリンダ31内に形成された後述のシリンダ室内で回転するピストン32と、ベーン33等を備えている。シリンダ31の回転軸方向の両端面には上軸受40と中間板60とが配置されており、貫通穴が上軸受40の端板42と中間板60とで閉塞されることで、シリンダ31内にシリンダ室44が形成されている。
The first compression mechanism portion 30A includes an annular cylinder 31 having a through hole that penetrates in the rotation axis direction, a piston 32 that rotates in a cylinder chamber (described later) formed in the cylinder 31, and a vane 33. The upper bearing 40 and the intermediate plate 60 are disposed on both end surfaces of the cylinder 31 in the rotational axis direction, and the through hole is closed by the end plate 42 of the upper bearing 40 and the intermediate plate 60, so that the inside of the cylinder 31 is closed. A cylinder chamber 44 is formed in the.
ピストン32は、回転軸4の偏心部4aに回転可能に嵌合した状態でシリンダ31内のシリンダ室44に収納されている。
The piston 32 is housed in the cylinder chamber 44 in the cylinder 31 while being rotatably fitted to the eccentric portion 4a of the rotary shaft 4.
シリンダ31には、シリンダ31を径方向に貫通する貫通穴34が形成されている。貫通穴34は、先端側がシリンダ室44に連通し、後端側がシリンダ31の外周面に開口している。貫通穴34内には、ベーン33が径方向に進退自在に配置されている。貫通穴34においてベーン33の径方向外側にはスプリング35が配置されており、スプリング35によって径方向内側に押圧されることで、ベーン33の先端部33bがピストン32に常に当接している。このようにベーン33の先端部33bがピストン32と当接することで、シリンダ室44内が吸入室44aと圧縮室44bとに仕切られている。
A through hole 34 is formed in the cylinder 31 to penetrate the cylinder 31 in the radial direction. The through hole 34 has a front end communicating with the cylinder chamber 44 and a rear end opening to the outer peripheral surface of the cylinder 31. The vane 33 is arranged in the through hole 34 so as to be movable back and forth in the radial direction. A spring 35 is arranged radially outside the vane 33 in the through hole 34 and is pressed radially inward by the spring 35 so that the tip 33b of the vane 33 is always in contact with the piston 32. In this way, the tip end portion 33b of the vane 33 contacts the piston 32, whereby the inside of the cylinder chamber 44 is partitioned into the suction chamber 44a and the compression chamber 44b.
また、シリンダ31には、ベーン33を挟んで両側に径方向に貫通する吸入口36と、上軸受40の端板42に形成された吐出口42aに連通する吐出切欠き37とが設けられている。吸入口36には、密閉容器1の中央容器1aの外部からアキュムレータ70の後述の流出管73が接続されている。一方、吐出切欠き37は、上軸受40の端板42に形成された吐出口42aに連通している。
Further, the cylinder 31 is provided with a suction port 36 that penetrates the vane 33 in the radial direction on both sides, and a discharge notch 37 that communicates with a discharge port 42 a formed in an end plate 42 of the upper bearing 40. There is. An outlet pipe 73 of the accumulator 70, which will be described later, is connected to the suction port 36 from the outside of the central container 1a of the closed container 1. On the other hand, the discharge notch 37 communicates with a discharge port 42 a formed in the end plate 42 of the upper bearing 40.
第2圧縮機構部30Bは、第2圧縮機構部30Bのシリンダ31の略中心に形成された貫通穴を閉塞する部材が、中間板60と下軸受50とである点が第1圧縮機構部30Aと異なり、その他の構成は第1圧縮機構部30Aと基本的に同様である。
In the second compression mechanism portion 30B, the member that closes the through hole formed in the substantially center of the cylinder 31 of the second compression mechanism portion 30B is the intermediate plate 60 and the lower bearing 50, and the first compression mechanism portion 30A. Other than that, other configurations are basically the same as those of the first compression mechanism portion 30A.
アキュムレータ70は、容器71と、流入管72と、流出管73と、容器71の内部において流出管73に連通する内管74とを備えている。アキュムレータ70は、流入管72から容器71内に流入した冷媒を、液冷媒とガス冷媒とに分離する。分離されたガス媒は、内管74を介して容器71から流出し、流出管73を通ってシリンダ31の吸入口36からシリンダ室44の吸入室44aに流入する。
The accumulator 70 includes a container 71, an inflow pipe 72, an outflow pipe 73, and an inner pipe 74 that communicates with the outflow pipe 73 inside the container 71. The accumulator 70 separates the refrigerant flowing into the container 71 from the inflow pipe 72 into a liquid refrigerant and a gas refrigerant. The separated gas medium flows out of the container 71 through the inner pipe 74, passes through the outflow pipe 73, and flows into the suction chamber 44 a of the cylinder chamber 44 from the suction port 36 of the cylinder 31.
次に、この実施の形態1のロータリ式圧縮機の動作について説明する。
第1圧縮機構部30Aでは、電動機構部2に電力が供給されると、電動機構部2によって回転軸4が回転する。回転軸4が回転することにより回転軸4の偏心部4aがシリンダ室44内で偏心的に回転し、ピストン32がシリンダ室44内で偏心的に回転する。ピストン32の回転に伴い、アキュムレータ70から吸入口36を介してシリンダ室44の吸入室44aにガス冷媒が吸入される。吸入されたガス冷媒は、ピストン32の回転に伴い、圧縮室44bの容積が徐々に縮小されることで圧縮される。 Next, the operation of the rotary compressor according to the first embodiment will be described.
In the first compression mechanism unit 30A, when electric power is supplied to theelectric mechanism unit 2, the electric mechanism unit 2 rotates the rotating shaft 4. As the rotating shaft 4 rotates, the eccentric portion 4a of the rotating shaft 4 rotates eccentrically in the cylinder chamber 44, and the piston 32 rotates eccentrically in the cylinder chamber 44. As the piston 32 rotates, the gas refrigerant is sucked from the accumulator 70 into the suction chamber 44a of the cylinder chamber 44 through the suction port 36. The sucked gas refrigerant is compressed as the volume of the compression chamber 44b is gradually reduced as the piston 32 rotates.
第1圧縮機構部30Aでは、電動機構部2に電力が供給されると、電動機構部2によって回転軸4が回転する。回転軸4が回転することにより回転軸4の偏心部4aがシリンダ室44内で偏心的に回転し、ピストン32がシリンダ室44内で偏心的に回転する。ピストン32の回転に伴い、アキュムレータ70から吸入口36を介してシリンダ室44の吸入室44aにガス冷媒が吸入される。吸入されたガス冷媒は、ピストン32の回転に伴い、圧縮室44bの容積が徐々に縮小されることで圧縮される。 Next, the operation of the rotary compressor according to the first embodiment will be described.
In the first compression mechanism unit 30A, when electric power is supplied to the
圧縮されたガス冷媒は、所定の圧力になると、シリンダ31の吐出切欠き37を介して、上軸受40に設けられた吐出口42aから消音器43の内部空間Bへ吐出される。消音器43の内部空間Bに吐出されたガス冷媒は、消音器43に設けられた吐出口(図示せず)から密閉容器1内の空間Aへ吐出される。
When the compressed gas refrigerant reaches a predetermined pressure, it is discharged into the internal space B of the silencer 43 through the discharge notch 37 of the cylinder 31 through the discharge port 42a provided in the upper bearing 40. The gas refrigerant discharged into the internal space B of the silencer 43 is discharged into the space A in the closed container 1 from a discharge port (not shown) provided in the silencer 43.
第2圧縮機構部30Bにおいても同様に、アキュムレータ70から吸入したガス冷媒が圧縮され、密閉容器1内の空間へ吐出される。
Similarly, in the second compression mechanism section 30B, the gas refrigerant sucked from the accumulator 70 is compressed and discharged into the space inside the closed container 1.
そして、第1圧縮機構部30Aおよび第2圧縮機構部30Bでは、回転軸4が回転することで、冷媒ガスの吸入および圧縮が繰り返される。そして、第1圧縮機構部30Aおよび第2圧縮機構部30Bのそれぞれで圧縮されて密閉容器内の空間へ吐出されたガス冷媒は、電動機構部2に形成された隙間、すなわちガス穴21およびエアギャップ22を通って密閉容器1内の上部に達し、吐出管5から冷媒回路へと吐出される。なお、このロータリ式圧縮機では、冷媒として例えばR290等の可燃性冷媒が使用されるが、冷媒の種類はこれに限定されるものではない。
Then, in the first compression mechanism unit 30A and the second compression mechanism unit 30B, the rotation and rotation of the rotary shaft 4 causes the refrigerant gas to be sucked and compressed repeatedly. Then, the gas refrigerant compressed in each of the first compression mechanism section 30A and the second compression mechanism section 30B and discharged into the space in the closed container is a gap formed in the electric mechanism section 2, that is, the gas hole 21 and the air. It reaches the upper part in the closed container 1 through the gap 22 and is discharged from the discharge pipe 5 to the refrigerant circuit. In this rotary compressor, a flammable refrigerant such as R290 is used as the refrigerant, but the kind of the refrigerant is not limited to this.
そして、この実施の形態1の特徴とする構成としては、スプリング35の固定構造にある。以下、スプリング35の固定構造について説明する。なお、第1圧縮機構部30Aと第2圧縮機構部30Bにおいてスプリングの固定構造は同じである。よって、本明細書では第1圧縮機構部30Aを代表してスプリング35の固定構造を説明する。
The characteristic structure of the first embodiment is the fixing structure of the spring 35. The fixing structure of the spring 35 will be described below. The first compression mechanism 30A and the second compression mechanism 30B have the same spring fixing structure. Therefore, in this specification, the fixing structure of the spring 35 will be described on behalf of the first compression mechanism portion 30A.
図3は、この発明の実施の形態1におけるロータリ式圧縮機のスプリングの固定構造を示す図である。図4は、図3のスプリングを示す図である。図5は、図3のスプリングの座巻部を後端部側から見た図である。
FIG. 3 is a diagram showing a spring fixing structure of the rotary compressor according to the first embodiment of the present invention. FIG. 4 is a diagram showing the spring of FIG. FIG. 5 is a view of the end turn portion of the spring of FIG. 3 viewed from the rear end side.
スプリング35は、弾性線材を螺旋状に巻回して構成されている。スプリング35の後端側の端部である座巻部35aは、先端部35bよりも大径に構成されている。座巻部35aの端部には把持部35cが形成されている。把持部35cは、座巻部35aの端をスプリング35の内径方向に折り返した折り返し部で構成されている。スプリング35が配置される貫通穴34の径方向外側の内周面にはメネジ部34aが形成されており、オネジ部となる座巻部35aが、メネジ部34aにねじ込まれてスプリング35が貫通穴34に固定されている。貫通穴34のメネジ部34aの深さHは、スプリング35の線径Jよりも大きい。また、メネジ部34aの径Kは、スプリング35の座巻部35aの径Dよりも小さい。
The spring 35 is formed by spirally winding an elastic wire. The end turn portion 35a on the rear end side of the spring 35 has a larger diameter than the tip end portion 35b. A grip portion 35c is formed at the end of the end turn portion 35a. The grip portion 35c is configured by a folded portion in which the end of the end turn portion 35a is folded back in the inner diameter direction of the spring 35. A female screw portion 34a is formed on the radially outer inner peripheral surface of the through hole 34 in which the spring 35 is arranged. The end turn portion 35a, which is the male screw portion, is screwed into the female screw portion 34a, and the spring 35 passes through the through hole. It is fixed to 34. The depth H of the female screw portion 34a of the through hole 34 is larger than the wire diameter J of the spring 35. The diameter K of the female screw portion 34a is smaller than the diameter D of the end turn portion 35a of the spring 35.
次に、把持部35cの作用について説明する。
組立時にスプリング35を貫通穴34に固定する際、作業者は、スプリング35の外周を把持してスプリング35を貫通穴34に径方向外側から挿入する。そして、座巻部35aが貫通穴34の径方向外側の端部に位置したところで、例えば親指と人差し指とをスプリング35の内側に差し込んで把持部35cを把持する。そして、作業者は、把持部35cを把持した状態で把持部分を回転させることで、スプリング35を回転させて座巻部35aをメネジ部34aにねじ込む。これによりスプリング35が貫通穴34に固定される。このように、スプリング35に把持部35cを設けたことで、座巻部35aをメネジ部34aに回転挿入する際の挿入性を向上できる。 Next, the operation of thegrip portion 35c will be described.
When fixing thespring 35 to the through hole 34 during assembly, an operator grasps the outer periphery of the spring 35 and inserts the spring 35 into the through hole 34 from the outside in the radial direction. Then, when the end turn portion 35a is positioned at the radially outer end of the through hole 34, for example, the thumb and the index finger are inserted into the spring 35 to grip the grip portion 35c. Then, the worker rotates the gripping portion while gripping the gripping portion 35c to rotate the spring 35 and screw the end turn portion 35a into the female screw portion 34a. As a result, the spring 35 is fixed to the through hole 34. As described above, by providing the spring 35 with the grip portion 35c, it is possible to improve the insertability when the end turn portion 35a is rotationally inserted into the female screw portion 34a.
組立時にスプリング35を貫通穴34に固定する際、作業者は、スプリング35の外周を把持してスプリング35を貫通穴34に径方向外側から挿入する。そして、座巻部35aが貫通穴34の径方向外側の端部に位置したところで、例えば親指と人差し指とをスプリング35の内側に差し込んで把持部35cを把持する。そして、作業者は、把持部35cを把持した状態で把持部分を回転させることで、スプリング35を回転させて座巻部35aをメネジ部34aにねじ込む。これによりスプリング35が貫通穴34に固定される。このように、スプリング35に把持部35cを設けたことで、座巻部35aをメネジ部34aに回転挿入する際の挿入性を向上できる。 Next, the operation of the
When fixing the
以上説明したように、この実施の形態1によれば、スプリング35の座巻部35aに把持部35cを設けたので、スプリング35をメネジ部34aにねじ込む際の挿入性を向上できる。
As described above, according to the first embodiment, since the grip portion 35c is provided on the end turn portion 35a of the spring 35, the insertability when screwing the spring 35 into the female screw portion 34a can be improved.
実施の形態2.
実施の形態2は、スプリング35の挿入位置の位置決めに関する。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。Embodiment 2.
The second embodiment relates to positioning of the insertion position of thespring 35. Hereinafter, the points of difference between the second embodiment and the first embodiment will be mainly described.
実施の形態2は、スプリング35の挿入位置の位置決めに関する。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
The second embodiment relates to positioning of the insertion position of the
図6は、本発明の実施の形態2におけるロータリ式圧縮機のスプリングの固定構造を示す図である。
スプリング35は、座巻部35aがメネジ部34aにねじ込まれることによって固定されるため、スプリング35の座巻部35aの貫通穴34への挿入深さL1は、メネジ部34aの径方向の深さL2によって制限される。つまり、挿入深さL1の最大値は、メネジ部34aの深さL2に等しくなる。よって、メネジ部34aの深さL2を制限することで、スプリング35の挿入深さL1を制限できる。 FIG. 6 is a diagram showing a spring fixing structure of the rotary compressor according to the second embodiment of the present invention.
Thespring 35 is fixed by screwing the end turn portion 35a into the female screw portion 34a. Therefore, the insertion depth L1 of the spring 35 into the through hole 34 of the end turn portion 35a is equal to the radial depth of the female screw portion 34a. Limited by L2. That is, the maximum value of the insertion depth L1 becomes equal to the depth L2 of the female screw portion 34a. Therefore, the insertion depth L1 of the spring 35 can be limited by limiting the depth L2 of the female screw portion 34a.
スプリング35は、座巻部35aがメネジ部34aにねじ込まれることによって固定されるため、スプリング35の座巻部35aの貫通穴34への挿入深さL1は、メネジ部34aの径方向の深さL2によって制限される。つまり、挿入深さL1の最大値は、メネジ部34aの深さL2に等しくなる。よって、メネジ部34aの深さL2を制限することで、スプリング35の挿入深さL1を制限できる。 FIG. 6 is a diagram showing a spring fixing structure of the rotary compressor according to the second embodiment of the present invention.
The
運転時のスプリング35の変形量は、「シリンダの内径」、「ピストンの外径」および「ベーンの長さ」によって決まる。このように、運転時のスプリング35の変形量は決まっているため、スプリング35には、変形量を考慮した長さおよびバネ定数のスプリングが選定されている。よって、スプリング35が貫通穴34に必要以上に深く挿入されていると、つまり挿入深さL1が長すぎると、スプリング35が必要以上に縮んだ状態で貫通穴34内に設置されることになる。運転時には、その状態に加えてさらに変形量が加わるため、スプリング35に対して過大な応力が発生して破壊する可能性が高くなる。
The amount of deformation of the spring 35 during operation is determined by the "cylinder inner diameter", "piston outer diameter" and "vane length". As described above, the amount of deformation of the spring 35 during operation is determined, so that the spring 35 has a length and a spring constant that take the amount of deformation into consideration. Therefore, if the spring 35 is inserted deeper than necessary into the through hole 34, that is, if the insertion depth L1 is too long, the spring 35 will be installed in the through hole 34 in a state of being compressed more than necessary. .. At the time of operation, the amount of deformation is further added to the state, and therefore, there is a high possibility that the spring 35 will be overstressed and broken.
この実施の形態2では、上述したようにメネジ部34aの深さL2を制限することで、スプリング35の挿入深さL1を制限できる。このため、スプリング35に対する過大な応力の発生を避けられる深さ範囲にメネジ部34aを設ける。具体的には、メネジ部34aの深さL2は、メネジ部34aの径方向内側の端部までスプリング35が挿入された状態において、運転時のスプリング35の変形量を許容する長さに設定されている。これにより、スプリング35の疲労耐力設計のマージンを小さくできる。
In the second embodiment, the insertion depth L1 of the spring 35 can be limited by limiting the depth L2 of the female screw portion 34a as described above. For this reason, the female screw portion 34a is provided in a depth range where the generation of excessive stress on the spring 35 can be avoided. Specifically, the depth L2 of the female screw portion 34a is set to a length that allows the amount of deformation of the spring 35 during operation in a state where the spring 35 is inserted to the radially inner end of the female screw portion 34a. ing. As a result, the margin of the fatigue strength design of the spring 35 can be reduced.
以上説明したように、この実施の形態2によれば、実施の形態1と同様の効果が得られると共に、メネジ部34aの深さL2によってスプリング35の挿入深さL1を制限できる。よって、メネジ部34aの深さL2を、メネジ部34aの径方向内側の端部までスプリング35が挿入された状態において、運転時のスプリング35の変形量を許容する長さに設定することで、スプリング35の疲労耐力設計のマージンを小さくできる。
As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained, and the insertion depth L1 of the spring 35 can be limited by the depth L2 of the female screw portion 34a. Therefore, by setting the depth L2 of the female screw portion 34a to a length that allows the amount of deformation of the spring 35 during operation in a state where the spring 35 is inserted to the radially inner end of the female screw portion 34a, The margin of the fatigue strength design of the spring 35 can be reduced.
1 密閉容器、1a 中央容器、1b 上容器、1c 下容器、2 電動機構部、2a 固定子、2b 回転子、3 圧縮機構部、4 回転軸、4a 偏心部、5 吐出管、21 ガス穴、22 エアギャップ、30A 第1圧縮機構部、30B 第2圧縮機構部、31 シリンダ、32 ピストン、33 ベーン、33a 後端部、33b 先端部、33c 凹部、34 貫通穴、34a メネジ部、35 スプリング、35a 座巻部、35b 先端部、35c 把持部、36 吸入口、37 吐出切欠き、40 上軸受、41 軸受部、42 端板、42a 吐出口、43 消音器、44 シリンダ室、44a 吸入室、44b 圧縮室、50 下軸受、51 軸受部、52 端板、53 消音器、60 中間板、70 アキュムレータ、71 容器、72 流入管、73 流出管、74 内管、A 空間、B 内部空間、D 座巻部の径、J スプリングの線径、K メネジ部の径。
1 closed container, 1a central container, 1b upper container, 1c lower container, 2 electric mechanism part, 2a stator, 2b rotor, 3 compression mechanism part, 4 rotating shaft, 4a eccentric part, 5 discharge pipe, 21 gas hole, 22 air gap, 30A first compression mechanism part, 30B second compression mechanism part, 31 cylinder, 32 piston, 33 vane, 33a rear end part, 33b tip part, 33c recessed part, 34 through hole, 34a female screw part, 35 spring, 35a end coil part, 35b tip part, 35c grip part, 36 suction port, 37 discharge notch, 40 upper bearing, 41 bearing part, 42 end plate, 42a discharge port, 43 silencer, 44 cylinder chamber, 44a suction chamber, 44b compression chamber, 50 lower bearing, 51 bearing part, 52 end plate, 53 silencer, 60 intermediate plate, 70 accumulator, 71 container, 72 inflow pipe, 73 outflow pipe, 74 inner pipe, A space, B inner space, D End coil diameter, J spring wire diameter, K female thread diameter.
Claims (2)
- 冷媒を圧縮する圧縮機構部を備えたロータリ式圧縮機であって、
前記圧縮機構部は、
環状のシリンダと、
前記シリンダ内に形成されたシリンダ室内で回転するピストンと、
前記シリンダを径方向に貫通する貫通穴内を進退するベーンと、
前記ベーンの先端部が前記ピストンの外周面に当接するように前記ベーンを押圧するスプリングとを備え、
前記スプリングの前記ベーンと反対側の端部であってオネジ部となる座巻部が、前記貫通穴の内周面に形成されたメネジ部にねじ込まれて前記スプリングが前記貫通穴に固定されており、
前記スプリングは、前記座巻部の端が前記スプリングの内径方向に折り返された把持部を有するロータリ式圧縮機。 A rotary compressor having a compression mechanism for compressing a refrigerant,
The compression mechanism section,
An annular cylinder,
A piston rotating in a cylinder chamber formed in the cylinder,
A vane that advances and retreats in a through hole that radially penetrates the cylinder;
And a spring for pressing the vane so that the tip of the vane contacts the outer peripheral surface of the piston,
An end turn portion, which is an end portion on the opposite side of the vane of the spring and serves as a male screw portion, is screwed into a female screw portion formed on the inner peripheral surface of the through hole to fix the spring to the through hole. Cage,
The said spring is a rotary type compressor which has the holding | grip part which the edge of the said end turn part was returned to the inner diameter direction of the said spring. - 前記メネジ部の前記径方向の深さは、前記スプリングが前記メネジ部の前記径方向の内側の端部まで挿入された状態において、運転時の前記スプリングの変形量を許容する長さを有する請求項1記載のロータリ式圧縮機。 The radial depth of the female screw portion has a length that allows a deformation amount of the spring during operation in a state where the spring is inserted to an inner end portion of the female screw portion in the radial direction. The rotary compressor according to Item 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880099484.6A CN113056609B (en) | 2018-11-22 | 2018-11-22 | Rotary compressor |
JP2020557101A JPWO2020105171A1 (en) | 2018-11-22 | 2018-11-22 | Rotary compressor |
PCT/JP2018/043177 WO2020105171A1 (en) | 2018-11-22 | 2018-11-22 | Rotary compressor |
CZ2021220A CZ309342B6 (en) | 2018-11-22 | 2018-11-22 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/043177 WO2020105171A1 (en) | 2018-11-22 | 2018-11-22 | Rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105171A1 true WO2020105171A1 (en) | 2020-05-28 |
Family
ID=70773167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043177 WO2020105171A1 (en) | 2018-11-22 | 2018-11-22 | Rotary compressor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2020105171A1 (en) |
CN (1) | CN113056609B (en) |
CZ (1) | CZ309342B6 (en) |
WO (1) | WO2020105171A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5411294U (en) * | 1977-06-25 | 1979-01-24 | ||
JP2002039242A (en) * | 2000-07-26 | 2002-02-06 | Denso Corp | Method and device for assembling coil spring |
JP2010084575A (en) * | 2008-09-30 | 2010-04-15 | Mitsubishi Heavy Ind Ltd | Rotary compressor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001254690A (en) * | 2000-03-09 | 2001-09-21 | Sanyo Electric Co Ltd | Rotary compressor |
JP3728227B2 (en) * | 2001-09-27 | 2005-12-21 | 三洋電機株式会社 | Rotary compressor |
CN100376799C (en) * | 2001-09-27 | 2008-03-26 | 三洋电机株式会社 | Compressor and its producing method, frost removing device of coolant loop, and freezing device |
JP2009228522A (en) * | 2008-03-21 | 2009-10-08 | Daikin Ind Ltd | Rotary compressor |
-
2018
- 2018-11-22 WO PCT/JP2018/043177 patent/WO2020105171A1/en active Application Filing
- 2018-11-22 CN CN201880099484.6A patent/CN113056609B/en active Active
- 2018-11-22 CZ CZ2021220A patent/CZ309342B6/en not_active IP Right Cessation
- 2018-11-22 JP JP2020557101A patent/JPWO2020105171A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5411294U (en) * | 1977-06-25 | 1979-01-24 | ||
JP2002039242A (en) * | 2000-07-26 | 2002-02-06 | Denso Corp | Method and device for assembling coil spring |
JP2010084575A (en) * | 2008-09-30 | 2010-04-15 | Mitsubishi Heavy Ind Ltd | Rotary compressor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020105171A1 (en) | 2021-09-02 |
CZ2021220A3 (en) | 2021-06-02 |
CN113056609A (en) | 2021-06-29 |
CZ309342B6 (en) | 2022-09-07 |
CN113056609B (en) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6022247B2 (en) | Hermetic compressor and refrigeration cycle apparatus | |
JP4862925B2 (en) | Rotary compressor | |
WO2015022775A1 (en) | Scroll compressor | |
JP2008031857A (en) | Compressor | |
WO2020105171A1 (en) | Rotary compressor | |
WO2015025459A1 (en) | Scroll compressor | |
US20190120232A1 (en) | Screw compressor | |
WO2009090888A1 (en) | Rotary fluid machine | |
KR100436271B1 (en) | Rotary compprersor | |
JP2007218130A (en) | Gas compressor | |
JP5494138B2 (en) | Rotary compressor | |
CN112412792A (en) | Compressor and refrigeration cycle device with same | |
JP2015001197A (en) | Rotary compressor | |
JP6809582B1 (en) | Scroll compressor | |
WO2014162774A1 (en) | Vane compressor | |
JP6005786B2 (en) | Hermetic compressor and refrigeration cycle apparatus | |
WO2018189827A1 (en) | Enclosed compressor and refrigeration cycle device | |
JP2008128098A (en) | Rotary compressor | |
CN109072916B (en) | Hermetic rotary compressor and refrigeration cycle device | |
JP5661204B2 (en) | Vane type compressor | |
WO2021053741A1 (en) | Rotary compressor | |
JP5011963B2 (en) | Rotary fluid machine | |
JP5282698B2 (en) | Rotary compressor | |
WO2019142315A1 (en) | Rotary compressor | |
JP2020193567A (en) | Rotary compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940613 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020557101 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940613 Country of ref document: EP Kind code of ref document: A1 |