WO2020055026A1 - 백라이트 유닛 및 이를 포함하는 표시 장치 - Google Patents

백라이트 유닛 및 이를 포함하는 표시 장치 Download PDF

Info

Publication number
WO2020055026A1
WO2020055026A1 PCT/KR2019/011357 KR2019011357W WO2020055026A1 WO 2020055026 A1 WO2020055026 A1 WO 2020055026A1 KR 2019011357 W KR2019011357 W KR 2019011357W WO 2020055026 A1 WO2020055026 A1 WO 2020055026A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
substrate
light source
guide member
Prior art date
Application number
PCT/KR2019/011357
Other languages
English (en)
French (fr)
Inventor
최승리
김은주
임희수
Original Assignee
서울반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울반도체 주식회사 filed Critical 서울반도체 주식회사
Priority to EP19860830.9A priority Critical patent/EP3851905A4/en
Publication of WO2020055026A1 publication Critical patent/WO2020055026A1/ko
Priority to US17/194,286 priority patent/US11536893B2/en
Priority to US18/087,812 priority patent/US12019266B2/en
Priority to US18/503,570 priority patent/US20240069269A1/en
Priority to US18/649,737 priority patent/US20240280742A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a backlight unit and a display device including the same.
  • the liquid crystal display device is a thin display device having high resolution, and is a typical light-receiving display device.
  • the liquid crystal display device may be divided into a liquid crystal panel portion in which liquid crystals are arranged and a backlight unit that is a light source device that supplies light to the liquid crystal panel.
  • the backlight unit includes a light source in the form of a line or a point light source, and an optical sheet through which light emitted from the light source passes, and the optical sheet converts the line light source or the point light source into a light source in the form of a complete surface light source, and the luminance of light. It serves to increase the.
  • the trend of the display device is thinning, but in the case of thinning, the structure of the backlight unit is greatly limited.
  • An object of the present invention is to provide a backlight unit that is slim and has high light uniformity.
  • Another object of the present invention is to implement a slim display device by employing the backlight unit.
  • the backlight unit according to an embodiment of the present invention is provided on the light source unit for emitting light and the light source unit, has a surface roughness for diffusing the light on the top surface, and covers the light guide member in a form of embedding the light source unit Including, the light source unit includes a light emitting device provided on the substrate and a blocking pattern formed on the substrate such that an intensity of light emitted to the upper portion is about 80% or less.
  • a display device employs the backlight unit, is provided between a display panel, a light source unit providing light to the display panel, and between the display panel and the light source unit, and emits the light on the top surface thereof.
  • a light guide member having a surface roughness for diffusing, and covering the light source unit in a buried form, wherein the light source unit is provided on the substrate and the substrate and blocks the light intensity emitted to the upper portion to be less than about 80%
  • the blocking pattern may be such that the intensity of light emitted to the upper portion is about 50% or less.
  • the distance from the upper surface of the substrate to the upper surface of the light guide member may be about 400 micrometers or less.
  • the light emitting device includes a device substrate having a first surface and a second surface, a light emitting laminate provided on the second surface, and a first blocking pattern provided on the first surface can do.
  • a second blocking pattern covering the top surface of the light emitting laminate may be included.
  • the first and second blocking patterns may be DBR dielectric mirrors.
  • the first blocking pattern may be a dielectric mirror blocking blue light and yellow light
  • the second blocking pattern may be a dielectric mirror blocking blue light.
  • the light emitting laminate includes a first semiconductor layer, an active layer, and a second semiconductor layer sequentially provided on the device substrate, and when viewed on a plane, the area of the active layer is the device substrate It may be smaller than the area.
  • the light emitting device may have different light profiles with respect to the first direction and the second direction intersecting the first direction. In one embodiment of the present invention, the light emitting device may have a rectangular shape.
  • the light-emitting elements further include first and second contact electrodes provided spaced apart from each other on the light-emitting stack, and the first and second contact electrodes may be disposed along the longitudinal direction of the light-emitting elements.
  • the substrate includes first and second pad electrodes electrically connected with the first and second contact electrodes and solder interposed therebetween, and the first and second pad electrodes are approximately It can be spaced over 50 micrometers.
  • a plurality of the light emitting elements are provided, and may be arranged in a matrix shape on the substrate.
  • the light emitting devices are spaced apart at a first pitch along a first direction, and spaced apart at a second pitch along a second direction crossing the first direction, and the first pitch and the second pitch may be different from each other.
  • the distance between the edge of the substrate and the light-emitting element closest to the edge may be about 1 mm or more.
  • the display device may further include an optical sheet provided between the light source unit and the display panel to improve light output efficiency.
  • the light guide member may be made of silicone resin.
  • the light guide member may include light scattering particles provided in the silicone resin.
  • the light emitting device may emit blue light.
  • the display device may further include a light conversion film provided between the light source unit and the display panel and converting a wavelength band of light from the light emitting element.
  • the light conversion film may include at least one of quantum dots and phosphors therein.
  • the present invention provides a backlight unit having a high uniformity of light while being slim, and a display device employing the backlight unit.
  • FIG. 1 is a schematic block diagram of a display device according to an exemplary embodiment of the present invention.
  • FIG. 2 is a detailed implementation of the display device of FIG. 1, and is an exploded perspective view showing the display device according to the present embodiment.
  • FIG 3 is a perspective view illustrating a light source unit and a light guide member among backlight units of a display device according to an exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line I-I 'of FIG. 2, and is a cross-sectional view showing a light source unit, a light guide member, and an optical member.
  • 5A and 5B are plan and cross-sectional views showing a state in which light emitting devices according to an embodiment of the present invention are mounted on a substrate.
  • FIG. 6 is a cross-sectional view of a stacked structure of a light emitting device according to an embodiment of the present invention, showing a flip chip type semiconductor chip.
  • 7A and 7B are graphs showing light profiles of a conventional light emitting device and a light emitting device according to an embodiment of the present invention.
  • FIG. 8 is a plan view illustrating arrangement of light emitting elements on a substrate in a backlight unit according to an embodiment of the present invention.
  • FIG. 9 illustrates a backlight unit according to an embodiment of the present invention, and is a cross-sectional view corresponding to line I-I 'in FIG. 3.
  • FIGS. 10A, 11A, 12A, 13A, and 14A are perspective views sequentially showing a method of forming a light source unit and a light guide member according to an embodiment of the present invention
  • FIGS. 10B, 11B, 12B, 13B and 14B are cross-sectional views taken along lines III-III 'in FIGS. 10A, 11A, 12A, 13A, and 14A.
  • FIG. 1 is a schematic block diagram of a display device according to an exemplary embodiment of the present invention.
  • a display device includes a display panel 100, a backlight unit 200 providing light to the display panel 100, and a display panel 100 and a backlight unit 200 It includes a circuit portion for driving.
  • the display panel 100 may be a light-receiving display panel that displays an image including a plurality of pixels 110 but uses light emitted from the backlight unit 200.
  • the light-receiving display panel includes a liquid crystal panel, an electrophoretic panel, and an electrowetting panel, and the type is not limited thereto.
  • the display panel 100 may be a liquid crystal panel including two substrates and a liquid crystal layer disposed between the two substrates.
  • the circuit unit includes a timing controller 140, a gate driver 120, and a data driver 130.
  • the display panel 100 includes a plurality of gate lines 121 extending in one direction and a plurality of data lines 131 extending in the other direction intersecting one direction.
  • the display panel 100 may include a plurality of pixels 110.
  • the plurality of pixels 110 may be arranged along one direction and the other direction, for example, in a row direction, and each pixel 110 may correspond to a corresponding gate line among the gate lines 121 and data.
  • One of the lines 131 may be connected to a corresponding data line.
  • the timing controller 140 receives image data RGB and control signals from an external graphic control unit (not shown).
  • the control signal includes a vertical sync signal (Vsync), which is a frame discrimination signal, a horizontal sync signal (Hsync), which is a row discrimination signal, and a data enable signal with a HIGH level only during a section in which data is output to indicate an area where data is input. (DES) and main clock signal (MCLK).
  • the timing controller 140 converts the image data RGB to meet the specifications of the data driver 130, and outputs the converted image data DATA to the data driver 130.
  • the timing controller 140 generates a gate control signal GS1 and a data control signal DS1 based on the control signal.
  • the timing controller 140 outputs the gate control signal GS1 to the gate driver 120 and the data control signal DS1 to the data driver 130.
  • the gate control signal GS1 is a signal for driving the gate driver 120
  • the data control signal DS1 is a signal for driving the data driver 130.
  • the gate driver 120 generates a gate signal based on the gate control signal GS1 and outputs the gate signal to the gate lines 121.
  • the gate control signal GS1 may include a scan start signal indicating a scan start, at least one clock signal controlling an output period of the gate on voltage, and an output enable signal defining a duration of the gate on voltage. have.
  • the data driver 130 generates a gradation voltage according to the image data DATA based on the data control signal DS1 and outputs it to the data lines 131 as a data voltage.
  • the data voltage may include a positive polarity data voltage having a positive value and a negative polarity data voltage having a negative value with respect to the common voltage.
  • the data control signal DS1 includes a horizontal start signal STH indicating the start of image data DATA being transmitted to the data driver 130, a load signal to apply the data voltage to the data lines 131, and a common voltage.
  • For may include an inverted signal for inverting the polarity of the data voltage.
  • Each of the timing controller 140, the gate driver 120, and the data driver 130 is directly mounted on the display panel 100 in the form of at least one integrated circuit chip, or a flexible printed circuit board 211 (flexible printed) It may be mounted on a circuit board, attached to the display panel 100 in the form of a tape carrier package (TCP), or mounted on a separate printed circuit board (211).
  • TCP tape carrier package
  • at least one of the gate driver 120 and the data driver 130 may be integrated in the display panel 100 together with the gate lines 121, the data lines 131, and the transistor.
  • the timing controller 140, the gate driver 120, and the data driver 130 may be integrated into a single chip.
  • the backlight unit 200 provides light to the display panel 100.
  • the backlight unit 200 is connected to the circuit unit, and luminance may be controlled according to an image from the pixels 110.
  • the backlight unit 200 divides the display area of the display panel 100 into a plurality of areas, and local dimming may be implemented to adjust the brightness of the light source according to the brightness of the image.
  • the directions intersecting each other forming a plane parallel to the display panel 100 are the first direction D1 and the second direction D2, and the first direction ( The direction perpendicular to the plane formed by D1) and the second direction D2 is illustrated as the third direction D3.
  • the display device includes a display panel 100, a backlight unit 200, a lower cover 320 and an upper cover 310.
  • the display panel 100 displays an image.
  • the display panel 100 displays an image in an upward direction
  • the backlight unit 200 is disposed in a lower direction of the display panel 100, this is for convenience of description and display
  • the direction may be changed relatively by rotation or movement of the device.
  • the display panel 100 may be provided in a rectangular plate shape having long and short sides.
  • the display panel 100 may be a liquid crystal display panel, and the liquid crystal panel includes two substrates and a liquid crystal (not shown) formed between the two substrates.
  • the display panel 100 drives a liquid crystal to display an image forward.
  • a thin film transistor may be formed on one substrate and a color filter may be formed on the other substrate.
  • the positions of the thin film transistor and the color filter are not limited thereto, and may be formed differently.
  • a light source is required to realize an image.
  • the transmitted light from the light source also contains unwanted vibration vectors.
  • a polarizing plate (not shown) is attached to both sides of the display panel 100 so that the transmission axis intersects at 90 °.
  • the polarizing plate polarizes transmitted light passing through the liquid crystal into light having a specific vibration vector. Therefore, while passing through the display panel 100, the intensity of transmitted light is adjusted according to the degree of rotation of the polarization axis, so that the expression from black to white is possible.
  • the backlight unit 200 is provided under the display panel 100.
  • the backlight unit 200 includes a light source unit 210 and a light guide member 230 provided on the light source unit 210.
  • An optical member 240 may be provided between the light guide member 230 and the display panel 100.
  • the light source unit 210 provides light used for the display panel 100 to display an image, and includes light emitting elements 220 emitting light and a substrate 211 on which the light emitting elements 220 are mounted. .
  • the light emitting device 220 may emit light in various wavelength bands. In one embodiment of the present invention, the light emitting device 220 may emit light in the visible light band, for example, blue light. In addition, the light emitting device 220 may emit light of a specific color, for example, blue, green, red, etc., as well as colors such as yellow, cyan, and magenta, and emit white light rather than a specific color. have.
  • the light emitted from the light emitting device 220 is not limited thereto, and for example, the light may be ultraviolet light.
  • the light guide member 230 covers the light source unit 210 in a form of embedding the light source unit 210.
  • the light emitting element 220 is a light source corresponding to a point light source, and can be mounted in a small space, and is a very efficient light source due to its high luminance.
  • the light emitting element 220 is a point light source, uniformity of light is required.
  • uniformity of light is required in a direction perpendicular to the light emission direction of the linear light source.
  • the uniform light means that the image of the light source is not visible on the display panel 100.
  • the light emitting device 220 is a point light source, when the light emitted from the light source is used as it is in the display panel 100, the dark portion and the bright portion are divided according to the density of the emitted light, and accordingly the image quality is reduced. Accordingly, it is necessary to change the path of light emitted from the light source and increase the efficiency of the light.
  • the light guide member 230 diffuses the light emitted from the light emitting device 220 into light emitted in a variety of directions.
  • the light guide member 230 may be provided in a thin plate or film shape.
  • the light source unit 210 and the light guide member 230 will be described later with reference to the drawings.
  • the optical member 240 is provided between the light guide member 230 and the display panel 100.
  • the optical member 240 is for increasing the efficiency of light from the light source unit 210, and controls the emitted light.
  • the optical member 240 may be provided in a very thin sheet or film shape.
  • the optical member 240 may be a diffusion sheet, a prism sheet, a protective sheet, or the like.
  • a diffusion sheet, a prism sheet, a protective sheet, etc. may be provided in each of one or more sheets, and may be omitted in some cases.
  • the diffusion sheet, the prism sheet, the protective sheet, etc. may be provided individually, but the diffusion sheet and the prism sheet may be provided as a multi-function sheet or the like integrally formed.
  • the diffusion sheet may diffuse light emitted from the light source unit 210.
  • the prism sheet may collect light diffused from the diffusion sheet in a direction perpendicular to the plane of the upper display panel 100.
  • the protective sheet can be placed on the prism sheet and protects the prism sheet from scratches.
  • the optical member 240 may be used by stacking at least one of a diffusion sheet, a prism sheet, and a protective sheet, and any one sheet may be omitted if necessary.
  • a diffusion sheet a prism sheet, and a protective sheet
  • any one sheet may be omitted if necessary.
  • one multi-function sheet 243 and two diffusion sheets 245 are used as examples.
  • the optical member 240 is provided between the light source unit 210 and the display panel 100 and may further include a light conversion film 241 that converts a wavelength band of light from the light emitting element 220. have.
  • the light conversion film 241 may or may not be provided to the backlight unit 200 according to a wavelength band of light emitted from the light emitting device 220.
  • the light conversion film 241 may be provided when it is necessary to change light emitted from the light emitting unit to white light or light of a specific wavelength band.
  • the light conversion film 241 may convert ultraviolet light or blue light into green light, yellow light, and / or red light.
  • the light conversion film 241 may include a light conversion material that receives light from the light source unit 210 and converts light into other wavelengths therein.
  • the light conversion material may be a quantum dot or a phosphor.
  • the optical members 240 may include an optical conversion film 241, a multi-function sheet 243 combined with a prism sheet and a protective sheet, and two diffusion sheets 245, ,
  • the optical conversion film 241 and the multi-function sheet 243 may each have a thickness of 400 ⁇ m or less, and the diffusion sheet 245 may have a thickness of about 50 ⁇ m or less.
  • the upper cover 310 is provided on the display panel 100.
  • the upper cover 310 supports the front edge of the display panel 100.
  • a display window 311 exposing the display area of the display panel 100 is formed on the upper cover 310.
  • the lower cover 320 provides a storage space for storing the backlight unit 200 and the display panel 100.
  • the upper cover 310 is fastened to the lower cover 320 to stably fix the backlight unit 200 and the display panel 100 inside the lower cover 320.
  • the light source unit 210 and the light guide member 230 have a structure for efficiently dispersing light from the light source, which will be described below.
  • FIG. 3 is a perspective view illustrating a light source unit 210 and a light guide member 230 among backlight units of a display device according to an exemplary embodiment of the present invention
  • FIG. 4 is a cross-sectional view taken along line I-I 'of FIG. 2, It is a cross-sectional view showing the light source unit 210, the light guide member 230, and the optical member 240 together.
  • the backlight unit 200 is placed on the storage space of the lower cover 320.
  • a light source unit 210, a light guide member 230, and an optical member 240 are sequentially provided on the lower cover 320.
  • the light source unit 210 includes a substrate 211 and a plurality of light emitting elements 220 mounted on the substrate 211, and the light guide member 230 is provided on the light source unit 210.
  • the substrate 211 may be a printed circuit board, and the light emitting elements 220 may be electrically connected to the printed circuit board.
  • the light emitting devices 220 are mounted on one substrate 211 in the drawing, the present invention is not limited thereto, and the light emitting devices 220 may be mounted on a plurality of substrates 211.
  • the light emitting elements 220 are mounted on the substrate 211.
  • the light emitting devices 220 may be provided in a flip chip type.
  • the form of the light emitting devices 220 is not limited thereto, and may be provided in various forms such as a lateral type, a vertical type, and a flip chip type.
  • the light emitting device 220 may be a side emission type in which the light emission amount in the upper direction or the light intensity in the upper direction is 80% or less when the portion having the strongest light intensity is 100%. That is, in the light emitting device 220, when the maximum intensity is set to 100% in the intensity distribution of the normalized light of the emitted light according to the viewing angle, the upper direction of the light emitting device 220 (that is, the direction corresponding to the 0 ° viewing angle) The strength of the furnace may be less than about 80%. In one embodiment of the present invention, the intensity of the upper direction of the light emitting device 220 may have a value less than 80%, for example, a value of 50% or less.
  • the intensity of light in the upper direction of the light emitting device 220 may be realized by forming a light blocking pattern in the light emitting device 220.
  • a light blocking pattern in the light emitting device 220.
  • a reflective layer 213 may be provided on the substrate 211.
  • the reflective layer 213 is not provided in the direction of the display panel 100 and reflects leaked light in an upper direction to change the path of light in the direction of the display panel 100.
  • the reflective layer 213 includes a material that reflects light.
  • the reflective layer 213 reflects light from the light emitting device 220 to increase the amount of light provided to the display panel 100.
  • the light guide member 230 diffuses and guides the emitted light forward, and covers the light source unit 210 in a form of embedding the light emitting elements 220 of the light source unit 210.
  • the light guide member 230 is provided with a predetermined thickness TH on the upper portion of the light source unit 210, and is provided in a form of filling all the spaces between the light emitting elements 220. Accordingly, the light guide member 230 directly contacts both the top surface of the substrate 211 and the side surfaces and top surfaces of the light emitting elements 220.
  • the light guide member 230 while the light guide member 230 is provided in a form of embedding the light emitting elements 220 on the light source unit 210, the light guide member 230 includes a substrate 211 and a light emitting element As it is attached in direct contact with the fields 220, the light emitting elements 220 are stably fixed on the substrate 211.
  • the light emitting devices 220 may be attached to the substrate 211 through solder (see FIG. 5A, 217), and when an external force is applied to the light emitting devices 220 or the substrate 211, the light emitting devices ( 220) may be separated from the substrate 211.
  • the light guide member 230 stably fixes and supports the light emitting elements 220 on the substrate 211, external force is applied to the substrate 211 or the light emitting elements 220. Even if this is applied, the phenomenon that the light emitting elements 220 are separated from the substrate 211 is prevented. As a result, when the light emitting elements 220 are mounted on the substrate 211, separation from the substrate 211 does not occur even if it has a small solder 217 area and / or a small adhesion.
  • the light-emitting elements 220 are not only the case where the solder strength between the light-emitting elements 220 and the substrate 211 is about 100 gf or more, and even from about 10 to 100 gf, from the substrate 211 The separation of the light emitting elements 220 does not occur and is stably fixed on the substrate 211.
  • the light guide member 230 guides the light emitted from the light emitting device 220 in the direction of the display panel 100, but for dispersing the light on the upper surface so that the light traveling to the display panel 100 can be dispersed as much as possible It has a surface roughness (235).
  • the surface roughness 235 may be about 1 ⁇ m to about 10 ⁇ m, for example, about 1 to about 4 ⁇ m, or about 2 ⁇ m.
  • the light guide member 230 is basically provided to guide and diffuse light.
  • the light guide member 230 may be made of various polymer resins, and in particular, the light guide member 230 may be made of silicone resin.
  • the light guide member 230 may include various types of light scattering particles therein to increase diffusion and reflection of light.
  • the light guide member 230 may include alumina, titanium oxide particles, beads, or the like therein.
  • the light source unit 210 is provided in the form of a buried in the light guide member 230 so that the thickness of the backlight unit 200 itself is significantly reduced.
  • the light guide member 230 by providing roughness on the upper surface of the light guide member 230, light emitted from the light source unit 210 is scattered, dispersed, and diffused efficiently by the light guide member 230 to the front surface of the light guide member 230. do.
  • the light guide member 230 has an advantage of having a significantly smaller thickness than the existing invention.
  • the thickness TH of the light guide member 230 may be about 1000 ⁇ m or less, and in other embodiments, about 500 ⁇ m or less, or about 400 ⁇ m or less, or about 300 ⁇ m have.
  • the thickness of the light guide member 230 is the same value as the distance from the top surface of the substrate 211 of the light source unit 210 to the top surface of the light guide member 230.
  • the surface roughness 235 may be formed by grinding, sandblasting, wet, and / or dry etching the surface of the light guide member 230, thereby controlling the diffusion effect of light in various ways by adjusting its degree and depth. have.
  • the roughness may be provided to a uniform extent on the entire upper surface of the light guide member 230 as well as the upper portion of the light emitting device 220 for the diffusion effect of light.
  • the portion where the surface roughness 235 is formed or the degree of uniformity is not limited thereto, and may be variously modified in consideration of light efficiency, light intensity, and arrangement of the light emitting device 220.
  • the surface roughness 235 may be formed only on a portion of the light guide member 230 or may have different degrees depending on the portion.
  • roughness may vary depending on the intensity of light emitted from the light emitting devices 220. It can be formed to different extents compared to the region.
  • the body itself of the light guide member 230 is manufactured transparently, and may be provided in a form having a surface roughness 235 on its upper surface, but is not limited thereto, and the light guide member
  • the main body of 230 may have a structure for diffusion of light.
  • light scattering particles may be included so that light emitted from the light source unit 210 is more easily scattered and diffused inside the light guide member 230.
  • the light scattering particles can be inorganic materials such as TiO2, CaCO3, BaSO4, Al2O3, silicon particles.
  • the light scattering particles may be provided in the light guide member 230 in the form of beads. You can also use
  • the backlight unit having the above-described structure has a high light dispersion effect due to the light guide member, so that the uniformity of light is increased, so that other optical structures and optical sheets can be omitted, compared to the existing invention. It can be implemented with a significantly thinner thickness. As described above, since the light guide member may have a maximum thickness, for example, 300 ⁇ m or less, even if the thickness of other optical members is added, the thickness of the entire backlight unit is also significantly reduced compared to the existing invention. do.
  • the thickness of the other optical members may be variously changed depending on the type, but may have a thickness of about 50 ⁇ m to about 400 ⁇ m per one optical member, considering the thickness of the optical members in addition to the thickness of the lower cover and the substrate ,
  • the overall thickness of the backlight unit may be about 2 mm or less, or 1.7 mm or less, or 1.5 mm or less.
  • the backlight unit in the case of the backlight unit according to the present invention, light emitting elements employing a lens having a side light directing angle are used to reduce the intensity of light in the upper direction.
  • the size of the light-emitting element itself is large, and even if a light guide member is made of a material such as silicone resin on the light-emitting element, a very thick thickness is required for sufficient diffusion of light.
  • a light guide member is made of a material such as silicone resin on the light-emitting element, a very thick thickness is required for sufficient diffusion of light.
  • additional thickness is generated by providing a separate light diffusion sheet for diffusing light on the top or by forming a light diffusion pattern through printing. It was inevitable.
  • the present invention realizes a slim backlight unit by reducing the intensity of light in the upper direction of the light emitting element and maximizing the light diffusion effect using surface roughness on the light guide member.
  • the light emitting element of the light source unit is provided in a form in which emission of light in the side direction is maximized and is stably fixed on the substrate.
  • 5A and 5B are plan and cross-sectional views showing a state in which light emitting devices according to an embodiment of the present invention are mounted on a substrate.
  • the light emitting device 220 may be a flip chip type light emitting device and is provided in a rectangular parallelepiped shape. That is, the light emitting device 220 may be provided as a square when viewed on a plane, but is not limited thereto, and may be provided as a rectangle having long sides and short sides.
  • the length of the long side will be described as the first length L1 and the length of the short side will be described as the second length L2.
  • the light emitting device 220 is provided with a first contact electrode 225a and a second contact electrode 225b for electrical connection with the outside.
  • the first contact electrode 225a may be one of the positive electrode and the negative electrode of the light emitting device 220, and the second contact electrode 225b may be the other of the positive electrode and the negative electrode, respectively.
  • first and second pad electrodes 215a and 215b connected to the first and second contact electrodes 225a and 225b and solder 217, respectively, are provided.
  • the first and second pad electrodes 215a and 215b apply a signal for driving the light emitting element 220 from the circuit unit to the first and second contact electrodes 225a and 225b.
  • Each of the first and second pad electrodes 215a and 215b has corresponding first and second contact electrodes (for easy connection through the solder 217 with the first and second contact electrodes 225a and 225b). 225a, 225b).
  • the first and second pad electrodes 215a and 215b may maintain a gap GP between two pads at a specific interval or more, for example, 50 ⁇ m or more, so that the two electrodes can be easily separated. have.
  • the first and second pad electrodes 215a and 215b are spaced apart at sufficient intervals, the possibility of short circuit or short is reduced when connecting through the solder 217 with the first and second contact electrodes 225a and 225b, That makes mounting easier.
  • the light emitting device 220 has two first and second contact electrodes 225a, for stable connection between the first and second pad electrodes 215a and 215b and the first and second contact electrodes 225a and 225b. There may be a length difference between a direction in which 225b) is arranged and a direction in which it is not.
  • the first length (L1) and the second length (L2) of the light emitting device 220 may have different values, as shown, the first length ( L1) may be longer than the second length L2. In this case, the first length L1 corresponds to a direction in which the first and second contact electrodes 225a and 225b are sequentially arranged.
  • the size of the light emitting device may be provided in various ways.
  • the first length may be about 260 ⁇ m to about 340 ⁇ m, for example, 300 ⁇ m.
  • the second length may be from about 190 ⁇ m to about 270 ⁇ m, for example, 230 ⁇ m.
  • the height of the light emitting device may be about 60 ⁇ m to about 100 ⁇ m, for example, 80 ⁇ m.
  • FIG. 6 is a cross-sectional view taken along line II-II 'of FIG. 5B, and shows a flip chip type semiconductor chip among light emitting devices according to an embodiment of the present invention.
  • the flip-chip type semiconductor is formed on a substrate and then inverted to be mounted on other components, and is shown in an inverted form in the drawing.
  • the light emitting device 220 includes a device substrate 221 having a first surface 221F and a second surface 221R, and a light emitting stack provided on the second surface 221R of the device substrate 221 And first and second contact electrodes 225a and 225b connected to the light emitting laminate.
  • the element substrate 221 is not particularly limited as long as it can form a light emitting laminate on its upper surface, and may be provided as a growth substrate.
  • a sapphire substrate may be used as the device substrate 221.
  • the device substrate 221 may be made of other materials, for example, SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, Ga2O3, or the like.
  • the device substrate 221 is patterned, and a plurality of protruding patterns may be provided on the upper surface thereof.
  • the device substrate 221 may be patterned sapphire substrate ( It may be a patterned sapphire substrate (PSS).
  • the light emitting laminate includes a first semiconductor layer 223a, an active layer 224 and a second semiconductor layer 223b sequentially stacked on the second surface 221R of the device substrate 221.
  • the light emitting laminate may be provided in at least one mesa form including the active layer 224 and the second semiconductor layer 223b.
  • the light emitting laminate may include a plurality of protruding patterns, and may be spaced apart from each other between the plurality of protruding patterns.
  • An insulating film 226 is provided on the light emitting laminate. At least one contact hole CH that penetrates the active layer 224, the second semiconductor layer 223b, and the insulating layer 226 and exposes a portion of the first semiconductor layer 223a is provided in the light emitting laminate.
  • the first contact electrode 225a is connected to the first semiconductor layer 223a exposed through the contact hole CH.
  • the second contact electrode 225b is connected to the second semiconductor layer 223b exposed through the opening formed on the second semiconductor layer 223b.
  • the first and second contact electrodes 225a and 225b are disposed on the same side, and the size thereof is small, so it can be easily mounted on the wiring of the device substrate 221. . Accordingly, the light emitting device 220 may be provided at a very small micro scale.
  • the first light blocking pattern 227a is provided on the first surface 221F of the device substrate 221.
  • the first light blocking pattern 227a is for preventing light from being emitted to the first surface 221F of the device substrate 221. Since the flip chip is inverted and mounted on the substrate 211, the first surface 221F faces the upper portion toward the display panel (see FIG. 2, 100), and forms the first light blocking pattern 227a to move upward. Blocks light.
  • light emitted from the light emitting laminate due to the first light blocking pattern 227a is emitted in a side direction of the device substrate 221.
  • the first light blocking pattern 227a is a light blocking film for preventing light from the light emitting laminate from exiting through the element substrate 221 but directly to the side of the light emitting laminate, absorbing and reflecting specific light , Contains the material to be scattered.
  • the first light blocking pattern 227a is not particularly limited as long as it blocks light transmission by absorbing, reflecting, and scattering light.
  • the light non-transmissive film may be a DBR dielectric mirror, a metal reflective film formed on the insulating film 226, or a black color organic polymer film.
  • the second light blocking pattern 227b may be provided on the insulating layer 226 corresponding to the side surface of the light emitting laminate. Phenomenon in which the second light-shielding pattern 227b is provided on the side of the light-emitting laminate to affect adjacent light-emitting laminates by light emitted from a specific light-emitting laminate, or mixing with light emitted from adjacent light-emitting laminates occurs The back can be prevented.
  • the metal reflecting film is used as a light non-transmissive film, the metal reflecting film may be in a floating state electrically insulated from other light emitting laminate components.
  • the first and / or second light blocking patterns 227a and 227b described above may be band pass filters that reflect light having a specific wavelength but transmit light other than the specific wavelength.
  • the first and / or second light blocking pattern 227b when the light emitting laminate emits light having a specific wavelength, light emitted from the light emitting laminate may be reflected, but other light may be transmitted.
  • the first light blocking pattern 227a when the light emitting laminate according to the present embodiment emits blue light, the first light blocking pattern 227a may be a dielectric mirror blocking blue light and yellow light, and the second light blocking pattern 227b may be blue light It may be a dielectric mirror blocking.
  • the area of the active layer 224 when viewed on a plane, the area of the active layer 224 may be smaller than the area of the device substrate 221. Accordingly, as illustrated in FIG. 6, the width W2 of the active layer 224 may be smaller than the width W1 of the device substrate 221. Although only the width of the first longitudinal direction is illustrated in FIG. 6, according to an embodiment of the present invention, the width of the active layer 224 in the second longitudinal direction may also be smaller than the width of the device substrate 221. Since the area of the active layer 224 is smaller than the area of the device substrate 221 and at the same time, the second light blocking pattern 227b is formed on the side of the active layer 224, the light generated in the active layer 224 is a device substrate Proceed as far as possible to the (221) side. Accordingly, the light generated in the active layer 224 is first scattered by the protruding pattern formed on the upper surface of the device substrate 221, and then the device substrate 221 through scattering and reflection multiple times within the device substrate 221 ).
  • FIGS. 7A and 7B are graphs showing light profiles of a conventional light emitting device and a light emitting device according to an embodiment of the present invention.
  • FIG. 7A is an optical profile showing the intensity of light emitted from the light emitting element according to an angle based on the first longitudinal direction
  • FIG. 7B is based on the second longitudinal direction, from the light emitting element It is an optical profile showing the intensity of the emitted light according to an angle.
  • 0 degree corresponds to a direction perpendicular to the substrate surface when the light emitting device of FIG. 6 is inverted and mounted on the substrate.
  • the light profiles shown in FIGS. 7A and 7B are normalized by setting the intensity of light at an angle at which the intensity of the emitted light is the largest.
  • a solid line is an optical profile according to an existing light emitting device
  • a dotted line is an optical profile according to an embodiment of the present invention.
  • the light emitting device according to the embodiment of the present invention was manufactured under the same structure and the same conditions as the light emitting device of the conventional invention except that the first light blocking pattern was formed on the first surface of the device substrate.
  • a light source unit in a light source unit according to an exemplary embodiment of the present invention, although there is a difference in a light profile according to a direction, regardless of any direction, an upper direction of the substrate compared to the light emitting device according to the present invention
  • the intensity of the emitted light is significantly reduced, and has a value of about 80% or less of the maximum intensity of light.
  • light emitted from an existing light emitting device but emitted in an upper direction of the substrate has a directivity of about 140 degrees or less, and has a value of 90% or more of the maximum light intensity.
  • a directivity of about 140 degrees or less has a value of 90% or more of the maximum light intensity.
  • an intensity of light of 90% or more in an area between about -30 degrees and about +30 degrees it can be confirmed that the amount of light traveling in the upper direction is very large.
  • light emitted from an existing light emitting device but emitted in an upper direction of the substrate has a value of 90% or more of the maximum light intensity, and an intensity of 90% or more in an area between about -30 degrees and about +30 degrees It is the same.
  • the directivity angle of the first longitudinal direction and the second longitudinal direction are about 136.0 degrees and 136.3 degrees, which are very similar values.
  • light emitted from the light emitting device according to an exemplary embodiment of the present invention and emitted in the upper direction of the substrate has a directivity of about 170 degrees or less.
  • the light emitted from the light emitting device according to an embodiment of the present invention and emitted in the upper direction of the substrate represents a value of 50% or less in an area between about -30 degrees and about +30 degrees, and the closer it is to 0 degrees, the more The value becomes smaller.
  • the light emitted in the upper direction of the substrate shows a value of 50% or less of the maximum light intensity.
  • light emitted from the light emitting device according to an exemplary embodiment of the present invention and emitted in the upper direction of the substrate represents a value of 85% or less in an area between about -30 degrees and about +30 degrees, and at 0 degrees The closer it is, the smaller the value.
  • the light emitted in the upper direction of the substrate shows a value of 65% or less of the maximum light intensity.
  • the directivity angles of the first longitudinal direction and the second longitudinal direction are about 160.0 degrees and 169.4 degrees, showing a difference of about 10 degrees depending on the direction.
  • the upper part It is possible to reduce the light in the direction and increase the light in the side direction, and as a result, it minimizes the phenomenon of bright spots directly above the light emitting element.
  • the light emitted from the light emitting element in the side direction proceeds at an oblique angle to the upper surface of the light guide member, and the probability of scattering, reflection, diffusion, etc. on the upper surface of the light guide member is further increased.
  • the light emitted from the light emitting element in the side direction is further scattered, reflected, and diffused by a light guide member having a surface roughness on the top surface, and the uniformity of light is further increased, thereby reducing defects due to bright spots or dark spots. .
  • the side light amount is increased without a separate structure such as a lens, and the uniformity of light is further improved by using a light guide member, thereby minimizing the thickness of the backlight unit while minimizing the thickness of the backlight unit. It can provide to a display panel.
  • the light emitting device may have different light profiles for the first longitudinal direction and the second longitudinal direction intersecting the first longitudinal direction.
  • the profile of the light depending on the direction may be because the light emitting elements have different lengths according to the direction as described above, and thus a difference in the light emission area is generated according to the direction.
  • the backlight unit according to an embodiment of the present invention may be arranged at various pitches on a substrate in consideration of this when the light emitting devices have different light profiles according to directions.
  • FIG. 8 is a plan view illustrating arrangement of light emitting elements 220 on a substrate 211 in a backlight unit according to an embodiment of the present invention.
  • FIG. 8 for convenience of description, only the substrate 211 and the light emitting elements 220 are illustrated for some regions, and only the upper right corner portion is shown when the light source unit 210 is viewed on a plane.
  • the light emitting elements 220 may be arranged in a row column shape along rows and columns on the substrate 211.
  • the light emitting devices 220 are spaced apart from each other by a predetermined pitch along the row direction and the column direction, and the pitch along the first direction D1 is called the first pitch P1 and the pitch along the second direction D2 If is the second pitch P2, the first pitch P1 and the second pitch P2 may be different from each other.
  • the light emitting elements 220 when the light emitting elements 220 are arranged, the light emitting elements 220 may be arranged to have a larger pitch along a direction in which the light intensity of the first direction D1 and the second direction D2 is greater. You can.
  • the intensity of light in the first direction D1 is the second direction D2. Is greater than the light intensity.
  • the first pitch P1 according to the first direction D1 is the second direction D2 It may have a larger value than the second pitch (P2) according to.
  • the light emitting elements 220 are stably fixed on the substrate 211 by the light guide member 230, but the outermost light emitting elements are disposed near the corners and vertices of the substrate 211 220 has a greater risk of separation than the light emitting devices 220 inside. Accordingly, in the case of the light emitting elements 220 disposed near the corner side and the vertex of the substrate 211, it is necessary to be spaced apart from the corner so as to be sufficiently supported by the light guide member 230.
  • the first and second sides of each side extending in the first direction D1 and the second direction D2 Since it is necessary to be separated by two distances R1 and R2, the first and second distances R1 and R2 may be about 1 mm or more.
  • the light guide member 230 is provided in the spaced part to sufficiently support the light-emitting elements 220, thereby allowing the light-emitting elements 220 to The separation from the substrate 211 can be effectively prevented.
  • the method of arranging the light emitting devices 220 is not limited to this, and it can be arranged differently within the limits of providing uniform light to the display panel.
  • the light emitting elements 220 having different light profiles according to the first direction D1 and the second direction D2, depending on the light scattering and dispersion effect of the light guide member 230
  • the first pitch P1 and the second pitch P2 may be the same.
  • the regularity in the arrangement of the light emitting elements 220 may be lower, and depending on the situation, it is not regularly arranged and random Of course, it can be arranged.
  • the backlight unit according to an embodiment of the present invention further improves light uniformity by using a light emitting element having a significantly increased side light amount and a light guide member having high scattering, diffusion, and dispersion effects of light. By doing so, it is possible to provide light of improved quality to the display panel while significantly reducing the thickness of the backlight unit.
  • a slim backlight unit can be implemented by using a light-emitting element having a significantly increased side light amount and a light guide member having a high scattering, diffusion, and dispersion effect of light, so that an optical member for increasing light efficiency Even if additionally employed, there is an advantage that a slim display device can be obtained.
  • FIG. 9 illustrates a backlight unit according to an embodiment of the present invention, and is a cross-sectional view corresponding to line I-I 'in FIG. 3.
  • the light source unit 210, the light guide member 230, and the optical member 240 are sequentially provided on the lower cover 320.
  • the optical member 240 is provided between the light guide member 230 and the display panel 100, and in addition to a diffusion sheet 245, a prism sheet, a protective sheet, a light conversion sheet, and the like, a brightness enhancing film 247 (( brightness enhance film).
  • a brightness enhancing film 247 (( brightness enhance film).
  • the luminance-enhanced film 247 may be used in a variety of well-known films, the type and configuration is not limited.
  • the luminance-enhanced film 247 may be the same as Vikuiti 'from 3M.
  • the brightness enhancement film 247 may have various thicknesses, but in one embodiment of the present invention, it may have a thickness of 0.1 mm or less, for example, about 50 ⁇ m or less.
  • the light source unit and the light guide member according to an embodiment of the present invention having the above-described structure may be manufactured in the following order.
  • FIGS. 10A, 11A, 12A, 13A, and 14A are perspective views sequentially showing a method of forming a light source unit and a light guide member according to an embodiment of the present invention
  • FIGS. 10B, 11B, 12B, 13B and 14B are cross-sectional views taken along lines III-III 'in FIGS. 10A, 11A, 12A, 13A, and 14A.
  • the light emitting elements 220 are mounted on the mother substrate 211m.
  • the mother substrate 211m may be provided larger than the size of the light source unit to be obtained, and may be provided in a very wide plate shape to form a plurality of light source units as needed.
  • the mother substrate 211m may have a virtual cutting line for cutting to a substrate having a size desired to be obtained later.
  • the light emitting elements 220 are arranged inside the cutting line.
  • an uncured light guide member material is applied on the substrate 211 on which the light emitting elements 220 are mounted. do.
  • the light guide member material is provided in a space between the light source 210 and the light emitting elements 220.
  • the applied light guide member material is cured to form an initial light guide member 230m.
  • the surface roughness 235 is formed on the upper surface of the cured initial light guide member 230m in various ways.
  • the surface roughness 235 may be formed by grinding, sandblasting, or wet and / or dry etching (eg, plasma treatment) on the top surface of the light guide member 230, and the method is not limited. .
  • the light guide member 230 made of a polymer resin is about 80 mesh size to 100 mesh size (about 5 ⁇ m to about 200 ⁇ m)
  • Surface roughness 235 can be obtained by grinding using a ceramic grinder (diamond) of diameter) or reinforced steel.
  • the initial light guide member 230m having the surface roughness 235 and the light source unit 210 are cut to a desired size along the cutting line CL using the cutting member CT.
  • the light guide member 230 and the light source unit 210 are attached to complete an integrated structure.
  • the method of manufacturing the light source unit 210 and the light guide member 230 is not limited thereto, and it can be modified in various forms.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

표시 장치는 표시 패널, 상기 표시 패널에 광을 제공하는 광원부, 및 상기 표시 패널과 상기 광원부 사이에 제공되고, 그 상면에 상기 광을 확산시키는 표면 거칠기를 가지며, 상기 광원부를 매립하는 형태로 커버하는 광 가이드 부재를 포함하고, 상기 광원부는 기판 및 상기 기판 상에 제공되며 그 상부로 출사된 광의 세기가 약 80% 이하가 되도록 하는 차단 패턴이 형성된 발광 소자를 포함한다.

Description

백라이트 유닛 및 이를 포함하는 표시 장치
본 발명은 백라이트 유닛과 이를 포함하는 표시 장치에 관한 것이다.
액정 표시 장치는 고해상도를 가지는 박형 표시 장치로서, 대표적인 수광형 표시 장치이다. 액정 표시 장치는 액정이 배열되어 있는 액정 패널부와 상기 액정 패널에 광을 공급해 주는 광원 장치인 백라이트유닛(Back Light Unit)으로 나뉠 수 있다. 특히 백라이트 유닛은 선이나 점광원 형태인 광원과, 상기 광원에서 나오는 광이 통과하는 광학시트를 포함하며, 상기 광학시트는 상기 선광원이나 점광원을 완전한 면광원 형태의 광원으로 변환시켜 주며 광의 휘도를 높이는 역할을 한다. 현재, 상기 표시장치의 추세는 박형화에 있으나, 박형화의 경우 백라이트 유닛의 구조에 의해 크게 제약을 받고 있다.
본 발명은 슬림하면서도 광의 균일도가 높은 백라이트 유닛을 제공하는 것을 목적으로 한다.
본 발명은 또한, 상기 백라이트 유닛을 채용함으로써 슬림한 표시 장치를 구현하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 백라이트 유닛은 광을 출사하는 광원부 및 상기 광원부 상에 제공되고, 그 상면에 상기 광을 확산시키는 표면 거칠기를 가지며, 상기 광원부를 매립하는 형태로 커버하는 광 가이드 부재를 포함하고, 상기 광원부는 기판 및 상기 기판 상에 제공되며 그 상부로 출사된 광의 세기가 약 80% 이하가 되도록 하는 차단 패턴이 형성된 발광 소자를 포함한다.
본 발명의 일 실시예에 따른 표시 장치는 상기 백라이트 유닛을 채용한 것으로서, 표시 패널, 상기 표시 패널에 광을 제공하는 광원부, 및 상기 표시 패널과 상기 광원부 사이에 제공되고, 그 상면에 상기 광을 확산시키는 표면 거칠기를 가지며, 상기 광원부를 매립하는 형태로 커버하는 광 가이드 부재를 포함하고, 상기 광원부는 기판 및 상기 기판 상에 제공되며 그 상부로 출사된 광의 세기가 약 80% 이하가 되도록 하는 차단 패턴이 형성된 발광 소자를 포함한다.
본 발명의 일 실시예에 있어서, 상기 차단 패턴은 그 상부로 출사된 광의 세기가 약 50% 이하가 되도록 할 수 있다.
본 발명의 일 실시예에 있어서, 상기 기판의 상면으로부터 상기 광 가이드 부재의 상면까지의 거리는 약 400마이크로미터 이하일 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광 소자는 제1 면과 제2 면을 갖는 소자 기판, 상기 제2 면 상에 제공된 발광 적층체, 및 상기 제1 면 상에 제공된 제1 차단 패턴을 포함할 수 있다. 본 발명의 일 실시예에 있어서, 상기 발광 적층체의 상면을 커버하는 제2 차단 패턴을 포함할 수 있다. 본 발명의 일 실시예에 있어서, 상기 제1 및 제2 차단 패턴은 DBR 유전 미러일 수 있다. 본 발명의 일 실시예에 있어서, 상기 제1 차단 패턴은 청색광과 황색광을 차단하는 유전 미러일 수 있으며, 상기 제2 차단 패턴은 청색광을 차단하는 유전 미러일 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광 적층체는 상기 소자 기판 상에 순차적으로 제공된 제1 반도체층, 활성층, 및 제2 반도체층을 포함하며, 평면 상에서 볼 때 상기 활성층의 면적은 상기 소자 기판의 면적보다 작을 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광 소자는 제1 방향과 상기 제1 방향에 교차하는 제2 방향에 대해 서로 다른 광 프로파일을 가질 수 있다. 본 발명의 일 실시예에 있어서, 상기 발광 소자는 직사각 형상을 가질 수 있다. 상기 발광 소자는 상기 발광 적층체 상에 서로 이격되어 제공된 제1 및 제2 컨택 전극을 더 포함하며, 상기 제1 및 제2 컨택 전극은 상기 발광 소자의 길이 방향을 따라 배치될 수 있다.
본 발명의 일 실시예에 있어서, 상기 기판은 상기 제1 및 제2 컨택 전극과 솔더를 사이에 두고 전기적으로 연결된 제1 및 제2 패드 전극을 포함하고, 상기 제1 및 제2 패드 전극은 약 50마이크로미터 이상 이격될 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광 소자는 복수 개로 제공되며, 상기 기판 상에 매트릭스 형상으로 배열될 수 있다. 상기 발광 소자들은 제1 방향을 따라 제1 피치로 이격되며, 상기 제1 방향과 교차하는 제2 방향을 따라 제2 피치로 이격되며, 상기 제1 피치와 상기 제2 피치는 서로 다를 수 있다.
본 발명의 일 실시예에 있어서, 상기 기판의 가장 자리와 상기 가장 자리에 가장 인접한 발광 소자 사이의 거리는 약 1mm 이상일 수 있다.
본 발명의 일 실시예에 있어서, 표시 장치는 상기 광원부와 상기 표시 패널 사이에 제공되며 출광 효율을 향상시키는 광학 시트를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 광 가이드 부재는 실리콘 수지로 이루어질 수 있다. 상기 광 가이드 부재는 상기 실리콘 수지 내에 제공된 광 산란 입자들을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광 소자는 청색 광을 출사할 수 있다. 표시 장치는 상기 광원부와 상기 표시 패널 사이에 제공되며 상기 발광 소자로부터의 광의 파장대역을 변환하는 광 변환 필름을 더 포함할 수 있다. 상기 광 변환 필름은 그 내부에 양자점과 형광체 중 적어도 하나를 포함할 수 있다.
본 발명은 슬림하면서도 광의 균일도가 높은 백라이트 유닛 및 이를 채용한 표시 장치를 제공한다.
도 1은 본 발명의 실시예에 따른 표시 장치의 개략적인 블럭도이다.
도 2는 도 1의 표시 장치를 구체적으로 구현한 것으로서, 본 실시예에 따른 표시 장치를 도시한 분해사시도이다.
도 3은 본 발명의 일 실시예에 따른 표시 장치의 백라이트 유닛 중 광원부와 광 가이드 부재를 도시한 사시도이다.
도 4는 도 2의 I-I'선에 대한 단면도로서, 광원부, 광 가이드 부재, 및 광학 부재를 함께 도시한 단면도이다.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 발광 소자들이 기판 상에 실장된 모습을 도시한 평면도 및 단면도이다.
도 6은 본 발명의 일 실시예에 따른 발광 소자의 적층 구조의 제1 방향에 따른 단면도로서, 플립칩 타입의 반도체 칩을 도시한 것이다.
도 7a 및 도 7b는 각각 기존의 발광 소자와 본 발명의 일 실시예에 따른 발광 소자의 광 프로파일을 도시한 그래프이다.
도 8은 본 발명의 일 실시예에 따른 백라이트 유닛에 있어서 기판 상에 발광 소자들의 배치된 것을 도시한 평면도이다.
도 9는 본 발명의 일 실시예에 따른 백라이트 유닛을 도시한 것으로서, 도 3의 I-I'선에 대응하는 단면도이다.
도 10a, 도 11a, 도 12a, 도 13a, 및 도 14a는 본 발명의 일 실시예에 따른 광원부 및 광 가이드 부재를 형성하는 방법을 순차적으로 도시한 사시도이며, 도 10b, 도 11b, 도 12b, 도 13b, 및 도 14b는 도 10a, 도 11a, 도 12a, 도 13a, 및 도 14a의 III-III'선에 따른 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 실시예에 따른 표시 장치의 개략적인 블럭도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 표시 장치는 표시 패널(100), 표시 패널(100)에 광을 제공하는 백라이트 유닛(200), 및 표시 패널(100) 및 백라이트 유닛(200)을 구동하는 회로부를 포함한다.
표시 패널(100)은 다수 개의 화소들(110)을 포함하여 영상을 표시하되 백라이트 유닛(200)으로부터 출사된 광을 이용하는 수광형 표시 패널일 수 있다. 수광형 표시 패널로는 액정 패널, 전기 영동 패널, 전기 습윤 패널 등이 있으며, 그 종류는 이에 한정되는 것은 아니다. 본 발명의 일 실시예에 있어서, 표시 패널(100)은 두 기판과 두 기판 사이에 배치된 액정층을 포함하는 액정 패널일 수 있다.
회로부는 타이밍 컨트롤러(140), 게이트 드라이버(120), 및 데이터 드라이버(130)를 포함한다.
표시 패널(100)은 일 방향으로 연장되는 복수의 게이트 라인들(121)과 일 방향과 교차하는 타 방향으로 연장되는 복수의 데이터 라인들(131)을 포함한다. 표시 패널(100)은 다수의 화소들(110)을 포함할 수 있다. 다수의 화소들(110)은 일 방향 및 타 방향을 따라, 예를 들어, 행열 방향을 따라 배열될 수 있으며, 각 화소들(110)은 게이트 라인들(121) 중 대응되는 게이트 라인과, 데이터 라인들(131) 중 대응되는 데이터 라인에 연결될 수 있다.
타이밍 컨트롤러(140)는 외부의 그래픽 제어부(도시하지 않음)로부터 영상 데이터(RGB) 및 제어 신호를 수신한다. 제어 신호는 프레임 구별 신호인 수직 동기 신호(Vsync), 행 구별 신호인 수평 동기 신호(Hsync), 데이터가 들어오는 구역을 표시하기 위해 데이터가 출력되는 구간 동안만 하이(HIGH) 레벨인 데이터 인에이블 신호(DES) 및 메인 클록 신호(MCLK)를 포함할 수 있다.
타이밍 컨트롤러(140)는 영상 데이터(RGB)를 데이터 드라이버(130)의 사양에 맞도록 변환하고, 변환된 영상 데이터(DATA)를 데이터 드라이버(130)에 출력한다. 타이밍 컨트롤러(140)는 제어 신호에 근거하여 게이트 제어 신호(GS1) 및 데이터 제어 신호(DS1)를 생성한다. 타이밍 컨트롤러(140)는 게이트 제어 신호(GS1)를 게이트 드라이버(120)에 출력하고, 데이터 제어 신호(DS1)를 데이터 드라이버(130)에 출력한다. 게이트 제어 신호(GS1)는 게이트 드라이버(120)를 구동하기 위한 신호이고, 데이터 제어 신호(DS1)는 데이터 드라이버(130)를 구동하기 위한 신호이다.
게이트 드라이버(120)는 게이트 제어 신호(GS1)에 기초하여 게이트 신호를 생성하고, 게이트 신호를 게이트 라인들(121)에 출력한다. 게이트 제어 신호(GS1)은 주사 시작을 지시하는 주사 시작 신호와 게이트 온 전압의 출력 주기를 제어하는 적어도 하나의 클록 신호, 및 게이트 온 전압의 지속 시간을 한정하는 출력 인에이블 신호 등을 포함할 수 있다.
데이터 드라이버(130)는 데이터 제어 신호(DS1)에 기초하여 영상 데이터(DATA)에 따른 계조 전압을 생성하고, 이를 데이터 전압으로 데이터 라인들(131)에 출력한다. 데이터 전압은 공통 전압에 대하여 양의 값을 갖는 정극성 데이터 전압과 음의 값을 갖는 부극성 데이터 전압을 포함할 수 있다. 데이터 제어 신호(DS1)은 영상 데이터(DATA)가 데이터 드라이버(130)로 전송되는 것의 시작을 알리는 수평 시작 신호(STH), 데이터 라인들(131)에 데이터 전압을 인가하라는 로드 신호, 및 공통 전압에 대해 데이터 전압의 극성을 반전시키는 반전 신호 등을 포함할 수 있다.
타이밍 컨트롤러(140), 게이트 드라이버(120), 및 데이터 드라이버(130) 각각은 적어도 하나의 집적 회로 칩의 형태로 표시 패널(100)에 직접 장착되거나, 가요성 인쇄회로기판(211)(flexible printed circuit board) 위에 장착되어 TCP(tape carrier package)의 형태로 표시 패널(100)에 부착되거나, 별도의 인쇄회로기판(211)(printed circuit board) 위에 장착될 수 있다. 이와는 달리, 게이트 드라이버(120) 및 데이터 드라이버(130) 중 적어도 하나는 게이트 라인들(121), 데이터 라인들(131), 및 트랜지스터와 함께 표시 패널(100)에 집적될 수도 있다. 또한, 타이밍 컨트롤러(140), 게이트 드라이버(120), 및 데이터 드라이버(130)는 단일 칩으로 집적될 수 있다.
백라이트 유닛(200)은 표시 패널(100)에 광을 제공한다. 백라이트 유닛(200)은 회로부에 연결되어, 화소들(110)에서의 영상에 따라 휘도가 제어될 수 있다. 예를 들어, 백라이트 유닛(200)은 표시 패널(100)의 표시 영역을 다수의 영역으로 구획하여 영상의 밝기에 따라 광원의 휘도를 조절하는 로컬 디밍이 구현될 수 있다.
도 2는 도 1의 표시 장치를 구체적으로 구현한 것으로서, 본 실시예에 따른 표시 장치를 도시한 분해사시도이다. 본 발명의 일 실시예에 있어서, 표시 패널(100)과 평행한 평면을 이루는 서로 교차하는 방향을 제1 방향(D1) 및 제2 방향(D2)로, 영상이 표시되는 방향으로서 제1 방향(D1) 및 제2 방향(D2)이 이루는 평면에 수직한 방향을 제3 방향(D3)으로 하여 도시되었다.
도 2를 참조하면, 표시 장치는 표시 패널(100), 백라이트 유닛(200), 하부 커버(320) 및 상부 커버(310)를 포함한다.
표시 패널(100)은 영상을 표시한다. 본 실시예에 있어서, 표시 패널(100)이 상부 방향으로 영상을 표시하며, 백라이트 유닛(200)이 표시 패널(100)의 하부 방향에 배치된 것을 도시하였으나, 이는 설명의 편의를 위한 것으로서, 표시 장치의 회전이나 이동 등에 의해 방향은 상대적으로 변경될 수 있다.
표시 패널(100)은 장변과 단변을 가지는 직사각형의 판상으로 마련될 수 있다. 표시 패널(100)은 액정 표시 패널일 수 있으며, 액정 패널은 두 기판 및 두 기판 사이에 형성된 액정(미도시)을 포함한다.
표시 패널(100)은 액정을 구동하여 전방으로 영상을 표시하는 역할을 한다. 액정을 구동하기 위해서 하나의 기판에는 박막트랜지스터가, 다른 나머지 기판에는 컬러필터가 형성될 수 있다. 그러나, 박막 트랜지스터와 컬러 필터의 위치는 이에 한정되는 것은 아니며, 달리 형성될 수도 있다.
액정 자체는 비발광이기 때문에 화상을 구현하기 위해서는 광원이 필요하다. 광원에서 나온 투과광은 원하지 않는 진동 벡터도 포함하고 있다. 이러한 투과광의 진동 벡터를 조절하기 위해 표시 패널(100)의 양면에 투과축이 90°로 교차되도록 편광판(미도시)이 부착된다. 편광판은 액정을 통과한 투과광을 특정 진동 벡터를 가진 빛으로 편광되게 된다. 따라서 표시 패널(100)을 통과하는 동안 편광축의 회전 정도에 따라 투과광의 세기가 조절되어 블랙부터 화이트까지의 표현이 가능하게 된다.
백라이트 유닛(200)는 표시 패널(100)의 하부에 구비된다. 백라이트 유닛(200)은 광원부(210) 및 광원부(210) 상에 제공된 광 가이드 부재(230)를 포함한다. 광 가이드 부재(230)와 표시 패널(100) 사이에는 광학 부재(240)가 제공될 수 있다.
광원부(210)는 표시 패널(100)이 영상을 표시하는 데 사용되는 광을 제공하며, 광을 출사하는 발광 소자들(220)과 발광 소자들(220)이 실장되는 기판(211)을 포함한다.
발광 소자(220)는 다양한 파장 대역의 광을 출사할 수 있다. 본 발명의 일 실시예에 있어서, 발광 소자(220)는 가시광선 대역의 광, 예를 들어, 청색 광을 출사할 수 있다. 또한 발광 소자(220)는 특정 컬러, 예를 들어, 청색, 녹색, 적색 등의 컬러뿐만 아니라, 옐로우, 시안, 마젠타와 같은 컬러의 광을 출사할 수 있으며, 특정 컬러가 아닌 백색광을 출사할 수도 있다. 발광 소자(220)가 출사하는 광은 이에 한정되는 것은 아니며, 예를 들어, 광은 자외선일 수도 있다.
광 가이드 부재(230)는 광원부(210)를 매립하는 형태로 광원부(210)를 커버한다.
표시 장치에 있어서, 발광 소자(220)는 점광원에 해당되는 광원으로 작은 공간 내에도 실장할 수 있으며 휘도가 높아 매우 효율적인 광원에 해당한다. 그러나 발광 소자(220)가 점광원인 이상 광의 균일화가 필요하다. 또한 광원이 선광원인 경우에도 선광원의 발광 방향과 수직한 방향으로 광의 균일화가 필요하다. 여기서 광이 균일하다 함은 광원의 이미지가 표시 패널(100) 상에서 시인이 되지 않을 정도를 의미한다. 발광 소자(220)는 점광원이기 때문에 광원에서 출사된 광을 그대로 표시 패널(100)에 사용할 경우 출사된 광의 밀도에 따라 암부와 명부가 나누어지며 이에 따라 화질이 감소한다. 이에 따라, 광원에서 출사된 광의 경로를 변경하고 광의 효율을 높일 필요가 있다.
광 가이드 부재(230)는 발광 소자(220)에서 출사되어 특정 방향성을 가지는 빛을 다양한 방위로 출사되는 광으로 확산시킨다. 광 가이드 부재(230)은 박형 플레이트나 필름 형상으로 제공될 수 있다.
광원부(210)와 광 가이드 부재(230)에 대해서는 이후 도면과 함께 후술한다.
광학 부재(240)는 광 가이드 부재(230)와 표시 패널(100) 사이에 구비된다. 광학 부재(240)는 광원부(210)로부터의 광의 효율을 높이기 위한 것으로서, 출사된 광을 제어한다. 광학 부재(240)는 매우 얇은 시트나 필름 형상으로 제공될 수 있다. 광학 부재(240)는 확산 시트, 프리즘 시트, 보호 시트 등일 수 있다. 확산 시트, 프리즘 시트, 보호 시트 등은 각각이 1매 이상으로 제공될 수 있으며, 경우에 따라 생략될 수도 있다. 또한 확산 시트, 프리즘 시트, 보호 시트 등은 개별적으로 제공될 수도 있으나, 확산 시트와 프리즘 시트가 복합되어 일체로 형성된 멀티 기능 시트 등으로 제공될 수도 있다.
확산 시트는 광원부(210)로부터 나온 광을 확산할 수 있다. 프리즘 시트는 확산 시트에서 확산된 빛을 상부의 표시 패널(100)의 평면에 수직한 방향으로 집광할 수 있다. 보호 시트는 프리즘 시트 상에 위치할 수 있으며 프리즘 시트를 스크래치로부터 보호한다.
광학 부재(240)는 확산시트, 프리즘 시트, 및 보호 시트 중 적어도 어느 하나를 복수 매 겹쳐서 사용할 수 있으며, 필요에 따라 어느 하나의 시트를 생략할 수도 있다. 본 실시예에서는 멀티 기능 시트(243) 1매와 및 확산 시트(245) 2매가 사용된 것을 일 예로서 도시하였다.
본 실시예에 있어서, 광학 부재(240)는 광원부(210)와 표시 패널(100) 사이에 제공되며 발광 소자(220)로부터의 광의 파장대역을 변환하는 광 변환 필름(241)을 더 포함할 수 있다. 광 변환 필름(241)은 발광 소자(220)로부터 출사되는 광의 파장 대역에 따라 백라이트 유닛(200)에 제공되거나 제공되지 않을 수 있다. 광 변환 필름(241)은 발광부로부터 출사된 광을 백색 광이나 특정 파장대역의 광으로 변경할 필요가 있는 경우 제공될 수 있다. 예를 들어, 광 변환 필름(241)은 발광부의 발광 소자(220)가 청색광을 방출하는 경우, 자외선이나 청색광을 녹색광, 황색광, 및/또는 적색광으로 변환할 수 있다. 이를 위해 광 변환 필름(241)은 그 내부에 광원부(210)로부터의 광을 받아 다른 파장의 광으로 변환하는 광 변환 물질을 포함할 수 있다. 광 변환 물질은 양자점이나 형광체일 수 있다.
본 발명의 일 실시예에 있어서, 광학 부재(240)들은 광학 변환 필름(241), 프리즘시트와 보호시트가 결합된 멀티 기능 시트(243), 및 두 장의 확산 시트(245)를 포함할 수 있으며, 광학 변환 필름(241)과 멀티 기능 시트(243)는 각각 400 μm 이하, 확산 시트(245)는 약 50μm 이하의 두께를 가질 수 있다.
상부 커버(310)는 표시 패널(100)의 상부에 구비된다. 상부 커버(310)는 표시 패널(100)의 전면 가장자리를 지지한다. 상부 커버(310)에는 표시 패널(100)의 표시 영역을 노출시키는 표시창(311)이 형성되어 있다.
하부 커버(320)는 백라이트 유닛(200)과 표시 패널(100)을 수납하는 수납공간을 제공한다. 또한, 상부 커버(310)는 하부 커버(320) 와 체결되어 백라이트 유닛(200) 및 표시 패널(100)을 하부 커버(320)의 내부에 안정적으로 고정시킨다.
본 발명의 일 실시예에 있어서, 광원부(210)와 광 가이드 부재(230)는 광원으로부터의 광을 효율적으로 분산시키기 위한 구조를 갖는 바, 이하에서는 이를 설명한다.
도 3은 본 발명의 일 실시예에 따른 표시 장치의 백라이트 유닛 중 광원부(210)와 광 가이드 부재(230)를 도시한 사시도이며, 도 4는 도 2의 I-I'선에 대한 단면도로서, 광원부(210), 광 가이드 부재(230), 및 광학 부재(240)를 함께 도시한 단면도이다.
도 3 및 도 4를 참조하면, 백라이트 유닛(200)은 하부 커버(320)의 수납 공간 상에 놓인다. 하부 커버(320) 상에는 광원부(210)와 광 가이드 부재(230), 및 광학 부재(240)가 순차적으로 제공된다.
광원부(210)는 기판(211)과 기판(211) 상에 실장된 다수 개의 발광 소자(220)를 포함하며, 광원부(210) 상에는 광 가이드 부재(230)가 제공된다.
기판(211)은 인쇄 회로 기판일 수 있으며, 발광 소자들(220)이 인쇄 회로 기판에 전기적으로 연결될 수 있다. 도면에서는 하나의 기판(211) 상에 발광 소자들(220)이 실장된 것을 도시하였으나, 이에 한정되는 것은 아니며, 다수 개의 기판(211) 상에 발광 소자들(220)이 실장될 수도 있다.
발광 소자들(220)은 기판(211) 상에 실장된다. 본 발명의 일 실시예에 있어서, 발광 소자들(220)은 플립칩 타입으로 제공될 수 있다. 그러나, 발광 소자들(220)의 형태는 이에 한정되는 것은 아니며 래터럴 타입, 버티컬 타입, 플립칩 타입 등 다양한 형태로 제공될 수도 있다.
본 발명의 일 실시예에 따른 발광 소자(220)는 가장 광의 세기가 센 부분을 100%로 볼 때, 상부 방향으로의 광 출사량 또는 광의 세기가 80% 이하인 측면 발광형일 수 있다. 즉, 발광 소자(220)에 있어서, 지향각에 따른 출사광의 정규화된 광의 세기 분포도에서 최대 세기를 100%로 놓았을 때 발광 소자(220)의 상부 방향(즉 지향각 0도에 해당하는 방향)으로의 세기는 약 80% 이하일 수 있다. 본 발명의 일 실시예에 있어서, 발광 소자(220)의 상부 방향의 세기는 80%보다 작은 값, 예를 들어, 50% 이하의 값을 가질 수 있다.
상술한 발광 소자(220)의 상부 방향으로의 광의 세기는 발광 소자(220) 내에 차광 패턴을 형성함으로써 구현될 수 있다. 본 발명의 일 실시예에 따른 발광 소자(220)의 경우, 광이 최대한 상부가 아닌 측부 방향으로 출사되도록 함으로써 상부 방향으로 곧바로 출사되는 경우 대비 상부 방향의 명점 현상을 감소시킬 수 있다. 이에 따라, 상부 방향으로 진행하는 광의 확산을 위한 구성 요소(예를 들어, 도광판이나 확산판 등)의 두께를 현저하게 감소시킬 수 있다. 상기한 발광 소자들(220)의 상측 방향으로의 광의 세기는 발광 소자들(220)의 내에 차광 패턴을 형성함으로써 구현될 수 있다. 차광 패턴이 형성된 발광 소자들(220)에 대해서는 후술한다.
기판(211) 상에는 반사층(213)이 제공될 수 있다. 반사층(213)은 표시 패널(100) 방향으로 제공되지 않고 누설되는 광을 상부 방향으로 반사시켜 표시 패널(100) 방향으로 광의 경로를 변경시킨다. 반사층(213)은 광을 반사하는 물질을 포함한다. 반사층(213)은 발광 소자(220)로부터의 광을 반사시킴으로써 표시 패널(100) 측으로 제공되는 광의 양을 증가시킨다.
광 가이드 부재(230)는 출사되는 빛을 전방으로 확산 유도하는 것으로서, 광원부(210)의 발광 소자들(220)을 매립하는 형태로 광원부(210)를 커버한다.
다시 말해, 광 가이드 부재(230)는 광원부(210)의 상부에 소정의 두께(TH)로 제공되되, 발광 소자들(220) 사이의 공간을 모두 충진하는 형태로 제공된다. 이에 따라, 광 가이드 부재(230)는 기판(211)의 상면, 발광 소자들(220)의 측면 및 상면에 모두 직접 접촉한다.
본 발명의 일 실시예에 따르면, 광 가이드 부재(230)가 광원부(210) 상에 발광 소자들(220)을 매립하는 형태로 제공됨과 동시에 광 가이드 부재(230)가 기판(211)과 발광 소자들(220)에 직접 접촉하여 부착되는 바, 발광 소자들(220)이 기판(211) 상에 안정적으로 고정된다. 발광 소자들(220)은 기판(211) 상에 솔더(도 5a 참조, 217)를 통해 부착될 수 있는 바, 발광 소자들(220) 또는 기판(211)에 외력이 가해지는 경우 발광 소자들(220)이 기판(211)으로부터 분리되는 문제가 있을 수 있다. 그러나, 본 발명의 일 실시예에서는 광 가이드 부재(230)가 안정적으로 발광 소자들(220)을 기판(211) 상에 고정 및 지지하기 때문에, 기판(211)이나 발광 소자들(220)에 외력이 가해지더라도 발광 소자들(220)이 기판(211)으로부터 분리되는 현상이 방지된다. 그 결과, 발광 소자들(220)이 기판(211) 상에 실장 될 때 작은 솔더(217) 면적 및/또는 작은 부착력을 갖더라도 기판(211)으로부터의 분리가 일어나지 않는다. 이에 따라, 발광 소자들(220)은 발광 소자들(220)과 기판(211) 사이의 솔더 강도(solder strength)가 약 100gf 이상인 경우는 물론이고, 약 10 내지 100gf인 경우에도 기판(211)으로부터의 발광 소자들(220)의 분리가 일어나지 않고 기판(211) 상에 안정적으로 고정된다.
상기 광 가이드 부재(230)는 발광 소자(220)로부터 출사된 광을 표시 패널(100) 방향으로 가이드하되, 표시 패널(100)로 진행하는 광이 최대한 분산될 수 있도록 그 상면에 광의 분산을 위한 표면 거칠기(surface roughness; 235)를 갖는다.
본 발명의 일 실시예에 있어서, 표면 거칠기(235)는 약 1μm 내지 약 10μm 가량일 수 있으며, 예를 들어, 약 1 내지 약 4μm, 또는 약 2μm일 수 있다.
본 발명의 일 실시예에 있어서, 광 가이드 부재(230)는 기본적으로 광을 가이드하고 확산시킬 수 있는 것으로 마련된다. 예를 들어, 광 가이드 부재(230)는 다양한 고분자 수지로 이루어질 수 있으며, 특히, 광 가이드 부재(230)는 실리콘 수지로 이루어질 수 있다.
본 발명의 일 실시예에 있어서, 광 가이드 부재(230)는 광의 확산과 반사를 증가시키기 위해서 그 내부에 다양한 형태의 광 산란 입자를 포함할 수 있다. 예를 들어, 광 가이드 부재(230)는 그 내부에 알루미나, 산화티타늄 입자나 비드(bead) 등을 포함할 수 있다.
본 발명의 일 실시예에 따른 백라이트 유닛(200)에 있어서, 광원부(210)가 광 가이드 부재(230)에 매립 형태로 제공됨으로써 백라이트 유닛(200) 자체의 두께가 현저하게 감소한다. 이에 더해, 광 가이드 부재(230)의 상면에 거칠기가 제공됨으로써 광원부(210)로부터 출사된 광이 광 가이드 부재(230)에 의해 효율적으로 광 가이드 부재(230)의 전면으로 산란, 분산, 및 확산된다. 그 결과, 기존 발명보다 광의 확산 효율이 높아짐으로써 광 가이드 부재(230)가 기존 발명 대비 현저히 작은 두께를 가질 수 있는 장점이 있다. 본 발명의 일 실시예에 따르면, 광 가이드 부재(230)의 두께(TH)는 약 1000 μm 이하일 수 있으며, 다른 실시예에서는 약 500 μm 이하, 또는, 약 400 μm 이하, 또는 약 300 μm일 수 있다. 상기 광 가이드 부재(230)의 두께는 광원부(210)의 기판(211)의 상면으로부터 광 가이드 부재(230)의 상면까지의 거리와 동일한 값이다.
상기 표면 거칠기(235)는 광 가이드 부재(230)의 표면을 그라인딩, 샌드블라스팅, 습식 및/또는 건식 식각함으로써 형성될 수 있는 바, 그 정도와 깊이를 조절함으로써 광의 확산 효과를 다양하게 제어할 수 있다. 상기 거칠기는 광의 확산 효과를 위해 발광 소자(220)의 상부뿐만 아니라, 광 가이드 부재(230)의 상면 전부에 균일한 정도로 제공될 수 있다. 그러나, 표면 거칠기(235)가 형성되는 부분이나 균일한 정도는 이에 한정되는 것은 아니며, 광의 효율, 광의 세기, 발광 소자(220)의 배치 등을 고려하여 다양하게 변형할 수 있다. 예를 들어, 표면 거칠기(235)가 광 가이드 부재(230)의 일부에만 형성되거나 부분에 따라 서로 다른 정도를 갖도록 형성될 수 있다. 예를 들어, 발광 소자(220)와 발광 소자(220) 사이에 대응하는 영역이나, 발광 소자(220) 바로 상부의 영역 등에서는 발광 소자들(220)로부터의 출사된 광의 세기에 따라 거칠기가 다른 영역 대비 서로 다른 정도로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 광 가이드 부재(230)의 본체 자체는 투명하게 제조되며, 그 상면에 표면 거칠기(235)를 갖는 형태로 제공될 수 있으나, 이에 한정되는 것은 아니며, 광 가이드 부재(230)의 본체 자체가 광의 확산을 위한 구조를 가질 수 있다. 예를 들어, 광원부(210)로부터 출사된 광이 더욱더 용이하게 산란되어 광 가이드 부재(230) 내부에서 확산될 수 있도록 광 산란 입자들을 포함할 수 있다. 광 산란 입자는 TiO2, CaCO3, BaSO4, Al2O3, 실리콘 입자들과 같은 무기 재료일 수 있다. 상기 광 산란 입자들은 비드의 형태로 광 가이드 부재(230) 내에 제공될 수도 있다. 을 활용할 수도 있다.
본 발명의 일 실시예에 있어서, 상술한 구조를 갖는 백라이트 유닛은 광 가이드 부재로 인한 광 분산 효과가 크기 때문에 광의 균일성이 높아지므로 다른 광학 구조물 및 광학 시트 등을 생략 할 수 있어, 기존 발명 대비 현저하게 얇은 두께로 구현될 수 있다. 상술한 바와 같이, 광 가이드 부재가 최대로 얇은 두께, 예를 들어, 300μm 이하의 두께를 가질 수 있는 바, 다른 광학 부재들의 두께를 더한다고 할지라도 전체적인 백라이트 유닛의 두께 또한 기존 발명 대비 현저하게 감소한다. 다른 광학 부재들의 두께는 그 종류에 따라 다양하게 변경될 수 있으나, 광학 부재 하나당 약 50 μm 내지 약 400 μm의 두께를 가질 수 있는 바, 하부 커버와 기판의 두께 등에 더해 광학 부재들의 두께를 고려하면, 백라이트 유닛의 전체적인 두께는 약 2mm 이하, 또는 1.7mm 이하, 또는 1.5 mm 이하일 수 있다.
이와 달리 기존 발명에 따른 백라이트 유닛의 경우, 상부 방향으로의 광의 세기를 감소시키기 위해 측부 광 지향각을 갖는 렌즈를 채용한 발광 소자들을 사용하였다. 이 경우, 발광 소자 자체의 크기가 크며, 상기 발광 소자 상부에 실리콘 수지와 같은 재료로 광 가이드 부재를 배치시킨다고 할지라도 광의 충분한 확산을 위해서는 매우 두꺼운 두께가 요구되었다. 특히, 기존 발명에 따르면 광 가이드 부재의 상면에서의 광확산이 충분하지 않기 때문에, 상부에 광을 확산시키기 위한 별도의 광확산 시트를 제공하거나 인쇄를 통해 광확산 패턴을 형성함으로써 추가적인 두께의 발생이 불가피하였다.
본 발명은 발광 소자의 상부 방향 광의 세기를 감소시킴과 동시에, 광 가이드 부재에 표면 거칠기를 이용한 광확산 효과를 최대화함으로써 슬림한 백라이트 유닛을 구현한다.
상술한 바와 같이, 본 발명의 일 실시예에 있어서 광원부의 발광 소자는 측부 방향 광의 출사가 최대화된 형태로 제공되며, 기판 상에 안정적으로 고정된다.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 발광 소자들이 기판 상에 실장된 모습을 도시한 평면도 및 단면도이다.
도 3, 도 4, 도 5a 및 도 5b를 참조하면, 본 발명의 일 실시예에 따른 발광 소자(220)는 플립칩 타입의 발광 소자일 수 있으며, 직육면체 형상으로 제공된다. 즉, 발광 소자(220)는 평면 상에서 볼 때 정사각형으로 제공될 수도 있으나, 이에 한정되는 것은 아니며, 장변과 단변을 갖는 직사각형으로 제공될 수 있다. 이하에서는, 장변의 길이를 제1 길이(L1)로, 단변의 길이를 제2 길이(L2)로 설명한다.
발광 소자(220)에는 외부와의 전기적 연결을 위한 제1 컨택 전극(225a)과 제2 컨택 전극(225b)이 제공된다. 제1 컨택 전극(225a)은 발광 소자(220)의 양극과 음극 중 하나, 제2 컨택 전극(225b)은 각각 양극과 음극 중 나머지 하나일 수 있다.
기판(211) 상에는 제1 및 제2 컨택 전극(225a, 225b)과 각각 솔더(217)를 통해 연결되는 제1 및 제2 패드 전극(215a, 215b)이 제공된다. 제1 및 제2 패드 전극(215a, 215b)은 회로부로부터 발광 소자(220)를 구동하기 위한 신호를 상기 제1 및 제2 컨택 전극(225a, 225b)에 인가한다.
제1 및 제2 패드 전극(215a, 215b) 각각은, 제1 및 제2 컨택 전극(225a, 225b)과의 솔더(217)를 통한 연결이 용이하도록, 대응하는 제1 및 제2 컨택 전극(225a, 225b)보다 더 큰 면적으로 제공될 수 있다. 여기서, 제1 및 제2 패드 전극(215a, 215b)은 두 전극이 용이하게 분리(isolation)될 수 있도록 두 패드 사이의 간격(GP)을 특정 간격 이상, 예를 들어, 50 μm 이상으로 유지할 수 있다. 제1 및 제2 패드 전극(215a, 215b)이 충분한 간격으로 이격되는 경우, 제1 및 제2 컨택 전극(225a, 225b)과의 솔더(217)를 통한 연결시 합선이나 쇼트의 가능성이 감소하며 그만큼 실장이 용이해진다.
발광 소자(220)는 제1 및 제2 패드 전극(215a, 215b)과, 제1 및 제2 컨택 전극(225a, 225b)과의 안정적인 연결을 위해, 두 제1 및 제2 컨택 전극(225a, 225b)이 배열된 방향과, 그렇지 않은 방향과의 길이 차이가 있을 수 있다. 예를 들어, 본 발명의 일 실시예에 있어서는, 발광 소자(220)의 제1 길이(L1)와 제2 길이(L2)는 서로 다른 값을 가질 수 있으며, 도시된 바와 같이, 제1 길이(L1)가 제2 길이(L2)보다 길 수 있다. 이때, 제1 길이(L1)는 제1 및 제2 컨택 전극(225a, 225b)이 순차적으로 배열된 방향에 해당한다. 본 발명의 일 실시예에 있어서, 발광 소자의 크기는 다양하게 제공될 수 있다. 본 발명의 일 실시예에 있어서, 제1 길이는 약 260 μm 내지 약 340 μm일 수 있으며, 예를 들어, 300 μm일 수 있다. 제2 길이는 약 190 μm 내지 약 270 μm일 수 있으며, 예를 들어, 230 μm일 수 있다. 이에 더해, 발광 소자의 높이는 약 60 μm 내지 약 100 μm일 수 있으며, 예를 들어 80 μm일 수 있다.
도 6은 도 5b의 II-II'선에 따른 단면도로서, 본 발명의 일 실시예에 따른 발광 소자 중 플립칩 타입의 반도체 칩을 도시한 것이다. 플립칩 타입의 반도체는 기판 상에 형성한 후 반전하여 다른 구성요소에 실장될 수 있는 바, 도면에서는 반전된 형태로 도시되었다.
도 6을 참조하면, 발광 소자(220)는 제1 면(221F)과 제2 면(221R)을 갖는 소자 기판(221), 소자 기판(221)의 제2 면(221R) 상에 제공된 발광 적층체, 및 발광 적층체에 연결된 제1 및 제2 컨택 전극(225a, 225b)을 포함한다.
소자 기판(221)은 발광 적층체를 그 상면에 형성할 수 있는 것이면 특별히 한정되는 것은 아니며, 성장 기판으로 마련될 수 있다. 예를 들어, 소자 기판(221)으로 사파이어 기판이 사용될 수 있다. 그러나, 소자 기판(221)은 그 외의 재료로 이루어질 수 있으며, 예를 들어, SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, Ga2O3 등의 재료로 이루어질 수도 있다. 본 발명의 일 실시예에 있어서, 소자 기판(221)은 패터닝된 것으로서, 그 상면에 복수 개의 돌출 패턴이 제공될 수 있으며, 이 경우, 소자 기판(221)은 도시된 바와 같이 패터닝된 사파이어 기판(patterned sapphire substrate; PSS)일 수 있다.
발광 적층체는 소자 기판(221)의 제2 면(221R) 상에 순차적으로 적층된 제1 반도체층(223a), 활성층(224) 및 제2 반도체층(223b)을 포함한다. 본 실시예에 있어서, 발광 적층체는 활성층(224) 및 제2 반도체층(223b)을 포함하는 적어도 하나의 메사 형태로 제공될 수도 있다. 발광 적층체가 메사 형태로 제공되는 경우, 발광 적층체는 복수개의 돌출 패턴을 포함할 수 있으며, 복수개의 돌출 패턴들 사이는 서로 이격될 수 있다.
상기 발광 적층체 상에는 절연막(226)이 제공된다. 발광 적층체에는 활성층(224), 제2 반도체층(223b), 및 절연막(226)을 관통하며 제1 반도체층(223a)의 일부를 노출하는 컨택홀(CH)이 적어도 한 개 제공된다. 제1 컨택 전극(225a)은 컨택홀(CH)을 통해 노출된 제1 반도체층(223a)에 연결된다. 제2 컨택 전극(225b)은 제2 반도체층(223b) 상에 형성된 개구를 통해 노출된 제2 반도체층(223b)에 연결된다.
본 발명의 일 실시예에 따른 발광 소자(220)는 동일측에 제1 및 제2 컨택 전극(225a, 225b)이 배치되고 그 크기가 작아 소자 기판(221)의 배선상에 용이 실장이 가능하다. 이에 따라, 발광 소자(220)는 매우 작은 마이크로 스케일로 제공될 수 있다.
소자 기판(221)의 제1 면(221F) 상에는 제1 차광 패턴(227a)이 제공된다. 상기 제1 차광 패턴(227a)은 소자 기판(221)의 제1 면(221F)으로 광이 출사되는 것을 방지하기 위한 것이다. 플립 칩의 경우 반전 되어 기판(211) 상에 실장되므로 제1 면(221F)은 표시 패널(도 2 참조, 100)을 향하는 상부를 향하며, 제1 차광 패턴(227a)을 형성함으로써 상부 방향으로의 광을 차단한다. 본 발명의 일 실시예에 있어서, 제1 차광 패턴(227a)으로 인해 발광 적층체로부터 출사된 광은 소자 기판(221)의 측부 방향으로 출사된다.
제1 차광 패턴(227a)은 발광 적층체로부터의 광이 소자 기판(221)을 통해 출광하는 것이 아니라 곧바로 발광 적층체의 측부로 출광하는 것을 방지하기 위한 광 차단 막으로서, 특정 광을 흡수, 반사, 산란 하는 재료를 포함한다. 제1 차광 패턴(227a)은 광을 흡수, 반사, 산란함으로써 광의 투과를 차단하는 것이라면 특별히 한정되는 것은 아니다. 본 발명의 일 실시예에 있어서, 광 비투과막은 DBR 유전 미러이거나, 절연막(226) 상에 형성된 금속 반사막일 수 있으며, 또는 블랙 컬러의 유기 고분자막일 수도 있다.
본 발명의 일 실시예에 있어서, 발광 적층체의 측면에 해당하는 절연막(226) 상에는 제2 차광 패턴(227b)이 제공될 수 있다. 제2 차광 패턴(227b)이 발광 적층체의 측면에 제공됨으로써 특정 발광 적층체에서 출광된 광에 의해 인접한 발광 적층체에 영향을 미치거나, 인접한 발광 적층체에서 출광된 광과의 섞임이 일어나는 현상 등이 방지될 수 있다. 금속 반사막이 광비투과막으로 사용된 경우에는 금속 반사막은 다른 발광 적층체 내의 구성 요소와 전기적으로 절연된 플로팅 상태일 수 있다.
상술한 제1 및/또는 제2 차광 패턴(227a, 227b)은 특정 파장의 광은 반사하되 그 특정 파장 이외의 광은 투과시키는 밴드 패스 필터일 수 있다. 특히, 제1 및/또는 제2 차광 패턴(227b)은 발광 적층체가 특정 파장의 광을 출사하는 경우, 발광 적층체로부터 출사된 광은 반사하되 그 이외의 광은 투과시킬 수 있다. 예를 들어, 본 실시예에 따른 발광 적층체가 청색광을 출사하는 경우, 상기 제1 차광 패턴(227a)은 청색광과 황색광을 차단하는 유전 미러일 수 있으며, 상기 제2 차광 패턴(227b)은 청색광을 차단하는 유전 미러일 수 있다.
본 발명의 일 실시예에 있어서, 평면 상에서 볼 때 상기 활성층(224)의 면적은 상기 소자 기판(221)의 면적보다 작을 수 있다. 이에 따라, 도 6에 도시된 바와 같이, 활성층(224)의 폭(W2)은 소자 기판(221)의 폭(W1)보다 작을 수 있다. 도 6에서는 제1 길이 방향의 폭만 도시되었으나, 본 발명의 일 실시예에 따르면 제2 길이 방향의 활성층(224)의 폭 또한 소자 기판(221)의 폭보다 작게 제공될 수 있다. 활성층(224)의 면적이 소자 기판(221)의 면적보다 작게 형성되며 이와 동시에 활성층(224)의 측부 측에 제2 차광 패턴(227b)이 형성되어 있으므로 활성층(224)에서 생성된 광은 소자 기판(221) 측으로 최대한 진행한다. 이에 따라, 활성층(224)에서 생성된 광은 소자 기판(221)의 상면에 형성된 돌출 패턴에 의해 일차적으로 산란된 후 소자 기판(221) 내에서 복수 회에 걸친 산란과 반사를 통해 소자 기판(221)의 측부로 출사된다.
도 7a 및 도 7b는 각각 기존의 발광 소자와 본 발명의 일 실시예에 따른 발광 소자의 광 프로파일을 도시한 그래프이다. 본 도면들에 있어서, 도 7a는 제1 길이 방향을 기준으로 하여, 발광 소자로부터 출사된 광의 세기를 각도에 따라 도시한 광 프로파일이며, 도 7b는 제2 길이 방향을 기준으로 하여, 발광 소자로부터 출사된 광의 세기를 각도에 따라 도시한 광 프로파일이다. 도면에 있어서, 0도는 도 6의 발광 소자를 반전하여 기판 상에 실장하였을 때, 기판면에 수직한 방향에 해당한다. 도 7a 및 도 7b에 도시된 광 프로파일은 출사 광의 세기가 가장 큰 각도에서의 광의 세기를 1로 하여 정규화된 것이다. 여기서, 실선으로 표시된 것은 기존의 발광 소자에 따른 광 프로파일이며, 점선으로 표시된 것은 본 발명의 일 실시예에 따른 광 프로파일이다. 본 발명의 일 실시예에 따른 발광 소자는 소자 기판의 제1 면 상에 제1 차광 패턴이 형성된 것 이외에는 기존 발명의 발광 소자와 동일한 구조 및 동일한 조건으로 제조되었다.
도 7a 및 도 7b를 참조하면, 본 발명의 일 실시예에 따른 광원부에 있어서, 방향에 따른 광 프로파일에 차이가 있기는 하나, 어느 방향으로든 상관없이, 기존 발명에 따른 발광 소자 대비 기판의 상부 방향으로 출사된 광의 세기가 현저하게 감소하며, 최대 광의 세기의 약 80% 이하의 값을 갖는다.
도 7a에 있어서, 기존의 발광 소자로부터 출사되되 기판의 상부 방향으로 출사된 광은 약 140도 이하의 지향각을 가지며, 최대 광의 세기의 90% 이상의 값을 가진다. 특히, 약 -30도 내지 약 +30도 사이의 영역에서 90% 이상의 광의 세기를 나타냄으로써, 상부 방향으로 진행하는 광의 양이 매우 많음을 확인할 수 있다. 도 7b에 있어서도, 기존의 발광 소자로부터 출사되되 기판의 상부 방향으로 출사된 광은 최대 광의 세기의 90% 이상의 값을 가지며, 약 -30도 내지 약 +30도 사이의 영역에서 90% 이상의 광의 세기를 나타내는 것은 동일하다. 또한, 기존의 발광 소자의 경우 그 형상이 직사각형임에도 불구하고 제1 길이 방향 및 제2 길이 방향의 광 프로파일이 매우 유사하며, 지향각 또한 유사한 값을 갖는다. 실제로, 기존의 발광 소자의 경우, 제1 길이 방향 및 제2 길이 방향의 지향각은 약 136.0도 및 136.3도로서 매우 유사한 값을 나타내었다.
이에 비해, 도 7a에 있어서, 본 발명의 일 실시예예 따른 발광 소자로부터 출사되어 기판의 상부 방향으로 출사된 광은 약 170도 이하의 지향각을 갖는다. 또한, 본 발명의 일 실시예예 따른 발광 소자로부터 출사되어 기판의 상부 방향으로 출사된 광은 약 -30도 내지 약 +30도 사이의 영역에서 50% 이하의 값을 나타내며, 0도에 가까울수록 그 값이 작아진다. 그 결과, 기판의 상부 방향으로 출사된 광은 최대 광의 세기의 50% 이하의 값을 나타낸다. 도 7b에 있어서도, 본 발명의 일 실시예예 따른 발광 소자로부터 출사되어 기판의 상부 방향으로 출사된 광은 약 -30도 내지 약 +30도 사이의 영역에서 85% 이하의 값을 나타내며, 0도에 가까울수록 그 값이 작아진다. 그 결과, 기판의 상부 방향으로 출사된 광은 최대 광의 세기의 65% 이하의 값을 나타낸다. 또한, 본 발명의 일 실시예에 따른 발광 소자의 경우 광차단 막을 형성한 것에 의해, 제1 길이 방향 및 제2 길이 방향의 광 프로파일이 달리 나타났다. 실제로, 본 발명의 일 실시예에 따른 발광 소자의 경우, 제1 길이 방향 및 제2 길이 방향의 지향각은 약 160.0도 및 169.4도로서 방향에 따라 약 10도 가까운 차이가 나타났다.
상술한 바와 같이, 기존 발명 대비 본 발명의 일 실시예에 따른 발광 소자를 사용한 광원부의 경우, 측부 방향으로의 광 출사를 증가시키기 위한 별도의 구조 (예를 들어, 광 지향각 렌즈) 없이도, 상부 방향의 광을 감소시키고 측부 방향으로의 광을 증가시킬 수 있으며, 그 결과, 발광 소자 바로 상부에서의 명점 현상을 최소화한다.
이에 더해, 발광 소자로부터 측부 방향으로 출사된 광은 광 가이드 부재의 상면에 상대적으로 비스듬하게 진행함으로써 광 가이드 부재의 상면에서의 산란, 반사, 확산 등의 확률이 더욱 높아진다. 발광 소자로부터 측부 방향으로 출사된 광은 상면에 표면 거칠기가 형성된 광 가이드 부재에 의해 한 층 더 산란, 반사, 확산 등이 일어나, 광의 균일성이 더욱 증가함으로써, 명점이나 암점으로 인한 불량이 감소한다.
이와 같이 본 발명의 일 실시예에서는 렌즈와 같은 별도의 구조 없이도 측부 광량을 증가시키고, 광 가이드 부재를 이용하여 광의 균일성을 더욱 더 향상시킴 킴으로써 백라이트 유닛의 두께를 최소화하면서도 향상된 품질의 광을 표시 패널에 제공할 수 있다.
본 발명의 일 실시예에 있어서, 도 7a 및 도 7b를 살펴보면, 발광 소자는 제1 길이 방향과, 상기 제1 길이 방향에 교차하는 제2 길이 방향에 대해 서로 다른 광 프로파일을 가질 수 있다. 방향에 따라 다른 광의 프로파일은 상술한 바와 같이 발광 소자가 방향에 따라 서로 다른 길이를 가지며, 이에 따라 방향에 따라 광 출사 면적에 차이가 생기기 때문일 수 있다.
본 발명의 일 실시예에 따른 백라이트 유닛은 발광 소자가 방향에 따라 서로 다른 광 프로파일을 가지는 경우 이를 고려하여 기판 상에 다양한 피치로 배열시킬 수 있다.
도 8은 본 발명의 일 실시예에 따른 백라이트 유닛에 있어서 기판(211) 상에 발광 소자들(220)의 배치된 것을 도시한 평면도이다. 도 8에 있어서, 설명의 편의를 위해 일부 영역에 대해 기판(211)과 발광 소자들(220)만을 도시하였는 바, 광원부(210)를 평면상에서 볼 때 우측상단의 모서리 부분만을 도시하였다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 백라이트 유닛에 있어서, 발광 소자들(220)은 기판(211) 상에 행과 열을 따라 행열 형상으로 배열될 수 있다. 발광 소자들(220)은 행 방향과 열 방향을 따라 서로 소정 피치로 이격되는 바, 제1 방향(D1)에 따른 피치를 제1 피치(P1)라고 하고, 제2 방향(D2)에 따른 피치를 제2 피치(P2)라고 하면, 제1 피치(P1)와 제2 피치(P2)는 서로 다를 수 있다. 여기서, 발광 소자들(220)이 배열될 때, 제1 방향(D1)과 제2 방향(D2) 중 더 광의 세기가 더 큰 방향을 따라 더 큰 피치를 갖도록 발광 소자들(220)을 배열될 수 있다. 예를 들어, 발광 소자(220)의 길이 방향(즉, 제1 길이(L1))과 제1 방향(D1)이 일치할 경우, 제1 방향(D1)의 광의 세기가 제2 방향(D2)의 광의 세기보다 크다. 이 경우, 제1 방향(D1)의 광의 세기보다 제2 방향(D2)으로의 광의 세기가 더 큰 것을 고려하여, 제1 방향(D1)에 따른 제1 피치(P1)가 제2 방향(D2)에 따른 제2 피치(P2)보다 더 큰 값을 가질 수 있다.
본 실시예에 따르면, 발광 소자들(220)은 광 가이드 부재(230)에 의해 기판(211) 상에 안정적으로 고정되나, 기판(211)의 모서리측 및 꼭지점 부근에 배치된 최외곽 발광 소자들(220)은 내측의 발광 소자들(220) 대비 분리의 위험이 크다. 이에 따라, 기판(211)의 모서리측 및 꼭지점 부근에 배치된 발광 소자들(220)의 경우, 광 가이드 부재(230)에 의해 충분히 지지될 수 있도록, 모서리로부터 충분한 거리로 이격될 필요가 있다. 예를 들어, 기판(211)의 모서리측 및 꼭지점 부근에 배치된 최외곽 발광 소자(220)의 경우 제1 방향(D1) 및 제2 방향(D2)으로 연장된 각 변에 대해 제1 및 제2 거리(R1, R2)로 이격될 필요가 있는 바, 제1 및 제2 거리(R1, R2)는 약 1mm 이상일 수 있다. 최외곽 발광 소자(220)가 약 1mm 이상의 간격을 두고 이격된 경우, 그 이격된 부분에 광 가이드 부재(230)가 제공됨으로써 발광 소자들(220)을 충분히 지지함으로써, 발광 소자들(220)의 기판(211)으로부터의 분리를 효율적으로 방지할 수 있다.
그러나, 발광 소자들(220)의 배치 방법은 이에 한정되는 것은 아니며, 균일한 광을 표시 패널에 제공하는 한도 내에서 이와 달리 배열될 수 있음은 물론이다. 예를 들어, 제1 방향(D1)과 제2 방향(D2)에 따라 서로 다른 광 프로파일을 갖는 발광 소자들(220)을 배열하는 경우에도 광 가이드 부재(230)의 광 산란 및 분산 효과에 따라 광 분산 효과가 큰 경우, 제1 피치(P1)와 제2 피치(P2)를 달리 설정할 필요는 없으며, 이 경우 제1 피치(P1)와 제2 피치(P2)는 서로 동일할 수도 있다. 또한, 광 가이드 부재(230)의 광 산란 및 분산 효과에 따라 광 분산 효과가 큰 경우, 발광 소자들(220)의 배치 시의 규칙성은 더 낮을 수 있으며, 상황에 따라서는 규칙적으로 배열되지 않고 랜덤하게 배열될 수도 있음은 물론이다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 백라이트 유닛은 측부 광량이 현저하게 증가된 발광 소자와 광의 산란, 확산, 및 분산 효과가 높은 광 가이드 부재를 이용하여 광의 균일성을 더욱 더 향상시킴 킴으로써 백라이트 유닛의 두께를 현저히 감소시키면도 향상된 품질의 광을 표시 패널에 제공할 수 있다.
본 발명의 일 실시예예 따르면, 측부 광량이 현저하게 증가된 발광 소자와 광의 산란, 확산, 및 분산 효과가 높은 광 가이드 부재를 이용함으로써 슬림한 백라이트 유닛을 구현할 수 있으므로, 광 효율을 높이기 위한 광학 부재를 추가적으로 채용할지라도 슬림한 표시 장치를 얻을 수 있는 장점이 있다.
도 9는 본 발명의 일 실시예에 따른 백라이트 유닛을 도시한 것으로서, 도 3의 I-I'선에 대응하는 단면도이다.
도 9를 참조하면, 하부 커버(320) 상에 광원부(210)와 광 가이드 부재(230), 및 광학 부재(240)가 순차적으로 제공된다.
광학 부재(240)는 광 가이드 부재(230)와 상기 표시 패널(100) 사이에 구비되며, 확산 시트(245), 프리즘 시트, 보호 시트, 광 변환 시트, 등에 더해, 휘도 강화 필름(247)(brightness enhance film)을 더 포함할 수 있다. 본 발명의 일 실시예에 있어서, 휘도 강화 필름(247)은 다양한 공지의 필름들이 사용될 수 있는 바, 그 종류와 구성이 한정되는 것은 아니다. 예를 들어, 휘도 강화 필름(247)은 3M 사의 Vikuiti쪠와 같은 것일 수도 있다. 여기서, 휘도 강화 필름(247)은 다양한 두께를 가질 수 있으나 본 발명의 일 실시예에서는 0.1mm 이하, 예를 들어, 약 50μm 이하의 두께를 가질 수 있다.
상술한 구조를 갖는 본 발명의 일 실시예에 따른 광원부 및 광 가이드 부재는 다음과 같은 순서로 제조될 수 있다.
도 10a, 도 11a, 도 12a, 도 13a, 및 도 14a는 본 발명의 일 실시예에 따른 광원부 및 광 가이드 부재를 형성하는 방법을 순차적으로 도시한 사시도이며, 도 10b, 도 11b, 도 12b, 도 13b, 및 도 14b는 도 10a, 도 11a, 도 12a, 도 13a, 및 도 14a의 III-III'선에 따른 단면도이다.
도 10a 및 도 10b를 참조하면, 먼저 모기판(211m) 상에 발광 소자들(220)이 실장된다. 모기판(211m)은 얻고자 하는 광원부의 크기보다 더 크게 제공될 수 있으며, 필요에 따라 다수 개의 광원부를 형성할 수 있도록 매우 넓은 판상으로 제공될 수 있다. 모기판(211m)에는 이후 얻고자 하는 크기의 기판으로 커팅하기 위한 가상의 커팅라인이 있을 수 있다. 발광 소자들(220)은 커팅 라인 안쪽에 배열된다.
도 11a 및 도 11b를 참조하면, 기판(211) 상에 발광 소자들(220)이 실장된 이후, 경화되지 않은 광 가이드 부재 재료가 발광 소자들(220)이 실장된 기판(211) 상에 도포된다. 상기 도포를 통해 광 가이드 부재 재료는 광원부(210)의 상부 및 발광 소자들(220) 사이의 공간에 제공된다. 도포된 광 가이드 부재 재료는 경화되어 초기 광 가이드 부재(230m)가 형성된다.
도 12a 및 도 12b를 참조하면, 이후, 경화된 초기 광 가이드 부재(230m)의 상면에는 다양한 방법으로 표면 거칠기(235)가 형성된다. 표면 거칠기(235)는 상기 광 가이드 부재(230)의 상면을 그라인딩하거나, 샌드블라스팅하거나, 습식 및/또는 건식 식각(예를 들어 플라즈마 처리)하는 방식으로 형성될 수 있으며, 그 방법은 한정되지 않는다.
본 발명의 일 실시예에 있어서, 표면 거칠기(235)를 형성하기 위해 그라인딩을 이용할 경우, 고분자 수지로 이루어진 광 가이드 부재(230)를 약 80 메쉬 사이즈 내지 100 메쉬 사이즈(약 5 μm 내지 약 200 μm 직경)의 세라믹 그라인더(다이아몬드)나, 강화 스틸을 사용하여 그라인딩함으로써 표면 거칠기(235)를 얻을 수 있다.
도 13a 및 도 13b를 참조하면, 표면 거칠기(235)가 형성된 초기 광 가이드 부재(230m)와 광원부(210)는 절단 부재(CT)를 이용하여 커팅 라인(CL)을 따라 원하는 크기로 절단된다.
도 14a 및 도 14b를 참조하면, 상기 과정을 거친 다음 광 가이드 부재(230)와 광원부(210)가 부착되어 일체화된 구조가 완성된다.
그러나, 본 발명의 일 실시예에 있어서, 광원부(210) 및 광 가이드 부재(230)의 제조 방법은 이에 한정되는 것은 아니며, 다양한 형태로 변형될 수 있음은 물론이다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (23)

  1. 표시 패널;
    상기 표시 패널에 광을 제공하는 광원부; 및
    상기 표시 패널과 상기 광원부 사이에 제공되고, 그 상면에 상기 광을 확산시키는 표면 거칠기를 가지며, 상기 광원부를 매립하는 형태로 커버하는 광 가이드 부재를 포함하고,
    상기 광원부는 기판; 및 상기 기판 상에 제공되며 그 상부로 출사된 광의 세기가 약 80% 이하가 되도록 하는 차단 패턴이 형성된 발광 소자를 포함하는 표시 장치.
  2. 제1 항에 있어서,
    상기 차단 패턴은 그 상부로 출사된 광의 세기가 약 50% 이하가 되도록 하는 표시 장치.
  3. 제1 항에 있어서,
    상기 기판의 상면으로부터 상기 광 가이드 부재의 상면까지의 거리는 약 400마이크로미터 이하인 표시 장치.
  4. 제1 항에 있어서,
    상기 발광 소자는
    제1 면과 제2 면을 갖는 소자 기판;
    상기 제2 면 상에 제공된 발광 적층체; 및
    상기 제1 면 상에 제공된 제1 차단 패턴을 포함하는 표시 장치.
  5. 제4 항에 있어서,
    상기 발광 적층체의 상면을 커버하는 제2 차단 패턴을 포함하는 표시 장치.
  6. 제5 항에 있어서,
    상기 제1 및 제2 차단 패턴은 DBR 유전 미러인 표시 장치.
  7. 제5 항에 있어서,
    상기 제1 차단 패턴은 청색광과 황색광을 차단하는 유전 미러인 표시 장치.
  8. 제5 항에 있어서,
    상기 제2 차단 패턴은 청색광을 차단하는 유전 미러인 표시 장치.
  9. 제4 항에 있어서,
    상기 발광 적층체는 상기 소자 기판 상에 순차적으로 제공된 제1 반도체층, 활성층, 및 제2 반도체층을 포함하며,
    평면 상에서 볼 때 상기 활성층의 면적은 상기 소자 기판의 면적보다 작은 표시 장치.
  10. 제4 항에 있어서,
    상기 발광 소자는 제1 방향과 상기 제1 방향에 교차하는 제2 방향에 대해 서로 다른 광 프로파일을 가지는 표시 장치.
  11. 제10 항에 있어서,
    상기 발광 소자는 직사각 형상을 갖는 표시 장치.
  12. 제11 항에 있어서,
    상기 발광 소자는 상기 발광 적층체 상에 서로 이격되어 제공된 제1 및 제2 컨택 전극을 더 포함하며, 상기 제1 및 제2 컨택 전극은 상기 발광 소자의 길이 방향을 따라 배치된 표시 장치.
  13. 제12 항에 있어서,
    상기 기판은 상기 제1 및 제2 컨택 전극과 솔더를 사이에 두고 전기적으로 연결된 제1 및 제2 패드 전극을 포함하고, 상기 제1 및 제2 패드 전극은 약 50마이크로미터 이상 이격된 표시 장치.
  14. 제1 항에 있어서,
    상기 발광 소자는 복수 개로 제공되며, 상기 기판 상에 매트릭스 형상으로 배열된 표시 장치.
  15. 제14 항에 있어서,
    상기 발광 소자들은 제1 방향을 따라 제1 피치로 이격되며, 상기 제1 방향과 교차하는 제2 방향을 따라 제2 피치로 이격되며, 상기 제1 피치와 상기 제2 피치는 서로 다른 표시 장치.
  16. 제15 항에 있어서,
    상기 기판의 가장 자리와 상기 가장 자리에 가장 인접한 발광 소자 사이의 거리는 약 1mm 이상인 표시 장치.
  17. 제1 항에 있어서,
    상기 광원부와 상기 표시 패널 사이에 제공되며 출광 효율을 향상시키는 광학 시트를 더 포함하는 표시 장치.
  18. 제1 항에 있어서,
    상기 광 가이드 부재는 실리콘 수지로 이루어진 표시 장치.
  19. 제18 항에 있어서,
    상기 광 가이드 부재는 상기 실리콘 수지 내에 제공된 광 산란 입자들을 포함하는 표시 장치.
  20. 제1 항에 있어서,
    상기 발광 소자는 청색 광을 출사하는 표시 장치.
  21. 제20 항에 있어서,
    상기 광원부와 상기 표시 패널 사이에 제공되며 상기 발광 소자로부터의 광의 파장대역을 변환하는 광 변환 필름을 더 포함하는 표시 장치.
  22. 제21 항에 있어서,
    상기 광 변환 필름은 그 내부에 양자점과 형광체 중 적어도 하나를 포함하는 표시 장치.
  23. 광을 출사하는 광원부; 및
    상기 광원부 상에 제공되고, 그 상면에 상기 광을 확산시키는 표면 거칠기를 가지며, 상기 광원부를 매립하는 형태로 커버하는 광 가이드 부재를 포함하고,
    상기 광원부는 기판; 및 상기 기판 상에 제공되며 그 상부로 출사된 광의 세기가 약 80% 이하가 되도록 하는 차단 패턴이 형성된 발광 소자를 포함하는 백라이트 유닛.
PCT/KR2019/011357 2018-09-14 2019-09-03 백라이트 유닛 및 이를 포함하는 표시 장치 WO2020055026A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19860830.9A EP3851905A4 (en) 2018-09-14 2019-09-03 BACKLIGHT UNIT AND DISPLAY DEVICE INCLUDING THEREOF
US17/194,286 US11536893B2 (en) 2018-09-14 2021-03-07 Backlight unit and display apparatus having the same
US18/087,812 US12019266B2 (en) 2018-09-14 2022-12-23 Backlight unit and display apparatus having the same
US18/503,570 US20240069269A1 (en) 2018-09-14 2023-11-07 Backlight unit and display apparatus having the same
US18/649,737 US20240280742A1 (en) 2018-09-14 2024-04-29 Backlight unit and display apparatus having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862731229P 2018-09-14 2018-09-14
US62/731,229 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/194,286 Continuation US11536893B2 (en) 2018-09-14 2021-03-07 Backlight unit and display apparatus having the same

Publications (1)

Publication Number Publication Date
WO2020055026A1 true WO2020055026A1 (ko) 2020-03-19

Family

ID=69776637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011357 WO2020055026A1 (ko) 2018-09-14 2019-09-03 백라이트 유닛 및 이를 포함하는 표시 장치

Country Status (4)

Country Link
US (4) US11536893B2 (ko)
EP (1) EP3851905A4 (ko)
CN (1) CN110908179A (ko)
WO (1) WO2020055026A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012255A1 (en) * 2020-12-11 2022-06-15 LG Display Co., Ltd. Backlight unit and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180090002A (ko) * 2017-02-02 2018-08-10 서울반도체 주식회사 발광 다이오드 패키지
KR20220055354A (ko) * 2020-10-26 2022-05-03 엘지디스플레이 주식회사 백라이트 유닛 및 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130031437A (ko) * 2011-09-21 2013-03-29 엘지이노텍 주식회사 백라이트 유닛 및 이를 포함하는 표시장치
JP2014033182A (ja) * 2012-08-06 2014-02-20 Lg Innotek Co Ltd 発光素子
KR20160059006A (ko) * 2014-11-17 2016-05-26 엘지디스플레이 주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
KR20160071836A (ko) * 2014-12-12 2016-06-22 주식회사 루멘스 발광 소자 패키지와, 백라이트 유닛 및 조명 장치
KR20160116778A (ko) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 발광 소자 패키지

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378686B2 (en) * 2005-10-18 2008-05-27 Goldeneye, Inc. Light emitting diode and side emitting lens
US9048400B2 (en) * 2006-10-12 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device with a wavelength converting layer and method for manufacturing the same
JP5667888B2 (ja) * 2010-12-13 2015-02-12 日立マクセル株式会社 バックライトユニット及びこれを用いた映像表示装置
US20140048824A1 (en) * 2012-08-15 2014-02-20 Epistar Corporation Light-emitting device
KR102222580B1 (ko) 2014-07-30 2021-03-05 삼성전자주식회사 발광 소자 패키지 및 이를 포함하는 표시 장치
US9513426B2 (en) * 2014-10-22 2016-12-06 Industrial Technology Research Institute Light down conversion film and display backlight unit using the same
KR102380825B1 (ko) * 2015-05-29 2022-04-01 삼성전자주식회사 반도체 발광다이오드 칩 및 이를 구비한 발광장치
EP3540504A4 (en) * 2016-11-14 2020-07-15 Seoul Semiconductor Co., Ltd. DISPLAY DEVICE AND ASSOCIATED BACKLIGHT UNIT
KR20180086840A (ko) * 2017-01-24 2018-08-01 엘지이노텍 주식회사 반도체 소자 패키지 및 광원 모듈
CN106873072B (zh) * 2017-04-24 2019-06-14 京东方科技集团股份有限公司 导光组件及其制备方法、背光模组和显示装置
CN109031773A (zh) * 2017-06-09 2018-12-18 群创光电股份有限公司 显示装置
CN108490683A (zh) * 2018-03-12 2018-09-04 安徽芯瑞达科技股份有限公司 一种新型背光模组用背光源及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130031437A (ko) * 2011-09-21 2013-03-29 엘지이노텍 주식회사 백라이트 유닛 및 이를 포함하는 표시장치
JP2014033182A (ja) * 2012-08-06 2014-02-20 Lg Innotek Co Ltd 発光素子
KR20160059006A (ko) * 2014-11-17 2016-05-26 엘지디스플레이 주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
KR20160071836A (ko) * 2014-12-12 2016-06-22 주식회사 루멘스 발광 소자 패키지와, 백라이트 유닛 및 조명 장치
KR20160116778A (ko) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 발광 소자 패키지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012255A1 (en) * 2020-12-11 2022-06-15 LG Display Co., Ltd. Backlight unit and display device
US11585973B2 (en) 2020-12-11 2023-02-21 Lg Display Co., Ltd. Backlight unit and display device

Also Published As

Publication number Publication date
CN110908179A (zh) 2020-03-24
US20230129439A1 (en) 2023-04-27
US20210208329A1 (en) 2021-07-08
US11536893B2 (en) 2022-12-27
EP3851905A4 (en) 2022-06-01
US20240280742A1 (en) 2024-08-22
US12019266B2 (en) 2024-06-25
EP3851905A1 (en) 2021-07-21
US20240069269A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2020184903A1 (ko) 미니 led 또는 마이크로 led를 광원으로 하는 백라이트 유닛
WO2020055026A1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2013055020A1 (en) Optical assembly, backlight unit having the same, and display apparatus thereof
WO2013069878A1 (en) Optical sheet, display device and light emitting device having the same
WO2013032128A1 (en) Optical member, display device, and light emitting device having the same
WO2012138038A1 (en) Optical member and display device including the same
WO2011025172A2 (en) Backlight unit and dipslay device
WO2015199320A1 (en) Backlight unit and display device having the same
KR102126277B1 (ko) 백라이트 어셈블리 및 이를 포함하는 표시 장치
WO2010140749A1 (en) Led back-light unit and display device
EP2470952A2 (en) Backlight unit and display device
WO2021256787A1 (ko) 복수의 유닛 픽셀을 갖는 발광 모듈, 그것을 제조하는 방법, 및 그것을 갖는 디스플레이 장치
WO2022197053A1 (ko) 발광 모듈, 그것을 제조하는 방법 및 그것을 갖는 디스플레이 장치
KR102517072B1 (ko) 백라이트 유닛 및 디스플레이 장치
WO2021157977A1 (en) Display apparatus
WO2020162678A1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
WO2012091255A1 (en) Display apparatus
WO2020130497A1 (en) Display device
WO2020166864A1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
WO2017204413A1 (ko) 백라이트 유닛 및 그를 이용한 디스플레이 장치
WO2020036320A1 (ko) 발광 다이오드 패키지 및 발광 다이오드 패키지를 포함하는 디스플레이 장치
WO2021215667A1 (en) Display device
WO2021261841A1 (ko) 디스플레이 장치 및 그 제조 방법
WO2020262905A1 (ko) 광원 렌즈 및 이를 포함하는 광원 모듈
WO2019107711A1 (ko) 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019860830

Country of ref document: EP

Effective date: 20210414