WO2020075288A1 - Method and device for processing nickel oxide ore - Google Patents

Method and device for processing nickel oxide ore Download PDF

Info

Publication number
WO2020075288A1
WO2020075288A1 PCT/JP2018/038097 JP2018038097W WO2020075288A1 WO 2020075288 A1 WO2020075288 A1 WO 2020075288A1 JP 2018038097 W JP2018038097 W JP 2018038097W WO 2020075288 A1 WO2020075288 A1 WO 2020075288A1
Authority
WO
WIPO (PCT)
Prior art keywords
roasting
nickel
nickel oxide
oxide ore
iron
Prior art date
Application number
PCT/JP2018/038097
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 左右田
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to PCT/JP2018/038097 priority Critical patent/WO2020075288A1/en
Priority to JP2020549921A priority patent/JPWO2020075288A1/en
Priority to AU2018445145A priority patent/AU2018445145A1/en
Publication of WO2020075288A1 publication Critical patent/WO2020075288A1/en
Priority to PH12021550520A priority patent/PH12021550520A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt

Definitions

  • the present invention relates to a nickel oxide ore processing method and processing apparatus.
  • limonite As nickel oxide ores, laterite ores such as limonite and saprolite produced from tropical or subtropical areas are known.
  • Saprolite is in the process of producing clayey ores due to weathering of rocks, and is located on the rocks below the soil mainly consisting of mulch and limonite (limonite).
  • silica and base are leached during the weathering of rocks, and metal elements such as iron (Fe) and nickel (Ni) are concentrated in saprolite.
  • Limonite forms when weathering progresses more than that of saprolite. Limonite has a higher Fe content and a lower Ni content than saprolite.
  • Non-patent Document 1 as a method of utilizing nickel oxide ore, a method of producing ferro-nickel as a stainless steel raw material by subjecting saprolite to a dry smelting method and a hydrometallurgical method such as high pressure sulfuric acid leaching (HPAL) from limonite are used. A method for recovering nickel is described.
  • HPAL high pressure sulfuric acid leaching
  • saprolite having a high nickel content for example, a nickel content of 1.8 wt% or more
  • has a lower nickel content for example, a nickel content of about 1.6 wt% or 1.
  • Saprolite (about 3 wt%) is used for the production of NPI (Nickel Pig Iron) having a low nickel concentration by the same method as the production of ferronickel described above.
  • limonite having a low iron content and a nickel content of about 1.2 wt% is subjected to HPAL treatment, and limonite having a high iron content has a low nickel concentration (a nickel content of 8 wt% in a blast furnace).
  • the actual situation is that NPI is manufactured (up to 3 wt%).
  • An object of the present invention is to provide a nickel oxide ore treatment method and a treatment device capable of treating various nickel oxide ores such as limonite and saprolite by a dry smelting method regardless of the content of nickel. That is.
  • a roasting process of sulfuric acid for producing a nickel sulfate compound by roasting and a method for treating a nickel oxide ore.
  • a second aspect of the present invention the in the oxidation roasting step, said FeOOH contained in nickel oxide ore, a first aspect of the nickel oxide, characterized by converting the Fe 2 O 3 or Fe 3 O 4 It is a method of processing ore.
  • a third aspect of the present invention is the method for treating nickel oxide ore according to the first or second aspect, wherein the roasting temperature in the sulfuric acid roasting step is 600 ° C to 700 ° C.
  • the roasting furnace used in the oxidative roasting step is a rotary kiln, and the rotary kiln is used in a smelting step from the nickel oxide ore to ferro-nickel in combination with an electric furnace.
  • the method for treating a nickel oxide ore according to any one of the first to third aspects is characterized in that it can be performed.
  • a fifth aspect of the present invention is the method for treating nickel oxide ore according to any one of the first to fourth aspects, wherein the nickel oxide ore contains limonite or saprolite.
  • a sixth aspect of the present invention is to provide an oxidation roasting furnace that roasts nickel oxide ore in an atmosphere containing oxygen, and a roasting product obtained in the oxidation roasting furnace in a Ni—S—O system. Heating under the conditions of oxygen partial pressure and sulfur dioxide partial pressure, which makes nickel sulfate thermodynamically more stable than nickel oxide, and iron oxide is more thermodynamically stable than iron sulfate in the Fe-SO system. It is a sulfuric acid roasting furnace which roasts and produces
  • the nickel oxide ore contains iron
  • the nickel content is converted to a nickel sulfate compound, and the conversion of iron content to iron sulfate is suppressed.
  • the consumption efficiency of nickel sulfate compound can be suppressed and the production efficiency of the nickel sulfate compound can be improved.
  • the heating temperature is low and the consumption of the reducing agent is small. Costs such as energy consumption can also be reduced compared to the operating conditions of the calcination furnace used to produce nickel.
  • the reduction of iron content is suppressed, and the iron content can coexist with the nickel sulfate compound in the state of iron oxide, iron sulfide, etc., so that the coagulation of particles in the roasted product is suppressed, and the post-process Can be easily processed.
  • the nickel oxide ore contains manganese, manganese forms a spinel structure with iron, so that manganese can be easily removed as an insoluble matter.
  • the fourth aspect even when operating in an area producing nickel oxide ore, a facility for producing a nickel sulfate compound according to the nickel content of the ore, the demand for the product, the price, etc., It is possible to properly use equipment for producing ferronickel.
  • the rotary kiln By carrying out the production of nickel sulfate compound by the dry smelting method, the rotary kiln can be used in common for both the production of nickel sulfate compound and the production of ferronickel, thus reducing the investment cost for equipment. it can.
  • the nickel oxide ore contains iron
  • the nickel content is converted to a nickel sulfate compound, and the conversion of iron content to iron sulfate is suppressed.
  • the consumption efficiency of nickel sulfate compound can be suppressed and the production efficiency of the nickel sulfate compound can be improved.
  • FIG. 3 is a conceptual state diagram of Ni—S—O system and Fe—S—O system. It is a block diagram which illustrates the apparatus used in the Example.
  • FIG. 1 is a configuration diagram showing an outline of a processing method and a processing apparatus for nickel oxide ore according to the present embodiment.
  • the first heating step 10 performed using the first heating furnace 11 is an oxidation roasting step.
  • ferro-nickel 52 is produced from the nickel oxide ore 12
  • the first heating step 10 performed using the first heating furnace 11 is a calcination step.
  • the roasted product 13 obtained by oxidative roasting of nickel oxide ore is a sulfuric acid roasting step 20 (second heating step) performed using a second heating furnace 21. ).
  • the sulfuric acid roasting step 20 the nickel content contained in the roasted product 13 derived from the nickel oxide ore 12 is converted into a nickel sulfate compound by sulfation roasting.
  • a sulfur source 23 may be added in the sulfuric acid roasting step 20.
  • the roasted product 22 produced in the sulfuric acid roasting step 20 is added with water 34 in the water dissolving step 30 (water dissolving means 31) and then solid-liquid separated to obtain a solution containing the nickel sulfate compound 32 and iron oxide.
  • the nickel sulfate compound 42 from which the impurities 43 have been removed by the purification step 40 (purification means 41) after the water dissolution step 30.
  • the calcination product 14 obtained by calcination of the nickel oxide ore can be subjected to the smelting step 50 by providing it to a smelting furnace such as an electric furnace 51.
  • oxidation roasting steps may be used for the oxidation roasting step and the sulfuric acid roasting step.
  • a roasting device 60 having a roasting furnace 61 in which a section 61A for performing the oxidation roasting step and a section 61B for performing the sulfuric acid roasting step are continuously provided is also used.
  • the roasting furnace 61 may be a rotary kiln.
  • the roasting furnace 61 has an inlet 62 to which nickel oxide ore is supplied, a sulfur source supply unit 63 arranged in the middle of the roasting furnace 61, and an outlet 64 from which roasted products are discharged.
  • An oxidation roasting process is performed between the inlet 62 and the sulfur source supply part 63, and a sulfuric acid roasting process is performed between the sulfur source supply part 63 and the outlet 64, thereby producing a roasting product containing a nickel sulfate compound.
  • nickel oxide ores examples include laterite ores containing nickel such as limonite and saprolite.
  • the limonite may be a low iron content limonite or a high iron content limonite
  • the saprolite may have a high nickel content (for example, a Ni content of 1.8 wt% or more) or a low nickel content (for example, a low nickel content).
  • Saprolite may be used (less than 1.8 wt%). It is also possible to add a raw material containing nickel components such as nickel oxide and nickel hydroxide to the nickel oxide ore supplied to the roasting furnace.
  • the particle size of nickel oxide ore and other raw materials Prior to the oxidation roasting step, it is preferable to reduce the particle size of nickel oxide ore and other raw materials by operations such as shredding, crushing and abrasion. Since the reaction starts from the surface of the raw material in the roasting step, the smaller the particle size of the raw material, the shorter the reaction time, which is preferable.
  • the crushing means is not particularly limited, but one or more kinds such as a ball mill, a rod mill, a hammer mill, a fluid energy mill and a vibration mill can be used.
  • the particle size after pulverization is not particularly limited. In the case of a raw material that can be obtained in the form of fine particles, such as limonite ore, it may be directly supplied to the oxidation roasting step.
  • the raw material ore When the raw material ore is supplied to the oxidation roasting step, it may be a dry powder or a slurry containing water.
  • the apparatus for performing preliminary drying of the raw material ore is not particularly limited, and may be an apparatus that performs crushing and drying as a series of operations like a jaw crusher, or a drying apparatus such as a rotary dryer or an impact dryer may be used. it can. Since limonite ore has a large amount of fine powder, when using limonite ore, it is preferable to add an operation of recovering dust to a roasting furnace.
  • the oxidation roasting step is a step of roasting a nickel oxide ore in an oxidizing atmosphere containing oxygen (O 2 ) such as air.
  • oxygen O 2
  • FeOOH contained in the nickel oxide ore is preferably converted into Fe 2 O 3 or Fe 3 O 4 in order to maintain the iron content of the iron oxide in the sulfuric acid roasting step described later.
  • the roasting temperature (oxidative roasting temperature) in the oxidative roasting step is, for example, 700 ° C. or lower, and specific examples include 500 ° C., 550 ° C., 600 ° C., 650 ° C., 700 ° C., or a temperature range before, after, or in the middle thereof. Is mentioned.
  • the oxidation roasting temperature is preferably lower than the calcination temperature, as a temperature at which FeOOH, Fe 2 O 3 or Fe 3 O 4 is less likely to be thermally decomposed into FeO.
  • the heating temperature in the calcining step when smelting nickel oxide ore into ferro-nickel is, for example, 800 to 1100 ° C. as the temperature at which FeOOH, Fe 2 O 3 or Fe 3 O 4 is easily converted to FeO.
  • the oxidation roasting furnace can also be used as a calcining furnace in the conventional ferronickel smelting equipment, simply adding the equipment and the melting and refining equipment required for sulfuric acid roasting to this, A treatment method can be implemented.
  • Ferro nickel production and nickel sulfate compound production can be selectively carried out in areas where nickel oxide ores are obtained.
  • ferronickel may be produced from saprolite.
  • the Ni content contained in the saprolite used for the production of ferronickel is preferably 1.8 wt% or more on a dry basis excluding water.
  • Ni content of the above-mentioned saprolite examples include, but are not limited to, 1.8 wt%, 2.0 wt%, 2.5 wt%, and 3.0 wt%.
  • the nickel sulfate compound may be produced through sulfuric acid roasting.
  • the Ni content in saprolite or limonite having a low Ni content include, but are not limited to, 1.6 wt%, 1.5 wt%, 1.3 wt%, 1.0 wt% and the like. .
  • the demand, price, production cost, etc. of the product ferronickel and nickel sulfate compound may be taken into consideration.
  • the sulfuric acid roasting step is a step of producing a nickel sulfate compound by roasting the roasted product obtained in the oxidation roasting step with sulfuric acid.
  • the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate becomes thermodynamically more stable than nickel oxide in the Ni—S—O system, and Fe—S— The condition is that iron oxide is thermodynamically more stable than iron sulfate in the O system.
  • FIG. 3 is an example of a conceptual state diagram of the Ni—S—O system and the Fe—S—O system.
  • the boundary line of each phase in the Ni-S-O system is shown by a broken line (---), and the boundary line of each phase in the Fe-S-O system is shown by a one-dot chain line (-.---). .
  • the chemical formulas attached to the arrows indicate thermodynamically stable phases on the side of each boundary line toward the arrow.
  • the horizontal axis in the state diagram shown in FIG. 3 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low.
  • the vertical axis in the state diagram shown in FIG. 3 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure.
  • Examples of nickel sulfate contained in the Ni—S—O system include NiSO 4 , and examples of nickel oxide include NiO.
  • a boundary line L Ni indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable.
  • nickel sulfate is a thermodynamically stable phase.
  • nickel oxide becomes a thermodynamically stable phase.
  • Examples of iron sulfate contained in the Fe—S—O system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of iron oxide include Fe 2 O 3 .
  • a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable.
  • iron sulfate is a thermodynamically stable phase.
  • iron oxide becomes a thermodynamically stable phase.
  • SO 2 partial pressure and the partial pressure of O 2 is lower than the boundary line L Fe, and, SO 2 partial pressure and the partial pressure of O 2 is in the higher region A than the boundary line L Ni, Ni
  • nickel sulfate is a thermodynamically stable phase
  • iron oxide is a thermodynamically stable phase. Therefore, under the condition of the overlapping region A, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S), iron sulfate is produced even if iron is present in the system.
  • the nickel content can be converted to nickel sulfate while suppressing.
  • the roasting temperature (sulfuric acid roasting temperature) in the sulfuric acid roasting step is preferably in the range of 400 to 750 ° C, more preferably in the range of 550 to 750 ° C.
  • Specific examples of the sulfuric acid roasting temperature include 400 ° C., 450 ° C., 500 ° C., 550 ° C., 600 ° C., 650 ° C., 700 ° C., 750 ° C., and the temperature range before, after, or in the middle thereof.
  • the sulfuric acid roasting temperature is preferably 600 to 700 ° C.
  • the object of roasting with sulfuric acid that is, the product of roasting with oxidation contains manganese (Mn) as an impurity derived from a raw material such as nickel oxide ore
  • manganese is spinel with iron. The formation of the structure facilitates removal of manganese as an insoluble matter.
  • the O 2 partial pressure in the sulfuric acid roasting step is preferably such that the common logarithm of the O 2 partial pressure in terms of atmospheric pressure (atm) log p (O 2 ) is in the range of ⁇ 4 to ⁇ 6, and depending on the conditions, etc., log p (O 2) is -4 to -5, or log p (O 2) is more preferably in the range of -5 to -6.
  • the SO 2 partial pressure tends to increase even in the overlapping region A of FIG. 3, so that the generation of nickel sulfate can be promoted while suppressing the generation of iron sulfate.
  • This optimum region is slightly shifted depending on the sulfuric acid roasting temperature, and the higher the temperature, the more the log p (O 2 ) in the overlapping region A increases (the closer to zero (0)).
  • the common logarithm of the SO 2 partial pressure in atmospheric pressure (atm) log p (SO 2 ) is preferably in the range of ⁇ 1 to +1 and log p (SO 2 ) is ⁇ 1.
  • the range of to 0 is more preferable.
  • the SO 2 partial pressure can be made higher to promote the production of sulfate.
  • the common logarithm of partial pressure is about 0 or less)
  • the total pressure of the roasting atmosphere in the sulfuric acid roasting step does not become excessive, and the equipment Can be easily handled.
  • the roasting device for carrying out the sulfuric acid roasting step is not particularly limited, and examples thereof include a rotary kiln, a fluidized bed type heating furnace, a shelf type roasting furnace, a multi-stage roasting furnace, and various other roasting furnaces.
  • an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting device.
  • nitrogen (N 2 ) or argon (Ar) can also be used as a carrier when supplying volatile components such as gas and vapor to the roasting device.
  • the sulfur content may be supplied to the sulfuric acid roasting step.
  • the source of sulfur content is not particularly limited, but solid sulfur (elementary sulfur, S), sulfur oxides (SO 2, etc.), sulfuric acid (H 2 SO 4 ), sulfate, sulfide, pyrite Examples include sulfide ores such as (FeS 2 ).
  • sulfur source is elemental sulfur, it is preferable to generate SO 2 gas in an oxygen-enriched state.
  • a roasted product containing a nickel sulfate compound is obtained.
  • a solution containing a nickel sulfate compound is obtained by a water dissolution step of supplying water to the roasted product and dissolving the nickel sulfate compound in water.
  • the iron content contained in the roasted product of the sulfuric acid roasting step is insoluble in water, such as iron oxide and iron sulfide, so that it is separated into a solid phase and a liquid phase by solid-liquid separation.
  • a nickel sulfate compound is obtained as a liquid phase, and impurities containing iron and the like are separated as a solid phase.
  • a nickel sulfate compound from which impurities such as cobalt have been removed can be obtained by performing a purification step in order to separate nickel sulfate from cobalt sulfate or the like.
  • the water added to the roasted product in the water dissolution step is preferably pure water that has been treated so as not to contain impurities.
  • the water treatment method is not particularly limited and may be one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like.
  • tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating the wastewater generated in another process may be used. You may use 2 or more types of water. Not only pure water but also a sulfuric acid acidic solution having a pH of about 4 can be used for dissolution.
  • nickel sulfate compound is suppressed while suppressing dissolution of other impurities such as sulfates. Is preferred because it is advantageous to selectively extract the broth in the aqueous phase.
  • the solubility of nickel sulphate in water is highest at 150 ° C., 100 g of solution contains 55 g of NiSO 4, but even at 0 ° C. 100 g of solution contains 22 g of NiSO 4 . Therefore, it is desirable to carry out the dissolving operation at a temperature below the boiling point of water. Further, it is preferable that the solution obtained in the water dissolving step has a concentration at which NiSO 4 does not precipitate even at room temperature, and it is preferable that the solution having a higher concentration of NiSO 4 maintains a heated state.
  • the solid-liquid separation method after the water dissolution step is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a sedimentation separation method. Desirably, it is preferable to use an apparatus having a high performance of separating fine particles contained in the solid phase.
  • the method of filtration is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filter aid addition type filtration, squeezing filtration and the like. Pressure filtration is preferable because the differential pressure can be easily adjusted and rapid separation is possible.
  • Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al).
  • iron (Fe), cobalt (Co), and aluminum (Al) When these metal salts are sulfates in the roasting step, when the nickel sulfate compound is dissolved in water, iron sulfate, cobalt sulfate, etc. are also dissolved. Further, in water, for example, iron precipitates as oxides such as FeOOH, Fe 2 O 3 , Fe 3 O 4, etc., and impurities can be easily removed from the nickel sulfate compound.
  • conditions are set such that the iron content is unlikely to become iron sulfate, and therefore, a nickel sulfate compound having a low iron content can be obtained through water dissolution and solid-liquid separation.
  • the residue containing iron oxide or the like after dissolving the nickel sulfate compound can be reused as the iron content of cement.
  • the iron-rich residue such as iron oxide can be used for producing pig iron or the like as an iron-making raw material using a smelting reduction furnace, an electric furnace or the like, or for pigments, ferrites, magnetic materials, sintered materials, etc. .
  • the area producing nickel oxide ore is a remote area away from industrial areas, cities, etc.
  • pig iron is produced using an electric furnace provided in the smelting process of ferronickel and the volume of the pig iron is reduced, it can be easily carried out as iron ingot.
  • impurities for example, metals having a lower ionization tendency than hydrogen (H), such as copper (Cu), gold (Au), silver (Ag), and platinum group metal (PGM), remain as solids in the water dissolution step, and thus are It can be removed by a liquid separation step.
  • the solids removed by the solid-liquid separation step may include compounds such as As, Pb, and Zn in addition to the above impurities. Solids containing these impurities can also be recycled as valuable resources.
  • the solution obtained through water dissolution and solid-liquid separation has a nickel sulfate compound as a main component, it can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. .
  • solvent extraction, electrodialysis, electrowinning, electrorefining, ion exchange Techniques such as crystallization can be used.
  • an extractant that can preferentially or selectively extract cobalt over nickel in the solvent. This allows the nickel sulfate compound to remain in the aqueous solution for efficient purification.
  • the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group.
  • an organic solvent capable of separating the extractant from water may be used as the diluent. Dissolving the extractant combined with metal ions such as cobalt in the diluent facilitates separation from the aqueous solution containing the nickel sulfate compound without using a large amount of the extractant.
  • the diluent is preferably an organic solvent that is immiscible with water.
  • the target nickel sulfate compound may be crystallized from the solution by at least one factor such as temperature change, solvent reduction, addition of another substance, and the like.
  • purification can be performed by leaving at least a part of the impurities in the liquid phase.
  • Specific examples include an evaporation crystallization method and a poor solvent crystallization method.
  • the solution is concentrated by boiling or evaporation under reduced pressure to crystallize the nickel sulfate compound.
  • the poor solvent crystallization method is a crystallization method used in the production of pharmaceuticals and the like, for example, an organic solvent is added to a solution containing a nickel sulfate compound to precipitate a nickel sulfate compound.
  • the organic solvent used for crystallization is preferably an organic solvent miscible with water, and examples thereof include at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more kinds of organic solvents may be used.
  • the organic solvent is miscible at a concentration at which the nickel sulfate compound is precipitated, and it is more preferred that the organic solvent is freely mixed at an arbitrary ratio.
  • the organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent as long as it does not hinder crystallization.
  • the ratio of water to the organic solvent is not particularly limited, and may be set, for example, in the range of 1:20 to 20: 1, but is preferably about 1: 1 and is preferably 1: 2 to 2: 1.
  • the nickel sulfate compound deposited by crystallization can be separated from the solution by solid-liquid separation.
  • the solid-liquid separation method is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the metal dissolved on the solution side is preferably removed from the solution by a method such as neutralization and precipitation.
  • the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
  • a high-purity nickel sulfate compound can be produced from nickel oxide ore by a combination of oxidation roasting and sulfuric acid roasting.
  • the roasting furnace can also be used as a calcining furnace in the step of producing ferronickel from nickel oxide ore by dry smelting.
  • Generation of iron sulfate can be suppressed in the sulfuric acid roasting step. Further, generation of hydrogen (H 2 ) gas can also be suppressed.
  • the iron content becomes a chemical species that is difficult to dissolve in water, and the nickel content easily dissolves in water as a nickel sulfate compound, so that the iron content is easily removed.
  • the equipment cost can be reduced as compared with the conventional method, and the existing equipment can be used as a roasting furnace.
  • the present invention has been described above based on the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
  • layout design as equipment for manufacturing ordinary ferronickel and add design so that roasted products can be transferred from the outlet of the calcining furnace to the sulfuric acid roasting furnace. is there.
  • the installation of the electric furnace for producing ferronickel may be omitted.
  • the electric furnace may be installed or the production of ferronickel may be started first, and the sulfuric acid roasting furnace or the production of the nickel sulfate compound may be started later.
  • both the nickel sulfate production facility using limonite oxide ore and the ferronickel production facility using saprolite oxide ore are treated by the dry process.
  • MgO (16% of ore) was mainly montmorillonite: CaMg 2 Si 4 O 10 (OH) 2 .
  • SiO 2 (3% of ore) was mainly montmorillonite and the serpentine: (Mg, Fe) 3 Si 2 O 5 (OH) 4 .
  • the sample ore also contained Ni content (1.2% of ore), Co content (0.05% of ore), etc., and had a water content of 30%.
  • Test apparatus used for roasting test For the roasting test, the test apparatus 100 shown in FIG. 4 was used. A sample of nickel oxide ore is placed on the pan 101. The saucer 101 is set inside a glass container 102 installed in an electric furnace 103. The glass container 102 is provided with a thermometer 104 such as a thermocouple that can measure the ambient temperature, an injection pipe 105 that can inject various gases, and an outlet 106 for exhaust gas generated inside. The electric furnace 103 can raise the temperature to a desired temperature to heat the sample. In the injection pipe 105, dry air or SO 2 gas containing nitrogen gas can be supplied as needed while constantly injecting argon gas. The exhaust gas discharged from the outlet 106 can be processed by the exhaust gas processing device 108 via the gas analyzer 107. Data of various gas amounts and analytical values can be collected by a computer (not shown).
  • Sulfuric acid roasting step Following the (3) oxidative roasting step, the sulfuric acid roasting step was performed under the following three conditions.
  • (Condition example 1) 50% concentrated sulfuric acid is added to the sample, and adjusted at a temperature of 600 ° C. so that log p (O 2 ) is ⁇ 4 and log p (SO 2 ) is in the range of +1 to ⁇ 1.
  • (Condition example 2) Sulfur was added to the sample and oxygen was added in a reaction-deficient manner so that the log p (O 2 ) was -4 and the log p (SO 2 ) was in the range of +1 to -1 at a temperature of 600 ° C. Adjust to.
  • the present invention can be used for producing high-purity nickel sulfate compounds useful as raw materials for various nickel compounds or metallic nickel used in electric parts such as secondary batteries and chemical products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

A method for processing nickel oxide ore, the method having an oxidation roasting step for converting FeOOH included in nickel oxide ore to Fe2O3 or Fe3O4, and a sulfuric acid roasting step for heating and roasting the roasting product obtained in the oxidation roasting step under conditions of an oxygen partial pressure and a sulfur dioxide partial pressure at which nickel sulfate is more thermodynamically stable than nickel oxide in the Ni-S-O system, and iron oxide is more thermodynamically stable than iron sulfate in the Fe-S-O system, and generating a nickel sulfate compound.

Description

ニッケル酸化鉱石の処理方法及び処理装置Nickel oxide ore processing method and processing apparatus
 本発明は、ニッケル酸化鉱石の処理方法及び処理装置に関する。 The present invention relates to a nickel oxide ore processing method and processing apparatus.
 ニッケル酸化鉱石としては、熱帯ないし亜熱帯地域から産出されるリモナイト(limonite)、サプロライト(saprolite)等のラテライト鉱石が知られている。サプロライトは、岩石の風化により粘土質の鉱石が生成する過程にあり、岩石上においては、腐葉土を主とする土壌とリモナイト(褐鉄鉱)の下部に位置する。熱帯地域においては、岩石の風化の過程でシリカ及び塩基が溶脱し、鉄(Fe)、ニッケル(Ni)等の金属元素がサプロライト中に濃縮される。サプロライトよりも風化が進むとリモナイトが生成する。リモナイトは、サプロライトよりもFe含有量が高く、Ni含有量が低い。 As nickel oxide ores, laterite ores such as limonite and saprolite produced from tropical or subtropical areas are known. Saprolite is in the process of producing clayey ores due to weathering of rocks, and is located on the rocks below the soil mainly consisting of mulch and limonite (limonite). In tropical regions, silica and base are leached during the weathering of rocks, and metal elements such as iron (Fe) and nickel (Ni) are concentrated in saprolite. Limonite forms when weathering progresses more than that of saprolite. Limonite has a higher Fe content and a lower Ni content than saprolite.
 非特許文献1には、ニッケル酸化鉱石の利用方法として、サプロライトを乾式製錬法に掛けてステンレス原料となるフェロニッケルを生産する方法、リモナイトから高圧硫酸浸出(HPAL)等の湿式製錬法によりニッケルを回収する方法などが記載されている。 In Non-patent Document 1, as a method of utilizing nickel oxide ore, a method of producing ferro-nickel as a stainless steel raw material by subjecting saprolite to a dry smelting method and a hydrometallurgical method such as high pressure sulfuric acid leaching (HPAL) from limonite are used. A method for recovering nickel is described.
 近年はNi含有量が高いサプロライトだけでなく、Ni含有量が低いリモナイトの利用も必要となっている。しかし、従来は、HPAL等の湿式製錬法が、鉄分が少ないリモナイト処理方法の主流となっている。サプロライトのように乾式製錬法でリモナイトを処理しても、処理できないか、又はフェロニッケル製品のNi濃度が高まらず、ステンレス原料としてSUS200番等と利用範囲が限定されるという問題があった。リモナイトとサプロライトの両方を処理するための設備を設計する場合、リモナイトの湿式製錬とサプロライトの乾式製錬との両方に対応することになり、コストが高いという問題があった。
 このため、現状はニッケル含有量が高い(例えばニッケル含有量が1.8wt%以上)サプロライトはフェロニッケル製造に、それよりニッケル含有量が低い(例えばニッケル含有量が1.6wt%程度もしくは1.3wt%程度)サプロライトは、上記のフェロニッケル製造と同一の方法で、ニッケル濃度が低いNPI(Nickel Pig Iron)の製造に利用されている。一方、鉄分が少なく、ニッケル含有量が1.2wt%程度のリモナイトはHPAL処理が実施され、また鉄分が多いリモナイトは、高炉(Blast Furnace)にて、ニッケル濃度が低い(ニッケル含有量が8wt%~3wt%)NPIが製造されているのが実状である。
In recent years, not only saprolite having a high Ni content, but also limonite having a low Ni content is required to be used. However, conventionally, a hydrometallurgical method such as HPAL has been the mainstream of a limonite treatment method having a small iron content. There is a problem that even if limonite is treated by a dry smelting method like saprolite, it cannot be treated, or the Ni concentration of the ferronickel product does not increase, and the application range is limited to SUS200 or the like as a stainless steel raw material. When designing equipment for treating both limonite and saprolite, there is a problem that both hydrosmelting of limonite and dry smelting of saprolite are required, resulting in high cost.
Therefore, at present, saprolite having a high nickel content (for example, a nickel content of 1.8 wt% or more) has a lower nickel content (for example, a nickel content of about 1.6 wt% or 1. Saprolite (about 3 wt%) is used for the production of NPI (Nickel Pig Iron) having a low nickel concentration by the same method as the production of ferronickel described above. On the other hand, limonite having a low iron content and a nickel content of about 1.2 wt% is subjected to HPAL treatment, and limonite having a high iron content has a low nickel concentration (a nickel content of 8 wt% in a blast furnace). The actual situation is that NPI is manufactured (up to 3 wt%).
 本発明の課題は、ニッケル含有量の高低にかかわらず、リモナイト、サプロライト等の各種のニッケル酸化鉱石を、乾式製錬法により処理することが可能なニッケル酸化鉱石の処理方法及び処理装置を提供することである。 An object of the present invention is to provide a nickel oxide ore treatment method and a treatment device capable of treating various nickel oxide ores such as limonite and saprolite by a dry smelting method regardless of the content of nickel. That is.
 本発明の第1の態様は、ニッケル酸化鉱石を、酸素を含む雰囲気で焙焼する酸化焙焼工程と、前記酸化焙焼工程で得られた焙焼生成物を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる酸素分圧及び二酸化硫黄分圧の条件下で加熱焙焼して、硫酸ニッケル化合物を生成する硫酸焙焼工程と、を有することを特徴とするニッケル酸化鉱石の処理方法である。 According to a first aspect of the present invention, an oxidation roasting step of roasting a nickel oxide ore in an atmosphere containing oxygen and a roasting product obtained in the oxidation roasting step in a Ni—S—O system Heating under the conditions of oxygen partial pressure and sulfur dioxide partial pressure, which makes nickel sulfate thermodynamically more stable than nickel oxide, and iron oxide is more thermodynamically stable than iron sulfate in the Fe-SO system. And a roasting process of sulfuric acid for producing a nickel sulfate compound by roasting, and a method for treating a nickel oxide ore.
 本発明の第2の態様は、前記酸化焙焼工程において、前記ニッケル酸化鉱石に含まれるFeOOHを、Fe又はFeに変換することを特徴とする第1の態様のニッケル酸化鉱石の処理方法である。 A second aspect of the present invention, the in the oxidation roasting step, said FeOOH contained in nickel oxide ore, a first aspect of the nickel oxide, characterized by converting the Fe 2 O 3 or Fe 3 O 4 It is a method of processing ore.
 本発明の第3の態様は、前記硫酸焙焼工程の焙焼温度が600℃~700℃であることを特徴とする第1又は第2の態様のニッケル酸化鉱石の処理方法である。 A third aspect of the present invention is the method for treating nickel oxide ore according to the first or second aspect, wherein the roasting temperature in the sulfuric acid roasting step is 600 ° C to 700 ° C.
 本発明の第4の態様は、前記酸化焙焼工程において使用する焙焼炉がロータリーキルンであり、前記ロータリーキルンは、電気炉と組み合わせることにより、前記ニッケル酸化鉱石からフェロニッケルへの製錬工程に使用することができることを特徴とする第1~第3の態様のいずれかのニッケル酸化鉱石の処理方法である。 In a fourth aspect of the present invention, the roasting furnace used in the oxidative roasting step is a rotary kiln, and the rotary kiln is used in a smelting step from the nickel oxide ore to ferro-nickel in combination with an electric furnace. The method for treating a nickel oxide ore according to any one of the first to third aspects is characterized in that it can be performed.
 本発明の第5の態様は、前記ニッケル酸化鉱石が、リモナイト又はサプロライトを含むことを特徴とする第1~第4の態様のいずれかのニッケル酸化鉱石の処理方法である。 A fifth aspect of the present invention is the method for treating nickel oxide ore according to any one of the first to fourth aspects, wherein the nickel oxide ore contains limonite or saprolite.
 本発明の第6の態様は、ニッケル酸化鉱石を、酸素を含む雰囲気で焙焼する酸化焙焼炉と、前記酸化焙焼炉で得られた焙焼生成物を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる酸素分圧及び二酸化硫黄分圧の条件下で加熱焙焼して、硫酸ニッケル化合物を生成する硫酸焙焼炉と、を有することを特徴とするニッケル酸化鉱石の処理装置である。 A sixth aspect of the present invention is to provide an oxidation roasting furnace that roasts nickel oxide ore in an atmosphere containing oxygen, and a roasting product obtained in the oxidation roasting furnace in a Ni—S—O system. Heating under the conditions of oxygen partial pressure and sulfur dioxide partial pressure, which makes nickel sulfate thermodynamically more stable than nickel oxide, and iron oxide is more thermodynamically stable than iron sulfate in the Fe-SO system. It is a sulfuric acid roasting furnace which roasts and produces | generates a nickel sulfate compound, It is a processing apparatus of the nickel oxide ore characterized by the above-mentioned.
 第1の態様によれば、ニッケル酸化鉱石が鉄分を含む場合であっても、ニッケル分が硫酸ニッケル化合物に変換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケル化合物の生成効率を向上することができる。 According to the first aspect, even when the nickel oxide ore contains iron, the nickel content is converted to a nickel sulfate compound, and the conversion of iron content to iron sulfate is suppressed. The consumption efficiency of nickel sulfate compound can be suppressed and the production efficiency of the nickel sulfate compound can be improved.
 第2の態様によれば、酸化焙焼工程においてニッケル酸化鉱石に含まれる鉄分がFeOに還元されることを抑制することにより、加熱温度が低く、還元剤の消費が少ない条件となるため、フェロニッケルの生産に用いられるか焼炉の運転条件と比べて、エネルギー消費等のコストも削減することができる。 According to the second aspect, since the iron content contained in the nickel oxide ore is suppressed from being reduced to FeO in the oxidation roasting step, the heating temperature is low and the consumption of the reducing agent is small. Costs such as energy consumption can also be reduced compared to the operating conditions of the calcination furnace used to produce nickel.
 第3の態様によれば、鉄分の還元が抑制されて、鉄分が酸化鉄、硫化鉄等の状態で硫酸ニッケル化合物と共存し得るので、焙焼生成物において粒子の凝結を抑制し、後工程の処理を容易にすることができる。ニッケル酸化鉱石がマンガンを含む場合であっても、マンガンが鉄とのスピネル構造を形成することにより、マンガンを不溶物として除去しやすくなる。 According to the third aspect, the reduction of iron content is suppressed, and the iron content can coexist with the nickel sulfate compound in the state of iron oxide, iron sulfide, etc., so that the coagulation of particles in the roasted product is suppressed, and the post-process Can be easily processed. Even when the nickel oxide ore contains manganese, manganese forms a spinel structure with iron, so that manganese can be easily removed as an insoluble matter.
 第4の態様によれば、ニッケル酸化鉱石を産出する地域で操業を行う場合であっても、鉱石のニッケル含有量、製品の需要、価格等に応じて、硫酸ニッケル化合物を生産する設備と、フェロニッケルを生産する設備とを使い分けることができる。硫酸ニッケル化合物の生産を乾式製錬法により行うことにより、硫酸ニッケル化合物の生産及びフェロニッケルの生産の両方に共通して、ロータリーキルンを使用することができるため、設備に対する投資費用を低減することができる。 According to the fourth aspect, even when operating in an area producing nickel oxide ore, a facility for producing a nickel sulfate compound according to the nickel content of the ore, the demand for the product, the price, etc., It is possible to properly use equipment for producing ferronickel. By carrying out the production of nickel sulfate compound by the dry smelting method, the rotary kiln can be used in common for both the production of nickel sulfate compound and the production of ferronickel, thus reducing the investment cost for equipment. it can.
 第5の態様によれば、比較的調達が容易なニッケル酸化鉱石を用いることができるので、生産性を向上させることができる。 According to the fifth aspect, since nickel oxide ore that is relatively easy to procure can be used, productivity can be improved.
 第6の態様によれば、ニッケル酸化鉱石が鉄分を含む場合であっても、ニッケル分が硫酸ニッケル化合物に変換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケル化合物の生成効率を向上することができる。 According to the sixth aspect, even when the nickel oxide ore contains iron, the nickel content is converted to a nickel sulfate compound, and the conversion of iron content to iron sulfate is suppressed. The consumption efficiency of nickel sulfate compound can be suppressed and the production efficiency of the nickel sulfate compound can be improved.
実施形態によるニッケル酸化鉱石の処理方法及び処理装置の概略を示す構成図である。It is a block diagram which shows the outline of the processing method and processing apparatus of the nickel oxide ore by embodiment. 焙焼装置の一例を示す模式図である。It is a schematic diagram which shows an example of a roasting apparatus. Ni-S-O系及びFe-S-O系の概念的な状態図である。FIG. 3 is a conceptual state diagram of Ni—S—O system and Fe—S—O system. 実施例で用いた装置を例示する構成図である。It is a block diagram which illustrates the apparatus used in the Example.
 以下、好適な実施形態に基づいて、本発明を説明する。 The present invention will be described below based on preferred embodiments.
 図1は、本実施形態によるニッケル酸化鉱石の処理方法及び処理装置の概略を示す構成図である。本実施形態の処理方法において、例えば、ニッケル酸化鉱石12から硫酸ニッケル化合物32,42を生産する場合には、第1加熱炉11を用いて行う第1加熱工程10が酸化焙焼工程となる。また、ニッケル酸化鉱石12からフェロニッケル52を生産する場合には、第1加熱炉11を用いて行う第1加熱工程10がか焼(calcining)工程となる。 FIG. 1 is a configuration diagram showing an outline of a processing method and a processing apparatus for nickel oxide ore according to the present embodiment. In the treatment method of the present embodiment, for example, when the nickel sulfate compounds 32 and 42 are produced from the nickel oxide ore 12, the first heating step 10 performed using the first heating furnace 11 is an oxidation roasting step. When ferro-nickel 52 is produced from the nickel oxide ore 12, the first heating step 10 performed using the first heating furnace 11 is a calcination step.
 ニッケル酸化鉱石から硫酸ニッケル化合物を生産する場合には、ニッケル酸化鉱石の酸化焙焼により得られる焙焼生成物13は、第2加熱炉21を用いて行う硫酸焙焼工程20(第2加熱工程)に供される。硫酸焙焼工程20において、ニッケル酸化鉱石12に由来する焙焼生成物13に含まれるニッケル分は、硫酸焙焼(sulfation roasting)により硫酸ニッケル化合物に変換される。硫酸焙焼工程20で硫黄源23を添加してもよい。硫酸焙焼工程20により生成した焙焼生成物22は、水溶解工程30(水溶解手段31)において、水34を加えた後、固液分離により、硫酸ニッケル化合物32を含む溶液と、酸化鉄等の不溶物33とに分離される。水溶解工程30の後、精製工程40(精製手段41)により、不純物43が除去された硫酸ニッケル化合物42を得ることもできる。
 ニッケル酸化鉱石からフェロニッケルを生産する場合には、ニッケル酸化鉱石のか焼により得られるか焼生成物14を電気炉51等の製錬炉に供して製錬工程50を行うことができる。
When a nickel sulfate compound is produced from nickel oxide ore, the roasted product 13 obtained by oxidative roasting of nickel oxide ore is a sulfuric acid roasting step 20 (second heating step) performed using a second heating furnace 21. ). In the sulfuric acid roasting step 20, the nickel content contained in the roasted product 13 derived from the nickel oxide ore 12 is converted into a nickel sulfate compound by sulfation roasting. A sulfur source 23 may be added in the sulfuric acid roasting step 20. The roasted product 22 produced in the sulfuric acid roasting step 20 is added with water 34 in the water dissolving step 30 (water dissolving means 31) and then solid-liquid separated to obtain a solution containing the nickel sulfate compound 32 and iron oxide. And insoluble matter 33, etc. It is also possible to obtain the nickel sulfate compound 42 from which the impurities 43 have been removed by the purification step 40 (purification means 41) after the water dissolution step 30.
When ferro-nickel is produced from nickel oxide ore, the calcination product 14 obtained by calcination of the nickel oxide ore can be subjected to the smelting step 50 by providing it to a smelting furnace such as an electric furnace 51.
 ニッケル酸化鉱石から硫酸ニッケル化合物を生産する場合において、酸化焙焼工程と硫酸焙焼工程は、それぞれ別の焙焼炉(焙焼装置)を用いてもよい。また、例えば図2に示すように、酸化焙焼工程を行う区画61Aと、硫酸焙焼工程を行う区画61Bとが連続して設けられた焙焼炉61を有する焙焼装置60を用いてもよい。焙焼炉61としては、ロータリーキルンが挙げられる。焙焼炉61は、ニッケル酸化鉱石が供給される入口62と、焙焼炉61の途中に配置された硫黄源の供給部63と、焙焼生成物が排出される出口64とを有する。入口62から硫黄源の供給部63までの間に酸化焙焼工程を行い、硫黄源の供給部63から出口64までの間に硫酸焙焼工程を行うことにより、硫酸ニッケル化合物を含む焙焼生成物を得ることができる。 In the case of producing a nickel sulfate compound from nickel oxide ore, separate oxidation roasting steps (roasting devices) may be used for the oxidation roasting step and the sulfuric acid roasting step. Further, for example, as shown in FIG. 2, a roasting device 60 having a roasting furnace 61 in which a section 61A for performing the oxidation roasting step and a section 61B for performing the sulfuric acid roasting step are continuously provided is also used. Good. The roasting furnace 61 may be a rotary kiln. The roasting furnace 61 has an inlet 62 to which nickel oxide ore is supplied, a sulfur source supply unit 63 arranged in the middle of the roasting furnace 61, and an outlet 64 from which roasted products are discharged. An oxidation roasting process is performed between the inlet 62 and the sulfur source supply part 63, and a sulfuric acid roasting process is performed between the sulfur source supply part 63 and the outlet 64, thereby producing a roasting product containing a nickel sulfate compound. You can get things.
 ニッケル酸化鉱石としては、リモナイト、サプロライト等のニッケル分を含むラテライト鉱石が挙げられる。リモナイトは、鉄分が少ないリモナイトでも、鉄分が多いリモナイトでもよく、サプロライトは、ニッケル含有量が高い(例えばNi含有量が1.8wt%以上)サプロライトでも、ニッケル含有量が低い(例えばNi含有量が1.8wt%未満)サプロライトでもよい。焙焼炉に供給されるニッケル酸化鉱石には、酸化ニッケル、水酸化ニッケル等のニッケル分を含む原料物質を添加することも可能である。 Examples of nickel oxide ores include laterite ores containing nickel such as limonite and saprolite. The limonite may be a low iron content limonite or a high iron content limonite, and the saprolite may have a high nickel content (for example, a Ni content of 1.8 wt% or more) or a low nickel content (for example, a low nickel content). Saprolite may be used (less than 1.8 wt%). It is also possible to add a raw material containing nickel components such as nickel oxide and nickel hydroxide to the nickel oxide ore supplied to the roasting furnace.
 酸化焙焼工程に先立って、細断、粉砕、磨滅などの操作でニッケル酸化鉱石及びその他の原料の粒子径を小さくすることが好ましい。焙焼工程において反応は原料の表面から開始するので、原料の粒子径が小さいほど反応時間が短くなり、好ましい。粉砕手段としては、特に限定されないが、ボールミル、ロッドミル、ハンマーミル、流体エネルギーミル、振動ミル等の1種又は2種以上を用いることができる。粉砕後の粒子径は、特に限定されない。リモナイト鉱石のように、微粒子の状態で入手できる原料の場合は、そのまま酸化焙焼工程に供給してもよい。原料鉱石を酸化焙焼工程に供給する際は、乾燥粉末でもよく、水分を含むスラリー状でもよい。原料鉱石の予備乾燥を行う場合の装置は、特に限定されず、ジョークラッシャーのように粉砕と乾燥を一連の動作として実施する装置でもよく、ロータリードライヤー、インパクトドライヤー等の乾燥装置を使用することもできる。リモナイト鉱石は微粉が多いので、リモナイト鉱石を使用する場合には、焙焼炉にダストを回収する操作を付加することが好ましい。 Prior to the oxidation roasting step, it is preferable to reduce the particle size of nickel oxide ore and other raw materials by operations such as shredding, crushing and abrasion. Since the reaction starts from the surface of the raw material in the roasting step, the smaller the particle size of the raw material, the shorter the reaction time, which is preferable. The crushing means is not particularly limited, but one or more kinds such as a ball mill, a rod mill, a hammer mill, a fluid energy mill and a vibration mill can be used. The particle size after pulverization is not particularly limited. In the case of a raw material that can be obtained in the form of fine particles, such as limonite ore, it may be directly supplied to the oxidation roasting step. When the raw material ore is supplied to the oxidation roasting step, it may be a dry powder or a slurry containing water. The apparatus for performing preliminary drying of the raw material ore is not particularly limited, and may be an apparatus that performs crushing and drying as a series of operations like a jaw crusher, or a drying apparatus such as a rotary dryer or an impact dryer may be used. it can. Since limonite ore has a large amount of fine powder, when using limonite ore, it is preferable to add an operation of recovering dust to a roasting furnace.
 酸化焙焼工程は、例えば空気等の酸素(O)を含む酸化性の雰囲気下で、ニッケル酸化鉱石を焙焼する工程である。後述する硫酸焙焼工程において鉄分が酸化鉄の状態を維持させるために、酸化焙焼工程において、ニッケル酸化鉱石に含まれるFeOOHは、Fe又はFeに変換されることが好ましい。酸化焙焼工程における焙焼温度(酸化焙焼温度)は、例えば700℃以下、具体例としては、500℃、550℃、600℃、650℃、700℃、あるいはこれらの前後又は中間の温度範囲が挙げられる。酸化焙焼温度は、FeOOH、Fe又はFeがFeOに熱分解しにくい温度として、か焼温度よりも低温であることが好ましい。
 なお、ニッケル酸化鉱石をフェロニッケルに製錬する場合のか焼工程における加熱温度は、FeOOH、Fe又はFeがFeOに変換されやすい温度として、例えば800~1100℃が挙げられる。鉱石中の酸化鉄がFeOに変換されることにより、か焼生成物から電気炉等でフェロニッケルの製錬工程を行うときには、FeO・SiOのスラグとして取り出しやすくなる。
The oxidation roasting step is a step of roasting a nickel oxide ore in an oxidizing atmosphere containing oxygen (O 2 ) such as air. In the oxidation roasting step, FeOOH contained in the nickel oxide ore is preferably converted into Fe 2 O 3 or Fe 3 O 4 in order to maintain the iron content of the iron oxide in the sulfuric acid roasting step described later. . The roasting temperature (oxidative roasting temperature) in the oxidative roasting step is, for example, 700 ° C. or lower, and specific examples include 500 ° C., 550 ° C., 600 ° C., 650 ° C., 700 ° C., or a temperature range before, after, or in the middle thereof. Is mentioned. The oxidation roasting temperature is preferably lower than the calcination temperature, as a temperature at which FeOOH, Fe 2 O 3 or Fe 3 O 4 is less likely to be thermally decomposed into FeO.
The heating temperature in the calcining step when smelting nickel oxide ore into ferro-nickel is, for example, 800 to 1100 ° C. as the temperature at which FeOOH, Fe 2 O 3 or Fe 3 O 4 is easily converted to FeO. By converting the iron oxide in the ore to FeO, it becomes easy to take out as FeO.SiO 2 slag when performing the smelting process of ferronickel from the calcined product in an electric furnace or the like.
 酸化焙焼炉は、従来のフェロニッケル製錬設備におけるか焼炉と兼用することができるため、これに更に硫酸焙焼に必要な設備と溶解、精製装置を付加させるだけで、本実施形態の処理方法を実施することができる。ニッケル酸化鉱石が得られる地域において、フェロニッケルの生産と、硫酸ニッケル化合物の生産を選択的に行うことができる。
 例えば、Ni含有量が高いサプロライトを原料とする場合は、サプロライトからフェロニッケルを生産してもよい。フェロニッケルの生産に用いられるサプロライトに含まれるNi含有量は、水分を除外した乾量基準(Dry basis)において、1.8wt%以上が好ましい。上記のサプロライトのNi含有量の例としては、1.8wt%、2.0wt%、2.5wt%、3.0wt%等が挙げられるが、これらに限定されるものではない。Ni含有量が低いサプロライト(例えばNi含有量が1.8wt%未満)又はリモナイトを原料とする場合は、硫酸焙焼を経て硫酸ニッケル化合物を生産してもよい。Ni含有量が低いサプロライト又はリモナイトにおけるNi含有量の例としては、1.6wt%、1.5wt%、1.3wt%、1.0wt%等が挙げられるが、これらに限定されるものではない。フェロニッケルと硫酸ニッケル化合物のいずれを生産するかの判断は、ニッケル酸化鉱石のNi含有量のほか、生産物であるフェロニッケル及び硫酸ニッケル化合物の需要、価格、生産コスト等を考慮してもよい。上記のNi含有量が高いサプロライトから硫酸ニッケル化合物を生産することも可能である。
 か焼炉を酸化焙焼炉として運転する場合は、上述したように、FeOの生成が抑制されるように、加熱温度が低く、還元剤の消費が少ない条件となるため、か焼炉の運転条件と比べて、エネルギー消費等のコストも削減することができる。
Since the oxidation roasting furnace can also be used as a calcining furnace in the conventional ferronickel smelting equipment, simply adding the equipment and the melting and refining equipment required for sulfuric acid roasting to this, A treatment method can be implemented. Ferro nickel production and nickel sulfate compound production can be selectively carried out in areas where nickel oxide ores are obtained.
For example, when using saprolite having a high Ni content as a raw material, ferronickel may be produced from saprolite. The Ni content contained in the saprolite used for the production of ferronickel is preferably 1.8 wt% or more on a dry basis excluding water. Examples of the Ni content of the above-mentioned saprolite include, but are not limited to, 1.8 wt%, 2.0 wt%, 2.5 wt%, and 3.0 wt%. When saprolite having a low Ni content (for example, Ni content of less than 1.8 wt%) or limonite is used as a raw material, the nickel sulfate compound may be produced through sulfuric acid roasting. Examples of the Ni content in saprolite or limonite having a low Ni content include, but are not limited to, 1.6 wt%, 1.5 wt%, 1.3 wt%, 1.0 wt% and the like. . In determining which of ferronickel and nickel sulfate compound should be produced, in addition to the Ni content of nickel oxide ore, the demand, price, production cost, etc. of the product ferronickel and nickel sulfate compound may be taken into consideration. . It is also possible to produce the nickel sulfate compound from the above-mentioned saprolite having a high Ni content.
When the calcination furnace is operated as an oxidative roasting furnace, as described above, the heating temperature is low and the reducing agent consumption is small so that the generation of FeO is suppressed. Costs such as energy consumption can also be reduced compared to the conditions.
 硫酸焙焼工程は、酸化焙焼工程で得られた焙焼生成物を硫酸焙焼することにより、硫酸ニッケル化合物を生成させる工程である。硫酸焙焼工程では、図3に示すように、酸素分圧及び二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下とする。 The sulfuric acid roasting step is a step of producing a nickel sulfate compound by roasting the roasted product obtained in the oxidation roasting step with sulfuric acid. In the sulfuric acid roasting step, as shown in FIG. 3, the oxygen partial pressure and the sulfur dioxide partial pressure are such that nickel sulfate becomes thermodynamically more stable than nickel oxide in the Ni—S—O system, and Fe—S— The condition is that iron oxide is thermodynamically more stable than iron sulfate in the O system.
 図3は、Ni-S-O系及びFe-S-O系の概念的な状態図の一例である。Ni-S-O系における各相の境界線は破線(‐‐‐‐‐)で表示し、Fe-S-O系における各相の境界線は一点鎖線(―・―・―)で表示した。矢印に添えた化学式は、それぞれの境界線から矢印に向かう側で熱力学的に安定な相を示す。図3に示す状態図の横軸はO分圧の対数を示し、右側ほどO分圧が高く、左側ほどO分圧が低い。図3に示す状態図の縦軸はSO分圧の対数を示し、上側ほどSO分圧が高く、下側ほどSO分圧が低い。分圧の単位は、例えば気圧(atm=101325Pa)である。 FIG. 3 is an example of a conceptual state diagram of the Ni—S—O system and the Fe—S—O system. The boundary line of each phase in the Ni-S-O system is shown by a broken line (---), and the boundary line of each phase in the Fe-S-O system is shown by a one-dot chain line (-.---). . The chemical formulas attached to the arrows indicate thermodynamically stable phases on the side of each boundary line toward the arrow. The horizontal axis in the state diagram shown in FIG. 3 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low. The vertical axis in the state diagram shown in FIG. 3 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure. The unit of partial pressure is, for example, atmospheric pressure (atm = 101325 Pa).
 Ni-S-O系に含まれる硫酸ニッケルとしては例えばNiSOが挙げられ、酸化ニッケルとしては例えばNiOが挙げられる。図3に示す状態図において、境界線LNiは、硫酸ニッケルが熱力学的に安定な領域と酸化ニッケルが熱力学的に安定な領域との境界線を示す。境界線LNiよりSO分圧及びO分圧が高い領域では、硫酸ニッケルが熱力学的に安定な相となる。また、境界線LNiよりSO分圧及びO分圧が低い領域では、酸化ニッケルが熱力学的に安定な相となる。 Examples of nickel sulfate contained in the Ni—S—O system include NiSO 4 , and examples of nickel oxide include NiO. In the state diagram shown in FIG. 3, a boundary line L Ni indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable. In the region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Ni , nickel sulfate is a thermodynamically stable phase. Further, in the region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Ni , nickel oxide becomes a thermodynamically stable phase.
 Fe-S-O系に含まれる硫酸鉄としては例えばFeSO及びFe(SOが挙げられ、酸化鉄としては例えばFeが挙げられる。図3に示す状態図において、境界線LFeは、硫酸鉄が熱力学的に安定な領域と酸化鉄が熱力学的に安定な領域との境界線を示す。境界線LFeよりSO分圧及びO分圧が高い領域では、硫酸鉄が熱力学的に安定な相となる。また、境界線LFeよりSO分圧及びO分圧が低い領域では、酸化鉄が熱力学的に安定な相となる。 Examples of iron sulfate contained in the Fe—S—O system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of iron oxide include Fe 2 O 3 . In the state diagram shown in FIG. 3, a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable. In the region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Fe , iron sulfate is a thermodynamically stable phase. Further, in the region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Fe , iron oxide becomes a thermodynamically stable phase.
 図3に示す状態図によれば、境界線LFeよりSO分圧及びO分圧が低く、かつ、境界線LNiよりSO分圧及びO分圧が高い領域Aにおいて、Ni-S-O系では硫酸ニッケルが、Fe-S-O系では酸化鉄が、熱力学的に安定な相となる。そこで、この重なり領域Aの条件下で、ニッケル(Ni)、酸素(O)、硫黄(S)を含む系を焙焼することにより、系中に鉄分が共存していても硫酸鉄の生成を抑制しつつ、ニッケル分を硫酸ニッケルに変換することができる。 According to the state diagram shown in FIG. 3, SO 2 partial pressure and the partial pressure of O 2 is lower than the boundary line L Fe, and, SO 2 partial pressure and the partial pressure of O 2 is in the higher region A than the boundary line L Ni, Ni In the —SO system, nickel sulfate is a thermodynamically stable phase, and in the Fe—S—O system, iron oxide is a thermodynamically stable phase. Therefore, under the condition of the overlapping region A, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S), iron sulfate is produced even if iron is present in the system. The nickel content can be converted to nickel sulfate while suppressing.
 硫酸焙焼工程における焙焼温度(硫酸焙焼温度)は、400~750℃の範囲が好ましく、550~750℃の範囲がより好ましい。硫酸焙焼温度の具体例としては、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃、あるいはこれらの前後又は中間の温度範囲が挙げられる。このような焙焼温度であれば、鉄分の還元が抑制されて、鉄分が酸化鉄、硫化鉄等の状態で硫酸ニッケル化合物と共存し得るので、焙焼生成物において粒子の凝結を抑制し、後工程の処理を容易にすることができる。また、これらの温度であれば、炭酸塩が分解するので、炭酸塩が混入している場合であっても、炭酸塩が水に溶解して不純物として残るのを防止することができ、後工程の処理を容易にすることができる。
 さらに硫酸焙焼温度は、600~700℃であることが好ましい。この温度であれば、硫酸焙焼の対象物、すなわち酸化焙焼の生成物がニッケル酸化鉱石等の原料に由来する不純物としてマンガン(Mn)を含む場合であっても、マンガンが鉄とのスピネル構造を形成することにより、マンガンを不溶物として除去しやすくなる。
The roasting temperature (sulfuric acid roasting temperature) in the sulfuric acid roasting step is preferably in the range of 400 to 750 ° C, more preferably in the range of 550 to 750 ° C. Specific examples of the sulfuric acid roasting temperature include 400 ° C., 450 ° C., 500 ° C., 550 ° C., 600 ° C., 650 ° C., 700 ° C., 750 ° C., and the temperature range before, after, or in the middle thereof. With such a roasting temperature, reduction of iron content is suppressed, and iron content can coexist with a nickel sulfate compound in a state of iron oxide, iron sulfide, etc., thus suppressing aggregation of particles in a roasted product, It is possible to facilitate the processing in the subsequent steps. Further, at these temperatures, the carbonate decomposes, so even if the carbonate is mixed, it is possible to prevent the carbonate from being dissolved in water and remaining as an impurity. Can be easily processed.
Furthermore, the sulfuric acid roasting temperature is preferably 600 to 700 ° C. At this temperature, even if the object of roasting with sulfuric acid, that is, the product of roasting with oxidation contains manganese (Mn) as an impurity derived from a raw material such as nickel oxide ore, manganese is spinel with iron. The formation of the structure facilitates removal of manganese as an insoluble matter.
 硫酸焙焼工程におけるO分圧としては、気圧(atm)単位によるO分圧の常用対数log p(O)が-4~-6の範囲が好ましく、条件等に応じて、log p(O)が-4~-5、又はlog p(O)が-5~-6の範囲がより好ましい。O分圧を低くすることにより、図3の重なり領域AにおいてもSO分圧が高くなる傾向となるので、硫酸鉄の生成を抑制しつつ、硫酸ニッケルの生成を促進することができる。この最適領域は、硫酸焙焼温度によって若干ずれ、温度が高くなる程、重なり領域Aにおけるlog p(O)が大きくなる方(零(0)に近づく方)に移動する。 The O 2 partial pressure in the sulfuric acid roasting step is preferably such that the common logarithm of the O 2 partial pressure in terms of atmospheric pressure (atm) log p (O 2 ) is in the range of −4 to −6, and depending on the conditions, etc., log p (O 2) is -4 to -5, or log p (O 2) is more preferably in the range of -5 to -6. By decreasing the O 2 partial pressure, the SO 2 partial pressure tends to increase even in the overlapping region A of FIG. 3, so that the generation of nickel sulfate can be promoted while suppressing the generation of iron sulfate. This optimum region is slightly shifted depending on the sulfuric acid roasting temperature, and the higher the temperature, the more the log p (O 2 ) in the overlapping region A increases (the closer to zero (0)).
 硫酸焙焼工程におけるSO分圧としては、気圧(atm)単位によるSO分圧の常用対数log p(SO)が-1~+1の範囲が好ましく、log p(SO)が-1~0の範囲がより好ましい。図3の重なり領域Aの中でも、SO分圧をより高くすることで、硫酸塩の生成を促進することができる。さらに、SO分圧を常圧程度、又はそれ以下の範囲(分圧の常用対数が略0以下)とすることで、硫酸焙焼工程における焙焼雰囲気の全圧も過大にならず、設備の取り扱いを容易にすることができる。 As the SO 2 partial pressure in the sulfuric acid roasting step, the common logarithm of the SO 2 partial pressure in atmospheric pressure (atm) log p (SO 2 ) is preferably in the range of −1 to +1 and log p (SO 2 ) is −1. The range of to 0 is more preferable. In the overlapping region A in FIG. 3, the SO 2 partial pressure can be made higher to promote the production of sulfate. Furthermore, by setting the SO 2 partial pressure to about normal pressure or less (the common logarithm of partial pressure is about 0 or less), the total pressure of the roasting atmosphere in the sulfuric acid roasting step does not become excessive, and the equipment Can be easily handled.
 硫酸焙焼工程を実施する焙焼装置としては、特に限定されず、ロータリーキルン、流動層型の加熱炉、棚型焙焼炉、多段焙焼炉、その他各種の焙焼炉等が挙げられる。焙焼装置内でO分圧が低い条件を維持するには、窒素(N)、アルゴン(Ar)等の不活性ガスを焙焼装置に供給してもよい。これらの不活性ガスは、気体や蒸気等の揮発性成分を焙焼装置に供給する際の担体として用いることもできる。ニッケル酸化鉱石等の原料に硫黄分が少ない場合は、硫黄分を硫酸焙焼工程に供給してもよい。硫黄分の供給源(硫黄源)としては、特に限定されないが、固体硫黄(elementary sulfur, S)、硫黄酸化物(SO等)、硫酸(HSO)、硫酸塩、硫化物、黄鉄鉱(FeS)等の硫化鉱石などが挙げられる。硫黄源が元素状硫黄である場合は、酸素富化の状態でSOガスを生成させることが好ましい。 The roasting device for carrying out the sulfuric acid roasting step is not particularly limited, and examples thereof include a rotary kiln, a fluidized bed type heating furnace, a shelf type roasting furnace, a multi-stage roasting furnace, and various other roasting furnaces. In order to maintain the condition of low O 2 partial pressure in the roasting device, an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting device. These inert gases can also be used as a carrier when supplying volatile components such as gas and vapor to the roasting device. When the raw material such as nickel oxide ore has a low sulfur content, the sulfur content may be supplied to the sulfuric acid roasting step. The source of sulfur content (sulfur source) is not particularly limited, but solid sulfur (elementary sulfur, S), sulfur oxides (SO 2, etc.), sulfuric acid (H 2 SO 4 ), sulfate, sulfide, pyrite Examples include sulfide ores such as (FeS 2 ). When the sulfur source is elemental sulfur, it is preferable to generate SO 2 gas in an oxygen-enriched state.
 硫酸焙焼工程により、硫酸ニッケル化合物を含む焙焼生成物が得られる。この焙焼生成物に水を供給し、硫酸ニッケル化合物を水に溶解させる水溶解工程により、硫酸ニッケル化合物を含む溶液が得られる。上述したように、硫酸焙焼工程の焙焼生成物に含まれる鉄分は、酸化鉄、硫化鉄等、水に難溶の状態となるので、固液分離で固相と液相とに分離することにより、液相として硫酸ニッケル化合物が得られ、固相として鉄分等を含む不純物が分離される。さらに必要に応じて、例えば硫酸ニッケルと硫酸コバルト等とを分離するため、精製工程を行うことにより、コバルト等の不純物が除去された硫酸ニッケル化合物を得ることができる。 By the sulfuric acid roasting process, a roasted product containing a nickel sulfate compound is obtained. A solution containing a nickel sulfate compound is obtained by a water dissolution step of supplying water to the roasted product and dissolving the nickel sulfate compound in water. As described above, the iron content contained in the roasted product of the sulfuric acid roasting step is insoluble in water, such as iron oxide and iron sulfide, so that it is separated into a solid phase and a liquid phase by solid-liquid separation. As a result, a nickel sulfate compound is obtained as a liquid phase, and impurities containing iron and the like are separated as a solid phase. Further, if necessary, a nickel sulfate compound from which impurities such as cobalt have been removed can be obtained by performing a purification step in order to separate nickel sulfate from cobalt sulfate or the like.
 水溶解工程で焙焼生成物に添加される水は、不純物を含まないように処理された純水が好ましい。水処理方法としては、特に限定されないが、濾過、膜分離、イオン交換、蒸留、消毒、薬剤処理、吸着などの1種以上が挙げられる。溶解用の水として、水源から得られる上水、工業用水等を用いてもよく、他のプロセスで生じた排水を処理した水を用いてもよい。2種類以上の水を用いてもよい。純水に限らずpH=4程度の硫酸酸性溶液で溶解することも可能である。例えば、溶液のpHが4~5程度、例えば3.8~5.5で、酸化還元電位測定で酸化域となる領域では、他の硫酸塩等の不純物の溶解を抑制しつつ、硫酸ニッケル化合物を選択的に水相に抽出するのに有利であるため、好ましい。 The water added to the roasted product in the water dissolution step is preferably pure water that has been treated so as not to contain impurities. The water treatment method is not particularly limited and may be one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like. As the water for dissolution, tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating the wastewater generated in another process may be used. You may use 2 or more types of water. Not only pure water but also a sulfuric acid acidic solution having a pH of about 4 can be used for dissolution. For example, in a region where the pH of the solution is about 4 to 5, for example, 3.8 to 5.5, which is an oxidation region in the redox potential measurement, nickel sulfate compound is suppressed while suppressing dissolution of other impurities such as sulfates. Is preferred because it is advantageous to selectively extract the broth in the aqueous phase.
 硫酸ニッケルの水への溶解度は、150℃において最も高く、100gの溶液に55gのNiSOが含まれるが、0℃でも100gの溶液に22gのNiSOが含まれる。このため、溶解操作は水の沸点以下で実施することが望ましい。また、水溶解工程で得られる溶液は、NiSOが常温でも析出しない濃度とすることが好ましく、それよりNiSOが高濃度の溶液では加温状態を維持することが好ましい。 The solubility of nickel sulphate in water is highest at 150 ° C., 100 g of solution contains 55 g of NiSO 4, but even at 0 ° C. 100 g of solution contains 22 g of NiSO 4 . Therefore, it is desirable to carry out the dissolving operation at a temperature below the boiling point of water. Further, it is preferable that the solution obtained in the water dissolving step has a concentration at which NiSO 4 does not precipitate even at room temperature, and it is preferable that the solution having a higher concentration of NiSO 4 maintains a heated state.
 水溶解工程の後、固液分離の方法は、特に限定されず、濾過法、遠心分離法、沈降分離法などが挙げられる。望ましくは、固相に含まれる微粒子の分離性能が高い装置とすることが好ましい。例えば、濾過法において、濾過の方式は特に限定されず、重力濾過、減圧濾過、加圧濾過、遠心濾過、濾過助剤添加型濾過、圧搾絞り濾過等が挙げられる。差圧の調整が容易で、迅速な分離が可能となる加圧濾過が好ましい。 The solid-liquid separation method after the water dissolution step is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a sedimentation separation method. Desirably, it is preferable to use an apparatus having a high performance of separating fine particles contained in the solid phase. For example, in the filtration method, the method of filtration is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filter aid addition type filtration, squeezing filtration and the like. Pressure filtration is preferable because the differential pressure can be easily adjusted and rapid separation is possible.
 硫酸ニッケル化合物と共存し得る不純物としては、鉄(Fe)、コバルト(Co)、アルミニウム(Al)等が挙げられる。これらの金属塩が焙焼工程において硫酸塩となっている場合、硫酸ニッケル化合物を水に溶解させたときに、硫酸鉄、硫酸コバルト等も溶解する。さらに、水中では例えば鉄がFeOOH、Fe、Fe等の酸化物等として沈殿し、硫酸ニッケル化合物から不純物の除去が容易になる。本実施形態の硫酸焙焼工程は、鉄分が硫酸鉄となりにくい条件を設定しているため、水溶解及び固液分離を経ることで、鉄分の少ない硫酸ニッケル化合物が得られる。硫酸ニッケル化合物を溶解した後の酸化鉄等を含む残渣は、セメントの鉄分として再利用することもできる。また、酸化鉄等の鉄分が多い残渣は、溶融還元炉、電気炉等を用いた製鉄原料として銑鉄等の生産に、あるいは、顔料、フェライト、磁性材料、焼結材等に利用することもできる。特に、ニッケル酸化鉱石を産出する地域が工業地域、都市等から離れた遠隔地である場合等には、ニッケル分と同様に、鉄分も現地で製品化することが輸送費等の観点から有利である。例えば、フェロニッケルの製錬工程に設けた電気炉を利用して銑鉄を生産し、減容すれば鉄地金として搬出することも容易になる。 Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al). When these metal salts are sulfates in the roasting step, when the nickel sulfate compound is dissolved in water, iron sulfate, cobalt sulfate, etc. are also dissolved. Further, in water, for example, iron precipitates as oxides such as FeOOH, Fe 2 O 3 , Fe 3 O 4, etc., and impurities can be easily removed from the nickel sulfate compound. In the sulfuric acid roasting step of the present embodiment, conditions are set such that the iron content is unlikely to become iron sulfate, and therefore, a nickel sulfate compound having a low iron content can be obtained through water dissolution and solid-liquid separation. The residue containing iron oxide or the like after dissolving the nickel sulfate compound can be reused as the iron content of cement. Further, the iron-rich residue such as iron oxide can be used for producing pig iron or the like as an iron-making raw material using a smelting reduction furnace, an electric furnace or the like, or for pigments, ferrites, magnetic materials, sintered materials, etc. . In particular, when the area producing nickel oxide ore is a remote area away from industrial areas, cities, etc., it is advantageous from the viewpoint of transportation costs to commercialize iron as well as nickel in the field. is there. For example, if pig iron is produced using an electric furnace provided in the smelting process of ferronickel and the volume of the pig iron is reduced, it can be easily carried out as iron ingot.
 不純物のうち、例えば銅(Cu)、金(Au)、銀(Ag)、白金族金属(PGM)等、水素(H)よりイオン化傾向が低い金属は、水溶解工程で固体として残るため、固液分離工程により除去することができる。固液分離工程により除去される固体には、上記の不純物のほか、As,Pb,Zn等の化合物が含まれ得る。これらの不純物が含まれる固体は、有価物としてリサイクル処理することもできる。 Among impurities, for example, metals having a lower ionization tendency than hydrogen (H), such as copper (Cu), gold (Au), silver (Ag), and platinum group metal (PGM), remain as solids in the water dissolution step, and thus are It can be removed by a liquid separation step. The solids removed by the solid-liquid separation step may include compounds such as As, Pb, and Zn in addition to the above impurities. Solids containing these impurities can also be recycled as valuable resources.
 水溶解及び固液分離を経て得られる溶液は、硫酸ニッケル化合物を主成分とするため、硫酸ニッケル化合物の溶液のまま、あるいは乾燥等により硫酸ニッケル化合物の固体として、輸送し、利用することができる。用途によっては、溶液中の不純物として、例えば硫酸コバルト等を低減することが望まれる場合には、溶媒抽出、電解透析(Electrodialysis)、電解採取(Electrowinning)、電解精製(Electro refining)、イオン交換、晶析等の技術を利用することができる。 Since the solution obtained through water dissolution and solid-liquid separation has a nickel sulfate compound as a main component, it can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. . Depending on the application, if it is desired to reduce, for example, cobalt sulfate as impurities in the solution, solvent extraction, electrodialysis, electrowinning, electrorefining, ion exchange, Techniques such as crystallization can be used.
 溶媒抽出の場合は、ニッケルよりもコバルトを優先的又は選択的に溶媒中に抽出できる抽出剤を用いることが好ましい。これにより、硫酸ニッケル化合物を水系の溶液中に残して、効率的な精製が可能になる。抽出剤としては、ホスフィン酸基、チオホスフィン酸基等の、金属イオンと結合し得る官能基を有する有機化合物が挙げられる。溶媒抽出においては、希釈剤として、抽出剤を水から分離させることが可能な有機溶媒を用いてもよい。コバルト等の金属イオンと結合した抽出剤を希釈剤に溶解させることにより、抽出剤を大量に使用しなくても、硫酸ニッケル化合物を含有する水溶液からの分離が容易になる。希釈剤は、水と混和しにくい有機溶媒が好ましい。 In the case of solvent extraction, it is preferable to use an extractant that can preferentially or selectively extract cobalt over nickel in the solvent. This allows the nickel sulfate compound to remain in the aqueous solution for efficient purification. Examples of the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group. In the solvent extraction, an organic solvent capable of separating the extractant from water may be used as the diluent. Dissolving the extractant combined with metal ions such as cobalt in the diluent facilitates separation from the aqueous solution containing the nickel sulfate compound without using a large amount of the extractant. The diluent is preferably an organic solvent that is immiscible with water.
 晶析の場合は、温度の変化、溶媒の減少、他の物質の添加等の少なくとも1つの因子により、目的物である硫酸ニッケル化合物を溶液中から結晶化させればよい。この際、不純物の少なくとも一部を液相に残留させることにより、精製が可能になる。具体例としては、蒸発晶析法と貧溶媒晶析法がある。蒸発晶析法は、減圧下で沸騰又は蒸発により溶液を濃縮させ、硫酸ニッケル化合物を晶析させる。貧溶媒晶析法は、医薬品製造などで利用されている晶析方法で、例えば硫酸ニッケル化合物を含む溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる。晶析に用いられる有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上が挙げられる。2種類以上の有機溶媒が用いられてもよい。有機溶媒が水と混和する濃度範囲については、硫酸ニッケル化合物が析出する程度に有機溶媒が添加された濃度で混和することが好ましく、任意の割合で自由に混和することがより好ましい。晶析工程で加える有機溶媒は、無水の有機溶媒に限らず、晶析に支障のない程度で含水の有機溶媒であってもよい。水と有機溶媒との比率は、特に限定されないが、例えば1:20~20:1の範囲で設定してもよいが、1:1程度、例えば1:2~2:1が好ましい。 In the case of crystallization, the target nickel sulfate compound may be crystallized from the solution by at least one factor such as temperature change, solvent reduction, addition of another substance, and the like. At this time, purification can be performed by leaving at least a part of the impurities in the liquid phase. Specific examples include an evaporation crystallization method and a poor solvent crystallization method. In the evaporative crystallization method, the solution is concentrated by boiling or evaporation under reduced pressure to crystallize the nickel sulfate compound. The poor solvent crystallization method is a crystallization method used in the production of pharmaceuticals and the like, for example, an organic solvent is added to a solution containing a nickel sulfate compound to precipitate a nickel sulfate compound. The organic solvent used for crystallization is preferably an organic solvent miscible with water, and examples thereof include at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more kinds of organic solvents may be used. Regarding the concentration range in which the organic solvent is miscible with water, it is preferred that the organic solvent is miscible at a concentration at which the nickel sulfate compound is precipitated, and it is more preferred that the organic solvent is freely mixed at an arbitrary ratio. The organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent as long as it does not hinder crystallization. The ratio of water to the organic solvent is not particularly limited, and may be set, for example, in the range of 1:20 to 20: 1, but is preferably about 1: 1 and is preferably 1: 2 to 2: 1.
 晶析等を経て固体の硫酸ニッケル化合物を得る場合、硫酸ニッケルの無水物、1水和物、2水和物、5水和物、6水和物、7水和物等の状態となっていてもよい。晶析により析出した硫酸ニッケル化合物は、固液分離により溶液から分離することができる。固液分離の方法は、特に限定されないが、濾過法、遠心分離法、沈降分離法などが挙げられる。溶液側に溶解した金属は、中和して沈殿等の方法により溶液から取り除くことが好ましい。浄化された溶液が、水と有機溶媒との混合物が主体とする場合、蒸留等の方法で水と有機溶媒とを分離することができる。 When a solid nickel sulfate compound is obtained through crystallization or the like, it is in the state of anhydrous nickel sulfate, monohydrate, dihydrate, pentahydrate, hexahydrate, heptahydrate, etc. May be. The nickel sulfate compound deposited by crystallization can be separated from the solution by solid-liquid separation. The solid-liquid separation method is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. The metal dissolved on the solution side is preferably removed from the solution by a method such as neutralization and precipitation. When the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
 本実施形態のニッケル酸化鉱石の処理方法及び処理装置によれば、次の効果が得られる。
(1)酸化焙焼及び硫酸焙焼の組み合わせにより、ニッケル酸化鉱石から高純度の硫酸ニッケル化合物を生産することができる。
(2)焙焼炉は、ニッケル酸化鉱石から乾式製錬によりフェロニッケルを生産する工程におけるか焼炉と兼用することができる。
(3)硫酸焙焼工程において硫酸鉄の生成を抑制することができる。また、水素(H)ガスの発生も抑制することができる。
(4)焙焼生成物は、鉄分が水に溶解しにくい化学種になり、ニッケル分が硫酸ニッケル化合物として水に溶解しやすくなるので、鉄分の除去が容易になる。
(5)従来法に比べて設備コストを低減することができ、焙焼炉として既存の設備を使用することも可能である。
According to the nickel oxide ore processing method and the processing apparatus of the present embodiment, the following effects can be obtained.
(1) A high-purity nickel sulfate compound can be produced from nickel oxide ore by a combination of oxidation roasting and sulfuric acid roasting.
(2) The roasting furnace can also be used as a calcining furnace in the step of producing ferronickel from nickel oxide ore by dry smelting.
(3) Generation of iron sulfate can be suppressed in the sulfuric acid roasting step. Further, generation of hydrogen (H 2 ) gas can also be suppressed.
(4) In the roasted product, the iron content becomes a chemical species that is difficult to dissolve in water, and the nickel content easily dissolves in water as a nickel sulfate compound, so that the iron content is easily removed.
(5) The equipment cost can be reduced as compared with the conventional method, and the existing equipment can be used as a roasting furnace.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 例えば設備の設計時において、通常のフェロニッケルを製造する設備として配置設計を実施し、か焼炉の出口から焙焼生成物を硫酸焙焼炉へ移送できるように設計を追加することも可能である。例えば、硫酸ニッケル化合物しか製造する必要がなくなった場合は、フェロニッケル生産用の電気炉の設置を省略してもよい。逆に、フェロニッケルの需要が高い場合等には、電気炉の設置又はフェロニッケルの生産開始を先に実施し、硫酸焙焼炉の設置又は硫酸ニッケル化合物の生産開始を後にしてもよい。このように、ニッケル製品の市場と需要に不透明感がある場合であっても、リモナイト酸化鉱石を用いた硫酸ニッケル生産設備と、サプロライト酸化鉱石を用いたフェロニッケル生産設備がいずれも乾式法で処理できるため、ニッケル酸化鉱石を産出する同一の地域で一貫処理ができる操業が可能となり、投資リスクを回避する観点でも有利となる。
Although the present invention has been described above based on the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
For example, at the time of equipment design, it is possible to carry out layout design as equipment for manufacturing ordinary ferronickel and add design so that roasted products can be transferred from the outlet of the calcining furnace to the sulfuric acid roasting furnace. is there. For example, when only the nickel sulfate compound needs to be produced, the installation of the electric furnace for producing ferronickel may be omitted. On the contrary, when the demand for ferronickel is high, the electric furnace may be installed or the production of ferronickel may be started first, and the sulfuric acid roasting furnace or the production of the nickel sulfate compound may be started later. In this way, even when there is uncertainty about the market and demand for nickel products, both the nickel sulfate production facility using limonite oxide ore and the ferronickel production facility using saprolite oxide ore are treated by the dry process. As a result, it is possible to perform operations that can be consistently processed in the same area that produces nickel oxide ore, which is also advantageous from the viewpoint of avoiding investment risk.
(1)ニッケル酸化鉱石
 後述の試験には、フィリピン国スリガオ島のニッケルリモナイト鉱石を使用した。鉱物の組成(wt%)の分析結果を次に示す。
(1) Nickel Oxide Ore Nickel limonite ore from Surigao Island, Philippines was used in the test described below. The analysis results of the mineral composition (wt%) are shown below.
Fe分:41%、MgO:16%、SiO:3%、Al:2.7%、Cr分:0.15%、Ni分:1.2%、Co分:0.05%、その他の固形分:5.9%、水分:30% Fe content: 41%, MgO: 16% , SiO 2: 3%, Al 2 O 3: 2.7%, Cr content: 0.15%, Ni content: 1.2%, Co content: 0.05% , Other solid content: 5.9%, water content: 30%
 なお、Fe分(鉱石の41%)のうち、ゲーサイト:FeOOHが55%を占めた。MgO(鉱石の16%)は主にモンモリロン石:CaMgSi10(OH)であった。SiO(鉱石の3%)は上記のモンモリロン石とサーペンティン:(Mg,Fe)Si(OH)が主であった。サンプルの鉱石は、Ni分(鉱石の1.2%)、Co分(鉱石の0.05%)等も含み、水分は30%であった。 Of the Fe content (41% of the ore), goethite: FeOOH accounted for 55%. MgO (16% of ore) was mainly montmorillonite: CaMg 2 Si 4 O 10 (OH) 2 . SiO 2 (3% of ore) was mainly montmorillonite and the serpentine: (Mg, Fe) 3 Si 2 O 5 (OH) 4 . The sample ore also contained Ni content (1.2% of ore), Co content (0.05% of ore), etc., and had a water content of 30%.
(2)焙焼試験に用いる試験装置
 焙焼試験には、図4に示す試験装置100を用いた。受皿101の上には、ニッケル酸化鉱石のサンプルが載せられる。この受皿101は、電気炉103の中に設置したガラス容器102の内側にセットされる。ガラス容器102には雰囲気温度を計測できる熱電対等の温度計104と、各種のガスを注入できる注入管105と、内部で発生した排ガスの出口106が設けられている。電気炉103は所望の温度に昇温してサンプルを加熱することができる。注入管105においては、常時アルゴンガスを注入しながら、必要に応じて乾燥空気もしくは窒素ガスを含むSOガスを供給することができる。出口106から排出される排ガスは、ガス分析装置107を経て排ガス処理装置108で処理することができる。各種のガス量と分析値のデータはコンピュータ(図示せず)に収集することができる。
(2) Test apparatus used for roasting test For the roasting test, the test apparatus 100 shown in FIG. 4 was used. A sample of nickel oxide ore is placed on the pan 101. The saucer 101 is set inside a glass container 102 installed in an electric furnace 103. The glass container 102 is provided with a thermometer 104 such as a thermocouple that can measure the ambient temperature, an injection pipe 105 that can inject various gases, and an outlet 106 for exhaust gas generated inside. The electric furnace 103 can raise the temperature to a desired temperature to heat the sample. In the injection pipe 105, dry air or SO 2 gas containing nitrogen gas can be supplied as needed while constantly injecting argon gas. The exhaust gas discharged from the outlet 106 can be processed by the exhaust gas processing device 108 via the gas analyzer 107. Data of various gas amounts and analytical values can be collected by a computer (not shown).
(3)酸化焙焼工程
 10gのニッケルリモナイト鉱石を容器に採取し、110℃で2時間、鉱石を乾燥させ水分を取り除いた。乾燥させた鉱石を受皿101の上に5g計量した。電気炉103の中にガラス容器102をセットし、そのガラス容器102内に鉱石を量り入れた受皿101をセットした。ガラス容器102には、雰囲気温度を計測できる熱電対からなる温度計104と、各種のガスが注入できる注入管105と、発生した排ガス出口106を設けて、電気炉103で規定温度に昇温してサンプルを酸化焙焼した。酸化焙焼温度は600℃と700℃で実施した。酸化焙焼の間は、サンプルに注入管105を通じて適宜Ar又はairが供給される(SOは供給されない)ようにした。
(3) Oxidation and Roasting Step 10 g of nickel limonite ore was collected in a container, and the ore was dried at 110 ° C. for 2 hours to remove water. 5 g of dried ore was weighed on the saucer 101. The glass container 102 was set in the electric furnace 103, and the saucer 101 in which the ore was weighed was set in the glass container 102. The glass container 102 is provided with a thermometer 104 composed of a thermocouple capable of measuring the ambient temperature, an injection pipe 105 capable of injecting various gases, and a generated exhaust gas outlet 106, and heated to a specified temperature in the electric furnace 103. The sample was oxidatively roasted. The oxidation roasting temperature was 600 ° C and 700 ° C. During the oxidation roasting, Ar or air was appropriately supplied to the sample through the injection pipe 105 (SO 2 was not supplied).
(4)硫酸焙焼工程
 硫酸焙焼工程は、(3)酸化焙焼工程に引き続いて、次の3通りの条件で実施した。
(条件例1)サンプルに濃硫酸を50%添加し、温度600℃で、log p(O)が-4、log p(SO)が+1~-1の範囲となるように調整する。
(条件例2)サンプルに硫黄を加え、酸素を反応不足気味で加え、温度600℃で、log p(O)が-4、log p(SO)が+1~-1の範囲となるように調整する。
(条件例3)サンプルに硫黄を加え、酸素を反応不足気味で加え、温度700℃で、log p(O)が-4、log p(SO)が+1~-1の範囲となるように調整する。
(4) Sulfuric acid roasting step Following the (3) oxidative roasting step, the sulfuric acid roasting step was performed under the following three conditions.
(Condition example 1) 50% concentrated sulfuric acid is added to the sample, and adjusted at a temperature of 600 ° C. so that log p (O 2 ) is −4 and log p (SO 2 ) is in the range of +1 to −1.
(Condition example 2) Sulfur was added to the sample and oxygen was added in a reaction-deficient manner so that the log p (O 2 ) was -4 and the log p (SO 2 ) was in the range of +1 to -1 at a temperature of 600 ° C. Adjust to.
(Condition example 3) Sulfur was added to the sample and oxygen was added in a reaction-deficient manner so that the log p (O 2 ) was -4 and the log p (SO 2 ) was in the range of +1 to -1 at a temperature of 700 ° C. Adjust to.
(5)水溶解工程
 上記(3)酸化焙焼工程及び(4)硫酸焙焼工程を経たサンプル3種をそれぞれ純水50gと一緒に1時間撹拌した。撹拌が終了したスラリーはミリポア濾過分離器にて固形分を濾過した。ミリポアを透過した濾液を原子吸光分析に供し、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)の濃度を測定した。この測定結果から、焙焼に用いたサンプル中に含まれる量を100wt%として、純水に溶解した割合(溶解率)を求めた。例えばNiの溶解率は、焙焼生成物に含まれるNiのうち、純水に溶解したNiの割合を意味する。溶解率(wt%)を算出した結果を次に示す。条件例の番号は、上述の(4)硫酸焙焼工程に示す各条件例に対応している。
(5) Water Dissolving Step Each of the three types of samples that had been subjected to the above (3) oxidation roasting step and (4) sulfuric acid roasting step was stirred with 50 g of pure water for 1 hour. The solid content of the stirred slurry was filtered with a Millipore filter separator. The filtrate that passed through Millipore was subjected to atomic absorption spectrometry, and the concentrations of nickel (Ni), iron (Fe), and manganese (Mn) were measured. From this measurement result, the proportion (dissolution rate) dissolved in pure water was determined with the amount contained in the sample used for roasting being 100 wt%. For example, the dissolution rate of Ni means the ratio of Ni dissolved in pure water to Ni contained in the roasted product. The results of calculating the dissolution rate (wt%) are shown below. The number of the condition example corresponds to each condition example shown in the above (4) sulfuric acid roasting step.
(条件例1)Ni溶解率:89%、Fe溶解率:1%、Mn溶解率:75%
(条件例2)Ni溶解率:86%、Fe溶解率:1%、Mn溶解率:74%
(条件例3)Ni溶解率:86%、Fe溶解率:1%、Mn溶解率:2%
(Condition example 1) Ni dissolution rate: 89%, Fe dissolution rate: 1%, Mn dissolution rate: 75%
(Condition example 2) Ni dissolution rate: 86%, Fe dissolution rate: 1%, Mn dissolution rate: 74%
(Condition example 3) Ni dissolution rate: 86%, Fe dissolution rate: 1%, Mn dissolution rate: 2%
 溶解率の算出結果から、600℃以上(特に600℃より高い温度)で硫酸焙焼すると、Fe+MnO→MnFeの反応にて、マンガンが鉄とのスピネル構造を生成し、Mnが水に溶解しにくくなることが分かった。硫酸焙焼温度が700℃以上(特に700℃より高い温度)の場合、硫酸塩の分解が発生することが知られているため、硫酸焙焼の温度は600℃~700℃が望ましいと考えられる。 From the calculation results of the dissolution rate, when sulfuric acid roasting is performed at 600 ° C. or higher (particularly higher than 600 ° C.), manganese forms a spinel structure with iron in the reaction of Fe 2 O 3 + MnO → MnFe 2 O 4 , It was found that Mn becomes difficult to dissolve in water. It is known that when the sulfuric acid roasting temperature is 700 ° C. or higher (particularly higher than 700 ° C.), the decomposition of the sulfate occurs, so it is considered preferable that the sulfuric acid roasting temperature is 600 ° C. to 700 ° C. .
 本発明は、二次電池等の電気部品、化学製品などに利用される各種のニッケル化合物又は金属ニッケルの原料として有用な高純度の硫酸ニッケル化合物の製造に利用することができる。 The present invention can be used for producing high-purity nickel sulfate compounds useful as raw materials for various nickel compounds or metallic nickel used in electric parts such as secondary batteries and chemical products.
10…第1加熱工程(酸化焙焼工程又はか焼工程)、12…ニッケル酸化鉱石、20…硫酸焙焼工程、30…水溶解工程、32…硫酸ニッケル化合物、40…精製工程、42…精製された硫酸ニッケル化合物、50…製錬工程、51…電気炉、52…フェロニッケル、60…焙焼装置、61…焙焼炉、61A…酸化焙焼工程を行う区画、61B…硫酸焙焼工程を行う区画。 10 ... 1st heating process (oxidation roasting process or calcination process), 12 ... Nickel oxide ore, 20 ... Sulfuric acid roasting process, 30 ... Water dissolution process, 32 ... Nickel sulfate compound, 40 ... Purification process, 42 ... Purification Nickel sulfate compound, 50 ... smelting process, 51 ... electric furnace, 52 ... ferronickel, 60 ... roasting device, 61 ... roasting furnace, 61A ... section for performing oxidation roasting process, 61B ... sulfuric acid roasting process Compartment to do.

Claims (6)

  1.  ニッケル酸化鉱石を、酸素を含む雰囲気で焙焼する酸化焙焼工程と、
     前記酸化焙焼工程で得られた焙焼生成物を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる酸素分圧及び二酸化硫黄分圧の条件下で加熱焙焼して、硫酸ニッケル化合物を生成する硫酸焙焼工程と、
    を有することを特徴とするニッケル酸化鉱石の処理方法。
    An oxidation roasting step of roasting nickel oxide ore in an atmosphere containing oxygen,
    In the roasting product obtained in the oxidation roasting step, nickel sulfate is more thermodynamically stable than nickel oxide in the Ni—S—O system, and iron oxide is iron sulfate in the Fe—S—O system. A sulfuric acid roasting step of producing a nickel sulfate compound by heating and roasting under conditions of oxygen partial pressure and sulfur dioxide partial pressure that are more thermodynamically stable than
    A method for treating nickel oxide ore, which comprises:
  2.  前記酸化焙焼工程において、前記ニッケル酸化鉱石に含まれるFeOOHを、Fe又はFeに変換することを特徴とする請求項1に記載のニッケル酸化鉱石の処理方法。 The method for treating nickel oxide ore according to claim 1, wherein FeOOH contained in the nickel oxide ore is converted to Fe 2 O 3 or Fe 3 O 4 in the oxidation roasting step.
  3.  前記硫酸焙焼工程の焙焼温度が600℃~700℃であることを特徴とする請求項1又は2に記載のニッケル酸化鉱石の処理方法。 The method for treating nickel oxide ore according to claim 1 or 2, wherein the roasting temperature in the sulfuric acid roasting step is 600 ° C to 700 ° C.
  4.  前記酸化焙焼工程において使用する焙焼炉がロータリーキルンであり、
     前記ロータリーキルンは、電気炉と組み合わせることにより、前記ニッケル酸化鉱石からフェロニッケルへの製錬工程に使用することができることを特徴とする請求項1~3のいずれか1項に記載のニッケル酸化鉱石の処理方法。
    The roasting furnace used in the oxidation roasting step is a rotary kiln,
    The rotary kiln can be used in a smelting process from the nickel oxide ore to ferro-nickel by combining with an electric furnace, wherein the nickel oxide ore according to any one of claims 1 to 3 is used. Processing method.
  5.  前記ニッケル酸化鉱石が、リモナイト又はサプロライトを含むことを特徴とする請求項1~4のいずれか1項に記載のニッケル酸化鉱石の処理方法。 The method for treating nickel oxide ore according to any one of claims 1 to 4, wherein the nickel oxide ore contains limonite or saprolite.
  6.  ニッケル酸化鉱石を、酸素を含む雰囲気で焙焼する酸化焙焼炉と、
     前記酸化焙焼炉で得られた焙焼生成物を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる酸素分圧及び二酸化硫黄分圧の条件下で加熱焙焼して、硫酸ニッケル化合物を生成する硫酸焙焼炉と、
    を有することを特徴とするニッケル酸化鉱石の処理装置。
    An oxidation roasting furnace that roasts nickel oxide ore in an atmosphere containing oxygen,
    In the Ni—S—O system, nickel sulfate is thermodynamically more stable than nickel oxide in the roasting product obtained in the oxidation roasting furnace, and in the Fe—S—O system, iron oxide is iron sulfate. And a sulfuric acid roasting furnace that produces a nickel sulfate compound by heating and roasting under conditions of oxygen partial pressure and sulfur dioxide partial pressure that are more thermodynamically stable than
    An apparatus for treating nickel oxide ore, comprising:
PCT/JP2018/038097 2018-10-12 2018-10-12 Method and device for processing nickel oxide ore WO2020075288A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/038097 WO2020075288A1 (en) 2018-10-12 2018-10-12 Method and device for processing nickel oxide ore
JP2020549921A JPWO2020075288A1 (en) 2018-10-12 2018-10-12 Nickel oxide ore treatment method and treatment equipment
AU2018445145A AU2018445145A1 (en) 2018-10-12 2018-10-12 Method and device for processing nickel oxide ore
PH12021550520A PH12021550520A1 (en) 2018-10-12 2021-03-10 Method and device for processing nickel oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038097 WO2020075288A1 (en) 2018-10-12 2018-10-12 Method and device for processing nickel oxide ore

Publications (1)

Publication Number Publication Date
WO2020075288A1 true WO2020075288A1 (en) 2020-04-16

Family

ID=70164643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038097 WO2020075288A1 (en) 2018-10-12 2018-10-12 Method and device for processing nickel oxide ore

Country Status (4)

Country Link
JP (1) JPWO2020075288A1 (en)
AU (1) AU2018445145A1 (en)
PH (1) PH12021550520A1 (en)
WO (1) WO2020075288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243825A1 (en) * 2023-01-11 2023-12-21 고려아연 주식회사 Method for producing aqueous solution containing nickel, cobalt and manganese

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS408253B1 (en) * 1961-01-20 1965-04-27
JPS4527201B1 (en) * 1966-04-02 1970-09-07
JPS4715584B1 (en) * 1963-12-13 1972-05-10
JPS516605B1 (en) * 1968-09-18 1976-03-01
JPS56501528A (en) * 1979-05-25 1981-10-22
JPS57501735A (en) * 1980-11-17 1982-09-24
JPS59110739A (en) * 1982-12-09 1984-06-26 ボリデン・アクテイエボラ−グ Treatment of composite sulfide rich ore

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS408253B1 (en) * 1961-01-20 1965-04-27
JPS4715584B1 (en) * 1963-12-13 1972-05-10
JPS4527201B1 (en) * 1966-04-02 1970-09-07
JPS516605B1 (en) * 1968-09-18 1976-03-01
JPS56501528A (en) * 1979-05-25 1981-10-22
JPS57501735A (en) * 1980-11-17 1982-09-24
JPS59110739A (en) * 1982-12-09 1984-06-26 ボリデン・アクテイエボラ−グ Treatment of composite sulfide rich ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243825A1 (en) * 2023-01-11 2023-12-21 고려아연 주식회사 Method for producing aqueous solution containing nickel, cobalt and manganese

Also Published As

Publication number Publication date
AU2018445145A1 (en) 2021-04-08
PH12021550520A1 (en) 2022-02-28
JPWO2020075288A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
EP2599885B1 (en) Process for production of ferronickel smelting raw material from low grade lateritic nickel ore
Shibayama et al. Treatment of smelting residue for arsenic removal and recovery of copper using pyro–hydrometallurgical process
EP3009407B1 (en) Wastewater treatment process
AU2014282527B2 (en) Hematite manufacturing method and hematite manufactured by same
KR20090042996A (en) Production of metallic nickel with low iron content
EP2796411B1 (en) Method for treating nickel oxide ore
JP4880909B2 (en) Purification method for removing sulfur from nickel compounds or cobalt compounds, and ferronickel production method
AU2019331801B2 (en) Method for producing nickel sulfate compound
US10570480B2 (en) Method for recovering scandium
AU2021204219B2 (en) Recovery of Metals from Pyrite
WO2018101039A1 (en) Ion exchange processing method, and scandium recovery method
WO2020075288A1 (en) Method and device for processing nickel oxide ore
WO2020174573A1 (en) Residue processing method and sulfatizing roasting method
AU2013220926B2 (en) Process for zinc oxide production from ore
JP7191215B2 (en) Method for treating nickel-containing raw materials
AU2019426767A1 (en) Method for treating nickel-containing raw material
Biley et al. Development of the iron-focused laterite (ARFe) process
JP2009167442A (en) Method for separating arsenic and antimony in arsenic acid aqueous solution
Khalife et al. An eco-friendly and low-cost approach for separation and recycling of Mo and Cu from molybdenite purification wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549921

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018445145

Country of ref document: AU

Date of ref document: 20181012

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936385

Country of ref document: EP

Kind code of ref document: A1