WO2020091496A1 - 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2020091496A1
WO2020091496A1 PCT/KR2019/014690 KR2019014690W WO2020091496A1 WO 2020091496 A1 WO2020091496 A1 WO 2020091496A1 KR 2019014690 W KR2019014690 W KR 2019014690W WO 2020091496 A1 WO2020091496 A1 WO 2020091496A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
terminal
cmr
settings
Prior art date
Application number
PCT/KR2019/014690
Other languages
English (en)
French (fr)
Inventor
이길봄
강지원
박종현
김규석
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/290,599 priority Critical patent/US11800550B2/en
Publication of WO2020091496A1 publication Critical patent/WO2020091496A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the following description relates to a wireless communication system, and a terminal associated with an operation for reporting a signal to interference noise ratio (SINR) related to a specific reference signal (eg, channel state information-reference signal, etc.) in a wireless communication system And a method for operating the base station and an apparatus supporting the same.
  • SINR signal to interference noise ratio
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • an operation method of a terminal and a base station in a wireless communication system and devices supporting the same are provided.
  • the present disclosure provides a method of operating a terminal and a base station in a wireless communication system and apparatuses therefor.
  • a plurality of channel measurement resource (CMR) settings for reporting a signal to interference noise ratio (SINR) from a base station and one or more interference measurements Receiving an interference measurement resource (IMR) setting; Based on the assumption that two or more CMR settings having the same QCL (Quasi Co Located) source in terms of related spatial parameters among the plurality of CMR settings share the same IMR setting, the CMR settings are related to the plurality of CMR settings. Calculate SINR; And reporting the SINR associated with the plurality of CMR settings to the base station.
  • CMR channel measurement resource
  • the CMR settings and the one or more interference measurement resource settings may be received through higher layer signaling.
  • one CMR configuration is a non-zero power channel state information (reference signal; NZP CSI-RS) resource or synchronization signal / physical broadcast channel (synchronization signal / physical broadcast) channel (SS / PBCH) block resource
  • one IMR configuration is channel state information-interference measurement (CSI-IM) resource or non-zero power channel state information reference signal (non-zero power) channel state information-reference signal; NZP CSI-RS) may include resources.
  • CSI-IM channel state information-interference measurement
  • the number of the one or more IMR settings is less than the number of the plurality of CMR settings, based on at least two CMR settings having the same QCL source in terms of related spatial parameters. Can be set.
  • the plurality of CMR settings and the one or more IMR settings may be related in resource wise.
  • the QCL source in terms of the related spatial parameters may be determined based on spatial reception parameters (spatial Rx parameters).
  • the QCL source in terms of the related spatial parameters includes: channel state information-reference signal (CSI-RS) resource information or synchronization signal / physical broadcast channel; SS / PBCH) block information or tracking reference signal (TRS) information.
  • CSI-RS channel state information-reference signal
  • SS / PBCH synchronization signal / physical broadcast channel
  • TRS tracking reference signal
  • the QCL source in terms of the spatial parameters involved may include one or more of the following.
  • the SINR associated with one CMR setting among the plurality of CMR settings includes: (i) a reference signal received power (RSRP) measured based on the one CMR setting, and (ii) ) It can be calculated based on the interference power measured based on the IMR setting related to the one CMR setting.
  • RSRP reference signal received power
  • the terminal may select the one. It can be assumed that the CMR setting of and the one IMR setting have the QCL source in terms of the same spatial parameter.
  • the SINR may include L1-SINR defined as physical layer information.
  • the terminal may correspond to at least one of the following.
  • the first terminal reporting the UE capability information indicating that the number of receive beams that can be simultaneously defined is 1 to the base station
  • a terminal operating in a wireless communication system comprising: at least one transmitter; At least one receiver; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation, the specific operation being: from a base station.
  • CMR channel measurement resource
  • IMR interference measurement resource
  • the terminal may communicate with at least one of a mobile terminal, a network, and an autonomous vehicle other than a vehicle including the terminal.
  • a base station operating in a wireless communication system comprising: at least one transmitter; At least one receiver; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation, wherein the specific operation is: to a terminal.
  • a plurality of channel measurement resource (CMR) settings for reporting a signal to interference noise ratio (SINR) and one or more interference measurement resource (IMR) settings are transmitted, but among the plurality of CMR settings
  • Two or more CMR settings having the same QCL (Quasi Co Located) source in terms of related spatial parameters are configured to share the same IMR setting; And receiving SINRs associated with the plurality of CMR settings from the terminal.
  • the signaling overhead for the base station to provide CMR configuration information and IMR configuration information to the terminal can be reduced.
  • the base station can set the CMR setting and the IMR setting having the QCL source from the viewpoint of the same spatial parameter on the same time interval. Accordingly, the terminal and the base station can minimize the latency (latency) of the SINR report.
  • 1 is a view for explaining a physical channel and a signal transmission method using them.
  • FIG. 2 is a diagram illustrating a structure of a radio frame based on an NR system to which embodiments of the present disclosure are applicable.
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which embodiments of the present disclosure are applicable.
  • FIG. 4 is a diagram illustrating a self-contained slot structure based on an NR system to which embodiments of the present disclosure are applicable.
  • FIG. 5 is a diagram illustrating one REG structure based on an NR system to which embodiments of the present disclosure are applicable.
  • 6 to 8 are reference diagrams for describing an operation example of a terminal applicable to the present disclosure.
  • FIG. 9 is a diagram briefly showing an operation example of a terminal and a base station according to an example of the present disclosure
  • FIG. 10 is a flowchart briefly showing an operation example of a terminal according to an example of the present disclosure
  • FIG. 11 is an example of this disclosure It is a flow chart showing an example of the operation of the base station according to the.
  • FIG. 12 is a diagram illustrating an example of an operation of a terminal and a base station according to the present disclosure.
  • FIG. 13 and 14 are diagrams briefly showing mapping patterns of CSI-RS resources and CSI-IM resources according to an example of the present disclosure.
  • 15 is a diagram briefly showing an operation example of a base station and a terminal according to the present disclosure.
  • FIG. 16 is a diagram briefly showing an operation example of a terminal and a base station according to an example of the present disclosure
  • FIG. 17 is a flowchart briefly showing an operation example of a terminal according to an example of the present disclosure
  • FIG. 18 is an example of this disclosure It is a flow chart showing an example of the operation of the base station according to the.
  • 21 shows another example of a wireless device applied to the present disclosure.
  • FIG. 22 illustrates a portable device applied to the present disclosure.
  • each component or feature can be considered to be optional unless stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present disclosure.
  • the order of the operations described in the embodiments of the present disclosure can be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • the base station has a meaning as a terminal node of a network that directly communicates with a mobile station. Certain operations described in this document as being performed by a base station may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by a base station or other network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, Node B, eNode B (eNB), gNode B (gNB), advanced base station (ABS), or access point. Can be.
  • a terminal is a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). , It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or voice service. Therefore, in the uplink, a mobile station can be a transmitting end and a base station can be a receiving end. Likewise, in the downlink, a mobile station can be a receiving end, and a base station can be a transmitting end.
  • Embodiments of the present disclosure may be supported by standard documents disclosed in at least one of wireless access systems, IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system,
  • 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents may be supported by 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents. That is, obvious steps or parts not described in the embodiments of the present disclosure may be described with reference to the documents. Also, all terms disclosed in this document may be described by the standard document.
  • 3GPP NR system will be described as an example of a radio access system in which embodiments of the present disclosure can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • embodiments of the present disclosure mainly describe a 3GPP NR system.
  • the embodiment proposed in the present disclosure can be applied to other wireless systems (eg, 3GPP LTE, IEEE 802.16, IEEE 802.11, etc.).
  • a terminal receives information from a base station through downlink (DL) and transmits information to a base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a view for explaining a physical channel that can be used in embodiments of the present disclosure and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station
  • the terminal receives a primary synchronization channel (P-SCH: Primary Synchronization Channel) and a floating channel (S-SCH: Secondary Synchronization Channel) from the base station, synchronizes with the base station, and acquires information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
  • PBCH physical broadcast channel
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12, and then a little more. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure (Random Access Procedure) as in steps S13 to S16 afterwards to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and the RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Random Access Response) may be received (S14).
  • the UE transmits a PUSCH (Physical Uplink Shared Channel) using scheduling information in the RAR (S15), and a collision resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal (Contention Resolution Procedure) ) Can be performed (S16).
  • PUSCH Physical Uplink Shared Channel
  • Contention Resolution Procedure Contention Resolution Procedure
  • the UE After performing the above-described procedure, the UE receives the physical downlink control channel signal and / or the physical downlink shared channel signal (S17) and the physical uplink shared channel (PUSCH: Physical) as a general uplink / downlink signal transmission procedure.
  • the Uplink Shared Channel (PUCCH) signal and / or the Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • BI Beam Indication
  • UCI is generally periodically transmitted through PUCCH, but may be transmitted through PUSCH according to an embodiment (eg, when control information and traffic data should be simultaneously transmitted).
  • the UE may periodically transmit UCI through PUSCH by request / instruction of the network.
  • FIG. 2 is a diagram illustrating a structure of a radio frame based on an NR system to which embodiments of the present disclosure are applicable.
  • the uplink and downlink transmission based on the NR system is based on the frame shown in FIG.
  • One radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HFs).
  • One half-frame is defined by 5 1ms subframes (Subframes, SFs).
  • One subframe is divided into one or more slots, and the number of slots in the subframe depends on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Normally, when CP is used, each slot contains 14 symbols.
  • each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 shows the number of symbols per slot according to the SCS, the number of slots per frame, and the number of slots per subframe when the normal CP is used
  • Table 2 shows the slot number according to the SCS when the extended CSP is used. It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • N slot symb indicates the number of symbols in the slot
  • N frame indicates the number of slots in the frame
  • ⁇ slot indicates the number of slots in the frame
  • N subframe indicates the number of slots in the subframe
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz / 60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • numerology or subcarrier spacing (SCS)
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1, FR2 may be configured as shown in the table below.
  • FR2 may mean millimeter wave (mmW).
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which embodiments of the present disclosure are applicable.
  • One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P contiguous
  • CP Physical channels
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • N e.g. 5
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • FIG. 4 is a diagram illustrating a self-contained slot structure based on an NR system to which embodiments of the present disclosure are applicable.
  • the base station and the UE can sequentially perform DL transmission and UL transmission in one slot, and can transmit and receive DL data and transmit / receive UL ACK / NACK therein in one slot.
  • this structure reduces the time it takes to retransmit data when a data transmission error occurs, thereby minimizing the delay of the final data transmission.
  • a type gap of a certain length of time is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at a time point of switching from DL to UL in an independent slot structure may be set as a guard period (GP).
  • the independent slot structure includes both the DL control area and the UL control area has been described, but the control areas may be selectively included in the independent slot structure.
  • the self-supporting slot structure according to the present disclosure may include a case in which only the DL control area or the UL control area is included as well as the case where both the DL control area and the UL control area are included as shown in FIG. 4.
  • one slot may be configured in the order of DL control area / DL data area / UL control area / UL data area, or may be configured in the order of UL control area / UL data area / DL control area / DL data area.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • downlink control information for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted.
  • uplink control information for example, ACK / NACK (Positive Acknowledgement / Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, SR (Scheduling Request) may be transmitted.
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM Applies.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. For each codeword, scrambling and modulation mapping are performed, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) and is generated as an OFDM symbol signal and transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, and 16 control channel elements (CCEs) according to an aggregation level (AL).
  • CCE is composed of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • FIG. 5 is a diagram illustrating one REG structure based on an NR system to which embodiments of the present disclosure are applicable.
  • D denotes a resource element (RE) to which DCI is mapped
  • R denotes RE to which DMRS is mapped.
  • DMRS is mapped to the 1st, 5th, and 9th REs in the frequency domain direction within one symbol.
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of CORESETs for one UE may overlap in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (up to 3) constituting the CORESET may be set by higher layer signaling.
  • PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and / or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform Or, it is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • PUSCH may be transmitted based on a waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by UL grant in DCI, or semi-static based on upper layer (eg, RRC) signaling (and / or Layer 1 (L1) signaling (eg, PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed on a codebook basis or a non-codebook basis.
  • PUCCH carries uplink control information, HARQ-ACK and / or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 4 illustrates PUCCH formats.
  • PUCCH format 0 carries UCI up to 2 bits in size, and is mapped and transmitted based on a sequence. Specifically, the UE transmits one sequence among a plurality of sequences through PUCCH in PUCCH format 0 to transmit a specific UCI to the base station. The UE transmits a PUCCH in PUCCH format 0 in PUCCH resource for setting a corresponding SR only when transmitting a positive SR.
  • PUCCH format 1 carries UCI up to 2 bits in size, and modulation symbols are spread in an orthogonal cover code (OCC) in the time domain (set differently depending on whether frequency hopping is performed).
  • OCC orthogonal cover code
  • DMRS is transmitted on a symbol in which a modulation symbol is not transmitted (ie, time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI having a bit size larger than 2 bits, and modulation symbols are transmitted through DMRS and Frequency Division Multiplexing (FDM).
  • DM-RS is located at symbol indices # 1, # 4, # 7, and # 10 in a given resource block at a density of 1/3.
  • PN Pulseudo Noise sequence is used for the DM_RS sequence.
  • frequency hopping may be activated.
  • PUCCH format 3 does not allow terminal multiplexing in the same physical resource blocks, and carries a UCI having a bit size larger than 2 bits.
  • PUCCH resources of PUCCH format 3 do not include orthogonal cover codes.
  • the modulation symbol is transmitted by DMRS and Time Division Multiplexing (TDM).
  • PUCCH format 4 supports multiplexing up to 4 UEs in the same physical resource block, and carries a UCI having a bit size larger than 2 bits.
  • PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted by DMRS and Time Division Multiplexing (TDM).
  • the NR system may support DCI format 0_0 and DCI format 0_1 as DCI formats for PUSCH scheduling, and DCI format 1_0 and DCI format 1_1 as DCI formats for PDSCH scheduling.
  • the NR system can additionally support DCI format 2_0, DCI format 2_1, DCI format 2_2, and DCI format 2_3.
  • DCI format 0_0 is used for scheduling TB (Transmission Block) based (or TB-level) PUSCH
  • DCI format 0_1 is TB (Transmission Block) based (or TB-level) PUSCH or (CBG (Code Block Group) It may be used to schedule CBG-based (or CBG-level) PUSCH) when the base signal transmission / reception is set.
  • CBG Code Block Group
  • DCI format 1_0 is used to schedule TB-based (or TB-level) PDSCH
  • DCI format 1_1 is TB-based (or TB-level) PDSCH or (when CBG-based signal transmission and reception is set) CBG-based (or CBG- level) can be used to schedule the PDSCH.
  • DCI format 2_0 is used to indicate the slot format (slot format) (used for notifying the slot format)
  • DCI format 2_1 is used to inform PRB and OFDM symbols that assume that a specific UE has no intended signal transmission ( used for notifying the PRB (s) and OFDM symbol (s) where UE may assume no transmission is intended for the UE)
  • DCI format 2_2 is used for transmission of Transmission Power Control (TPC) commands of PUCCH and PUSCH
  • DCI format 2_3 may be used for transmission of a group of TPC commands for SRS transmission by one or more UEs (used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs).
  • DCI format 1_1 includes an MCS / NDI (New Data Indicator) / RV (Redundancy Version) field for transport block (TB) 1, and the upper layer parameter maxNrofCodeWordsScheduledByDCI in the upper layer parameter PDSCH-Config has n2 (ie , 2), the MCS / NDI / RV field for transport block 2 may be further included.
  • MCS / NDI New Data Indicator
  • RV Redundancy Version
  • n2 that is, 2
  • whether to enable / disable the transport block may be determined by a combination of MCS field and RV field. More specifically, when the MCS field for a specific transport block has a value of 26 and the RV field has a value of 1, the specific transport block may be disabled.
  • DCI format can be supported by 3GPP TS 38.212 document. That is, obvious steps or parts that are not described among DCI format-related features may be described with reference to the document. Also, all terms disclosed in this document may be described by the standard document.
  • One CORESET include N symb CORESET symbols (corresponding value having a value of 1, 2, 3) in the time domain and includes a CORESET N RB of RB in the frequency domain.
  • One control channel element includes 6 resource element groups (REGs), and one REG is the same as one RB on one OFDM symbol.
  • REGs in the CORESET are numbered in order according to the time-first manner. Specifically, the numbering starts from '0' for the first OFDM symbol in CORESET and the lowest-numbered RB.
  • a plurality of CORESETs may be set for one terminal.
  • Each CORESET is related only to one CCE-to-REG mapping.
  • CCE-to-REG mapping for one CORESET may be interleaved or non-interleaved.
  • the setting information for CORESET can be set by the upper layer parameter ControlResourceSet IE.
  • setting information for CORESET 0 (eg, common CORESET) can be set by the upper layer parameter ControlResourceSetZero IE.
  • a list of maximum M TCI (Transmission Configuration Indicator) state settings for one terminal may be set.
  • the maximum M TCI state setting may be set by the upper layer parameter PDSCH-Config so that (the UE) can decode the PDSCH according to detection of the PDCCH including the DCI intended for the UE and a given serving cell. have.
  • the M value may be determined depending on the capability of the terminal.
  • Each TCI-state includes a parameter for setting a QCL (quasi co-location) relationship between one or two downlink reference signals and DMRS ports of the PDSCH.
  • the QCL relationship is established based on the upper layer parameter qcl-Type1 for the first DL RS (downlink reference signal) and the upper layer parameter qcl-Type2 for the second DL RS (if set).
  • the QCL types should not be the same (shall not be the same).
  • the QCL types correspond to each DL RS given by the upper layer parameter qcl-Type in the upper layer parameter QCL-Info , and the QCL types can have one of the following values.
  • the terminal receives an activation command (activation command) used to map the maximum of 8 TCI states with a codepoint of a Transmission Configuration Indication (TCI) field in DCI.
  • activation command used to map the maximum of 8 TCI states with a codepoint of a Transmission Configuration Indication (TCI) field in DCI.
  • TCI Transmission Configuration Indication
  • the mapping between code points of the TCI fields in the TCIs states and the DCI is slot # (n + 3 * N subframe, ⁇ slot + It can be applied from 1).
  • N subframe, ⁇ slot is determined based on Table 1 or Table 2 described above.
  • the terminal After the terminal receives the initial higher layer configuration of the TCI states (initial higher layer configuration) and before the terminal receives the activation command, the terminal has the DMRS port (s) of the PDSCH of the serving cell is' QCL-TypeA From the viewpoint, it is assumed that it is QCL with the SS / PBCH (Synchronization Signal / Physical Broadcast Channel) block determined in the initial access procedure. Additionally, at the time, the UE may assume that the DMRS port (s) of the PDSCH of the serving cell is QCL with the SS / PBCH block determined in the initial access procedure from the perspective of 'QCL-TypeD'.
  • SS / PBCH Synchrom Radio Service
  • the UE assumes that the TCI field exists in the PDCCH of DCI format 1_1 transmitted on the CORESET.
  • the upper layer parameter tci-PresentInDCI is not set or the PDSCH is scheduled by DCI format 1_0, and the time offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH is a threshold Threshold-Sched -Offset (the threshold is determined based on the reported UE capability ) or greater than or equal to, in order to determine the PDSCH antenna port QCL, the UE is a TCI state for the PDSCH or QCL assumption CORESET used for PDCCH transmission It is assumed that it is the same as the TCI state or QCL assumption applied to.
  • the UE uses the TCI-State based on the TCI field included in the DCI in the detected PDCCH to determine the PDSCH antenna port QCL. If the time offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH is greater than or equal to a threshold Threshold-Sched-Offset (the threshold is determined based on the reported UE capability), the UE performs the PDSCH of the serving cell.
  • Threshold-Sched-Offset the threshold is determined based on the reported UE capability
  • the DMRS port (s) are QCL with RS (s) in the TCI state for the QCL type parameter (s) given by the indicated TCI stated.
  • the indicated TCI state should be based on the activated TCI states in the slot of the scheduled PDSCH.
  • CORESET associated with a search space set for cross-carrier scheduling is set to the terminal, the terminal assumes that the upper layer parameter tci-PresentInDCI is set to 'enabled' for the CORESET.
  • the terminal is a time offset between the reception time of the detected PDCCH in the discovery region set and the reception time of the corresponding PDSCH. Is expected to be greater than or equal to Threshold-Sched-Offset .
  • the QCL parameter (s) is for PDCCH QCL indication of CORESET associated with the search area monitored with the lowest CORESET-ID in the last slot in one or more CORESETs in the activation BWP of the serving cell monitored by the terminal.
  • the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS (s) in the TCI state with respect to the QCL parameter (s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.)
  • the UE when the 'QCL-TypeD' of the PDSCH DMRS is different from the 'QCL-TypeD' of the PDCCH DMRS overlapping on at least one symbol, the UE expects to prioritize the reception of the PDCCH associated with the corresponding CORESET.
  • This operation can also be applied in the case of an intra band CA (if PDSCH and CORESET are in different CCs). If there is no TCI state including 'QCL-TypeD' among the set TCI states, the UE, regardless of the time offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH, indicates the TCI indicated for the scheduled PDSCH. Obtain different QCL assumptions from state.
  • the UE For periodic CSI-RS resources in the upper layer parameter NZP-CSI-RS-ResourceSet where the upper layer parameter trs-Info is set, the UE should assume that the TCI state indicates one of the following QCL type (s):
  • the terminal For the CSI-RS resource in the upper layer parameter NZP-CSI-RS-ResourceSet set without upper layer parameter trs-Info and upper layer parameter repetition , the terminal should assume that the TCI state indicates one of the following QCL type (s). :
  • the upper layer parameter repetition is set 'QCL-TypeD' for the periodic CSI-RS resource in the layer parameter NZP-CSI-RS-ResourceSet , or
  • the terminal For the CSI-RS resource in the upper layer parameter NZP-CSI-RS-ResourceSet where the upper layer parameter repetition is set, the terminal should assume that the TCI state indicates one of the following QCL type (s):
  • the upper layer parameter repetition is set 'QCL-TypeD' for the CSI-RS resource in the layer parameter NZP-CSI-RS-ResourceSet , or
  • the UE For DMRS of the PDCCH, the UE should assume that the TCI state indicates one of the following QCL type (s):
  • the upper layer parameter repetition is set 'QCL-TypeD' for the CSI-RS resource in the layer parameter NZP-CSI-RS-ResourceSet , or
  • the UE For DMRS of PDSCH, the UE should assume that the TCI state indicates one of the following QCL type (s):
  • the upper layer parameter repetition is set 'QCL-TypeD' for the CSI-RS resource in the layer parameter NZP-CSI-RS-ResourceSet , or
  • QCL signaling may include all signaling configurations listed in the table below.
  • the UE can perform the following two possible settings of the upper layer parameter TCI-State . You can only expect settings.
  • * may mean that, when QCL type-D is applicable, DL RS 2 and QCL type-2 may be set for the terminal.
  • the UE performs upper layer parameter TCI-State. Only the three possible settings below can be expected.
  • * may mean that QCL type-D is not applicable.
  • ** may mean that, when QCL type-D is applicable, DL RS 2 and QCL type-2 may be set for the terminal.
  • the UE may set the following three possible settings of the upper layer parameter TCI-State . You can only expect.
  • the UE For DMRS of the PDCCH, the UE only has the following three possible settings of the upper layer parameter TCI-State while the fourth setting (the fourth row of the two tables below) is valid as the default setting before TRS is set. I can expect.
  • * may mean a setting that can be applied before TRS is set. Accordingly, the setting is not a TCI state, but rather can be interpreted as a valid QCL assumption.
  • ** may mean that QCL parameters are not directly derived from CSI-RS (or CSI).
  • the UE For DMRS of the PDCCH, the UE only has the following three possible settings of the upper layer parameter TCI-State while the fourth setting (the fourth row of the two tables below) is valid before the TRS is set (by default). I can expect.
  • * may mean a setting that can be applied before TRS is set. Accordingly, the setting is not a TCI state, but rather can be interpreted as a valid QCL assumption.
  • ** may mean that QCL parameters are not directly derived from CSI-RS (or CSI).
  • the UE For DMRS of the PDCCH, the UE only has the following three possible settings of the upper layer parameter TCI-State while the fourth setting (the fourth row of the two tables below) is valid before the TRS is set (by default). I can expect.
  • * may mean a setting that can be applied before TRS is set. Accordingly, the setting may be interpreted as a valid QCL assumption rather than a TCI state.
  • ** may mean that QCL parameters are not directly derived from CSI-RS (or CSI).
  • CSI-RS channel state information reference signal
  • each transmit antenna may have a separate reference signal.
  • a reference signal for feedback of channel state information (CSI) may be defined as CSI-RS.
  • CSI-RS includes ZP (Zero Power) CSI-RS and NZP (Non-Zero-Power) CSI-RS.
  • ZP CSI-RS and NZP CSI-RS may be defined as follows.
  • -NZP CSI-RS may be set by the CSI-RS-Resource-Mobility field in the NZP-CSI-RS-Resource IE (Information Element) or CSI-RS-ResourceConfigMobility IE.
  • the NZP CSI-RS may be defined based on a sequence generation and resource mapping method defined in the 3GPP TS 38.211 standard spec.
  • -ZP CSI-RS can be set by ZP-CSI-RS-Resource IE.
  • the UE may assume that the resource set for ZP CSI-RS is not used for PDSCH transmission.
  • the UE can perform the same measurement / reception on the channel / signal regardless of whether the channel / signal except the PDSCH collides with the ZP CSI-RS (The UE performs the same measurement / reception on channels / signals except PDSCH regardless of whether they collide with ZP CSI-RS or not).
  • the base station may set CSI-IM support to the UE.
  • the measurement result on the corresponding CSI-IM resource can be regarded as interference in CSI calculation.
  • the UE may set one or more CSI-IM resource set setting (s) indicated by the upper layer parameter CSI-IM-ResourceSet .
  • each CSI-IM resource set may be composed of K (K ⁇ 1) CSI-IM resource (s).
  • CSI-IM-ResourceSet For each CSI-IM resource configuration, the following parameters may be set through the upper layer parameter CSI-IM-ResourceSet :
  • This parameter determines the CSI-IM resource configuration ID
  • This parameter determines the subcarrier occupancy of the CSI-IM resource in the slot where csi-IM-ResourceElementPattern is set to 'pattern0' or 'pattern1', respectively.
  • This parameter determines the position of the OFDM symbol of the CSI-IM resource in the slot where csi-IM-ResourceElementPattern is set to 'pattern0' or 'pattern1', respectively.
  • This parameter determines the CSI-IM period and slot offset for periodic / semi-persistent CSI-IM.
  • This parameter includes parameters that enable the frequency occupancy setting of CSI-IM.
  • the following DL L1 / L2 beam management procedures may be supported within one or more TRPs (Transmission and Reception Points):
  • P1 is used to activate terminal measurements on different TRP Tx beams, to support selection of TRP Tx beams and / or terminal Rx beam (s)
  • P1 may include intra / inter TRP Tx beam sweeping from a set of different beams.
  • P1 may include Rx beam sweeping of the terminal from different sets of beams.
  • P2 is used to enable measurement of UEs on different TRP Tx beams, so that inter / intra TRP Tx beams can be changed
  • P2 can be interpreted as a special case of P1.
  • the set of beams for beam refinement can be set smaller than P1.
  • P3 is used to activate the measurement of the terminal on the same TRP Tx beam, so that the terminal can change the terminal Rx beam when using beamforming
  • the same procedure design can be applied for intra-TRP beam management and inter-TRP beam management. Accordingly, the terminal may be designed such that it does not know whether the corresponding beam is an intra-TRP beam or an inter-TRP beam.
  • the P2 and P3 procedures can be performed jointly and / or multiple times. Through this, the TRP Tx beam and the terminal Rx beam may be simultaneously changed.
  • the P3 procedure can be performed without modification to the physical layer procedure defined in the existing standard spec.
  • the P3 procedure may be performed through some modifications to the physical layer procedure defined in the existing standard spec.
  • the above-described method may support management of a plurality of Tx / Rx beam pairs for the terminal.
  • assistance information may be provided from other carriers.
  • the methods described above can be used on single / multiple beam (s) per TRP.
  • CSI-RS may support DL Tx beam sweeping and UE Rx beam sweeping.
  • CSI-RS may be used for the above-described P1, P2, P3.
  • CSI-RS can support the following mapping structures:
  • the Np value can be set in various ways. For example, it may be set to a fixed value according to a standard spec, or may be set to one of a plurality of values through configuration of a base station (eg, RRC signaling, DCI, etc.).
  • a base station eg, RRC signaling, DCI, etc.
  • time unit may mean an N OFDM symbol period on a set (or reference) pneumatic.
  • N may be set to a value greater than or equal to 1, and the N value may be set to a fixed value according to a standard spec, or may be set to one of a plurality of values through configuration of a base station (eg, RRC signaling, DCI, etc.).
  • a base station eg, RRC signaling, DCI, etc.
  • OFDM symbols constituting one time unit may be set continuously or discontinuously.
  • Each time unit may be divided into a plurality of sub-time units.
  • TDM Time Division Multiplexing
  • IFDM Interleaved Frequency Division Multiplexing
  • the OFDM symbol level may be divided into OFDM symbol lengths equal to or shorter than the reference OFDM symbol length (eg, greater subcarrier spacing).
  • mapping structure can be used to support multiple panels or multiple Tx panels.
  • mapping method of CSI-RS for Tx beam and Rx beam sweeping Various options can be considered as a mapping method of CSI-RS for Tx beam and Rx beam sweeping:
  • the Tx beam (s) are set equally over the sub-time units
  • the Tx beam (s) are set differently over the sub-time units
  • the combination of different time units can be determined based on the number and period.
  • the Tx beam (s) may be set equally or differently across sub-time units within each time unit.
  • one OFDM symbol period may be divided into a plurality of sub-time units for P3 operation. Accordingly, UE Rx beam sweeping for the same TRP Tx beam may be allowed.
  • PDMA operation based on IFDMA or (relatively) large subcarrier spacing can also be considered.
  • P3 operation based on IFDMA the following may be considered.
  • UE can clearly distinguish NZP CSI-RS REs and ZP (Null) REs within the same OFDM symbol
  • NZP and one resource set to a specific comb value / offset and ZP and other resources set to an independent comb value / offset may be configured.
  • ZP and other resources set to an independent comb value / offset may be additionally examined.
  • an appropriate null RE setting may be considered.
  • P3 operation may be supported by (i) setting a single CSI-RS resource composed of a plurality of OFDM symbols, or (ii) repeating the same CSI-RS resource across a plurality of OFDM symbols.
  • a simpler terminal implementation can be supported by maintaining the beam sweeping interval at an integer multiple of the symbol length.
  • the following upper layer parameter NZP-CSI-RS-ResourceSet may be set to the UE for the repetitive operation for the P3 operation.
  • the upper layer parameter may be defined as follows based on 3GPP TS 38.331.
  • the repetition parameter in the NZP-CSI-RS-ResourceSet IE may be defined as follows.
  • the following parameters may be set to the terminal.
  • the upper layer parameter may be defined as follows based on 3GPP TS 38.331.
  • resourceForChannelMeasurement csi-IM-ResourceForInterference and nzp-CSI-RS-ResourceForInterference in the CSI-ReportConfig IE may have the following relationship.
  • CSI calculation may be performed as follows.
  • reporting for reportQuantity ⁇ cri-RSRP or ssb-Index-RSRP ⁇ can be classified as follows.
  • the UE may be configured as follows. At this time, the terminal may perform the following reporting according to nrofReportedRS or groupBasedBeamReporting .
  • L1-RSRQ and L1-SINR may be defined as follows.
  • L1-RSRQ may be set to satisfy the following equation.
  • RSSI may include a linear average value of total power received from all sources (eg, co-channel serving and non-serving cells, adjacent channel interference, thermal noise, etc.).
  • the RSSI includes both interference and noise as well as the power of the desired signal.
  • the RSSI value can be very close to 1.
  • the RSSI cannot be self-contained feedback information for TRP beam selection.
  • RSRP needs to always carry RSRQ in addition to CRI / SSBRI.
  • L1-SINR may be set to satisfy the following equation.
  • SINR in the high SINR region can play an RSRP role in terms of beam reporting.
  • SINR may reflect interference conditions for each beam. This is because the denominator that determines SINR does not include co-channel power from serving cells. Accordingly, SINR can be self-sufficient feedback information, and accordingly SINR can be interpreted as more appropriate feedback information than RSRQ.
  • 'NZP CSI-RS resource' may be replaced with 'NZP CSI-RS'.
  • a resource set / allocated for a channel measurement purpose to a terminal is referred to as a channel measurement resource (CMR), and a resource set / allocated for a interference measurement purpose to a terminal is referred to as an interference measurement resource (IMR).
  • IMR may be replaced with the term 'CSI-IM'.
  • the IMR may include a ZP (Zero Power) IMR in which a specific RS (reference signal) is not transmitted and a NZP (Non-Zero Power) IMR in which a specific RS is transmitted.
  • the term 'ZP IMR' may be extended / replaced to 'ZP CSI-RS'.
  • the role of the ZP CSI-RS may be an RS that is configured / designated for PDSCH rate matching purposes as well as interference measurement purposes (or not interference measurement purposes).
  • measuring interference based on 'ZP CSI-RS' may have the same meaning as measuring interference using 'ZP IMR'.
  • IMR a resource for measuring interference by the terminal
  • ZP CSI-RS is defined (eg, overlap) on the RE where CSI-IM is defined (or, at all RE positions where CSI-IM is defined).
  • ZP CSI-RS is defined (eg overlap)
  • the base station needs to set the ZP CSI-RS in the CSI-IM RE location so that the UE can perform rate matching on the corresponding RE. Accordingly, the operation examples disclosed in this section can be effectively applied under the condition that ZP CSI-RS is set in the CSI-IM RE position.
  • the UE may not need the ZP CSI-RS.
  • the examples disclosed in this section can be applied.
  • the examples described in this section may be effectively applied only under the condition that the ZP CSI-RS is set.
  • RSRP reporting may be allowed to the UE for beam management.
  • RSRP is simply an index indicating the received signal power, and may be an index in which interference intensity is not considered. Accordingly, when only the base station Tx beam and / or the UE Rx beam are selected in consideration of only RSRP, the base station Tx beam and / or UE Rx beam having strong interference may be selected even if RSRP is large.
  • this section describes examples of SINR reporting methods considering interference for beam management. More specifically, in this section, based on the previously defined CSI-ReportConfig and IMR (eg, ZP CSI-RS, CSI-IM, etc.), a detailed description of a method for measuring interference signal power required by a UE for SINR calculation do.
  • CSI-ReportConfig eg, ZP CSI-RS, CSI-IM, etc.
  • the base station repeats the reference signal N times on the time axis within one OFDM symbol period (eg, a reference signal where the same signal waveform repeats N times within one OFDM symbol period) Etc.).
  • the receiving node may perform up to N times Rx beam sweeping based on (or assuming) that the same signal (or the same signal waveform) is repeated N times within the predetermined time period.
  • 6 to 8 are reference diagrams for describing an example of an operation of a terminal applicable in the present disclosure.
  • an operation example of a terminal and a base station applicable to the present disclosure will be described in detail with reference to the drawings.
  • a single port CMR for example, NZP CSI-RS resource
  • (N-1, 1) IMR having a RE pattern for example, ZP CSI-RS, CSI-IM, etc.
  • the (A, B) RE pattern may mean a RE pattern determined based on A consecutive subcarriers in the frequency domain and B consecutive symbols in the time domain.
  • CMR eg, NZP CSI-RS
  • CMR associated with a single antenna port (eg, NZP CSI-RS resource) # 0 and (3,1) IMR with RE pattern (eg, ZP CSI-RS, CSI-IM Etc.) # 0 may be FDM (Frequency Domain Multiplexing) in an interleaved manner on the same OFDM symbol.
  • the CMR eg, NZP CSI-RS resource
  • the terminal may assume that the received reference signal (eg, CSI-RS) is configured to be repeated N times on the time domain on one OFDM symbol.
  • the terminal may assume that the received reference signal (or the waveform of the received reference signal) is configured to be repeated N times on the same OFDM symbol.
  • the 'next conditions' considered for the operation in the time domain may include the following conditions.
  • IMR eg ZP CSI-RS, CSI-IM, etc.
  • RE pattern is (1, 1) or (3, 1) or (7, 1)
  • CMR set for channel measurement e.g. resourceForChannelMeasurement
  • IMR for interference measurement e.g. csi-IM-ResourceForInterference or ZP-CSI-RS-ResourceSet
  • the resource-wise (resource-wise) specific CMR in the NZP CSI-RS resource set e.g. NZP CSI-RS resource
  • IMR IMR
  • the IMR corresponding to the specific CMR in the set eg, ZP CSI-RS, CSI-IM, etc.
  • the IMR corresponding to the specific CMR in the set is FDM on the same OFDM symbol in the frequency domain (in an interleaved manner)
  • the UE can perform UE Rx beam sweeping up to N times within one OFDM symbol period using the reference signal, and thereby find the optimal UE Rx beam (eg, P3 operation).
  • resourceForChannelMeasurement ⁇ NZP CSI-RS resource # 0, NZP CSI-RS resource # 1 ⁇
  • csi-IM-ReousrceForInterference ⁇ ZP CSI-RS resource # 0, ZP CSI-RS resource # 1 ⁇
  • the number of antenna ports for CMR eg, NZP CSI-RS resource
  • the RE pattern for IMR eg, ZP CSI-RS, CSI-IM, etc.
  • resources corresponding to resource-wise are identical. It can be configured to FDM in an interleaved manner on a frequency axis on an OFDM symbol. That is, according to FIG. 6, all of the above-described Condition # 1, # 2, # 3 may be satisfied.
  • the terminal has the same signal (or the same signal waveform) in the time axis on the received OFDM signal (eg, CSI-RS) on one OFDM symbol. It can be assumed that it is transmitted to be repeated 4 times. Accordingly, the UE can find an optimal Rx beam using up to 4 Rx beams for each resource, and through this, a more accurate optimal base station Tx beam (eg, NZP CSI-RS resource) and UE Rx beam You can choose.
  • Tx beam eg, NZP CSI-RS resource
  • the UE assumes one Rx beam and measures RSRP for each resource, and inaccurately selects the optimal base station Tx beam than the method applicable to the present disclosure. Is done. That is, according to the present disclosure, an optimal base station Tx beam and a UE Rx beam that are more accurate than the method defined in the existing standard may be selected.
  • the terminal may select the optimal base station Tx beam using one Rx beam. have.
  • the UE loses the Rx beam sweeping opportunity (ie, loses the opportunity for optimal UE Rx beam selection), but can be advantageous in terms of received power by accumulating and receiving the 4 repetitive signals as one Rx beam. have. Consequently, this operation can be useful when the path-loss is large.
  • the UE may select the optimal base station Tx beam using two Rx beams.
  • the terminal can accumulate two repetitively transmitted signals with one Rx beam, and perform two Rx beam sweeps.
  • an IMR eg, ZP CSI-RS resource, CSI-IM, etc.
  • RE pattern is set to a (1, 1) RE pattern
  • two CMRs are interleaved on one OFDM symbol.
  • the UE may assume that the two CMRs are different base station Tx beams (eg, the UE assumes that Tx filters (or Tx coefficients) used for two CMRs are different or are not identical. Can be).
  • the UE can measure a total of 8 beam pairs (eg, 2 base station Tx beams and 4 UE Rx beams) on one OFDM symbol.
  • the RS overhead required for optimal base station Tx beam and UE Rx selection (eg, P1 operation) may be reduced by half compared to FIG. 6. Additionally, latency for the corresponding operation may also be reduced.
  • the terminal may determine the number N of repetitions based on the set IMR RE pattern.
  • N may be determined / set to 2, 4, and 8, respectively.
  • the IMR RE pattern is set to (1, 1), (3, 1), CMR and IMR may be transmitted in resource block (RB) units.
  • the IMR RE pattern is set to (7, 1), CMR and IMR may be transmitted in two resource block (RB) units.
  • the IMR RE pattern is (1, 1) or (3, 1) or (7, 1) is considered.
  • a reference signal eg, CSI-RS
  • IFFT Inverse Fourier Transform
  • FFT Fast Fourier Transform
  • the IMR RE pattern can be set to (1, 1) or (3, 1) or (7, 1) for this purpose.
  • the reference signal may be transmitted to be repeated 3 or 5 times on the time axis on one OFDM symbol, respectively.
  • the signals are not completely identical for each repetitive transmission (assuming the existing IFFT and / or FFT size), the performance is reduced during P3 operation.
  • IMR RE pattern 2, 1) or ( 4, 1) Even if a RE pattern is used, each repetitively transmitted signal (or signal waveform) can be completely set.
  • condition # 1 considered in the second operation example according to this section is not limited to cases in which the RE pattern is (1, 1), (3, 1), (7, 1), and in some cases Additional RE patterns may be considered (e.g., when the factor values for IFFT and / or FFT size are set to 3 or 5, etc.).
  • whether a UE can find the optimal UE Rx beam from the CMR using N Rx beams may be defined by UE capability. have. If the terminal reports to the base station that the operation is not supported, the terminal may not expect that a sub time unit may be set smaller than 1 OFDM symbol length for P3 operation. In other words, when the terminal reports to the base station that the operation is not supported, the terminal can expect that the sub-time unit is set to 1 OFDM symbol length for P3 operation.
  • the UE can find the optimal Rx beam by using up to N Rx beams for each resource.
  • the terminal may not always perform the operation.
  • the base station may indicate to the UE through a separate parameter that a reference signal (eg, NZP CSI-RS resource) is transmitted to be repeated N times on one OFDM symbol in the time axis. have.
  • the parameter may be set to the terminal through upper layer parameters (eg, media access control-control element (MAC-CE), radio resource control (RRC), etc.). Accordingly, when the terminal receives the parameter from the base station, it can be assumed that the terminal is transmitted such that the received reference signal (eg, NZP CSI-RS resource) is repeated N times on one OFDM symbol in the time axis. .
  • MAC-CE media access control-control element
  • RRC radio resource control
  • resources included in two resource sets are frequency on the same OFDM symbol for each resource-wise. It should be checked whether FDM (Frequency Domain Multiplexing) is performed in an interleaved manner on a domain. The checking operation may increase the operation complexity of the terminal.
  • a method in which a base station sets a separate parameter indicating that the reference signal is transmitted to be repeated N times may be applied.
  • the separate parameters may be set in various ways. For example, it may be defined as a new IE not defined in the conventional 3GPP NR spec, or may be defined as a new upper layer parameter in the CSI-ReportConfig IE defined in the conventional 3GPP NR spec.
  • the base station may set the corresponding parameter to the UE through RRC and / or MAC-CE and / or DCI.
  • the terminal FDM is interleaved in the frequency direction on the same OFDM symbol for each resource-wise resource included in two resource sets (eg, CMR set and IMR set) set for the terminal for each resource-wise (Frequency Domain Multiplexing) can be expected.
  • the terminal may assume that the set CMR is repeatedly transmitted N times on one OFDM symbol.
  • parameters applicable to the third additional operation example may be defined as subTimeUnitlessthan1 in CSI-ReportConfig IE as follows.
  • the name of the parameter is only an example applicable to the present disclosure, and the parameter may have a different name depending on the embodiment.
  • reportQuantity can additionally include cri-SINR.
  • the The UE may assume that the reference signal (eg, NZP CSI-RS resource) transmitted from the base station is repeatedly transmitted once on the time axis on one OFDM symbol.
  • the reference signal eg, NZP CSI-RS resource
  • the UE can accurately measure the interference signal power in order to calculate the SINR.
  • an IMR eg, ZP CSI-RS, CSI-IM, etc.
  • the UE can more accurately measure the interference signal power.
  • the UE should assume that the reference signal (eg, CSI-RS) transmitted from the base station is repeatedly transmitted once (the same signal) on the time axis on one OFDM symbol. Accordingly, the terminal can measure the interference signal power from the RE set by IMR by applying FFT (or Discrete Fourier Transform (DFT)) to the received signal.
  • FFT or Discrete Fourier Transform
  • the UE performs RE mapping with ZP CSI-RS on the frequency domain. It cannot be found, and therefore an accurate SINR calculation cannot be performed.
  • the UE uses the CMR to receive and interfere with the signal of interest (desired). Signal reception power can be measured. And, the terminal can calculate the SINR using the two measured values.
  • the UE when CMR (eg, NZP CSI-RS resource) is set at 4 RE intervals in the frequency domain, the UE can acquire a sufficient sample in the frequency domain, and based on this, Accurate channel estimation can be performed.
  • the terminal may remove a signal of interest from the RE set in the CMR with higher accuracy after the channel estimation.
  • the terminal may measure the interference signal reception power using the remaining signal removed from the RE.
  • FIG. 9 is a diagram briefly showing an operation example of a terminal and a base station according to an example of the present disclosure
  • FIG. 10 is a flowchart briefly showing an operation example of a terminal according to an example of the present disclosure
  • FIG. 11 is an example of this disclosure It is a flow chart showing an example of the operation of the base station according to the.
  • a terminal may receive SINR reporting settings from a base station (S910, S1010).
  • the base station may transmit the SINR report setting to the terminal (S910, S1110).
  • the SINR report setting may be transmitted and received through higher layer signaling (eg, RRC signaling, etc.).
  • the SINR report setting may be transmitted and received through DCI.
  • the terminal may or may not receive the interference measurement resource setting from the base station (S920, S1020). More specifically, when the terminal receives the interference measurement resource setting from the base station, the interference measurement resource may be set to the terminal. On the other hand, when the terminal does not receive the interference measurement resource setting from the base station, the interference measurement resource may not be set to the terminal. In response to this, the base station may or may not transmit the interference measurement resource setting to the terminal (S920, S1120).
  • the terminal may perform the following operations based on the SINR report setting (S930, S1030).
  • the SINR associated with the channel measurement reference signal resource is calculated using the first interference measurement result calculated based on the interference measurement resource.
  • the UE may report the SINR calculated through the above method to the base station (S940, S1040).
  • the base station may receive the SINR report calculated from the terminal (S940, S1130).
  • non-zero power channel state information reference signal; NZP CSI-RS
  • synchronization signal / physical broadcast channel synchronization
  • the interference measurement resource may include a zero power (ZP) interference measurement resource or a non-zero interference measurement resource.
  • the channel measurement reference signal resource and the interference measurement resource may be set on one orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the channel measurement reference signal resource and the interference measurement resource may be set according to a frequency division multiplexing (FDM) method on the one OFDM symbol.
  • FDM frequency division multiplexing
  • the terminal may include calculating the SINR related to the channel measurement reference signal resource using the first interference measurement result.
  • the terminal uses the second interference measurement result calculated based on the channel measurement reference signal resource and the channel measurement reference signal resource and Calculating the associated SINR may include the following actions:
  • the second interference measurement result is calculated by removing the signal of interest detected through the channel estimation from the channel measurement reference signal resource
  • the channel measurement reference signal resource in one resource block (RB) may be set on at least three subcarriers.
  • the channel measurement reference signal resource is a plurality of resources having a predetermined resource element (RE) interval on one orthogonal frequency division multiplexing (OFDM) symbol It can be set on REs.
  • RE resource element
  • the SINR may include a first layer (L1) -SINR.
  • QCL-D source may mean QCL characteristics (or QCL information) defined (or indicated) by qcl-Type2 in TCI-state.
  • 'CSI-RS resource' may mean 'NZP CSI-RS resource for channel measurement'.
  • the NZP CSI-RS resource may be utilized for tracking (eg, TRS) and / or beam management and / or CSI acquisition.
  • 'CSI-IM' may be replaced with 'ZP CSI-RS resource'.
  • a resource set / allocated for a channel measurement purpose to a terminal is referred to as a channel measurement resource (CMR), and a resource set / allocated for a interference measurement purpose to a terminal is referred to as an interference measurement resource (IMR).
  • IMR may be replaced with the term 'CSI-IM'.
  • the IMR may include a ZP (Zero Power) IMR in which a specific RS (reference signal) is not transmitted and a NZP (Non-Zero Power) IMR in which a specific RS is transmitted.
  • the term 'ZP IMR' may be extended / replaced to 'ZP CSI-RS'.
  • the role of the ZP CSI-RS may be an RS that is configured / designated for PDSCH rate matching purposes as well as interference measurement purposes (or not interference measurement purposes).
  • 'CSI-IM' may be extended to 'NZP CSI-RS for interference management'.
  • the present disclosure may include all configurations in which 'CSI-IM' is replaced with 'NZP CSI-RS for interference management' in the following description.
  • the base station in order to calculate / acquire CSI (ie, CRI and / or RI and / or PMI and / or CQI), uses NZP CSI-RS for channel measurement to the UE.
  • Resource NZP CSI-RS resource for channel measurement
  • the base station may simultaneously set the CSI-IM resource (or ZP CSI-RS resource) for interference measurement to the terminal.
  • a beam-related reporting metric may include only L1-RSRP.
  • the base station can set only the NZP CSI-RS resource for channel measurement to the UE.
  • the base station does not additionally set a CSI-IM resource (or ZP CSI-RS resource) for interference measurement, or a CSI-IM resource (or ZP CSI-RS resource) for interference measurement. It may not be possible to set.
  • the new system eg, Rel-16 to NR system
  • a separate resource eg, CSI-IM resource or ZP CSI-RS resource
  • CSI-IM resource e.g., CSI-IM resource or ZP CSI-RS resource
  • a problem may arise that interference measurement performance is not guaranteed. This problem can be compensated through the implementation of the terminal, but has a drawback that requires a large number of samples on the time axis. In other words, the terminal implementation may cause a latency issue.
  • the base station needs to additionally set a resource (eg, CSI-IM resource or ZP CSI-RS resource) for interference measurement to the UE.
  • a resource eg, CSI-IM resource or ZP CSI-RS resource
  • this may cause additional RS overhead.
  • NZP CSI-RS resources for measuring multiple channels share a single interference measurement resource (eg, CSI-IM or ZP CSI-RS resource, etc.). It will be described in detail.
  • the terminal may perform CSI measurement based on the above-described setting methods (for example, CSI reporting related setting items disclosed in Section 1.9).
  • Inter-resource resources may have a connection relationship (or mapping relationship) in a resource-wise order.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 2
  • CSI-IM # 7 ⁇ CSI-IM # 7 ⁇
  • CSI- RS resource # 2 / # 3 may each have a connection relationship (or mapping relationship) with CSI-IM # 5 / # 7.
  • the terminal may receive the CSI-IM associated with the specific CSI-RS resource, based on the Rx beam used to receive the specific CSI-RS resource.
  • the association (or mapping) of the NZP CSI-RS resource for interference measurement and the NZP CSI-RS resource for channel measurement Relationship) can be assumed to be set equal to the association (or mapping relationship) of CSI-IM and NZP CSI-RS resources for channel measurement.
  • resources included in each NZP CSI-RS resource set in the CSI-IM resource set may have a connection relationship (or mapping relationship) with each other in a resource-wise order.
  • FIG. 12 is a diagram illustrating an example of an operation of a terminal and a base station according to the present disclosure.
  • one cell may set 6 (NZP) CSI-RS resources (for channel measurement) to the UE.
  • CSI-RS resource # 1 / # 2 may be set to have a smaller beam width than CSI-RS resource # 0.
  • CSI-RS resource # 1 / # 2 may be set to be included in CSI-RS resource # 0.
  • CSI-RS resource # 10 and CSI-RS resource # 11 / # 12 may also be set similarly (ie, CSI-RS resource # 11 / # 12 has a smaller beam width than CSI-RS resource # 10).
  • Or CSI-RS resource # 10 may be set similarly (ie, CSI-RS resource # 11 / # 12 has a smaller beam width than CSI-RS resource # 10).
  • CSI-RS for beam management / tracking may be applied to CSI-RS resource # 0 / # 10.
  • SSB SS / PBCH Block
  • the base station can group the CSI-RS resource # 1 / # 2 / # 11 / # 12 into one resource set, and based on this, set the L1-SINR report to the UE.
  • the base station may additionally allocate a separate CSI-IM for interference power measurement to the terminal.
  • the base station can set the report for the L1-SINR calculation to the UE as follows.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2, CSI-RS resource # 11, CSI-RS resource # 12 ⁇
  • CSI-IM resource set ⁇ CSI-IM # 21, CSI-IM # 22, CSI-IM # 31, CSI-IM # 32 ⁇
  • CSI-RS resource # 1 / # 2 / # 11 / # 12 may have an association relationship with CSI-IM # 21 / # 22 / # 31 / # 32, respectively (resource-wise association). Based on the above relationship, the terminal may calculate L1-SINR as follows.
  • L1-SINR for CSI-RS resource # 1 RSRP measured from CSI-RS resource # 1 / (Interference power measured from CSI-IM # 21 + alpha)
  • L1-SINR for CSI-RS resource # 2 RSRP measured from CSI-RS resource # 2 / (Interference power measured from CSI-IM # 22 + alpha)
  • L1-SINR for CSI-RS resource # 12 RSRP measured from CSI-RS resource # 12 / (Interference power measured from CSI-IM # 32 + alpha)
  • alpha means noise power.
  • the alpha value may be set to 0 or a non-zero value through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • the QCL-D of the CSI-IM may follow (or correspond to) the QCL-D of the CSI-RS resource having an association relationship. If the terminal can define a plurality of Rx beams at the same time (or if the terminal has the capability to control the plurality of Rx beams), the terminal uses a single CSI-IM resource (set) a plurality of Different interference powers of the number of Rx beams can be measured.
  • QCL-D is different CSI-RS resources (one) CSI- IM cannot be shared.
  • FIG. 13 is a diagram briefly showing a mapping pattern of CSI-RS resources and CSI-IM resources according to an example of the present disclosure.
  • the base station may set a CSI-IM corresponding to each CSI-RS resource to the UE.
  • the CSI-IM pattern is a 1 * 1 pattern, but in another example, the CSI-IM pattern may be modified into 2 * 1, 3 * 1, 4 * 1, 2 * 2 patterns, and the like.
  • the base station can set a different CSI-RS as a QCL-D source for a specific CSI-RS.
  • the base station sets CSI-RS resource # 0 as the QCL-D source of CSI-RS resource # 1 / # 2 (results, QCL-D of CSI-RS resource # 0 / # 1 / # 2 Are all the same), and the two CSI-RS resources can reuse CSI-IM # 0.
  • the base station does not need to separately set the CSI-IM # 21 and CSI-IM # 22 to the UE, so that RS overhead can be reduced.
  • the NZP CSI-RS resource set for channel measurement and CSI-IM resource set for interference measurement can be set as follows.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2, CSI-RS resource # 11, CSI-RS resource # 12 ⁇
  • -CSI-RS resource # 1 / # 2 have the same QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 11 / # 12 have the same QCL-D source as CSI-RS resource # 10
  • CSI-IM resource set ⁇ CSI-IM # 20, CSI-IM # 20, CSI-IM # 30, CSI-IM # 30 ⁇
  • the terminal may not expect the above-described setting. This is because the CSI-IM setting is wrong.
  • the base station and the terminal according to the present disclosure may operate as follows. At this time, for convenience of description, each operation method is described separately, but the base station and the terminal may be performed by combining the following various operation methods (except when physically impossible).
  • the base station may configure the UE to have a plurality of different NZP CSI-RS resources (eg, NZP CSI-RS resource for channel measurements) having the same QCL-D.
  • NZP CSI-RS resources eg, NZP CSI-RS resource for channel measurements
  • the UE can expect that one CSI-IM shared corresponding to the NZP CSI-RS resources is set (or, the UE has the same CSI-IM ID corresponding to the NZP CSI-RS resources). Can be expected).
  • the base station can configure the terminal to share the CSI-IM with the NZP CSI-RS resources. (Or, the base station may set the same CSI-IM ID for the NZP CSI-RS resources).
  • CSI-RS resource # 0 / # 10 is set as a wide beam, each of which is a fine beam, CSI-RS resource # 1 / # 2 and CSI- It may be configured to include RS resource # 11 / # 12.
  • the base station can explicitly / implicitly set the following settings to the terminal.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2, CSI-RS resource # 11, CSI-RS resource # 12 ⁇
  • -CSI-RS resource # 1 / # 2 have the same QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 11 / # 12 have the same QCL-D source as CSI-RS resource # 10
  • CSI-IM resource set ⁇ CSI-IM # 20, CSI-IM # 20, CSI-IM # 30, CSI-IM # 30 ⁇
  • the base station may explicitly / implicitly set the following settings to the terminal.
  • the number of CSI-IM resources may be set smaller than the NZP CSI-RS resource. Accordingly, when the QCL-Ds of CSI-RS resource # 1 and # 2 are the same, the UE can expect that the two CSI-RS resources share one CSI-IM (eg, CSI-IM # 20). Similarly, when the QCL-Ds of CSI-RS resource # 3 and # 4 are the same, the UE can expect that the two CSI-RS resources share one CSI-IM (eg, CSI-IM # 30).
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2, CSI-RS resource # 11, CSI-RS resource # 12 ⁇
  • -CSI-RS resource # 1 / # 2 have the same QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 11 / # 12 have the same QCL-D source as CSI-RS resource # 10
  • CSI-IM resource set ⁇ CSI-IM # 20, CSI-IM # 30 ⁇
  • the base station can explicitly / implicitly set the following settings to the terminal.
  • the UE expects that CSI-RS resource # 1 / # 2 / # 3 shares one CSI-IM (eg, CSI-IM # 20), and CSI-RS resource # 11 is another CSI. It can be expected to be associated with -IM (eg CSI-IM # 30).
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2, CSI-RS resource # 3, CSI-RS resource # 11 ⁇
  • -CSI-RS resource # 1 / # 2 / # 3 have the same QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 11 have the same QCL-D source as CSI-RS resource # 10
  • CSI-IM resource set ⁇ CSI-IM # 20, CSI-IM # 30 ⁇
  • the base station can explicitly / implicitly set the following settings to the terminal.
  • CSI-RS resource # 0 and CSI-RS resource # 10 as QCL sources may be replaced with SSB # 0 and SSB # 1, respectively.
  • SSB # 0 / # 1 may be defined as a wide beam similar to CSI-RS resource # 0 / # 1.
  • TRS may be applied as a QCL-D source of CSI-RS resource for BM for beam management.
  • SSB # 0 / # 1 is a previously defined signal and may have characteristics of an always on signal. Therefore, when the SSB replaces CSI-RS resource # 0 / # 1, RS overhead may be reduced.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2, CSI-RS resource # 11, CSI-RS resource # 12 ⁇
  • CSI-IM resource set ⁇ CSI-IM # 20, CSI-IM # 20, CSI-IM # 30, CSI-IM # 30 ⁇
  • each of the CSI-RS resource and the CSI-IM may implicitly have a relationship in a resource-wise order.
  • the base station may explicitly set / instruct the relationship between a plurality of NZP CSI-RS resources and CSI-IM.
  • the base station may set / define / instruct the corresponding one or more NZP CSI-RS resource (s) and the corresponding CSI-IM as one set.
  • the base station may set the following to the terminal.
  • NZP CSI-RS resources eg, NZP CSI-RS resources for channel measurement
  • the NZP CSI-RS resources are connected / mapped to the same CSI-IM.
  • the UE can measure one interference power from the CSI-IM and measure RSRP (Reference Signal Received Power) for each NZP CSI-RS resource.
  • RSRP Reference Signal Received Power
  • L1-SINR of each CSI-RS resource may be calculated using the RSRP and the interference power.
  • the UE connects to the plurality of CSI-RS resources.
  • the same CSI-IM may not be expected to be set (or, the same CSI-IM ID may not be expected to be set for the plurality of CSI-RS resources).
  • the base station determines the plurality of CSI-RSs.
  • the same CSI-IM may not be set for resources.
  • the terminal may not expect that the following settings are set.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 11 ⁇
  • -CSI-RS resource # 1 has the QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 11 has the QCL-D source as CSI-RS resource # 10
  • the terminal In a terminal in which QCL-D is not applicable (or when 'QCL-TypeD' is not applicable), the terminal has a plurality of different CSI-RS resources (eg, NZP CSI-RS resources for channel measurement). You can expect to share one CSI-IM. (Or, it can be expected that the same CSI-IM ID is set for a plurality of different CSI-RS resources (eg, NZP CSI-RS resources for channel measurement).
  • CSI-RS resources eg, NZP CSI-RS resources for channel measurement.
  • the base station may set a plurality of NZP CSI-RS resources to share one CSI-IM.
  • QCL-D may also not be defined for CSI-IM. Therefore, there is no restriction on the reception beam (UE Rx beam) of the UE, the UE measures (i) interference power from one CSI-IM, and (ii) each NZP CSI-RS connected to the CSI-IM. Different L1-SINR for each CSI-RS resource may be calculated using RSRP measured from resources and the interference power.
  • the UE may not expect that QCL-D is different from CSI-RS resources (eg, NZP CSI-RS for channel measurement) and CSI-IM is FDM on the same OFDM symbol.
  • QCL-D of a specific CSI-IM may follow (or correspond to) QCL-D of a CSI-RS resource (eg, NZP CSI-RS for channel measurement) having a connection relationship with the CSI-IM.
  • the base station may set the QCL-D to have the same CSI-RS resource (eg, NZP CSI-RS for channel measurement) and CSI-IM FDM on the same OFDM symbol.
  • the base station must have two different OFDM symbols (One is for NZP CSI-RS for channel measurement). , and another is for CSI-IM).
  • the terminal can reduce the latency (latency) for calculating the L1-SINR.
  • the base station and the terminal can TDM more beams based on the above method.
  • FIG. 14 is a diagram briefly showing a mapping pattern of CSI-RS resources and CSI-IM resources according to another example of the present disclosure.
  • the base station sets the NZP CSI-RS resource set and CSI-IM resource set to the UE as follows.
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 11 ⁇
  • -CSI-RS resource # 1 has the QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 11 has the QCL-D source as CSI-RS resource # 10
  • CSI-IM # 31 has a connection relationship with CSI-RS resource # 11, and CSI-IM # 31 is CSI-RS resource # 11 or CSI-RS resource # 10 (QCL found through QCL-D linkage -D source) QCL-D (or correspond).
  • the base station since QCL-D of CSI-RS resource # 1 and CSI-IM # 31 are different, the base station transmits two different UE Rx beams to the UE to receive a signal on one OFDM symbol. It can be interpreted as setting.
  • CSI-RS resource # 11 and CSI-IM # 21 may also be set incorrectly.
  • the UE expects a configuration in which QCL-D is different from CSI-RS resources (eg, NZP CSI-RS for channel measurement) and CSI-IM is FDM on the same OFDM symbol. You may not.
  • CSI-RS resources eg, NZP CSI-RS for channel measurement
  • 'having the same QCL-D' is determined based on (i) the QCL-D source is the same, and (ii) QCL linkage. It may mean that the QCL-D source is the same, (iii) the QCL-D source and / or the QCL-D source determined based on the QCL linkage is the same.
  • whether to share the CSI-IM may be determined based on the QCL-D source set for the NZP CSI-RS resource. For example, the UE may determine whether to share the CSI-IM by considering only the QCL-D source set for the NZP CSI-RS resource (eg, QCL-D source acquired through QCL linkage is not used). As another example, the UE may determine whether to share the CSI-IM based on the QCL-D source acquired through QCL linkage.
  • the base station has set the following CSI-RS resource (eg, NZP CSI-RS resource for channel measurement) and CSI-IM to the UE.
  • the following CSI-RS resource eg, NZP CSI-RS resource for channel measurement
  • CSI-IM e.g, CSI-IM
  • CSI-RS resource # 0 has the QCL-D source as SSB # 0
  • NZP CSI-RS resource set ⁇ CSI-RS resource # 1, CSI-RS resource # 2 ⁇
  • -CSI-RS resource # 1 has the QCL-D source as CSI-RS resource # 0
  • -CSI-RS resource # 2 has the QCL-D source as SSB # 0
  • CSI-IM resource set ⁇ CSI-IM # 20, CSI-IM # 20 ⁇
  • the two CSI-RS resources may not be able to share the same CSI-IM (ie, when only the QCL-D source set for the NZP CSI-RS resource is considered).
  • CSI-RS resource # 1 which is QCL-D source of CSI-RS resource # 1
  • SSB # 0 QCL-D source.
  • the CSI-RS resource # 1 / # 2 may be interpreted as having the same QCL-D. Therefore, according to the 5-2 operation method, the two CSI-RS resources may share the same CSI-IM.
  • the 5-1 operation method and the 5-2 operation method may have the following advantages / disadvantages.
  • CSI-RS resource # 0 corresponds to a narrower beam than SSB # 0
  • the UE detects a good UE Rx beam using the CSI-RS resource # 0 (rather than when using SSB # 0).
  • the UE may use a better UE Rx beam (found using CSI-RS resource # 0) when receiving CSI-RS resource # 1. Therefore, the terminal can report the high quality L1-SINR to the base station. Accordingly, throughput improvement can be expected as a result.
  • CSI-RS resource # 0 corresponds to a narrower beam than SSB # 0, and the UE detects a good UE Rx beam using CSI-RS resource # 0 (than SSB # 0)
  • the UE should use the UE Rx beam (found using SSB # 0) when receiving CSI-IM # 20.
  • the UE should use the UE Rx beam found using SSB # 0, not the UE Rx beam found as CSI-RS resource # 0. Accordingly, the quality of the L1-SINR reported by the UE may be lower than the 5-1 operation method.
  • the UE uses the UE Rx beam (found as CSI-RS resource # 0) only when the CSI-RS resource # 1 is received, the quality of the L1-SINR may be improved.
  • the UE Rx beam is different from the UE Rx beam in which the UE receives the CSI-IM (QCL-D of the CSI-IM does not match the principle that it follows the NZP CSI-RS resource having a connection relationship), calculated A mismatch may occur between L1-SINR and actual L1-SINR values.
  • the above-described first to fifth operation methods may be effectively applied only when the UE reports to the base station that the number of UE Rx beams that can be simultaneously defined (or operable) by the UE is 1 as UE capability.
  • the UE only when the UE reports that the number of UE Rx beams that can be simultaneously defined (or operable) by the UE as UE capability to the base station is 1, the UE expects that the above-described first to fifth operation methods are applied. Can be.
  • the UE may report to the base station as UE capability (i) the number of UE Rx beams that the UE can simultaneously set and / or (ii) whether multiple UE Rx beams can be configured.
  • the base station can know whether the UE has set a plurality of UE Rx beams based on the UE capability. Accordingly, when the base station knows that the UE does not set (or is unable to set) a plurality of UE Rx beams, the base station bases a plurality of CSI-RS resources (eg, based on the above-described operation methods).
  • CSI-IM sharing of NZP CSI-RS resource for channel measurement and / or multiple CSI-RS resources (eg, NZP CSI-RS resource for channel measurement) and CSI-IM set to FDM on the same OFDM symbol You can decide whether it is possible.
  • the base station may configure the UE to share one CSI-IM with CSI-RS resources (eg, NZP CSI-RS for channel measurement) having the same QCL-D. Accordingly, RS overhead can be reduced.
  • CSI-RS resources eg, NZP CSI-RS for channel measurement
  • the base station may set the UE to share one CSI-IM with CSI-RS resources (eg, NZP CSI-RS for channel measurement). Accordingly, RS overhead can be reduced.
  • CSI-RS resources eg, NZP CSI-RS for channel measurement
  • the base station may set the QCL-D to have the same CSI-RS resource (eg, NZP CSI-RS for channel measurement) and CSI-IMs to be FDM on the same OFDM symbol. Accordingly, latency of the terminal may be reduced.
  • the same CSI-RS resource eg, NZP CSI-RS for channel measurement
  • CSI-IMs to be FDM on the same OFDM symbol. Accordingly, latency of the terminal may be reduced.
  • Whether the detected QCL-D source is the same may be considered. Accordingly, RS overhead can be reduced.
  • 15 is a diagram briefly showing an operation example of a base station and a terminal according to the present disclosure.
  • the base station may transmit the NZP CSI-RS configuration (and CSI-IM resource configuration, QCL configuration, etc.) for channel measurement to the terminal.
  • the base station may transmit NZP CSI-RS resource and CSI-IM for channel measurement to the terminal. More specifically, the base station transmits a reference signal (eg, CSI-RS) through the NZP CSI-RS resource to the terminal, and transmits no signal or a specific signal through the CSI-IM resource.
  • a reference signal eg, CSI-RS
  • L1-SINR for each NZP CSI-RS resource may be calculated based on CSI-IM resources determined corresponding to each star. Specifically, L1-SINR for a specific NZP CSI-RS resource may be calculated based on (i) interference power measured from a corresponding CSI-IM and (ii) RSRP measured from the specific NZP CSI-RS resource. .
  • the terminal is a base station, (i) the calculated NZP CSI-RS L1-SINR for each resource, or (ii) the calculated L1-SINR of the best NZP CSI-RS resource ID and the resource and Related L1-SINR can be transmitted.
  • the base station may be separately configured to allow the terminal to report (i) or (ii).
  • FIG. 16 is a diagram briefly showing an operation example of a terminal and a base station according to an example of the present disclosure
  • FIG. 17 is a flowchart briefly showing an operation example of a terminal according to an example of the present disclosure
  • FIG. 18 is an example of this disclosure It is a flow chart showing an example of the operation of the base station according to the.
  • the terminal may receive configuration information for reporting a signal to interference noise ratio (SINR) from a base station (S1610, S1710).
  • SINR signal to interference noise ratio
  • the setting information for the SINR reporting may include (i) a plurality of channel measurement resource (CMR) settings and (ii) one or more interference measurement resource (IMR) settings. .
  • the base station may transmit the configuration information for the SINR report to the terminal (S1610, S1810).
  • the base station provides the configuration information for the SINR report, (i) physical layer signaling (eg DCI), (ii) upper layer signaling (eg RRC, MAC-CE, etc.), (iii) physical layer signaling And based on the combination of higher layer signaling, it can be transmitted to the terminal.
  • one CMR setup includes a non-zero power channel state information-reference signal (NZP CSI-RS) resource or a synchronization signal / physical broadcast channel (SS). / PBCH) block resource.
  • NZP CSI-RS non-zero power channel state information-reference signal
  • SS physical broadcast channel
  • PBCH physical broadcast channel
  • one IMR configuration is channel state information-interference measurement (CSI-IM) resource or non-zero power channel state information reference signal (non-zero power channel state information-reference signal; NZP CSI- RS) resources.
  • CSI-IM channel state information-interference measurement
  • NZP CSI- RS non-zero power channel state information reference signal
  • the terminal may calculate SINR based on the setting information for reporting the SINR (S1620, S1720). More specifically, the terminal, based on the assumption that two or more CMR settings of the same QCL (Quasi Co Located) source (source) from the perspective of the spatial parameters associated among the plurality of CMR settings, the same IMR configuration, SINR related to the plurality of CMR settings may be calculated.
  • the number of the one or more IMR settings may be set to be less than the number of the CMR settings, based on at least two CMR settings having the same QCL source in terms of related spatial parameters. It can be (see the first operation method described above).
  • the number of the one or more IMR settings may be set equal to the number of the plurality of CMR settings.
  • the plurality of CMR settings and the one or more IMR settings may be related in a resource unit (resource wise).
  • the QCL source in terms of the related spatial parameters may be determined based on spatial reception parameters (spatial Rx parameters).
  • the QCL source in terms of the related spatial parameters includes (i) channel state information-reference signal (CSI-RS) resource information or (ii) synchronization signal / physical broadcast channel (synchronization). signal / physical broadcast channel (SS / PBCH) block information or (iii) tracking reference signal (TRS) information.
  • CSI-RS channel state information-reference signal
  • SS / PBCH physical broadcast channel
  • TRS tracking reference signal
  • the QCL source in terms of the related spatial parameters may include at least one or more of the following (see the fifth operation method described above).
  • the SINR associated with one CMR setting among the plurality of CMR settings includes: (i) a reference signal received power (RSRP) measured based on the one CMR setting, and (ii) ) It can be calculated based on the interference power measured based on the IMR setting related to the one CMR setting.
  • RSRP reference signal received power
  • the terminal may It can be assumed that the one CMR setting and the one IMR setting have QCL sources in terms of the same spatial parameter.
  • the terminal may report SINR related to the plurality of CMR settings to the base station (S1630, S1730).
  • the base station may receive a SINR report from the terminal (S1630, S1820).
  • the SINR may include L1-SINR defined as physical layer information.
  • the terminal (i) the first terminal reporting the UE capability (UE capability) information indicating that the number of receive beams that can be defined simultaneously is 1, or (ii) by the base station At the same time, it can correspond to at least one of the second terminal, in which the number of receive beams that can be defined is set to 1.
  • the examples of the proposed method described above can also be included as one of the implementation methods of the present disclosure, and thus can be regarded as a kind of proposed methods. Further, the above-described proposed schemes may be implemented independently, but may also be implemented in a combination (or merged) form of some suggested schemes. Whether the application of the proposed methods is applied (or information on the rules of the proposed methods) can be defined so that the base station notifies the UE through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • a predefined signal eg, a physical layer signal or a higher layer signal.
  • the communication system 1 applied to the present disclosure includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • a wireless access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), Internet of Thing (IoT) devices 100f, and AI devices / servers 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR) / Virtual Reality (VR) / Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may directly communicate (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may communicate directly (e.g. Vehicle to Vehicle (V2V) / Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication / connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication / connection is various wireless access such as uplink / downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR).
  • wireless communication / connections 150a, 150b, 150c wireless devices and base stations / wireless devices, base stations and base stations can transmit / receive radio signals to each other.
  • wireless communication / connections 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • various signal processing processes eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and / or ⁇ wireless device 100x), wireless device 100x in FIG. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 is an instruction to perform some or all of the processes controlled by the processor 102, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 102 and the memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and / or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information / signal, and then transmit a wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information / signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and / or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and / or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and / or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and / or operational flow diagrams disclosed herein Depending on the field, PDU, SDU, message, control information, data or information may be acquired.
  • signals eg, baseband signals
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 can be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202 or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and / or instructions.
  • the one or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and / or combinations thereof.
  • the one or more memories 104, 204 may be located inside and / or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals / channels, and the like referred to in the methods and / or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals / channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be connected to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 use the received radio signal / channel and the like in the RF band signal to process the received user data, control information, radio signal / channel, and the like using one or more processors 102 and 202. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals / channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • the one or more transceivers 106, 206 may include (analog) oscillators and / or filters.
  • the wireless device 21 shows another example of a wireless device applied to the present disclosure.
  • the wireless device may be implemented in various forms according to use-example / service (see FIG. 19).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 20, and various elements, components, units / units, and / or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver (s) 114.
  • the communication circuit 112 can include one or more processors 102 and 202 of FIG. 20 and / or one or more memories 104 and 204.
  • the transceiver (s) 114 may include one or more transceivers 106,206 and / or one or more antennas 108,208 of FIG. 20.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless / wired interface through the communication unit 110 or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, another communication device
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an input / output unit (I / O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 19, 100A), vehicles (FIGS. 19, 100B-1, 100B-2), XR devices (FIGS. 19, 100C), portable devices (FIGS. 19, 100D), and household appliances. (Fig. 19, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate / environment device
  • It may be implemented in the form of an AI server / device (FIGS. 19 and 400), a base station (FIGS. 19 and 200), a network node, and the like.
  • the wireless device may be movable or used in a fixed place depending on the use-example / service.
  • various elements, components, units / parts, and / or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and / or combinations thereof.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a notebook, etc.).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110 to 130 / 140a to 140c correspond to blocks 110 to 130/140 in FIG. 21, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling the components of the mobile device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data / parameters / programs / codes / commands necessary for driving the portable device 100. Also, the memory unit 130 may store input / output data / information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support the connection between the mobile device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input / output ports, video input / output ports) for connection with external devices.
  • the input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user.
  • the input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
  • the input / output unit 140c acquires information / signal (eg, touch, text, voice, image, video) input from the user, and the obtained information / signal is transmitted to the memory unit 130 Can be saved.
  • the communication unit 110 may convert information / signals stored in the memory into wireless signals, and transmit the converted wireless signals directly to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to original information / signal.
  • the restored information / signal is stored in the memory unit 130, it can be output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
  • a vehicle or an autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving It may include a portion (140d).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110/130 / 140a-140d correspond to blocks 110/130/140 in FIG. 22, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.) and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the controller 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, a tilt sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward / Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
  • the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed / direction adjustment).
  • a driving plan eg, speed / direction adjustment.
  • the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and may acquire surrounding traffic information data from nearby vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • Embodiments of the present disclosure can be applied to various wireless access systems.
  • various wireless access systems there are 3GPP (3rd Generation Partnership Project) or 3GPP2 system.
  • Embodiments of the present disclosure can be applied to not only the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
  • the proposed method can also be applied to mmWave communication systems using ultra-high frequency bands.
  • embodiments of the present disclosure can also be applied to various applications such as free-driving vehicles, drones, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시에서는 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치를 개시한다. 본 개시에 적용 가능한 일 실시예에 따르면, 상기 단말에게 설정된 복수의 CMR (channel measurement resource) 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR (interference measurement resource) 설정을 공유한다는 가정에 기초하여, 상기 단말은 SINR (signal to interference noise ratio) 를 산출하여 상기 기지국으로 보고할 수 있다.

Description

무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 특정 참조 신호 (예: CSI-RS (channel state information - reference signal 등)와 관련된 SINR (signal to interference noise ratio)를 보고하는 동작과 관련된 단말 및 기지국의 동작 방법 및 이를 지원하는 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
특히, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템이 제안되고 있다. 이에 따라, 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등이 도입되었고, 이를 위한 다양한 기술 구성들이 제안되고 있다.
본 개시에서는 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치들을 제공하는 것이다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시는 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 위한 장치들을 제공한다.
본 개시의 일 예로써, 무선 통신 시스템에서 단말의 동작 방법에 있어서, 기지국으로부터 SINR (signal to interference noise ratio) 보고를 위한 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 수신함; 상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유한다는 가정에 기초하여, 상기 복수의 CMR 설정들과 관련된 SINR을 산출함; 및 상기 복수의 CMR 설정들과 관련된 SINR을 상기 기지국으로 보고하는 것을 포함하는, 단말의 동작 방법을 개시한다.
본 개시에 있어, 상기 CMR 설정들 및 상기 하나 이상의 간섭 측정 자원 설정은 상위 계층 시그널링을 통해 수신될 수 있다.
본 개시에 있어, 하나의 CMR 설정은 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 자원 또는 동기 신호 / 물리 방송 채널 (synchronization signal / physical broadcast channel; SS/PBCH) 블록 자원을 포함하고, 하나의 IMR 설정은 채널 상태 정보 간섭 측정 (channel state information - interference measurement; CSI-IM) 자원 또는 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 자원을 포함할 수 있다.
본 개시에 있어, 상기 복수의 CMR 설정들 중, 관련된 공간적 파라미터 관점에서의 QCL 소스가 동일한 적어도 2 개의 CMR 설정들에 기초하여, 상기 하나 이상의 IMR 설정의 개수는 상기 복수의 CMR 설정들의 개수보다 작게 설정될 수 있다.
본 개시에 있어, 상기 복수의 CMR 설정들과 상기 하나 이상의 IMR 설정은, 자원 단위(resource wise)로 관련될 수 있다.
본 개시에 있어, 상기 관련된 공간적 파라미터 관점에서의 QCL 소스는, 공간적 수신 파라미터 (spatial reception parameter; spatial Rx parameter)에 기초하여 결정될 수 있다.
본 개시에 있어, 상기 관련된 공간적 파라미터 관점에서의 QCL 소스는, 채널 상태 정보 참조 신호 (channel state information - reference signal; CSI-RS) 자원 정보 또는 동기 신호 / 물리 방송 채널 (synchronization signal / physical broadcast channel; SS/PBCH) 블록 정보 또는 트래킹 참조 신호 (tracking reference signal; TRS) 정보를 포함할 수 있다.
본 개시에 있어, 상기 관련된 공간적 파라미터 관점에서의 QCL 소스는, 다음 중 하나 이상을 포함할 수 있다.
- (i) 하나의 CMR 설정을 위해 설정된 제1 QCL 소스
- (ii) 상기 하나의 CMR 설정을 위해 설정된 상기 제1 QCL 소스와 QCL 링키지 (linkage)를 갖는 제2 QCL 소스
본 개시에 있어, 상기 복수의 CMR 설정들 중 하나의 CMR 설정과 관련된 SINR은, (i) 상기 하나의 CMR 설정에 기초하여 측정된 참조 신호 수신 파워 (reference signal received power; RSRP), 및 (ii) 상기 하나의 CMR 설정과 관련된 IMR 설정에 기초하여 측정된 간섭 파워에 기초하여 산출될 수 있다.
본 개시에 있어, (i) 상기 복수의 CMR 설정 중 하나의 CMR 설정 및 (ii) 상기 하나 이상의 IMR 설정 중 하나의 IMR 설정이 시간 자원 상 중첩되어 설정되었다는 결정에 기초하여, 상기 단말은 상기 하나의 CMR 설정 및 상기 하나의 IMR 설정은 동일한 공간적 파라미터 관점에서의 QCL 소스를 갖는다고 가정할 수 있다.
본 개시에 있어, 상기 SINR은, 물리계층 정보로서 정의된 L1-SINR을 포함할 수 있다.
본 개시에 있어, 상기 단말은, 다음 중 적어도 하나 이상에 대응할 수 있다.
- (i) 동시에 정의 가능한 수신 빔의 개수가 1임을 알리는 단말 캐퍼빌리티 (UE capability) 정보를 상기 기지국으로 보고한 제1 단말
- (ii) 상기 기지국에 의해 동시에 정의 가능한 수신 빔의 개수가 1로 설정된 제2 단말
본 개시의 다른 예로써, 무선 통신 시스템에서 동작하는 단말에 있어서, 적어도 하나의 송신기; 적어도 하나의 수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 특정 동작은: 기지국으로부터 SINR (signal to interference noise ratio) 보고를 위한 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 수신함; 상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유한다는 가정에 기초하여, 상기 복수의 CMR 설정들과 관련된 SINR을 산출함; 및 상기 복수의 CMR 설정들과 관련된 SINR을 상기 기지국으로 보고하는 것을 포함하는, 단말을 개시한다.
본 개시에 있어, 상기 단말은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신할 수 있다.
본 개시의 또 다른 예로써, 무선 통신 시스템에서 동작하는 기지국에 있어서, 적어도 하나의 송신기; 적어도 하나의 수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 특정 동작은: 단말로 SINR (signal to interference noise ratio) 보고를 위한 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 전송하되, 상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유하도록 설정됨; 및 상기 단말로부터 상기 복수의 CMR 설정들과 관련된 SINR을 수신하는 것을 포함하는, 기지국을 개시한다.
상술한 본 개시의 양태들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 개시의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시의 실시 예들에 다음과 같은 효과가 있다.
본 개시에 따르면, 기지국이 단말에게 CMR 설정 정보 및 IMR 설정 정보를 제공하기 위한 시그널링 오버헤드를 감소시킬 수 있다.
또한, 본 개시에 따르면, 기지국은 동일한 공간적 파라미터 관점에서의 QCL 소스를 갖는 CMR 설정과 IMR 설정을 동일한 시간 구간 상에 설정할 수 있다. 이에 따라, 단말 및 기지국은 SINR 보고의 지연(latency)를 최소화할 수 있다.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공한다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.
도 3은 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 4는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 6 내지 도 8은 본 개시에 적용 가능한 단말의 동작 예를 설명하기 위한 참조 도면이다.
도 9는 본 개시의 일 예에 따른 단말 및 기지국의 동작 예를 간단히 나타낸 도면이고, 도 10은 본 개시의 일 예에 따른 단말의 동작 예를 간단히 나타낸 흐름도이고, 도 11은 본 개시의 일 예에 따른 기지국의 동작 예를 간단히 나타낸 흐름도이다.
도 12는 본 개시에 따른 단말과 기지국의 동작 예를 나타낸 도면이다.
도 13 및 도 14는 본 개시의 예시에 따른 CSI-RS 자원 및 CSI-IM 자원들의 매핑 패턴을 간단히 나타낸 도면이다.
도 15는 본 개시에 적용 가능한 따른 기지국과 단말의 동작 예를 간단히 나타낸 도면이다.
도 16은 본 개시의 일 예에 따른 단말 및 기지국의 동작 예를 간단히 나타낸 도면이고, 도 17은 본 개시의 일 예에 따른 단말의 동작 예를 간단히 나타낸 흐름도이고, 도 18은 본 개시의 일 예에 따른 기지국의 동작 예를 간단히 나타낸 흐름도이다.
도 19는 본 개시에 적용되는 통신 시스템을 예시한다.
도 20은 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 21은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다.
도 22는 본 개시에 적용되는 휴대 기기를 예시한다.
도 23은 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시예들은 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 개시의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 실시예들에서 사용되는 특정(特定) 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 개시의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
본 개시의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 개시의 실시예들을 3GPP NR 시스템을 위주로 기술한다. 다만, 본 개시에서 제안하는 실시예는 다른 무선 시스템 (예: 3GPP LTE, IEEE 802.16, IEEE 802.11 등)에도 동일하게 적용될 수 있다.
1. NR 시스템
1.1. 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 개시의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication), BI (Beam Indication) 정보 등을 포함한다.
NR 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 실시예에 따라 (예: 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우) PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 무선 프레임 (Radio Frame) 구조
도 2는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.
NR 시스템에 기초한 상향링크 및 하향링크 전송은 도 2와 같은 프레임에 기초한다. 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하나의 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 2는 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2019014690-appb-img-000001
Figure PCTKR2019014690-appb-img-000002
상기 표에서, N slot symb 는 슬롯 내 심볼의 개수를 나타내고, N frame,μ slot는 프레임 내 슬롯의 개수를 나타내고, N subframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.
본 개시가 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Figure PCTKR2019014690-appb-img-000003
도 3은 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다.
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 4에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 개시에 따른 자립적 슬롯 구조는 도 4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다.
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 5는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 5에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 1 번째, 5 번째, 9 번째 RE에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 4는 PUCCH 포맷들을 예시한다.
Figure PCTKR2019014690-appb-img-000004
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
1.3. DCI 포맷
본 개시가 적용 가능한 NR 시스템에서는, 다음과 같은 DCI 포맷들을 지원할 수 있다. 먼저, NR 시스템에서는 PUSCH 스케줄링을 위한 DCI 포맷으로 DCI format 0_0, DCI format 0_1을 지원하고, PDSCH 스케줄링을 위한 DCI 포맷으로 DCI format 1_0, DCI format 1_1을 지원할 수 있다. 또한, 이외 목적으로 활용 가능한 DCI 포맷으로써, NR 시스템에서는 DCI format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3을 추가적으로 지원할 수 있다.
여기서, DCI format 0_0은 TB (Transmission Block) 기반 (또는 TB-level) PUSCH를 스케줄링하기 위해 사용되고, DCI format 0_1은 TB (Transmission Block) 기반 (또는 TB-level) PUSCH 또는 (CBG (Code Block Group) 기반 신호 송수신이 설정된 경우) CBG 기반 (또는 CBG-level) PUSCH를 스케줄링하기 위해 사용될 수 있다.
또한, DCI format 1_0은 TB 기반 (또는 TB-level) PDSCH를 스케줄링하기 위해 사용되고, DCI format 1_1은 TB 기반 (또는 TB-level) PDSCH 또는 (CBG 기반 신호 송수신이 설정된 경우) CBG 기반 (또는 CBG-level) PDSCH를 스케줄링하기 위해 사용될 수 있다.
또한, DCI format 2_0은 슬롯 포맷 (slot format)을 알리기 위해 사용되고 (used for notifying the slot format), DCI format 2_1은 특정 UE가 의도된 신호 전송이 없음을 가정하는 PRB 및 OFDM 심볼을 알리기 위해 사용되고 (used for notifying the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE), DCI format 2_2는 PUCCH 및 PUSCH의 TPC (Transmission Power Control) 명령 (command)의 전송을 위해 사용되고, DCI format 2_3은 하나 이상의 UE에 의한 SRS 전송을 위한 TPC 명령 그룹의 전송을 위해 사용될 수 있다 (used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs).
보다 구체적으로, DCI format 1_1은 전송 블록 (TB) 1을 위한 MCS/NDI (New Data Indicator)/RV(Redundancy Version) 필드를 포함하고, 상위 계층 파라미터 PDSCH-Config 내 상위 계층 파라미터 maxNrofCodeWordsScheduledByDCI 가 n2 (즉, 2)로 설정된 경우에 한해, 전송 블록 2를 위한 MCS/NDI/RV 필드를 더 포함할 수 있다.
특히, 상위 계층 파라미터 maxNrofCodeWordsScheduledByDCI 가 n2 (즉, 2)로 설정된 경우, 실질적으로 전송 블록의 사용 가능 여부 (enable/disable) 는 MCS 필드 및 RV 필드의 조합에 의해 결정될 수 있다. 보다 구체적으로, 특정 전송 블록에 대한 MCS 필드가 26 값을 갖고 RV 필드가 1 값을 갖는 경우, 상기 특정 전송 블록은 비활성화(disabled)될 수 있다.
상기 DCI 포맷에 대한 구체적인 특징은 3GPP TS 38.212 문서에 의해 뒷받침될 수 있다. 즉, DCI 포맷 관련 특징 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서를 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
1.4. CORESET (Control resource set)
하나의 CORESET은 주파수 도메인에서 N CORESET RB 개의 RB를 포함하고, 시간 도메인에서 N CORESET symb (해당 값은 1,2,3 값을 가짐) 개의 심볼을 포함한다.
하나의 CCE (control channel element)는 6 REG (resource element group)을 포함하고, 하나의 REG는 하나의 OFDM 심볼 상 하나의 RB와 동일하다. CORESET 내 REG들은 시간-우선 방식 (time-first manner)에 따른 순서로 넘버링된다. 구체적으로, 상기 넘버링은 CORESET 내 첫 번째 OFDM 심볼 및 가장-낮은 번호의 RB을 위해 '0'부터 시작한다.
하나의 단말에 대해 복수 개의 CORESET들이 설정될 수 있다. 각 CORESET은 하나의 CCE-to-REG 매핑에만 관련된다.
하나의 CORESET을 위한 CCE-to-REG 매핑은 인터리빙되거나 논-인터리빙될 수 있다.
CORESET을 위한 설정 정보는 상위 계층 파라미터 ControlResourceSet IE에 의해 설정될 수 있다.
또한 CORESET 0 (예: 공통 CORESET)을 위한 설정 정보는 상위 계층 파라미터 ControlResourceSetZero IE에 의해 설정될 수 있다.
1.5. 안테나 포트 의사 코-로케이션 (antenna ports quasi co-location)
하나의 단말에 대해 최대 M TCI (Transmission Configuration Indicator) 상태(state) 설정의 리스트가 설정될 수 있다. 상기 최대 M TCI 상태 설정은 상기 단말 및 주어진 서빙 셀을 위해 의도된 (intended) DCI를 포함한 PDCCH의 검출에 따라 (상기 단말이) PDSCH를 디코딩할 수 있도록 상위 계층 파라미터 PDSCH-Config에 의해 설정될 수 있다. 여기서, M 값은 단말의 캐퍼빌리티에 의존하여 결정될 수 있다.
각 TCI-state는 하나 또는 두 개의 하향링크 참조 신호들과 PDSCH의 DMRS 포트들 간 QCL (quasi co-location) 관계를 설정하기 위한 파라미터를 포함한다. 상기 QCL 관계는 제1 DL RS (downlink reference signal)을 위한 상위 계층 파라미터 qcl-Type1 및 제2 DL RS을 위한 상위 계층 파라미터 qcl-Type2 (설정될 경우)에 기초하여 설정된다. 두 DL RS들의 경우를 위해, 상기 참조 신호들이 동일한 DL RS 또는 상이한 DL RS인지 여부와 관계 없이, QCL 타입들은 동일하지 않아야 한다 (shall not be the same). QCL 타입들은 상위 계층 파라미터 QCL-Info 내 상위 계층 파라미터 qcl-Type에 의해 주어지는 각 DL RS에 대응하고, 상기 QCL 타입들은 다음 중 하나의 값을 가질 수 있다.
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
단말은 상기 최대 8 TCI states를 DCI 내 TCI (Transmission Configuration Indication) 필드의 코드 포인트(codepoint)와 매핑하기 위해 사용되는 활성화 코맨드 (activation command)를 수신한다. 상기 활성화 코맨드를 포함한 PDSCH에 대응하는 HARQ-ACK 신호가 슬롯 #n에서 전송되는 경우, 상기 TCIs states 및 상기 DCI 내 TCI 필드의 코드 포인트 간 매핑은 슬롯 #(n+3*N subframe, μ slot+1) 부터 적용될 수 있다. 여기서, N subframe, μ slot는 앞서 상술한 표 1 또는 표 2에 기초하여 결정된다. 상기 단말이 TCI states의 초기 상위 계층 설정 (initial higher layer configuration)을 수신한 이후이며 상기 단말이 활성화 코맨드를 수신하기 이전에, 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 'QCL-TypeA' 관점에서 상기 초기 접속 절차에서 결정되는 SS/PBCH (Synchronization Signal / Physical Broadcast Channel) 블록과 QCL 되었다고 가정한다. 추가적으로, 상기 시점에 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 'QCL-TypeD' 관점에서 상기 초기 접속 절차에서 결정되는 SS/PBCH 블록과 QCL 되었다고 가정할 수 있다.
PDSCH를 스케줄링하는 CORESET을 위해 상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정되는 경우, 단말은 상기 CORESET 상에서 전송되는 DCI 포맷 1_1의 PDCCH 내 상기 TCI 필드가 존재한다고 가정한다. 상기 PDSCH를 스케줄링하는 CORESET을 위해 상위 계층 파라미터 tci-PresentInDCI가 설정되지 않거나 상기 PDSCH가 DCI 포맷 1_0에 의해 스케줄링되고, 상기 DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋이 문턱치 Threshold-Sched-Offset (상기 문턱치는 보고된 UE 캐퍼빌리티에 기초하여 결정됨) 보다 크거나 같은 경우, PDSCH 안테나 포트 QCL을 결정하기 위해, 단말은 상기 PDSCH를 위한 TCI state 또는 QCL 가정이 PDCCH 전송을 위해 사용되는 CORESET에 적용되는 TCI state 또는 QCL 가정과 동일하다고 가정한다.
상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정되고, CC (component carrier)를 스케줄링하는 DCI 내 TCI 필드가 상기 스케줄링된 CC 또는 DL BW 내 활성화된 TCI states를 지시하는 경우 (point to), 상기 PDSCH가 DCI 포맷 1_1에 의해 스케줄링되면, 단말은 PDSCH 안테나 포트 QCL을 결정하기 위해 상기 검출된 PDCCH 내 DCI에 포함된 TCI 필드에 기초한 TCI-State를 이용한다. DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋이 문턱치 Threshold-Sched-Offset (상기 문턱치는 보고된 UE 캐퍼빌리티에 기초하여 결정됨) 보다 크거나 같은 경우, 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 지시된 TCI stated 의해 주어지는 QCL 타입 파라미터(들)에 대한 TCI state 내 RS(s)와 QCL 된다고 가정한다. 상기 단말에 대해 단일 슬롯 PDSCH가 설정되는 경우, 상기 지시된 TCI state는 상기 스케줄링된 PDSCH의 슬롯 내 활성화된 TCI states에 기초해야 한다. 크로스-반송파 스케줄링을 위한 검색 영역 세트 (search space set)와 연관된 CORESET이 상기 단말에게 설정되는 경우, 상기 단말은 상기 CORESET을 위해 상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정된다고 가정하고, 상기 검색 영역 세트에 의해 스케줄링된 서빙 셀을 위해 설정된 하나 이상의 TCI states들이 'QCL-TypeD'를 포함하는 경우, 상기 단말은 상기 검색 영역 세트 내 검출된 PDCCH의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋은 문턱치 Threshold-Sched-Offset 보다 크거나 같을 것을 기대한다.
상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정되거나 RRC 연결 모드에서 상기 상위 계층 파라미터 tci-PresentInDCI가 설정되지 않은 경우 모두에 대해, 만약 DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 오프셋이 문턱치 Threshold-Sched-Offset 보다 작은 경우, 상기 단말은 다음과 같은 사항을 가정한다. (i) 서빙 셀의 PDSCH의 DMRS 포트(들)은 TCI state의 RS(s)와 QCL 파라미터(들)에 대해 QCL 관계를 가짐. (ii) 이때, 상기 QCL 파라미터(들)은, 단말에 의해 모니터링되는 서빙 셀의 활성화 BWP 내 하나 이상의 CORESET에서 마지막 슬롯 내 가장 낮은 CORESET-ID로 모니터링된 검색 영역과 연관된 CORESET의 PDCCH QCL 지시를 위해 사용된 QCL 파라미터(들)임 (For both the cases when higher layer parameter tci-PresentInDCI is set to 'enabled' and the higher layer parameter tci-PresentInDCI is not configured in RRC connected mode, if the offset between the reception of the DL DCI and the corresponding PDSCH is less than the threshold Threshold-Sched-Offset, the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS(s) in the TCI state with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.)
상기 경우에 있어, PDSCH DMRS의 'QCL-TypeD'가 적어도 하나의 심볼 상에서 중첩되는 PDCCH DMRS의 'QCL-TypeD'와 상이한 경우, 상기 단말은 해당 CORESET과 연관된 PDCCH의 수신을 우선시하는 것을 기대한다. 해당 동작은 또한 밴드-내 (intra band) CA 경우에도 동일하게 적용될 수 있다 (PDSCH 및 CORESET이 상이한 CC에 있는 경우). 만약 설정된 TCI states들 중 'QCL-TypeD'를 포함한 TCI state가 없는 경우, 상기 단말은, DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋에 관계 없이, 스케줄링된 PDSCH를 위해 지시된 TCI state로부터 다른 QCL 가정을 획득한다.
상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- SS/PBCH 블록에 대한 'QCL-TypeC', (QCL-TypeD가) 적용 가능한 경우 (when applicable), 동일한 SS/PBCH 블록에 대한 'QCL-TypeD', 또는
- SS/PBCH 블록에 대한 'QCL-TypeC' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원에 대한 'QCL-TypeD'
상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, SS/PBCH 블록에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeB', 'QCL-TypeD'가 적용 가능하지 않은 경우
상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- SS/PBCH 블록에 대한 'QCL-TypeC' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 SS/PBCH 블록에 대한 'QCL-TypeD'
PDCCH의 DMRS를 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD'
PDSCH의 DMRS를 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD'
본 문서에 있어, QCL 시그널링은 하기 표에 기재된 모든 시그널링 구성들을 포함할 수 있다.
Figure PCTKR2019014690-appb-img-000005
하기 표들에 있어, 동일한 RS 타입을 포함한 행(row)이 존재하는 경우, 동일한 RS ID가 적용된다고 가정할 수 있다.
일 예로, 상위 계층 파라미터 trs-Info 와 함께 상위 계층 파라미터 NZP-CSI-RS-ResourceSet에 의해 설정되는 CSI-RS 자원이 존재하는 경우, 단말(UE)은 상위 계층 파라미터 TCI-State의 하기 두 가지 가능한 설정들만을 기대할 수 있다.
Figure PCTKR2019014690-appb-img-000006
상기 표에 있어, *는, QCL type-D 이 적용 가능한 경우, DL RS 2 및 QCL type-2 가 상기 단말을 위해 설정될 수 있음을 의미할 수 있다.
다른 예로, 상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이, 상위 계층 파라미터 NZP-CSI-RS-ResourceSet에 의해 설정되는 CSI-RS 자원이 존재하는 경우, 단말(UE)은 상위 계층 파라미터 TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
Figure PCTKR2019014690-appb-img-000007
상기 표에 있어, *는, QCL type-D가 적용 가능하지 않음을 의미할 수 있다.
상기 표에 있어, **는, QCL type-D 이 적용 가능한 경우, DL RS 2 및 QCL type-2 가 상기 단말을 위해 설정될 수 있음을 의미할 수 있다.
또 다른 예로, 상위 계층 파라미터 repetition 와 함께 상위 계층 파라미터 NZP-CSI-RS-ResourceSet에 의해 설정되는 CSI-RS 자원이 존재하는 경우, 단말(UE)은 상위 계층 파라미터 TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
Figure PCTKR2019014690-appb-img-000008
다음의 두 표들에 있어, QCL type-D가 적용 가능한 경우, DL RS 2 및 QCL type-2 는, 기본 (default) 케이스 (하기 두 표들의 네 번째 행)를 제외하고, 상기 단말을 위해 설정될 수 있다. 만약 하향링크를 위한 TRS가 QCL type-D를 위해 사용되는 경우, TRS는 QCL type-D를 위한 소스 RS로써 BM(beam management)를 위한 참조 신호 (예: SSB 또는 CSI-RS)를 가질 수 있다.
PDCCH의 DMRS를 위해, 단말은 TRS가 설정되기 이전에 네 번째 설정 (하기 두 표들의 네 번째 행)이 기본(default) 설정로써 유효한 동안, 상위 계층 파라미터 TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
Figure PCTKR2019014690-appb-img-000009
상기 표에 있어, *는, TRS가 설정되기 이전에 적용될 수 있는 설정을 의미할 수 있다. 이에 따라, 해당 설정은 TCI 상태(state)가 아니며, 오히려 유효한 QCL 가정(assumption)으로 해석될 수 있다.
상기 표에 있어, **는, QCL 파라미터들이 CSI-RS (또는 CSI)로부터 직접적으로 도출되지 않음을 의미할 수 있다.
PDCCH의 DMRS를 위해, 단말은 TRS가 설정되기 이전에 네 번째 설정 (하기 두 표들의 네 번째 행)이 기본적으로 (by default) 유효한 동안, 상위 계층 파라미터 TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
Figure PCTKR2019014690-appb-img-000010
상기 표에 있어, *는, TRS가 설정되기 이전에 적용될 수 있는 설정을 의미할 수 있다. 이에 따라, 해당 설정은 TCI 상태(state)가 아니며, 오히려 유효한 QCL 가정(assumption)으로 해석될 수 있다.
상기 표에 있어, **는, QCL 파라미터들이 CSI-RS (또는 CSI)로부터 직접적으로 도출되지 않음을 의미할 수 있다.
PDCCH의 DMRS를 위해, 단말은 TRS가 설정되기 이전에 네 번째 설정 (하기 두 표들의 네 번째 행)이 기본적으로 (by default) 유효한 동안, 상위 계층 파라미터 TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
Figure PCTKR2019014690-appb-img-000011
상기 표에 있어, *는, TRS가 설정되기 이전에 적용될 수 있는 설정을 의미할 수 있다. 이에 따라, 해당 설정은 TCI 상태(state)이기 보다 유효한 QCL 가정으로 해석될 수도 있다.
상기 표에 있어, **는, QCL 파라미터들이 CSI-RS (또는 CSI)로부터 직접적으로 도출되지 않음을 의미할 수 있다.
1.6. CSI-RS (channel state information reference signal)
본 개시에 따른 이동통신 시스템에서는, 패킷 전송을 위해 다중 송신 안테나와 다중 수신 안테나를 채택하여 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가질 수 있다. 이때, 채널 상태 정보 (channel state information; CSI)의 피드백을 위한 참조 신호는 CSI-RS로 정의될 수 있다.
CSI-RS는 ZP (Zero Power) CSI-RS 및 NZP (Non-Zero-Power) CSI-RS를 포함한다. 이때, ZP CSI-RS 및 NZP CSI-RS는 다음과 같이 정의될 수 있다.
- NZP CSI-RS는 NZP-CSI-RS-Resource IE (Information Element) 또는 CSI-RS-ResourceConfigMobility IE 내 CSI-RS-Resource-Mobility 필드에 의해 설정될 수 있다. 상기 NZP CSI-RS는 3GPP TS 38.211 표준 spec에 정의된 시퀀스 생성 (sequence generation) 및 자원 맵핑 (resource mapping) 방법에 기초하여 정의될 수 있다.
- ZP CSI-RS는 ZP-CSI-RS-Resource IE에 의해 설정될 수 있다. 단말은 ZP CSI-RS를 위하여 설정된 자원은 PDSCH 전송을 위해 사용되지 않는다고 가정할 수 있다. 단말은 PDSCH를 제외한 채널/신호가 ZP CSI-RS와 충돌하는지 여부와 관계 없이, 상기 채널/신호 상에서 동일한 측정/수신을 수행할 수 있다 (The UE performs the same measurement/reception on channels/signals except PDSCH regardless of whether they collide with ZP CSI-RS or not).
하나의 슬롯 내 CSI-RS가 맵핑되는 위치는 CSI-RS 포트 개수, CSI-RS 밀도 (density), CDM (Code Division Multiplexing)-Type 및 상위 계층 파라미터 (예: firstOFDMSymbolInTimeDomain, firstOFDMSymbolInTimeDomain2 등)에 의해 동적으로 (dynamic) 결정될 수 있다,
1.7. CSI-IM (Channel State Information Interference Measurement)
간섭 측정을 위하여, 기지국은 단말에게 CSI-IM 지원을 설정할 수 있다. 해당 CSI-IM 자원 상의 측정 결과를 CSI 계산에 있어 간섭으로 간주할 수 있다.
단말은 상위 계층 파라미터 CSI-IM-ResourceSet 에 의해 지시되는 하나 이상의 CSI-IM 자원 세트 설정(들)이 설정될 수 있다. 이때, 각 CSI-IM 자원 세트는 K 개 (K≥1) CSI-IM 자원(들)로 구성될 수 있다.
각 CSI-IM 자원 설정을 위해, 상위 계층 파라미터 CSI-IM-ResourceSet 을 통해 하기 파라미터들이 설정될 수 있다:
- csi-IM-ResourceId. 해당 파라미터는 CSI-IM 자원 설정 ID를 결정함
- subcarrierLocation-p0 또는 subcarrierLocation-p1. 해당 파라미터는 csi-IM-ResourceElementPattern 이 'pattern0' 또는 'pattern1'로 설정된 슬롯 내 CSI-IM 자원의 부반송파 점유 상태 (subcarrier occupancy)를 각각 결정함
- symbolLocation-p0 또는 symbolLocation-p1. 해당 파라미터는 csi-IM-ResourceElementPattern 이 'pattern0' 또는 'pattern1'로 설정된 슬롯 내 CSI-IM 자원의 OFDM 심볼 위치를 각각 결정함.
- periodicityAndOffset. 해당 파라미터는 주기적/반-지속적 (periodic/semi-persistent) CSI-IM을 위한 CSI-IM 주기 및 슬롯 오프셋을 결정함
- freqBand. 해당 파라미터는 CSI-IM의 주파수 점유 설정을 활성화(enable)하는 파라미터들을 포함함
1.8. 빔 관리 절차의 동작 예
본 개시에 있어, 하나 또는 복수의 TRP (Transmission and Reception Point) 내에서 다음의 DL L1/L2 빔 관리 절차가 지원될 수 있다:
- P1: P1은, TRP Tx 빔들 및/또는 단말 Rx 빔(들)의 선택을 지원할 수 있도록, 상이한 TRP Tx 빔 상의 단말 측정을 활성화하는데 사용됨
>> TRP에서의 빔포밍을 위해, P1은 상이한 빔들의 세트로부터의 인트라/인터 TRP Tx 빔 스위핑 (beam sweeping)을 포함할 수 있다.
>> 단말에서의 빔포밍을 위해, P1은 상이한 빔들의 세트로부터의 단말의 Rx 빔 스위핑를 포함할 수 있다.
- P2: P2는, 인터/인트라 TRP Tx 빔들의 변경이 가능하도록, 상이한 TRP Tx 빔 상의 단말의 측정을 활성화하는데 사용됨
>> P2는 P1의 스페셜 케이스로 해석될 수 있다. 이에, 빔 재련 (beam refinement)를 위한 빔들의 세트는 P1 대비 작게 설정될 수 있다.
- P3: P3는, 단말이 빔포밍을 사용하는 경우 단말 Rx 빔을 변경할 수 있도록, 동일한 TRP Tx 빔 상의 단말의 측정을 활성화하는데 사용됨
본 개시에 있어, 인트라-TRP 빔 관리 및 인터-TRP 빔 관리를 위해 동일한 절차 설계 (procedure design)이 적용될 수 있다. 이에 따라, 단말은 해당 빔이 인트라-TRP 빔인지 또는 인터-TRP 빔인지를 모르도록 설계될 수 있다.
P2 및 P3 절차는 조인트되어 수행되거나 및/또는 또는 복수 번 수행될 수 있다. 이를 통해, TRP Tx 빔 및 단말 Rx 빔이 동시에 변경될 수 있다.
P3 절차는 기존 표준 spec에 정의된 물리 계층 절차에 대한 수정 없이 (without spec impact) 수행될 수 있다. 또는, P3 절차는 기존 표준 spec에 정의된 물리 계층 절차에 대한 일부 수정을 통해 수행될 수도 있다.
앞서 설명한 방법은 단말을 위한 복수의 Tx/Rx 빔 페어의 관리를 지원할 수 있다.
추가적으로, 앞서 설명한 방법들을 위해, 다른 반송파로부터 보조 정보 (assistance information)이 제공될 수도 있다.
앞서 설명한 방법들은 모든 주파수 대역에 대해 동일하게 적용될 수 있다.
앞서 설명한 방법들은 TRP 별 단일/다중 빔(들) 상에서 이용될 수 있다.
본 개시에 있어, CSI-RS는 DL Tx 빔 스위핑 및 UE Rx 빔 스위핑을 지원할 수 있다. 일 예로, CSI-RS는 앞서 상술한 P1, P2, P3를 위해 사용될 수 있다.
이를 위해, CSI-RS는 다음의 매핑 구조를 지원할 수 있다:
- Np CSI-RS 포트(들)은 (부(sub)) 시간 단위 마다 매핑될 수 있음
>> (부) 시간 단위들에 걸쳐, 동일한 CSI-RS 안테나 포트(들)이 매핑될 수 있다.
>> Np 값은 다양하게 설정될 수 있다. 일 예로, 표준 spec에 의해 고정 값으로 설정되거나, 기지국의 설정 (예: RRC 시그널링, DCI 등)을 통해 복수의 값들 중 하나로 설정될 수 있다.
>> 본 개시에 있어, “시간 단위”란 설정된(또는 기준) 뉴머롤로지 상의 N OFDM 심볼 구간을 의미할 수 있다. N은 1보다 크거나 같은 값으로 설정될 수 있고, N 값은 표준 spec에 의해 고정 값으로 설정되거나, 기지국의 설정 (예: RRC 시그널링, DCI 등)을 통해 복수의 값들 중 하나로 설정될 수 있다. 이때, 하나의 시간 단위를 구성하는 OFDM 심볼들은 연속적이거나 비연속적으로 설정될 수 있다.
- 각 시간 단위는 복수의 부 시간 단위들(sub-time units)로 구분될 수 있다.
>> 본 개시에 있어, 다양한 구분 방법(예: TDM (Time Division Multiplexing), IFDM (Interleaved Frequency Division Multiplexing) 등)이 적용될 수 있다. OFDM 심볼 레벨의 구분은 기준 OFDM 심볼 길이와 동일하거나 상기 기준 OFDM 심볼 길이보다 짧은 OFDM 심볼 길이 (예: 보다 큰 subcarrier spacing)로 구분될 수 있다.
- 상기 매핑 구조는 다중 패널 또는 다중 Tx 패널들을 지원하기 위해 사용될 수 있다.
- Tx 빔 및 Rx 빔 스위핑을 위한 CSI-RS의 매핑 방법으로는 다양한 옵션이 고려될 수 있다:
(1) Option 1
- Tx 빔(들)은 각 시간 단위 내 부 시간 단위들에 걸쳐 동일하게 설정됨
- Tx 빔(들)은 시간 단위들에 걸쳐 상이하게 설정됨
(2) Option 2
- Tx 빔(들)은 각 시간 단위 내 부 시간 단위들에 걸쳐 상이하게 설정됨
- Tx 빔(들)은 시간 단위들에 걸쳐 동일하게 설정됨
(3) Option 3
- 하나의 시간 단위 내, Tx 빔(들)은 부 시간 단위들에 걸쳐 동일하게 설정됨
- 다른 시간 단위 내, Tx 빔(들)은 부 시간 단위들에 걸쳐 상이하게 설정됨
- 상이한 시간 단위들의 조합은 개수 및 주기 등에 기초하여 결정될 수 있다.
앞서 상술한 옵션들에 있어, Tx 스위핑만 또는 Rx 스위핑만 수행되는 동작 또한 적용될 수 있다.
앞서 상술한 P3 절차를 위해, 다음과 같은 사항들이 추가적으로 고려될 수 있다.
부 시간 단위가 하나의 OFDM 심볼 길이보다 작거나 같은 경우, Tx 빔(들)은 각 시간 단위 내 부 시간 단위들에 걸쳐 동일 또는 상이하게 설정될 수 있다.
이를 위한 일 예로, 하나의 OFDM 심볼 구간은 P3 동작을 위한 복수의 부 시간 단위들로 구분될 수 있다. 이에 따라, 동일한 TRP Tx 빔을 위한 UE Rx 빔 스위핑이 허용될 수 있다.
또한, IFDMA 또는 (상대적으로) 큰 부반송파 간격에 기초한 P3 동작 또한 고려될 수 있다. IFDMA에 기초한 P3 동작이 고려될 경우, 다음의 사항들이 고려될 수 있다.
- 몇 개의 콤브(comb) 값들을 지원할 것인지
- 콤브 오프셋 또한 지원할 것인지
- (P3를 위한 Rx 빔 스위핑을 활용하기 위해) 단말은 동일한 OFDM 심볼 내 NZP CSI-RS REs 와 ZP (Null) RE를 명확히 구분할 수 있는지
이 중, 마지막 이슈를 위하여, (i) NZP 및 특정 콤브 값/오프셋으로 설정된 하나의 자원 및 (ii) ZP 및 (Null REs를 적절히 지시할 수 있도록) 독립적인 콤브 값/오프셋으로 설정된 다른 자원들을 포함하는 다중 CSI-RS 자원들이 설정될 수 있다. 이때, 적절한 Null RE 설정 및 독립적인 콤브 값/오프셋 설정에 기초하여, 주파수 도메인 상 다중 단말들을 위해 CSI-RS 자원 다중화가 적절하게 지원되는지 여부가 추가적으로 검토될 수 있다.
정리하면, IFDMA를 고려할 때, 주파수 도메인 상 다중 단말들을 위한 CSI-RS자원 다중화를 지원하기 위해, 적절한 Null RE 설정이 고려될 수 있다.
반면, P3 동작은, (i) 복수의 OFDM 심볼들로 구성된 단일 CSI-RS 자원을 설정함으로써, 또는 (ii) 복수의 OFDM 심볼들에 걸쳐 동일한 CSI-RS 자원을 반복함으로써 지원될 수도 있다. 이러한 접근 방법에 따르면, 빔 스위핑 간격 (beam sweeping interval) 간격을 심볼 길이의 정수 배를 유지함으로써 보다 간단한 단말 구현을 지원할 수 있다.
본 개시에 있어, P3 동작을 위한 반복 동작을 위해 다음과 같은 상위 계층 파라미터 NZP-CSI-RS-ResourceSet가 단말에게 설정될 수 있다. 상기 상위 계층 파라미터는 3GPP TS 38.331에 기초하여 다음과 같이 정의될 수 있다.
Figure PCTKR2019014690-appb-img-000012
이때, NZP-CSI-RS-ResourceSet IE 내 repetition 파라미터는 다음과 같이 정의될 수 있다.
Figure PCTKR2019014690-appb-img-000013
1.9. CSI 보고 관련 설정 사항들
본 개시에 적용 가능한 CSI 보고를 위해, 다음과 같은 파라미터들이 단말에게 설정될 수 있다.
(1) CSI-ReportConfig
상기 상위 계층 파라미터는 3GPP TS 38.331에 기초하여 다음과 같이 정의될 수 있다.
Figure PCTKR2019014690-appb-img-000014
Figure PCTKR2019014690-appb-img-000015
이때, 상기 CSI-ReportConfig IE 내 resourceForChannelMeasurement, csi-IM-ResourceForInterference, nzp-CSI-RS-ResourceForInterference 는 다음과 같은 관계를 가질 수 있다.
Figure PCTKR2019014690-appb-img-000016
Figure PCTKR2019014690-appb-img-000017
Figure PCTKR2019014690-appb-img-000018
이때, 상기와 같은 관계에 기초하여, CSI 계산은 다음과 같이 수행될 수 있다.
Figure PCTKR2019014690-appb-img-000019
CSI-ReportConfig IE 내 groupBasedBeamReporting 파라미터가 ‘enabled’ 또는 ‘diabled’ 인지 여부에 따라, reportQuantity = {cri-RSRP or ssb-Index-RSRP}에 대한 보고는 다음과 같이 구분될 수 있다.
Figure PCTKR2019014690-appb-img-000020
L1-RSRP (Reference Signal Received Power) 계산을 위해, 단말은 다음과 같이 설정될 수 있다. 이때, 상기 단말은, nrofReportedRS 또는 groupBasedBeamReporting 에 따라 다음과 같은 보고를 수행할 수 있다.
Figure PCTKR2019014690-appb-img-000021
또한, 본 문서에 있어, L1-RSRQ 및 L1-SINR은 다음과 같이 정의될 수 있다.
먼저, L1-RSRQ는 하기 수학식을 만족하도록 설정될 수 있다.
Figure PCTKR2019014690-appb-img-000022
상기 수학식에 있어, RSSI는 모든 소스들 (예: co-channel serving and non-serving cells, 인접 (adjacent) channel interference, thermal noise 등)로부터 수신된 총 전력의 선형 평균 값을 포함할 수 있다. RSSI는 요구 신호 (desired signal)의 전력 뿐만 아니라 간섭 및 잡음을 모두 포함하는 바, 상기 요구 신호의 전력이 지배적(dominant) 일수록, RSSI 값은 1에 매우 가까워질 수 있다. 그래서, 상기 RSSI는 TRP의 빔 선택을 위한 자기 완비적 (self-contained) 피드백 정보가 될 수 없다. 다른 말로, RSRP는 CRI/SSBRI에 추가적으로 RSRQ를 항상 수반할 필요가 있다.
본 문서에 있어, L1-SINR은 하기 수학식을 만족하도록 설정될 수 있다.
Figure PCTKR2019014690-appb-img-000023
SINR의 정의로부터, 높은 SINR 영역에서 SINR은 빔 보고 관점에서 RSRP 역할을 수행할 수 있다. 또는, 중간부터 낮은 (mid-to-low) SINR 영역에서 SINR은 빔 별 간섭 조건을 반영할 수 있다. 왜냐하면, SINR을 결정하는 분모 값(denominator)는 서빙 셀들로부터의 코-채널 전력을 포함하지 않기 때문이다. 따라서, SINR은 자기 완비적 피드백 정보가 될 수 있고, 이에 따라 SINR은 RSRQ보다 적절한 피드백 정보로 해석될 수 있다.
2. 본 개시에 적용 가능한 단말 및 기지국의 특징들
2.1. IMR (예: CSI-IM, ZP CSI-RS 등)에 기초한 L1-SINR 및 1 심볼보다 작은 sub-time-unit을 위한 방법들
이하 상술하기에 앞서, 본 문서에서 활용되는 용어들을 정의하면 다음과 같다.
먼저, 본 개시에서는, ZP CSI-RS (또는 CSI-IM)을 이용한 L1-SINR (Signal to Interference and Noise Ratio) 측정 방법을 중점적으로 설명한다. 다만, 본 개시에서 제안하는 모든 구성은 상기 SINR 측정 동작에만 한정되지 않고, 실시예에 따라 RSRQ (Reference Signal Received Quality)로 확장 또는 대체될 수도 있다.
또한, 본 개시에 있어, 'NZP CSI-RS 자원'이라는 용어는 'NZP CSI-RS'로 대체될 수 있다.
또한, 본 개시에 있어, 단말에게 채널 측정 용도로 설정/할당되는 자원은 CMR (Channel Measurement Resource)라 명명하고, 단말에게 간섭 측정 용도로 설정/할당되는 자원은 IMR (Interference Measurement Resource)라 명명한다. 이때, IMR은 'CSI-IM' 용어로 대체될 수 있다. 또는, IMR은 실질적으로 특정 RS(reference signal)이 전송되지 않는 ZP (Zero Power) IMR 및 특정 RS가 전송되는 NZP (Non-Zero Power) IMR을 포함할 수 있다. 이때, 실시예에 따라, 'ZP IMR' 용어는 'ZP CSI-RS'로 확장/대체될 수 있다. 여기서 ZP CSI-RS의 역할은 간섭 측정 용도 뿐만 아니라 (또는 간섭 측정 용도가 아닌) PDSCH rate matching용도로 설정/지정하는 RS일 수 있다.
이에, 본 개시에 있어, 'ZP CSI-RS'에 기초하여 간섭을 측정함은, 'ZP IMR'을 이용하여 간섭을 측정하는 것과 동일한 의미를 가질 수 있다.
이와 같은 사항에 기초하여, 이하에서는 단말이 간섭을 측정하는 자원을 IMR로 통칭한다.
본 절에서 개시한 구체적인 동작 예들은, CSI-IM이 정의된 RE상에 ZP CSI-RS가 정의 (예: overlap) 되는 조건 하에서 유효할 수 있다 (또는, CSI-IM이 정의 된 모든 RE위치에 ZP CSI-RS가 정의되는 경우 (예: overlap). 만약 단말에게 PDSCH와 CSI-IM 자원이 동일한 OFDM 심볼 상에서 FDM되는 경우, 상기 단말은 상기 CSI-IM RE 위치에서 PDSCH가 전송됨을 가정할 수 있다. 따라서, 기지국 및 단말은 CSI-IM이 정의된 RE에 대해 레이트 매칭을 수행하지 않을 수 있다.
다시 말해, 단말이 해당 RE에 대해 레이트 매칭을 수행할 수 있도록, 기지국은 ZP CSI-RS을 상기 CSI-IM RE 위치에 설정할 필요가 있다. 이에, 본 절에서 개시한 동작 예들은 CSI-IM RE위치에 ZP CSI-RS가 설정 되는 조건 하에서 유효하게 적용될 수 있다.
한편, PDSCH와 CSI-IM 자원이 동일한 OFDM 심볼 상에서 FDM되지 않는 경우, 단말은 ZP CSI-RS를 필요로 하지 않을 수 있다. 이 경우, ZP CSI-RS 존재 설정 여부와 무관하게, 본 절에서 개시한 예시들이 적용될 수 있다. 또는, 앞서 상술한 PDSCH와 FDM되는 경우와의 일관성을 위해, 본 절에서 상술하는 예시들은 ZP CSI-RS가 설정 되는 조건하에서만 유효하게 적용될 수도 있다.
기존 NR Rel-15 시스템에서는 빔 관리 (beam management)을 위해 단말에게 RSRP 보고를 허용할 수 있다. 이때, RSRP는 단순히 수신 신호 파워만을 나타내는 지표로써, 간섭의 세기가 고려되지 않은 지표일 수 있다. 따라서, 단순히 RSRP만을 고려하여 기지국 Tx 빔 및/또는 UE Rx 빔이 선택되는 경우, RSRP가 크더라도 간섭이 강한 기지국 Tx 빔 및/또는 UE Rx 빔이 선택될 수 있다.
이와 같은 문제점을 보완하고자, 본 절에서는 빔 관리를 위해 간섭을 고려한 SINR 보고 방법 예들을 상술한다. 보다 구체적으로, 본 절에서는, 기존에 정의된 CSI-ReportConfig 및 IMR (예: ZP CSI-RS, CSI-IM 등) 에 기초하여, 단말이 SINR 계산을 위해 필요한 간섭 신호 파워 측정 방법에 대해 상세히 설명한다.
기존 NR Rel-15 시스템에 있어, 단말이 P3 동작을 수행할 수 있도록, 기지국은 단말에게 NZP CSI-RS resource set with one more resources and repetition =’on’을 설정할 수 있다. 이 경우, 단말은 하나의 OFDM 심볼 단위(예: sub time unit=1)로 UE Rx 빔을 스위핑하여 최적의 Rx 빔을 찾을 수 있다.
한편, IFDMA 방식 또는 larger subcarrier spacing에 기초하여, 기지국은 하나의 OFDM 심볼 구간 내에서 시간 축으로 N 번 반복하는 참조 신호 (예: 동일한 신호 파형이 하나의 OFDM 심볼 구간 내에서 N 번 반복하는 참조 신호 등)를 생성할 수 있다. 이 경우, 단말은 하나의 OFDM 심볼 구간 내에서 N 번 UE Rx 빔을 스위핑하여 최적의 Rx 빔을 찾을 수 있다(이때, sub time unit=1/N으로 설정될 수 있다). 이에 따라, RS 오버헤드는 1/N로 감소시킬 수 있고, 상기 RS에 따른 지연(latency) 시간 또한 감소시킬 수 있다.
이하 설명에 있어, 특정 신호가 일정 시간 구간 내 시간 도메인 상 N 번 반복하여 전송됨은, 수신 노드 (예: 단말) 입장에서 동일한 신호 (또는 동일한 신호 파형)가 상기 일정 시간 구간 내 N 번 반복하도록 수신됨을 포함할 수 있다. 이에 따라, 수신 노드는 상기 일정 시간 구간 내 동일한 신호 (또는 동일한 신호 파형)이 N번 반복됨에 기초하여 (또는 가정하여) 최대 N번 Rx 빔 스위핑을 수행할 수 있다.
이와 같은 사항을 고려하여, 본 절에서는, CSI-ReportConfig 및 IMR (예: ZP CSI-RS, CSI-IM 등) 에 기초하여, 시간 축에서 반복하는 참조 신호를 정의하는 방법 및 이에 기초한 단말의 구체적인 동작 예에 대해 상세히 설명한다.
도 6 내지 도 8은 본 개시에서 적용 가능한 단말의 동작 예를 설명하기 위한 참조 도면이다. 이하에서는, 상기 도면들을 참고하여 본 개시에 적용 가능한 단말 및 기지국의 동작 예에 대해 상세히 설명한다.
2.1.1. 제1 동작 예
본 절에서 적용 가능한 제1 동작 예에 따르면, 단일 포트의 CMR (예: NZP CSI-RS 자원) 및 (N-1, 1) RE 패턴을 갖는 IMR (예: ZP CSI-RS, CSI-IM 등)은 동일한 OFDM 심볼 상에서 (interleaved 방식으로) FDM (Frequency Domain Multiplexing) 되도록 설정될 수 있다. 이때, (A, B) RE 패턴이라 함은, 주파수 도메인 상 A개의 연속한 부반송파 및 시간 도메인 상 B 개의 연속한 심볼에 기초하여 결정되는 RE 패턴을 의미할 수 있다.
이를 통해, CMR (예: NZP CSI-RS)는 하나의 OFDM 심볼 상에서 시간 도메인 상 동일 신호가 (또는 동일한 신호 파형이) N번 반복되도록 설정될 수 있다 (예: sub-time-unit = 1/N).
일 예로, 도 6에 도시된 바와 같이, 단일 안테나 포트와 관련된 CMR (예: NZP CSI-RS 자원) #0 및 (3,1) RE 패턴을 갖는 IMR (예: ZP CSI-RS, CSI-IM 등) #0은 동일한 OFDM 심볼 상에서 interleaved 방식으로 FDM (Frequency Domain Multiplexing)될 수 있다. 이 경우, 상기 CMR (예: NZP CSI-RS 자원)은 하나의 OFDM 심볼 상에서 시간 도메인 상 동일 신호가(또는 동일한 신호 파형이) 4번 반복될 수 있다.
2.1.2. 제2 동작 예
본 절에 적용 가능한 제2 동작 예에 따르면, 다음의 조건들 중 적어도 하나가 만족하고 단말에게 ‘(L1) RSRP 보고’ 또는 ‘아무 것도 보고하지 않음’이 설정되는 경우 (예: ReportQuantity=’cri-RSRP’ or ‘none’), 상기 단말은 수신된 참조 신호 (예: CSI-RS)가 하나의 OFDM 심볼 상에서 시간 도메인 상 N번 반복되도록 구성됨을 가정할 수 있다. 다시 말해, 상기와 같은 조건을 만족하는 경우, 상기 단말은 수신된 참조 신호가 (또는 수신된 참조 신호의 파형이) 하나의 OFDM 심볼 상에서 동일하게 N 번 반복되도록 구성됨을 가정할 수 있다. 시간 도메인 상 상기 동작을 위해 고려되는 '다음의 조건들'은 아래 조건들을 포함할 수 있다.
- Condition #1: CMR (예: NZP CSI-RS 자원)의 port 수가 1인 경우
- Condition #2: IMR (예: ZP CSI-RS, CSI-IM 등) RE 패턴이 (1, 1) 또는 (3, 1) 또는 (7, 1)인 경우
- Condition #3: 채널 측정 (예: resourceForChannelMeasurement)을 위한 CMR (예: NZP CSI-RS 자원) 세트 및 간섭 측정 (예: csi-IM-ResourceForInterference 또는 ZP-CSI-RS-ResourceSet 등)을 위한 IMR (예: ZP CSI-RS, CSI-IM 등) 세트에 포함된 자원들에 기초하여, 자원 측면에서 (resource-wise) NZP CSI-RS 자원 세트 내 특정 CMR (예: NZP CSI-RS 자원)과 IMR (예: ZP CSI-RS, CSI-IM 등) 세트 내 상기 특정 CMR에 대응하는 IMR이 동일한 OFDM 심볼 상에서 주파수 도메인 상 (interleaved 방식으로) FDM 되는 경우
이때, 단말은 상기 참조 신호를 이용하여, 하나의 OFDM 심볼 구간 내에서 UE Rx 빔 스위핑을 최대 N번 수행할 수 있고, 이를 통해 최적의 UE Rx beam을 찾을 수 있다 (예: P3 동작).
구체적인 일 예로, 단말에게 다음의 두 개 자원 세트가 설정되었다고 가정한다: resourceForChannelMeasurement = {NZP CSI-RS resource #0, NZP CSI-RS resource #1}, csi-IM-ReousrceForInterference = {ZP CSI-RS resource #0, ZP CSI-RS resource #1}. 그리고, CMR (예: NZP CSI-RS 자원)을 위한 안테나 포트 개수가 1로 설정되고, IMR (예: ZP CSI-RS, CSI-IM 등)을 위한 RE 패턴이 (3, 1) RE 패턴으로 설정되었다고 가정한다.
도 6을 참고하면, 단말에게 설정된 CMR (예: NZP CSI-RS 자원) 세트 및 IMR (예: ZP CSI-RS 자원, CSI-IM 등) 세트 각각에 대해, resource-wise로 대응하는 자원들이 동일한 OFDM 심볼 상에서 주파수 축에서 interleaved 방식으로 FDM되도록 설정될 수 있다. 즉, 도 6에 따르면, 앞서 상술한 Condition #1, #2, #3이 모두 만족될 수 있다.
이때, 단말에게 ReportQuantity=’cri-RSRP’ 또는 ‘none’이 설정된 경우, 상기 단말은 수신된 참조 신호 (예: CSI-RS)가 하나의 OFDM 심볼 상에서 시간 축으로 동일한 신호가(또는 동일한 신호 파형이) 4번 반복되도록 전송된다고 가정할 수 있다. 이에 따라, 상기 단말은 각 자원 마다 최대 4개의 Rx 빔을 이용하여 최적의 Rx 빔을 찾을 수 있고, 이를 통해, 보다 정확한 최적의 기지국 Tx 빔 (예: NZP CSI-RS resource) 및 UE Rx 빔을 선택할 수 있다.
한편, 기존 NR Rel-15 표준에서 정의된 방법에 따르면, 단말은 하나의 Rx 빔을 가정하고 각 자원에 대한 RSRP을 측정하는 바, 본 개시에 적용 가능한 방법보다 부정확하게 최적의 기지국 Tx 빔을 선택하게 된다. 즉, 본 개시에 따르면, 기존 표준에서 정의된 방법 대비, 보다 정확한 최적의 기지국 Tx 빔 및 UE Rx 빔이 선택될 수 있다.
상기 제2 동작 예에 있어, 하나의 OFDM 심볼 상에서 동일한 참조 신호가 (또는 참조 신호의 파형이) 4번 반복하도록 전송되더라도, 상기 단말은 1개의 Rx 빔을 이용하여 최적의 기지국 Tx 빔을 선택할 수도 있다. 이 경우, 상기 단말은 Rx 빔 스위핑 기회를 잃지만 (즉, 최적의 UE Rx 빔 선택에 대한 기회를 잃음), 상기 4개의 반복 신호를 하나의 Rx 빔으로 수신 후 누적함으로써 수신 파워 관점에서 유리할 수 있다. 결과적으로, 해당 동작은 path-loss가 큰 경우에 유용할 수 있다.
또는, 상기 경우에 상기 단말은 2개의 Rx 빔을 이용하여 최적의 기지국 Tx 빔을 선택할 수도 있다. 이 경우, 상기 단말은 하나의 Rx 빔으로 2개의 반복 전송되는 신호를 누적할 수 있고, 2번의 Rx 빔 스위핑을 수행할 수 있다.
이와 같이, 상기 단말이, (i) 수신한 반복 신호를 Rx 빔 스위핑 용도로 이용할지 또는 (ii) 고정된 특정 Rx 빔에 기초하여 상기 반복 전송되는 신호를 누적 수신할지 여부는 단말의 구현 이슈에 따를 수 있다.
다른 예로, 도 7에 도시된 바와 같이, IMR (예: ZP CSI-RS resource, CSI-IM 등) RE 패턴이 (1, 1) RE 패턴으로 설정되고, 두 개의 CMR이 하나의 OFDM 심볼 상에서 interleaved 방식으로 FDM되도록 설정될 수 있다. 이 경우, 단말은 상기 두 개의 CMR을 서로 다른 기지국 Tx 빔으로 가정할 수 있다 (예: 상기 단말은 두 개의 CMR들에 사용된 Tx filter (또는 Tx coefficient)가 서로 다르다고 가정하거나 동일하지 않다고 가정할 수 있다). 이 경우, 상기 단말은 하나의 OFDM 심볼 상에서 총 8개의 beam pairs (예: 2개의 기지국 Tx 빔 및 4개의 UE Rx 빔)을 측정할 수 있다.
결과적으로, 도 7에 따르면, 최적의 기지국 Tx 빔 및 UE Rx 선택 (예: P1 동작)에 필요한 RS 오버헤드가 도 6의 경우 대비 절반으로 감소할 수 있다. 추가적으로, 해당 동작을 위한 지연 시간 (latency) 역시 감소할 수 있다.
2.1.2.1. 제2 동작 예를 위한 제1 추가 동작 예
앞서 상술한 제2 동작 예에 있어, 단말은 설정된 IMR RE 패턴에 기초하여 반복 수 N을 결정할 수 있다.
일 예로, RE 패턴이 각각 (1, 1), (3, 1), (7, 1)인 경우, N은 각각 2, 4, 8로 결정/설정될 수 있다. 이때, IMR RE 패턴이 (1, 1), (3, 1)로 설정되는 경우, CMR 및 IMR은 자원 블록 (RB) 단위로 전송될 수 있다. 또는, IMR RE 패턴이 (7, 1)로 설정되는 경우, CMR 및 IMR 는 2 개의 자원 블록 (RB) 단위로 전송될 수 있다.
앞서 상술한 제2 동작 예를 위한 Condition #1에서는 IMR RE 패턴이 (1, 1) 또는 (3, 1) 또는 (7, 1)인 경우를 고려한다. 왜냐하면, 이와 같은 RE 패턴을 사용할 경우, 참조 신호 (예: CSI-RS)는 시간 축에서 각각 정확히 2, 4, 8번 반복하여 전송될 수 있기 때문이다. 보다 구체적으로, IFFT (Inverse Fourier Transform) 및/또는 FFT (Fast Fourier Transform) 크기가 2 q (q는 정수)로 가정되는 바, CMR로 설정되는 주파수 RE간격이 2 n RE (n은 정수)인 경우에만 상기 특성을 가질 수 있고, 이를 위해 IMR RE 패턴이 (1, 1) 또는 (3, 1) 또는 (7, 1)로 설정될 수 있기 때문이다.
만약 IMR RE 패턴으로 (2, 1) 또는 (4, 1) RE 패턴이 사용되는 경우를 가정하면, 참조 신호는 하나의 OFDM 심볼 상에서 시간 축으로 각각 3, 5번 반복되도록 전송될 수 있다. 다만, (기존의 IFFT 및/또는 FFT 크기를 가정할 때) 각 반복 전송마다 신호가 완벽하게 동일하지 않는 바, P3 동작 시 그 성능이 감소하게 된다.
따라서, IFFT 및/또는 FFT 크기에 대한 약수 값이 3 또는 5로 설정되는 경우 (예: IFFT 및/또는 FFT 크기가 3 또는 5로 나누어 떨어지는 경우), IMR RE 패턴으로 (2, 1) 또는 (4, 1) RE 패턴이 사용되더라도 각 반복 전송되는 신호 (또는 신호 파형)는 완벽히 동일하게 설정될 수 있다.
결과적으로, 본 절에 따른 제2 동작 예에 있어 고려되는 condition#1은 RE 패턴이 (1, 1), (3, 1), (7, 1)인 경우로만 한정되지 않고, 일정 경우에 따라 (예: IFFT 및/또는 FFT 크기에 대한 약수 값이 3 또는 5로 설정되는 경우 등) 추가적인 RE 패턴이 고려될 수도 있다.
2.1.2.2. 제2 동작 예를 위한 제2 추가 동작 예
하나의 CMR이 하나의 OFDM 심볼 상에서 시간 축으로 N번 반복되도록 전송되는 경우, 단말이 N개의 Rx 빔을 이용하여 상기 CMR 로부터 최적의 UE Rx 빔을 찾을 수 있는지 여부는 UE capability에 의해 정의될 수 있다. 만약, 단말이 상기 동작을 지원하지 않는다고 기지국으로 보고한 경우, 상기 단말은 P3 동작을 위해 부 시간 단위 (sub time unit) 가 1 OFDM 심볼 길이보다 작게 설정될 수 있음을 기대하지 않을 수 있다. 다시 말해, 단말이 상기 동작을 지원하지 않는다고 기지국으로 보고한 경우, 단말은 P3 동작을 위해 부 시간 단위는 1 OFDM 심볼 길이로 설정됨을 기대할 수 있다.
앞서 상술한 제2 동작 예에 따르면, 단말은 각 자원 마다 최대 N개의 Rx 빔을 이용하여 최적의 Rx 빔을 찾을 수 있다. 다만, 앞서 상술한 단말의 구현 이슈를 고려할 때, 상기 단말은 항상 상기 동작을 수행하지 못할 수 있다.
따라서, 단말이 상기 동작을 지원하는지 여부가 UE capability에 의해 정의될 수 있고, 단말은 상기 UE capability를 기지국으로 보고할 수 있다. 만약, 단말이 기지국으로 상기 동작을 수행할 수 없음을 보고한 경우, 상기 기지국은 해당 단말에게 P3 동작을 위해 NZP CSI-RS resource set with one more CSI-RS resources and repetition=’on’을 설정할 수 있다 (이때, sub time unit 는 1 OFDM 심볼 길이로 설정될 수 있다).
2.1.2.3. 제2 동작 예를 위한 제3 추가 동작 예
앞서 상술한 제2 동작 예에 있어, 추가적으로, 기지국은 별도의 파라미터를 통해 단말에게 참조 신호(예: NZP CSI-RS resource)가 하나의 OFDM 심볼 상에서 시간 축으로 N번 반복되도록 전송됨을 지시할 수 있다. 이때, 상기 파라미터는 상위 계층 파라미터 (예: MAC-CE (media access control - control element), RRC (radio resource control) 등)을 통해 단말에게 설정될 수 있다. 이에 따라, 단말이 기지국으로부터 상기 상기 파라미터를 설정 받은 경우, 상기 단말은 수신된 참조 신호 (예: NZP CSI-RS resource)가 하나의 OFDM 심볼 상에서 시간 축으로 N번 반복되도록 전송됨을 가정할 수 있다.
보다 구체적으로, 앞서 상술한 제2 동작 예의 Condition #3을 고려하면, 단말에게 설정된 두 개의 자원 세트 (예: CMR 세트 및 IMR 세트 등)에 포함된 자원들이 resource-wise 별로 각각 동일 OFDM 심볼 상에서 주파수 도메인 상 interleaved 방식으로 FDM (Frequency Domain Multiplexing)되는지 여부가 확인되어야 한다. 이와 같은 확인 동작은 단말의 동작 복잡도를 증가시킬 수 있다.
이에, 본 추가 동작 예에서는, 상기와 같은 문제점을 해소하기 위해, 기지국이 참조 신호가 N번 반복되도록 전송됨을 지시하는 별도의 파라미터를 단말에게 설정하는 방안이 적용될 수 있다.
이때, 상기 별도의 파라미터는 다양한 방법으로 설정될 수 있다. 일 예로, 종래 3GPP NR spec에 정의되지 않은 새로운 IE 로 정의되거나, 종래 3GPP NR spec에 정의된 CSI-ReportConfig IE 내 새로운 상위 계층 파라미터로 정의될 수 있다.
기지국은 단말에게 RRC 및/또는 MAC-CE 및/또는 DCI을 통해 해당 파라미터를 설정할 수 있다.
상기 파라미터가 단말에게 설정된 경우, 상기 단말은 상기 단말에게 설정된 두 개의 자원 세트 (예: CMR 세트 및 IMR 세트 등)에 포함된 자원들이 resource-wise 별로 각각 동일 OFDM 심볼 상에서 주파수 방향으로 interleaved 방식으로 FDM (Frequency Domain Multiplexing)됨을 기대할 수 있다. 다시 말해, 상기 파라미터가 상기 단말에게 설정된 경우, 상기 단말은 설정된 CMR이 하나의 OFDM 심볼 상에서 N번 반복하여 전송됨을 가정할 수 있다.
구체적인 일 예로, 상기 제3 추가 동작 예에 적용 가능한 파라미터는 하기와 같이 CSI-ReportConfig IE 내 subTimeUnitlessthan1과 같이 정의될 수 있다. 다만, 상기 파라미터의 명칭은 본 개시에 적용 가능한 일 예에 불과하며, 상기 파라미터는 실시예에 따라 다른 명칭을 가질 수 있다. 추가적으로, SINR 보고를 위해, reportQuantity는 cri-SINR를 추가적으로 포함할 수 있다.
Figure PCTKR2019014690-appb-img-000024
2.1.3. 제3 동작 예
앞서 상술한 제2 동작 예에 따른 조건들 (예: Conditions #1, #2, #3)을 만족하고 단말에게 L1-SINR 보고가 설정 되는 경우 (예: ReportQuantity=’cri-SINR’), 상기 단말은 기지국으로부터 전송되는 참조 신호 (예: NZP CSI-RS resource)가 하나의 OFDM 심볼 상에서 시간 축으로 1번 반복 전송됨을 가정할 수 있다.
단말이 SINR을 계산하기 위해서는 정확한 간섭 신호 파워 측정이 필요하다. 이때, SINR 계산을 위해, 관심 신호 (desired signal)가 전송되지 않는 IMR (예: ZP CSI-RS, CSI-IM 등)을 이용하는 경우, 단말은 간섭 신호 파워를 보다 정확히 측정할 수 있다. 이를 위해, 단말은 기지국으로부터 전송되는 참조 신호 (예: CSI-RS)가 하나의 OFDM 심볼 상에서 시간 축으로 (동일한 신호가) 1번 반복 전송됨을 가정해야 한다. 이에 따라, 상기 단말은 수신된 신호에 대해 FFT (또는 DFT (Discrete Fourier Transform))을 적용함으로써 IMR로 설정된 RE로부터 간섭 신호 파워를 측정할 수 있다.
일 예로, 단말이 수신된 참조 신호가 일정 시간 구간 동안 4번 반복되도록 전송됨을 가정하고 상기 반복 신호 중 하나에 대해서만 FFT 를 적용한 경우, 단말은 주파수 도메인 상 ZP CSI-RS가 매핑된/설정된 RE를 찾을 수 없고, 이에 따라 정확한 SINR 계산을 수행할 수 없다.
2.1.4. 제4 동작 예
단말에게 CMR 세트만이 설정되고 상기 단말에게 (L1) SINR 보고가 설정 되는 경우 (예: ReportQuantity=’cri-SINR'), 상기 단말은 상기 CMR을 이용하여 관심 (desired) 신호의 수신 파워 및 간섭 신호 수신 파워를 측정할 수 있다. 그리고, 상기 단말은 상기 측정 된 두 값을 이용하여 SINR을 산출할 수 있다.
도 8에 도시된 바와 같이, CMR (예: NZP CSI-RS resource)이 주파수 도메인 상 4 RE 간격으로 설정되는 경우, 단말은 주파수 도메인 상에서 충분한 샘플 (sample)을 획득할 수 있고, 이에 기초하여 보다 정확한 채널 추정을 수행할 수 있다. 또한, 상기 단말은, 상기 채널 추정 후 보다 높은 정확도로 CMR로 설정된 RE로부터 관심 (desired) 신호를 제거할 수 있다. 그리고, 상기 단말은 상기 RE로부터 제거되고 남은 신호를 이용하여 간섭 신호 수신 파워를 측정할 수 있다.
결과적으로, 제4 동작 예에 따르면, 간섭 추정에 사용되는 RE을 별도로 정의하지 않는 바, RS 오버헤드가 크게 감소할 수 있다.
도 9는 본 개시의 일 예에 따른 단말 및 기지국의 동작 예를 간단히 나타낸 도면이고, 도 10은 본 개시의 일 예에 따른 단말의 동작 예를 간단히 나타낸 흐름도이고, 도 11은 본 개시의 일 예에 따른 기지국의 동작 예를 간단히 나타낸 흐름도이다.
본 개시에 따른 단말은 기지국으로부터 SINR 보고 설정을 수신할 수 있다 (S910, S1010). 이에 대응하여, 기지국은 단말로 SINR 보고 설정을 전송할 수 있다 (S910, S1110).
일 예로, 상기 SINR 보고 설정은 상위 계층 시그널링 (예: RRC 시그널링 등)을 통해 송수신될 수 있다. 다른 예로, 상기 SINR 보고 설정은 DCI를 통해 송수신될 수 있다.
단말은 기지국으로부터 간섭 측정 자원 설정을 수신하거나 수신하지 않을 수 있다 (S920, S1020). 보다 구체적으로, 단말이 기지국으로부터 간섭 측정 자원 설정을 수신 받은 경우, 상기 단말에게 간섭 측정 자원이 설정될 수 있다. 반면, 단말이 기지국으로부터 간섭 측정 자원 설정을 수신 받지 못한 경우, 상기 단말에게 간섭 측정 자원이 설정되지 않을 수 있다. 이에 대응하여, 기지국은 단말에게 간섭 측정 자원 설정을 전송하거나 전송하지 않을 수 있다 (S920, S1120).
단말은, 상기 SINR 보고 설정에 기초하여, 다음과 같은 동작을 수행할 수 있다 (S930, S1030).
(i) 상기 단말에게 채널 측정 참조 신호 자원과 관련된 간섭 측정 자원이 설정되는 경우, 상기 간섭 측정 자원에 기초하여 산출되는 제1 간섭 측정 결과를 이용하여 상기 채널 측정 참조 신호 자원과 관련된 SINR을 산출함, 또는,
(ii) 상기 단말에게 상기 채널 측정 참조 신호 자원과 관련된 상기 간섭 측정 자원이 설정되지 않는 경우, 상기 채널 측정 참조 신호 자원에 기초하여 산출되는 제2 간섭 측정 결과를 이용하여 상기 채널 측정 참조 신호 자원과 관련된 SINR을 산출함
단말은 상기와 같은 방법을 통해 산출된 SINR을 기지국으로 보고할 수 있다 (S940, S1040). 이에 대응하여, 기지국은 단말로부터 산출된 SINR 보고를 수신할 수 있다 (S940, S1130).
상기 구성에 있어, 상기 채널 측정 참조 신호 자원을 통해 수신되는 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 또는 동기 신호 / 물리 방송 채널 (synchronization signal / physical broadcast channel) 블록을 포함하고, 상기 간섭 측정 자원은 제로 파워 (zero power; ZP) 간섭 측정 자원 또는 논-제로 간섭 측정 자원을 포함할 수 있다.
상기 구성에 있어, 상기 채널 측정 참조 신호 자원 및 상기 간섭 측정 자원은 하나의 OFDM (orthogonal frequency division multiplexing) 심볼 상에 설정될 수 있다.
이를 위해, 상기 채널 측정 참조 신호 자원 및 상기 간섭 측정 자원은 상기 하나의 OFDM 심볼 상에 주파수 분할 다중화 (frequency division multiplexing; FDM) 방법에 따라 설정될 수 있다.
상기 구성에 있어, 상기 단말이, 상기 간섭 측정 자원에 기초하여 산출되는 상기 제1 간섭 측정 결과를 이용하여 상기 채널 측정 참조 신호 자원과 관련된 SINR을 산출하는 것은, 상기 하나의 OFDM 심볼 상에서 상기 채널 측정 참조 신호 자원을 통해 수신되는 참조 신호가 시간 도메인 상 1번 반복 전송된다는 가정 하에, 상기 단말이 상기 제1 간섭 측정 결과를 이용하여 상기 채널 측정 참조 신호 자원과 관련된 SINR을 산출하는 것을 포함할 수 있다.
상기 구성에 있어, 상기 단말에게 상기 간섭 측정 자원이 설정되지 않음에 기초하여, 상기 단말이 상기 채널 측정 참조 신호 자원에 기초하여 산출되는 상기 제2 간섭 측정 결과를 이용하여 상기 채널 측정 참조 신호 자원과 관련된 SINR을 산출하는 것은 다음의 동작을 포함할 수 있다:
- 상기 채널 측정 참조 신호 자원에 기초하여 채널 추정을 수행함
- 상기 채널 측정 참조 신호 자원으로부터 상기 채널 추정을 통해 검출된 관심 (desired) 신호를 제거하여 상기 제2 간섭 측정 결과를 산출함
- 상기 제2 간섭 측정 결과에 기초하여 상기 채널 측정 참조 신호 자원과 관련된 SINR을 산출함
이때, 상기 단말에게 상기 간섭 측정 자원이 설정되지 않음에 기초하여, 하나의 자원 블록 (resource block; RB) 내 상기 채널 측정 참조 신호 자원은 적어도 3 개의 부반송파 상에 설정될 수 있다.
또는, 상기 단말에게 상기 간섭 측정 자원이 설정되지 않음에 기초하여, 상기 채널 측정 참조 신호 자원은 하나의 OFDM (orthogonal frequency division multiplexing) 심볼 상에 일정 자원 요소 (resource element; RE) 간격을 갖는 복수의 RE들 상에 설정될 수 있다.
상기 개시에 있어, 상기 SINR은, 제1 계층 (L1)-SINR을 포함할 수 있다.
3. 본 개시에서 제안하는 단말 및 기지국의 구체적인 동작 예 (하나 이상의 IMR (예: CSI-IM, ZP CSI-RS 등)을 공유하는 복수의 CMR (예: NZP CSI-RS 등)을 위한 방법들)
이하 설명에 있어, QCL-D source라 함은 TCI-state 내 qcl-Type2에 의해 정의되는 (또는 지시되는) QCL 특성 (또는 QCL 정보)을 의미할 수 있다.
이하 설명에 있어, 별도의 설명이 없는 경우, 'CSI-RS 자원'이라 함은 'NZP CSI-RS resource for channel measurement'을 의미할 수 있다. 이때, 상기 NZP CSI-RS 자원은 트래킹 (예: TRS) 및/또는 빔 관리 및/또는 CSI 획득 등을 위해 활용될 수 있다. 또한, 'CSI-IM'은 'ZP CSI-RS 자원'으로 대체될 수도 있다.
또한, 본 개시에 있어, 단말에게 채널 측정 용도로 설정/할당되는 자원은 CMR (Channel Measurement Resource)라 명명하고, 단말에게 간섭 측정 용도로 설정/할당되는 자원은 IMR (Interference Measurement Resource)라 명명한다. 이때, IMR은 'CSI-IM' 용어로 대체될 수 있다. 또는, IMR은 실질적으로 특정 RS(reference signal)이 전송되지 않는 ZP (Zero Power) IMR 및 특정 RS가 전송되는 NZP (Non-Zero Power) IMR을 포함할 수 있다. 이때, 실시예에 따라, 'ZP IMR' 용어는 'ZP CSI-RS'로 확장/대체될 수 있다. 여기서 ZP CSI-RS의 역할은 간섭 측정 용도 뿐만 아니라 (또는 간섭 측정 용도가 아닌) PDSCH rate matching용도로 설정/지정하는 RS일 수 있다.
이하 설명에 있어, 'CSI-IM'이라 함은 'NZP CSI-RS for interference management'로 확장 적용될 수 있다. 다시 말해, 본 개시는 이하 설명에 있어 'CSI-IM' 가 'NZP CSI-RS for interference management'로 대체되는 구성을 모두 포함할 수 있다.
본 개시가 적용 가능한 Rel-15 NR 시스템에 있어, CSI (즉, CRI and/or RI and/or PMI and/or CQI)을 계산/획득하기 위해, 기지국은 단말에게 채널 측정을 위한 NZP CSI-RS 자원 (NZP CSI-RS resource for channel measurement)을 설정할 수 있다. 추가적으로, 상기 기지국은 상기 단말에게 간섭 측정을 위한 CSI-IM 자원 (또는 ZP CSI-RS 자원)을 동시에 설정할 수도 있다.
한편, Rel-15 MIMO (multiple input multiple output) 빔 관리 시스템에 있어, 빔 관련 보고 메트릭 (reporting metric)은 L1-RSRP만을 포함할 수 있다. 이 경우, 기지국은 단말에게 채널 측정을 위한 NZP CSI-RS 자원만을 설정할 수 있다. 다시 말해, 상기 경우, 기지국은 단말에게 추가적으로 간섭 측정을 위한 CSI-IM 자원 (또는 ZP CSI-RS 자원)을 설정하지 않거나, 상기 간섭 측정을 위한 CSI-IM 자원 (또는 ZP CSI-RS 자원)을 설정하는 것이 불가능할 수 있다.
다만, 새로운 시스템 (예: Rel-16 이후 NR 시스템)에서는 빈 관련 보고 메트릭으로써 L1-RSRP 외에 L1-SINR을 지원할 수 있다.
L1-SINR에 있어, 단말이 채널 측정을 위한 NZP CSI-RS 자원으로부터 추가적으로 간섭을 측정할 수 있는 바, 별도의 자원 (예: CSI-IM 자원 또는 ZP CSI-RS 자원 등)이 불필요할 수 있다. 그러나, 설정된 NZP CSI-RS 자원으로부터의 수신 파워가 간섭 신호의 수신 파워 및/또는 잡음 파워보다 작게 되면, 간섭 측정 성능이 보장되지 않는다는 문제점이 발생할 수 있다. 이러한 문제점은 단말 구현을 통해 보완할 수는 있으나 시간 축 상 다수의 샘플을 필요로 하는 단점이 있다. 다시 말해, 상기 단말 구현은 지연 이슈 (latency issue)를 야기할 수 있다.
위와 같은 사항들을 고려할 때, 기지국은 단말에게 간섭 측정을 위한 자원 (예: CSI-IM 자원 또는 ZP CSI-RS 자원 등)을 추가로 설정할 필요가 있다. 다만, 이는 추가적인 RS 오버헤드를 야기시킬 수 있다.
이에, 본 문서에서는, RS 오버헤드를 줄이는 방안으로써, 복수의 채널 측정을 위한 NZP CSI-RS 자원들이 하나의 간섭 측정 자원 (예: CSI-IM 또는 ZP CSI-RS 자원 등)을 공유하는 기법에 대해 상세히 설명한다.
본 문서에 있어, 단말은, 앞서 상술한 설정 방법들 (예: 1.9 절에 개시된 CSI 보고 관련 설정 사항들)에 기초하여 CSI 측정을 수행할 수 있다.
TS 38.214 표준 문서의 S.5.2.1.4.1(표 13 참조)을 참고하면, 채널 측정을 위한 NZP CSI-RS 자원 세트와 CSI-IM 자원 세트 각각이 복수의 자원들을 포함하는 경우, 서로 다른 세트 간 자원들은 resource-wise 순서대로 연결 관계(또는 매핑 관계)를 가질 수 있다. 일 예로, NZP CSI-RS resource set={CSI-RS resource #2, CSI-RS resource #3}, CSI-IM resource set={CSI-IM #5, CSI-IM #7}인 경우, CSI-RS resource #2/#3은 각각 CSI-IM#5/#7과 연결 관계(또는 매핑 관계)를 가질 수 있다. 이때, 단말은, 특정 CSI-RS 자원을 수신하기 위해 사용한 Rx 빔에 기초하여, 상기 특정 CSI-RS 자원과 연관된 CSI-IM을 수신할 수 있다.
Figure PCTKR2019014690-appb-img-000025
한편, 간섭 측정을 위한 NZP CSI-RS 자원 세트가 CSI-IM 자원 세트를 대신하여 사용되는 경우, 간섭 측정을 위한 NZP CSI-RS 자원과 채널 측정을 위한 NZP CSI-RS 자원의 연관 관계(또는 매핑 관계)는 CSI-IM과 채널 측정을 위한 NZP CSI-RS 자원의 연관 관계 (또는 매핑 관계)와 동일하게 설정된다고 가정할 수 있다. 다시 말해, NZP CSI-RS 자원 세트가 CSI-IM 자원 세트 각각에 포함된 자원들은 resource-wise 순서대로 서로 간 연결 관계(또는 매핑 관계)를 가질 수 있다.
이에, 본 문서에서는 단말의 L1-SINR 측정 시 (또는 reportQuantity가 L1-SINR로 설정 되는 경우), 상기와 같은 관계가 적용됨을 가정한다.
TS 38.214 표준 문서의 S.5.2.1.2 (표 14 참조) 을 참고하면, CSI-IM (또는 ZP CSI-RS 자원 또는 간섭 측정을 위한 NZP CSI-RS 자원 등)의 QCL-D는 연결 된 채널 측정을 위한 NZP CSI-RS 자원의 QCL-D 을 따라가도록 (또는 대응하도록) 설정될 수 있다. 일 예로, NZP CSI-RS resource set={CSI-RS resource #2, CSI-RS resource #3}, CSI-IM resource set={CSI-IM #5, CSI-IM #7}인 경우, CSI-IM#5의 QCL-D는 CSI-RS resource #2의 QCL-D을 따라가도록 (또는 대응하도록) 설정될 수 있다.
Figure PCTKR2019014690-appb-img-000026
도 12는 본 개시에 따른 단말과 기지국의 동작 예를 나타낸 도면이다.
도 12에 있어, 하나의 셀은 단말에게 6개의 (NZP) CSI-RS 자원 (for channel measurement)을 설정할 수 있다. 도 12에 있어, CSI-RS resource #1/#2은 CSI-RS resource #0보다 빔 폭이 작게 설정될 수 있다. 다시 말해, CSI-RS resource #1/#2은 CSI-RS resource #0에 포함되도록 설정될 수 있다. CSI-RS resource #10과 CSI-RS resource #11/#12 또한 이와 유사하게 설정될 수 있다 (즉, CSI-RS resource #11/#12은 CSI-RS resource #10보다 빔 폭이 작게 설정되거나, 또는 CSI-RS resource #10에 포함되도록 설정됨).
도 12에 적용 가능한 일 예로써, CSI-RS resource #0/#10로는 CSI-RS for beam management/tracking (TRS)이 적용될 수 있다. 또는, CSI-RS resource #1/#2의 QCL-D을 동일하게 설정하기 위하여, CSI-RS resource #0 대신 SSB(SS/PBCH Block)가 적용될 수도 있다.
기지국은 CSI-RS resource #1/#2/#11/#12을 하나의 자원 세트(resource set)으로 그룹화할 수 있고, 이에 기초하여 단말에게 L1-SINR 보고를 설정할 수 있다.
이와 함께, 상기 기지국은 상기 단말에게 간섭 파워 측정을 위한 별도의 CSI-IM을 추가로 할당할 수 있다. 이를 위해, 기존 표준 spec에서 정의된 CSI 계산을 위한 보고 설정 방법에 기반하여, 기지국은 단말에게 L1-SINR 계산을 위한 보고를 하기와 같이 설정할 수 있다.
(1) NZP CSI-RS resource set={CSI-RS resource #1, CSI-RS resource #2, CSI-RS resource #11, CSI-RS resource #12}
(2) CSI-IM resource set={CSI-IM #21, CSI-IM #22, CSI-IM #31, CSI-IM #32}
이때, CSI-RS resource #1/#2/#11/#12는 각각 CSI-IM #21/#22/#31/#32과 연관 관계를 가질 수 있다 (resource-wise association). 상기 관계에 기초하여, 단말은 다음과 같이 L1-SINR을 계산할 수 있다.
1) L1-SINR for CSI-RS resource #1 = RSRP measured from CSI-RS resource #1 / (Interference power measured from CSI-IM #21 + alpha)
2) L1-SINR for CSI-RS resource #2 = RSRP measured from CSI-RS resource #2 / (Interference power measured from CSI-IM #22 + alpha)
3) L1-SINR for CSI-RS resource #11 = RSRP measured from CSI-RS resource #11 / (Interference power measured from CSI-IM #31 + alpha)
4) L1-SINR for CSI-RS resource #12 = RSRP measured from CSI-RS resource #12 / (Interference power measured from CSI-IM #32 + alpha)
상기 1) 내지 4)에 있어, alpha는 잡음 파워를 의미한다. 상기 alpha 값은 0 또는 0이 아닌 값으로 상위 계층 시그널링 (예: RRC 시그널링, MAC-CE 등)을 통해 설정될 수 있다.
상기 예시에 있어, CSI-IM의 QCL-D는 연관 관계를 갖는 CSI-RS resource의 QCL-D을 따를 수 있다 (또는 대응할 수 있다). 만약 단말이 동시에 복수의 Rx 빔을 정의할 수 있다면 (또는 상기 단말이 복수의 Rx 빔을 제어할 수 있는 캐퍼빌리티가 있다면), 상기 단말은 하나의 CSI-IM resource을 이용하여 (설정된) 복수의 Rx 빔 수만큼의 서로 다른 간섭 파워를 측정할 수 있다.
반면, 단말이 오직 한 개의 Rx 빔만을 정의할 수 있다면 (또는 상기 단말의 캐퍼빌리티가 오직 한 개의 Rx 빔만을 제어할 수 있다면), QCL-D가 다른 CSI-RS resource들은 (하나의) CSI-IM을 공유할 수 없다.
도 13은 본 개시의 일 예에 따른 CSI-RS 자원 및 CSI-IM 자원들의 매핑 패턴을 간단히 나타낸 도면이다.
도 13에 있어, CSI-RS resource #0/#1/#2의 QCL-D는 서로 상이하게 설정된다고 가정한다. 이 경우, 도 13에 도시된 바와 같이, 기지국은 단말에게 각 CSI-RS resource마다 이에 대응하는 CSI-IM을 설정할 수 있다.
도 13에서는 CSI-IM 패턴이 1*1 패턴인 경우를 나타내었으나, 다른 예시에서 CSI-IM 패턴은 2*1, 3*1, 4*1, 2*2 패턴 등으로 변형될 수도 있다.
본 문서에 있어, 기지국은 특정 CSI-RS에 대한 QCL-D source로써 다른 CSI-RS을 설정할 수 있다. 이를 고려할 때, 기지국이 CSI-RS resource #1/#2의 QCL-D source로 CSI-RS resource #0을 설정하는 경우 (결과적으로 CSI-RS resource #0/#1/#2의 QCL-D는 모두 동일해짐), 상기 두 CSI-RS resource들은 CSI-IM #0을 재사용할 수 있다. 결과적으로, 기지국은 단말에게 CSI-IM #21 및 CSI-IM #22을 별도로 설정해주지 않아도 되는 바, RS 오버헤드를 줄일 수 있다.
이를 위해, NZP CSI-RS resource set for channel measurement 및 CSI-IM resource set for interference measurement는 각각 하기와 같이 설정 될 수 있다.
<1> NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #2, CSI-RS resource #11, CSI-RS resource #12}
- CSI-RS resource #1/#2 have the same QCL-D source as CSI-RS resource #0
- CSI-RS resource #11/#12 have the same QCL-D source as CSI-RS resource #10
<2> CSI-IM resource set = {CSI-IM #20, CSI-IM #20, CSI-IM #30, CSI-IM #30}
본 문서에 있어, 기지국이 단말에게 설정한 CSI-RS resource #1/#2의 QCL-D 정보가 서로 다른 경우, 단말은 상기와 같은 설정을 기대하지 않을 수 있다. 왜냐하면, 이러한 CSI-IM 설정은 잘못된 것이기 때문이다.
위와 같은 사항들에 기반하여, 본 기재에 따른 기지국 및 단말은 다음과 같이 동작할 수 있다. 이때, 설명의 편의 상 각 동작 방법들을 구분하여 기술하나, (물리적으로 불가능한 경우를 제외하고) 기지국 및 단말은 아래의 여러 동작 방법들을 결합하여 수행할 수도 있다.
3.1. 제1 동작 방법
기지국은 단말에게 서로 다른 복수의 NZP CSI-RS 자원 (예: NZP CSI-RS resource for channel measurement)들이 동일한 QCL-D를 갖도록 설정할 수 있다. 이 경우, 단말은 상기 NZP CSI-RS 자원들에 대응하여 공유되는 하나의 CSI-IM이 설정됨을 기대할 수 있다 (또는, 상기 단말은 상기 NZP CSI-RS 자원들에 대응하여 동일한 CSI-IM ID가 설정됨을 기대할 수 있다).
서로 다른 NZP CSI-RS 자원 (예: NZP CSI-RS resource for channel measurement)들이 동일한 QCL-D을 갖는 경우, 기지국은 상기 NZP CSI-RS 자원들이 하나의 CSI-IM을 공유하도록 단말에게 설정할 수 있다 (또는, 상기 기지국은 상기 NZP CSI-RS 자원들에 대해 동일한 CSI-IM ID을 설정할 수 있다).
도 12의 예시를 참고하면, 도 12와 같이 CSI-RS resource #0/#10은 광역 빔 (wide beam)으로 설정되고, 이들 각각은 fine beam인 CSI-RS resource #1/#2 및 CSI-RS resource #11/#12을 포함하도록 설정될 수 있다. 이 경우, 기지국은 하기와 같은 설정을 단말에게 명시적/암시적으로 설정할 수 있다.
(1) NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #2, CSI-RS resource #11, CSI-RS resource #12}
- CSI-RS resource #1/#2 have the same QCL-D source as CSI-RS resource #0
- CSI-RS resource #11/#12 have the same QCL-D source as CSI-RS resource #10
(2) CSI-IM resource set = {CSI-IM #20, CSI-IM #20, CSI-IM #30, CSI-IM #30}
앞서 상술한 예시와 달리, 기지국은 하기와 같은 설정을 단말에게 명시적/암시적으로 설정할 수도 있다. 해당 예시에 따르면, CSI-IM resource 의 개수는 NZP CSI-RS resource 보다 작게 설정될 수 있다. 이에, CSI-RS resource #1, #2의 QCL-D가 동일한 경우, 단말은 상기 두 CSI-RS 자원들이 하나의 CSI-IM (예: CSI-IM #20)을 공유하는 것으로 기대할 수 있다. 마찬가지로, CSI-RS resource #3, #4의 QCL-D가 동일한 경우, 단말은 상기 두 CSI-RS 자원들이 하나의 CSI-IM (예: CSI-IM #30)을 공유하는 것으로 기대할 수 있다.
1) NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #2, CSI-RS resource #11, CSI-RS resource #12}
- CSI-RS resource #1/#2 have the same QCL-D source as CSI-RS resource #0
- CSI-RS resource #11/#12 have the same QCL-D source as CSI-RS resource #10
2) CSI-IM resource set = {CSI-IM #20, CSI-IM #30}
다른 예로, 기지국은 하기와 같은 설정을 단말에게 명시적/암시적으로 설정할 수 있다. 해당 예시에 따르면, 단말은 CSI-RS resource #1/#2/#3이 하나의 CSI-IM (예: CSI-IM #20)을 공유하는 것으로 기대하고, CSI-RS resource #11이 다른 CSI-IM (예: CSI-IM #30)와 연관되는 것을 기대할 수 있다.
<1> NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #2, CSI-RS resource #3, CSI-RS resource #11}
- CSI-RS resource #1/#2/#3 have the same QCL-D source as CSI-RS resource #0
- CSI-RS resource #11 have the same QCL-D source as CSI-RS resource #10
<2> CSI-IM resource set = {CSI-IM #20, CSI-IM #30}
또 다른 예로, 기지국은 하기와 같은 설정을 단말에게 명시적/암시적으로 설정할 수 있다. 해당 예시에 따르면, QCL 소스로써의 CSI-RS resource #0 및 CSI-RS resource #10 각각은 SSB#0 및 SSB#1으로 대체될 수 있다. 이때, SSB#0/#1은 CSI-RS resource #0/#1과 유사하게 광역 빔 (wide beam)으로 정의될 수 있다.
한편, 해당 예시에 따르면, 빔 관리를 위한 CSI-RS 자원 (CSI-RS resource for BM)의 QCL-D source로써 TRS, CSI-RS resource for BM, SSB (Synch Signal/PBCH Block)이 적용될 수도 있다. 해당 예시에 있어, SSB#0/#1는 기존에 정의된 신호이며 항상 전송되는 신호 (always on signal)의 특성을 가질 수 있다. 따라서, 상기 SSB가 CSI-RS resource #0/#1을 대체하는 경우, RS 오버헤드가 감소할 수 있다.
1> NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #2, CSI-RS resource #11, CSI-RS resource #12}
- CSI-RS resource #1/#2 have the same QCL-D source as SSB #0
- CSI-RS resource #11/#12 have the same QCL-D source as SSB #1
2> CSI-IM resource set = {CSI-IM #20, CSI-IM #20, CSI-IM #30, CSI-IM #30}
앞서 상술한 예시들에 있어, CSI-RS 자원과 CSI-IM 각각은 암시적으로 resource-wise 순서대로 연관관계를 가질 수 있다. 이때, 상기 암시적 방법 이외에, 기지국은 명시적으로 복수의 NZP CSI-RS 자원들 및 CSI-IM간의 관계를 명시적으로 설정/지시할 수도 있다. 이를 위한 하나의 방안으로써, 기지국은 대응하는 하나 이상의 NZP CSI-RS 자원(들)과 대응하는 CSI-IM을 하나의 세트로 설정/정의/지시할 수도 있다. 일 예로, 앞서 상술한 예시 (CSI-RS resource #1/#2는 CSI-IM#20을 공유하고, CSI-RS resource #3/#4는 CSI-IM#30을 공유하는 예시)에 있어, 기지국은 다음과 같은 사항을 단말에게 설정할 수도 있다.
- {CSI-RS resource #1, CSI-RS resource #2, CSI-IM #20}, {CSI-RS resource #3, CSI-RS resource #4, CSI-IM #30}
이처럼, 단말에게 동일한 QCL-D을 갖는 복수의 NZP CSI-RS 자원들 (예: NZP CSI-RS resources for channel measurement)이 설정되고, 상기 NZP CSI-RS 자원들은 동일한 CSI-IM에 연결/매핑될 수 있다 (또는, 동일한 CSI-IM ID를 가질 수 있다). 이 경우, 단말은 상기 CSI-IM으로부터 하나의 간섭 파워를 측정하고, 각 NZP CSI-RS 자원마다 RSRP (Reference Signal Received Power) 을 측정할 수 있다. 그리고, 상기 RSRP와 상기 간섭 파워를 이용하여, 각 CSI-RS 자원의 L1-SINR을 계산할 수 있다.
3.2. 제2 동작 방법
복수의 CSI-RS 자원들 (예: NZP CSI-RS resources for channel measurement)이 서로 다른 QCL-D 소소를 갖거나 서로 다른 QCL-D 에 대응하는 경우, 단말은 상기 복수의 CSI-RS 자원들에 대해 동일한 CSI-IM이 설정되는 것을 기대하지 않을 수 있다 (또는, 상기 복수의 CSI-RS자원들에 대해 동일한 CSI-IM ID가 설정되는 것을 기대하지 않을 수 있다).
이에 대응하여, 복수의 CSI-RS 자원들 (예: NZP CSI-RS resources for channel measurement)이 서로 다른 QCL-D를 갖거나 서로 다른 QCL-D 에 대응하는 경우, 기지국은 상기 복수의 CSI-RS 자원들에 대해 동일한 CSI-IM을 설정하지 않을 수 있다.
보다 구체적은 일 예로, 단말은 하기와 같은 설정이 설정되는 것을 기대하지 않을 수 있다.
(1) NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #11}
- CSI-RS resource #1 has the QCL-D source as CSI-RS resource #0
- CSI-RS resource #11 has the QCL-D source as CSI-RS resource #10
(2) CSI-IM resource set = {CSI-IM #20, CSI-IM #20}
3.3. 제3 동작 방법
QCL-D가 적용 가능하지 않는 단말에 있어 (또는 'QCL-TypeD'가 적용가능하지 않은 경우), 단말은 서로 다른 복수의 CSI-RS 자원들 (예: NZP CSI-RS resources for channel measurement)이 하나의 CSI-IM을 공유하는 것을 기대 할 수 있다. (또는 서로 다른 복수의 CSI-RS 자원들 (예: NZP CSI-RS resources for channel measurement)에 대해 동일한 CSI-IM ID가 설정되는 것을 기대할 수 있다.
이에 대응하여, QCL-D가 적용 가능하지 않는 단말에 대해, 기지국은 복수의 NZP CSI-RS 자원들이 하나의 CSI-IM을 공유하도록 설정할 수 있다.
구체적으로, QCL-D가 적용 가능하지 않는 경우, CSI-IM 에 대해 QCL-D 또한 정의되지 않을 수 있다. 따라서 단말의 수신 빔 (UE Rx 빔)에 대한 제약이 없는 바, 단말은 (i) 하나의 CSI-IM으로부터 간섭 파워를 측정하고, (ii) 상기 CSI-IM과 연결 된 각각의 NZP CSI-RS 자원들로부터 측정된 RSRP와 상기 간섭 파워를 이용하여 각 CSI-RS 자원 별 서로 다른 L1-SINR을 계산할 수 있다.
3.4. 제4 동작 방법
단말은, QCL-D가 서로 다른 CSI-RS 자원 (예: NZP CSI-RS for channel measurement) 및 CSI-IM이 동일한 OFDM 심볼 상에서 FDM되는 것을 기대하지 않을 수 있다. 이때, 특정 CSI-IM의 QCL-D는 상기 CSI-IM과 연결 관계를 갖는 CSI-RS 자원 (예: NZP CSI-RS for channel measurement)의 QCL-D을 따를 수 있다 (또는 대응할 수 있다).
이에 대응하여, 기지국은 QCL-D가 동일한 CSI-RS 자원 (예: NZP CSI-RS for channel measurement) 및 CSI-IM을 동일한 OFDM 심볼 상에서 FDM되도록 설정할 수 있다. 다시 말해, QCL-D가 동일한 CSI-RS 자원 (예: NZP CSI-RS for channel measurement) 및 CSI-IM을 위해, 기지국은 반드시 서로 다른 2 개의 OFDM 심볼(One is for NZP CSI-RS for channel measurement, and another is for CSI-IM)을 단말에게 설정하지 않아도 된다. 이에 따라, 단말은 L1-SINR을 계산하기 위한 지연(latency)을 줄일 수 있다. 또한, 사용 가능한 OFDM 심볼의 개수가 제한되는 경우, 기지국 및 단말은 상기 방법에 기초하여 보다 많은 빔들을 TDM 시킬 수 있다.
도 14는 본 개시의 다른 예에 따른 CSI-RS 자원 및 CSI-IM 자원들의 매핑 패턴을 간단히 나타낸 도면이다.
도 14에 있어, 기지국이 단말에게 하기와 같이 NZP CSI-RS resource set 및 CSI-IM resource set을 설정하였다고 가정한다.
(1) NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #11}
- CSI-RS resource #1 has the QCL-D source as CSI-RS resource #0
- CSI-RS resource #11 has the QCL-D source as CSI-RS resource #10
(2) CSI-IM resource set = {CSI-IM #21, CSI-IM #31}
이때, CSI-IM #31은 CSI-RS resource #11과 연결 관계를 갖는 바, 상기 CSI-IM #31은 CSI-RS resource #11 또는 CSI-RS resource #10 (QCL-D linkage을 통해 찾은 QCL-D source)의 QCL-D을 따를 수 있다 (또는 대응할 수 있다).
또한, 도 14에 있어, CSI-RS resource #1 및 CSI-IM #31의 QCL-D가 서로 다른 바, 기지국은 하나의 OFDM 심볼 상의 신호를 수신하기 위하여 단말에게 두 개의 서로 다른 UE Rx 빔을 설정한 것으로 해석될 수 있다.
이때, 만약 단말이 하나의 Rx 빔만을 운용 가능하다고 가정하면, (예: 단말에 대해 하나의 Rx 빔 만이 정의 가능하거나, 또는 단말의 캐퍼빌리티 상 하나의 Rx 빔만을 적용 가능한 경우 등) 이러한 설정은 잘못된 설정일 수 있다. 동일한 이유로, CSI-RS resource #11 및 CSI-IM #21 역시 잘못된 설정일 수 있다.
결과적으로, 상기와 같은 문제점이 발생하지 않도록, 단말은, QCL-D가 서로 다른 CSI-RS 자원 (예: NZP CSI-RS for channel measurement) 및 CSI-IM은 동일한 OFDM 심볼 상에서 FDM되는 설정을 기대하지 않을 수 있다.
3.5. 제5 동작 방법
앞서 상술한 제1 내지 제4 동작 방법들에 있어, '동일한 QCL-D를 갖는다'라고 함은, (i) QCL-D 소스가 동일함, (ii) QCL 링키지 (linkage)에 기초하여 결정되는 QCL-D 소스가 동일함, (iii) QCL-D 소스 및/또는 QCL 링키지 (linkage)에 기초하여 결정되는 QCL-D 소스가 동일함 중 하나를 의미할 수 있다.
이에 따라, NZP CSI-RS 자원을 위해 설정된 QCL-D 소스에 기초하여, CSI-IM 공유 여부가 결정될 수 있다. 일 예로, 단말은 NZP CSI-RS 자원을 위해 설정된 QCL-D 소스만을 고려하여 (예: QCL linkage을 통해 획득한 QCL-D source는 이용하지 않음 등), CSI-IM 공유 여부를 결정할 수 있다. 다른 예로, 단말은 QCL linkage을 통해 획득한 QCL-D 소스에 기초하여, CSI-IM 공유 여부를 결정할 수 있다.
보다 구체적으로, 기지국이 단말에게 하기와 같은 CSI-RS 자원 (예: NZP CSI-RS resource for channel measurement) 및 CSI-IM을 설정하였다고 가정한다.
(1) CSI-RS resource #0 has the QCL-D source as SSB #0
(2) NZP CSI-RS resource set = {CSI-RS resource #1, CSI-RS resource #2}
- CSI-RS resource #1 has the QCL-D source as CSI-RS resource #0
- CSI-RS resource #2 has the QCL-D source as SSB #0
(3) CSI-IM resource set = {CSI-IM #20, CSI-IM #20}
위 설정에 있어, CSI-RS resource #1 및 #2의 QCL-D가 서로 다름을 알 수 있다. 이에, 제5-1 동작 방법에 따르면, 상기 두 CSI-RS 자원들은 동일한 CSI-IM을 공유할 수 없을 수 있다 (즉, NZP CSI-RS 자원을 위해 설정된 QCL-D 소스만을 고려하는 경우).
또는, 위 설정에 있어, CSI-RS resource #1의 QCL-D source인 CSI-RS resource #0은 SSB#0을 QCL-D source로 가짐을 알 수 있다. 이에, 제5-2 동작 방법에 따라 QCL linkage을 통해 획득한 QCL-D source 에 기초하여, 상기 CSI-RS resource #1/#2은 동일한 QCL-D을 갖는 것으로 해석될 수 있다. 따라서, 제5-2 동작 방법에 따르면, 상기 두 CSI-RS 자원들은 동일한 CSI-IM을 공유할 수도 있다.
제5-1 동작 방법 및 제5-2 동작 방법은 다음과 같은 장/단점을 가질 수 있다.
3.5.1. 제5-1 동작 방법
- 장점: CSI-RS resource #0이 SSB #0보다 좁은 (narrow) 빔에 대응하고, 단말이 상기 CSI-RS resource #0을 이용하여 (SSB #0을 이용하는 경우보다) 좋은 UE Rx 빔을 검출하였다고 가정한다. 이 경우, 단말은, CSI-RS resource #1 수신 시, (CSI-RS resource #0을 이용하여 찾은) 더 좋은 UE Rx 빔을 이용할 수 있다. 따라서, 단말은 높은 품질의 L1-SINR을 기지국으로 보고할 수 있다. 이에 따라, 결과적으로 쓰루풋 향상이 예상될 수 있다.
- 단점: 위와 같은 설정에서는 CSI-IM 공유 불가
3.5.2. 제5-2 동작 방법
- 장점: 제5-1 동작 방법과 달리, QCL linkage을 통해 찾은 QCL-D source가 같다면 해당 CSI-RS 자원들은 동일한 CSI-IM을 공유할 수 있다. 이에 따라, 추가적인 RS 오버헤드 감소를 예상할 수 있다.
- 단점: CSI-RS resource #0이 SSB #0보다 좁은 (narrow) 빔에 대응하고, 단말이 상기 CSI-RS resource #0을 이용하여 (SSB #0을 이용하는 경우보다) 좋은 UE Rx 빔을 검출하였다고 가정한다. 그러나, 제5-2 동작 방법에 따르면, 단말은, CSI-IM #20 수신 시 (SSB#0을 이용하여 찾은) UE Rx 빔을 사용해야 한다. 마찬가지로, 상기 단말은, CSI-RS resource #1 수신 시 CSI-RS resource #0으로 찾은 UE Rx 빔이 아닌 SSB #0을 이용하여 찾은 UE Rx 빔을 이용해야 한다. 이에 따라, 제5-1 동작 방법 대비 단말이 보고하는 L1-SINR의 품질이 낮아질 수 있다. 이에 따라, 결과적으로 쓰루풋 감소가 예상될 수 있다. 또는, 단말이 CSI-RS resource #1 수신 시에만 (CSI-RS resource #0으로 찾은) UE Rx 빔을 이용하는 경우, L1-SINR의 품질이 향상될 수 있다. 다만, 상기 UE Rx 빔은 단말이 CSI-IM을 수신한 UE Rx 빔과 다른 바 (CSI-IM의 QCL-D는 연결 관계를 갖는 NZP CSI-RS resource을 따라간다는 원칙과 맞지 않음), 계산한 L1-SINR과 실제 L1-SINR 값에 불일치(mismatch)가 발생할 수 있다.
3.6. 제6 동작 방법
앞서 상술한 제1 내지 제5 동작 방법들은, 단말이 기지국에게 UE 캐퍼빌리티로써 UE가 동시에 정의 가능한 (또는 운용 가능한) UE Rx 빔의 개수가 1임을 보고한 경우에만 유효하게 적용될 수도 있다.
이에, 단말이 기지국에게 UE 캐퍼빌리티로써 UE가 동시에 정의 가능한 (또는 운용 가능한) UE Rx 빔의 개수가 1임을 보고한 경우에만, 상기 단말은 앞서 상술한 제1 내지 제5 동작 방법이 적용됨을 기대할 수 있다.
보다 구체적으로, 단말이 동시에 사용 가능한 UE Rx 빔이 두 개 이상인 경우, 서로 다른 QCL-D을 갖는 두 개의 NZP CSI-RS 자원들은 하나의 CSI-IM을 공유할 수 있다. 이는 앞서 상술한 제1 내지 제5 동작 방법에서 가정한 사항과 상이하다.
한편, 단말은 UE 캐퍼빌리티로써 (i) 상기 단말이 동시에 설정 가능한 UE Rx 빔의 개수 및/또는 (ii) 복수의 UE Rx 빔 설정 가능 여부를 기지국에게 보고할 수 있다. 이 경우, 기지국은 상기 UE 캐퍼빌리티에 기초하여 상기 단말이 복수의 UE Rx 빔을 설정하였는지 여부를 알 수 있다. 따라서, 단말이 복수의 UE Rx 빔을 설정하지 않음을 (또는 설정하는 것이 불가능함을) 기지국이 알게 된 경우, 상기 기지국은 앞서 상술한 동작 방법들에 기초하여 복수의 CSI-RS 자원들 (예: NZP CSI-RS resource for channel measurement)의 CSI-IM 공유 여부 및/또는 복수의 CSI-RS 자원들 (예: NZP CSI-RS resource for channel measurement) 및 CSI-IM이 동일한 OFDM 심볼 상에서 FDM하도록 설정 가능한지 여부를 결정할 수 있다.
앞서 상술한 예시들에 따르면, 다음과 같은 효과를 예상할 수 있다.
제1 내지 제2 동작 방법에 따르면, 기지국은 단말에게 QCL-D가 동일한 CSI-RS 자원들(예: NZP CSI-RS for channel measurement)이 하나의 CSI-IM을 공유하도록 설정할 수 있다. 이에 따라, RS 오버헤드가 감소될 수 있다.
제3 동작 방법에 따르면, QCL-D가 정의 되지 않는 경우, 기지국은 단말에게 CSI-RS자원 (예: NZP CSI-RS for channel measurement)이 하나의 CSI-IM을 공유하도록 설정할 수 있다. 이에 따라, RS 오버헤드가 감소될 수 있다.
제4 동작 방법에 따르면, 기지국은 QCL-D가 동일한 CSI-RS 자원 (예: NZP CSI-RS for channel measurement) 및 CSI-IM들이 동일한 OFDM 심볼상에서 FDM되도록 설정할 수 있다. 이에 따라, 단말의 지연(latency)가 감소될 수 있다.
제5 동작 방법에 따르면, CSI-IM 공유 여부를 결정함에 있어, (i) CSI-RS 자원 (예: NZP CSI-RS for channel measurement)을 위해 설정된 QCL-D source 및/또는 (ii) QCL linkage에 기초하여 검출된 QCL-D source의 동일 여부가 고려될 수 있다. 이에 따라, RS 오버헤드가 감소될 수 있다.
도 15는 본 개시에 적용 가능한 따른 기지국과 단말의 동작 예를 간단히 나타낸 도면이다.
(1) 기지국은 단말로, 채널 측정을 위한 NZP CSI-RS 설정 (및, CSI-IM resource 설정, QCL 설정 등)을 전송할 수 있다.
(2) 이어, 기지국은 단말로, 채널 측정을 위한 NZP CSI-RS 자원 및 CSI-IM을 전송할 수 있다. 보다 구체적으로, 상기 기지국은 상기 단말로, 상기 NZP CSI-RS 자원을 통해 참조 신호 (예: CSI-RS)를 전송하고, 상기 CSI-IM 자원을 통해 아무 신호도 전송하지 않거나 특정 신호를 전송할 수 있다.
이에 대응하여, 단말은 QCL-D (또는 spatial Rx parameter)가 동일한 NZP CSI-RS 자원 동일한 CSI-IM 자원과 연관(associated with) 될 수 있다는 가정 하에 (또는, 이러한 가정 하에 각 NZP CSI-RS resource 별 대응하여 결정되는 CSI-IM 자원에 기초하여) 각 NZP CSI-RS 자원 별 L1-SINR을 산출할 수 있다. 구체적으로, 특정 NZP CSI-RS 자원에 대한 L1-SINR은 (i) 대응하는 CSI-IM으로부터 측정된 간섭 파워 및 (ii) 상기 특정 NZP CSI-RS 자원으로부터 측정된 RSRP에 기초하여 산출될 수 있다.
(3) 단말은 기지국으로, (i) 산출된 각 NZP CSI-RS 자원 별 L1-SINR을 보고하거나, (ii) 산출된 L1-SINR 들 중 가장 좋은 NZP CSI-RS 자원의 ID 및 상기 자원과 관련된 L1-SINR을 전송할 수 있다. 이를 위해, 기지국은 단말이 (i) 또는 (ii)를 보고하도록 별도로 설정할 수 있다.
도 16은 본 개시의 일 예에 따른 단말 및 기지국의 동작 예를 간단히 나타낸 도면이고, 도 17은 본 개시의 일 예에 따른 단말의 동작 예를 간단히 나타낸 흐름도이고, 도 18은 본 개시의 일 예에 따른 기지국의 동작 예를 간단히 나타낸 흐름도이다.
본 개시에 적용 가능한 일 예시에 있어, 단말은 기지국으로부터 SINR (signal to interference noise ratio) 보고를 위한 설정 정보를 수신할 수 있다 (S1610, S1710). 이때, 상기 SINR 보고를 위한 설정 정보는, (i) 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 (ii) 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 포함할 수 있다.
이에 대응하여, 기지국은 상기 단말로 상기 SINR 보고를 위한 설정 정보를 전송할 수 있다 (S1610, S1810). 일 예로, 상기 기지국은 상기 SINR 보고를 위한 설정 정보를, (i) 물리 계층 시그널링 (예: DCI), (ii) 상위 계층 시그널링 (예: RRC, MAC-CE 등), (iii) 물리 계층 시그널링 및 상위 계층 시그널링의 조합에 기초하여, 상기 단말로 전송할 수 있다.
본 개시에 있어, 하나의 CMR 설정은 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 자원 또는 물리 방송 채널 (synchronization signal / physical broadcast channel; SS/PBCH) 블록 자원을 포함할 수 있다. 또한, 하나의 IMR 설정은 채널 상태 정보 간섭 측정 (channel state information - interference measurement; CSI-IM) 자원 또는 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 자원을 포함할 수 있다.
단말은, 상기 SINR 보고를 위한 설정 정보에 기초하여, SINR을 산출할 수 있다 (S1620, S1720). 보다 구체적으로, 상기 단말은, 상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유한다는 가정에 기초하여, 상기 복수의 CMR 설정들과 관련된 SINR을 산출할 수 있다.
일 예로, 상기 복수의 CMR 설정들 중, 관련된 공간적 파라미터 관점에서의 QCL 소스가 동일한 적어도 2 개의 CMR 설정들에 기초하여, 상기 하나 이상의 IMR 설정의 개수는 상기 복수의 CMR 설정들의 개수보다 작게 설정될 수 있다 (앞서 상술한 제1 동작 방법 참조).
다른 예로, 상기 하나 이상의 IMR 설정의 개수는 상기 복수의 CMR 설정들의 개수와 동일하게 설정될 수 있다. 이때, 상기 복수의 CMR 설정들과 상기 하나 이상의 IMR 설정은, 자원 단위 (resource wise)로 관련될 수 있다.
본 개시에 있어, 상기 관련된 공간적 파라미터 관점에서의 QCL 소스는, 공간적 수신 파라미터 (spatial reception parameter; spatial Rx parameter)에 기초하여 결정될 수 있다.
본 개시에 있어, 상기 관련된 공간적 파라미터 관점에서의 QCL 소스는, (i) 채널 상태 정보 참조 신호 (channel state information - reference signal; CSI-RS) 자원 정보 또는 (ii) 동기 신호 / 물리 방송 채널 (synchronization signal / physical broadcast channel; SS/PBCH) 블록 정보 또는 (iii) 트래킹 참조 신호 (tracking reference signal; TRS) 정보를 포함할 수 있다.
본 개시에 있어, 상기 관련된 공간적 파라미터 관점에서의 QCL 소스는, 다음 중 적어도 하나 이상을 포함할 수 있다 (앞서 상술한 제5 동작 방법 참조).
- (i) 하나의 CMR 설정을 위해 설정된 제1 QCL 소스
- (ii) 상기 하나의 CMR 설정을 위해 설정된 상기 제1 QCL 소스와 QCL 링키지 (linkage)를 갖는 제2 QCL 소스
본 개시에 있어, 상기 복수의 CMR 설정들 중 하나의 CMR 설정과 관련된 SINR은, (i) 상기 하나의 CMR 설정에 기초하여 측정된 참조 신호 수신 파워 (reference signal received power; RSRP), 및 (ii) 상기 하나의 CMR 설정과 관련된 IMR 설정에 기초하여 측정된 간섭 파워에 기초하여 산출될 수 있다.
또한, 본 개시에 있어, (i) 상기 복수의 CMR 설정 중 하나의 CMR 설정 및 (ii) 상기 하나 이상의 IMR 설정 중 하나의 IMR 설정이 시간 자원 상 중첩되어 설정되었다는 결정에 기초하여, 상기 단말은 상기 하나의 CMR 설정 및 상기 하나의 IMR 설정은 동일한 공간적 파라미터 관점에서의 QCL 소스를 갖는다고 가정할 수 있다.
이와 같은 과정을 통해 산출된 SINR에 기초하여, 단말은 상기 복수의 CMR 설정들과 관련된 SINR을 상기 기지국으로 보고할 수 있다 (S1630, S1730). 이에 대응하여, 상기 기지국은 상기 단말로부터 SINR 보고를 수신할 수 있다 (S1630, S1820).
본 개시에 있어, 상기 SINR은, 물리계층 정보로서 정의된 L1-SINR을 포함할 수 있다.
본 개시에 있어, 상기 단말은, (i) 동시에 정의 가능한 수신 빔의 개수가 1임을 알리는 단말 캐퍼빌리티 (UE capability) 정보를 상기 기지국으로 보고한 제1 단말, 또는, (ii) 상기 기지국에 의해 동시에 정의 가능한 수신 빔의 개수가 1로 설정된 제2 단말, 중 적어도 하나에 대응할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 본 개시가 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 19는 본 개시에 적용되는 통신 시스템(1)을 예시한다.
도 19를 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
5. 본 개시가 적용되는 무선 기기 예
도 20은 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 20을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 19의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
6. 본 개시가 적용되는 무선 기기 활용 예
도 21은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 19 참조).
도 21을 참조하면, 무선 기기(100, 200)는 도 20의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 20의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 20의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 19, 100a), 차량(도 19, 100b-1, 100b-2), XR 기기(도 19, 100c), 휴대 기기(도 19, 100d), 가전(도 19, 100e), IoT 기기(도 19, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 19, 400), 기지국(도 19, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 21에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 21의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
6.1. 본 개시가 적용되는 휴대기기 예
도 22는 본 개시에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 22를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 21의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
6.2. 본 개시가 적용되는 차량 또는 자율 주행 차량 예
도 23은 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 23을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 22의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.
추가적으로, 본 개시의 실시예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 동작 방법에 있어서,
    기지국으로부터 SINR (signal to interference noise ratio) 보고를 위한 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 수신함;
    상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유한다는 가정에 기초하여, 상기 복수의 CMR 설정들과 관련된 SINR을 산출함; 및
    상기 복수의 CMR 설정들과 관련된 SINR을 상기 기지국으로 보고하는 것을 포함하는, 단말의 동작 방법.
  2. 제 1항에 있어서,
    상기 CMR 설정들 및 상기 하나 이상의 간섭 측정 자원 설정은 상위 계층 시그널링을 통해 수신되는, 단말의 동작 방법.
  3. 제 1항에 있어서,
    하나의 CMR 설정은 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 자원, 또는 동기 신호 / 물리 방송 채널 (synchronization signal / physical broadcast channel; SS/PBCH) 블록 자원을 포함하고,
    하나의 IMR 설정은 채널 상태 정보 간섭 측정 (channel state information - interference measurement; CSI-IM) 자원 또는 논-제로 파워 채널 상태 정보 참조 신호 (non-zero power channel state information - reference signal; NZP CSI-RS) 자원을 포함하는, 단말의 동작 방법.
  4. 제 1항에 있어서,
    상기 복수의 CMR 설정들 중, 관련된 공간적 파라미터 관점에서의 QCL 소스가 동일한 적어도 2 개의 CMR 설정들에 기초하여, 상기 하나 이상의 IMR 설정의 개수는 상기 복수의 CMR 설정들의 개수보다 작게 설정되는, 단말의 동작 방법.
  5. 제 1항에 있어서,
    상기 복수의 CMR 설정들과 상기 하나 이상의 IMR 설정은, 자원 단위 (resource wise)로 관련되는, 단말의 동작 방법.
  6. 제 1항에 있어서,
    상기 관련된 공간적 파라미터 관점에서의 QCL 소스는,
    공간적 수신 파라미터 (spatial reception parameter; spatial Rx parameter)에 기초하여 결정되는, 단말의 동작 방법.
  7. 제 1항에 있어서,
    상기 관련된 공간적 파라미터 관점에서의 QCL 소스는,
    채널 상태 정보 참조 신호 (channel state information - reference signal; CSI-RS) 자원 정보 또는 동기 신호 / 물리 방송 채널 (synchronization signal / physical broadcast channel; SS/PBCH) 블록 정보 또는 트래킹 참조 신호 (tracking reference signal; TRS) 정보를 포함하는, 단말의 동작 방법.
  8. 제 1항에 있어서,
    상기 관련된 공간적 파라미터 관점에서의 QCL 소스는,
    (i) 하나의 CMR 설정을 위해 설정된 제1 QCL 소스, 또는,
    (ii) 상기 하나의 CMR 설정을 위해 설정된 상기 제1 QCL 소스와 QCL 링키지 (linkage)를 갖는 제2 QCL 소스, 중 하나 이상을 포함하는, 단말의 동작 방법.
  9. 제 1항에 있어서,
    상기 복수의 CMR 설정들 중 하나의 CMR 설정과 관련된 SINR은,
    (i) 상기 하나의 CMR 설정에 기초하여 측정된 참조 신호 수신 파워 (reference signal received power; RSRP), 및
    (ii) 상기 하나의 CMR 설정과 관련된 IMR 설정에 기초하여 측정된 간섭 파워에 기초하여 산출되는, 단말의 동작 방법.
  10. 제 1항에 있어서,
    (i) 상기 복수의 CMR 설정 중 하나의 CMR 설정 및 (ii) 상기 하나 이상의 IMR 설정 중 하나의 IMR 설정이 시간 자원 상 중첩되어 설정되었다는 결정에 기초하여, 상기 단말은 상기 하나의 CMR 설정 및 상기 하나의 IMR 설정은 동일한 공간적 파라미터 관점에서의 QCL 소스를 갖는다고 가정하는, 단말의 동작 방법
  11. 제 1항에 있어서,
    상기 SINR은, 물리계층 정보로서 정의된 L1-SINR을 포함하는, 단말의 동작 방법.
  12. 제 1항에 있어서,
    상기 단말은,
    (i) 동시에 정의 가능한 수신 빔의 개수가 1임을 알리는 단말 캐퍼빌리티 (UE capability) 정보를 상기 기지국으로 보고한 제1 단말, 또는,
    (ii) 상기 기지국에 의해 동시에 정의 가능한 수신 빔의 개수가 1로 설정된 제2 단말, 중 적어도 하나인, 단말의 동작 방법.
  13. 무선 통신 시스템에서 동작하는 단말에 있어서,
    적어도 하나의 송신기;
    적어도 하나의 수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 특정 동작은:
    기지국으로부터 SINR (signal to interference noise ratio) 보고를 위한 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 수신함;
    상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유한다는 가정에 기초하여, 상기 복수의 CMR 설정들과 관련된 SINR을 산출함; 및
    상기 복수의 CMR 설정들과 관련된 SINR을 상기 기지국으로 보고하는 것을 포함하는, 단말.
  14. 제 13항에 있어서,
    상기 단말은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신하는, 단말.
  15. 무선 통신 시스템에서 동작하는 기지국에 있어서,
    적어도 하나의 송신기;
    적어도 하나의 수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 특정 동작은:
    단말로 SINR (signal to interference noise ratio) 보고를 위한 복수의 채널 측정 자원 (channel measurement resource; CMR) 설정들 및 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR) 설정을 전송하되,
    상기 복수의 CMR 설정들 중 관련된 공간적 파라미터 관점에서의 QCL (Quasi Co Located) 소스(source)가 동일한 두 개 이상의 CMR 설정들은 동일한 IMR 설정을 공유하도록 설정됨; 및
    상기 단말로부터 상기 복수의 CMR 설정들과 관련된 SINR을 수신하는 것을 포함하는, 기지국.
PCT/KR2019/014690 2018-11-02 2019-11-01 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치 WO2020091496A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/290,599 US11800550B2 (en) 2018-11-02 2019-11-01 Operation method of terminal and base station in wireless communication system, and device supporting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0133929 2018-11-02
KR20180133929 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020091496A1 true WO2020091496A1 (ko) 2020-05-07

Family

ID=70464196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014690 WO2020091496A1 (ko) 2018-11-02 2019-11-01 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치

Country Status (2)

Country Link
US (1) US11800550B2 (ko)
WO (1) WO2020091496A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022079605A1 (en) * 2020-10-12 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Csi enhancements for urllc
WO2022261873A1 (en) * 2021-06-16 2022-12-22 Nec Corporation Channel state information reporting

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091496A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
US20220190939A1 (en) * 2019-01-04 2022-06-16 Apple Inc. System and method for framework of l1-sinr measurement and reporting
BR112021019240A2 (pt) * 2019-03-29 2021-11-30 Ntt Docomo Inc Terminal de usuário e método de radiocomunicação para um terminal de usuário
US12081300B2 (en) * 2019-05-02 2024-09-03 Ntt Docomo, Inc. User terminal and radio communication method
US20210112433A1 (en) * 2019-10-13 2021-04-15 Qualcomm Incorporated Layer 1 signal to interference noise ratio reporting configuration
US11743006B2 (en) * 2019-11-27 2023-08-29 Intel Corporation Physical uplink control channel design for discrete fourier transform-spread-orthogonal frequency-division multiplexing (DFT-s-OFDM) waveforms
US11705949B2 (en) * 2020-04-24 2023-07-18 Qualcomm Incorporated Techniques for channel state information report transmission triggered by negative acknowledgment (NACK)
US11743021B2 (en) * 2020-05-08 2023-08-29 Qualcomm Incorporated Interference measurements for full duplex transmissions
US11765612B2 (en) * 2020-05-29 2023-09-19 Qualcomm Incorporated Signaling for group-based signal to interference plus noise ratio (SINR) beam report

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204549A1 (ko) * 2015-06-19 2016-12-22 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
US20170063503A1 (en) * 2015-08-27 2017-03-02 Futurewei Technologies, Inc. Systems and Methods for Adaptation in a Wireless Network
WO2018199681A1 (ko) * 2017-04-27 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 채널 및 간섭 측정을 위한 방법 및 이를 위한 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651900B2 (en) * 2018-05-18 2020-05-12 Futurewei Technologies, Inc. System and method for communications system training
WO2020050683A1 (ko) * 2018-09-06 2020-03-12 엘지전자 주식회사 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
EP3857773A4 (en) * 2018-09-26 2022-05-18 ZTE Corporation INTERFERENCE-AWARE BEAM MESSAGE IN WIRELESS COMMUNICATIONS
WO2020091496A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
CN112653498A (zh) * 2019-10-12 2021-04-13 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN114390554B (zh) * 2020-10-20 2024-10-18 维沃移动通信有限公司 信道状态信息确定方法、上报设置确定方法、装置及相关设备
US20220361195A1 (en) * 2021-03-31 2022-11-10 Apple Inc. Channel State Information Reporting for Multi-Transmission-Reception-Point Operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204549A1 (ko) * 2015-06-19 2016-12-22 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
US20170063503A1 (en) * 2015-08-27 2017-03-02 Futurewei Technologies, Inc. Systems and Methods for Adaptation in a Wireless Network
WO2018199681A1 (ko) * 2017-04-27 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 채널 및 간섭 측정을 위한 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "TSG RAN; NR; Physical layer procedures for data (Release 15", 3GPP TS 38.214 V15.3.0., 1 October 2018 (2018-10-01), XP051477733 *
HUAWEI ET AL.: "Beam measurement and reporting using Ll-RSRQ and SINR. Rl-1809123", 3 GPP TSG RAN WG1 MEETING #94, 11 August 2018 (2018-08-11), XP051516492 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022079605A1 (en) * 2020-10-12 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Csi enhancements for urllc
WO2022261873A1 (en) * 2021-06-16 2022-12-22 Nec Corporation Channel state information reporting

Also Published As

Publication number Publication date
US20210400677A1 (en) 2021-12-23
US11800550B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2020091496A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020050683A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020166818A1 (ko) 무선 통신 시스템에서, 사용자 장치에 의하여, srs를 송신하는 방법 및 장치
WO2020032753A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032750A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2019212224A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2020204322A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020130755A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2021187823A1 (ko) 무선 통신 시스템에서 pusch 송수신 방법 및 장치
WO2020032748A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020130746A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020050682A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 단말
WO2020159189A1 (ko) 무선 통신 시스템에서 단말의 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020145609A1 (ko) 무선 통신 시스템에서 단말 및 기지국 간 하향링크 제어 정보의 송수신 방법 및 이를 지원하는 장치
WO2020130753A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020166844A1 (ko) 무선 통신 시스템에서 단말의 데이터 신호 수신 방법 및 이를 지원하는 단말 및 기지국
WO2020122580A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020122658A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020091498A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2023003295A1 (ko) 무선 통신 시스템에서 채널 상태 정보의 송수신을 수행하는 방법 및 장치
WO2020204323A1 (ko) 무선 통신 시스템에서 상향링크 제어 채널의 전력 제어에 기반한 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020145611A1 (ko) 무선 통신 시스템에서 불연속 수신 모드 설정에 기반하여 단말 및 기지국 간 하향링크 제어 정보의 송수신 방법 및 이를 지원하는 장치
WO2020138980A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020091499A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880222

Country of ref document: EP

Kind code of ref document: A1