WO2020054025A1 - User equipment and wireless communication method - Google Patents
User equipment and wireless communication method Download PDFInfo
- Publication number
- WO2020054025A1 WO2020054025A1 PCT/JP2018/034003 JP2018034003W WO2020054025A1 WO 2020054025 A1 WO2020054025 A1 WO 2020054025A1 JP 2018034003 W JP2018034003 W JP 2018034003W WO 2020054025 A1 WO2020054025 A1 WO 2020054025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- search space
- bfr
- signal
- downlink control
- pdcch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
- radio link monitoring Radio Link Monitoring
- RLM Radio Link Monitoring
- RLF Radio @ Link @ Failure
- RRC Radio @ Resource @ Control
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- NR In NR, it is considered to detect a beam failure and perform a procedure for switching to another beam (which may be called a beam recovery (BR) procedure).
- BR beam recovery
- CORESET Control REsource SET
- a predetermined search space setting is associated with CORESET.
- a downlink control channel for example, PDCCH
- a RESET for BFR a RESET for BFR
- a search space associated with the RESET is being considered.
- monitoring of the PDCCH using a search space associated with a coreset other than the coreset for the BFR may be considered.
- the search space associated with another coreset may be, for example, a search space associated with the coreset that was monitored prior to the BFR procedure.
- an object of the present disclosure is to provide a user terminal and a wireless communication method that can appropriately perform a beam recovery procedure.
- a user terminal includes a receiving unit that monitors a downlink control channel in a beam failure recovery (BFR) procedure, and a first search space corresponding to a first control resource set. If a downlink control channel is detected in a range where the second search space corresponding to the second control resource set set for BFR overlaps with a predetermined rule, the downlink control channel transmitted on the downlink control channel is detected.
- a control unit that determines a search space in which the downlink control channel has been transmitted, based on information.
- a beam recovery procedure can be appropriately performed.
- FIG. 1 is a diagram illustrating an example of a beam recovery procedure.
- FIG. 2 is a diagram illustrating an example where a plurality of control resource sets and search spaces are set.
- FIG. 3 is a diagram illustrating an example of a plurality of control resource sets and search space parameters.
- FIG. 4 is a diagram showing an example of the PDCCH detection operation according to the first example.
- FIG. 5 is a diagram showing another example of the PDCCH detection operation according to the first example.
- FIG. 6 is a diagram illustrating an example of a PDCCH detection operation according to the second example.
- FIG. 7 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
- FIG. 8 is a diagram illustrating an example of the entire configuration of the wireless base station according to the embodiment.
- FIG. 9 is a diagram illustrating an example of a functional configuration of the wireless base station according to the embodiment.
- FIG. 10 is a diagram illustrating an example of the entire configuration of the user terminal according to the embodiment.
- FIG. 11 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
- FIG. 12 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment.
- a UE and / or a base station transmits a beam (also referred to as a transmission beam or a Tx beam) used for transmitting a signal, or a beam used for receiving a signal (a reception beam, an Rx beam, or the like). May also be used.
- a beam also referred to as a transmission beam or a Tx beam
- a beam used for receiving a signal a reception beam, an Rx beam, or the like.
- Radio link quality is likely to be degraded because it is susceptible to interference from obstacles.
- Radio link failure (RLF: Radio Link Failure) may frequently occur due to deterioration of the radio link quality.
- RLF Radio Link Failure
- cell reconnection is required, so frequent occurrence of RLF causes deterioration of system throughput.
- NR in order to suppress the occurrence of RLF, when the quality of a specific beam deteriorates, switching to another beam (beam recovery (BR: Beam @ Recovery), beam failure recovery (BFR: Beam @ Failure @ Recovery), Implementation of an L1 / L2 (Layer 1 / Layer 2) beam recovery procedure (which may be referred to as beam recovery) is being considered.
- the BFR procedure may be simply called BFR, or may be called a link recovery (LR: Link @ Recovery) procedure or simply LR.
- the UE cannot detect the PDCCH due to the interruption of the radio wave from the base station.
- Such interference may occur, for example, due to the effects of obstacles, fading, interference, etc. between the UE and the base station.
- the UE detects a beam failure when a predetermined condition is satisfied.
- the base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (a beam recovery request in step S104) is received from the UE.
- step S103 the UE starts searching for a new candidate beam (new @ candidate @ beam) to be newly used for communication for beam recovery.
- the UE Upon detecting the beam failure, the UE performs a measurement based on a preset downlink signal (which may be referred to as DL-RS (Reference Signal), BFR-RS, or the like) resource, and is desirable (for example, of good quality).
- DL-RS Reference Signal
- BFR-RS Reference Signal
- One or more new candidate beams may be specified. In this example, one beam is specified as a new candidate beam.
- the DL-RS includes a primary synchronization signal (PSS: Primary @ SS), a secondary synchronization signal (SSS: Secondary @ SS), a mobility reference signal (MRS: Mobility @ RS), a signal included in the SSB, a CSI-RS, a demodulation reference signal (DMRS: Demodulation Reference Signal, at least one of beam-specific signals, or a signal configured by extending and / or changing these (for example, a signal configured by changing the density and / or period), Is also good.
- PSS Primary @ SS
- SSS Secondary @ SS
- MRS Mobility @ RS
- DMRS Demodulation Reference Signal
- the DL-RS may be referred to as a new candidate beam detection signal.
- step S104 the UE that has identified the new candidate beam transmits a beam recovery request (BFRQ: Beam ⁇ Failure ⁇ Recovery ⁇ reQuest).
- the beam recovery request may be called a beam recovery request signal, a beam failure recovery request signal, or the like.
- the beam recovery request is transmitted using, for example, at least one of an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel), and a UL grant-free PUSCH (Physical Uplink Shared Channel). You may.
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- UL grant-free PUSCH Physical Uplink Shared Channel
- the beam recovery request may include information on the new candidate beam specified in step S103.
- Resources for a beam recovery request may be associated with the new candidate beam.
- the beam information is notified using a beam index (BI: Beam @ Index), a port and / or a resource index of a predetermined reference signal (for example, a CSI-RS resource index (CRI)). Is also good.
- BI Beam @ Index
- a port for example, a CSI-RS resource index (CRI)
- CRI CSI-RS resource index
- the base station that has detected the beam recovery request transmits a response signal to the beam recovery request (BFRQ) from the UE.
- the response signal may include reconfiguration information on one or a plurality of beams (for example, configuration information of a DL-RS resource).
- the response signal may be transmitted, for example, in a PDCCH UE common search space.
- the response signal is notified using a PDCCH (DCI) scrambled by a cyclic redundancy check (CRC: Cyclic Redundancy Check) by an identifier of the UE (for example, Cell-Radio RNTI (C-RNTI)). May be done.
- DCI PDCCH
- CRC Cyclic Redundancy Check
- the UE may determine at least one of a transmit beam and a receive beam to use based on the beam reconfiguration information.
- a period for the UE to monitor a response (response) to the BFRQ from the base station may be set.
- the period may be called, for example, a gNB response window, a gNB window, a beam recovery request response window, or the like.
- the UE may retransmit BFRQ if there is no gNB response detected within the window period.
- the UE may transmit a message indicating that the beam reconfiguration has been completed to the base station.
- the message may be transmitted by, for example, the PUCCH or may be transmitted by the PUSCH.
- Beam recovery success may represent, for example, a case where the process reaches step S106.
- the beam recovery failure (BR @ failure) may indicate, for example, a case where no candidate beam has been identified in step S103.
- the upper layer signaling may be, for example, any of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like.
- the broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System @ Information).
- CB-BFR Contention-Based BFR
- CF-BFR Contention-Free BFR
- the UE may transmit a preamble randomly selected from one or more preambles (RA preamble, also referred to as a random access channel (PRACH: Physical Random Access Channel), RACH preamble, or the like).
- RA preamble also referred to as a random access channel (PRACH: Physical Random Access Channel)
- PRACH Physical Random Access Channel
- CF-BFR the UE may transmit a preamble assigned from the base station to the UE.
- the base station may assign the same preamble to multiple UEs.
- the base station may assign a preamble to each UE.
- Beam failure detection may be performed at the MAC layer.
- CB-BFR when the UE receives the PDCCH corresponding to the C-RNTI for itself, it may be determined that the contention resolution (contention resolution) is successful.
- the RA parameters of CB-BFR and CF-BFR may be composed of the same parameter set. Different values may be set for the RA parameters of CB-BFR and CF-BFR, respectively.
- the parameter indicating the length of time for monitoring the gNB response in the beam fault recovery response coreset after BFRQ (which may be referred to as “ResponseWindowSize-BFR”) may be applied only to CF-BFR. .
- a control resource set (CORESET: Control RESET) is used to transmit a physical layer control signal (for example, downlink control information (DCI: Downlink Control Information)) from the base station to the UE. Is being considered.
- a physical layer control signal for example, downlink control information (DCI: Downlink Control Information)
- $ CORESET is an allocation candidate area for a control channel (for example, PDCCH (Physical Downlink Control Channel)).
- the UE may receive the configuration information of the coreset (may be referred to as coreset configuration (coreset configuration) or coreset-config) from the base station.
- the UE can detect the physical layer control signal by monitoring the coreset set in the own terminal.
- the CORESET setting may be notified by, for example, higher layer signaling, or may be represented by a predetermined RRC information element (which may be called “ControlResourceSet”).
- the Coreset configuration mainly includes information on the resource-related configuration and the RS-related configuration of the PDCCH, and may include, for example, information on at least one of the following: A CORESET identifier (CORESET ID (Identifier)); A scramble ID of a demodulation reference signal (DMRS) for the PDCCH, Time duration (eg, 1, 2 or 3 symbols), -Frequency-domain resource allocation (Frequency-domain Resource Allocation), Mapping between control channel elements (CCE: Control Channel Element) and resource element groups (REG: Resource Element Group) (interleaved, non-interleaved); ⁇ REG bundle size, Index of shift amount in case of interleaving, A transmission configuration notification (TCI: Transmission Configuration Indication) state for the PDCCH, Enable / disable the TCI field.
- CORESET ID Identity
- DMRS demodulation reference signal
- a search area and a search method of a PDCCH candidate are defined as a search space (SS: Search @ Space).
- the UE may receive search space configuration information (which may be referred to as search space configuration (search ⁇ space ⁇ configuration)) from the base station.
- the search space setting may be notified to the UE by, for example, higher layer signaling (eg, RRC signaling) or may be represented by a predetermined RRC information element (which may be referred to as “SearchSpace”).
- higher layer signaling eg, RRC signaling
- SearchSpace a predetermined RRC information element
- the search space configuration mainly includes information on monitoring-related configuration and decoding-related configuration of the PDCCH, and may include, for example, information on at least one of the following: -Search space identifier (search space ID), A CORRESET ID to which the search space setting relates, A flag indicating whether it is a common search space (C-SS: Common SS) or a UE-specific search space (UE-SS: UE-specific SS); The number of PDCCH candidates for each aggregation level, ⁇ Monitoring cycle, Monitoring offset, A monitoring pattern in the slot (eg a 14 bit bitmap).
- search space ID search space identifier
- C-SS Common SS
- UE-SS UE-specific search space
- the number of PDCCH candidates for each aggregation level ⁇ Monitoring cycle, Monitoring offset, A monitoring pattern in the slot (eg a 14 bit bitmap).
- the UE can determine the correspondence between the CORESET and the search space based on the CORESET $ ID included in the search space setting.
- One coreset may be associated with one or more search spaces.
- the BFR CORESET may be set in the UE using a predetermined RRC information element (IE: Information @ Element) (which may be referred to as “CORESET-BFR”).
- IE Information @ Element
- the network may set a search space (for example, BFR-SS) corresponding to the coreset for BFR.
- the UE may monitor the PDCCH (response signal to the BFRQ) in the search space corresponding to the BFR coreset, and may determine that the BFR operation has been successful when the PDCCH is received.
- the PDCCH candidate is continuously monitored for the search space that was monitored before the transmission of the beam recovery request. Have been. That is, in the BFR procedure, after transmitting the PRACH for the BFRQ in the BFR procedure, the UE monitors the search space corresponding to another RESET (eg, for the non-BFR) in addition to the search space corresponding to the RESET for the BFR. It is possible to do.
- another RESET eg, for the non-BFR
- the UE detects a PDCCH (or a PDCCH candidate) in the overlapping range, it becomes impossible to determine which search space the detected PDCCH corresponds to. If it is not possible to determine whether the detected PDCCH is a BFR search space, the BFR procedure cannot be properly completed, and there is a possibility that communication throughput or communication quality may deteriorate.
- the present inventors have paid attention to the point that a plurality of search space ranges may overlap in the BFR procedure, and have conceived a UE operation when a PDCCH (or a PDCCH candidate) is detected in the search space overlap range. .
- (First aspect) when a downlink control channel is detected in a range where a first search space corresponding to a first control resource set and a second search space corresponding to a second control resource set overlap, The search space in which the downlink control channel has been transmitted is determined based on a predefined rule.
- the second search space (or the second control resource set) is a BFR search space (or a BFR control resource set) set for the BFR will be described as an example.
- the first search space (or the first control resource set) may be a non-BFR search space set before the BFR procedure (for example, before transmitting the PRACH for BFRQ).
- FIG. 2 shows a first search space (search space #A) corresponding to the first control resource set (CORESET # A) and a second search space corresponding to the second control resource set (CORESET # B).
- search space #A a first search space corresponding to the first control resource set
- CORESET # B a second search space corresponding to the second control resource set
- An example of setting with (search space #B) is shown.
- the same PRB set and the same number of symbols are set for CORRESET # A and CORRESET # B, and the same DCI format, the number of PDCCH candidates, the monitoring occasion (monitoring period, etc.) for search space #A and search space #B.
- the configuration and number of the control resource set and the search space to be set are not limited thereto. Three or more coresets and search spaces may be set.
- FIG. 3 shows a search space #A (search space ID # 1) corresponding to CORESET #A (CORESET ID # 1), and a search space #B (search space ID #) corresponding to CORESET #B (CORESET ID # 2).
- search space #A search space ID # 1
- search space #B search space ID # corresponding to CORESET #B
- An example of detailed parameters set in 2) is shown.
- the setting of the control resource set ID and the search space ID is not limited to this.
- the same frequency region for example, 6 RB ⁇ 8
- the same mapping pattern for example, control channel element (CCE)
- CCE control channel element
- RESET # A CORE # ID # 1
- RESET # B CORE # ID # 2
- REG resource element group mapping without interleaving
- the same monitoring occasion for example, the first symbol of each slot
- the same search space type for example, UE-specific
- the same DCI format for example, DCI @ format @ 1_1 or 0_1
- the number of PDCCH candidates for each search space #A (search space ID # 1) and search space #B (search space ID # 2) aggregation (AL) is partially overlapped.
- search space #A search space ID # 1
- space #B search space ID # 2
- the RS selected for BFR is CSI-RS # 1
- the range of search space #A and search space #B partially overlaps. Become.
- BFRQ for example, PRACH
- the PDCCH received based on any of the following rules 1-3 Judge the corresponding search space.
- search spaces are set in duplicate, it is possible to control the BFR procedure by appropriately determining whether the detected PDCCH is for BFR. As a result, it is possible to suppress deterioration in communication throughput and communication quality.
- rule 1 when a PDCCH that may have been transmitted by the BFR search space (BFR-SS) is detected, it is assumed that the PDCCH has been transmitted by the BFR-SS.
- the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure.
- the PDCCH may be subjected to CRC (Cyclic Redundancy Check) bit scrambling by a predetermined RNTI (Radio Network Temporary Identif).
- the predetermined RNTI may be, for example, a C-RNTI.
- the PDCCH for BFR can be transmitted using the entire search space for BFR.
- the UE can appropriately receive the PDCCH for BFR, so that the BFR procedure can be completed early.
- the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
- the PDCCH may be subjected to CRC (Cyclic Redundancy Check) bit scrambling by a predetermined RNTI (Radio Network Temporary Identif).
- the predetermined RNTI may be, for example, a C-RNTI.
- the network When transmitting a response signal to BFRQ using a PDCCH for BFR (for example, search space #B), the network (for example, a base station) transmits the response signal in a range that does not overlap with search space #A (for example, a monitoring occasion). Control.
- A 16 in FIG. 3
- control is performed such that a response signal to BFRQ is transmitted when only the search space #B is set.
- the UE may assume that a response signal to BFRQ is transmitted in a range of search space #B that does not overlap with search space #A. For example, when receiving the PDCCH (PDCCH for BFR) in the range of search space #B that does not overlap with search space #A, the UE determines that the response signal to the beam recovery request (BFRQ) has been successfully received, The BFR procedure may be completed.
- PDCCH Physical Downlink Control Channel
- BFRQ beam recovery request
- the network for example, the base station
- the PDCCH can be scheduled.
- rule 3 when a PDCCH that may have been transmitted by the BFR search space (BFR-SS) is detected, the PDCCH is included in the BFR-SS (search space #B) and the non-BFR-SS (search space #A). The UE determines which is transmitted.
- any of the PDCCHs may be searched. It autonomously determines whether it corresponds to the space.
- the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure.
- the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
- the UE may determine whether the detected PDCCH has been transmitted by the BFR-SS based on a predetermined condition (for example, AL). For example, the UE may determine that the PDCCH has been transmitted by BFR-SS when the detected PDCCH candidate AL is equal to or greater than a predetermined value in a range where a plurality of search spaces overlap.
- a predetermined condition for example, AL. For example, the UE may determine that the PDCCH has been transmitted by BFR-SS when the detected PDCCH candidate AL is equal to or greater than a predetermined value in a range where a plurality of search spaces overlap.
- the UE may feed back ACK / NACK using an uplink control channel.
- DCI instructs scheduling of PUSCH for example, DCI is UL grant
- the UE may feed back ACK / NACK using the uplink shared channel.
- the base station may reset the beam in the BFR procedure of Rule 1-3.
- the base station ends the BFR operation (eg, PRACH transmission) in the UE by transmitting a BFRQ response signal to the UE in the BFR-SS, and performs another beam control (eg, designation of another beam). You may.
- the PDCCH has been transmitted by the BFR-SS based on the signal or the channel (for example, DCI) received by the UE instead of the rule 1-3 in the first example.
- the channel for example, DCI
- the UE may determine whether or not the detected PDCCH has been transmitted by the BFR-SS based on information included in DCI transmitted on the detected PDCCH.
- the base station may include information for notifying that the DCI is a DCI for BFR to DCI used for transmission of a response signal to BFRQ (for example, DCI for scheduling a PDSCH including the response signal). Good.
- the UE determines that a PDCCH (PDCCH for non-BFR) has been received in search space #A. In this case, the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
- a PDCCH PDCCH for non-BFR
- the information indicating the DCI for BFR may be included in each DCI in a predetermined number of bits (for example, 1 bit). For example, when the predetermined bit value included in DCI is 1, it may indicate that the DCI is BFR DCI, and when 0, it may indicate that it is non-BFR DCI. Alternatively, a configuration may be adopted in which the predetermined bit value (or bit field) is included only in the DCI for BFR, and the predetermined bit value is not included in the DCI for non-BFR.
- the UE determines whether or not the detected PDCCH is for BFR even if the search space is set up by determining whether or not the DCI is for BFR based on the received DCI. Can be appropriately determined to control the BFR procedure. As a result, it is possible to suppress deterioration in communication throughput and communication quality.
- any one of the PDCCHs is determined based on the DCI format transmitted on the PDCCH. (See FIG. 6).
- the UE determines that the detected PDCCH has been transmitted by BFR-SS or that the PDCCH (PDCCH for BFR) has been received in search space #B. Then, the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure.
- BFRQ beam recovery request
- the UE determines that the detected PDCCH has been transmitted by non-BFR-SS or that the PDCCH (non-BFR PDCCH) has been received in search space #A. In this case, the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
- BFRQ beam recovery request
- the UE determines whether or not the detected PDCCH is for BFR even when the search space is set up by determining whether or not the DCI is for BFR based on the format of the received DCI.
- the BFR procedure can be controlled by appropriately determining whether or not the BFR procedure is performed. As a result, it is possible to suppress deterioration in communication throughput and communication quality.
- wireless communication system Wireless communication system
- communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- NR New Radio
- FRA Full Radio Access
- New-RAT Radio Access Technology
- the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
- a base station 11 forming a macro cell C1 having relatively wide coverage
- a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
- user terminals 20 are arranged in the macro cell C1 and each small cell C2.
- the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
- the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
- CC a plurality of cells
- the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)).
- the MR-DC has dual connectivity (LTE and NR) in which an LTE (E-UTRA) base station (eNB) becomes a master node (MN) and an NR base station (gNB) becomes a secondary node (SN).
- EN-DC E-UTRA-NR ⁇ Dual ⁇ Connectivity
- NR base station (gNB) becomes MN
- Dual connectivity (NR and LTE) NE-DC: NR-E-UTRA ⁇ Dual ⁇ Connectivity) may be included.
- the wireless communication system 1 performs dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NN-DC: NR-NR Dual) in which both MN and SN become NR base stations (gNB). Connectivity)).
- Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, or the like
- a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
- the same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- a single numerology may be applied, or a plurality of different numerologies may be applied.
- Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
- the numerology may be referred to as different.
- the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
- wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
- CPRI Common Public Radio Interface
- the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
- the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
- the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a transmission / reception point, and the like. May be called.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
- Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
- Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier-Frequency Division Multiple Access
- OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
- the SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical DownlinkFControl Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
- Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
- the scheduling information may be notified by DCI.
- a DCI that schedules DL data reception may be called a DL assignment
- a DCI that schedules UL data transmission may be called an UL grant.
- PCFICH transmits the number of OFDM symbols used for PDCCH.
- the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
- HARQ Hybrid Automatic Repeat Repeat request
- the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
- PDSCH Downlink Shared Data Channel
- an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH: Physical Random Access Channel) or the like is used.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- a cell-specific reference signal CRS: Cell-specific Reference Signal
- CSI-RS Channel State Information-Reference Signal
- DMRS Demodulation Reference Signal
- PRS Positioning Reference Signal
- a reference signal for measurement SRS: Sounding Reference Signal
- DMRS reference signal for demodulation
- the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 8 is a diagram showing an example of the overall configuration of the base station according to the present embodiment.
- the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
- the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
- RLC Radio Link Control
- MAC Medium Access
- Transmission / reception control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
- IFFT inverse fast Fourier transform
- a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
- Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
- the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
- the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
- the control unit (scheduler) 301 controls the entire base station 10.
- the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; Quota). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
- scheduling for example, resource transmission
- a downlink data signal for example, a signal transmitted on the PDSCH
- a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; Quota
- control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
- the control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
- a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
- a downlink reference signal for example, CRS, CSI-RS, and DMRS.
- Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
- the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
- the DL assignment and the UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
- CSI Channel ⁇ State ⁇ Information
- Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 103 transmits a downlink control channel (or DCI) in a beam failure recovery (BFR) procedure. Further, the transmitting / receiving section 103 transmits a PDSCH (for example, a BFRQ response) scheduled on the downlink control channel (or DCI). In addition, the transmitting / receiving section 103 may transmit information on the control resource set and the search space monitored by the UE in response to the BFRQ response by higher layer signaling or the like.
- BFR beam failure recovery
- the control unit 301 controls the setting of the control resource set and the search space monitored by the UE in response to the BFRQ response.
- FIG. 10 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
- the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
- the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
- the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
- the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
- FIG. 11 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
- the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
- the control unit 401 transmits a predetermined identifier (for example, C-RNTI, CS-RNTI, MCS-C-RNTI, SI-RNTI, P-RNTI, RA-RNTI, TC-RNTI, INT-RNTI, SFI-RNTI, TPC -PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, SP-CSI-RNTI).
- a predetermined identifier for example, C-RNTI, CS-RNTI, MCS-C-RNTI, SI-RNTI, P-RNTI, RA-RNTI, TC-RNTI, INT-RNTI, SFI-RNTI, TPC -PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, SP-CSI-RNTI.
- control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
- Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
- the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
- CSI channel state information
- Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
- the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
- the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
- the measuring unit 405 measures the received signal.
- the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
- the measurement result may be output to the control unit 401.
- the transmission / reception unit 203 monitors the downlink control channel (or DCI) in the beam failure recovery (BFR) procedure and receives the DCI. Further, the transmission / reception unit 203 receives a PDSCH (for example, a BFRQ response) scheduled on the downlink control channel (or DCI). In addition, the transmission / reception unit 203 may receive information on a control resource set and a search space monitored for a BFRQ response by higher layer signaling or the like.
- a PDSCH for example, a BFRQ response
- the transmission / reception unit 203 may receive information on a control resource set and a search space monitored for a BFRQ response by higher layer signaling or the like.
- the control unit 401 controls the downlink control channel in a range where the first search space corresponding to the first control resource set and the second search space corresponding to the second control resource set set for BFR overlap. Is detected, the search space in which the downlink control channel is transmitted is determined based on a predetermined rule or downlink control information transmitted on the downlink control channel.
- control unit 401 may determine that the downlink control channel has been transmitted in the second search space.
- control section 401 may determine that the downlink control channel has been transmitted in the first search space.
- the control unit 401 may perform control so that the response signal to the beam recovery request is received within a range where the first search space and the second search space do not overlap.
- control section 401 may determine the search space in which the PDCCH has been transmitted, based on information included in the downlink control information transmitted on the downlink control channel. Alternatively, control section 401 may determine the search space in which the PDCCH has been transmitted, based on the format of the downlink control information transmitted on the downlink control channel.
- each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
- the functional block may be realized by combining one device or the plurality of devices with software.
- the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the realization method is not particularly limited.
- a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
- FIG. 12 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to one embodiment.
- the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
- CPU Central Processing Unit
- the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
- the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
- a program program code
- a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
- the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
- the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the wireless communication method according to an embodiment of the present disclosure.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
- the transmission / reception unit 103 (203) may be physically or logically separated from the transmission unit 103a (203a) and the reception unit 103b (203b).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- RS Reference Signal
- a component carrier may be called a cell, a frequency carrier, a carrier frequency, or the like.
- the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
- Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
- SCS SubCarrier @ Spacing
- TTI Transmission @ Time @ Interval
- TTI Transmission @ Time @ Interval
- radio frame configuration transmission and reception.
- At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may include a plurality of mini slots.
- Each minislot may be constituted by one or more symbols in the time domain.
- the mini-slot may be called a sub-slot.
- a minislot may be made up of a smaller number of symbols than slots.
- a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
- the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
- one subframe may be called a TTI
- a plurality of consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
- the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
- the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
- the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
- radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in [email protected]), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
- a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
- the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
- the number of subcarriers included in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
- One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
- one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
- PRB Physical @ RB
- SCG Sub-Carrier @ Group
- REG Resource @ Element @ Group
- PRB pair an RB pair, and the like. May be called.
- a resource block may be composed of one or more resource elements (RE: Resource @ Element).
- RE Resource @ Element
- one RE may be a radio resource area of one subcarrier and one symbol.
- $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
- BWP for a UE, one or more BWPs may be configured in one carrier.
- At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
- “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
- the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
- the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
- a radio resource may be indicated by a predetermined index.
- Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
- the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
- Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
- ⁇ Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
- the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
- the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
- the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
- software, instructions, information, and the like may be transmitted and received via a transmission medium.
- a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
- precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, “ Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable Can be used for
- base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
- a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
- a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
- a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
- RRH small indoor base station
- the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
- a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
- the base station in the present disclosure may be replaced with a user terminal.
- communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
- each aspect / embodiment of the present disclosure may be applied.
- the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
- words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
- an uplink channel, a downlink channel, and the like may be replaced with a side channel.
- the user terminal in the present disclosure may be replaced with a base station.
- a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
- the operation performed by the base station may be performed by an upper node (upper node) in some cases.
- various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
- the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
- elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- LTE-B Long Term Evolution-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile
- 5G 5th generation mobile communication system
- FRA FlutureATRadioRAccess
- New-RAT Radio Access Technology
- NR New Radio
- NX New radio access
- FX Fluture generation radio access
- GSM registered trademark
- CDMA2000 Ultra Mobile Broadband
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802 .20 UWB (Ultra-WideBand), Bluetooth (registered trademark)
- a system using other appropriate wireless communication methods a next-generation system extended based on these, and the like.
- a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
- any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
- determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
- determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
- judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
- “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
- the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
- connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
- the term “A and B are different” may mean that “A and B are different from each other”.
- the term may mean that “A and B are different from C”.
- Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
In order to appropriately perform a beam recovery procedure, user equipment according to an aspect of the present disclosure comprises: a receiving unit that monitors a downlink control channel in a beam failure recovery (BFR) procedure; and a control unit that, upon detecting the downlink control channel in a range where a first search space corresponding to a first control resource set overlaps a second search space corresponding to a second control resource set that has been set for BFR, determines a search space in which the downlink control channel was transmitted, on the basis of a predetermined rule or downlink control information transmitted in the downlink control channel.
Description
本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15 or later) are also being studied.
既存のLTEシステム(LTE Rel.8-13)では、無線リンク品質のモニタリング(無線リンクモニタリング(RLM:Radio Link Monitoring))が行われる。RLMより無線リンク障害(RLF:Radio Link Failure)が検出されると、RRC(Radio Resource Control)コネクションの再確立(re-establishment)がユーザ端末(UE:User Equipment)に要求される。
In the existing LTE system (LTE Rel. 8-13), monitoring of radio link quality (radio link monitoring (RLM: Radio Link Monitoring)) is performed. When a radio link failure (RLF: Radio @ Link @ Failure) is detected from the RLM, re-establishment of an RRC (Radio @ Resource @ Control) connection is requested to a user terminal (UE: User @ Equipment).
NRでは、ビーム障害を検出して他のビームに切り替え手順(ビーム回復(BR:Beam Recovery)手順などと呼ばれてもよい)を実施することが検討されている。
In NR, it is considered to detect a beam failure and perform a procedure for switching to another beam (which may be called a beam recovery (BR) procedure).
また、NRにおいては、制御チャネルの割当て候補領域である制御リソースセット(CORESET:COntrol REsource SET)を用いてUEに下り制御情報を通知することが検討されている。CORESETには、所定のサーチスペース設定が関連付けられる。
Also, in the NR, it is being studied to notify the UE of downlink control information using a control resource set (CORESET: Control REsource SET) which is a control channel allocation candidate area. A predetermined search space setting is associated with CORESET.
ビーム回復手順中には、少なくともビーム回復手順用のCORESET(BFR用のCORESET)と当該CORESETに関連付けられたサーチスペースを用いて下り制御チャネル(例えば、PDCCH)のモニタを行うことが検討されている。一方で、BFR手順において、当該BFR用のCORESET以外の他のCORESETに関連づけられたサーチスペースを利用してPDCCHのモニタを行うことも考えられる。他のCORESETに関連づけられたサーチスペースは、例えば、BFR手順前にモニタしていたCORESETに関連づけられたサーチスペースであってもよい。
During the beam recovery procedure, monitoring of a downlink control channel (for example, PDCCH) using at least a RESET for the beam recovery procedure (a RESET for BFR) and a search space associated with the RESET is being considered. . On the other hand, in the BFR procedure, monitoring of the PDCCH using a search space associated with a coreset other than the coreset for the BFR may be considered. The search space associated with another coreset may be, for example, a search space associated with the coreset that was monitored prior to the BFR procedure.
しかしながら、BFR手順において複数のサーチスペースが設定される場合、当該複数のサーチスペースにおけるPDCCHのモニタをどのように制御するかについて十分に検討がされていない。BFR手順においてサーチスペースを利用したPDCCHのモニタが適切に行われない場合にはBFR手順を適切に成功して完了することができず、通信スループット、又は通信品質などの劣化が生じるおそれがある。
However, when a plurality of search spaces are set in the BFR procedure, how to control monitoring of the PDCCH in the plurality of search spaces has not been sufficiently studied. If the monitoring of the PDCCH using the search space is not properly performed in the BFR procedure, the BFR procedure cannot be properly and successfully completed, and the communication throughput or the communication quality may be deteriorated.
そこで、本開示は、ビーム回復手順を適切に行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
Therefore, an object of the present disclosure is to provide a user terminal and a wireless communication method that can appropriately perform a beam recovery procedure.
本開示の一態様に係るユーザ端末は、ビーム障害回復(BFR:Beam Failure Recovery)手順においてに下り制御チャネルのモニタを実施する受信部と、第1の制御リソースセットに対応する第1のサーチスペースと、BFR用に設定された第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、所定ルール、又は前記下り制御チャネルで送信される下り制御情報に基づいて、前記下り制御チャネルが送信されたサーチスペースを判断する制御部と、を有することを特徴とする。
A user terminal according to one aspect of the present disclosure includes a receiving unit that monitors a downlink control channel in a beam failure recovery (BFR) procedure, and a first search space corresponding to a first control resource set. If a downlink control channel is detected in a range where the second search space corresponding to the second control resource set set for BFR overlaps with a predetermined rule, the downlink control channel transmitted on the downlink control channel is detected. A control unit that determines a search space in which the downlink control channel has been transmitted, based on information.
本開示の一態様によれば、ビーム回復手順を適切に行うことができる。
According to one aspect of the present disclosure, a beam recovery procedure can be appropriately performed.
NRでは、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。例えば、UE及び/又は基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
In NR, communication using beam forming (BF) is being studied. For example, a UE and / or a base station (for example, gNB (gNodeB)) transmits a beam (also referred to as a transmission beam or a Tx beam) used for transmitting a signal, or a beam used for receiving a signal (a reception beam, an Rx beam, or the like). May also be used.
BFを用いる環境では、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(RLF:Radio Link Failure)が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
In an environment where 用 い る BF is used, radio link quality is likely to be degraded because it is susceptible to interference from obstacles. Radio link failure (RLF: Radio Link Failure) may frequently occur due to deterioration of the radio link quality. When RLF occurs, cell reconnection is required, so frequent occurrence of RLF causes deterioration of system throughput.
NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(BR:Beam Recovery)、ビーム障害回復(BFR:Beam Failure Recovery)、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施することが検討されている。なお、BFR手順は単にBFRと呼ばれてもよいし、リンク回復(LR:Link Recovery)手順または単にLRと呼ばれてもよい。
In NR, in order to suppress the occurrence of RLF, when the quality of a specific beam deteriorates, switching to another beam (beam recovery (BR: Beam @ Recovery), beam failure recovery (BFR: Beam @ Failure @ Recovery), Implementation of an L1 / L2 (Layer 1 / Layer 2) beam recovery procedure (which may be referred to as beam recovery) is being considered. The BFR procedure may be simply called BFR, or may be called a link recovery (LR: Link @ Recovery) procedure or simply LR.
図1は、ビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。図1の初期状態(ステップS101)において、UEは、2つのビームを用いて送信される下り制御チャネル(PDCCH:Physical Downlink Control Channel)を受信している。
FIG. 1 is a diagram showing an example of a beam recovery procedure. The number of beams and the like are merely examples, and are not limited thereto. In the initial state of FIG. 1 (step S101), the UE has received a downlink control channel (PDCCH: Physical {Downlink} Control} Channel) transmitted using two beams.
ステップS102において、基地局からの電波が妨害されたことによって、UEはPDCCHを検出できない。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
に お い て In step S102, the UE cannot detect the PDCCH due to the interruption of the radio wave from the base station. Such interference may occur, for example, due to the effects of obstacles, fading, interference, etc. between the UE and the base station.
UEは、所定の条件が満たされると、ビーム障害を検出する。基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
The UE detects a beam failure when a predetermined condition is satisfied. The base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (a beam recovery request in step S104) is received from the UE.
ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、ビーム障害を検出すると、予め設定された下り信号(DL-RS(Reference Signal)、BFR-RSなどと呼ばれてもよい)リソースに基づく測定を実施し、望ましい(例えば品質の良い)1つ以上の新候補ビームを特定してもよい。本例の場合、1つのビームが新候補ビームとして特定されている。
In step S103, the UE starts searching for a new candidate beam (new @ candidate @ beam) to be newly used for communication for beam recovery. Upon detecting the beam failure, the UE performs a measurement based on a preset downlink signal (which may be referred to as DL-RS (Reference Signal), BFR-RS, or the like) resource, and is desirable (for example, of good quality). One or more new candidate beams may be specified. In this example, one beam is specified as a new candidate beam.
DL-RSリソース(DL-RSリソース)は、同期信号ブロック(SSB:Synchronization Signal Block)又はチャネル状態測定用RS(CSI-RS:Channel State Information RS)のためのリソース及び/又はポートに関連付けられてもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロック等と呼ばれてもよい。
The DL-RS resource (DL-RS resource) is associated with a resource and / or a port for a synchronization signal block (SSB: Synchronization Signal Block) or a channel state measurement RS (CSI-RS: Channel State Information RS). Is also good. The SSB may be called an SS / PBCH (Physical Broadcast Channel) block or the like.
DL-RSは、プライマリ同期信号(PSS:Primary SS)、セカンダリ同期信号(SSS:Secondary SS)、モビリティ参照信号(MRS:Mobility RS)、SSBに含まれる信号、CSI-RS、復調用参照信号(DMRS:DeModulation Reference Signal)、ビーム固有信号などの少なくとも1つ、又はこれらを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号)であってもよい。DL-RSは、新候補ビーム検出用信号と呼ばれてもよい。
The DL-RS includes a primary synchronization signal (PSS: Primary @ SS), a secondary synchronization signal (SSS: Secondary @ SS), a mobility reference signal (MRS: Mobility @ RS), a signal included in the SSB, a CSI-RS, a demodulation reference signal ( DMRS: Demodulation Reference Signal, at least one of beam-specific signals, or a signal configured by extending and / or changing these (for example, a signal configured by changing the density and / or period), Is also good. The DL-RS may be referred to as a new candidate beam detection signal.
ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(BFRQ:Beam Failure Recovery reQuest)を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
In step S104, the UE that has identified the new candidate beam transmits a beam recovery request (BFRQ: Beam \ Failure \ Recovery \ reQuest). The beam recovery request may be called a beam recovery request signal, a beam failure recovery request signal, or the like.
ビーム回復要求は、例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)、ULグラントフリーPUSCH(Physical Uplink Shared Channel)の少なくとも1つを用いて送信されてもよい。
The beam recovery request is transmitted using, for example, at least one of an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel), and a UL grant-free PUSCH (Physical Uplink Shared Channel). You may.
ビーム回復要求は、ステップS103において特定された新候補ビームの情報を含んでもよい。ビーム回復要求のためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(BI:Beam Index)、所定の参照信号のポート及び/又はリソースインデックス(例えば、CSI-RSリソース指標(CRI:CSI-RS Resource Indicator))などを用いて通知されてもよい。
The beam recovery request may include information on the new candidate beam specified in step S103. Resources for a beam recovery request may be associated with the new candidate beam. The beam information is notified using a beam index (BI: Beam @ Index), a port and / or a resource index of a predetermined reference signal (for example, a CSI-RS resource index (CRI)). Is also good.
ステップS105において、ビーム回復要求を検出した基地局は、UEからのビーム回復要求(BFRQ)に対する応答信号を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。また、当該応答信号は、UEの識別子(例えば、セル-無線RNTI(C-RNTI:Cell-Radio RNTI))によって巡回冗長検査(CRC:Cyclic Redundancy Check)スクランブルされたPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
In step S105, the base station that has detected the beam recovery request transmits a response signal to the beam recovery request (BFRQ) from the UE. The response signal may include reconfiguration information on one or a plurality of beams (for example, configuration information of a DL-RS resource). The response signal may be transmitted, for example, in a PDCCH UE common search space. In addition, the response signal is notified using a PDCCH (DCI) scrambled by a cyclic redundancy check (CRC: Cyclic Redundancy Check) by an identifier of the UE (for example, Cell-Radio RNTI (C-RNTI)). May be done. The UE may determine at least one of a transmit beam and a receive beam to use based on the beam reconfiguration information.
UEは、当該応答信号を、BFR用の制御リソースセット(CORESET:COntrol REsource SET)及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
The UE may monitor the response signal based on at least one of a BFR control resource set (CORESET: Control REsource SET) and a BFR search space set.
CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
Regarding the CB-BFR, when the UE receives the PDCCH corresponding to the C-RNTI for itself, it may be determined that the contention resolution is successful.
ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
Regarding the process of step S105, a period for the UE to monitor a response (response) to the BFRQ from the base station (for example, gNB) may be set. The period may be called, for example, a gNB response window, a gNB window, a beam recovery request response window, or the like. The UE may retransmit BFRQ if there is no gNB response detected within the window period.
ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
In step S106, the UE may transmit a message indicating that the beam reconfiguration has been completed to the base station. The message may be transmitted by, for example, the PUCCH or may be transmitted by the PUSCH.
ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばステップS103において1つも候補ビームが特定できなかった場合を表してもよい。
Beam recovery success (BR success) may represent, for example, a case where the process reaches step S106. On the other hand, the beam recovery failure (BR @ failure) may indicate, for example, a case where no candidate beam has been identified in step S103.
なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
Note that the numbers of these steps are merely numbers for explanation, and a plurality of steps may be put together or the order may be changed. Whether to perform BFR may be set in the UE using higher layer signaling.
ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
Here, the upper layer signaling may be, for example, any of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。
The MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like. The broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System @ Information).
NRでは、衝突型ランダムアクセス(RA:Random Access)手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。
In the NR, CB-BFR (Contention-Based BFR), which is a BFR based on a collision-type random access (RA) procedure, and CF-BFR (Contention-Free BFR), which is a BFR based on a collision-free random access procedure, are used. Are being considered.
CB-BFRでは、UEは、1つ又は複数のプリアンブル(RAプリアンブル、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)、RACHプリアンブルなどともいう)からランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
In CB-BFR, the UE may transmit a preamble randomly selected from one or more preambles (RA preamble, also referred to as a random access channel (PRACH: Physical Random Access Channel), RACH preamble, or the like). On the other hand, in CF-BFR, the UE may transmit a preamble assigned from the base station to the UE. In CB-BFR, the base station may assign the same preamble to multiple UEs. In CF-BFR, the base station may assign a preamble to each UE.
CB-BFRでは、基地局は、ビーム回復要求としてあるプリアンブルを受信した場合に、そのプリアンブルがどのUEに送信されたかを特定できなくてもよい。基地局は、ビーム回復要求からビーム再構成完了までの間に、衝突型ランダムアクセス手順に基づく衝突解決(contention resolution)を行うことによって、プリアンブルを送信したUEの識別子(例えば、セル-無線RNTI(C-RNTI:Cell-Radio RNTI))を特定することができる。
In CB-BFR, when a base station receives a certain preamble as a beam recovery request, the base station may not be able to specify which UE the preamble was transmitted to. The base station performs contention resolution based on a collision-type random access procedure (contention resolution) between the beam recovery request and the completion of the beam reconfiguration, thereby identifying the UE (e.g., cell-wireless RNTI ( C-RNTI: Cell-Radio @ RNTI)) can be specified.
RA手順中にUEが送信する信号(例えば、プリアンブル)は、ビーム回復要求であると想定されてもよい。
The signal (eg, preamble) transmitted by the UE during the プ リ RA procedure may be assumed to be a beam recovery request.
CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
Regardless of CB-BFR or CF-BFR, information on PRACH resources (RA preamble) may be notified by, for example, higher layer signaling (RRC signaling). For example, the information may include information indicating a correspondence between the detected DL-RS (beam) and the PRACH resource, and a different PRACH resource may be associated with each DL-RS.
ビーム障害の検出は、MACレイヤで行われてもよい。CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
Beam failure detection may be performed at the MAC layer. Regarding CB-BFR, when the UE receives the PDCCH corresponding to the C-RNTI for itself, it may be determined that the contention resolution (contention resolution) is successful.
CB-BFR及びCF-BFRのRAパラメータは、同じパラメータセットから構成されてもよい。CB-BFR及びCF-BFRのRAパラメータは、それぞれ異なる値が設定されてもよい。例えば、BFRQの後のビーム障害回復応答用CORESET内のgNB応答のモニタリング用の時間長を示すパラメータ(「ResponseWindowSize-BFR」と呼ばれてもよい)は、CF-BFRにのみ適用されてもよい。
The RA parameters of CB-BFR and CF-BFR may be composed of the same parameter set. Different values may be set for the RA parameters of CB-BFR and CF-BFR, respectively. For example, the parameter indicating the length of time for monitoring the gNB response in the beam fault recovery response coreset after BFRQ (which may be referred to as “ResponseWindowSize-BFR”) may be applied only to CF-BFR. .
ところで、NRにおいては、物理レイヤ制御信号(例えば、下り制御情報(DCI:Downlink Control Information))を、基地局からUEに対して送信するために、制御リソースセット(CORESET:COntrol REsource SET)が利用されることが検討されている。
By the way, in NR, a control resource set (CORESET: Control RESET) is used to transmit a physical layer control signal (for example, downlink control information (DCI: Downlink Control Information)) from the base station to the UE. Is being considered.
CORESETは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))の割当て候補領域である。UEは、CORESETの設定情報(CORESET設定(CORESET configuration)、coreset-Configと呼ばれてもよい)を、基地局から受信してもよい。UEは、自端末に設定されたCORESETをモニタすれば、物理レイヤ制御信号を検出できる。
$ CORESET is an allocation candidate area for a control channel (for example, PDCCH (Physical Downlink Control Channel)). The UE may receive the configuration information of the coreset (may be referred to as coreset configuration (coreset configuration) or coreset-config) from the base station. The UE can detect the physical layer control signal by monitoring the coreset set in the own terminal.
CORESET設定は、例えば、上位レイヤシグナリングによって通知されてもよく、所定のRRC情報要素(「ControlResourceSet」と呼ばれてもよい)で表されてもよい。
The CORESET setting may be notified by, for example, higher layer signaling, or may be represented by a predetermined RRC information element (which may be called “ControlResourceSet”).
CORESET設定は、主にPDCCHのリソース関連設定及びRS関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・CORESETの識別子(CORESET ID(Identifier))、
・PDCCH用の復調用参照信号(DMRS:DeModulation Reference Signal)のスクランブルID、
・時間長(time duration)(例えば、1、2又は3シンボル)、
・周波数領域のリソース割り当て(Frequency-domain Resource Allocation)、
・制御チャネル要素(CCE:Control Channel Element)とリソース要素グループ(REG:Resource Element Group)とのマッピング(インターリーブ、ノンインターリーブ)、
・REGバンドルサイズ、
・インターリーブの場合のシフト量のインデックス、
・PDCCH用の送信設定通知(TCI:Transmission Configuration Indication)状態、
・TCIフィールドの有効化/無効化。 The Coreset configuration mainly includes information on the resource-related configuration and the RS-related configuration of the PDCCH, and may include, for example, information on at least one of the following:
A CORESET identifier (CORESET ID (Identifier));
A scramble ID of a demodulation reference signal (DMRS) for the PDCCH,
Time duration (eg, 1, 2 or 3 symbols),
-Frequency-domain resource allocation (Frequency-domain Resource Allocation),
Mapping between control channel elements (CCE: Control Channel Element) and resource element groups (REG: Resource Element Group) (interleaved, non-interleaved);
・ REG bundle size,
Index of shift amount in case of interleaving,
A transmission configuration notification (TCI: Transmission Configuration Indication) state for the PDCCH,
Enable / disable the TCI field.
・CORESETの識別子(CORESET ID(Identifier))、
・PDCCH用の復調用参照信号(DMRS:DeModulation Reference Signal)のスクランブルID、
・時間長(time duration)(例えば、1、2又は3シンボル)、
・周波数領域のリソース割り当て(Frequency-domain Resource Allocation)、
・制御チャネル要素(CCE:Control Channel Element)とリソース要素グループ(REG:Resource Element Group)とのマッピング(インターリーブ、ノンインターリーブ)、
・REGバンドルサイズ、
・インターリーブの場合のシフト量のインデックス、
・PDCCH用の送信設定通知(TCI:Transmission Configuration Indication)状態、
・TCIフィールドの有効化/無効化。 The Coreset configuration mainly includes information on the resource-related configuration and the RS-related configuration of the PDCCH, and may include, for example, information on at least one of the following:
A CORESET identifier (CORESET ID (Identifier));
A scramble ID of a demodulation reference signal (DMRS) for the PDCCH,
Time duration (eg, 1, 2 or 3 symbols),
-Frequency-domain resource allocation (Frequency-domain Resource Allocation),
Mapping between control channel elements (CCE: Control Channel Element) and resource element groups (REG: Resource Element Group) (interleaved, non-interleaved);
・ REG bundle size,
Index of shift amount in case of interleaving,
A transmission configuration notification (TCI: Transmission Configuration Indication) state for the PDCCH,
Enable / disable the TCI field.
一方で、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法は、サーチスペース(SS:Search Space)として定義される。UEは、サーチスペースの設定情報(サーチスペース設定(search space configuration)と呼ばれてもよい)を、基地局から受信してもよい。
On the other hand, a search area and a search method of a PDCCH candidate (PDCCH @ candidates) are defined as a search space (SS: Search @ Space). The UE may receive search space configuration information (which may be referred to as search space configuration (search \ space \ configuration)) from the base station.
サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに通知されてもよく、所定のRRC情報要素(「SearchSpace」と呼ばれてもよい)で表されてもよい。
The search space setting may be notified to the UE by, for example, higher layer signaling (eg, RRC signaling) or may be represented by a predetermined RRC information element (which may be referred to as “SearchSpace”).
サーチスペース設定は、主にPDCCHのモニタリング関連設定及び復号関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・サーチスペースの識別子(サーチスペースID)、
・当該サーチスペース設定が関連するCORESET ID、
・共通サーチスペース(C-SS:Common SS)かUE固有サーチスペース(UE-SS:UE-specific SS)かを示すフラグ、
・アグリゲーションレベルごとのPDCCH候補数、
・モニタリング周期、
・モニタリングオフセット、
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)。 The search space configuration mainly includes information on monitoring-related configuration and decoding-related configuration of the PDCCH, and may include, for example, information on at least one of the following:
-Search space identifier (search space ID),
A CORRESET ID to which the search space setting relates,
A flag indicating whether it is a common search space (C-SS: Common SS) or a UE-specific search space (UE-SS: UE-specific SS);
The number of PDCCH candidates for each aggregation level,
・ Monitoring cycle,
Monitoring offset,
A monitoring pattern in the slot (eg a 14 bit bitmap).
・サーチスペースの識別子(サーチスペースID)、
・当該サーチスペース設定が関連するCORESET ID、
・共通サーチスペース(C-SS:Common SS)かUE固有サーチスペース(UE-SS:UE-specific SS)かを示すフラグ、
・アグリゲーションレベルごとのPDCCH候補数、
・モニタリング周期、
・モニタリングオフセット、
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)。 The search space configuration mainly includes information on monitoring-related configuration and decoding-related configuration of the PDCCH, and may include, for example, information on at least one of the following:
-Search space identifier (search space ID),
A CORRESET ID to which the search space setting relates,
A flag indicating whether it is a common search space (C-SS: Common SS) or a UE-specific search space (UE-SS: UE-specific SS);
The number of PDCCH candidates for each aggregation level,
・ Monitoring cycle,
Monitoring offset,
A monitoring pattern in the slot (eg a 14 bit bitmap).
UEは、サーチスペース設定に基づいて、CORESETをモニタする。また、本開示の説明における「CORESETのモニタ」は、「CORESETに対応付けられたサーチスペース(PDCCH候補)のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」、「下り制御チャネル(例えばPDCCH)のブラインド復号及び/又は検出」などで読み替えられてもよい。
UE monitors CORESET based on search space settings. In the description of the present disclosure, “monitor of CORESET” includes “monitor of search space (PDCCH candidate) associated with CORESET”, “monitor of downlink control channel (eg, PDCCH)”, and “monitoring of downlink control channel (eg, PDCCH). ), Blind decoding and / or detection ”.
UEは、上記サーチスペース設定に含まれるCORESET IDに基づいて、CORESETとサーチスペースとの対応関係を判断できる。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。
The UE can determine the correspondence between the CORESET and the search space based on the CORESET $ ID included in the search space setting. One coreset may be associated with one or more search spaces.
図1で述べたステップS105におけるビーム回復要求(BFRQ)に対する応答信号のモニタを、BFR用CORESETを用いて行うことが検討されている。当該BFR用CORESETは、所定のRRC情報要素(IE:Information Element)(「CORESET-BFR」と呼ばれてもよい)を用いてUEに設定されてもよい。
モ ニ タ It is being studied to monitor the response signal to the beam recovery request (BFRQ) in step S105 described in FIG. 1 by using the BFR coreset. The BFR CORESET may be set in the UE using a predetermined RRC information element (IE: Information @ Element) (which may be referred to as “CORESET-BFR”).
また、ネットワーク(例えば、基地局)は、BFR用のCORESETに対応するサーチスペース(例えば、BFR-SS)を設定してもよい。UEは、BFR用のCORESETに対応するサーチスペースにおいてPDCCH(BFRQに対する応答信号)をモニタし、当該PDCCHを受信した場合にBFR動作を成功したと判断してもよい。
ネ ッ ト ワ ー ク Further, the network (for example, a base station) may set a search space (for example, BFR-SS) corresponding to the coreset for BFR. The UE may monitor the PDCCH (response signal to the BFRQ) in the search space corresponding to the BFR coreset, and may determine that the BFR operation has been successful when the PDCCH is received.
ところで、NRでは、BFR手順中(例えば、ビーム回復要求を送信した後)において、ビーム回復要求の送信前にモニタを行っていたサーチスペースに対してPDCCH候補のモニタを継続して行うことが検討されている。つまり、UEは、BFR手順において、BFRQ用のPRACHを送信した後に、当該BFR用のCORESETに対応するサーチスペースに加えて、他のCORESET(例えば、非BFR用)に対応するサーチスペースのモニタを行うことが考えられる。
By the way, in the NR, during the BFR procedure (for example, after transmitting the beam recovery request), it is considered that the PDCCH candidate is continuously monitored for the search space that was monitored before the transmission of the beam recovery request. Have been. That is, in the BFR procedure, after transmitting the PRACH for the BFRQ in the BFR procedure, the UE monitors the search space corresponding to another RESET (eg, for the non-BFR) in addition to the search space corresponding to the RESET for the BFR. It is possible to do.
しかしながら、複数のサーチスペースが設定される場合、異なるサーチスペース間で範囲が重複(オーバーラップ)する場合も考えられる。例えば、BFR用サーチスペースと他のサーチスペースの範囲が重複するケースも生じ得る。
However, when a plurality of search spaces are set, there is a case where ranges overlap (overlap) between different search spaces. For example, a case where the range of the BFR search space and another search space overlap may occur.
かかる場合、UEが重複範囲においてPDCCH(又は、PDCCH候補)を検出した場合、検出したPDCCHがいずれのサーチスペースに対応するか判断できなくなる。検出したPDCCHがBFR用サーチスペースであるかどうか判断できない場合、BFR手順を適切に完了することができず、通信スループット又は通信品質等の劣化が生じるおそれがある。
In such a case, if the UE detects a PDCCH (or a PDCCH candidate) in the overlapping range, it becomes impossible to determine which search space the detected PDCCH corresponds to. If it is not possible to determine whether the detected PDCCH is a BFR search space, the BFR procedure cannot be properly completed, and there is a possibility that communication throughput or communication quality may deteriorate.
そこで、本発明者等は、BFR手順において複数のサーチスペース範囲が重複するケースが生じる点に着目し、サーチスペースの重複範囲においてPDCCH(又は、PDCCH候補)を検出した場合のUE動作について着想した。
Therefore, the present inventors have paid attention to the point that a plurality of search space ranges may overlap in the BFR procedure, and have conceived a UE operation when a PDCCH (or a PDCCH candidate) is detected in the search space overlap range. .
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied alone or in combination.
(第1の態様)
第1の態様では、第1の制御リソースセットに対応する第1のサーチスペースと、第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、あらかじめ定義されたルールに基づいて、下り制御チャネルが送信されたサーチスペースを判断する。 (First aspect)
In the first aspect, when a downlink control channel is detected in a range where a first search space corresponding to a first control resource set and a second search space corresponding to a second control resource set overlap, The search space in which the downlink control channel has been transmitted is determined based on a predefined rule.
第1の態様では、第1の制御リソースセットに対応する第1のサーチスペースと、第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、あらかじめ定義されたルールに基づいて、下り制御チャネルが送信されたサーチスペースを判断する。 (First aspect)
In the first aspect, when a downlink control channel is detected in a range where a first search space corresponding to a first control resource set and a second search space corresponding to a second control resource set overlap, The search space in which the downlink control channel has been transmitted is determined based on a predefined rule.
以下の説明では、第2のサーチスペース(又は、第2の制御リソースセット)がBFR用に設定されるBFR用サーチスペース(又は、BFR用制御リソースセット)である場合を例に挙げて説明する。第1のサーチスペース(又は、第1の制御リソースセット)は、BFR手順前(例えば、BFRQ用のPRACH送信前)から設定されている非BFR用サーチスペースであってもよい。
In the following description, a case where the second search space (or the second control resource set) is a BFR search space (or a BFR control resource set) set for the BFR will be described as an example. . The first search space (or the first control resource set) may be a non-BFR search space set before the BFR procedure (for example, before transmitting the PRACH for BFRQ).
図2は、第1の制御リソースセット(CORESET#A)に対応する第1のサーチスペース(サーチスペース#A)と、第2の制御リソースセット(CORESET#B)に対応する第2のサーチスペース(サーチスペース#B)との設定の一例を示している。
FIG. 2 shows a first search space (search space #A) corresponding to the first control resource set (CORESET # A) and a second search space corresponding to the second control resource set (CORESET # B). An example of setting with (search space #B) is shown.
ここでは、CORESET#AとCORESET#Bに対して同じPRBセット、シンボル数が設定され、サーチスペース#Aとサーチスペース#Bに対して同じDCIフォーマット、PDCCH候補数、モニタリングオケージョン(モニタ周期等)が設定される場合を示している。なお、設定される制御リソースセットとサーチスペースの構成及び数はこれに限られない。3つ以上のCORESET及びサーチスペースが設定されてもよい。
Here, the same PRB set and the same number of symbols are set for CORRESET # A and CORRESET # B, and the same DCI format, the number of PDCCH candidates, the monitoring occasion (monitoring period, etc.) for search space #A and search space #B. Is set. The configuration and number of the control resource set and the search space to be set are not limited thereto. Three or more coresets and search spaces may be set.
図3は、CORESET#A(CORESET ID#1)に対応するサーチスペース#A(サーチスペースID#1)と、CORESET#B(CORESET ID#2)に対応するサーチスペース#B(サーチスペースID#2)に設定される詳細なパラメータの一例を示している。なお、制御リソースセットIDとサーチスペースIDの設定はこれに限られない。
FIG. 3 shows a search space #A (search space ID # 1) corresponding to CORESET #A (CORESET ID # 1), and a search space #B (search space ID #) corresponding to CORESET #B (CORESET ID # 2). An example of detailed parameters set in 2) is shown. The setting of the control resource set ID and the search space ID is not limited to this.
図3では、CORESET#A(CORESET ID#1)とCORESET#B(CORESET ID#2)に対して、同じ周波数領域(例えば、6RB×8)、同じマッピングパターン(例えば、制御チャネル要素(CCE)とリソースエレメントグループ(REG)マッピングにインターリーブ非適用)、同じプリコーディング粒度が適用される。また、CORESET#A(CORESET ID#1)に対して、所定のTCI状態(例えば、CSI-RS#1)が設定される。なお、BFR用のCORESET#BにはTCI状態が設定されない(又は、設定値を無視する)構成としてもよい。
In FIG. 3, the same frequency region (for example, 6 RB × 8) and the same mapping pattern (for example, control channel element (CCE)) are used for RESET # A (CORE # ID # 1) and RESET # B (CORE # ID # 2). And resource element group (REG) mapping without interleaving), the same precoding granularity is applied. Further, a predetermined TCI state (for example, CSI-RS # 1) is set for CORRESET # A (CORESET @ ID # 1). Note that a configuration may be adopted in which the TCI state is not set (or the set value is ignored) in CORRES # B for BFR.
また、サーチスペース#A(サーチスペースID#1)とサーチスペース#B(サーチスペースID#2)に対して、同じモニタリングオケージョン(例えば、各スロットのファーストシンボル)、同じサーチスペースタイプ(例えば、UE固有サーチスペース)、同じDCIフォーマット(例えば、DCI format 1_1又は0_1)が設定される場合を示している。また、サーチスペース#A(サーチスペースID#1)とサーチスペース#B(サーチスペースID#2)アグリゲーション(AL)毎のPDCCH候補数について、一部が重複する構成となっている。
Also, for the search space #A (search space ID # 1) and the search space #B (search space ID # 2), the same monitoring occasion (for example, the first symbol of each slot) and the same search space type (for example, UE-specific) 2 shows a case where the same DCI format (for example, DCI @ format @ 1_1 or 0_1) is set. The number of PDCCH candidates for each search space #A (search space ID # 1) and search space #B (search space ID # 2) aggregation (AL) is partially overlapped.
ここでは、サーチスペース#A(サーチスペースID#1)に対して、AL=1、2、4、8、16におけるPDCCH候補数が{0、4、2、1、0}に設定され、サーチスペース#B(サーチスペースID#2)に対して、AL=1、2、4、8、16におけるPDCCH候補数が{0、0、2、1、1}に設定される。
Here, for search space #A (search space ID # 1), the number of PDCCH candidates in AL = 1, 2, 4, 8, 16 is set to {0, 4, 2, 1, 0}, and the search is performed. For space #B (search space ID # 2), the number of PDCCH candidates in AL = 1, 2, 4, 8, 16 is set to {0, 0, 2, 1, 1}.
例えば、BFR用に選択されたRSがCSI-RS#1である場合、サーチスペース#Aとサーチスペース#BにおいてAL=4、8に対応するPDCCH候補が重複して設定される。この場合、UEは、サーチスペース#Aとサーチスペース#Bに対してAL=4、8についてPDCCH候補のモニタを行うため、サーチスペース#Aとサーチスペース#Bの範囲が一部重複することになる。
For example, when the RS selected for BFR is CSI-RS # 1, PDCCH candidates corresponding to AL = 4, 8 are set redundantly in search space #A and search space #B. In this case, since the UE monitors PDCCH candidates for AL = 4 and 8 for search space #A and search space #B, the range of search space #A and search space #B partially overlaps. Become.
UEは、BFR手順においてBFRQ(例えば、PRACH)を送信した後に応答信号の受信処理においてPDCCHのモニタを行う。かかる場合、UEがAL=4又は8に対応するPDCCH(又は、PDCCH候補)を検出した場合、当該PDCCHがBFR用のPDCCHに対応するか否か(又は、サーチスペース#Aとサーチスペース#Bのいずれに対応するか)判断できなくなるおそれがある。
After transmitting BFRQ (for example, PRACH) in the BFR procedure, the UE monitors the PDCCH in the process of receiving the response signal. In this case, when the UE detects a PDCCH (or a PDCCH candidate) corresponding to AL = 4 or 8, whether or not the PDCCH corresponds to a PDCCH for BFR (or search space #A and search space #B) Which one of the two) may not be determined.
第1の態様では、複数のサーチスペース(例えば、上記サーチスペース#Aとサーチスペース#B)が重複する範囲でPDCCHを受信した場合、以下のルール1-3のいずれかに基づいて受信したPDCCHが対応するサーチスペースを判断する。これにより、サーチスペースが重複して設定される場合であっても、検出したPDCCHがBFR用であるか否かを適切に判断してBFR手順を制御することができる。その結果、通信スループット及び通信品質の劣化を抑制することが可能となる。
In the first aspect, when a PDCCH is received in a range where a plurality of search spaces (for example, the search space #A and the search space #B) overlap, the PDCCH received based on any of the following rules 1-3 Judge the corresponding search space. Thus, even when search spaces are set in duplicate, it is possible to control the BFR procedure by appropriately determining whether the detected PDCCH is for BFR. As a result, it is possible to suppress deterioration in communication throughput and communication quality.
<ルール1>
ルール1では、BFR用サーチスペース(BFR-SS)により送信された可能性のあるPDCCHを検出した場合、当該PDCCHがBFR-SSで送信されたと想定する。 <Rule 1>
According torule 1, when a PDCCH that may have been transmitted by the BFR search space (BFR-SS) is detected, it is assumed that the PDCCH has been transmitted by the BFR-SS.
ルール1では、BFR用サーチスペース(BFR-SS)により送信された可能性のあるPDCCHを検出した場合、当該PDCCHがBFR-SSで送信されたと想定する。 <
According to
例えば、UEは、BFR用サーチスペース(図2におけるサーチスペース#B)と、他のサーチスペース(図2におけるサーチスペース#A)が重複する範囲においてPDCCHを受信した場合、サーチスペース#BにおいてPDCCH(BFR用PDCCH)を受信したと判断する(図4参照)。そして、UEは、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断して、BFR手順を完了してもよい。
For example, if the UE receives the PDCCH in a range where the BFR search space (search space #B in FIG. 2) and another search space (search space #A in FIG. 2) overlap, the PDCCH in the search space #B It is determined that (BFR PDCCH) has been received (see FIG. 4). Then, the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure.
なお、PDCCHは、所定のRNTI(Radio Network Temporary Identif)によりCRC(Cyclic Redundancy Check)ビットのスクランブルが適用されてもよい。所定のRNTIは、例えば、C-RNTIであってもよい。
The PDCCH may be subjected to CRC (Cyclic Redundancy Check) bit scrambling by a predetermined RNTI (Radio Network Temporary Identif). The predetermined RNTI may be, for example, a C-RNTI.
このように、サーチスペースが重複する範囲において送信されたPDCCHをBFR用PDCCHとすることにより、BFR用サーチスペース全体を利用してBFR用PDCCHの送信を行うことができる。これにより、UEがBFR用PDCCHを適切に受信することができるため、BFR手順を早期に完了することが可能となる。
As described above, by using the PDCCH transmitted in the range where the search space overlaps as the PDCCH for BFR, the PDCCH for BFR can be transmitted using the entire search space for BFR. As a result, the UE can appropriately receive the PDCCH for BFR, so that the BFR procedure can be completed early.
<ルール2>
ルール2では、BFR用サーチスペース(BFR-SS)により送信された可能性のあるPDCCHを検出した場合であっても、当該PDCCHが非BFR-SSで送信された(又は、BFR-SSでは送信されない)と想定する。 <Rule 2>
According torule 2, even when a PDCCH that may have been transmitted by the BFR search space (BFR-SS) is detected, the PDCCH is transmitted by a non-BFR-SS (or transmitted by a BFR-SS). Not be assumed).
ルール2では、BFR用サーチスペース(BFR-SS)により送信された可能性のあるPDCCHを検出した場合であっても、当該PDCCHが非BFR-SSで送信された(又は、BFR-SSでは送信されない)と想定する。 <
According to
例えば、UEは、BFR用サーチスペース(図2におけるサーチスペース#B)と、他のサーチスペース(図2におけるサーチスペース#A)が重複する範囲においてPDCCHを受信した場合、サーチスペース#AにおいてPDCCH(非BFR用PDCCH)を受信したと判断する(図5参照)。この場合、UEは、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したとは判断せず、BFR手順を継続してもよい。
For example, if the UE receives the PDCCH in a range where the BFR search space (search space #B in FIG. 2) and another search space (search space #A in FIG. 2) overlap, the PDCCH in the search space #A (PDCCH for non-BFR) is determined to be received (see FIG. 5). In this case, the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
なお、PDCCHは、所定のRNTI(Radio Network Temporary Identif)によりCRC(Cyclic Redundancy Check)ビットのスクランブルが適用されてもよい。所定のRNTIは、例えば、C-RNTIであってもよい。
The PDCCH may be subjected to CRC (Cyclic Redundancy Check) bit scrambling by a predetermined RNTI (Radio Network Temporary Identif). The predetermined RNTI may be, for example, a C-RNTI.
ネットワーク(例えば、基地局)は、BFRQに対する応答信号をBFR用PDCCH(例えば、サーチスペース#B)を利用して送信する場合、サーチスペース#Aと重複しない範囲(例えば、モニタリングオケージョン)で送信するように制御する。
When transmitting a response signal to BFRQ using a PDCCH for BFR (for example, search space #B), the network (for example, a base station) transmits the response signal in a range that does not overlap with search space #A (for example, a monitoring occasion). Control.
例えば、基地局は、サーチスペース#Aとサーチスペース#Bが重複しない範囲(図3におけるAL=16)を利用して、BFR用PDCCHを送信してもよい。あるいは、サーチスペース#Aとサーチスペース#Bの周期等が異なって設定される場合、サーチスペース#Bのみが設定される場合にBFRQに対する応答信号を送信するように制御する。
For example, the base station may transmit the BFR PDCCH using a range in which search space #A and search space #B do not overlap (AL = 16 in FIG. 3). Alternatively, when the search space #A and the search space #B are set to have different periods or the like, control is performed such that a response signal to BFRQ is transmitted when only the search space #B is set.
UEは、サーチスペース#Aと重複しないサーチスペース#Bの範囲においてBFRQに対する応答信号が送信されると想定してもよい。例えば、UEは、サーチスペース#Aと重複しないサーチスペース#Bの範囲において、PDCCH(BFR用PDCCH)を受信した場合、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断して、BFR手順を完了してもよい。
The UE may assume that a response signal to BFRQ is transmitted in a range of search space #B that does not overlap with search space #A. For example, when receiving the PDCCH (PDCCH for BFR) in the range of search space #B that does not overlap with search space #A, the UE determines that the response signal to the beam recovery request (BFRQ) has been successfully received, The BFR procedure may be completed.
このように、サーチスペースが重複する範囲において送信されたPDCCHを非BFR用PDCCHとすることにより、ネットワーク(例えば、基地局)は、BFR手順中であっても、BFR手順外の場合と同様にPDCCHをスケジューリングすることができる。
As described above, by using the PDCCH transmitted in the range where the search space overlaps as the non-BFR PDCCH, the network (for example, the base station) can perform the BFR procedure even during the BFR procedure in the same manner as in the case without the BFR procedure. The PDCCH can be scheduled.
<ルール3>
ルール3では、BFR用サーチスペース(BFR-SS)により送信された可能性のあるPDCCHを検出した場合、当該PDCCHがBFR-SS(サーチスペース#B)と非BFR-SS(サーチスペース#A)のいずれで送信されたかをUE側で判断する。 <Rule 3>
According to rule 3, when a PDCCH that may have been transmitted by the BFR search space (BFR-SS) is detected, the PDCCH is included in the BFR-SS (search space #B) and the non-BFR-SS (search space #A). The UE determines which is transmitted.
ルール3では、BFR用サーチスペース(BFR-SS)により送信された可能性のあるPDCCHを検出した場合、当該PDCCHがBFR-SS(サーチスペース#B)と非BFR-SS(サーチスペース#A)のいずれで送信されたかをUE側で判断する。 <Rule 3>
According to rule 3, when a PDCCH that may have been transmitted by the BFR search space (BFR-SS) is detected, the PDCCH is included in the BFR-SS (search space #B) and the non-BFR-SS (search space #A). The UE determines which is transmitted.
例えば、UEは、BFR用サーチスペース(図2におけるサーチスペース#B)と、他のサーチスペース(図2におけるサーチスペース#A)が重複する範囲においてPDCCHを受信した場合、当該PDCCHがいずれのサーチスペースに対応するかを自律的に判断する。
For example, when the UE receives a PDCCH in a range in which a search space for BFR (search space #B in FIG. 2) and another search space (search space #A in FIG. 2) overlap, any of the PDCCHs may be searched. It autonomously determines whether it corresponds to the space.
UEは、当該PDCCHがBFR-SSで送信されたと判断した場合、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断して、BFR手順を完了してもよい。一方で、UEは、当該PDCCHが非BFR-SSで送信されたと判断した場合、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断せず、BFR手順を継続してもよい。
If the UE determines that the PDCCH has been transmitted by the BFR-SS, the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure. On the other hand, when the UE determines that the PDCCH has been transmitted in the non-BFR-SS, the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
UEは、所定条件(例えば、AL等)に基づいて検出したPDCCHがBFR-SSで送信されたか否かを判断してもよい。例えば、UEは、複数のサーチスペースが重複する範囲において、検出したPDCCH候補のALが所定値以上の場合には、PDCCHがBFR-SSで送信されたと判断してもよい。
The UE may determine whether the detected PDCCH has been transmitted by the BFR-SS based on a predetermined condition (for example, AL). For example, the UE may determine that the PDCCH has been transmitted by BFR-SS when the detected PDCCH candidate AL is equal to or greater than a predetermined value in a range where a plurality of search spaces overlap.
このように、受信したPDCCHが対応するサーチスペース種別をUE側で自律的に決定することにより、BFR用PDCCHの送信を柔軟に制御することが可能となる。
As described above, by autonomously determining the search space type corresponding to the received PDCCH on the UE side, transmission of the BFR PDCCH can be flexibly controlled.
ルール1-3において、UEは、PDCCH(又は、PDCCHで送信されるDCIによりスケジューリングされるPDSCH)に対する送達確認信号(HARQ-ACK、ACK/NACKとも呼ぶ)を送信してもよい。この場合、UEは、DCI種別に基づいてACK/NACKを送信するULチャネルを決定してもよい。
In Rule 1-3, the UE may transmit an acknowledgment signal (also referred to as HARQ-ACK, ACK / NACK) for the PDCCH (or the PDSCH scheduled by DCI transmitted on the PDCCH). In this case, the UE may determine a UL channel for transmitting ACK / NACK based on the DCI type.
例えば、DCIがPDSCHのスケジューリングを指示する(例えば、DCIがDLアサイメントである)場合、UEは、上り制御チャネルを利用してACK/NACKをフィードバックしてもよい。また、DCIがPUSCHのスケジューリングを指示する(例えば、DCIがULグラントである)場合、UEは、上り共有チャネルを利用してACK/NACKをフィードバックしてもよい。
For example, when DCI indicates PDSCH scheduling (for example, DCI is DL assignment), the UE may feed back ACK / NACK using an uplink control channel. Further, when DCI instructs scheduling of PUSCH (for example, DCI is UL grant), the UE may feed back ACK / NACK using the uplink shared channel.
基地局は、ルール1-3のBFR手順においてビームの再設定を行ってもよい。あるいは、基地局は、BFR-SSにおいてBFRQの応答信号をUEに送信することによりUEにおけるBFR動作(例えば、PRACH送信)を終了させ、他のビーム制御(例えば、他のビームの指定)を行ってもよい。
The base station may reset the beam in the BFR procedure of Rule 1-3. Alternatively, the base station ends the BFR operation (eg, PRACH transmission) in the UE by transmitting a BFRQ response signal to the UE in the BFR-SS, and performs another beam control (eg, designation of another beam). You may.
(第2の態様)
第2の態様では、第1の制御リソースセットに対応する第1のサーチスペースと、第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、当該下り制御チャネルで送信される下り制御情報に基づいて、下り制御チャネルが送信されたサーチスペースを判断する。 (Second aspect)
In the second aspect, when a downlink control channel is detected in a range where the first search space corresponding to the first control resource set and the second search space corresponding to the second control resource set overlap, The search space in which the downlink control channel has been transmitted is determined based on the downlink control information transmitted on the downlink control channel.
第2の態様では、第1の制御リソースセットに対応する第1のサーチスペースと、第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、当該下り制御チャネルで送信される下り制御情報に基づいて、下り制御チャネルが送信されたサーチスペースを判断する。 (Second aspect)
In the second aspect, when a downlink control channel is detected in a range where the first search space corresponding to the first control resource set and the second search space corresponding to the second control resource set overlap, The search space in which the downlink control channel has been transmitted is determined based on the downlink control information transmitted on the downlink control channel.
第2の態様では、第1の態様におけるルール1-3にかえてUEが受信する信号又はチャネル(例えば、DCI)に基づいてPDCCHがBFR-SSで送信されたか否かを判断する。なお、以下の説明では、第1の態様と異なる点について説明し、その他の部分については第1の態様と同様に行うことができる。
In the second example, it is determined whether or not the PDCCH has been transmitted by the BFR-SS based on the signal or the channel (for example, DCI) received by the UE instead of the rule 1-3 in the first example. In the following description, points different from the first embodiment will be described, and the other portions can be performed in the same manner as the first embodiment.
<DCIに含まれる情報>
UEは、検出したPDCCHで送信されるDCIに含まれる情報に基づいて、検出したPDCCHがBFR-SSで送信されたか否かを判断してもよい。 <Information included in DCI>
The UE may determine whether or not the detected PDCCH has been transmitted by the BFR-SS based on information included in DCI transmitted on the detected PDCCH.
UEは、検出したPDCCHで送信されるDCIに含まれる情報に基づいて、検出したPDCCHがBFR-SSで送信されたか否かを判断してもよい。 <Information included in DCI>
The UE may determine whether or not the detected PDCCH has been transmitted by the BFR-SS based on information included in DCI transmitted on the detected PDCCH.
基地局は、BFRQに対する応答信号の送信に利用するDCI(例えば、応答信号が含まれるPDSCHをスケジュールするDCI)に対して、当該DCIがBFR用のDCIであることを通知する情報を含めてもよい。
The base station may include information for notifying that the DCI is a DCI for BFR to DCI used for transmission of a response signal to BFRQ (for example, DCI for scheduling a PDSCH including the response signal). Good.
UEは、BFR用サーチスペース(サーチスペース#B)と、他のサーチスペース(サーチスペース#A)が重複する範囲においてPDCCHを検出した場合、当該PDCCHで送信されるDCIに含まれる情報に基づいてPDCCHがいずれのサーチスペースに対応するかを判断する(図6参照)。例えば、受信したDCIに当該DCIがBFR用のDCIであることを示す情報(例えば、所定ビット値)が含まれている場合、UEは、サーチスペース#BにおいてPDCCH(BFR用PDCCH)を受信したと判断する。そして、UEは、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断して、BFR手順を完了してもよい。
When the UE detects a PDCCH in a range where the BFR search space (search space #B) and another search space (search space #A) overlap, based on information included in DCI transmitted on the PDCCH. It is determined which search space the PDCCH corresponds to (see FIG. 6). For example, when the received DCI includes information (for example, a predetermined bit value) indicating that the DCI is DCI for BFR, the UE has received the PDCCH (PDCCH for BFR) in search space #B. Judge. Then, the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure.
一方で、受信したDCIに当該DCIがBFR用のDCIであることを示す情報が含まれていない場合、UEは、サーチスペース#AにおいてPDCCH(非BFR用PDCCH)を受信したと判断する。この場合、UEは、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断せず、BFR手順を継続してもよい。
On the other hand, if the received DCI does not include information indicating that the DCI is a DCI for BFR, the UE determines that a PDCCH (PDCCH for non-BFR) has been received in search space #A. In this case, the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
なお、BFR用のDCIであることを示す情報(所定ビット値)は、所定ビットの数(例えば、1ビット)で各DCIに含まれてもよい。例えば、DCIに含まれる所定ビット値が1である場合に当該DCIがBFR用DCIであることを示し、0である場合に非BFR用DCIであることを示してもよい。あるいは、BFR用のDCIにのみ所定ビット値(又は、ビットフィールド)を含め、非BFR用のDCIには当該所定ビット値を含めない構成としてもよい。
Note that the information indicating the DCI for BFR (predetermined bit value) may be included in each DCI in a predetermined number of bits (for example, 1 bit). For example, when the predetermined bit value included in DCI is 1, it may indicate that the DCI is BFR DCI, and when 0, it may indicate that it is non-BFR DCI. Alternatively, a configuration may be adopted in which the predetermined bit value (or bit field) is included only in the DCI for BFR, and the predetermined bit value is not included in the DCI for non-BFR.
UEが、受信したDCIに基づいてBFR用のDCIであるか否かを判断することにより、サーチスペースが重複して設定される場合であっても、検出したPDCCHがBFR用であるか否かを適切に判断してBFR手順を制御することができる。その結果、通信スループット及び通信品質の劣化を抑制することが可能となる。
The UE determines whether or not the detected PDCCH is for BFR even if the search space is set up by determining whether or not the DCI is for BFR based on the received DCI. Can be appropriately determined to control the BFR procedure. As a result, it is possible to suppress deterioration in communication throughput and communication quality.
<DCIフォーマット>
UEは、検出したPDCCHで送信されるDCIのフォーマットに基づいて、検出したPDCCHがBFR-SSで送信されたか否かを判断してもよい。 <DCI format>
The UE may determine whether the detected PDCCH has been transmitted by the BFR-SS based on the format of the DCI transmitted on the detected PDCCH.
UEは、検出したPDCCHで送信されるDCIのフォーマットに基づいて、検出したPDCCHがBFR-SSで送信されたか否かを判断してもよい。 <DCI format>
The UE may determine whether the detected PDCCH has been transmitted by the BFR-SS based on the format of the DCI transmitted on the detected PDCCH.
UEは、BFR用サーチスペース(サーチスペース#B)と、他のサーチスペース(サーチスペース#A)が重複する範囲においてPDCCHを検出した場合、当該PDCCHで送信されるDCIフォーマットに基づいてPDCCHがいずれのサーチスペースに対応するかを判断してもよい(図6参照)。
When the UE detects a PDCCH in a range where the BFR search space (search space #B) and another search space (search space #A) overlap, any one of the PDCCHs is determined based on the DCI format transmitted on the PDCCH. (See FIG. 6).
例えば、DCIが第1のフォーマットである場合、UEは、検出したPDCCHがBFR-SSで送信された、又はサーチスペース#BにおいてPDCCH(BFR用PDCCH)を受信したと判断する。そして、UEは、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断して、BFR手順を完了してもよい。
For example, when the DCI is in the first format, the UE determines that the detected PDCCH has been transmitted by BFR-SS or that the PDCCH (PDCCH for BFR) has been received in search space #B. Then, the UE may determine that the response signal to the beam recovery request (BFRQ) has been successfully received, and may complete the BFR procedure.
一方で、DCIが第2のフォーマットである場合、UEは、検出したPDCCHが非BFR-SSで送信された、又はサーチスペース#AにおいてPDCCH(非BFR用PDCCH)を受信したと判断する。この場合、UEは、ビーム回復要求(BFRQ)に対する応答信号の受信に成功したと判断せず、BFR手順を継続してもよい。
On the other hand, if the DCI is in the second format, the UE determines that the detected PDCCH has been transmitted by non-BFR-SS or that the PDCCH (non-BFR PDCCH) has been received in search space #A. In this case, the UE may continue the BFR procedure without determining that the response signal to the beam recovery request (BFRQ) has been successfully received.
第1のDCIフォーマットは、例えば、DCIフォーマット0_0及び1_0の少なくとも一つであってもよい。第2のDCIフォーマットは、例えば、DCIフォーマット0_1及び1_1の少なくとも一つであってもよい。もちろん、第1のDCIフォーマット及び第2のDCIフォーマットはこれに限られない。第1のDCIフォーマット及び第2のDCIフォーマットの少なくとも一方について、基地局からUEに対してあらかじめ設定してもよい。
The first DCI format may be, for example, at least one of DCI formats 0_0 and 1_0. The second DCI format may be, for example, at least one of DCI formats 0_1 and 1_1. Of course, the first DCI format and the second DCI format are not limited to this. At least one of the first DCI format and the second DCI format may be preset from the base station to the UE.
UEが、受信したDCIのフォーマットに基づいてBFR用のDCIであるか否かを判断することにより、サーチスペースが重複して設定される場合であっても、検出したPDCCHがBFR用であるか否かを適切に判断してBFR手順を制御することができる。その結果、通信スループット及び通信品質の劣化を抑制することが可能となる。
The UE determines whether or not the detected PDCCH is for BFR even when the search space is set up by determining whether or not the DCI is for BFR based on the format of the received DCI. The BFR procedure can be controlled by appropriately determining whether or not the BFR procedure is performed. As a result, it is possible to suppress deterioration in communication throughput and communication quality.
(無線通信システム)
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施の形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施の形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
図7は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、複数のコンポーネントキャリア(キャリア又はセル)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
FIG. 7 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of component carriers (carriers or cells) are integrated can be applied.
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. Have. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
The user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN)となり、NRの基地局(gNB)がセカンダリーノード(SN)となるLTEとNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRの基地局(gNB)がMNとなり、LTE(E-UTRA)の基地局(eNB)がSNとなるNRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)等を含んでもよい。また、無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)となるデュアルコネクティビティ(NN-DC:NR-NR Dual Connectivity))をサポートしてもよい。
Also, the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)). The MR-DC has dual connectivity (LTE and NR) in which an LTE (E-UTRA) base station (eNB) becomes a master node (MN) and an NR base station (gNB) becomes a secondary node (SN). EN-DC: E-UTRA-NR {Dual} Connectivity, NR base station (gNB) becomes MN, and LTE (E-UTRA) base station (eNB) becomes SN. Dual connectivity (NR and LTE) NE-DC: NR-E-UTRA {Dual} Connectivity) may be included. In addition, the wireless communication system 1 performs dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NN-DC: NR-NR Dual) in which both MN and SN become NR base stations (gNB). Connectivity)).
ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, between the user terminal 20 and the base station 12, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, or the like) and a wide bandwidth may be used, or between the user terminal 20 and the base station 11. The same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, if the subcarrier intervals of the constituent OFDM symbols are different and / or if the number of OFDM symbols is different, the numerology may be referred to as different.
基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
The base station 11 and the base station 12 (or between the two base stations 12) may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
The base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
Note that the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a transmission / reception point, and the like. May be called. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
In the wireless communication system 1, Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication. The SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
In the wireless communication system 1, as the downlink channel, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used. The PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical DownlinkFControl Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
ス ケ ジ ュ ー リ ン グ The scheduling information may be notified by DCI. For example, a DCI that schedules DL data reception may be called a DL assignment, and a DCI that schedules UL data transmission may be called an UL grant.
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH. The EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. In addition, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
In the wireless communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a reference signal for measurement (SRS: Sounding Reference Signal), a reference signal for demodulation (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
<基地局>
図8は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 <Base station>
FIG. 8 is a diagram showing an example of the overall configuration of the base station according to the present embodiment. Thebase station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
図8は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 <Base station>
FIG. 8 is a diagram showing an example of the overall configuration of the base station according to the present embodiment. The
下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ユ ー ザ User data transmitted from the base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
(4) The transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
The baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
(4) The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
図9は、本実施の形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 9 is a diagram showing an example of a functional configuration of the base station according to the present embodiment. In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations only need to be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit (scheduler) 301 controls the entire base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
The control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; Quota). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
The control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
The control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, (Transmission signal), uplink reference signal, and the like.
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
The transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example. The DL assignment and the UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 or the like.
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
(4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
(4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
なお、送受信部103は、ビーム障害回復(BFR:Beam Failure Recovery)手順において下り制御チャネル(又は、DCI)を送信する。また、送受信部103は、当該下り制御チャネル(又は、DCI)でスケジューリングされるPDSCH(例えば、BFRQレスポンス)を送信する。また、送受信部103は、BFRQレスポンスに対して、UEがモニタする制御リソースセット及びサーチスペースに関する情報を上位レイヤシグナリング等で送信してもよい。
The transmission / reception unit 103 transmits a downlink control channel (or DCI) in a beam failure recovery (BFR) procedure. Further, the transmitting / receiving section 103 transmits a PDSCH (for example, a BFRQ response) scheduled on the downlink control channel (or DCI). In addition, the transmitting / receiving section 103 may transmit information on the control resource set and the search space monitored by the UE in response to the BFRQ response by higher layer signaling or the like.
制御部301は、BFRQレスポンスに対して、UEがモニタする制御リソースセット及びサーチスペースの設定を制御する。
The control unit 301 controls the setting of the control resource set and the search space monitored by the UE in response to the BFRQ response.
<ユーザ端末>
図10は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 <User terminal>
FIG. 10 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. Theuser terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. The transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
図10は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 <User terminal>
FIG. 10 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. The
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
(4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
(4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
図11は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 11 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
制御部401は、所定の識別子(例えば、C-RNTI、CS-RNTI、MCS-C-RNTI、SI-RNTI、P-RNTI、RA-RNTI、TC-RNTI、INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、SP-CSI-RNTIの少なくとも一つ)でCRCスクランブルされるDCIの監視を制御してもよい。
The control unit 401 transmits a predetermined identifier (for example, C-RNTI, CS-RNTI, MCS-C-RNTI, SI-RNTI, P-RNTI, RA-RNTI, TC-RNTI, INT-RNTI, SFI-RNTI, TPC -PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, SP-CSI-RNTI).
また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
(4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
(4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
(4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measuring unit 405 measures the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI). The measurement result may be output to the control unit 401.
なお、送受信部203は、ビーム障害回復(BFR:Beam Failure Recovery)手順において下り制御チャネル(又は、DCI)のモニタを実施しDCIを受信する。また、送受信部203は、当該下り制御チャネル(又は、DCI)でスケジューリングされるPDSCH(例えば、BFRQレスポンス)を受信する。また、送受信部203は、BFRQレスポンスに対してモニタする制御リソースセット及びサーチスペースに関する情報を上位レイヤシグナリング等で受信してもよい。
Note that the transmission / reception unit 203 monitors the downlink control channel (or DCI) in the beam failure recovery (BFR) procedure and receives the DCI. Further, the transmission / reception unit 203 receives a PDSCH (for example, a BFRQ response) scheduled on the downlink control channel (or DCI). In addition, the transmission / reception unit 203 may receive information on a control resource set and a search space monitored for a BFRQ response by higher layer signaling or the like.
制御部401は、第1の制御リソースセットに対応する第1のサーチスペースと、BFR用に設定された第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、所定ルール又は下り制御チャネルで送信される下り制御情報に基づいて、下り制御チャネルが送信されたサーチスペースを判断する。
The control unit 401 controls the downlink control channel in a range where the first search space corresponding to the first control resource set and the second search space corresponding to the second control resource set set for BFR overlap. Is detected, the search space in which the downlink control channel is transmitted is determined based on a predetermined rule or downlink control information transmitted on the downlink control channel.
例えば、制御部401は、第1のサーチスペースと第2のサーチスペースの重複範囲で下り制御チャネルを検出した場合、下り制御チャネルが第2のサーチスペースで送信されたと判断してもよい。あるいは、制御部401は、第1のサーチスペースと第2のサーチスペースの重複範囲で下り制御チャネルを検出した場合、下り制御チャネルが第1のサーチスペースで送信されたと判断してもよい。
For example, when detecting the downlink control channel in the overlapping range of the first search space and the second search space, the control unit 401 may determine that the downlink control channel has been transmitted in the second search space. Alternatively, when detecting the downlink control channel in the overlapping range of the first search space and the second search space, control section 401 may determine that the downlink control channel has been transmitted in the first search space.
また、制御部401は、ビーム回復要求に対する応答信号を第1のサーチスペースと第2のサーチスペースが重複しない範囲で受信するように制御してもよい。
The control unit 401 may perform control so that the response signal to the beam recovery request is received within a range where the first search space and the second search space do not overlap.
また、制御部401は、下り制御チャネルで送信される下り制御情報に含まれる情報に基づいて、PDCCHが送信されたサーチスペースを決定してもよい。あるいは、制御部401は、下り制御チャネルで送信される下り制御情報のフォーマットに基づいて、PDCCHが送信されたサーチスペースを決定してもよい。
{Also, control section 401 may determine the search space in which the PDCCH has been transmitted, based on information included in the downlink control information transmitted on the downlink control channel. Alternatively, control section 401 may determine the search space in which the PDCCH has been transmitted, based on the format of the downlink control information transmitted on the downlink control channel.
<ハードウェア構成>
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 <Hardware configuration>
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 <Hardware configuration>
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
Here, the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the realization method is not particularly limited.
例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 12 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to one embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the present disclosure, the terms such as “apparatus”, “circuit”, “device”, “section”, and “unit” can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the wireless communication method according to an embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103(203)は、送信部103a(203a)と受信部103b(203b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004. The transmission / reception unit 103 (203) may be physically or logically separated from the transmission unit 103a (203a) and the reception unit 103b (203b).
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
A radio frame may be configured by one or more periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
The slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, the TTI refers to, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in [email protected]), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the above-described TTI length may be replaced with the TTI.
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
Note that one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
{Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
A bandwidth part (BWP: Bandwidth @ Part) (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined by a BWP and numbered within the BWP.
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
$ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
少 な く と も At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
The structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
Further, the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
名称 Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
(4) Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
通知 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
Further, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
ソ フ ト ウ ェ ア Also, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
用語 The terms “system” and “network” as used in this disclosure may be used interchangeably.
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", " Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable Can be used for
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" , "Sector", "cell group", "carrier", "component carrier" and the like may be used interchangeably. A base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
基地 Also, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In the present disclosure, the operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
本開示において説明した各態様/実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution. In addition, the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, for the methods described in this disclosure, elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
本開示において説明した各態様/実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (FutureATRadioRAccess), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. Further, a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
記載 The term “based on” as used in the present disclosure does not mean “based on” unless otherwise indicated. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, “judgment (decision)” means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
In this disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate", "coupled" and the like may be interpreted similarly to "different".
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In the present disclosure, where articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施の形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is intended for illustrative purposes and does not bring any restrictive meaning to the invention according to the present disclosure.
Claims (6)
- ビーム障害回復(BFR:Beam Failure Recovery)手順において下り制御チャネルのモニタを実施する受信部と、
第1の制御リソースセットに対応する第1のサーチスペースと、BFR用に設定された第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、所定ルール又は前記下り制御チャネルで送信される下り制御情報に基づいて、前記下り制御チャネルが送信されたサーチスペースを判断する制御部と、を有することを特徴とするユーザ端末。 A receiving unit that monitors a downlink control channel in a beam failure recovery (BFR) procedure;
When a downlink control channel is detected in a range where the first search space corresponding to the first control resource set and the second search space corresponding to the second control resource set set for BFR overlap, A user terminal, comprising: a control unit that determines a search space in which the downlink control channel has been transmitted, based on a predetermined rule or downlink control information transmitted on the downlink control channel. - 前記制御部は、前記第1のサーチスペースと前記第2のサーチスペースの重複範囲で前記下り制御チャネルを検出した場合、前記下り制御チャネルが第2のサーチスペースで送信されたと判断することを特徴とする請求項1に記載のユーザ端末。 The control unit, when detecting the downlink control channel in the overlapping range of the first search space and the second search space, determines that the downlink control channel has been transmitted in the second search space. The user terminal according to claim 1, wherein
- 前記制御部は、前記第1のサーチスペースと前記第2のサーチスペースの重複範囲で前記下り制御チャネルを検出した場合、前記下り制御チャネルが第1のサーチスペースで送信されたと判断することを特徴とする請求項1に記載のユーザ端末。 The control unit, when detecting the downlink control channel in an overlapping range of the first search space and the second search space, determines that the downlink control channel has been transmitted in the first search space. The user terminal according to claim 1, wherein
- 前記制御部は、ビーム回復要求に対する応答信号を前記第1のサーチスペースと前記第2のサーチスペースが重複しない範囲で受信するように制御することを特徴とする請求項3に記載のユーザ端末。 4. The user terminal according to claim 3, wherein the control unit controls to receive a response signal to the beam recovery request so that the first search space and the second search space do not overlap each other. 5.
- 前記制御部は、前記下り制御チャネルで送信される前記下り制御情報に含まれる情報、又は前記下り制御情報のフォーマットに基づいて、前記PDCCHが送信されたサーチスペースを決定することを特徴とする請求項1に記載のユーザ端末。 The control unit determines a search space in which the PDCCH is transmitted, based on information included in the downlink control information transmitted on the downlink control channel or a format of the downlink control information. Item 2. The user terminal according to Item 1.
- ビーム障害回復(BFR:Beam Failure Recovery)手順において下り制御チャネルのモニタを実施する工程と、
第1の制御リソースセットに対応する第1のサーチスペースと、BFR用に設定された第2の制御リソースセットに対応する第2のサーチスペースとが重複する範囲において下り制御チャネルを検出した場合、所定ルール又は前記下り制御チャネルで送信される下り制御情報に基づいて、前記下り制御チャネルが送信されたサーチスペースを判断する工程と、を有することを特徴とする無線通信方法。 Monitoring a downlink control channel in a beam failure recovery (BFR) procedure;
When a downlink control channel is detected in a range where the first search space corresponding to the first control resource set and the second search space corresponding to the second control resource set set for BFR overlap, Determining a search space in which the downlink control channel has been transmitted, based on a predetermined rule or downlink control information transmitted on the downlink control channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/034003 WO2020054025A1 (en) | 2018-09-13 | 2018-09-13 | User equipment and wireless communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/034003 WO2020054025A1 (en) | 2018-09-13 | 2018-09-13 | User equipment and wireless communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054025A1 true WO2020054025A1 (en) | 2020-03-19 |
Family
ID=69777187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/034003 WO2020054025A1 (en) | 2018-09-13 | 2018-09-13 | User equipment and wireless communication method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020054025A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114793125A (en) * | 2021-01-26 | 2022-07-26 | 上海推络通信科技合伙企业(有限合伙) | Method and device used in node of wireless communication |
CN116114368A (en) * | 2020-05-15 | 2023-05-12 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
CN116195343A (en) * | 2020-08-06 | 2023-05-30 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182348A (en) * | 2010-03-04 | 2011-09-15 | Sharp Corp | Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit |
US20180227899A1 (en) * | 2017-02-06 | 2018-08-09 | Mediatek Inc. | Beam Failure Recovery Mechanism for Multi-Beam Operation |
-
2018
- 2018-09-13 WO PCT/JP2018/034003 patent/WO2020054025A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011182348A (en) * | 2010-03-04 | 2011-09-15 | Sharp Corp | Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit |
US20180227899A1 (en) * | 2017-02-06 | 2018-08-09 | Mediatek Inc. | Beam Failure Recovery Mechanism for Multi-Beam Operation |
Non-Patent Citations (3)
Title |
---|
MEDIATEK INC.: "Summary #2 on Remaining issues on Beam Failure Recovery", 3GPP TSG RAN WG1 MEETING #94 R1-1809926, 24 August 2018 (2018-08-24), pages 3 - 6 * |
NTT DOCOMO: "Remaining issues on beam management", 3GPP TSG RAN WG1 MEETING #94 R1-1809138, 24 August 2018 (2018-08-24), pages 1 - 10, XP051516508 * |
NTT DOCOMO: "Views on beam recovery", 3GPP TSG RAN WG1 MEETING #90B R1-1718193, 13 October 2017 (2017-10-13), pages 1, XP051341375 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116114368A (en) * | 2020-05-15 | 2023-05-12 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
CN116195343A (en) * | 2020-08-06 | 2023-05-30 | 株式会社Ntt都科摩 | Terminal, wireless communication method and base station |
CN114793125A (en) * | 2021-01-26 | 2022-07-26 | 上海推络通信科技合伙企业(有限合伙) | Method and device used in node of wireless communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019244218A1 (en) | User terminal | |
US12137360B2 (en) | Terminal, radio communication method, base station, and system | |
WO2020012594A1 (en) | User equipment | |
WO2020012618A1 (en) | User equipment | |
JP7284175B2 (en) | Terminal, wireless communication method and system | |
JP7284174B2 (en) | Terminal, wireless communication method and system | |
JP7201691B2 (en) | Terminal, wireless communication method, base station and system | |
WO2020031386A1 (en) | User terminal and wireless communication method | |
WO2020065740A1 (en) | User terminal | |
JP7248681B2 (en) | Terminal, wireless communication method, base station and system | |
EP3780797A1 (en) | User terminal and wireless base station | |
WO2020053942A1 (en) | User terminal and wireless communication method | |
WO2019130518A1 (en) | User terminal and radio communication method | |
WO2020053940A1 (en) | User terminal | |
WO2019230002A1 (en) | User terminal and wireless base station | |
WO2020054074A1 (en) | User terminal and wireless communication method | |
WO2020016934A1 (en) | User equipment | |
WO2020031387A1 (en) | User equipment and wireless communication method | |
WO2020053941A1 (en) | User terminal and wireless communication method | |
WO2019138555A1 (en) | User terminal and wireless communication method | |
WO2019230003A1 (en) | Wireless base station and wireless communication method | |
WO2019215895A1 (en) | User terminal | |
WO2019234929A1 (en) | User terminal and wireless communication method | |
WO2020039483A1 (en) | User terminal | |
WO2020039823A1 (en) | User terminal and wireless communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18933724 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18933724 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |