WO2020031079A1 - Organic inorganic composite particle, method for producing same, and application thereof - Google Patents

Organic inorganic composite particle, method for producing same, and application thereof Download PDF

Info

Publication number
WO2020031079A1
WO2020031079A1 PCT/IB2019/056673 IB2019056673W WO2020031079A1 WO 2020031079 A1 WO2020031079 A1 WO 2020031079A1 IB 2019056673 W IB2019056673 W IB 2019056673W WO 2020031079 A1 WO2020031079 A1 WO 2020031079A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite particles
weight
particles
organic
inorganic
Prior art date
Application number
PCT/IB2019/056673
Other languages
French (fr)
Japanese (ja)
Inventor
松浦春彦
前山洋輔
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019132979A external-priority patent/JP2020026517A/en
Priority claimed from JP2019133837A external-priority patent/JP2020026518A/en
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to US17/264,130 priority Critical patent/US20210317317A1/en
Priority to EP19846718.5A priority patent/EP3835328A4/en
Priority to CN201980050397.6A priority patent/CN112513108A/en
Priority to KR1020217002816A priority patent/KR20210028216A/en
Publication of WO2020031079A1 publication Critical patent/WO2020031079A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to organic-inorganic composite particles, a method for producing the same, and uses thereof.
  • the organic-inorganic composite particles of the present invention have a unique shape, and make use of the characteristics thereof, such as cosmetics, coating compositions, heat-insulating resin compositions, light-diffusing resin compositions, and light-diffusing films. Suitable for applications such as This application filed Japanese Patent Application No. 2018-150712 filed on Aug. 9, 2018, Japanese Patent Application No. 2018-150714 filed on Aug. 9, 2018, and filed on Jul. 18, 2019.
  • Priority is claimed based on Japanese Patent Application No. 2019-132979 and Japanese Patent Application No. 2019-133837 filed on Jul. 19, 2019, the contents of which are incorporated herein by reference.
  • inorganic particles such as resin particles, silica particles, glass particles, titanium oxide, aluminum oxide, and calcium carbonate are used as additives.
  • hollow resin particles have been proposed (see Patent Documents 1 and 2).
  • a method of obtaining microcapsule particles containing single or plural silica particles by applying a microparticle-size hollow particle synthesis method to produce microcapsule particles containing silica precursor and then performing a sol-gel reaction. has been proposed (see Non-Patent Document 1).
  • the microcapsule particles containing the hollow resin particles of Patent Documents 1 and 2 and the single or plural silica particles of Non-Patent Document 1 do not have sufficient light scattering properties due to the internal space, for example. There is a problem that it is insufficient to obtain excellent light diffusion and hiding properties, and excellent reflectivity of visible light and near-infrared light when added to a resin composition such as a paint. Accordingly, the present applicant has reported that the above-mentioned problems can be solved by using organic-inorganic composite particles having a shell composed of a crosslinked polymer and containing silica having a porous structure inside the capsule. (See Patent Document 3).
  • an organic-inorganic composite particle is produced using an organic solvent as a porogen for forming a porous structure composed of silica particles inside a capsule. From the viewpoint of the influence on the manufacturer at the time of manufacture, it is desirable to use as little as possible. Therefore, it has been desired to provide a method for producing organic-inorganic composite particles without using an organic solvent. Then, an object of the present invention is to provide organic-inorganic composite particles which are excellent in the reflectivity of visible light and near-infrared light, have high light diffusivity and opacity, a method for producing the same, and uses thereof.
  • organic-inorganic composite particles having an outer shell composed of a crosslinked polymer and containing silica having a porous structure inside the capsule, further containing particles made of an inorganic substance other than silica inside the capsule. It has been found that the above problem can be solved by doing so.
  • the present inventors have found that by adding an inorganic thickener to a monomer mixture, organic-inorganic composite particles can be produced without using an organic solvent, and have led to the present invention.
  • an outer shell composed of a crosslinked polymer and a cavity defined by the outer shell are provided, and silica particles as first inorganic particles are mutually contained inside the hollow.
  • An organic-inorganic composite particle comprising a connected porous structure and second inorganic particles other than silica particles, and having a volume average particle diameter of 0.5 to 100 ⁇ m is provided.
  • the method for producing the organic-inorganic composite particles wherein the radical polymerizable monofunctional monomer 100 parts by weight and the crosslinkable monomer 20 to 150 parts by weight, as a silica precursor
  • a mixture containing 60 to 400 parts by weight of silicon alkoxide and 0.1 to 10 parts by weight of the second inorganic particles is subjected to suspension polymerization in an aqueous medium in the presence of a radical polymerization initiator to form a crosslinked polymer.
  • a shell defined by the outer shell Forming a shell defined by the outer shell, and gelling silicon alkoxide after or simultaneously with the formation of the outer shell, thereby forming silica particles inside the hollow. And forming a porous structure connected to each other.
  • a mixture containing a radically polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener, a radical polymerization initiator A step of forming an outer shell composed of a crosslinked polymer by suspension polymerization in an aqueous medium in the presence and in the absence of an organic solvent, and forming a silicon alkoxide after forming the outer shell or simultaneously with forming the outer shell.
  • a porous structure in which silica particles are connected to each other inside the outer shell thereby providing a method for producing organic-inorganic composite particles.
  • a cosmetic containing the organic-inorganic composite particles.
  • a coating composition containing the organic-inorganic composite particles.
  • a heat-insulating resin composition containing the organic-inorganic composite particles.
  • a light-diffusing resin composition containing the organic-inorganic composite particles.
  • a light diffusion film in which the organic-inorganic composite particles are blended.
  • organic-inorganic composite particles excellent in reflectivity of visible light and near-infrared light, exhibiting high light diffusion and hiding properties, and cosmetics and coating compositions containing the organic-inorganic composite particles , A heat-insulating resin composition, a light-diffusing resin composition, and a light-diffusing film.
  • the second inorganic particles have a refractive index of 1.8 or more.
  • the second inorganic particles have a particle size of 0.001 to 3 ⁇ m measured by a dynamic light scattering method.
  • the first inorganic particles and the second inorganic particles have 5 to 50% by weight with respect to the total weight of the organic-inorganic composite particles, and provide a hollow structure to the cavity.
  • the second inorganic particles are particles selected from titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, and zirconium silicate.
  • organic-inorganic composite particles exhibiting remarkable effects of more excellent light diffusion and hiding properties and near-infrared light reflectivity can be more easily produced.
  • Gelation is performed using an acid or a base in a cavity defined by an outer shell as a catalyst, and the acid or the base is generated by an external stimulus caused by energy radiation or heat of the latent pH adjuster, and the latent pH is adjusted.
  • An agent is present in the cavity by dissolving the latent pH adjuster in the mixture during suspension polymerization.
  • organic-inorganic composite particles that are more excellent in the reflectivity of visible light and near-infrared light and have higher light diffusivity can be more easily produced without using an organic solvent.
  • the mixture has a viscosity of 0.90 mPa ⁇ s or more at 25 ° C.
  • the inorganic thickener is silicic anhydride or clay mineral.
  • the porous structure in which the silica particles are connected to each other shows that the carbon component is contained in the EDX measurement.
  • the inorganic thickener is hydrophobic silica particles of silicic anhydride, and the hydrophobic silica particles have a specific surface area of 15 to 330 m 2 / g by a BET method.
  • the organic-inorganic composite particles have a volume average particle diameter of 0.5 to 100 ⁇ m.
  • the porous structure has 5 to 50% by weight based on the total weight of the organic-inorganic composite particles.
  • the hydrophobic silica particles are contained in an amount of 0.5 to 100 parts by weight based on 100 parts by weight of the mixture.
  • the mixture contains 100 parts by weight of the monofunctional monomer, 20 to 150 parts by weight of the crosslinkable monomer, and 60 to 400 parts by weight of the silica precursor.
  • FIG. 3 is a surface photograph, a cross-sectional photograph, and a SEM-EDS mapping diagram of the organic-inorganic composite particles of Example 1.
  • 5 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 2.
  • 9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 3.
  • 9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 4.
  • 4 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Comparative Example 1.
  • 9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Comparative Example 2.
  • FIG. 4 is a graph showing the light reflectance for each wavelength of a coating film containing various particles in the evaluation of the reflection characteristics of ultraviolet, visible, and near infrared light. It is a figure which shows an example of the analysis area
  • 9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 5.
  • 9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 6.
  • 9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 7.
  • 9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 8.
  • 9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 10.
  • 9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 11.
  • 9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 12.
  • 14 is a cross-sectional photograph of the organic-inorganic composite particles of Example 14.
  • 14 is a cross-sectional photograph of the organic-inorganic composite particles of Example 15.
  • 9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Comparative Example 3.
  • 4 is a graph showing the light reflectance for each wavelength of a coating film containing various particles in the evaluation of the reflection characteristics of ultraviolet, visible, and near infrared light.
  • the organic-inorganic composite particles of the present invention (hereinafter also referred to as “composite particles”) have an outer shell made of a crosslinked polymer. Further, the composite particles may include a cavity defined by an outer shell. Further, the composite particles include a porous structure in which silica particles (hereinafter, also referred to as “first inorganic particles”) are connected to each other in an outer shell or a cavity. Further, the composite particles may include particles made of an inorganic substance other than silica (hereinafter, also referred to as “second inorganic particles”) inside the outer shell or the cavity. Further, the composite particles have a volume average particle size of 0.5 to 100 ⁇ m. The composite particles are sometimes referred to as composite fine particles.
  • the type of the crosslinked polymer is not particularly limited as long as it can constitute the outer shell.
  • the crosslinking polymers include polymers derived from radical polymerizable monomers, specifically, a monofunctional monomer having one vinyl group, the crosslinkable monomer having two or more vinyl groups And copolymers thereof.
  • Examples of the monofunctional monomer having one vinyl group include alkyl (meth) acrylates having 1 to 16 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate.
  • crosslinkable monomer having two or more vinyl groups examples include polyfunctional acrylic esters such as ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and glycerin tri (meth) acrylate; Polyfunctional acrylamide derivatives such as -methylenebis (meth) acrylamide and N, N'-ethylenebis (meth) acrylamide; polyfunctional allyl derivatives such as diallylamine and tetraallyloxyethane; and aromatic divinyl compounds such as divinylbenzene. No. These crosslinkable monomers can be used alone or in combination.
  • the crosslinkable monomer is preferably contained in the outer shell at a ratio of 20 parts by weight or more based on 100 parts by weight of the monofunctional monomer.
  • the content of the crosslinking monomer is less than 20 parts by weight, an outer shell having sufficient strength may not be formed.
  • the content is more preferably from 20 to 150 parts by weight, and even more preferably from 80 to 120 parts by weight.
  • Porous structure has a configuration in which silica particles are connected to each other.
  • the porous structure means a structure in which some of the plurality of silica particles are connected to each other, and a macroporous space is formed between the silica particles in an unconnected portion. It is preferable that the porous structure has a volume in the range of the ratio to the total volume of the cavities described in the columns of various physical properties below.
  • the individual silica particles are mainly composed of SiO 2. Silica particles can be obtained, for example, by gelling a silica precursor.
  • silica precursor examples include a silicon alkoxide having one or more silicon atoms and an alkoxy group (for example, having 1 to 4 carbon atoms) in the same molecule.
  • Specific examples include tetraethoxysilane (TEOS), tetramethoxysilane, tetrapropoxysilane, and the like.
  • methyl silicate oligomer (MKC silicate, trade name, manufactured by Mitsubishi Chemical Corporation) which is a partially hydrolyzed oligomer of tetramethoxysilane, and ethyl silicate oligomer (product name, silicate 45, manufactured by Tama Chemical Co., Ltd.) which is a partially hydrolyzed oligomer of tetraethoxysilane (Pentamer), silicate 48 (10-mer)), and oligomers such as siloxane oligomers.
  • MKC silicate trade name, manufactured by Mitsubishi Chemical Corporation
  • ethyl silicate oligomer product name, silicate 45, manufactured by Tama Chemical Co., Ltd.
  • silicate 48 10-mer
  • oligomers such as siloxane oligomers.
  • tetraethoxysilane is preferable as the monofunctional silica precursor
  • ethylsilicate oligomer is preferable as the silica precursor which is an oligomer.
  • the porous structure is preferably present on the inner wall of the outer shell in order to provide the composite particles with excellent light diffusion and hiding properties.
  • the silica precursor is preferably contained in the mixture at a ratio of 60 to 400 parts by weight based on 100 parts by weight of the monofunctional monomer. When the content of the silica precursor is less than 60 parts by weight, particles having sufficient optical performance may not be obtained. When the content is more than 400 parts by weight, the components of the outer shell are relatively reduced, so that particles having sufficient strength may not be obtained.
  • the content is more preferably 70 to 270 parts by weight, further preferably 80 to 250 parts by weight.
  • the content ratio of the monofunctional monomer-derived component and the silica precursor-derived component in the composite particles substantially matches the above-mentioned ratio of the monofunctional monomer and the silica precursor.
  • the porous structure may contain a crosslinked polymer component, and the crosslinked polymer component may be a crosslinked polymer component forming an outer shell.
  • the porous structure may include a carbon component indicated by EDX measurement using SEM-EDX.
  • the second inorganic particle is not particularly limited as long as it is a particle made of an inorganic substance having a composition other than silica.
  • the second inorganic particles include particles such as titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, and zirconium silicate. Titanium oxide may be surface-treated with alumina, silica, or the like. These second inorganic particles can be used alone or in combination.
  • the second inorganic particles preferably have a refractive index of 1.8 or more. When the refractive index is less than 1.8, a sufficient effect of improving light diffusibility may not be obtained.
  • the refractive index is more preferably from 2.0 to 4.0.
  • Examples of the inorganic particles having a refractive index of 1.8 or more include particles of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, zirconium silicate, and the like.
  • the inorganic particles are preferably titanium oxide, zirconium oxide, and cerium oxide.
  • the method for measuring the refractive index is not particularly limited. For example, as for the measuring method, the measurement is performed with reference to pages 635 to 640 of “Introduction to Ceramics Material Science (Applied Edition), Issued by Uchida Lao Tsuruho Shinsha, Issued on May 25, 1981”. And known methods (for example, the minimum declination method, the critical angle method, the V-block method, etc.).
  • the refractive index means a relative refractive index to air. A reference wavelength of 550 nm can be used for the measurement.
  • the second inorganic particles preferably have a particle size of 0.001 to 3 ⁇ m measured by a dynamic light scattering method. If the particle size is larger than 3 ⁇ m, the particles may settle during polymerization, and the desired particles may not be obtained. If the particle size is less than 0.001 ⁇ m, particles can be produced but sufficient light reflection performance may not be obtained. The particle size is more preferably 0.001 to 1 ⁇ m.
  • the surface of the second inorganic particles may be treated with a surface treating agent to improve dispersibility in the composite particles. Examples of the surface treatment include water repellent treatment such as silicon treatment, silane coupling treatment, and polymer treatment.
  • the first inorganic particles and the second inorganic particles preferably have 5 to 50% by weight based on the total weight of the composite particles. .
  • the weight of the first inorganic particles and the second inorganic particles is less than 5% by weight, the formation of the porous body by the silica may be insufficient.
  • the weight is more than 50% by weight, the ratio of the outer shell is relatively reduced, and the strength may not be sufficient.
  • the weight of these inorganic particles is more preferably from 10 to 45% by weight.
  • the second inorganic particles are preferably contained in the composite particles in the range of 0.01 to 5 parts by weight, where the total amount of the first inorganic particles and the second inorganic particles is 100 parts by weight.
  • the content When the content is less than 0.01 part by weight, a sufficient effect of improving light diffusibility may not be obtained. If the content is more than 5 parts by weight, the polymerization reaction of the particles may not proceed well. The content is more preferably in the range of 0.05 to 2.5 parts by weight.
  • the weight of the first inorganic particles and / or the second inorganic particles contained in the composite particles can be measured by X-ray fluorescence measurement.
  • the composite particles preferably have a volume average particle size of 0.5 to 100 ⁇ m. When the volume average particle diameter is less than 0.5 ⁇ m, it may be difficult to obtain fine capsule particles. When the volume average particle diameter is larger than 100 ⁇ m, the production may be difficult due to the collapse of the capsule particles.
  • the volume average particle size is preferably from 3 to 80 ⁇ m, more preferably from 5 to 50 ⁇ m, depending on the use.
  • the composite particles preferably have an apparent specific gravity of 0.3 to 1.0 g / cm 3 .
  • the apparent specific gravity is less than 0.3 g / cm 3 , the resin layer of the outer shell is thin and the strength may be reduced. If the apparent specific gravity is greater than 1.0 g / cm 3, there is the effect due to the porous structure consisting of the interior of the silica may not be sufficiently exhibited.
  • the apparent specific gravity is preferably from 0.3 to 0.9 g / cm 3 .
  • the outer shape of the composite particles is not particularly limited, but is preferably as close to spherical as possible.
  • the thickness of the outer shell is preferably 5 to 40% of the volume average particle diameter. When the thickness of the outer shell is less than 5% of the volume average particle diameter, the outer shell may not have sufficient strength. When the thickness of the outer shell is larger than 40% of the volume average particle diameter, the effect of the inner silica structure may be insufficient.
  • the thickness of the outer shell is more preferably 10 to 30% of the volume average particle diameter.
  • the outer shell may be porous. By being porous, improvement in the strength of the particles themselves can be expected as compared with general silica porous resin particles, and particles that are difficult to collapse can be provided.
  • the porosity can be improved.
  • general porous resin particles are made porous by using a large amount of a porogen (solvent), so that it is necessary to use a large amount of a porogen to obtain fine particles having a large oil absorption.
  • the porosity can exceed 90% in the porous structure made of silica inside the microcapsules without using a large amount of the porogen.
  • the degree of porosity can be defined by the amount of oil absorption.
  • the oil absorption is preferably from 150 to 500 ml / 100 g. It is also possible to define the degree of porosity by other indices such as pore diameter and pore volume.
  • the porous structure preferably has 5 to 50% by weight based on the total weight of the composite particles.
  • the weight of the porous structure is less than 5%, formation of the porous body by silica may be insufficient.
  • the weight of the porous structure is more than 50%, the ratio of the outer shell is relatively reduced, and the strength may not be sufficient.
  • the weight of the porous structure is preferably from 10 to 45% by weight.
  • the method for producing organic-inorganic composite particles according to the first embodiment of the present invention includes a method for preparing a single particle in a mixture containing a silica precursor emulsified and dispersed in an aqueous medium, second inorganic particles, and a radical polymerizable monomer.
  • (1) Polymerization Step In the polymerization step, first, a mixture containing a silica precursor, second inorganic particles, and a monomer is dispersed in an aqueous medium by emulsification. The amount of the monomer used and the content of the component derived from the monomer constituting the outer shell substantially match.
  • the second inorganic particles the particles themselves may be dispersed in an aqueous medium, or a solution in which the particles are previously dispersed in a solvent may be dispersed in an aqueous medium.
  • a thickener may be added to this solution. Examples of the thickener include organic thickeners such as acrylic thickeners, urethane thickeners, polyether thickeners, polyvinyl alcohols, and cellulose derivatives.
  • Examples of the inorganic thickener include a clay mineral.
  • Examples of the clay mineral include natural clays such as bentonite, montmorillonite, saponite, beidellite, hectorite, stevensite, sauconite, nontronite, etc., vermiculite, halloysite, swelling mica, zeolite, attapulgite and other natural clays, or synthetic clays. Can be These may contain only one kind or two or more kinds.
  • the emulsification and dispersion are not particularly limited, and are performed while appropriately adjusting various conditions such as a stirring speed and a stirring time so as to obtain composite particles having a desired particle size.
  • the polymerization of the monomer is preferably performed in the presence of a radical polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and examples thereof include persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, and benzoyl peroxide.
  • the polymerization initiator is preferably contained in the mixture in an amount of 0.05 to 5 parts by weight based on 100 parts by weight of the monomer.
  • the aqueous medium include water, a mixture of water and a water-soluble organic solvent (for example, a lower alcohol such as methanol and ethanol), and the like. Further, the polymerization may be performed in the presence of a non-reactive organic solvent.
  • non-reactive organic solvent for example, pentane, hexane, cyclohexane, heptane, decane, hexadecane, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, 1,4-dioxane, methyl chloride, methylene chloride, Chloroform, carbon tetrachloride and the like can be mentioned.
  • These non-reactive organic solvents can be used alone or in combination.
  • the addition amount of the non-reactive solvent is not particularly limited, but is 0 to 300 parts by weight based on 100 parts by weight of the monomer.
  • the outer shell may be insufficiently formed.
  • the non-reactive organic solvent in order to obtain composite particles having a non-porous outer shell, may be used in an amount of 10 to 50 parts by weight based on 100 parts by weight of the monomer. Although it depends on the kind of the solvent to be used, if it exceeds 50 parts by weight, it becomes easy to obtain composite particles having a porous outer shell.
  • an alkoxide compound of titanium, zirconium or aluminum having a higher hydrolyzability than silicon alkoxide a porous structure can be easily formed in the capsule.
  • these alkoxide compounds it is not necessary to use a non-reactive organic solvent. That is, since these compounds are more hydrolyzable than silica precursors such as silicon alkoxides, they gel in microcapsules, suppress the movement of silica precursors in microcapsules, and promote porosity. The present inventors believe that the above-mentioned effect is obtained.
  • titanium alkoxide compound examples include isopropyl triisostearoyl titanate, isopropyl tristearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, and isopropyl tri ( Dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (n-aminoethyl-aminoethyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphate) Fight) Titanate,
  • zirconium alkoxide compounds examples include zirconium butyrate, zirconium acetylacetonate, acetylacetone zirconium butyrate, zirconium lactate, zirconium stearate butyrate, tetra (triethanolamine) zirconate, and tetraisopropyl zirconate.
  • Examples of aluminum alkoxide compounds include acetoalkoxyaluminum diisopropylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), alkyl acetoacetate aluminum diisopropylate (alkyl has 1 to 20 carbon atoms), Aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate) and the like can be mentioned. These alkoxide compounds can be used alone or in combination of two or more. The amount of the alkoxide compound is not particularly limited, but is not more than 10 parts by weight based on 100 parts by weight of the monomer.
  • the emulsified and dispersed mixture is subjected to polymerization of the monomers therein to form microcapsules containing a silica precursor therein.
  • the polymerization is not particularly limited, and is performed while appropriately adjusting various conditions such as a polymerization temperature and a polymerization time according to the types of the monomer and the polymerization initiator contained in the mixture.
  • the polymerization temperature can be 30 to 80 ° C.
  • the polymerization time can be 1 to 20 hours.
  • the silica precursor in the microcapsules present in the emulsion is converted into silica particles by a gelation reaction, whereby composite particles are obtained.
  • the gelation reaction is preferably performed while maintaining the emulsion at an alkaline level (eg, pH 7 or higher, specifically pH 10 to 14).
  • the alkalinity can be maintained by adding a base such as an aqueous ammonia solution, sodium hydroxide, or potassium hydroxide to the emulsion.
  • the amount of the base to be added is preferably 1 to 10 equivalents to the silica precursor.
  • the gelation step is not particularly limited, and can be performed under conditions (temperature, time, stirring speed, and the like for gelation) necessary for the silica precursor to gel to become silica particles.
  • the gelling temperature can be 30 to 80 ° C.
  • the gelling time can be 1 to 24 hours.
  • the gelation step may be performed in the presence of a latent pH adjuster.
  • the coexistence of the latent pH adjuster makes it possible to reduce the amount of base added to the emulsion. For example, when ammonia is used as a base, and when a latent pH adjuster is present, gelation can be performed efficiently even if the amount of ammonia is reduced to 3 equivalents or less (for example, ammonia not used, 0.01 to 3 equivalents).
  • the amount of the latent pH adjuster varies depending on the type of the agent, production conditions, and the like, but is preferably, for example, 0.01 to 10 parts by weight based on 100 parts by weight of the silica precursor. The use amount is more preferably 0.1 to 5 parts by weight.
  • the latent pH adjuster includes a substance that generates an acid or a base by an external stimulus such as irradiation with energy radiation or heating. Energy radiation includes infrared rays, visible light, ultraviolet rays, and the like.
  • latent pH adjusters thermal acid generators
  • latent pH adjusters thermal acid generators
  • examples of latent pH adjusters include aryldiazonium salts, sulfonium salts, iodonium salts, ammonium salts, phosphonium salts, oxonium salts, iron-allene complexes, and aromatics
  • Aromatic silanol / ammonium complex diallyliodonium salt-dibenzyloxy copper, imidazole derivative, benzylsulfonium salt, hemiacetal ester, sulfonic acid ester and the like.
  • latent pH adjuster thermal base generator
  • latent pH adjuster thermal base generator
  • examples of the latent pH adjuster thermal base generator
  • latent pH adjusters photobase generators
  • Examples of latent pH adjusters (photobase generators) that generate bases upon irradiation with energy radiation include (Z)- ⁇ [bis (dimethylamino) methylidene] amino ⁇ -N-cyclohexyl (cyclohexylamino) methane Iminium tetrakis (3-fluorophenyl) borate, 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguadinium n-butylloriliphenyl borate, 1,2-diisopropyl-3- [bis (dimethylamino ) Methylene] guadinium 2- (3-benzoylphenyl) propionate, 9-anthrylmethyl N, N-diethylcarbamate, (E) -1-piperidino-3- (2-hydroxyphenyl) -2-propen-1-one , 1- (anthraquinon-2-yl) ethylimid
  • the timing of adding the latent pH adjuster is not particularly limited as long as the latent pH adjuster is present at least in the cavity defined by the outer shell during gelation.
  • the latent pH adjuster can be made to exist in the cavity by dissolving the latent pH adjuster in a mixture containing the silica precursor and the monomer during suspension polymerization.
  • the gelation temperature can be 35 to 180 ° C.
  • the gelation time can be 0.1 to 48 hours.
  • the composite particles after the gelation step can be taken out of the emulsion by subjecting them to centrifugation, washing with water and drying as necessary.
  • the method for producing the organic-inorganic composite particles according to the second embodiment of the present invention comprises a radical-polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener.
  • the mixture contains a radically polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener.
  • the radical polymerizable monofunctional monomer is, for example, a monomer having one vinyl group
  • the radical polymerizable crosslinkable monomer is, for example, a monomer having two or more vinyl groups.
  • Examples of the radically polymerizable monofunctional monomer include alkyl (meth) acrylates having 1 to 16 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate.
  • radical polymerizable crosslinkable monomer examples include polyfunctional acrylic esters such as ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and glycerin tri (meth) acrylate, and N, N′-methylenebis ( Examples thereof include polyfunctional acrylamide derivatives such as (meth) acrylamide and N, N'-ethylenebis (meth) acrylamide; polyfunctional allyl derivatives such as diallylamine and tetraallyloxyethane; and aromatic divinyl compounds such as divinylbenzene. These crosslinkable monomers can be used alone or in combination.
  • the crosslinkable monomer is preferably contained in the mixture at a ratio of 20 to 150 parts by weight based on 100 parts by weight of the monofunctional monomer.
  • the content of the crosslinking monomer is less than 20 parts by weight, an outer shell having sufficient strength may not be formed.
  • an outer shell may not be formed.
  • the content is more preferably 80 to 120 parts by weight.
  • Examples of the silicon alkoxide as the silica precursor include a silicon alkoxide having one or more silicon atoms and an alkoxy group (for example, having 1 to 4 carbon atoms) in the same molecule. Specific examples include tetraethoxysilane (TEOS), tetramethoxysilane, tetrapropoxysilane, and the like.
  • TEOS tetraethoxysilane
  • tetramethoxysilane tetrapropoxysilane
  • methyl silicate oligomer (MKC silicate, trade name, manufactured by Mitsubishi Chemical Corporation) which is a partially hydrolyzed oligomer of tetramethoxysilane, and ethyl silicate oligomer (product name, silicate 45, manufactured by Tama Chemical Co., Ltd.) which is a partially hydrolyzed oligomer of tetraethoxysilane (Pentamer), silicate 48 (10-mer)), and oligomers such as siloxane oligomers.
  • MKC silicate trade name, manufactured by Mitsubishi Chemical Corporation
  • ethyl silicate oligomer product name, silicate 45, manufactured by Tama Chemical Co., Ltd.
  • silicate 48 10-mer
  • oligomers such as siloxane oligomers.
  • tetraethoxysilane is preferable as a monofunctional silica precursor
  • ethylsilicate oligomer is preferable as a silica precursor which is an oligomer.
  • the silica precursor is preferably contained in the mixture at a ratio of 60 to 400 parts by weight based on 100 parts by weight of the monofunctional monomer.
  • the content of the silica precursor is less than 60 parts by weight, particles having sufficient optical performance may not be obtained.
  • the content is more than 400 parts by weight, the components of the outer shell are relatively reduced, so that particles having sufficient strength may not be obtained.
  • the content is more preferably 70 to 270 parts by weight, further preferably 80 to 250 parts by weight.
  • the inorganic thickener is not particularly limited as long as composite particles can be produced in the absence of an organic solvent.
  • an inorganic thickener capable of adjusting the viscosity of the mixture to 0.90 mPa ⁇ s or more at 25 ° C. can be suitably used.
  • the viscosity is less than 0.90 mPa ⁇ s, the effect of suppressing this becomes insufficient, and it may not be possible to obtain particles having a porous inside microcapsule.
  • the viscosity is more preferably in the range of 0.9 to 1000 mPa ⁇ s.
  • the inorganic thickener include silicic anhydride and clay minerals.
  • the clay mineral include natural clays such as bentonite, montmorillonite, saponite, beidellite, hectorite, stevensite, sauconite, nontronite, etc., vermiculite, halloysite, swelling mica, zeolite, attapulgite and other natural clays, or synthetic clays. Can be Since these have the effect of increasing the viscosity of the silicon alkoxide in the microcapsules, they can suppress the movement of the silica precursor and promote the porosity in the microcapsules.
  • silicic anhydride is preferred because of easy dispersion in silicon alkoxide, and hydrophobic silica particles are more preferred.
  • the hydrophobicity means that the surface treatment has been performed with a hydrophobicizing agent such as an organic silane or silicone oil.
  • hydrophobizing agent for example, hexamethyldisilazane, vinyltriethoxysilane, vinyltrimethoxysilane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, Benzyldimethylchlorosilane, bromomethyldimethylchlorosilane, ⁇ -chloroethyltrichlorosilane, ⁇ -chloroethyltrichlorosilane, chloromethyldimethylchlorosilane, triorganosilylmercaptan, trimethylsilylmercaptan, triorganosilyl acrylate, vinylmethylacetoxysilane, dimethylethoxysilane, Dimethyldimethoxysilane, diphenyldiethoxy
  • the surface treatment with the hydrophobizing agent is not particularly limited, and any known method can be used.
  • any known method can be used.
  • the hydrophobic silica particles preferably have a specific surface area of 15 m 2 / g or more by a BET method.
  • the specific surface area is more preferably from 15 to 330 m 2 / g, even more preferably from 90 to 290 m 2 / g.
  • the specific surface area by the BET method is measured, for example, according to DIN 66131.
  • hydrophobic silica particles examples include hydrophobic fumed silica AEROSIL (trade name) series commercially available from EVONIK (eg, R972, R974, R104, R106, R202, R208, R805, R812, R812S, R816, R7200, R8200, R9200, R711, RY50, NY50, NY50L, RX50, NAX50, RX200, RX300, R504, NX90S, NX90G, RY300, REA90, REA200, RY51, NA50Y, RA200HS, NA50H, NA130K, NA200Y, NX130R RY200L, R709, R976S, etc.), hydrophobic grades of highly dispersed silica WACKER HDK (trade name) commercially available from Asahi Kasei Corporation (for example, H15, H18, H20, H30, etc.).
  • hydrophobic silica particles can be used alone or in combination of two or more.
  • the hydrophobic silica particles are preferably contained in the mixture at a ratio of 0.5 to 100 parts by weight with respect to 100 parts by weight of the mixture.
  • the content of the hydrophobic silica particles is less than 0.5 part by weight, the effect of increasing the viscosity of the silicon alkoxide in the microcapsules becomes insufficient, and a silica porous structure may not be formed in the capsules.
  • the content is more than 100 parts by weight, formation of microcapsules may be insufficient.
  • the content is more preferably 0.5 to 25 parts by weight, even more preferably 2.5 to 15 parts by weight.
  • the hydrophobic silica particles are mixed with silica particles derived from silicon alkoxide.
  • a mixture containing a silica precursor, a monomer, and an inorganic thickener is dispersed in an aqueous medium by emulsification.
  • the amount of the monomer used and the content of the component derived from the monomer constituting the outer shell substantially match.
  • the emulsification and dispersion are not particularly limited, and are performed while appropriately adjusting various conditions such as a stirring speed and a stirring time so as to obtain composite particles having a desired particle size.
  • the polymerization of the monomer is carried out in the presence of a radical polymerization initiator and in the absence of an organic solvent.
  • the organic solvent here is, for example, pentane, hexane, cyclohexane, heptane, decane, hexadecane, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl chloride, methylene chloride, chloroform, carbon tetrachloride, etc.
  • It is a hydrophobic organic solvent hydrophobic here means that the solubility in water at 25 ° C.
  • this organic solvent does not include a water-soluble organic solvent of a lower alcohol (for example, methanol, ethanol, or the like) (the water solubility here indicates that the solubility in water at 25 ° C. is 10 g / 100 g (water) or more). That is).
  • a water-soluble organic solvent of a lower alcohol for example, methanol, ethanol, or the like
  • the radical polymerization initiator and the aqueous medium can be used in the same types and amounts as in the production method of the first embodiment.
  • silica porous structure can be easily formed in the capsule.
  • These compounds are more hydrolyzable than silica precursors such as silicon alkoxides, so they gel in microcapsules, suppress the movement of silica precursors in capsules, and have the effect of promoting porosity. The present inventors believe that there is.
  • An alkoxide compound such as an alkoxide compound of titanium, an alkoxide compound of zirconium, and an alkoxide compound of aluminum can be used in the same kind and amount as in the production method of the first embodiment.
  • the emulsified and dispersed mixture is subjected to polymerization of the monomers therein to form microcapsules containing a silica precursor therein.
  • the polymerization is not particularly limited, and is performed while appropriately adjusting various conditions such as a polymerization temperature and a polymerization time according to the types of the monomer and the polymerization initiator contained in the mixture.
  • the polymerization temperature can be 30 to 80 ° C.
  • the polymerization time can be 1 to 20 hours.
  • porous structure Forming Step is performed substantially in the same manner as the “(2) gelling step” in the manufacturing method of the first embodiment, and therefore the description is omitted here. .
  • the composite particles after the porous structure forming step can be taken out of the emulsion by, if necessary, undergoing centrifugation, washing and drying.
  • the composite particles can be used for applications such as cosmetics, coating compositions, heat-insulating resin compositions, light-diffusing resin compositions, and light-diffusing films.
  • Cosmetic The cosmetic preferably contains the composite particles in a range of 1 to 40% by weight.
  • Cosmetics include soaps, body shampoos, facial cleansers, facial cleansers, scrubs, etc.
  • components generally used in cosmetics can be blended according to the purpose within a range that does not impair the effects of the present invention.
  • components for example, water, lower alcohols, fats and waxes, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid esters, metal soaps, humectants, surfactants, polymer compounds, coloring material raw materials, Perfumes, preservatives / bactericides, antioxidants, ultraviolet absorbers, and special compounding ingredients.
  • Oils and waxes include avocado oil, almond oil, olive oil, cocoa butter, beef tallow, sesame oil, wheat germ oil, safflower oil, shea butter, turtle oil, camellia oil, persic oil, castor oil, grape oil, macadamia nut oil, mink
  • examples include oil, egg yolk oil, mokuro, coconut oil, rosehip oil, hardened oil, silicone oil, orange roughy oil, carnauba wax, candelilla wax, whale wax, jojoba oil, montan wax, beeswax, lanolin and the like.
  • Examples of the hydrocarbon include liquid paraffin, vaseline, paraffin, ceresin, microcrystalline wax, squalane, and the like.
  • Higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, and synthetic fatty acids.
  • Sterols include cholesterol, dihydrocholesterol, phytocholesterol and the like.
  • Fatty acid esters include ethyl linoleate, isopropyl myristate, isopropyl lanolin fatty acid, hexyl laurate, myristyl myristate, cetyl myristate, octyl dodecyl myristate, decyl oleate, octyl dodecyl oleate, hexadecyl dimethyl octanoate, isooctanoic acid Cetyl, decyl palmitate, glyceryl trimmyristate, glycerin tri (caprylate / caprate), propylene glycol dioleate, glycerin triisostearate, glycerin triisooctanoate, cetyl lactate, myristyl lactate, diisostearyl malate or cholesteryl isostearate And cyclic alcohol fatty acid esters such as choleste
  • Examples of the metal soap include zinc laurate, zinc myristate, magnesium myristate, zinc palmitate, zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, and zinc undecylenate.
  • Examples of the humectant include glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, sodium dl-pyrrolidonecarboxylate, sodium lactate, sorbitol, sodium hyaluronate, polyglycerin, xylitol, maltitol and the like.
  • surfactant examples include anionic surfactants such as higher fatty acid soaps, higher alcohol sulfates, N-acyl glutamates and phosphates, cationic surfactants such as amine salts and quaternary ammonium salts, and betaine.
  • Surfactants such as amino acid type, amino acid type, imidazoline type and lecithin, and nonionic surfactants such as fatty acid monoglyceride, propylene glycol fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and ethylene oxide condensate.
  • Color material raw materials include iron oxide, ultramarine, konjo, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, talc, kaolin, mica, calcium carbonate, magnesium carbonate, mica, aluminum silicate, Inorganic pigments such as barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, ceramic powder, etc., azo type, nitro type, nitroso type, xanthene type And quinoline, anthraquinoline, indigo, triphenylmethane, phthalocyanine and pyrene tar dyes.
  • Inorganic pigments such as barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked g
  • the powder material such as the polymer compound or the coloring material may be subjected to a surface treatment in advance.
  • a conventionally known surface treatment technique can be used.
  • oil treatment with hydrocarbon oil, ester oil, lanolin, etc. silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc., perfluoroalkyl group-containing ester, perfluoroalkylsilane, perfluoropolyether ,
  • a fluorine compound treatment with a polymer having a perfluoroalkyl group a silane coupling agent treatment with 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, etc., isopropyl triisostearoyl titanate, isopropyl tris ( Titanium coupling agent treatment with dioctyl pyrophosphate) titanate, etc.
  • Examples of the flavor include natural flavors such as lavender oil, peppermint oil, and lime oil, and synthetic flavors such as ethylphenyl acetate, geraniol, and p-tert-butylcyclohexyl acetate.
  • Examples of the preservative / bactericide include methyl paraben, ethyl paraben, propyl paraben, benzalkonium, benzethonium and the like.
  • Examples of the antioxidant include dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate, and tocopherol.
  • the ultraviolet absorber examples include inorganic absorbers such as titanium oxide, zinc oxide, cerium oxide, iron oxide, and zirconium oxide, benzoic acid, p-aminobenzoic acid, anthranilic acid, salicylic acid, and cinnamic acid.
  • organic absorbents such as benzophenone and dibenzoylmethane are exemplified.
  • Special compounding ingredients include hormones such as estradiol, estrone, ethinyl estradiol, cortisone, hydrocortisone, prednisone, vitamins such as vitamin A, vitamin B, vitamin C, vitamin E, citric acid, tartaric acid, lactic acid, aluminum chloride, sulfuric acid Skin astringents such as aluminum / potassium, allantoinchlorohydroxyaluminum, zinc paraphenolsulfonate, zinc sulfate, etc. Hair growth promoters such as E, estrogen, and photosensitizer; and whitening agents such as magnesium phosphate-L-ascorbate and kojic acid.
  • hormones such as estradiol, estrone, ethinyl estradiol, cortisone, hydrocortisone, prednisone
  • vitamins such as vitamin A, vitamin B, vitamin C, vitamin E, citric acid, tartaric acid, lactic acid, aluminum chloride, sulfuric acid
  • Skin astringents
  • compositions contain a binder resin, a UV-curable resin, a solvent, and the like, if necessary.
  • a binder resin a resin soluble in an organic solvent or water or an emulsion-type aqueous resin dispersible in water can be used.
  • the addition amount of the binder resin or the UV curable resin and the composite particles also varies depending on the thickness of the formed coating film, the average particle size of the composite particles, and the coating method.
  • the added amount of the composite particles is preferably 5 to 50% by weight based on the total amount of the binder resin (solid content when an emulsion type aqueous resin is used) and the composite particles.
  • a more preferred content is 10 to 50% by weight, and a still more preferred content is 20 to 40% by weight.
  • the binder resin include an acrylic resin, an alkyd resin, a polyester resin, a polyurethane resin, a chlorinated polyolefin resin, an amorphous polyolefin resin, an acrylic silicone resin, an acrylic urethane resin, and a fluorine-based resin.
  • Polyfunctional (meth) acrylate resins such as alcohol polyfunctional (meth) acrylates; and polyfunctional urethane acrylate resins synthesized from diisocyanates, polyhydric alcohols, and hydroxy-containing (meth) acrylates, and the like. No.
  • a polyfunctional (meth) acrylate resin is preferable, and a polyhydric alcohol polyfunctional (meth) acrylate resin having three or more (meth) acryloyl groups in one molecule is more preferable.
  • polyhydric alcohol polyfunctional (meth) acrylate resin having three or more (meth) acryloyl groups in one molecule, specifically, trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Examples include tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, and tripentaerythritol hexaacrylate. It is, or may be even alone, or two or more are used alone.
  • a photopolymerization initiator When using a UV curable resin, a photopolymerization initiator is usually used in combination.
  • the photopolymerization initiator is not particularly limited. Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, and peroxides. (See Japanese Patent Application Laid-Open No.
  • binder resins or UV-curable resins can be appropriately selected depending on the adhesion of the paint to the substrate to be coated, the environment in which the paint is used, and the like.
  • the solvent is not particularly limited, but it is preferable to use a solvent that can dissolve or disperse the binder resin or the UV-curable resin.
  • a solvent that can dissolve or disperse the binder resin or the UV-curable resin.
  • hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • ester solvents such as ethyl acetate and butyl acetate
  • dioxane ethylene glycol diethyl ether, and ethylene glycol
  • ether solvents such as monobutyl ether. If it is a water-based paint, water, alcohols and the like can be used.
  • These solvents may be used alone or as a mixture of two or more.
  • the content of the solvent in the coating material is usually about 20 to 60% by weight based on the total amount of the composition.
  • the composition contains, if necessary, a known coating surface adjuster, a fluidity adjuster, an ultraviolet absorber, a light stabilizer, a curing catalyst, an extender pigment, a color pigment, a metal pigment, a mica powder pigment, a dye, and the like. It may be.
  • the method for forming a coating film using the composition is not particularly limited, and any known method can be used. For example, methods such as spray coating, roll coating, brush coating, and coating a substrate such as a film as a thin layer by coating reverse roll coating, gravure coating, die coating, comma coating, spray coating, etc. Is mentioned.
  • the composition may be diluted if necessary to adjust the viscosity.
  • diluent examples include hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether; An alcohol-based solvent and the like.
  • hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • ester solvents such as ethyl acetate and butyl acetate
  • ether solvents such as dioxane and ethylene glycol diethyl ether
  • An alcohol-based solvent and the like examples of the diluents may be used alone or in combination of two or more.
  • a coating film can be formed by applying a coating film on an arbitrary coating surface such
  • the coating film using the coating composition is used after being coated on various substrates, and is not particularly limited to metal, wood, glass, plastics and the like. Further, a transparent base material such as polyethylene terephthalate (PET), polycarbonate (PC), and acryl can be coated and used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • acryl can be coated and used.
  • the light-diffusing film is a base material such as glass, polycarbonate (PC), acrylic resin, polyethylene terephthalate (PET), triacetyl cellulose (TAC), and other plastic sheets, plastic films, plastic lenses, and plastic panels. And a light diffusion layer of the light diffusing composition formed on the surface of a base material such as a cathode ray tube, a fluorescent display tube, a liquid crystal display panel and the like.
  • the coating may be used alone or on a substrate, such as a protective film, a hard coat film, a flattening film, a high refractive index film, an insulating film, a conductive resin film, a conductive metal particle film, or a conductive metal oxide particle. It is formed in combination with a film and other primer films used as necessary. When used in combination, the light diffusion layer does not necessarily need to be formed on the outermost surface.
  • the volume average particle diameter of the composite particles was measured using Coulter Multisizer TM 3 (a measuring device manufactured by Beckman Coulter, Inc.). The measurement was performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter.
  • the aperture used for the measurement is selected as follows. When the assumed volume average particle diameter of the particles to be measured is 1 ⁇ m or more and 10 ⁇ m or less, an aperture having a size of 50 ⁇ m is selected, and the assumed volume average particle diameter of the particles to be measured is 10 ⁇ m. If the size is larger than 30 ⁇ m or less, an aperture having a size of 100 ⁇ m is selected.
  • an aperture having a size of 400 ⁇ m was appropriately selected.
  • the aperture was changed to an aperture having an appropriate size, and the measurement was performed again.
  • 0.1 g of the polymer particles was put in 10 ml of a 0.1% by weight aqueous nonionic surfactant solution, and a touch mixer ("TOUCHMIXER MT-31" manufactured by Yamato Scientific Co., Ltd.) and an ultrasonic cleaner (Vervok) were used. Dispersion was performed using "ULTRASONICCLEANER VS-150" manufactured by Leer Co., Ltd. to obtain a dispersion. During the measurement, the inside of the beaker was gently stirred so as not to cause bubbles, and the measurement was terminated when 100,000 particles were measured. The volume average particle diameter of the particles was an arithmetic mean in a volume-based particle size distribution of 100,000 particles.
  • the composite particles were mixed with a photocurable resin D-800 (manufactured by JEOL Ltd.) and irradiated with light to obtain a cured product. Thereafter, the cured product was immersed in liquid nitrogen for 5 minutes, then cut, and affixed to a sample table with a carbon tape with the cross section facing upward. Platinum vapor deposition (15 mV, 240 seconds, 6.0 Pa, distance between target and sample surface: 30 mm) was performed using a Hitachi High-Technologies “Ion Sputter E-1045” sputtering apparatus.
  • the cross section of the particles in the sample was photographed using a secondary electron detector of a “Regulus 8230” scanning electron microscope manufactured by Hitachi High-Technologies Corporation (magnification of the photograph of the particle cross section: 5,000 times).
  • the accelerating voltage during observation was 10 kV.
  • elemental analysis was performed using "X-MaxN150” manufactured by Oxford Instruments Inc. provided for "Regulus 8230" manufactured by Hitachi High-Technologies Corporation.
  • the internal porous portion in the particle cross section was arbitrarily set as an analysis region, and the atomic number concentration (%) of carbon atoms and the atomic number concentration (%) of silicon atoms in the analysis region were measured.
  • the values were re-analyzed using software attached to “X-MaxN150” manufactured by Oxford Instruments Inc. so that the total atomic concentration (%) of atoms becomes 100%.
  • the acceleration voltage at the time of analysis was 10 kV.
  • the resolution in the image scan setting was 1024, the dwell time was 5 ⁇ s, and the input signal was SE.
  • the energy range, the number of channels, and the acquisition mode in the EDS acquisition spectrum setting were set automatically, and the process time was set to 6.
  • FIG. 8 shows an example of an analysis region set as an internal porous portion in a photograph of a particle cross section.
  • the inside of the white frame described as spectrum 19 in FIG. 8 was set as the analysis region.
  • the number of carbon atoms (%) and the number of silicon atoms (%) in the white frame are the number of carbon atoms (%) and the number of silicon atoms (%) in the internal porous structure.
  • the mixed solution whose temperature was adjusted in a 25 ° C. constant temperature bath was added to a 25 mL pycnometer.
  • the density of the mixture was determined by dividing the weight (g) of the added mixture by the volume (mL) of the pycnometer.
  • Viscosity of the mixture The viscosity of the mixed solution whose temperature was adjusted in a 25 ° C. constant temperature bath was measured using a tuning fork vibrating viscometer SV-10 (manufactured by A & D). The viscosity (unit: mPa ⁇ s) of the mixed solution was determined by dividing the indicated viscosity value on the apparatus (unit: mPa ⁇ s ⁇ g / cm 3 ) by the calculated density of the mixed solution.
  • the sample was cut out, a conductive tape was stuck on the sample stage, and the sample was mounted thereon.
  • the particles were subjected to a surface treatment (10 Pa, 5 mA, 10 seconds) using an “Osmium Coater Neoc-Pro” coating device manufactured by Meiwa Forsys. Next, the surface of the particles was photographed using a secondary electron detector of a scanning electron microscope “SU1510” manufactured by Hitachi High-Technologies Corporation.
  • the cross section of the sample was subjected to element mapping by SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectrometry) to determine whether or not silica and titanium oxide exist inside the cavity.
  • SEM-EDS Sccanning Electron Microscope Energy Dispersive X-ray Spectrometry
  • EDS Electronic Data Dispersive X-ray Spectrometry
  • an acceleration voltage of 15 KV and 10 frames 800 seconds
  • silicon is captured. Elemental maps were obtained with K ⁇ rays and K ⁇ rays of titanium.
  • the particle diameter of the second inorganic particles was an average particle diameter measured using a method called a dynamic light scattering method or a photon correlation method. That is, at 25 ° C., a dispersion of an organic solvent of inorganic particles adjusted to 0.1% by volume was irradiated with laser light, and the intensity of scattered light scattered from the inorganic particles was measured over time in microsecond units. The distribution of scattering intensity resulting from the detected inorganic particles was applied to a normal distribution, and the Z-average particle diameter was calculated by cumulant analysis. This average particle size could be easily measured with a measuring device equipped with commercially available data analysis software, and could be automatically analyzed. In the present example, the measurement was carried out using a particle size measuring apparatus “Zetasizer Nano ZS” manufactured by Malvern (Spectris).
  • titanium oxide (X) titanium oxide content: 60.6%, solid content: 68.7% Obtained.
  • the Z-average particle diameter of the titanium oxide was 780 nm.
  • Example 1 100 g of methyl methacrylate (MMA) as a monofunctional monomer, 100 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 160 g of tetraethoxysilane (TEOS) as a silica precursor, and ( 1R, 2S, 5R) -5-Methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonate (product name WPAG-699, manufactured by Wako Pure Chemical Industries, Ltd.), 1 g of toluene as a non-reactive organic solvent 39.75 g, 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd .; product name V-65), 2.0 g, oxidation as second inorganic particles 0.77 g of a toluene solution (X) of titanium particles was mixed and
  • the obtained mixture was mixed with 1200 g of an aqueous solution of polyvinyl alcohol (PVA) (manufactured by Nippon Synthetic Chemical Company; product name: Gohsenol GL-5) prepared at a concentration of 1.7% by weight.
  • PVA polyvinyl alcohol
  • the obtained mixture was put into a 2 L beaker, and emulsification / dispersion treatment was performed at a rotation speed of 5000 rpm for 6 minutes using a homogenizer (manufactured by Central Science and Trading; product name: Polytron homogenizer PT10-35GT).
  • the obtained emulsion was put into a 2 L stainless steel autoclave, and polymerization was carried out at a temperature of 50 ° C.
  • FIG. 1A shows a photograph of the surface of the obtained composite particles
  • FIG. 1B shows a photograph of a cross section thereof.
  • FIGS. 1C to 1E show metal element mapping diagrams by SEM-EDS.
  • FIG. 1 (c) is a cross-sectional photograph
  • FIG. 1 (d) is a diagram showing the presence of silicon
  • FIG. 1 (e) is a diagram showing the presence of titanium.
  • Example 2 Composite particles were obtained in the same manner as in Example 1, except that 3.85 g of a toluene solution (X) of titanium oxide particles as second inorganic particles and 38.76 g of toluene of a non-reactive organic solvent were used. .
  • FIG. 2A shows a photograph of the surface of the obtained composite particles
  • FIG. 2B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 10.4 ⁇ m, and the amount of the inorganic component in the composite particles was 7.5% by weight.
  • Example 3 1.54 g of a methanol dispersion of zirconium oxide particles as second inorganic component particles (manufactured by Sakai Chemical Co .; product name SZR-M, zirconia content 30% by weight, particle diameter: 3 nm), as a non-reactive organic solvent Except that 38.9 g of toluene was used, composite particles were obtained in the same manner as in Example 1.
  • FIG. 3A shows a photograph of the surface of the obtained composite particles
  • FIG. 3B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle diameter was 11.4 ⁇ m, and the amount of the inorganic component in the composite particles was 16.8% by weight.
  • Example 4 0.46 g of cerium oxide as second inorganic component particles (manufactured by I-Tech Co., Ltd .; product name: ceria nanoparticle powder, particle diameter: 10 nm); Composite particles were obtained in the same manner as in Example 1, except that 0.046 g of product name (Plenact ALM) and 40 g of toluene as a non-reactive organic solvent were used.
  • FIG. 4A shows a surface photograph of the obtained composite particles
  • FIG. 4B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 11.7 ⁇ m, and the amount of the inorganic component in the composite particles was 8.9% by weight.
  • Composite particles were obtained in the same manner as in Example 1, except that the amount of toluene as a non-reactive organic solvent was 40 g and no titanium oxide particles were added.
  • FIG. 5A shows a photograph of the surface of the obtained composite particles
  • FIG. 5B shows a photograph of a cross section thereof. It was confirmed that the shell composed of the monofunctional monomer and the crosslinkable monomer was formed. In addition, a porous structure in which silica particles were connected to each other was confirmed. Further, the volume average particle diameter was 11.9 ⁇ m, and the amount of the inorganic component in the composite particles was 16.0% by weight.
  • Silica-containing particles were prepared with reference to Non-Patent Document 1. Specifically, 100 g of methyl methacrylate (MMA) as a monofunctional monomer, 100 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 200 g of tetraethoxysilane (TEOS) as a silica precursor, A polymerizable composition was prepared by mixing 2 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd .; product name V-70) as an agent.
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • TEOS tetraethoxysilane
  • PVA polyvinyl alcohol
  • Gohsenol GL-05 20 g of polyvinyl alcohol (PVA) (manufactured by Nippon Gohsei; Gohsenol GL-05) was added to 1180 g of ion-exchanged water as an aqueous phase.
  • the polymerizable composition was put into the aqueous phase, and emulsification / dispersion treatment was performed at a rotation speed of 5000 rpm for 10 minutes using a homogenizer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35GT).
  • the obtained emulsion is charged into a 2 L pressure vessel with stirring blades, and the mixture is heated at 30 ° C.
  • FIG. 6A shows a surface photograph of the obtained silica-containing particles
  • 6B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that one or more silica particles were included therein.
  • the volume average particle diameter was 10.4 ⁇ m, and the amount of the inorganic component in the silica-containing particles was 22.0% by weight.
  • the reflectance of the sample plate to ultraviolet light, visible light, and near-infrared light was evaluated in the following order.
  • An ultraviolet-visible-near-infrared spectrophotometer (Solid Spec 3700) manufactured by Shimadzu Corporation was used as a reflectivity measuring device to measure the reflection characteristics from ultraviolet light to near-infrared light (wavelength 300 to 2500 nm) on the coated surface of the sample plate. It was measured as reflectivity (%).
  • the measurement was carried out using a 60 mm ⁇ integrating sphere and using Spectralon as a standard white plate. The above measurements were performed on the composite particles of Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 7 shows the obtained results.
  • FIG. 7 shows the obtained results.
  • Example 5 80 g of methyl methacrylate (MMA) as a monofunctional monomer, 80 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 160 g of tetraethoxysilane (TEOS) as a silica precursor, and hydrophobicity as hydrophobic silica particles Fumed silica R972 (EVONIK, BET specific surface area 110 ⁇ 20 m 2 / g) 16 g, 1.6 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (Wako Pure Chemical Industries, Ltd.) (Product name V-65), (1R, 2S, 5R) -5-methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.) as a thermal acid generator A product consisting of 0.8 g of product name W
  • the viscosity of the mixture was 3.58 mPa ⁇ s.
  • 26 g of magnesium pyrophosphate and 0.128 g of lauryl phosphoric acid were added to 1280 g of ion-exchanged water as a suspension stabilizer to prepare an aqueous phase.
  • the mixture was put into the aqueous phase, and emulsification / dispersion treatment was performed at 7000 rpm for 10 minutes using a homogenizer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35).
  • the obtained emulsion is put into a 2 L pressure vessel with a stirring blade, and the stirring blade is heated at 50 ° C.
  • FIG. 9A shows a surface photograph of the obtained composite particles
  • FIG. 9B shows a cross-sectional photograph thereof. It was confirmed that an outer shell derived from the monofunctional monomer and the crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle diameter was 20.7 ⁇ m, and the weight of the porous structure in the composite particles was 27.0% by weight.
  • Example 6 Composite particles were obtained in the same manner as in Example 5, except that 12 g of hydrophobic silica particles were used. The viscosity of the mixture was 2.39 mPa ⁇ s.
  • FIG. 10A shows a surface photograph of the obtained composite particles
  • FIG. 10B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle size was 9.5 ⁇ m, and the weight of the porous structure in the composite particles was 24.2% by weight.
  • the weight of silica in the composite particles was 25.1%.
  • the atomic number concentration (%) of carbon atoms in the internal porous structure was measured, it was 90.4%, and it was confirmed that the crosslinked polymer component forming the outer shell was included.
  • Example 7 Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic silica particles were used. The viscosity of the mixture was 1.61 mPa ⁇ s.
  • FIG. 11A shows a surface photograph of the obtained composite particles, and FIG. 11B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 11.4 ⁇ m, and the weight of the porous structure in the composite particles was 23.3% by weight.
  • Example 8 Composite particles were obtained in the same manner as in Example 5, except that 1.6 g of hydrophobic silica particles were used. The viscosity of the mixture was 0.93 mPa ⁇ s.
  • FIG. 12A shows a surface photograph of the obtained composite particles
  • FIG. 12B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 16.1 ⁇ m, and the weight of the porous structure in the composite particles was 21.6% by weight.
  • Example 9 Composite particles were obtained in the same manner as in Example 5, except that 24 g of hydrophobic silica particles were used.
  • the viscosity of the mixture was 8.07 mPa ⁇ s. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle size was 20.3 ⁇ m, and the weight of the porous structure in the composite particles was 29.1% by weight.
  • Example 10 Composite particles were obtained in the same manner as in Example 5, except that 36 g of hydrophobic silica particles were used. The viscosity of the mixture was 46.3 mPa ⁇ s.
  • FIG. 13A shows a surface photograph of the obtained composite particles
  • FIG. 13B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 21.6 ⁇ m, and the weight of the porous structure in the composite particles was 31.8% by weight.
  • Example 11 Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic fumed silica R974 (EVONIK, specific surface area by BET method: 170 ⁇ 20 m 2 / g) was used as the hydrophobic silica particles.
  • the viscosity of the mixture was 1.76 mPa ⁇ s.
  • FIG. 14A shows a surface photograph of the obtained composite particles
  • FIG. 14B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle diameter was 11.0 ⁇ m, and the weight of the porous structure in the composite particles was 23.9% by weight.
  • Example 12 Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic fumed silica R976S (EVONIK, specific surface area of 240 ⁇ 25 m 2 / g by BET method) was used as the hydrophobic silica particles.
  • the viscosity of the mixture was 1.54 mPa ⁇ s.
  • FIG. 15A shows a photograph of the surface of the obtained composite particles
  • FIG. 15B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle diameter was 10.8 ⁇ m, and the weight of the porous structure in the composite particles was 24.0% by weight.
  • Example 13 Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic fumed silica R812 (EVONIK, specific surface area according to BET method: 260 ⁇ 30 m 2 / g) was used as the hydrophobic silica particles.
  • the viscosity of the mixture was 1.27 mPa ⁇ s. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle size was 11.5 ⁇ m, and the weight of the porous structure in the composite particles was 24.1% by weight.
  • Example 14 100 g of methyl methacrylate (MMA) as a monofunctional monomer, 100 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 200 g of tetraethoxysilane (TEOS) as a silica precursor, and 100 g of an inorganic thickener 4 g of smecton-STN (organized smectite manufactured by Kunimine Industries Co., Ltd.), 2 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (product name V-65, manufactured by Wako Pure Chemical Industries, Ltd.), Was prepared.
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • TEOS tetraethoxysilane
  • the viscosity of the mixture was 0.91 mPa ⁇ s.
  • an aqueous phase was prepared by dissolving 60 g of polyvinyl alcohol (GL-05, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) as a suspension stabilizer in 1140 g of ion-exchanged water. The mixture was put into the aqueous phase, and emulsification / dispersion treatment was carried out at 5,000 rpm for 10 minutes using a homomixer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35).
  • the obtained emulsion is charged into a 2 L pressure vessel with stirring blades, and the mixture is heated at 50 ° C. for 4 hours while stirring the stirring blades at 350 rpm, thereby comprising a monofunctional monomer and a crosslinkable monomer.
  • An outer shell was formed. While maintaining the agitation, the internal temperature is cooled to 30 ° C., 65 g of 25% aqueous ammonia (Wako Pure Chemical Industries, Ltd.) is added, and the mixture is agitated for 16 hours to allow the gelation reaction of TEOS to proceed, thereby containing the composite particles.
  • An emulsion was obtained.
  • the obtained emulsion was subjected to suction filtration to take out composite particles from the emulsion.
  • FIG. 16 shows a cross-sectional photograph of the obtained composite particles. It was confirmed that an outer shell derived from the monofunctional monomer and the crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside.
  • the volume average particle diameter was 11.5 ⁇ m, and the weight of silica in the composite particles was 22.1% by weight.
  • Example 15 Silica-encapsulated microcapsule resin particles were obtained in the same manner as in Example 14, except that 4 g of Kunibis-110 (organized bentonite) was used as an inorganic thickener. The viscosity of the mixture was 1.01 mPa ⁇ s.
  • FIG. 17 shows a cross-sectional photograph of the obtained composite particles. It was confirmed that an outer shell derived from the monofunctional monomer and the crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 13.5 ⁇ m, and the weight of silica in the composite particles was 21.9% by weight.
  • FIG. 18A shows a surface photograph of the obtained composite particles
  • FIG. 18B shows a cross-sectional photograph thereof.
  • Table 2 summarizes the raw material species of Examples 5 to 15 and Comparative Example 3, the amount (g) used, and the viscosity of the mixture.
  • the reflectance of the composite particles with respect to ultraviolet light, visible light and near-infrared light was evaluated according to the following procedure. 2.5 g of composite particles were added to 10 g of a commercially available water-based paint (trade name of Asahipen Co .; water-based multi-purpose color clear), and the mixture was stirred well to disperse the particles to prepare a paint for evaluation.
  • the paint for evaluation was applied to the black side of the opacity test paper using an applicator set to a wet thickness of 250 ⁇ m, and then sufficiently dried at room temperature to obtain a sample plate for light reflectivity evaluation.
  • the reflectance of the sample plate to ultraviolet light, visible light, and near-infrared light was evaluated in the following order.
  • An ultraviolet-visible-near-infrared spectrophotometer (Solid Spec 3700) manufactured by Shimadzu Corporation was used as a reflectivity measuring device to measure the reflection characteristics from ultraviolet light to near-infrared light (wavelength 300 to 2500 nm) on the coated surface of the sample plate. It was measured as reflectivity (%).
  • the measurement was carried out using a 60 mm ⁇ integrating sphere and using Spectralon as a standard white plate. The results obtained are shown in FIG. From FIG. 19, it can be seen that the composite particles of the examples have a high reflectivity at almost all wavelengths from ultraviolet light to near-infrared light similar to that of Comparative Example 3 without using an organic solvent such as toluene. Understand.
  • Example of cosmetic formulation Production and blending amount of powder foundation Composite particles obtained in Example 1 10.0 parts by weight Red iron oxide 3.0 parts by weight Yellow iron oxide 2.5 parts by weight Black iron oxide 0.5 parts by weight Titanium oxide 10.0 Parts by weight Mica 20.0 parts by weight Talc 44.0 parts by weight Liquid paraffin 5.0 parts by weight Octyldodecyl myristate 2.5 parts by weight Vaseline 2.5 parts by weight
  • Preservatives proper amount perfume proper amount / production method Yellow iron oxide, black iron oxide, titanium oxide, mica, and talc are mixed with a Henschel mixer, and a mixture obtained by mixing and dissolving liquid paraffin, octyldodecyl myristate, vaseline, and a preservative is added and uniformly mixed. After adding a fragrance to the mixture and mixing, the mixture is pulverized and passed through a sieve. This is compression-molded on a metal plate to obtain a powder foundation.
  • (Formulation Example 2) Production and Compounding Amount of Cosmetic Emulsion 10.0 parts by weight of composite particles obtained in Example 1 2.5 parts by weight of stearic acid 1.5 parts by weight of cetyl alcohol 5.0 parts by weight of petrolatum 10.0 parts by weight of liquid paraffin 10.0 parts by weight of polyethylene ( 10 mol) Monooleate 2.0 parts by weight Polyethylene glycol 1500 3.0 parts by weight Triethanolamine 1.0 part by weight Purified water 64.5 parts by weight Fragrance 0.5 part by weight Preservatives Appropriate amount / production method First, stearin The acid, cetyl alcohol, petrolatum, liquid paraffin, and polyethylene monooleate are heated and dissolved, and the composite particles are added and mixed therein, and the mixture is kept at 70 ° C.
  • oil phase Further, polyethylene glycol and triethanolamine are added to purified water, dissolved by heating, and kept at 70 ° C. (aqueous phase).
  • aqueous phase The oil phase is added to the water phase, preliminarily emulsified, and thereafter uniformly emulsified with a homogenizer. After emulsification, the emulsion is cooled to 30 ° C. with stirring to obtain a cosmetic emulsion.
  • Example 3 Manufacture and blending amount of powder foundation Composite particles obtained in Example 5 10.0 parts by weight Red iron oxide 3.0 parts by weight Yellow iron oxide 2.5 parts by weight Black iron oxide 0.5 parts by weight Titanium oxide 10.0 Parts by weight Mica 20.0 parts by weight Talc 44.0 parts by weight Liquid paraffin 5.0 parts by weight Octyldodecyl myristate 2.5 parts by weight Vaseline 2.5 parts by weight
  • Preservatives proper amount perfume proper amount / production method Yellow iron oxide, black iron oxide, titanium oxide, mica, and talc are mixed with a Henschel mixer, and a mixture obtained by mixing and dissolving liquid paraffin, octyldodecyl myristate, vaseline, and a preservative is added and uniformly mixed. After adding a fragrance to the mixture and mixing, the mixture is pulverized and passed through a sieve. This is compression-molded on a metal plate to obtain a powder foundation.
  • polyethylene glycol and triethanolamine are added to purified water, dissolved by heating, and kept at 70 ° C. (aqueous phase).
  • the oil phase is added to the water phase, preliminarily emulsified, and thereafter uniformly emulsified by a homomixer. After emulsification, the emulsion is cooled to 30 ° C. with stirring to obtain a cosmetic emulsion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides: organic inorganic composite particles that exhibit excellent reflectivity of visible light and near-infrared light and that have high light diffusing ability and concealing ability; and a method for producing the organic inorganic composite particles; and application of the organic inorganic composite particles. More specifically, the present invention pertains to organic inorganic composite particles characterized by having a volume average particle diameter of 0.5-100 μm and each comprising: a porous structure that is provided with an outer shell composed of a crosslinked polymer and a cavity defined by the outer shell, and in which silica particles as first inorganic particles are mutually linked inside the cavity; and second inorganic particles other than the silica particles. The present invention also pertains to: a method for producing such organic inorganic composite particles; and application of such organic inorganic composite particles.

Description

有機無機複合粒子、その製造方法及びその用途Organic-inorganic composite particles, production method thereof and use thereof
本発明は、有機無機複合粒子、その製造方法及びその用途に関する。詳しくは、本発明の有機無機複合粒子は、特異な形状を有するものであり、その特性を活かした化粧料、塗料組成物、断熱性樹脂組成物、光拡散性樹脂組成物、及び光拡散フィルム等の用途に適している。
 本願は、2018年8月9日に出願された日本国特願2018−150712号、2018年8月9日に出願された日本国特願2018−150714号、2019年7月18日に出願された日本国特願2019−132979号、及び2019年7月19日に出願された日本国特願2019−133837号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to organic-inorganic composite particles, a method for producing the same, and uses thereof. Specifically, the organic-inorganic composite particles of the present invention have a unique shape, and make use of the characteristics thereof, such as cosmetics, coating compositions, heat-insulating resin compositions, light-diffusing resin compositions, and light-diffusing films. Suitable for applications such as
This application filed Japanese Patent Application No. 2018-150712 filed on Aug. 9, 2018, Japanese Patent Application No. 2018-150714 filed on Aug. 9, 2018, and filed on Jul. 18, 2019. Priority is claimed based on Japanese Patent Application No. 2019-132979 and Japanese Patent Application No. 2019-133837 filed on Jul. 19, 2019, the contents of which are incorporated herein by reference.
従来、化粧料、塗料組成物、断熱性樹脂組成物、光拡散性樹脂組成物、及び光拡散フィルム等の用途において、触感の改良、ソフトフォーカス効果、艶消し性、及び光拡散性等を付与するために、樹脂粒子、シリカ粒子、ガラス粒子、酸化チタン、酸化アルミニウム、及び炭酸カルシウム等の無機系粒子が、添加剤として使用されている。
 具体的な添加剤としては、例えば、中空樹脂粒子が提案されている(特許文献1及び2を参照)。
 また、ミクロンサイズの中空粒子合成法を適用し、シリカ前駆体を内包したマイクロカプセル粒子を作製後、ゾルゲル反応を行うことで、単一又は複数個のシリカ粒子を内包したマイクロカプセル粒子を得る方法が提案されている(非特許文献1を参照)。
Conventionally, in applications such as cosmetics, coating compositions, heat-insulating resin compositions, light-diffusing resin compositions, and light-diffusing films, improvements in tactile sensation, soft focus effects, matting properties, light-diffusing properties, etc. are provided. To do so, inorganic particles such as resin particles, silica particles, glass particles, titanium oxide, aluminum oxide, and calcium carbonate are used as additives.
As specific additives, for example, hollow resin particles have been proposed (see Patent Documents 1 and 2).
In addition, a method of obtaining microcapsule particles containing single or plural silica particles by applying a microparticle-size hollow particle synthesis method to produce microcapsule particles containing silica precursor and then performing a sol-gel reaction. Has been proposed (see Non-Patent Document 1).
しかしながら、特許文献1及び2の中空樹脂粒子及び非特許文献1の単一又は複数個のシリカ粒子を内包したマイクロカプセル粒子は、例えば、内部の空間による光散乱性が十分とはいえず、高度な光拡散性及び隠ぺい性、塗料等の樹脂組成物に添加した際の優れた可視光及び近赤外光の反射性を得るには不十分であるという課題があった。
 そこで、本出願人は、外殻が架橋されたポリマーから構成され、カプセル内部に多孔質構造のシリカを含有してなる有機無機複合粒子であれば、上記課題を解決することができると報告している(特許文献3を参照)。
However, the microcapsule particles containing the hollow resin particles of Patent Documents 1 and 2 and the single or plural silica particles of Non-Patent Document 1 do not have sufficient light scattering properties due to the internal space, for example. There is a problem that it is insufficient to obtain excellent light diffusion and hiding properties, and excellent reflectivity of visible light and near-infrared light when added to a resin composition such as a paint.
Accordingly, the present applicant has reported that the above-mentioned problems can be solved by using organic-inorganic composite particles having a shell composed of a crosslinked polymer and containing silica having a porous structure inside the capsule. (See Patent Document 3).
日本国特開2009−237342号公報JP 2009-237342 A 国際公開第2014/030754号International Publication No. 2014/030754 国際公開第2017/150423号WO 2017/150423
しかしながら、特許文献3の有機無機複合粒子は、高い光拡散性を有しているものの、より高い光拡散性を有する有機無機複合粒子を提供することが望まれていた。また、特許文献3では、カプセル内部にシリカ粒子から構成される多孔質構造を形成させるための多孔化剤として、有機溶媒を使用して有機無機複合粒子を製造しているが、当該有機溶媒は、製造時の製造者に与える影響の観点から、できるだけ使用しないことが望ましい。そのため、有機溶媒を使用せずに、有機無機複合粒子の製造方法を提供することが望まれていた。
 そこで、本発明は、可視光及び近赤外光の反射性に優れ、高度な光拡散性及び隠ぺい性を有する有機無機複合粒子、その製造方法及びその用途を提供することを目的とする。
However, although the organic-inorganic composite particles of Patent Document 3 have high light diffusivity, it has been desired to provide organic-inorganic composite particles having higher light diffusivity. Further, in Patent Document 3, an organic-inorganic composite particle is produced using an organic solvent as a porogen for forming a porous structure composed of silica particles inside a capsule. From the viewpoint of the influence on the manufacturer at the time of manufacture, it is desirable to use as little as possible. Therefore, it has been desired to provide a method for producing organic-inorganic composite particles without using an organic solvent.
Then, an object of the present invention is to provide organic-inorganic composite particles which are excellent in the reflectivity of visible light and near-infrared light, have high light diffusivity and opacity, a method for producing the same, and uses thereof.
本発明者等は、外殻が架橋されたポリマーから構成され、カプセル内部に多孔質構造のシリカを含有してなる有機無機複合粒子において、カプセル内部にシリカ以外の無機物からなる粒子を更に含有させれば、上記課題を解決できることを見出した。また、本発明者等は、単量体混合物に無機系増粘剤を添加することで、有機溶媒を使用しなくても有機無機複合粒子を製造できることも見出し、本発明に至った。
 具体的には、本発明によれば、架橋ポリマーから構成される外殻と、前記外殻により区画された空洞とを備え、前記空洞の内部に、第一の無機粒子としてのシリカ粒子が互いに連結された多孔質構造体と、シリカ粒子以外の第二の無機粒子とを含み、0.5~100μmの体積平均粒子径を有することを特徴とする有機無機複合粒子が提供される。
 また、本発明によれば、前記有機無機複合粒子の製造方法であって、ラジカル重合性の単官能単量体100重量部及び架橋性単量体20~150重量部と、シリカ前駆体としてのシリコンアルコキシド60~400重量部と、第二の無機粒子0.1~10重量部とを含む混合物を、ラジカル重合開始剤の存在下、水系媒体中で懸濁重合させることで、架橋ポリマーから構成される外殻と、前記外殻により区画された空洞とを形成する工程と、前記外殻の形成後又は外殻の形成と同時にシリコンアルコキシドをゲル化させることで、前記空洞の内部にシリカ粒子が互いに連結された多孔質構造体を形成する工程とを備えることを特徴とする有機無機複合粒子の製造方法が提供される。
 更に、本発明によれば、ラジカル重合性の単官能単量体及び架橋性単量体と、シリカ前駆体としてのシリコンアルコキシドと、無機系増粘剤とを含む混合物を、ラジカル重合開始剤の存在下かつ有機溶媒の非存在下、水系媒体中で懸濁重合させることで、架橋ポリマーから構成される外殻を形成する工程と、前記外殻の形成後又は外殻の形成と同時にシリコンアルコキシドから、前記外殻の内部にシリカ粒子が互いに連結された多孔質構造体を形成する工程とを備えることを特徴とする有機無機複合粒子の製造方法が提供される。
 また、本発明によれば、前記有機無機複合粒子を配合した化粧料が提供される。
 更に、本発明によれば、前記有機無機複合粒子を配合した塗料組成物が提供される。
 また、本発明によれば、前記有機無機複合粒子を配合した断熱性樹脂組成物が提供される。
 更に、本発明によれば、前記有機無機複合粒子を配合した光拡散性樹脂組成物が提供される。
 また、本発明によれば、前記有機無機複合粒子を配合した光拡散フィルムが提供される。
The present inventors have proposed that organic-inorganic composite particles having an outer shell composed of a crosslinked polymer and containing silica having a porous structure inside the capsule, further containing particles made of an inorganic substance other than silica inside the capsule. It has been found that the above problem can be solved by doing so. In addition, the present inventors have found that by adding an inorganic thickener to a monomer mixture, organic-inorganic composite particles can be produced without using an organic solvent, and have led to the present invention.
Specifically, according to the present invention, an outer shell composed of a crosslinked polymer and a cavity defined by the outer shell are provided, and silica particles as first inorganic particles are mutually contained inside the hollow. An organic-inorganic composite particle comprising a connected porous structure and second inorganic particles other than silica particles, and having a volume average particle diameter of 0.5 to 100 μm is provided.
Further, according to the present invention, the method for producing the organic-inorganic composite particles, wherein the radical polymerizable monofunctional monomer 100 parts by weight and the crosslinkable monomer 20 to 150 parts by weight, as a silica precursor A mixture containing 60 to 400 parts by weight of silicon alkoxide and 0.1 to 10 parts by weight of the second inorganic particles is subjected to suspension polymerization in an aqueous medium in the presence of a radical polymerization initiator to form a crosslinked polymer. Forming a shell defined by the outer shell, and gelling silicon alkoxide after or simultaneously with the formation of the outer shell, thereby forming silica particles inside the hollow. And forming a porous structure connected to each other.
Furthermore, according to the present invention, a mixture containing a radically polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener, a radical polymerization initiator A step of forming an outer shell composed of a crosslinked polymer by suspension polymerization in an aqueous medium in the presence and in the absence of an organic solvent, and forming a silicon alkoxide after forming the outer shell or simultaneously with forming the outer shell. Forming a porous structure in which silica particles are connected to each other inside the outer shell, thereby providing a method for producing organic-inorganic composite particles.
Further, according to the present invention, there is provided a cosmetic containing the organic-inorganic composite particles.
Further, according to the present invention, there is provided a coating composition containing the organic-inorganic composite particles.
Further, according to the present invention, there is provided a heat-insulating resin composition containing the organic-inorganic composite particles.
Further, according to the present invention, there is provided a light-diffusing resin composition containing the organic-inorganic composite particles.
Further, according to the present invention, there is provided a light diffusion film in which the organic-inorganic composite particles are blended.
本発明によれば、可視光及び近赤外光の反射性に優れ、高度な光拡散性及び隠ぺい性を奏する有機無機複合粒子、並びに、当該有機無機複合粒子を配合した化粧料、塗料組成物、断熱性樹脂組成物、光拡散性樹脂組成物、及び光拡散フィルムを提供することができる。 According to the present invention, organic-inorganic composite particles excellent in reflectivity of visible light and near-infrared light, exhibiting high light diffusion and hiding properties, and cosmetics and coating compositions containing the organic-inorganic composite particles , A heat-insulating resin composition, a light-diffusing resin composition, and a light-diffusing film.
また、以下のいずれかの場合、より優れた光拡散性及び隠ぺい性、近赤外光の反射性という顕著な効果を奏する有機無機複合粒子を提供できる。
 (1)第二の無機粒子が、1.8以上の屈折率を有する。
 (2)第二の無機粒子が、動的光散乱法により測定された0.001~3μmの粒径を有する。
 (3)第一の無機粒子及び第二の無機粒子が、有機無機複合粒子の全重量に対して5~50重量%を有し、空洞に中空構造を与える。
 (4)第二の無機粒子が、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化ニオブ、ケイ酸ジルコニウムから選択される粒子である。
Further, in any of the following cases, it is possible to provide organic-inorganic composite particles having remarkable effects such as more excellent light diffusing properties and hiding properties, and near-infrared light reflectivity.
(1) The second inorganic particles have a refractive index of 1.8 or more.
(2) The second inorganic particles have a particle size of 0.001 to 3 μm measured by a dynamic light scattering method.
(3) The first inorganic particles and the second inorganic particles have 5 to 50% by weight with respect to the total weight of the organic-inorganic composite particles, and provide a hollow structure to the cavity.
(4) The second inorganic particles are particles selected from titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, and zirconium silicate.
更に、以下の場合、より優れた光拡散性及び隠ぺい性、近赤外光の反射性という顕著な効果を奏する有機無機複合粒子をより簡便に製造できる。
 (1)ゲル化が、外殻により区画された空洞内の酸又は塩基を触媒として行われ、酸又は塩基が、潜在性pH調整剤のエネルギー放射線又は熱による外部刺激により生じ、潜在性pH調整剤が、懸濁重合時の混合物中に潜在性pH調整剤を溶解させることにより空洞内に存在する。
Furthermore, in the following cases, organic-inorganic composite particles exhibiting remarkable effects of more excellent light diffusion and hiding properties and near-infrared light reflectivity can be more easily produced.
(1) Gelation is performed using an acid or a base in a cavity defined by an outer shell as a catalyst, and the acid or the base is generated by an external stimulus caused by energy radiation or heat of the latent pH adjuster, and the latent pH is adjusted. An agent is present in the cavity by dissolving the latent pH adjuster in the mixture during suspension polymerization.
また、以下のいずれかの場合、可視光及び近赤外光の反射性により優れ、より高度な光拡散性を有する有機無機複合粒子を、有機溶媒を使用することなく、より簡便に製造できる。
 (1)混合物が、25℃において、0.90mPa・s以上の粘度を有する。
 (2)無機系増粘剤が、無水ケイ酸又は粘土鉱物である。
 (3)シリカ粒子が互いに連結された多孔質構造体が、EDX測定において炭素成分の含有を示す。
 (4)無機系増粘剤が、無水ケイ酸である疎水性シリカ粒子であり、疎水性シリカ粒子が、15~330m/gのBET法による比表面積を有する。
 (5)有機無機複合粒子が、0.5~100μmの体積平均粒子径を有する。
 (6)前記多孔質構造体が、有機無機複合粒子の全重量に対して5~50重量%を有する。
 (7)疎水性シリカ粒子が、混合物100重量部に対し、0.5~100重量部含まれる。
 (8)混合物が、単官能単量体を100重量部、架橋性単量体を20~150重量部、シリカ前駆体を60~400重量部含む。
In addition, in any of the following cases, organic-inorganic composite particles that are more excellent in the reflectivity of visible light and near-infrared light and have higher light diffusivity can be more easily produced without using an organic solvent.
(1) The mixture has a viscosity of 0.90 mPa · s or more at 25 ° C.
(2) The inorganic thickener is silicic anhydride or clay mineral.
(3) The porous structure in which the silica particles are connected to each other shows that the carbon component is contained in the EDX measurement.
(4) The inorganic thickener is hydrophobic silica particles of silicic anhydride, and the hydrophobic silica particles have a specific surface area of 15 to 330 m 2 / g by a BET method.
(5) The organic-inorganic composite particles have a volume average particle diameter of 0.5 to 100 μm.
(6) The porous structure has 5 to 50% by weight based on the total weight of the organic-inorganic composite particles.
(7) The hydrophobic silica particles are contained in an amount of 0.5 to 100 parts by weight based on 100 parts by weight of the mixture.
(8) The mixture contains 100 parts by weight of the monofunctional monomer, 20 to 150 parts by weight of the crosslinkable monomer, and 60 to 400 parts by weight of the silica precursor.
実施例1の有機無機複合粒子の表面写真、断面写真、及びSEM−EDSによるマッピング図である。FIG. 3 is a surface photograph, a cross-sectional photograph, and a SEM-EDS mapping diagram of the organic-inorganic composite particles of Example 1. 実施例2の有機無機複合粒子の表面写真及び断面写真である。5 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 2. 実施例3の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 3. 実施例4の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 4. 比較例1の有機無機複合粒子の表面写真及び断面写真である。4 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Comparative Example 1. 比較例2の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Comparative Example 2. 紫外可視近赤外光の反射特性評価における各種粒子を含む塗膜の各波長に対する光反射率を示すグラフである。4 is a graph showing the light reflectance for each wavelength of a coating film containing various particles in the evaluation of the reflection characteristics of ultraviolet, visible, and near infrared light. 粒子断面の写真における内部多孔質部分として設定された分析領域の一例を示す図である。It is a figure which shows an example of the analysis area | region set as an internal porous part in the photograph of a particle cross section. 実施例5の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 5. 実施例6の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 6. 実施例7の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Example 7. 実施例8の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 8. 実施例10の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 10. 実施例11の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 11. 実施例12の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a sectional photograph of the organic-inorganic composite particles of Example 12. 実施例14の有機無機複合粒子の断面写真である。14 is a cross-sectional photograph of the organic-inorganic composite particles of Example 14. 実施例15の有機無機複合粒子の断面写真である。14 is a cross-sectional photograph of the organic-inorganic composite particles of Example 15. 比較例3の有機無機複合粒子の表面写真及び断面写真である。9 is a surface photograph and a cross-sectional photograph of the organic-inorganic composite particles of Comparative Example 3. 紫外可視近赤外光の反射特性評価における各種粒子を含む塗膜の各波長に対する光反射率を示すグラフである。4 is a graph showing the light reflectance for each wavelength of a coating film containing various particles in the evaluation of the reflection characteristics of ultraviolet, visible, and near infrared light.
以下、本発明について詳細に説明する。なお、本発明は、ここで説明する実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, the present invention will be described in detail. Note that the present invention is not limited to the embodiment described here, and various changes can be made without departing from the spirit of the present invention.
(有機無機複合粒子)
 本発明の有機無機複合粒子(以下、「複合粒子」とも称する)は、架橋ポリマーから構成される外殻を備えている。更に、複合粒子は、外殻により区画された空洞を備えることもある。また、複合粒子は、外殻又は空洞の内部に、シリカ粒子(以下、「第一の無機粒子」とも称する)が互いに連結された多孔質構造体を含んでいる。更に、複合粒子は、外殻又は空洞の内部に、シリカ以外の無機物からなる粒子(以下、「第二の無機粒子」とも称する)を含むこともある。また、複合粒子は、0.5~100μmの体積平均粒子径を有している。複合粒子を複合微粒子と称することもある。
(Organic-inorganic composite particles)
The organic-inorganic composite particles of the present invention (hereinafter also referred to as “composite particles”) have an outer shell made of a crosslinked polymer. Further, the composite particles may include a cavity defined by an outer shell. Further, the composite particles include a porous structure in which silica particles (hereinafter, also referred to as “first inorganic particles”) are connected to each other in an outer shell or a cavity. Further, the composite particles may include particles made of an inorganic substance other than silica (hereinafter, also referred to as “second inorganic particles”) inside the outer shell or the cavity. Further, the composite particles have a volume average particle size of 0.5 to 100 μm. The composite particles are sometimes referred to as composite fine particles.
(1)外殻
 架橋ポリマーは、外殻を構成できさえすれば、その種類は特に限定されない。架橋ポリマーとしては、ラジカル重合性の単量体に由来するポリマーが挙げられ、具体的には、ビニル基を1つ有する単官能単量体と、ビニル基を2つ以上有する架橋性単量体との共重合体が挙げられる。
 ビニル基を1つ有する単官能単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等の炭素数1~16のアルキル(メタ)アクリレート;(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、無水マレイン酸、N−ビニルカルバゾール;スチレン、α−メチルスチレン、パラメチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系単量体等が挙げられる。これらの単官能単量体を単独又は複数を組み合わせて用いることができる。
(1) Outer Shell The type of the crosslinked polymer is not particularly limited as long as it can constitute the outer shell. The crosslinking polymers include polymers derived from radical polymerizable monomers, specifically, a monofunctional monomer having one vinyl group, the crosslinkable monomer having two or more vinyl groups And copolymers thereof.
Examples of the monofunctional monomer having one vinyl group include alkyl (meth) acrylates having 1 to 16 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate. ) Acrylate; (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, maleic anhydride, N-vinylcarbazole; styrene, α-methylstyrene, paramethylstyrene, vinyltoluene, chlorostyrene, Styrene-based monomers such as ethyl styrene, i-propyl styrene, dimethyl styrene and bromo styrene are exemplified. These monofunctional monomers can be used alone or in combination of two or more.
ビニル基を2つ以上有する架橋性単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の多官能アクリルエステル、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド等の多官能アクリルアミド誘導体、ジアリルアミン、テトラアリロキシエタン等の多官能アリル誘導体等、ジビニルベンゼン等の芳香族系ジビニル化合物等が挙げられる。これらの架橋性単量体を単独又は複数組み合わせて用いることができる。 Examples of the crosslinkable monomer having two or more vinyl groups include polyfunctional acrylic esters such as ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and glycerin tri (meth) acrylate; Polyfunctional acrylamide derivatives such as -methylenebis (meth) acrylamide and N, N'-ethylenebis (meth) acrylamide; polyfunctional allyl derivatives such as diallylamine and tetraallyloxyethane; and aromatic divinyl compounds such as divinylbenzene. No. These crosslinkable monomers can be used alone or in combination.
架橋性単量体は、単官能単量体100重量部に対して、20重量部以上の割合で外殻に含まれていることが好ましい。架橋性単量体の含有量が20重量部未満の場合、十分な強度を有する外殻が形成されないことがある。含有量は、20~150重量部であることがより好ましく、80~120重量部であることが更に好ましい。 The crosslinkable monomer is preferably contained in the outer shell at a ratio of 20 parts by weight or more based on 100 parts by weight of the monofunctional monomer. When the content of the crosslinking monomer is less than 20 parts by weight, an outer shell having sufficient strength may not be formed. The content is more preferably from 20 to 150 parts by weight, and even more preferably from 80 to 120 parts by weight.
(2)多孔質構造体
 多孔質構造体は、シリカ粒子が互いに連結された構成を有する。ここで、多孔質構造とは、複数のシリカ粒子の一部が互いに連結し、かつ未連結部において、シリカ粒子間にマクロ多孔としての間隙が形成された構造を意味する。多孔質構造体は、下記諸物性の欄に記載した、空洞の全体積に対する割合の範囲の体積を有することが好ましい。
 更に、個々のシリカ粒子は、主としてSiOからなる。シリカ粒子は、例えば、シリカ前駆体をゲル化させることで得ることができる。シリカ前駆体としては、同一分子内に1つ以上のケイ素原子とアルコキシ基(例えば、炭素数1~4)を有するシリコンアルコキシドが挙げられる。具体的には、テトラエトキシシラン(TEOS)、テトラメトキシシラン、テトラプロポキシシラン等が挙げられる。また、テトラメトキシシランの部分加水分解オリゴマーであるメチルシリケートオリゴマー(三菱化学社製 商品名;MKCシリケート)、テトラエトキシシランの部分加水分解オリゴマーであるエチルシリケートオリゴマー(多摩化学社製 製品名;シリケート45(5量体)、シリケート48(10量体))、シロキサンオリゴマー等のオリゴマーが挙げられる。これらのシリカ前駆体を単独又は複数を組み合わせて用いることができる。このうち、単官能のシリカ前駆体として、テトラエトキシシランが好ましく、オリゴマーであるシリカ前駆体として、エチルシリケートオリゴマーが好ましい。
 多孔質構造体は、優れた光拡散性及び隠ぺい性を複合粒子に付与するために、外殻の内壁に存在することが好ましい。
 シリカ前駆体は、単官能単量体100重量部に対して、60~400重量部の割合で混合物中に含まれていることが好ましい。シリカ前駆体の含有量が60重量部未満の場合、十分な光学性能を有する粒子が得られないことがある。含有量が400重量部より多い場合、外殻の構成成分が相対的に減少するため、十分な強度を有する粒子が得られないことがある。含有量は、70~270重量部がより好ましく、80~250重量部であることが更に好ましい。なお、複合粒子中の単官能単量体由来成分とシリカ前駆体由来成分との含有割合は、単官能単量体とシリカ前駆体との前記割合と実質的に一致している。
 なお、多孔質構造体は、架橋ポリマー成分を含んでいてもよく、架橋ポリマー成分は、外殻を形成する架橋ポリマー成分であってもよい。
 また、多孔質構造体は、SEM−EDXを用いるEDX測定に示される炭素成分を含んでいてもよい。
(2) Porous structure The porous structure has a configuration in which silica particles are connected to each other. Here, the porous structure means a structure in which some of the plurality of silica particles are connected to each other, and a macroporous space is formed between the silica particles in an unconnected portion. It is preferable that the porous structure has a volume in the range of the ratio to the total volume of the cavities described in the columns of various physical properties below.
Furthermore, the individual silica particles are mainly composed of SiO 2. Silica particles can be obtained, for example, by gelling a silica precursor. Examples of the silica precursor include a silicon alkoxide having one or more silicon atoms and an alkoxy group (for example, having 1 to 4 carbon atoms) in the same molecule. Specific examples include tetraethoxysilane (TEOS), tetramethoxysilane, tetrapropoxysilane, and the like. In addition, methyl silicate oligomer (MKC silicate, trade name, manufactured by Mitsubishi Chemical Corporation) which is a partially hydrolyzed oligomer of tetramethoxysilane, and ethyl silicate oligomer (product name, silicate 45, manufactured by Tama Chemical Co., Ltd.) which is a partially hydrolyzed oligomer of tetraethoxysilane (Pentamer), silicate 48 (10-mer)), and oligomers such as siloxane oligomers. These silica precursors can be used alone or in combination of two or more. Among them, tetraethoxysilane is preferable as the monofunctional silica precursor, and ethylsilicate oligomer is preferable as the silica precursor which is an oligomer.
The porous structure is preferably present on the inner wall of the outer shell in order to provide the composite particles with excellent light diffusion and hiding properties.
The silica precursor is preferably contained in the mixture at a ratio of 60 to 400 parts by weight based on 100 parts by weight of the monofunctional monomer. When the content of the silica precursor is less than 60 parts by weight, particles having sufficient optical performance may not be obtained. When the content is more than 400 parts by weight, the components of the outer shell are relatively reduced, so that particles having sufficient strength may not be obtained. The content is more preferably 70 to 270 parts by weight, further preferably 80 to 250 parts by weight. In addition, the content ratio of the monofunctional monomer-derived component and the silica precursor-derived component in the composite particles substantially matches the above-mentioned ratio of the monofunctional monomer and the silica precursor.
The porous structure may contain a crosslinked polymer component, and the crosslinked polymer component may be a crosslinked polymer component forming an outer shell.
In addition, the porous structure may include a carbon component indicated by EDX measurement using SEM-EDX.
(3)第二の無機粒子
 第二の無機粒子は、シリカ以外の組成を有する無機物からなる粒子であれば、特に限定されない。第二の無機粒子としては、例えば、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化ニオブ、及びケイ酸ジルコニウム等の粒子が挙げられる。酸化チタンは、アルミナ、シリカ等で表面処理されていてもかまわない。これらの第二の無機粒子を単独又は複数組み合わせて用いることができる。
 第二の無機粒子は、1.8以上の屈折率を有することが好ましい。屈折率が、1.8未満の場合、十分な光拡散性の向上効果が得られないことがある。屈折率は、2.0~4.0であることがより好ましい。
 屈折率が1.8以上の無機粒子としては、例えば、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化ニオブ、及びケイ酸ジルコニウム等の粒子が挙げられる。無機粒子は、酸化チタン、酸化ジルコニウム、及び酸化セリウムが好ましい。
 屈折率の測定方法は、特に限定されない。例えば、測定方法としては、「セラミックス材料科学入門(応用編)、発行所:内田老鶴圃新社、発行日:昭和56年5月25日」の第635~640頁を参照しつつ測定する、公知の方法(例えば、最小偏角法、臨界角法、Vブロック法等)が挙げられる。屈折率は、空気に対する相対屈折率を意味する。測定には、550nmの基準波長を使用できる。
(3) Second inorganic particle The second inorganic particle is not particularly limited as long as it is a particle made of an inorganic substance having a composition other than silica. Examples of the second inorganic particles include particles such as titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, and zirconium silicate. Titanium oxide may be surface-treated with alumina, silica, or the like. These second inorganic particles can be used alone or in combination.
The second inorganic particles preferably have a refractive index of 1.8 or more. When the refractive index is less than 1.8, a sufficient effect of improving light diffusibility may not be obtained. The refractive index is more preferably from 2.0 to 4.0.
Examples of the inorganic particles having a refractive index of 1.8 or more include particles of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, zirconium silicate, and the like. The inorganic particles are preferably titanium oxide, zirconium oxide, and cerium oxide.
The method for measuring the refractive index is not particularly limited. For example, as for the measuring method, the measurement is performed with reference to pages 635 to 640 of “Introduction to Ceramics Material Science (Applied Edition), Issued by Uchida Lao Tsuruho Shinsha, Issued on May 25, 1981”. And known methods (for example, the minimum declination method, the critical angle method, the V-block method, etc.). The refractive index means a relative refractive index to air. A reference wavelength of 550 nm can be used for the measurement.
第二の無機粒子は、動的光散乱法により測定された0.001~3μmの粒径を有することが好ましい。粒径が、3μmより大きい場合、重合中に粒子が沈降し、所望する粒子が得られないことがある。粒径が、0.001μm未満の場合、粒子は作製できるものの十分な光反射性能が得られないことがある。粒径は、0.001~1μmであることがより好ましい。
 第二の無機粒子は、複合粒子中での分散性を向上させるために、その表面が、表面処理剤で処理されていてもよい。表面処理としては、例えば、シリコン処理等の撥水処理、シランカップリング処理、及び高分子処理等が挙げられる。
The second inorganic particles preferably have a particle size of 0.001 to 3 μm measured by a dynamic light scattering method. If the particle size is larger than 3 μm, the particles may settle during polymerization, and the desired particles may not be obtained. If the particle size is less than 0.001 μm, particles can be produced but sufficient light reflection performance may not be obtained. The particle size is more preferably 0.001 to 1 μm.
The surface of the second inorganic particles may be treated with a surface treating agent to improve dispersibility in the composite particles. Examples of the surface treatment include water repellent treatment such as silicon treatment, silane coupling treatment, and polymer treatment.
(4)第一の無機粒子及び第二の無機粒子の重量
 第一の無機粒子及び第二の無機粒子は、複合粒子の全重量に対して5~50重量%を有していることが好ましい。第一の無機粒子及び第二の無機粒子の重量が、5重量%未満の場合、シリカによる多孔質体の形成が不十分となることなることがある。重量が、50重量%より多い場合、相対的に外殻の割合が低下し、十分な強度を有さないことがある。これら無機粒子の重量は、10~45重量%であることがより好ましい。
 第二の無機粒子は、第一の無機粒子と第二の無機粒子との合計量を100重量部とすると、0.01~5重量部の範囲で複合粒子に含まれていることが好ましい。含有量が、0.01重量部未満の場合、十分な光拡散性の向上効果が得られないことがある。含有量が、5重量部より多い場合、粒子の重合反応がうまく進まないことがある。含有量は、0.05~2.5重量部の範囲であることがより好ましい。
 複合粒子中に含まれる第一の無機粒子及び/又は第二の無機粒子の重量は、蛍光X線測定により測定できる。
(4) Weight of first inorganic particles and second inorganic particles The first inorganic particles and the second inorganic particles preferably have 5 to 50% by weight based on the total weight of the composite particles. . When the weight of the first inorganic particles and the second inorganic particles is less than 5% by weight, the formation of the porous body by the silica may be insufficient. When the weight is more than 50% by weight, the ratio of the outer shell is relatively reduced, and the strength may not be sufficient. The weight of these inorganic particles is more preferably from 10 to 45% by weight.
The second inorganic particles are preferably contained in the composite particles in the range of 0.01 to 5 parts by weight, where the total amount of the first inorganic particles and the second inorganic particles is 100 parts by weight. When the content is less than 0.01 part by weight, a sufficient effect of improving light diffusibility may not be obtained. If the content is more than 5 parts by weight, the polymerization reaction of the particles may not proceed well. The content is more preferably in the range of 0.05 to 2.5 parts by weight.
The weight of the first inorganic particles and / or the second inorganic particles contained in the composite particles can be measured by X-ray fluorescence measurement.
(5)複合粒子の諸物性 (5) Properties of composite particles
(a)体積平均粒子径
 複合粒子は、0.5~100μmの体積平均粒子径を有することが好ましい。体積平均粒子径が0.5μm未満の場合、微小なカプセル粒子を得ることが困難なことがある。体積平均粒子径が100μmより大きい場合、カプセル粒子のつぶれにより製造が困難なことがある。用途にもよるが、体積平均粒子径は、3~80μmであることが好ましく、5~50μmであることがより好ましい。
(A) Volume Average Particle Size The composite particles preferably have a volume average particle size of 0.5 to 100 μm. When the volume average particle diameter is less than 0.5 μm, it may be difficult to obtain fine capsule particles. When the volume average particle diameter is larger than 100 μm, the production may be difficult due to the collapse of the capsule particles. The volume average particle size is preferably from 3 to 80 μm, more preferably from 5 to 50 μm, depending on the use.
(b)見かけ比重
 外殻が非多孔質状の場合、複合粒子は、0.3~1.0g/cmの見かけ比重を有することが好ましい。見かけ比重が0.3g/cm未満の場合、外殻の樹脂層が薄く、強度が低下することがある。見かけ比重が1.0g/cmより大きい場合、内部のシリカからなる多孔質構造体による効果が十分に発揮されないことがある。見かけ比重は0.3~0.9g/cmであることが好ましい。
(B) Apparent specific gravity When the outer shell is non-porous, the composite particles preferably have an apparent specific gravity of 0.3 to 1.0 g / cm 3 . When the apparent specific gravity is less than 0.3 g / cm 3 , the resin layer of the outer shell is thin and the strength may be reduced. If the apparent specific gravity is greater than 1.0 g / cm 3, there is the effect due to the porous structure consisting of the interior of the silica may not be sufficiently exhibited. The apparent specific gravity is preferably from 0.3 to 0.9 g / cm 3 .
(c)外形等
 複合粒子の外形は特に限定されないが、できるだけ球状に近いことが好ましい。
 外殻の厚さは、体積平均粒子径の5~40%であることが好ましい。外殻の厚さが、体積平均粒子径の5%未満の場合、外殻が十分な強度を有さないことがある。外殻の厚さが、体積平均粒子径の40%より大きい場合、内部のシリカ構造による効果が不十分となることがある。外殻の厚さは、体積平均粒子径の10~30%であることがより好ましい。
 外殻は多孔質であってもよい。多孔質であることで、一般的なシリカ多孔質状樹脂粒子と比べて、粒子自体の強度の向上が期待でき、崩壊しづらい粒子を提供できる。また、空隙率を向上することも可能である。また、一般的な多孔質樹脂粒子は多量の多孔化剤(溶剤)を使用して多孔質化しており、吸油量の大きな微粒子を得るには多量の多孔化剤を使用する必要があり、生産性が著しく低下する等の課題がある。それに対して本発明の粒子では、多量の多孔化剤を使用することなくマイクロカプセル内部のシリカからなる多孔質構造において空隙率90%を超えることも可能である。多孔質の程度は、吸油量により規定できる。吸油量は、150~500ml/100gであることが好ましい。細孔径、細孔容積等の他の指標により多孔質の程度を規定することも可能である。
(C) Outer Shape, etc. The outer shape of the composite particles is not particularly limited, but is preferably as close to spherical as possible.
The thickness of the outer shell is preferably 5 to 40% of the volume average particle diameter. When the thickness of the outer shell is less than 5% of the volume average particle diameter, the outer shell may not have sufficient strength. When the thickness of the outer shell is larger than 40% of the volume average particle diameter, the effect of the inner silica structure may be insufficient. The thickness of the outer shell is more preferably 10 to 30% of the volume average particle diameter.
The outer shell may be porous. By being porous, improvement in the strength of the particles themselves can be expected as compared with general silica porous resin particles, and particles that are difficult to collapse can be provided. Further, the porosity can be improved. In addition, general porous resin particles are made porous by using a large amount of a porogen (solvent), so that it is necessary to use a large amount of a porogen to obtain fine particles having a large oil absorption. There is a problem that the property is remarkably reduced. On the other hand, in the particles of the present invention, the porosity can exceed 90% in the porous structure made of silica inside the microcapsules without using a large amount of the porogen. The degree of porosity can be defined by the amount of oil absorption. The oil absorption is preferably from 150 to 500 ml / 100 g. It is also possible to define the degree of porosity by other indices such as pore diameter and pore volume.
多孔質構造体は、複合粒子の全重量に対して5~50重量%を有していることが好ましい。多孔質構造体の重量が5%未満の場合、シリカによる多孔質体の形成が不十分となることがある。多孔質構造体の重量が50%より大きい場合、相対的に外殻の割合が低下し、十分な強度を有さないことがある。多孔質構造体の重量は、10~45重量%であることが好ましい。 The porous structure preferably has 5 to 50% by weight based on the total weight of the composite particles. When the weight of the porous structure is less than 5%, formation of the porous body by silica may be insufficient. When the weight of the porous structure is more than 50%, the ratio of the outer shell is relatively reduced, and the strength may not be sufficient. The weight of the porous structure is preferably from 10 to 45% by weight.
(有機無機複合粒子の製造方法)
 本発明の第1実施形態による有機無機複合粒子の製造方法は、水性媒体中に乳化分散したシリカ前駆体と、第二の無機粒子と、ラジカル重合性の単量体とを含む混合物中の単量体を懸濁重合させてシリカ前駆体及び第二の無機粒子を内部に含むマイクロカプセルを得る「重合工程」と、マイクロカプセル中のシリカ前駆体をゲル化させることによりシリカ粒子とする「ゲル化工程」とを備える。
(Method for producing organic-inorganic composite particles)
The method for producing organic-inorganic composite particles according to the first embodiment of the present invention includes a method for preparing a single particle in a mixture containing a silica precursor emulsified and dispersed in an aqueous medium, second inorganic particles, and a radical polymerizable monomer. "Polymerization step" of obtaining a microcapsule containing a silica precursor and second inorganic particles by subjecting the monomer to suspension polymerization, and "gel" Process ".
(1)重合工程
 重合工程では、まず、シリカ前駆体と、第二の無機粒子と、単量体とを含む混合物を水性媒体中に乳化により分散させる。なお、単量体の使用量と、外殻を構成する単量体由来成分の含有量は、実質的に一致している。
 第二の無機粒子は、粒子そのものを水性媒体中に分散させてもよいが、粒子を溶媒に予め分散させた溶液を水性媒体中に分散させてもよい。この溶液には、増粘剤を添加してもよい。増粘剤としては、例えば、アクリル系増粘剤、ウレタン系増粘剤、ポリエーテル系増粘剤、ポリビニルアルコール類、セルロース誘導体等の有機系増粘剤が挙げられる。無機系増粘剤としては、粘土鉱物が挙げられる。粘土鉱物としては、ベントナイト、モンモリロナイト、サポナイト、バイデライト、ヘクトライト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土、バーミキュライト、ハロイサイト、膨潤性マイカ、ゼオライト、アタパルジャイト等の天然粘土、もしくは合成粘土が挙げられる。これらは1種のみ含有されていても、2種以上が含有されていてもよい。
 乳化分散は、特に限定されず、所望の粒径の複合粒子が得られるように、撹拌速度、撹拌時間等の諸条件を適宜調整しつつ行われる。
(1) Polymerization Step In the polymerization step, first, a mixture containing a silica precursor, second inorganic particles, and a monomer is dispersed in an aqueous medium by emulsification. The amount of the monomer used and the content of the component derived from the monomer constituting the outer shell substantially match.
As the second inorganic particles, the particles themselves may be dispersed in an aqueous medium, or a solution in which the particles are previously dispersed in a solvent may be dispersed in an aqueous medium. A thickener may be added to this solution. Examples of the thickener include organic thickeners such as acrylic thickeners, urethane thickeners, polyether thickeners, polyvinyl alcohols, and cellulose derivatives. Examples of the inorganic thickener include a clay mineral. Examples of the clay mineral include natural clays such as bentonite, montmorillonite, saponite, beidellite, hectorite, stevensite, sauconite, nontronite, etc., vermiculite, halloysite, swelling mica, zeolite, attapulgite and other natural clays, or synthetic clays. Can be These may contain only one kind or two or more kinds.
The emulsification and dispersion are not particularly limited, and are performed while appropriately adjusting various conditions such as a stirring speed and a stirring time so as to obtain composite particles having a desired particle size.
単量体の重合は、ラジカル重合開始剤の存在下で行われることが好ましい。ラジカル重合開始剤としては、特に限定されず、例えば、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩類、クメンハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジメチルビス(tert−ブチルパーオキシ)ヘキサン、ジメチルビス(tert−ブチルパーオキシ)ヘキシン−3、ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、ビス(tert−ブチルパーオキシ)トリメチルシクロヘキサン、ブチル−ビス(tert−ブチルパーオキシ)バレラート、2−エチルヘキサンペルオキシ酸tert−ブチル、ジベンゾイルパーオキサイド、パラメンタンハイドロパーオキサイド、及びtert−ブチルパーオキシベンゾエート等の有機過酸化物類、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二硫酸塩二水和物、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]水和物、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス(1−イミノ−1−ピロリジノ−2−エチルプロパン)二塩酸塩、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド]、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、4,4’−アゾビス(4−シアノペンタン酸)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチル−ブチロニトリル)、2,2’−アゾビス(2−イソプロピルブチロニトリル)、2,2’−アゾビス(2,3−ジメチルブチロニトリル)、2,2’−アゾビス(2,4−ジメチルブチロニトリル)、2,2’−アゾビス(2−メチルカプロニトリル)、2,2’−アゾビス(2,3,3−トリメチルブチロニトリル)、2,2’−アゾビス(2,4,4−トリメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−エトキシバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−n−ブトキシバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス[N−(2−プロペニル)−2−メチルプロピオンアミド]、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、ジメチル−2,2’−アゾビス(2−メチルプロピネート)、ジメチル−2,2’−アゾビスイソブチレート、ジメチル−2,2’−アゾビス(2−メチルプロピネート)、2−(カルバモイルアゾ)イソブチロニトリル、4,4’−アゾビス(4−シアノバレリン酸)等のアゾ化合物類が挙げられる。これらの重合開始剤を単独又は複数を組み合わせて用いることができる。 The polymerization of the monomer is preferably performed in the presence of a radical polymerization initiator. The radical polymerization initiator is not particularly limited, and examples thereof include persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, and benzoyl peroxide. Oxide, lauroyl peroxide, dimethylbis (tert-butylperoxy) hexane, dimethylbis (tert-butylperoxy) hexyne-3, bis (tert-butylperoxyisopropyl) benzene, bis (tert-butylperoxy) trimethyl Cyclohexane, butyl-bis (tert-butylperoxy) valerate, tert-butyl 2-ethylhexaneperoxyate, dibenzoyl peroxide, paramenthane hydroperoxide, and tert- Organic peroxides such as tilperoxybenzoate, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, and 2,2′-azobis [2- (2-imidazoline- 2-yl) propane] disulfate dihydrate, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropion Amidine] hydrate, 2,2′-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2′-azobis [2- (2 -Imidazolin-2-yl) propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-ethylpropane) dihydrochloride, 2,2′-azobis {2-methyl-N- [1, 1-bis (hydroxymethyl) -2 Hydroxyethyl] propionamide], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azo Bisisobutyronitrile, 2,2'-azobis (2-methyl-butyronitrile), 2,2'-azobis (2-isopropylbutyronitrile), 2,2'-azobis (2,3-dimethylbutyronitrile) ), 2,2'-azobis (2,4-dimethylbutyronitrile), 2,2'-azobis (2-methylcapronitrile), 2,2'-azobis (2,3,3-trimethylbutyro Nitrile), 2,2'-azobis (2,4,4-trimethylvaleronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl Tyl-4-ethoxyvaleronitrile), 2,2′-azobis (2,4-dimethyl-4-n-butoxyvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) , 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide), 2,2'-azobis (N- Cyclohexyl-2-methylpropionamide), 1,1′-azobis (1-acetoxy-1-phenylethane), 1,1′-azobis (cyclohexane-1-carbonitrile), dimethyl-2,2′-azobis ( 2-methylpropionate), dimethyl-2,2'-azobisisobutyrate, dimethyl-2,2'-azobis (2-methylpropinate), 2- (carba Ylazo) isobutyronitrile, 4,4'-azobis (4-cyanovaleric acid) azo compounds such like. These polymerization initiators can be used alone or in combination of two or more.
重合開始剤は、混合物中に、単量体100重量部に対して、0.05~5重量部含まれていることが好ましい。
 水性媒体としては、例えば、水、水と水溶性有機溶媒(例えば、メタノール、エタノール等の低級アルコール)との混合物等が挙げられる。
 また、重合は、非反応性有機溶剤の存在下で行ってもよい。非反応性有機溶剤としては、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、デカン、ヘキサデカン、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、1,4−ジオキサン、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等が挙げられる。これらの非反応性有機溶剤を単独又は複数組み合わせて用いることができる。
 非反応性溶媒の添加量は、特に限定されないが、単量体100重量部に対して、0~300重量部である。300重量部を超えると、外殻の形成が不十分となることがある。
 本発明において、非多孔性の外殻を有する複合粒子を得るには、単量体100重量部に対し、非反応性有機溶媒を10~50重量部の範囲で用いればよい。用いる溶媒の種類にもよるが50重量部を超えると多孔性の外殻を有する複合粒子が得られやすくなる。
The polymerization initiator is preferably contained in the mixture in an amount of 0.05 to 5 parts by weight based on 100 parts by weight of the monomer.
Examples of the aqueous medium include water, a mixture of water and a water-soluble organic solvent (for example, a lower alcohol such as methanol and ethanol), and the like.
Further, the polymerization may be performed in the presence of a non-reactive organic solvent. As the non-reactive organic solvent, for example, pentane, hexane, cyclohexane, heptane, decane, hexadecane, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, 1,4-dioxane, methyl chloride, methylene chloride, Chloroform, carbon tetrachloride and the like can be mentioned. These non-reactive organic solvents can be used alone or in combination.
The addition amount of the non-reactive solvent is not particularly limited, but is 0 to 300 parts by weight based on 100 parts by weight of the monomer. If it exceeds 300 parts by weight, the outer shell may be insufficiently formed.
In the present invention, in order to obtain composite particles having a non-porous outer shell, the non-reactive organic solvent may be used in an amount of 10 to 50 parts by weight based on 100 parts by weight of the monomer. Although it depends on the kind of the solvent to be used, if it exceeds 50 parts by weight, it becomes easy to obtain composite particles having a porous outer shell.
更に、重合は、シリコンアルコキシドと比較し、加水分解性の高いチタン、ジルコニウム又はアルミニウムのアルコキシド化合物の存在下で行うことにより、容易にカプセル内に多孔質構造を形成できる。これらアルコキシド化合物を使用する場合、非反応性有機溶媒を使用しなくてもよい。即ち、これら化合物は、シリコンアルコキシドのようなシリカ前駆体よりも加水分解性が高いため、マイクロカプセル内でゲル化し、シリカ前駆体のマイクロカプセル内での移動を抑制して、多孔質化を促進する効果があると本発明者等は考えている。
 チタンのアルコキシド化合物としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(n−アミノエチル−アミノエチル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ジクミルフェニルオキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ジイソステアロイルエチレンチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)ジイソプロピルチタネート、テトラメチルオルソチタネート、テトラエチルオルソチタネート、テトラプロピルオルソチタネート、テトライソプロピルテトラエチルオルソチタネート、テトラブチルオルソチタネート、ブチルポリチタネート、テトライソブチルオルソチタネート、2−エチルヘキシルチタネート、ステアリルチタネート、クレシルチタネートモノマー、クレシルチタネートポリマー、ジイソプロポキシ−ビス−(2,4−ペンタジオネート)チタニウム(IV)、ジイソプロピル−ビス−トリエタノールアミノチタネート、オクチレングリコールチタネート、チタニウムラクテート、アセトアセティックエステルチタネート、ジイソプロポキシビス8アセチルアセトナト)チタン、ジ−n−ブトキシビス(トリエタノールアルミナト)チタン、ジヒドロキシビス(ラクタト)チタン、チタニウム−イソプロポキシオクチレングリコレート、テトラ−n−ブトキシチタンポリマー、トリ−n−ブトキシチタンモノステアレートポリマー、ブチルチタネートダイマー、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。
Furthermore, by performing the polymerization in the presence of an alkoxide compound of titanium, zirconium or aluminum having a higher hydrolyzability than silicon alkoxide, a porous structure can be easily formed in the capsule. When these alkoxide compounds are used, it is not necessary to use a non-reactive organic solvent. That is, since these compounds are more hydrolyzable than silica precursors such as silicon alkoxides, they gel in microcapsules, suppress the movement of silica precursors in microcapsules, and promote porosity. The present inventors believe that the above-mentioned effect is obtained.
Examples of the titanium alkoxide compound include isopropyl triisostearoyl titanate, isopropyl tristearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, and isopropyl tri ( Dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (n-aminoethyl-aminoethyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphate) Fight) Titanate, Tet (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, dicumylphenyloxyacetate titanate, bis (dioctylpyrophosphate) oxyacetate titanate, diisostearoylethylene titanate, bis (dioctylpyrophosphate) Ethylene titanate, bis (dioctyl pyrophosphate) diisopropyl titanate, tetramethyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate, tetraisopropyltetraethyl orthotitanate, tetrabutyl orthotitanate, butyl polytitanate, tetraisobutyl orthotitanate, 2-ethylhexyl titanate , Stearyl titanate, cresyl titanate monomer, kureshi Titanate polymer, diisopropoxy-bis- (2,4-pentadionate) titanium (IV), diisopropyl-bis-triethanolaminotitanate, octylene glycol titanate, titanium lactate, acetoacetate ester titanate, diisopropoxy bis 8-acetylacetonato) titanium, di-n-butoxybis (triethanolaluminate) titanium, dihydroxybis (lactato) titanium, titanium-isopropoxyoctylene glycolate, tetra-n-butoxytitanium polymer, tri-n-butoxytitanium Monostearate polymer, butyl titanate dimer, titanium acetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate ammonium salt, titanium Examples include tan lactate ethyl ester, titanium triethanol aminate, and polyhydroxytitanium stearate.
ジルコニウムのアルコキシド化合物としては、ジルコニウムブチレート、ジルコニウムアセチルアセトネート、アセチルアセトンジルコニウムブチレート、ジルコニウムラクテート、ステアリン酸ジルコニウムブチレート、テトラ(トリエタノールアミン)ジルコネート、テトライソプロピルジルコネート等が挙げられる。
 アルミニウムのアルコキシド化合物としては、例えば、アセトアルコキシアルミニウムジイソプロピレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート(アルキルの炭素数は1~20)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等が挙げられる。
 これらのアルコキシド化合物を単独又は複数を組み合わせて用いることができる。
 アルコキシド化合物の添加量は、特に限定されないが、単量体100重量部に対して、10重量部以下である。10重量部を超えると、単量体混合物を水系媒体中に懸濁・乳化する際に十分な液滴の分散安定性を保持できないため、粒子が得られないことがある。
 なお、ここで非反応性有機溶媒又はシリコンアルコキシドと比較し、加水分解性の高いチタン、ジルコニウム又はアルミニウムのアルコキシド化合物を添加しない場合や、増粘剤を添加しない場合には、マイクロカプセル内部には単一又は複数個の球状シリカ粒子が生成され、本発明の目的とするマイクロカプセル内部にシリカからなる多孔質構造を有する樹脂粒子を得ることはできない。
Examples of zirconium alkoxide compounds include zirconium butyrate, zirconium acetylacetonate, acetylacetone zirconium butyrate, zirconium lactate, zirconium stearate butyrate, tetra (triethanolamine) zirconate, and tetraisopropyl zirconate.
Examples of aluminum alkoxide compounds include acetoalkoxyaluminum diisopropylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), alkyl acetoacetate aluminum diisopropylate (alkyl has 1 to 20 carbon atoms), Aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate) and the like can be mentioned.
These alkoxide compounds can be used alone or in combination of two or more.
The amount of the alkoxide compound is not particularly limited, but is not more than 10 parts by weight based on 100 parts by weight of the monomer. When the amount exceeds 10 parts by weight, particles may not be obtained because sufficient dispersion stability of droplets cannot be maintained when the monomer mixture is suspended and emulsified in an aqueous medium.
Here, compared to the non-reactive organic solvent or silicon alkoxide, when not adding a highly hydrolyzable titanium, zirconium or aluminum alkoxide compound, or when not adding a thickener, the inside of the microcapsule Single or plural spherical silica particles are produced, and it is not possible to obtain resin particles having a porous structure made of silica inside the microcapsules intended for the present invention.
次に、乳化分散させた混合物は、その中の単量体を重合に付すことで、シリカ前駆体を内部に含むマイクロカプセルとなる。重合は、特に限定されず、混合物に含まれる単量体及び重合開始剤の種類に応じて、重合温度、重合時間等の諸条件を適宜調整しつつ行われる。例えば、重合温度を30~80℃、重合時間を1~20時間とすることができる。 Next, the emulsified and dispersed mixture is subjected to polymerization of the monomers therein to form microcapsules containing a silica precursor therein. The polymerization is not particularly limited, and is performed while appropriately adjusting various conditions such as a polymerization temperature and a polymerization time according to the types of the monomer and the polymerization initiator contained in the mixture. For example, the polymerization temperature can be 30 to 80 ° C., and the polymerization time can be 1 to 20 hours.
(2)ゲル化工程
 ゲル化工程では、乳化液中に存在するマイクロカプセル中のシリカ前駆体が、ゲル化反応によりシリカ粒子となることで複合粒子が得られる。ゲル化反応は、乳化液をアルカリ性(例えば、pH7以上、具体的にはpH10~14)に維持しつつ行うことが好ましい。アルカリ性の維持は、アンモニア水溶液、水酸化ナトリウム、水酸化カリウム等の塩基を乳化液に添加することによって行うことができる。塩基の添加量は、シリカ前駆体に対して、1~10当量であることが好ましい。
 ゲル化工程は、特に限定されず、シリカ前駆体がゲル化して、シリカ粒子となるために必要な条件(ゲル化のための温度、時間、撹拌速度等)下で行うことができる。例えば、ゲル化温度を30~80℃、ゲル化時間を1~24時間とすることができる。
 ゲル化工程は、潜在性pH調整剤の共存下で行ってもよい。潜在性pH調整剤を共存させることで、乳化液に添加される塩基の量を低減することが可能となる。例えば、塩基としてアンモニアを使用する場合、潜在性pH調整剤を共存させる場合は、アンモニア量を3当量以下(例えば、アンモニア未使用、0.01~3当量)に減らしても、効率よくゲル化を行うことができる。塩基を減らすことができることで、製造時の作業性を向上できるという効果を奏する。潜在性pH調整剤の使用量は、この剤の種類又は製造条件等により変動するが、例えば、シリカ前駆体100重量部に対して、0.01~10重量部であることが好ましい。使用量は、0.1~5重量部であることがより好ましい。
 潜在性pH調整剤とは、エネルギー放射線の照射、加熱等の外部刺激により、酸又は塩基を発生する物質が含まれる。エネルギー放射線とは、赤外線、可視光、及び紫外線等が挙げられる。
(2) Gelation Step In the gelation step, the silica precursor in the microcapsules present in the emulsion is converted into silica particles by a gelation reaction, whereby composite particles are obtained. The gelation reaction is preferably performed while maintaining the emulsion at an alkaline level (eg, pH 7 or higher, specifically pH 10 to 14). The alkalinity can be maintained by adding a base such as an aqueous ammonia solution, sodium hydroxide, or potassium hydroxide to the emulsion. The amount of the base to be added is preferably 1 to 10 equivalents to the silica precursor.
The gelation step is not particularly limited, and can be performed under conditions (temperature, time, stirring speed, and the like for gelation) necessary for the silica precursor to gel to become silica particles. For example, the gelling temperature can be 30 to 80 ° C., and the gelling time can be 1 to 24 hours.
The gelation step may be performed in the presence of a latent pH adjuster. The coexistence of the latent pH adjuster makes it possible to reduce the amount of base added to the emulsion. For example, when ammonia is used as a base, and when a latent pH adjuster is present, gelation can be performed efficiently even if the amount of ammonia is reduced to 3 equivalents or less (for example, ammonia not used, 0.01 to 3 equivalents). It can be performed. Since the number of bases can be reduced, there is an effect that workability during production can be improved. The amount of the latent pH adjuster varies depending on the type of the agent, production conditions, and the like, but is preferably, for example, 0.01 to 10 parts by weight based on 100 parts by weight of the silica precursor. The use amount is more preferably 0.1 to 5 parts by weight.
The latent pH adjuster includes a substance that generates an acid or a base by an external stimulus such as irradiation with energy radiation or heating. Energy radiation includes infrared rays, visible light, ultraviolet rays, and the like.
以下に潜在性pH調整剤の具体例を記載する。
 (i)加熱により酸が発生する潜在性pH調整剤(熱酸発生剤)としては、例えば、アリールジアゾニウム塩、スルホニウム塩、ヨードニウム塩、アンモニウム塩、ホスホニウム塩、オキソニウム塩、鉄−アレン錯体、芳香族シラノール・アンモニウム錯体、ジアリルヨードニウム塩−ジベンジルオキシ銅、イミダゾール誘導体、ベンジルスルホニウム塩、ヘミアセタールエステル、スルホン酸エステル等が挙げられる。
 また、例えば、ジシアンジアミド、シクロヘキシルp−トルエンスルホネート、ジフェニル(メチル)スルホニウムテトラフルオロボラート、4−ヒドロキシフェニルベンジルメチルスルホニウムテトラキス(ペンタフルオロフェニル)ボラート、(4−アセトキシフェニル)ベンジルメチルスルホニウムテトラキス(ペンタフルオロフェニル)ボラート、4−ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスホネート、ジ−tert−ブチルフェニルヨードニウムヘキサフルオロホスホネート、トリアリールスルホニウムヘキサフルオロホスホネート、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(4−フルオロフェニル)ヨードニウムトリフルオロメタンスルホネート、シクロプロピルジフェニルスルホニウムテトラフルオロボラート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホン酸、2−(3,4−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−[2−(フラン−2−イル)ビニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、2−[2−(5−メチルフラン−2−イル)ビニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、4−ニトロベンゼンジアゾニウムテトラフルオロボラート、(4−ニトロフェニル)(フェニル)ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムテトラフルオロボラート、トリフェニルスルホニウムブロミド、トリ−p−トリルスルホニウムヘキサフルオロホスフェート、トリ−p−トリルスルホニウムトリフルオロメタンスルホネート、(1R,2S,5R)−5−メチル−2−(プロパン−2−イル)シクロヘキシル4−メチルベンゼンスルホネート、ビス[4−n−アルキル(C10~13)フェニル)ヨードニウムヘキサフルオロフォスフェート、シクロヘキシル4−メチルベンゼンスルホネート等が挙げられる。
 また、市販品を用いてもよい。例えば、三新化学社製「サンエイドSI−60L、SI−100L、SI−150L」、みどり化学社製「TPS」、「DBPI」、ダウケミカル社製「UVI—6990」、チバガイギー社製「イルガキュア261」等が挙げられる。
Hereinafter, specific examples of the latent pH adjuster will be described.
(I) Examples of latent pH adjusters (thermal acid generators) that generate an acid upon heating include aryldiazonium salts, sulfonium salts, iodonium salts, ammonium salts, phosphonium salts, oxonium salts, iron-allene complexes, and aromatics Aromatic silanol / ammonium complex, diallyliodonium salt-dibenzyloxy copper, imidazole derivative, benzylsulfonium salt, hemiacetal ester, sulfonic acid ester and the like.
Also, for example, dicyandiamide, cyclohexyl p-toluenesulfonate, diphenyl (methyl) sulfonium tetrafluoroborate, 4-hydroxyphenylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate, (4-acetoxyphenyl) benzylmethylsulfonium tetrakis (pentafluoro Phenyl) borate, 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphonate, di-tert-butylphenyliodonium Hexafluorophosphonate, triaryl sulf Hexafluorophosphonate, bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-fluorophenyl) iodonium trifluoromethanesulfonate, cyclopropyldiphenylsulfonium tetrafluoroborate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoro Lomethanesulfonic acid, 2- (3,4-dimethoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (furan-2-yl) vinyl] -4, 6-bis (trichloromethyl) -1,3,5-triazine, 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, 2- [2- (5-methylfuran-2 Yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 4-nitrobenzenediazonium tetrafluoroborate, (4-nitrophenyl) (phenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium bromide, tri-p-tolylsulfonium hexafluorophosphate, tri-p- Tolylsulfonium trifluoromethanesulfonate, (1R, 2S, 5R) -5-methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonate, bis [4-n-alkyl (C10-13) phenyl) iodonium hexa H Oro phosphate, cyclohexyl 4-methylbenzenesulfonate and the like.
Moreover, you may use a commercial item. For example, "San Aid SI-60L, SI-100L, SI-150L" manufactured by Sanshin Chemical Co., Ltd., "TPS", "DBPI" manufactured by Midori Kagaku Co., Ltd., "UVI-6990" manufactured by Dow Chemical Company, "Irgacure 261" manufactured by Ciba Geigy Co., Ltd. And the like.
(ii)加熱により塩基が発生する潜在性pH調整剤(熱塩基発生剤)としては、例えば、1,2−ジイソプロピル−3−[ビス(ジメチルアミノ)メチレン]グアジニウム2−(3−ベンゾイルフェニル)プロピオネート、1,2−ジシクロヘキシル−4,4,5,5−テトラメチルビグアジニウムn−ブチルトリフェニルボレート、(Z)−{[ビス(ジメチルアミノ)メチリデン]アミノ}−N−シクロヘキシル(シクロヘキシルアミノ)メタンイミニウムテトラキス(3−フルオロフェニル)ボレート、アセトフェノンO−ベンゾイルオキシム、シクロヘキシルカルバミン酸1,2−ビス(4−メトキシフェニル)−2−オキソエチル、1,4−ジヒドロ−2,6−ジメチル−4−(2−ニトロフェニル)−3,5−ピリジンジカルボン酸ジメチル、シクロヘキシルカルバミン酸2−ニトロベンジル、2−(9−オキソキサンテン−2−イル)プロピオン酸1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン2−(9−オキソキサンテン−2−イル)プロピオン酸1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン等が挙げられる。 (Ii) Examples of the latent pH adjuster (thermal base generator) that generates a base upon heating include 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guadinium 2- (3-benzoylphenyl) Propionate, 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguadinium n-butyltriphenylborate, (Z)-{[bis (dimethylamino) methylidene] amino} -N-cyclohexyl (cyclohexylamino ) Methaniminium tetrakis (3-fluorophenyl) borate, acetophenone O-benzoyloxime, 1,2-bis (4-methoxyphenyl) -2-oxoethyl cyclohexylcarbamate, 1,4-dihydro-2,6-dimethyl- 4- (2-nitrophenyl) -3,5-pyridinedical Dimethyl phosphate, 2-nitrobenzyl cyclohexylcarbamate, 1,5,7-triazabicyclo [4.4.0] dec-5-ene 2- (2- (9-oxoxanthen-2-yl) propionate ( 9-oxoxanthen-2-yl) propionate 1,5,7-triazabicyclo [4.4.0] dec-5-ene.
(iii)エネルギー放射線の照射により酸が発生する潜在性pH調整剤(光酸発生剤)としては、ビス(シルロヘキシルスルホニル)ジアゾメタン、2−メチル−2−[(4−メチルフェニル)スルホニル]−1−[4−(メチルチオ)フェニル]−1−プロパノン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(4−メチルフェニルスルホニル)ジアゾメタン、ジフェニル−4−メチルフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル−2,4,6−トリメチルフェニルスルホニウムp−トルエンスルホネート、ジフェニル(4−メトキシフェニル)スルホニウムトリフルオロメタンスルホネート、4−メチルフェニルジフェニルスルホニウムノナフルオロブタンスルホネート、トリス(4−メチルフェニル)スルホニウムノナフルオロブタンスルホネート、(1R,2S,5R)−5−メチル−2−(プロパン−2−イル)シクロヘキシル4−メトキシベンゼンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(4−フルオロフェニル)ヨードニウムトリフルオロメタンスルホネート、シクロプロピルジフェニルスルホニウムテトラフルオロボラート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホン酸、2−(3,4−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−[2−(フラン−2−イル)ビニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、2−[2−(5−メチルフラン−2−イル)ビニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、4−ニトロベンゼンジアゾニウムテトラフルオロボラート、(4−ニトロフェニル)(フェニル)ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムテトラフルオロボラート、トリフェニルスルホニウムブロミド、トリ−p−トリルスルホニウムヘキサフルオロホスフェート、トリ−p−トリルスルホニウムトリフルオロメタンスルホネート等が挙げられる。
 また、市販品を用いてもよい。例えば、三新化学社製「サンエイドSI−60L、SI−100L、SI−150L」、みどり化学社製「BBI−109」、「TPS」、「DBPI」、ダウケミカル社製「UVI−6990」、チバガイギー社製「イルガキュア261」等が挙げられる。
(Iii) Bis (sillohexylsulfonyl) diazomethane, 2-methyl-2-[(4-methylphenyl) sulfonyl] as a latent pH adjuster (photoacid generator) that generates an acid upon irradiation with energy radiation -1- [4- (methylthio) phenyl] -1-propanone, bis (tert-butylsulfonyl) diazomethane, bis (4-methylphenylsulfonyl) diazomethane, diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate, diphenyl-2, 4,6-trimethylphenylsulfonium p-toluenesulfonate, diphenyl (4-methoxyphenyl) sulfonium trifluoromethanesulfonate, 4-methylphenyldiphenylsulfonium nonafluorobutanesulfonate, tris (4-methylphen B) sulfonium nonafluorobutanesulfonate, (1R, 2S, 5R) -5-methyl-2- (propan-2-yl) cyclohexyl 4-methoxybenzenesulfonate, bis (4-tert-butylphenyl) iodonium hexafluorophosphate, Bis (4-fluorophenyl) iodonium trifluoromethanesulfonate, cyclopropyldiphenylsulfonium tetrafluoroborate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonic acid, 2- (3,4-dimethoxystyryl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- [2- (furan-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 4-a Propyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, 2- [2- (5-methylfuran-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5- Triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 4-nitrobenzenediazonium tetrafluoroborate, (4-nitrophenyl) (phenyl) iodonium trifluoromethane Examples include sulfonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium bromide, tri-p-tolylsulfonium hexafluorophosphate, and tri-p-tolylsulfonium trifluoromethanesulfonate.
Moreover, you may use a commercial item. For example, "San-Aid SI-60L, SI-100L, SI-150L" manufactured by Sanshin Chemical Co., Ltd., "BBI-109", "TPS", "DBPI" manufactured by Midori Chemical Co., "UVI-6990" manufactured by Dow Chemical Company, "Irgacure 261" manufactured by Ciba Geigy and the like can be mentioned.
(iv)エネルギー放射線の照射により塩基が発生する潜在性pH調整剤(光塩基発生剤)としては、(Z)−{[ビス(ジメチルアミノ)メチリデン]アミノ}−N−シクロヘキシル(シクロヘキシルアミノ)メタンイミニウムテトラキス(3−フルオロフェニル)ボレート、1,2−ジシクロヘキシル−4,4,5,5−テトラメチルビグアジニウムn−ブチルロリフェニルボレート、1,2−ジイソプロピル−3−[ビス(ジメチルアミノ)メチレン]グアジニウム2−(3−ベンゾイルフェニル)プロピオネート、9−アンスリルメチルN,N−ジエチルカルバメート、(E)−1−ピペリジノ−3−(2−ヒドロキシフェニル)−2−プロペン−1−オン、1−(アントラキノン−2−イル)エチルイミダゾールカルボキシレート、2−ニトロフェニルメチル4−メタクリロイルオキシピペリジン−1−カルボキシレート、アセトフェノンO−ベンゾイルオキシム、シクロヘキシルカルバミン酸1,2−ビス(4−メトキシフェニル)−2−オキソエチル、1,4−ジヒドロ−2,6−ジメチル−4−(2−ニトロフェニル)−3,5−ピリジンジカルボン酸ジメチル、シクロヘキシルカルバミン酸2−ニトロベンジル、2−(9−オキソキサンテン−2−イル)プロピオン酸、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、2−(9−オキソキサンテン−2−イル)プロピオン酸1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン等が挙げられる。 (Iv) Examples of latent pH adjusters (photobase generators) that generate bases upon irradiation with energy radiation include (Z)-{[bis (dimethylamino) methylidene] amino} -N-cyclohexyl (cyclohexylamino) methane Iminium tetrakis (3-fluorophenyl) borate, 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguadinium n-butylloriliphenyl borate, 1,2-diisopropyl-3- [bis (dimethylamino ) Methylene] guadinium 2- (3-benzoylphenyl) propionate, 9-anthrylmethyl N, N-diethylcarbamate, (E) -1-piperidino-3- (2-hydroxyphenyl) -2-propen-1-one , 1- (anthraquinon-2-yl) ethylimidazole carboxylate 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, acetophenone O-benzoyloxime, 1,2-bis (4-methoxyphenyl) -2-oxoethyl cyclohexylcarbamate, 1,4-dihydro-2,6 -Dimethyl-4- (2-nitrophenyl) -3,5-pyridinedicarboxylate, 2-nitrobenzyl cyclohexylcarbamate, 2- (9-oxoxanthen-2-yl) propionic acid, 1,5,7- Triazabicyclo [4.4.0] dec-5-ene, 1,5,7-triazabicyclo [4.4.0] dec-5- (2- (9-oxoxanthen-2-yl) propionate) And the like.
潜在性pH調整剤の添加時期は、少なくともゲル化時に外殻により区画された空洞内に、当該潜在性pH調整剤が存在していさえすれば、特に限定されない。例えば、懸濁重合時のシリカ前駆体と単量体とを含む混合物中に潜在性pH調整剤を溶解させることにより空洞内に存在させることができる。潜在性pH調整剤を使用する場合は、ゲル化温度を35~180℃、ゲル化時間を0.1~48時間とすることができる。 The timing of adding the latent pH adjuster is not particularly limited as long as the latent pH adjuster is present at least in the cavity defined by the outer shell during gelation. For example, the latent pH adjuster can be made to exist in the cavity by dissolving the latent pH adjuster in a mixture containing the silica precursor and the monomer during suspension polymerization. When a latent pH adjuster is used, the gelation temperature can be 35 to 180 ° C., and the gelation time can be 0.1 to 48 hours.
(3)その他の工程
 ゲル化工程後の複合粒子は、必要に応じて、遠心分離、水洗及び乾燥を経ることで、乳化液から取り出すことができる。
(3) Other Steps The composite particles after the gelation step can be taken out of the emulsion by subjecting them to centrifugation, washing with water and drying as necessary.
なお、本発明の第2実施形態による有機無機複合粒子の製造方法は、ラジカル重合性の単官能単量体及び架橋性単量体と、シリカ前駆体としてのシリコンアルコキシドと、無機系増粘剤とを含む混合物を、ラジカル重合開始剤の存在下かつ有機溶媒の非存在下、水系媒体中で懸濁重合させることで、架橋ポリマーから構成される外殻を形成する「外殻形成工程」と、外殻の形成後又は外殻の形成と同時にシリコンアルコキシドから、外殻の内部にシリカ粒子が互いに連結された多孔質構造体を形成する「多孔質構造体形成工程」とを備えている。 The method for producing the organic-inorganic composite particles according to the second embodiment of the present invention comprises a radical-polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener. A mixture containing the radical polymerization initiator and in the absence of an organic solvent, in an aqueous medium by suspension polymerization to form an outer shell composed of a crosslinked polymer, and And a "porous structure forming step" of forming a porous structure in which silica particles are connected to each other inside the shell from the silicon alkoxide after or simultaneously with the formation of the shell.
(1)外殻形成工程
 混合物には、ラジカル重合性の単官能単量体及び架橋性単量体と、シリカ前駆体としてのシリコンアルコキシドと、無機系増粘剤とが含まれている。
 ラジカル重合性の単官能単量体は、例えば、ビニル基を1つ有する単量体であり、ラジカル重合性の架橋性単量体は、例えば、ビニル基を2つ以上有する単量体である。
 ラジカル重合性の単官能単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等の炭素数1~16のアルキル(メタ)アクリレート;(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、無水マレイン酸、N−ビニルカルバゾール;スチレン、α−メチルスチレン、パラメチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系単量体等が挙げられる。これらの単官能単量体を単独又は複数を組み合わせて用いることができる。
(1) Shell Formation Step The mixture contains a radically polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener.
The radical polymerizable monofunctional monomer is, for example, a monomer having one vinyl group, and the radical polymerizable crosslinkable monomer is, for example, a monomer having two or more vinyl groups. .
Examples of the radically polymerizable monofunctional monomer include alkyl (meth) acrylates having 1 to 16 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate. ; (Meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, maleic anhydride, N-vinylcarbazole; styrene, α-methylstyrene, paramethylstyrene, vinyltoluene, chlorostyrene, ethylstyrene And styrene-based monomers such as i-propylstyrene, dimethylstyrene, and bromostyrene. These monofunctional monomers can be used alone or in combination of two or more.
ラジカル重合性の架橋性単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の多官能アクリルエステル、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド等の多官能アクリルアミド誘導体、ジアリルアミン、テトラアリロキシエタン等の多官能アリル誘導体等、ジビニルベンゼン等の芳香族系ジビニル化合物等が挙げられる。これらの架橋性単量体を単独又は複数を組み合わせて用いることができる。
 架橋性単量体は、単官能単量体100重量部に対して、20~150重量部の割合で混合物中に含まれていることが好ましい。架橋性単量体の含有量が20重量部未満の場合、十分な強度を有する外殻が形成されないことがある。含有量が150重量部より多い場合、外殻が形成されないことがある。含有量は、80~120重量部であることがより好ましい。
Examples of the radical polymerizable crosslinkable monomer include polyfunctional acrylic esters such as ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and glycerin tri (meth) acrylate, and N, N′-methylenebis ( Examples thereof include polyfunctional acrylamide derivatives such as (meth) acrylamide and N, N'-ethylenebis (meth) acrylamide; polyfunctional allyl derivatives such as diallylamine and tetraallyloxyethane; and aromatic divinyl compounds such as divinylbenzene. These crosslinkable monomers can be used alone or in combination.
The crosslinkable monomer is preferably contained in the mixture at a ratio of 20 to 150 parts by weight based on 100 parts by weight of the monofunctional monomer. When the content of the crosslinking monomer is less than 20 parts by weight, an outer shell having sufficient strength may not be formed. When the content is more than 150 parts by weight, an outer shell may not be formed. The content is more preferably 80 to 120 parts by weight.
シリカ前駆体としてのシリコンアルコキシドとしては、同一分子内に1つ以上のケイ素原子とアルコキシ基(例えば、炭素数1~4)を有するシリコンアルコキシドが挙げられる。具体的には、テトラエトキシシラン(TEOS)、テトラメトキシシラン、テトラプロポキシシラン等が挙げられる。また、テトラメトキシシランの部分加水分解オリゴマーであるメチルシリケートオリゴマー(三菱化学社製 商品名;MKCシリケート)、テトラエトキシシランの部分加水分解オリゴマーであるエチルシリケートオリゴマー(多摩化学社製 製品名;シリケート45(5量体)、シリケート48(10量体))、シロキサンオリゴマー等のオリゴマーが挙げられる。これらのシリカ前駆体を単独又は複数を組み合わせて用いることができる。このうち、単官能のシリカ前駆体として、テトラエトキシシランが、オリゴマーであるシリカ前駆体として、エチルシリケートオリゴマーが好ましい。
 シリカ前駆体は、単官能単量体100重量部に対して、60~400重量部の割合で混合物中に含まれていることが好ましい。シリカ前駆体の含有量が60重量部未満の場合、十分な光学性能を有する粒子が得られないことがある。含有量が400重量部より多い場合、外殻の構成成分が相対的に減少するため、十分な強度を有する粒子が得られないことがある。含有量は、70~270重量部がより好ましく、80~250重量部であることが更に好ましい。
Examples of the silicon alkoxide as the silica precursor include a silicon alkoxide having one or more silicon atoms and an alkoxy group (for example, having 1 to 4 carbon atoms) in the same molecule. Specific examples include tetraethoxysilane (TEOS), tetramethoxysilane, tetrapropoxysilane, and the like. In addition, methyl silicate oligomer (MKC silicate, trade name, manufactured by Mitsubishi Chemical Corporation) which is a partially hydrolyzed oligomer of tetramethoxysilane, and ethyl silicate oligomer (product name, silicate 45, manufactured by Tama Chemical Co., Ltd.) which is a partially hydrolyzed oligomer of tetraethoxysilane (Pentamer), silicate 48 (10-mer)), and oligomers such as siloxane oligomers. These silica precursors can be used alone or in combination of two or more. Among them, tetraethoxysilane is preferable as a monofunctional silica precursor, and ethylsilicate oligomer is preferable as a silica precursor which is an oligomer.
The silica precursor is preferably contained in the mixture at a ratio of 60 to 400 parts by weight based on 100 parts by weight of the monofunctional monomer. When the content of the silica precursor is less than 60 parts by weight, particles having sufficient optical performance may not be obtained. When the content is more than 400 parts by weight, the components of the outer shell are relatively reduced, so that particles having sufficient strength may not be obtained. The content is more preferably 70 to 270 parts by weight, further preferably 80 to 250 parts by weight.
無機系増粘剤としては、有機溶媒の非存在下で、複合粒子を製造できさえすれば特に限定されない。例えば、混合物の粘度を25℃において、0.90mPa・s以上に調整可能な無機系増粘剤が好適に使用できる。この粘度範囲の混合物を使用することで、外殻で区画されたマイクロカプセル内のシリカ前駆体の移動を抑制でき、その結果、マイクロカプセル内の多孔質化を促進できる。粘度が0.90mPa・s未満の場合、この抑制効果が不十分となり、マイクロカプセル内部が多孔質化した粒子を得られないことがある。粘度は、0.9~1000mPa・sの範囲がより好ましい。
 無機系増粘剤としては、無水ケイ酸又は粘土鉱物等が挙げられる。粘土鉱物としては、ベントナイト、モンモリロナイト、サポナイト、バイデライト、ヘクトライト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土、バーミキュライト、ハロイサイト、膨潤性マイカ、ゼオライト、アタパルジャイト等の天然粘土、もしくは合成粘土が挙げられる。これらは、マイクロカプセル内のシリコンアルコキシドの粘度を高める効果を有することから、シリカ前駆体の移動を抑制し、マイクロカプセル内の多孔質化を促進し得る。このうち、シリコンアルコキシドへの分散が容易であることから、無水ケイ酸が好ましく、疎水性シリカ粒子がより好ましい。なお、ここでの疎水性は、有機シラン又はシリコーンオイル等の疎水化剤によって表面処理がなされたことを意味する。
The inorganic thickener is not particularly limited as long as composite particles can be produced in the absence of an organic solvent. For example, an inorganic thickener capable of adjusting the viscosity of the mixture to 0.90 mPa · s or more at 25 ° C. can be suitably used. By using a mixture having this viscosity range, the movement of the silica precursor in the microcapsule partitioned by the outer shell can be suppressed, and as a result, the porosity in the microcapsule can be promoted. If the viscosity is less than 0.90 mPa · s, the effect of suppressing this becomes insufficient, and it may not be possible to obtain particles having a porous inside microcapsule. The viscosity is more preferably in the range of 0.9 to 1000 mPa · s.
Examples of the inorganic thickener include silicic anhydride and clay minerals. Examples of the clay mineral include natural clays such as bentonite, montmorillonite, saponite, beidellite, hectorite, stevensite, sauconite, nontronite, etc., vermiculite, halloysite, swelling mica, zeolite, attapulgite and other natural clays, or synthetic clays. Can be Since these have the effect of increasing the viscosity of the silicon alkoxide in the microcapsules, they can suppress the movement of the silica precursor and promote the porosity in the microcapsules. Of these, silicic anhydride is preferred because of easy dispersion in silicon alkoxide, and hydrophobic silica particles are more preferred. Here, the hydrophobicity means that the surface treatment has been performed with a hydrophobicizing agent such as an organic silane or silicone oil.
疎水化剤としては、例えば、ヘキサメチルジシラザン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、トリメチルシラン、トリメチルクロロシラン、トリメチルエトキシシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α−クロロエチルトリクロロシラン、β−クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサン、ジメチルポリシロキサン、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、1,6−ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、加水分解性基含有シロキサン、オクタメチルシクロテトラシロキサン等の有機シランジメチルシリコーンオイル、アルキル変性シリコーンオイル(アルキルは、例えば炭素数1~3)、γ−メチルスチレン変性シリコーンオイル、クロロフェニルシリコーンオイル、フッ素変性シリコーンオイル、メチル水素シリコーンオイル等のシリコーンオイル等が挙げられる。 As the hydrophobizing agent, for example, hexamethyldisilazane, vinyltriethoxysilane, vinyltrimethoxysilane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, Benzyldimethylchlorosilane, bromomethyldimethylchlorosilane, α-chloroethyltrichlorosilane, β-chloroethyltrichlorosilane, chloromethyldimethylchlorosilane, triorganosilylmercaptan, trimethylsilylmercaptan, triorganosilyl acrylate, vinylmethylacetoxysilane, dimethylethoxysilane, Dimethyldimethoxysilane, diphenyldiethoxysilane, hexamethyldisiloxane 1,3-divinyltetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane, dimethylpolysiloxane, methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, n-propyltrimethoxy Silane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, hexadecyltriethoxysilane, hexadecyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 1,6-bis ( Methoxysilyl) hexane, trifluoropropyltrimethoxysilane, hydrolyzable group-containing siloxane, organosilanedimethylsilicone oil such as octamethylcyclotetrasiloxane, alkyl-modified silicone oil (alkyl is, for example, having 1 to 3 carbon atoms), γ- Examples thereof include silicone oils such as methylstyrene-modified silicone oil, chlorophenyl silicone oil, fluorine-modified silicone oil, and methyl hydrogen silicone oil.
疎水化剤での表面処理は、特に限定されず、公知の方法をいずれも使用できる。例えば、疎水化剤を媒体に分散又は溶解させた液中へシリカ成分を浸漬し、媒体を除去する方法、この液をシリカ成分に噴霧し、媒体を除去する方法が挙げられる。
 また、疎水性シリカ粒子は、15m/g以上のBET法による比表面積を有することが好ましい。比表面積が15m/g未満の場合、マイクロカプセル内のシリコンアルコキシドの増粘効果が不十分となり、カプセル内にシリカ多孔質構造を形成できないことがある。比表面積は、15~330m/gであることがより好ましく、90~290m/gであることが更に好ましい。なお、BET法による比表面積は、例えば、DIN66131により測定される。
The surface treatment with the hydrophobizing agent is not particularly limited, and any known method can be used. For example, there is a method of immersing a silica component in a liquid in which a hydrophobizing agent is dispersed or dissolved in a medium to remove the medium, and a method of spraying the liquid onto the silica component to remove the medium.
In addition, the hydrophobic silica particles preferably have a specific surface area of 15 m 2 / g or more by a BET method. When the specific surface area is less than 15 m 2 / g, the effect of thickening the silicon alkoxide in the microcapsules becomes insufficient, and a porous silica structure may not be formed in the capsules. The specific surface area is more preferably from 15 to 330 m 2 / g, even more preferably from 90 to 290 m 2 / g. The specific surface area by the BET method is measured, for example, according to DIN 66131.
疎水性シリカ粒子としては、EVONIK社から市販されている疎水性フュームドシリカAEROSIL(商品名)シリーズ(例えば、R972、R974、R104、R106、R202、R208、R805、R812、R812S、R816、R7200、R8200、R9200、R711、RY50、NY50、NY50L、RX50、NAX50、RX200、RX300、R504、NX90S、NX90G、RY300、REA90、REA200、RY51、NA50Y、RA200HS、NA50H、NA130K、NA200Y、NX130、RY200、RY200S、RY200L、R709、R976S等)、旭化成社から市販されている高分散シリカWACKER HDK(商品名)の疎水グレード(例えば、H15、H18、H20、H30等)等が挙げられる。これらの疎水性シリカ粒子を単独又は複数を組み合わせて用いることができる。
 疎水性シリカ粒子は、混合物100重量部に対して、0.5~100重量部の割合で混合物中に含まれていることが好ましい。疎水性シリカ粒子の含有量が0.5重量部未満の場合、マイクロカプセル内のシリコンアルコキシドの増粘効果が不十分となり、カプセル内にシリカ多孔質構造を形成できないことがある。含有量が100重量部より多い場合、マイクロカプセルの形成が不十分となることがある。含有量は、0.5~25重量部がより好ましく2.5~15重量部であることが更に好ましい。
 なお、疎水性シリカ粒子は、シリコンアルコキシドに由来するシリカ粒子と混然一体となっていると推測される。
Examples of the hydrophobic silica particles include hydrophobic fumed silica AEROSIL (trade name) series commercially available from EVONIK (eg, R972, R974, R104, R106, R202, R208, R805, R812, R812S, R816, R7200, R8200, R9200, R711, RY50, NY50, NY50L, RX50, NAX50, RX200, RX300, R504, NX90S, NX90G, RY300, REA90, REA200, RY51, NA50Y, RA200HS, NA50H, NA130K, NA200Y, NX130R RY200L, R709, R976S, etc.), hydrophobic grades of highly dispersed silica WACKER HDK (trade name) commercially available from Asahi Kasei Corporation (for example, H15, H18, H20, H30, etc.). These hydrophobic silica particles can be used alone or in combination of two or more.
The hydrophobic silica particles are preferably contained in the mixture at a ratio of 0.5 to 100 parts by weight with respect to 100 parts by weight of the mixture. When the content of the hydrophobic silica particles is less than 0.5 part by weight, the effect of increasing the viscosity of the silicon alkoxide in the microcapsules becomes insufficient, and a silica porous structure may not be formed in the capsules. When the content is more than 100 parts by weight, formation of microcapsules may be insufficient. The content is more preferably 0.5 to 25 parts by weight, even more preferably 2.5 to 15 parts by weight.
In addition, it is assumed that the hydrophobic silica particles are mixed with silica particles derived from silicon alkoxide.
外殻形成工程では、まず、シリカ前駆体と単量体と無機系増粘剤とを含む混合物を水性媒体中に乳化により分散させる。なお、単量体の使用量と、外殻を構成する単量体由来成分の含有量は、実質的に一致している。
 乳化分散は、特に限定されず、所望の粒径の複合粒子が得られるように、撹拌速度、撹拌時間等の諸条件を適宜調整しつつ行われる。
In the outer shell forming step, first, a mixture containing a silica precursor, a monomer, and an inorganic thickener is dispersed in an aqueous medium by emulsification. The amount of the monomer used and the content of the component derived from the monomer constituting the outer shell substantially match.
The emulsification and dispersion are not particularly limited, and are performed while appropriately adjusting various conditions such as a stirring speed and a stirring time so as to obtain composite particles having a desired particle size.
単量体の重合は、ラジカル重合開始剤の存在下かつ有機溶媒の非存在下で行われる。ここでの有機溶媒は、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、デカン、ヘキサデカン、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等の疎水性有機溶媒である(ここでの疎水性は、25℃における水への溶解度が10g/100g(水)未満であることを意味する)。なお、この有機溶媒には、低級アルコール(例えば、メタノール、エタノール等)の水溶性有機溶媒は含まれない(ここでの水溶性は、25℃における水への溶解度が10g/100g(水)以上であることを意味する)。 The polymerization of the monomer is carried out in the presence of a radical polymerization initiator and in the absence of an organic solvent. The organic solvent here is, for example, pentane, hexane, cyclohexane, heptane, decane, hexadecane, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl chloride, methylene chloride, chloroform, carbon tetrachloride, etc. It is a hydrophobic organic solvent (hydrophobic here means that the solubility in water at 25 ° C. is less than 10 g / 100 g (water)). In addition, this organic solvent does not include a water-soluble organic solvent of a lower alcohol (for example, methanol, ethanol, or the like) (the water solubility here indicates that the solubility in water at 25 ° C. is 10 g / 100 g (water) or more). That is).
前記ラジカル重合開始剤及び水性媒体は、前記第1実施形態の製造方法と同じ種類及び添加量で用いることができる。 The radical polymerization initiator and the aqueous medium can be used in the same types and amounts as in the production method of the first embodiment.
更に、重合は、シリコンアルコキシドと比較し、加水分解性の高いチタン、ジルコニウム又はアルミニウムのアルコキシド化合物の存在下で行うことにより、容易にカプセル内にシリカ多孔質構造を形成できる。これら化合物は、シリコンアルコキシドのようなシリカ前駆体よりも加水分解性が高いため、マイクロカプセル内でゲル化し、シリカ前駆体のカプセル内での移動を抑制して、多孔質化を促進する効果があると本発明者等は考えている。 Furthermore, by performing polymerization in the presence of an alkoxide compound of titanium, zirconium or aluminum, which has a higher hydrolyzability than silicon alkoxide, a silica porous structure can be easily formed in the capsule. These compounds are more hydrolyzable than silica precursors such as silicon alkoxides, so they gel in microcapsules, suppress the movement of silica precursors in capsules, and have the effect of promoting porosity. The present inventors believe that there is.
チタンのアルコキシド化合物、ジルコニウムのアルコキシド化合物、及びアルミニウムのアルコキシド化合物等のアルコキシド化合物は、前記第1実施形態の製造方法と同じ種類及び添加量で用いることができる。 An alkoxide compound such as an alkoxide compound of titanium, an alkoxide compound of zirconium, and an alkoxide compound of aluminum can be used in the same kind and amount as in the production method of the first embodiment.
次に、乳化分散させた混合物は、その中の単量体を重合に付すことで、シリカ前駆体を内部に含むマイクロカプセルとなる。重合は、特に限定されず、混合物に含まれる単量体及び重合開始剤の種類に応じて、重合温度、重合時間等の諸条件を適宜調整しつつ行われる。例えば、重合温度を30~80℃、重合時間を1~20時間とすることができる。 Next, the emulsified and dispersed mixture is subjected to polymerization of the monomers therein to form microcapsules containing a silica precursor therein. The polymerization is not particularly limited, and is performed while appropriately adjusting various conditions such as a polymerization temperature and a polymerization time according to the types of the monomer and the polymerization initiator contained in the mixture. For example, the polymerization temperature can be 30 to 80 ° C., and the polymerization time can be 1 to 20 hours.
(2)多孔質構造体形成工程
 多孔質構造体形成工程は、前記第1実施形態の製造方法における「(2)ゲル化工程」と実質的に同様に行うことから、ここでは説明を省略する。
(2) Porous Structure Forming Step The porous structure forming step is performed substantially in the same manner as the “(2) gelling step” in the manufacturing method of the first embodiment, and therefore the description is omitted here. .
(3)その他の工程
 多孔質構造体形成工程後の複合粒子は、必要に応じて、遠心分離、水洗及び乾燥を経ることで、乳化液から取り出すことができる。
(3) Other Steps The composite particles after the porous structure forming step can be taken out of the emulsion by, if necessary, undergoing centrifugation, washing and drying.
(用途)
 複合粒子は、化粧料、塗料組成物、断熱性樹脂組成物、光拡散性樹脂組成物、及び光拡散フィルム等の用途として使用することができる。
 (1)化粧料
 化粧料は、複合粒子を1~40重量%の範囲で含んでいることが好ましい。
 化粧料としては、石鹸、ボディシャンプー、洗顔クリーム、スクラブ洗顔料等の洗浄用化粧品、化粧水、クリーム、乳液、パック類、おしろい類、ファンデーション、口紅、リップクリーム、頬紅、眉目化粧品、マニキュア化粧品、洗髪用化粧品、染毛料、整髪料、芳香性化粧品、歯磨き、浴用剤、制汗剤、日焼け止め製品、サンタン製品、ボディーパウダー、ベビーパウダー等のボディー用化粧料、ひげ剃り用クリーム、プレシェーブローション、アフターシェーブローション、ボディローション等のローション等が挙げられる。
(Application)
The composite particles can be used for applications such as cosmetics, coating compositions, heat-insulating resin compositions, light-diffusing resin compositions, and light-diffusing films.
(1) Cosmetic The cosmetic preferably contains the composite particles in a range of 1 to 40% by weight.
Cosmetics include soaps, body shampoos, facial cleansers, facial cleansers, scrubs, etc. Cosmetics for hair washing, hair coloring, hair styling, aromatic cosmetics, toothpaste, bath preparation, antiperspirant, sunscreen products, suntan products, body cosmetics such as body powder, baby powder, shaving cream, pre-shaving lotion, Lotions such as aftershave lotion and body lotion.
また、本発明の効果を損なわない範囲で、化粧料に一般に用いられている成分を目的に応じて配合できる。そのような成分として、例えば、水、低級アルコール、油脂及びロウ類、炭化水素、高級脂肪酸、高級アルコール、ステロール、脂肪酸エステル、金属石鹸、保湿剤、界面活性剤、高分子化合物、色材原料、香料、防腐・殺菌剤、酸化防止剤、紫外線吸収剤、特殊配合成分が挙げられる。
 油脂及びロウ類としてはアボガド油、アーモンド油、オリーブ油、カカオ脂、牛脂、ゴマ油、小麦胚芽油、サフラワー油、シアバター、タートル油、椿油、パーシック油、ひまし油、ブドウ油、マカダミアナッツ油、ミンク油、卵黄油、モクロウ、ヤシ油、ローズヒップ油、硬化油、シリコーン油、オレンジラフィー油、カルナバロウ、キャンデリラロウ、鯨ロウ、ホホバ油、モンタンロウ、ミツロウ、ラノリン等が挙げられる。
 炭化水素としては、流動パラフィン、ワセリン、パラフィン、セレシン、マイクロクリスタリンワックス、スクワラン等が挙げられる。高級脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、ウンデシレン酸、オキシステアリン酸、リノール酸、ラノリン脂肪酸、合成脂肪酸が挙げられる。
In addition, components generally used in cosmetics can be blended according to the purpose within a range that does not impair the effects of the present invention. As such components, for example, water, lower alcohols, fats and waxes, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid esters, metal soaps, humectants, surfactants, polymer compounds, coloring material raw materials, Perfumes, preservatives / bactericides, antioxidants, ultraviolet absorbers, and special compounding ingredients.
Oils and waxes include avocado oil, almond oil, olive oil, cocoa butter, beef tallow, sesame oil, wheat germ oil, safflower oil, shea butter, turtle oil, camellia oil, persic oil, castor oil, grape oil, macadamia nut oil, mink Examples include oil, egg yolk oil, mokuro, coconut oil, rosehip oil, hardened oil, silicone oil, orange roughy oil, carnauba wax, candelilla wax, whale wax, jojoba oil, montan wax, beeswax, lanolin and the like.
Examples of the hydrocarbon include liquid paraffin, vaseline, paraffin, ceresin, microcrystalline wax, squalane, and the like. Higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, and synthetic fatty acids.
高級アルコールとしては、ラウリルアルコール、セチルアルコール、セトステアリルアルコール、ステアリルアルコール、オレイルアルコール、ベヘニルアルコール、ラノリンアルコール、水素添加ラノリンアルコール、ヘキシルデカノール、オクチルデカノール、イソステアリルアルコール、ホホバアルコール、デシルテトラデカノール等が挙げられる。
 ステロールとしては、コレステロール、ジヒドロコレステロール、フィトコレステロール等が挙げられる。
 脂肪酸エステルとしては、リノール酸エチル、ミリスチン酸イソプロピル、ラノリン脂肪酸イソプロピル、ラウリン酸ヘキシル、ミリスチン酸ミリスチル、ミリスチン酸セチル、ミリスチン酸オクチルドデシル、オレイン酸デシル、オレイン酸オクチルドデシル、ジメチルオクタン酸ヘキサデシル、イソオクタン酸セチル、パルミチン酸デシル、トリミリスチン酸グリセリン、トリ(カプリル・カプリン酸)グリセリン、ジオレイン酸プロピレングリコール、トリイソステアリン酸グリセリン、トリイソオクタン酸グリセリン、乳酸セチル、乳酸ミリスチル、リンゴ酸ジイソステアリル又はイソステアリン酸コレステリル、12−ヒドロキシステアリン酸コレステリル等の環状アルコール脂肪酸エステル等が挙げられる。
As higher alcohols, lauryl alcohol, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyldecanol, octyldecanol, isostearyl alcohol, jojoba alcohol, decyltetradecanol, etc. No.
Sterols include cholesterol, dihydrocholesterol, phytocholesterol and the like.
Fatty acid esters include ethyl linoleate, isopropyl myristate, isopropyl lanolin fatty acid, hexyl laurate, myristyl myristate, cetyl myristate, octyl dodecyl myristate, decyl oleate, octyl dodecyl oleate, hexadecyl dimethyl octanoate, isooctanoic acid Cetyl, decyl palmitate, glyceryl trimmyristate, glycerin tri (caprylate / caprate), propylene glycol dioleate, glycerin triisostearate, glycerin triisooctanoate, cetyl lactate, myristyl lactate, diisostearyl malate or cholesteryl isostearate And cyclic alcohol fatty acid esters such as cholesteryl 12-hydroxystearate.
金属石鹸としては、ラウリン酸亜鉛、ミリスチン酸亜鉛、ミリスチン酸マグネシウム、パルミチン酸亜鉛、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ウンデシレン酸亜鉛等が挙げられる。
 保湿剤としては、グリセリン、プロピレングリコール、1,3−ブチレングリコール、ポリエチレングリコール、dl−ピロリドンカルボン酸ナトリウム、乳酸ナトリウム、ソルビトール、ヒアルロン酸ナトリウム、ポリグリセリン、キシリット、マルチトール等が挙げられる。
 界面活性剤としては、高級脂肪酸石鹸、高級アルコール硫酸エステル、N−アシルグルタミン酸塩、リン酸エステル塩等のアニオン性界面活性剤、アミン塩、第4級アンモニウム塩等のカチオン性界面活性剤、ベタイン型、アミノ酸型、イミダゾリン型、レシチン等の両性界面活性剤、脂肪酸モノグリセリド、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、酸化エチレン縮合物等の非イオン性界面活性剤が挙げられる。
Examples of the metal soap include zinc laurate, zinc myristate, magnesium myristate, zinc palmitate, zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, and zinc undecylenate.
Examples of the humectant include glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, sodium dl-pyrrolidonecarboxylate, sodium lactate, sorbitol, sodium hyaluronate, polyglycerin, xylitol, maltitol and the like.
Examples of the surfactant include anionic surfactants such as higher fatty acid soaps, higher alcohol sulfates, N-acyl glutamates and phosphates, cationic surfactants such as amine salts and quaternary ammonium salts, and betaine. Surfactants such as amino acid type, amino acid type, imidazoline type and lecithin, and nonionic surfactants such as fatty acid monoglyceride, propylene glycol fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and ethylene oxide condensate. No.
高分子化合物としては、アラビアゴム、トラガントガム、グアーガム、ローカストビーンガム、カラヤガム、アイリスモス、クインスシード、ゼラチン、セラック、ロジン、カゼイン等の天然高分子化合物、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、アルギン酸ナトリウム、エステルガム、ニトロセルロース、ヒドロキシプロピルセルロース、結晶セルロース等の半合成高分子化合物、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、シリコーン油、ナイロン粒子、ポリメタクリル酸メチル粒子、架橋ポリスチレン粒子、シリコン粒子、ウレタン粒子、ポリエチレン粒子、シリカ粒子等の樹脂粒子等の合成高分子化合物が挙げられる。 As the high molecular compound, gum arabic, tragacanth gum, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, casein and other natural high molecular compounds, sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, ethyl cellulose, Semi-synthetic polymer compounds such as sodium alginate, ester gum, nitrocellulose, hydroxypropylcellulose, crystalline cellulose, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone oil, nylon particles , Polymethyl methacrylate particles, cross-linked polystyrene particles, silicon particles, urethane particles, polyethylene Child, synthetic polymer compounds such as resin particles of the silica particles and the like.
色材原料としては、酸化鉄、群青、コンジョウ、酸化クロム、水酸化クロム、カーボンブラック、マンガンバイオレット、酸化チタン、酸化亜鉛、タルク、カオリン、マイカ、炭酸カルシウム、炭酸マグネシウム、雲母、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、シリカ、ゼオライト、硫酸バリウム、焼成硫酸カルシウム(焼セッコウ)、リン酸カルシウム、ヒドロキシアパタイト、セラミックパウダー等の無機顔料、アゾ系、ニトロ系、ニトロソ系、キサンテン系、キノリン系、アントラキノリン系、インジゴ系、トリフェニルメタン系、フタロシアニン系、ピレン系等のタール色素が挙げられる。 Color material raw materials include iron oxide, ultramarine, konjo, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, talc, kaolin, mica, calcium carbonate, magnesium carbonate, mica, aluminum silicate, Inorganic pigments such as barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, ceramic powder, etc., azo type, nitro type, nitroso type, xanthene type And quinoline, anthraquinoline, indigo, triphenylmethane, phthalocyanine and pyrene tar dyes.
ここで、前記高分子化合物又は色材原料等の粉体原料については、予め表面処理が施されていてもよい。表面処理方法としては従来公知の表面処理技術が利用できる。例えば、炭化水素油、エステル油、ラノリン等による油剤処理、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン等によるシリコーン処理、パーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテル、パーフルオロアルキル基を有する重合体等によるフッ素化合物処理、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等によるシランカップリング剤処理、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート等によるチタンカップリング剤処理、金属石鹸処理、アシルグルタミン酸等によるアミノ酸処理、水添卵黄レシチン等によるレシチン処理、コラーゲン処理、ポリエチレン処理、保湿性処理、無機化合物処理、メカノケミカル処理等の処理方法が挙げられる。 Here, the powder material such as the polymer compound or the coloring material may be subjected to a surface treatment in advance. As the surface treatment method, a conventionally known surface treatment technique can be used. For example, oil treatment with hydrocarbon oil, ester oil, lanolin, etc., silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc., perfluoroalkyl group-containing ester, perfluoroalkylsilane, perfluoropolyether , A fluorine compound treatment with a polymer having a perfluoroalkyl group, a silane coupling agent treatment with 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, etc., isopropyl triisostearoyl titanate, isopropyl tris ( Titanium coupling agent treatment with dioctyl pyrophosphate) titanate, etc., metal soap treatment, amino acid treatment with acylglutamic acid, etc., lecithin with hydrogenated egg yolk lecithin, etc. Treatment, collagen treatment, polyethylene process, moisture retention treatment, an inorganic compound treatment, and processing methods such as mechanochemical treatment.
香料としては、ラベンダー油、ペパーミント油、ライム油等の天然香料、エチルフェニルアセテート、ゲラニオール、p−tert−ブチルシクロヘキシルアセテート等の合成香料が挙げられる。防腐・殺菌剤としては、メチルパラベン、エチルパラベン、プロピルパラベン、ベンザルコニウム、ベンゼトニウム等が挙げられる。
 酸化防止剤としては、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル、トコフェロール等が挙げられる。紫外線吸収剤としては、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄、酸化ジルコニウム等の無機系吸収剤、安息香酸系、パラアミノ安息香酸系、アントラニリック酸系、サルチル酸系、桂皮酸系、ベンゾフェノン系、ジベンゾイルメタン系等の有機系吸収剤が挙げられる。
Examples of the flavor include natural flavors such as lavender oil, peppermint oil, and lime oil, and synthetic flavors such as ethylphenyl acetate, geraniol, and p-tert-butylcyclohexyl acetate. Examples of the preservative / bactericide include methyl paraben, ethyl paraben, propyl paraben, benzalkonium, benzethonium and the like.
Examples of the antioxidant include dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate, and tocopherol. Examples of the ultraviolet absorber include inorganic absorbers such as titanium oxide, zinc oxide, cerium oxide, iron oxide, and zirconium oxide, benzoic acid, p-aminobenzoic acid, anthranilic acid, salicylic acid, and cinnamic acid. Organic absorbents such as benzophenone and dibenzoylmethane are exemplified.
特殊配合成分としては、エストラジオール、エストロン、エチニルエストラジオール、コルチゾン、ヒドロコルチゾン、プレドニゾン等のホルモン類、ビタミンA、ビタミンB、ビタミンC、ビタミンE等のビタミン類、クエン酸、酒石酸、乳酸、塩化アルミニウム、硫酸アルミニウム・カリウム、アラントインクロルヒドロキシアルミニウム、パラフェノールスルホン酸亜鉛、硫酸亜鉛等の皮膚収斂剤、カンタリスチンキ、トウガラシチンキ、ショウキョウチンキ、センブリエキス、ニンニクエキス、ヒノキチオール、塩化カルプロニウム、ペンタデカン酸グリセリド、ビタミンE、エストロゲン、感光素等の発毛促進剤、リン酸−L−アスコルビン酸マグネシウム、コウジ酸等の美白剤等が挙げられる。 Special compounding ingredients include hormones such as estradiol, estrone, ethinyl estradiol, cortisone, hydrocortisone, prednisone, vitamins such as vitamin A, vitamin B, vitamin C, vitamin E, citric acid, tartaric acid, lactic acid, aluminum chloride, sulfuric acid Skin astringents such as aluminum / potassium, allantoinchlorohydroxyaluminum, zinc paraphenolsulfonate, zinc sulfate, etc. Hair growth promoters such as E, estrogen, and photosensitizer; and whitening agents such as magnesium phosphate-L-ascorbate and kojic acid.
(2)塗料、断熱性、及び光拡散性の組成物
 これら組成物は、必要に応じて、バインダー樹脂、UV硬化性樹脂、溶剤等が含まれる。バインダー樹脂としては、有機溶媒又は水に可溶な樹脂もしくは水中に分散できるエマルション型の水性樹脂を使用できる。
 バインダー樹脂又はUV硬化性樹脂及び複合粒子の添加量は、形成される塗膜の膜厚、複合粒子の平均粒子径及び塗装方法によっても異なる。複合粒子の添加量は、バインダー樹脂(エマルジョン型の水性樹脂を使用する場合は固形分)と複合粒子との合計に対して5~50重量%が好ましい。より好ましい含有量は10~50重量%であり、更に好ましい含有量は20~40重量%である。
 バインダー樹脂としては、アクリル樹脂、アルキド樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩素化ポリオレフィン樹脂、アモルファスポリオレフィン樹脂、アクリルシリコン樹脂、アクリルウレタン樹脂、フッ素系樹脂等が挙げられ、UV硬化性樹脂としては多価アルコール多官能(メタ)アクリレート等のような多官能(メタ)アクリレート樹脂;ジイソシアネート、多価アルコール、及びヒドロキシ基を有する(メタ)アクリル酸エステル等から合成されるような多官能ウレタンアクリレート樹脂等が挙げられる。
(2) Paint, heat-insulating property, and light-diffusing composition These compositions contain a binder resin, a UV-curable resin, a solvent, and the like, if necessary. As the binder resin, a resin soluble in an organic solvent or water or an emulsion-type aqueous resin dispersible in water can be used.
The addition amount of the binder resin or the UV curable resin and the composite particles also varies depending on the thickness of the formed coating film, the average particle size of the composite particles, and the coating method. The added amount of the composite particles is preferably 5 to 50% by weight based on the total amount of the binder resin (solid content when an emulsion type aqueous resin is used) and the composite particles. A more preferred content is 10 to 50% by weight, and a still more preferred content is 20 to 40% by weight.
Examples of the binder resin include an acrylic resin, an alkyd resin, a polyester resin, a polyurethane resin, a chlorinated polyolefin resin, an amorphous polyolefin resin, an acrylic silicone resin, an acrylic urethane resin, and a fluorine-based resin. Polyfunctional (meth) acrylate resins such as alcohol polyfunctional (meth) acrylates; and polyfunctional urethane acrylate resins synthesized from diisocyanates, polyhydric alcohols, and hydroxy-containing (meth) acrylates, and the like. No.
UV硬化性樹脂としては、多官能(メタ)アクリレート樹脂が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレート樹脂がより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレート樹脂としては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等が挙げられ、単独で用いられても二種以上が併用されてもよい。 As the UV-curable resin, a polyfunctional (meth) acrylate resin is preferable, and a polyhydric alcohol polyfunctional (meth) acrylate resin having three or more (meth) acryloyl groups in one molecule is more preferable. As the polyhydric alcohol polyfunctional (meth) acrylate resin having three or more (meth) acryloyl groups in one molecule, specifically, trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Examples include tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, and tripentaerythritol hexaacrylate. It is, or may be even alone, or two or more are used alone.
UV硬化性樹脂を用いる場合には、通常、光重合開始剤が併用される。光重合開始剤は、特に限定されない。
 光重合開始剤としては、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α−ヒドロキシアルキルフェノン類、α−アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(日本国特開2001−139663号公報等を参照)、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α−アシルオキシムエステル等が挙げられる。
 これらバインダー樹脂又はUV硬化性樹脂は、塗装される基材への塗料の密着性又は使用される環境等によって適宜選択され得る。
When using a UV curable resin, a photopolymerization initiator is usually used in combination. The photopolymerization initiator is not particularly limited.
Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, α-hydroxyalkylphenones, α-aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, and peroxides. (See Japanese Patent Application Laid-Open No. 2001-139666), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, α -Acyl oxime esters and the like.
These binder resins or UV-curable resins can be appropriately selected depending on the adhesion of the paint to the substrate to be coated, the environment in which the paint is used, and the like.
溶剤としては、特に限定されないが、バインダー樹脂又はUV硬化性樹脂を溶解又は分散できる溶剤を使用することが好ましい。例えば、油系塗料であれば、トルエン、キシレン等の炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル、エチレングリコールモノブチルエーテル等のエーテル系溶剤等が挙げられる。水系塗料であれば、水、アルコール類等が使用できる。これら溶剤は、単独で使用してもよく、2種以上混合して使用してもよい。コーティング材料中の溶剤含有量は、組成物全量に対し、通常20~60重量%程度である。 The solvent is not particularly limited, but it is preferable to use a solvent that can dissolve or disperse the binder resin or the UV-curable resin. For example, in the case of oil-based paints, hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; dioxane, ethylene glycol diethyl ether, and ethylene glycol Examples include ether solvents such as monobutyl ether. If it is a water-based paint, water, alcohols and the like can be used. These solvents may be used alone or as a mixture of two or more. The content of the solvent in the coating material is usually about 20 to 60% by weight based on the total amount of the composition.
組成物には、必要に応じて、公知の塗面調整剤、流動性調整剤、紫外線吸収剤、光安定剤、硬化触媒、体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料等が含まれていてもよい。
 組成物を使用した塗膜の形成方法は、特に限定されず、公知の方法をいずれも使用できる。例えば、スプレー塗装法、ロール塗装法、ハケ塗り法等の方法、及び薄層としてフィルム等基材にコーティングするにはコーティングリバースロールコート法、グラビアコート法、ダイコート法、コンマコート法、スプレーコート法が挙げられる。組成物は、必要に応じて粘度を調整するために、希釈してもよい。希釈剤としては、トルエン、キシレン等の炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル等のエーテル系溶剤;水;アルコール系溶剤等が挙げられる。これら希釈剤は、単独で使用してもよく、2種以上混合して使用してもよい。
 基材等の任意の塗工面に塗工して塗工膜を作製し、この塗工膜を乾燥させた後、必要に応じて塗工膜を硬化させることによって、塗膜を形成できる。なお、塗料組成物を使用した塗膜は各種基材にコーティングして使用され、金属、木材、ガラス、プラスチックス等特に限定されない。また、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、アクリル等の透明基材にコーティングして用いることもできる。
The composition contains, if necessary, a known coating surface adjuster, a fluidity adjuster, an ultraviolet absorber, a light stabilizer, a curing catalyst, an extender pigment, a color pigment, a metal pigment, a mica powder pigment, a dye, and the like. It may be.
The method for forming a coating film using the composition is not particularly limited, and any known method can be used. For example, methods such as spray coating, roll coating, brush coating, and coating a substrate such as a film as a thin layer by coating reverse roll coating, gravure coating, die coating, comma coating, spray coating, etc. Is mentioned. The composition may be diluted if necessary to adjust the viscosity. Examples of the diluent include hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether; An alcohol-based solvent and the like. These diluents may be used alone or in combination of two or more.
A coating film can be formed by applying a coating film on an arbitrary coating surface such as a base material to prepare a coating film, drying the coating film, and curing the coating film as needed. The coating film using the coating composition is used after being coated on various substrates, and is not particularly limited to metal, wood, glass, plastics and the like. Further, a transparent base material such as polyethylene terephthalate (PET), polycarbonate (PC), and acryl can be coated and used.
(3)光拡散フィルム
 光拡散フィルムは、ガラス、ポリカーボネート(PC)、アクリル樹脂、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)等のプラスチックシート、プラスチックフィルム、プラスチックレンズ、プラスチックパネル等の基材、陰極線管、蛍光表示管、液晶表示板等の基材の表面に前記の光拡散性組成物による光拡散層を形成したものである。用途によって異なるが、被膜が単独であるいは基材上に保護膜、ハードコート膜、平坦化膜、高屈折率膜、絶縁膜、導電性樹脂膜、導電性金属粒子膜、導電性金属酸化物粒子膜、その他必要に応じて用いるプライマー膜等と組み合わせて形成されている。なお、組み合わせて用いる場合、光拡散層が必ずしも最外表面に形成されている必要はない。
(3) Light-diffusing film The light-diffusing film is a base material such as glass, polycarbonate (PC), acrylic resin, polyethylene terephthalate (PET), triacetyl cellulose (TAC), and other plastic sheets, plastic films, plastic lenses, and plastic panels. And a light diffusion layer of the light diffusing composition formed on the surface of a base material such as a cathode ray tube, a fluorescent display tube, a liquid crystal display panel and the like. Depending on the application, the coating may be used alone or on a substrate, such as a protective film, a hard coat film, a flattening film, a high refractive index film, an insulating film, a conductive resin film, a conductive metal particle film, or a conductive metal oxide particle. It is formed in combination with a film and other primer films used as necessary. When used in combination, the light diffusion layer does not necessarily need to be formed on the outermost surface.
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。まず、実施例中の測定方法について説明する。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. First, the measuring method in the examples will be described.
(体積平均粒子径の測定)
 複合粒子の体積平均粒子径は、コールターMultisizerTM3(ベックマン・コールター社製測定装置)により測定した。測定は、ベックマン・コールター社発行のMultisizerTM3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施した。
 なお、測定に用いるアパチャーの選択は、測定する粒子の想定の体積平均粒子径が1μm以上10μm以下の場合は50μmのサイズを有するアパチャーを選択し、測定する粒子の想定の体積平均粒子径が10μmより大きく30μm以下の場合は100μmのサイズを有するアパチャーを選択し、粒子の想定の体積平均粒子径が30μmより大きく90μm以下の場合は280μmのサイズを有するアパチャーを選択し、粒子の想定の体積平均粒子径が90μmより大きく150μm以下の場合は400μmのサイズを有するアパチャーを選択する等、適宜行った。測定後の体積平均粒子径が想定の体積平均粒子径と異なった場合は、適正なサイズを有するアパチャーに変更して、再度測定を行った。
(Measurement of volume average particle size)
The volume average particle diameter of the composite particles was measured using Coulter Multisizer 3 (a measuring device manufactured by Beckman Coulter, Inc.). The measurement was performed using an aperture calibrated according to the Multisizer 3 User's Manual issued by Beckman Coulter.
The aperture used for the measurement is selected as follows. When the assumed volume average particle diameter of the particles to be measured is 1 μm or more and 10 μm or less, an aperture having a size of 50 μm is selected, and the assumed volume average particle diameter of the particles to be measured is 10 μm. If the size is larger than 30 μm or less, an aperture having a size of 100 μm is selected. When the particle diameter was larger than 90 μm and 150 μm or less, an aperture having a size of 400 μm was appropriately selected. When the volume average particle size after the measurement was different from the assumed volume average particle size, the aperture was changed to an aperture having an appropriate size, and the measurement was performed again.
また、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−800、Gain(ゲイン)は4と設定し、100μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−1600、Gain(ゲイン)は2と設定し、280μm及び400μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−3200、Gain(ゲイン)は1と設定した。
 測定用試料としては、重合体粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学社製、「TOUCHMIXER MT−31」)及び超音波洗浄器(ヴェルヴォクリーア社製、「ULTRASONICCLEANER VS−150」)を用いて分散させ、分散液としたものを使用した。測定中はビーカー内を気泡が入らない程度に緩く撹拌しておき、粒子を10万個測定した時点で測定を終了した。粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均とした。
When an aperture having a size of 50 μm is selected, Current (aperture current) is set to −800 and Gain is set to 4. When an aperture having a size of 100 μm is selected, Current (aperture current) is set to −. 1600, Gain (gain) was set to 2, and when apertures having sizes of 280 μm and 400 μm were selected, Current (aperture current) was set to −3200, and Gain (gain) was set to 1.
As a measurement sample, 0.1 g of the polymer particles was put in 10 ml of a 0.1% by weight aqueous nonionic surfactant solution, and a touch mixer ("TOUCHMIXER MT-31" manufactured by Yamato Scientific Co., Ltd.) and an ultrasonic cleaner (Vervok) were used. Dispersion was performed using "ULTRASONICCLEANER VS-150" manufactured by Leer Co., Ltd. to obtain a dispersion. During the measurement, the inside of the beaker was gently stirred so as not to cause bubbles, and the measurement was terminated when 100,000 particles were measured. The volume average particle diameter of the particles was an arithmetic mean in a volume-based particle size distribution of 100,000 particles.
(複合粒子中の無機成分量の測定)
 測定対象の複合粒子1.0gを計量した後、計量した複合粒子を750℃で30分間、電気炉内で焼失させて、残った残渣の重量(g)を測定した。そして、測定した残渣の重量(g)を、測定前の複合粒子の重量(1.0g)で除し、百分率換算して、複合粒子の強熱残分(重量%)を得た。
(Measurement of amount of inorganic component in composite particles)
After weighing 1.0 g of the composite particles to be measured, the weighed composite particles were burned out at 750 ° C. for 30 minutes in an electric furnace, and the weight (g) of the remaining residue was measured. Then, the measured weight (g) of the residue was divided by the weight (1.0 g) of the composite particles before the measurement, and converted to a percentage to obtain an ignition residue (% by weight) of the composite particles.
(複合粒子中の多孔質構造体の重量)
 測定対象の複合粒子1.0gを計量した後、計量した複合粒子を750℃で30分間、電気炉内で焼失させて、残った残渣の重量(g)を測定した。そして、測定した残渣の重量(g)を、測定前の複合粒子の重量(1.0g)で除し、百分率換算して、複合粒子の強熱残分(重量%)を得た。得られた強熱残分(重量%)は、複合粒子中の多孔質構造体の含有量を表した。
(Weight of porous structure in composite particles)
After weighing 1.0 g of the composite particles to be measured, the weighed composite particles were burned out at 750 ° C. for 30 minutes in an electric furnace, and the weight (g) of the remaining residue was measured. Then, the measured weight (g) of the residue was divided by the weight (1.0 g) of the composite particles before the measurement, and converted to a percentage to obtain an ignition residue (% by weight) of the composite particles. The obtained ignition residue (% by weight) represented the content of the porous structure in the composite particles.
(内部多孔質構造中の炭素原子量の測定)
 複合粒子を光硬化性樹脂D−800(日本電子社製)と混合し、光照射することで硬化物を得た。その後、硬化物を液体窒素に5分間浸けてから割断し、断面を上に向けた状態で試料台にカーボンテープで貼り付けた。日立ハイテクノロジーズ社製「イオンスパッタE−1045型」スパッタ装置を用いて白金蒸着処理(15mV、240秒、6.0Pa、ターゲット~試料表面間距離30mm)を行った。次いで、日立ハイテクノロジーズ社製「Regulus8230」走査電子顕微鏡の二次電子検出器を用いて、試料中の粒子断面を撮影した(粒子断面写真の倍率5000倍)。なお、観察時の加速電圧は10kVとした。
 粒子断面観察において、日立ハイテクノロジーズ社製「Regulus8230」に備え付けたオックスフォードインストゥルメンツ社製「X−MaxN150」を用いて元素分析を行った。粒子断面における内部多孔質部分を分析領域として任意設定し、分析領域中の炭素原子の原子数濃度(%)、及びケイ素原子の原子数濃度(%)を測定した。なお、炭素原子の原子数濃度(%)、及びケイ素原子の原子数濃度(%)は、観測された原子から炭素原子とケイ素原子以外を除外し、炭素原子の原子数濃度(%)とケイ素原子の原子数濃度(%)の合計が100%となるようオックスフォードインストゥルメンツ社製「X−MaxN150」に付属するソフトを用いて再解析を行った数値とした。なお、分析時の加速電圧は10kVとした。また、イメージスキャンの設定における解像度は1024、デュエルタイムは5μs、入力信号はSEとした。加えて、EDS収集スペクトル設定におけるエネルギー範囲、チャンネル数及び収集モードはオート設定、プロセスタイムは6に設定した。
 粒子断面の写真における、内部多孔質部分として設定された分析領域の一例を図8に示した。図8中のスペクトル19と記載されている白枠内を分析領域とした。白枠内の炭素原子の原子数濃度(%)とケイ素原子の原子数濃度(%)を、内部多孔質構造中の炭素原子の原子数濃度(%)とケイ素原子の原子数濃度(%)とした。
(Measurement of carbon atom weight in internal porous structure)
The composite particles were mixed with a photocurable resin D-800 (manufactured by JEOL Ltd.) and irradiated with light to obtain a cured product. Thereafter, the cured product was immersed in liquid nitrogen for 5 minutes, then cut, and affixed to a sample table with a carbon tape with the cross section facing upward. Platinum vapor deposition (15 mV, 240 seconds, 6.0 Pa, distance between target and sample surface: 30 mm) was performed using a Hitachi High-Technologies “Ion Sputter E-1045” sputtering apparatus. Next, the cross section of the particles in the sample was photographed using a secondary electron detector of a “Regulus 8230” scanning electron microscope manufactured by Hitachi High-Technologies Corporation (magnification of the photograph of the particle cross section: 5,000 times). The accelerating voltage during observation was 10 kV.
In the particle cross-section observation, elemental analysis was performed using "X-MaxN150" manufactured by Oxford Instruments Inc. provided for "Regulus 8230" manufactured by Hitachi High-Technologies Corporation. The internal porous portion in the particle cross section was arbitrarily set as an analysis region, and the atomic number concentration (%) of carbon atoms and the atomic number concentration (%) of silicon atoms in the analysis region were measured. The atomic concentration of carbon atoms (%) and the atomic concentration of silicon atoms (%) exclude the carbon atoms and silicon atoms from the observed atoms. The values were re-analyzed using software attached to “X-MaxN150” manufactured by Oxford Instruments Inc. so that the total atomic concentration (%) of atoms becomes 100%. The acceleration voltage at the time of analysis was 10 kV. The resolution in the image scan setting was 1024, the dwell time was 5 μs, and the input signal was SE. In addition, the energy range, the number of channels, and the acquisition mode in the EDS acquisition spectrum setting were set automatically, and the process time was set to 6.
FIG. 8 shows an example of an analysis region set as an internal porous portion in a photograph of a particle cross section. The inside of the white frame described as spectrum 19 in FIG. 8 was set as the analysis region. The number of carbon atoms (%) and the number of silicon atoms (%) in the white frame are the number of carbon atoms (%) and the number of silicon atoms (%) in the internal porous structure. And
(混合液の密度)
 25℃恒温槽にて温度調整した混合液を25mLピクノメーターに加えた。加えた混合液の重量(g)をピクノメーターの容量(mL)で割ることで混合液の密度を求めた。
(Density of mixture)
The mixed solution whose temperature was adjusted in a 25 ° C. constant temperature bath was added to a 25 mL pycnometer. The density of the mixture was determined by dividing the weight (g) of the added mixture by the volume (mL) of the pycnometer.
(混合液の粘度)
 25℃恒温槽にて温度調整した混合液の粘度を音叉型振動式粘度計SV−10(エー・アンド・ディ社製)を用いて測定した。装置上の粘度表示値(単位:mPa・s×g/cm)を、上記算出した混合液の密度で割ることで混合液の粘度(単位:mPa・s)を求めた。
(Viscosity of the mixture)
The viscosity of the mixed solution whose temperature was adjusted in a 25 ° C. constant temperature bath was measured using a tuning fork vibrating viscometer SV-10 (manufactured by A & D). The viscosity (unit: mPa · s) of the mixed solution was determined by dividing the indicated viscosity value on the apparatus (unit: mPa · s × g / cm 3 ) by the calculated density of the mixed solution.
(粒子表面観察)
 試料を切り出し、試料台に導電性テープを貼り付け、その上に試料を搭載した。メイワフォーシス社製「オスミウムコータ Neoc−Pro」コーティング装置を用いて、粒子の表面処理(10Pa,5mA,10秒)を行った。次いで、試料を日立ハイテクノロジーズ社製「SU1510」走査電子顕微鏡の二次電子検出器を用いて、粒子表面外観を撮影した。
(Observation of particle surface)
The sample was cut out, a conductive tape was stuck on the sample stage, and the sample was mounted thereon. The particles were subjected to a surface treatment (10 Pa, 5 mA, 10 seconds) using an “Osmium Coater Neoc-Pro” coating device manufactured by Meiwa Forsys. Next, the surface of the particles was photographed using a secondary electron detector of a scanning electron microscope “SU1510” manufactured by Hitachi High-Technologies Corporation.
(粒子断面観察)
 洗浄工程後、100℃で乾燥した粒子を光硬化性樹脂D−800(日本電子社製)と混合し、紫外光を照射することで硬化物を得た。その後、硬化物をニッパーで裁断し、断面部分をカッターを用いて平滑に加工し、オスミウムコーティング装置(メイワフォーシス社製「オスミウムコータ Neoc−Pro」)を用いて、表面処理(10Pa,5mA,10秒)を行った。次いで、試料を日立ハイテクノロジーズ社製「SU1510」走査電子顕微鏡の二次電子検出器を用いて、粒子断面を撮影した。
 ここで、試料の断面部をSEM−EDS(Scannig Electron Microscope Energy Dispersive X−ray Spectrometry)にて、元素マッピングを行い、空洞内部にシリカ及び酸化チタンが存在するか否かを判別した。具体的には、SEM(日立ハイテクノロジーズ社製「S3400 N」)とEDS(HORIBA社製「EMAXEvolution X−Max」を用いて、加速電圧15KV、10フレーム(800秒)の取り込みを行い、ケイ素のKα線とチタンのKα線にて元素マップを取得した。
(Particle cross section observation)
After the washing step, the particles dried at 100 ° C. were mixed with a photocurable resin D-800 (manufactured by JEOL Ltd.) and irradiated with ultraviolet light to obtain a cured product. Thereafter, the cured product was cut with a nipper, the cross section was processed smoothly using a cutter, and the surface treatment (10 Pa, 5 mA, 10 mA) was performed using an osmium coating device (“Osmium coater Neoc-Pro” manufactured by Meiwa Forsys). Seconds). Next, the cross section of the sample was photographed using a secondary electron detector of a scanning electron microscope “SU1510” manufactured by Hitachi High-Technologies Corporation.
Here, the cross section of the sample was subjected to element mapping by SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectrometry) to determine whether or not silica and titanium oxide exist inside the cavity. Specifically, using an SEM (“S3400N” manufactured by Hitachi High-Technologies Corporation) and an EDS (“EMAX Evolution X-Max” manufactured by HORIBA), an acceleration voltage of 15 KV and 10 frames (800 seconds) are captured, and silicon is captured. Elemental maps were obtained with Kα rays and Kα rays of titanium.
(第二の無機粒子の粒子径)
 第二の無機粒子の粒子径は、動的光散乱法あるいは光子相関法と呼ばれる方法を利用して測定した平均粒子径とした。即ち、25℃において、0.1体積%に調製した無機粒子の有機溶媒の分散液にレーザー光を照射し、無機粒子から散乱される散乱光強度をマイクロ秒単位の時間変化で測定した。検出された無機粒子に起因する散乱強度分布を正規分布に当てはめ、キュムラント解析法によりZ平均粒子径を算出した。この平均粒子径は、市販のデータ解析ソフトが搭載された測定装置で簡便に測定可能であり、自動的に解析できた。本実施例では、マルバーン社(スペクトリス社)製の粒子径測定装置「ゼータサイザーナノZS」を用いて測定した。
(Particle size of second inorganic particles)
The particle diameter of the second inorganic particles was an average particle diameter measured using a method called a dynamic light scattering method or a photon correlation method. That is, at 25 ° C., a dispersion of an organic solvent of inorganic particles adjusted to 0.1% by volume was irradiated with laser light, and the intensity of scattered light scattered from the inorganic particles was measured over time in microsecond units. The distribution of scattering intensity resulting from the detected inorganic particles was applied to a normal distribution, and the Z-average particle diameter was calculated by cumulant analysis. This average particle size could be easily measured with a measuring device equipped with commercially available data analysis software, and could be automatically analyzed. In the present example, the measurement was carried out using a particle size measuring apparatus “Zetasizer Nano ZS” manufactured by Malvern (Spectris).
(酸化チタンの表面処理方法)
 ステンレス製混合タンクに、トルエン31g、有機系分散剤としてリン酸系分散剤5.0gを秤量し、投入して、混合機で5分間撹拌した。続いて、無機粒子としての酸化チタン60gを追加投入し、更に、混合機で30分間撹拌した。これを溶液(A)とした。前記溶液(A)を、粒径1.5mmのジルコニアビーズを満たしたビーズミル容器に移し入れ、ミル内を60分間撹拌して、無機粒子の分散を行なった。次に、分散体の粘度調整のため、ベントナイトを3.0g投入し、撹拌と分散を行い、酸化チタンのトルエン溶液(X)(酸化チタン含量60.6%,固形分68.7%)を得た。酸化チタンのZ平均粒子径は、780nmであった。
(Surface treatment method for titanium oxide)
To a stainless steel mixing tank, 31 g of toluene and 5.0 g of a phosphoric acid-based dispersant as an organic dispersant were weighed and charged, followed by stirring with a mixer for 5 minutes. Subsequently, an additional 60 g of titanium oxide as inorganic particles was added, and the mixture was further stirred with a mixer for 30 minutes. This was designated as solution (A). The solution (A) was transferred to a bead mill container filled with zirconia beads having a particle diameter of 1.5 mm, and the inside of the mill was stirred for 60 minutes to disperse the inorganic particles. Next, in order to adjust the viscosity of the dispersion, 3.0 g of bentonite was added thereto, followed by stirring and dispersion, and a toluene solution of titanium oxide (X) (titanium oxide content: 60.6%, solid content: 68.7%) Obtained. The Z-average particle diameter of the titanium oxide was 780 nm.
(実施例1)
 単官能単量体としてのメチルメタクリレート(MMA)100g、架橋性単量体としてのエチレングリコールジメタクリレート(EGDMA)100g、シリカ前駆体としてのテトラエトキシシラン(TEOS)160g、熱酸発生剤としての(1R,2S,5R)−5−メチル−2−(プロパン−2−イル)シクロヘキシル4−メチルベンゼンスルホネート(和光純薬工業社製:製品名WPAG−699)1g、非反応性有機溶剤としてのトルエン39.75g、重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製;製品名V−65)2.0g、第二の無機粒子としての酸化チタン粒子のトルエン溶液(X)0.77gを混合・溶解して、混合物を調製した。得られた混合物を1.7重量%の濃度に調製したポリビニルアルコール(PVA)(日本合成化学社製;製品名ゴーセノールGL−5)水溶液1200gに混合した。
 得られた混合液を2Lビーカーに投入し、ホモジナイザー(セントラル科学貿易社製;製品名 ポリトロンホモジナイサーPT10−35GT)を用いて、回転数5000rpmにて6分間乳化・分散処理を行った。得られた乳化液を2Lのステンレス製オートクレーブに投入し、直径8cmのタービン状撹拌翼にて250rpmにて撹拌しながら、50℃の温度にて4時間の重合を行い、シリカ前駆体としてのTEOSと酸化チタンを内部に含むマイクロカプセルを得た。その後、105℃の条件下にて2時間撹拌することで、マイクロカプセル内のTEOSのゲル化反応の進行により、複合粒子を得た。
 水洗を繰り返し、精製を行った後、100℃にて真空オーブンで一晩乾燥させた。得られた複合粒子の表面写真を図1(a)に、断面写真を図1(b)に示す。単官能単量体及び架橋性単量体からなる外郭が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は、10.0μmであり、複合粒子中の無機成分量は17.9重量%であった。
 SEM−EDSによる、金属元素マッピング図を図1(c)~(e)に示す。図1(c)は断面写真であり、図1(d)はケイ素の存在を示す図であり、図1(e)はチタンの存在を示す図である。これら写真から、複合粒子中のケイ素とチタンの存在を確認できた。
(Example 1)
100 g of methyl methacrylate (MMA) as a monofunctional monomer, 100 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 160 g of tetraethoxysilane (TEOS) as a silica precursor, and ( 1R, 2S, 5R) -5-Methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonate (product name WPAG-699, manufactured by Wako Pure Chemical Industries, Ltd.), 1 g of toluene as a non-reactive organic solvent 39.75 g, 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd .; product name V-65), 2.0 g, oxidation as second inorganic particles 0.77 g of a toluene solution (X) of titanium particles was mixed and dissolved to prepare a mixture. The obtained mixture was mixed with 1200 g of an aqueous solution of polyvinyl alcohol (PVA) (manufactured by Nippon Synthetic Chemical Company; product name: Gohsenol GL-5) prepared at a concentration of 1.7% by weight.
The obtained mixture was put into a 2 L beaker, and emulsification / dispersion treatment was performed at a rotation speed of 5000 rpm for 6 minutes using a homogenizer (manufactured by Central Science and Trading; product name: Polytron homogenizer PT10-35GT). The obtained emulsion was put into a 2 L stainless steel autoclave, and polymerization was carried out at a temperature of 50 ° C. for 4 hours while stirring at 250 rpm with a turbine-like stirring blade having a diameter of 8 cm, thereby obtaining TEOS as a silica precursor. And a microcapsule containing titanium oxide therein. Thereafter, the mixture was stirred for 2 hours under the condition of 105 ° C., whereby a gelation reaction of TEOS in the microcapsules was progressed to obtain composite particles.
After repeated washing with water and purification, the resultant was dried in a vacuum oven at 100 ° C. overnight. FIG. 1A shows a photograph of the surface of the obtained composite particles, and FIG. 1B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 10.0 μm, and the amount of the inorganic component in the composite particles was 17.9% by weight.
FIGS. 1C to 1E show metal element mapping diagrams by SEM-EDS. FIG. 1 (c) is a cross-sectional photograph, FIG. 1 (d) is a diagram showing the presence of silicon, and FIG. 1 (e) is a diagram showing the presence of titanium. These photographs confirmed the presence of silicon and titanium in the composite particles.
(実施例2)
 第二の無機粒子としての酸化チタン粒子のトルエン溶液(X)を3.85g、非反応性有機溶媒のトルエンを38.76gとしたこと以外は、実施例1と同様にして複合粒子を得た。得られた複合粒子の表面写真を図2(a)に、断面写真を図2(b)に示す。単官能単量体及び架橋性単量体からなる外郭が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は10.4μmであり、複合粒子中の無機成分量は7.5重量%であった。
(Example 2)
Composite particles were obtained in the same manner as in Example 1, except that 3.85 g of a toluene solution (X) of titanium oxide particles as second inorganic particles and 38.76 g of toluene of a non-reactive organic solvent were used. . FIG. 2A shows a photograph of the surface of the obtained composite particles, and FIG. 2B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 10.4 μm, and the amount of the inorganic component in the composite particles was 7.5% by weight.
(実施例3)
 第二の無機成分粒子としての酸化ジルコニウム粒子のメタノール分散液を1.54g(堺化学社製;製品名SZR−M、ジルコニア含有量30重量%、粒子径:3nm)、非反応性有機溶媒としてのトルエンを38.9gとしたこと以外は、実施例1と同様にして複合粒子を得た。得られた複合粒子の表面写真を図3(a)に、断面写真を図3(b)に示す。単官能単量体及び架橋性単量体からなる外郭が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は11.4μmであり、複合粒子中の無機成分量は16.8重量%であった。
(Example 3)
1.54 g of a methanol dispersion of zirconium oxide particles as second inorganic component particles (manufactured by Sakai Chemical Co .; product name SZR-M, zirconia content 30% by weight, particle diameter: 3 nm), as a non-reactive organic solvent Except that 38.9 g of toluene was used, composite particles were obtained in the same manner as in Example 1. FIG. 3A shows a photograph of the surface of the obtained composite particles, and FIG. 3B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 11.4 μm, and the amount of the inorganic component in the composite particles was 16.8% by weight.
(実施例4)
 第二の無機成分粒子としての酸化セリウムを0.46g(アイテック社製;製品名セリアナノ粒子粉末、粒子径:10nm)、表面処理剤としてのアセトアルコキシアルミニウムジイソプロピオネート(味の素ファインテクノ社製、製品名プレンアクトALM)を、0.046g、非反応性有機溶媒としてのトルエンを40gとしたこと以外は、実施例1と同様にして複合粒子を得た。得られた複合粒子の表面写真を図4(a)に、断面写真を図4(b)に示す。単官能単量体及び架橋性単量体からなる外郭が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は11.7μmであり、複合粒子中の無機成分量は8.9重量%であった。
(Example 4)
0.46 g of cerium oxide as second inorganic component particles (manufactured by I-Tech Co., Ltd .; product name: ceria nanoparticle powder, particle diameter: 10 nm); Composite particles were obtained in the same manner as in Example 1, except that 0.046 g of product name (Plenact ALM) and 40 g of toluene as a non-reactive organic solvent were used. FIG. 4A shows a surface photograph of the obtained composite particles, and FIG. 4B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 11.7 μm, and the amount of the inorganic component in the composite particles was 8.9% by weight.
(比較例1)
 非反応性有機溶媒としてのトルエンを40gとし、酸化チタン粒子を加えなかったこと以外は、実施例1と同様にして複合粒子を得た。得られた複合粒子の表面写真を図5(a)に、断面写真を図5(b)に示す。単官能単量体及び架橋性単量体からなる外郭が形成されていることを確認できた。また、その内部にシリカ粒子が互いに連結された多孔質構造体が確認できた。また、体積平均粒子径は11.9μmであり、複合粒子中の無機成分量は16.0重量%であった。
(Comparative Example 1)
Composite particles were obtained in the same manner as in Example 1, except that the amount of toluene as a non-reactive organic solvent was 40 g and no titanium oxide particles were added. FIG. 5A shows a photograph of the surface of the obtained composite particles, and FIG. 5B shows a photograph of a cross section thereof. It was confirmed that the shell composed of the monofunctional monomer and the crosslinkable monomer was formed. In addition, a porous structure in which silica particles were connected to each other was confirmed. Further, the volume average particle diameter was 11.9 μm, and the amount of the inorganic component in the composite particles was 16.0% by weight.
(比較例2)
 非特許文献1を参考にしてシリカ内包粒子(複合粒子)を作製した。具体的には、単官能単量体としてのメチルメタクリレート(MMA)100g、架橋性単量体としてのエチレングリコールジメタクリレート(EGDMA)100g、シリカ前駆体としてのテトラエトキシシラン(TEOS)200g、重合開始剤としての2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)2g(和光純薬工業社製;製品名V−70)を混合して、重合性組成物を調製した。
 一方、水相としてイオン交換水1180gに、ポリビニルアルコール(PVA)(日本合成化学社製;ゴーセノールGL−05)20gを添加した。この水相中に重合性組成物を入れてホモジナイザー(セントラル科学貿易社製;製品名 ポリトロンホモジナイサーPT10−35GT)を用いて、回転数5000rpmにて10分間乳化・分散処理を行った。得られた乳化液を2Lの撹拌翼付き圧力容器に投入し、撹拌翼を350rpmで撹拌しながら30℃で24時間の加熱を行うことで、単官能単量体及び架橋性単量体からなる外郭を形成させた。反応温度及び撹拌を維持したまま、TEOSの10倍当量のアンモニア水を投入し、24時間加熱することでTEOSのゾルゲル反応を進行させることでシリカ内包粒子を含む乳化液を得た。
 得られた乳化液に吸引ろ過を行うことで、乳化液からシリカ内包粒子を取り出した。水洗を繰り返し、精製を行った後、60℃の真空オーブンで乾燥を行うことでシリカ内包粒子を得た。得られたシリカ内包粒子の表面写真を図6(a)に、断面写真を図6(b)に示す。単官能単量体及び架橋性単量体からなる外郭が形成されており、また、その内部には単一又は複数のシリカ粒子を内包していることが確認できた。また、体積平均粒子径は10.4μmであり、シリカ内包粒子中の無機成分量は22.0重量%であった。
(Comparative Example 2)
Silica-containing particles (composite particles) were prepared with reference to Non-Patent Document 1. Specifically, 100 g of methyl methacrylate (MMA) as a monofunctional monomer, 100 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 200 g of tetraethoxysilane (TEOS) as a silica precursor, A polymerizable composition was prepared by mixing 2 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd .; product name V-70) as an agent.
On the other hand, 20 g of polyvinyl alcohol (PVA) (manufactured by Nippon Gohsei; Gohsenol GL-05) was added to 1180 g of ion-exchanged water as an aqueous phase. The polymerizable composition was put into the aqueous phase, and emulsification / dispersion treatment was performed at a rotation speed of 5000 rpm for 10 minutes using a homogenizer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35GT). The obtained emulsion is charged into a 2 L pressure vessel with stirring blades, and the mixture is heated at 30 ° C. for 24 hours while stirring the stirring blades at 350 rpm, thereby comprising a monofunctional monomer and a crosslinkable monomer. An outer shell was formed. While maintaining the reaction temperature and stirring, 10 times equivalent of aqueous ammonia was added to TEOS, and the mixture was heated for 24 hours to allow the sol-gel reaction of TEOS to proceed to obtain an emulsion containing silica-containing particles.
By performing suction filtration on the obtained emulsion, silica-containing particles were taken out from the emulsion. After repeated washing with water and purification, the silica-containing particles were obtained by drying in a vacuum oven at 60 ° C. FIG. 6A shows a surface photograph of the obtained silica-containing particles, and FIG. 6B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that one or more silica particles were included therein. The volume average particle diameter was 10.4 μm, and the amount of the inorganic component in the silica-containing particles was 22.0% by weight.
上記実施例1~4及び比較例1~2のシリカ内包粒子の製造用原料及びその使用量(重量部)を表1にまとめて記載する。 The raw materials for producing the silica-containing particles of Examples 1 to 4 and Comparative Examples 1 to 2 and the amounts (parts by weight) of the raw materials used are collectively shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(紫外可視近赤外光の反射特性評価)
 市販の水性塗料(アサヒペン社製 商品名;水性多用途カラー クリア)10gに対し、実施例1~4及び比較例1~2から得られた複合粒子をそれぞれ2.5g加え、遊星撹拌脱泡機(KURABO社製、マゼルスターKK−250)を用いて脱泡撹拌し、評価用塗料を作製した。
 評価用塗料を隠蔽率試験紙の黒側にウエット厚250μmに設定したアプリケーターにて塗工した後、室温下で十分に乾燥させ、光反射性評価用サンプル板を得た。サンプル板の紫外光、可視光、及び近赤外光に対する反射率を以下の点順で評価した。
 反射率の測定装置として島津製作所社製の紫外可視近赤外分光光度計(Solid Spec3700)を使用し、サンプル板における塗工面の紫外光から近赤外光(波長300~2500nm)の反射特性を反射率(%)として測定した。なお、測定は60mmΦ積分球を用い、スペクトラロンを標準白板に使用して行った。
 なお、上記測定は、実施例1~4及び比較例1~2の複合粒子について行った。得られた結果を図7に示す。
 図7から、実施例1~4の複合粒子は、紫外光から近赤外光のほぼ全ての波長において、比較例1~2の複合粒子より、高い反射率を有することがわかる。特に、500~2500の波長領域において、高い反射率を有することがわかる。
(Evaluation of reflection characteristics of ultraviolet, visible, and near-infrared light)
2.5 g each of the composite particles obtained from Examples 1-4 and Comparative Examples 1-2 were added to 10 g of a commercially available water-based paint (trade name, manufactured by Asahipen Co., Ltd .; water-based multi-purpose color clear), and a planetary stirring defoamer was added. (Murastar KK-250, manufactured by KURABO) was defoamed and stirred to prepare a paint for evaluation.
The paint for evaluation was applied to the black side of the opacity test paper using an applicator set to a wet thickness of 250 μm, and then sufficiently dried at room temperature to obtain a sample plate for light reflectivity evaluation. The reflectance of the sample plate to ultraviolet light, visible light, and near-infrared light was evaluated in the following order.
An ultraviolet-visible-near-infrared spectrophotometer (Solid Spec 3700) manufactured by Shimadzu Corporation was used as a reflectivity measuring device to measure the reflection characteristics from ultraviolet light to near-infrared light (wavelength 300 to 2500 nm) on the coated surface of the sample plate. It was measured as reflectivity (%). The measurement was carried out using a 60 mmΦ integrating sphere and using Spectralon as a standard white plate.
The above measurements were performed on the composite particles of Examples 1 to 4 and Comparative Examples 1 and 2. FIG. 7 shows the obtained results.
FIG. 7 shows that the composite particles of Examples 1 to 4 have higher reflectance than the composite particles of Comparative Examples 1 and 2 at almost all wavelengths from ultraviolet light to near-infrared light. In particular, it can be seen that it has a high reflectance in the wavelength range of 500 to 2500.
(実施例5)
 単官能単量体としてのメチルメタクリレート(MMA)80g、架橋性単量体としてのエチレングリコールジメタクリレート(EGDMA)80g、シリカ前駆体としてのテトラエトキシシラン(TEOS)160g、疎水性シリカ粒子としての疎水性フュームドシリカR972(EVONIK社、BET法による比表面積110±20m/g)16g、重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.6g(和光純薬工業社製;製品名V−65)、熱酸発生剤として(1R,2S,5R)−5−メチル−2−(プロパン−2−イル)シクロヘキシル4−メチルベンゼンスルホネート(和光純薬工業社製;製品名WPAG−699)0.8gからなる混合物を調製した。混合物の粘度は3.58mPa・sであった。
 一方、イオン交換水1280gに、懸濁安定剤としてピロリン酸マグネシウム26g、ラウリルリン酸0.128gを添加して水相を用意した。この水相中に前記混合物を入れてホモジナイザー(セントラル科学貿易社製;製品名 ポリトロンホモジナイサーPT10−35)を用いて、回転数7000rpmにて10分間乳化・分散処理を行った。得られた乳化液を2Lの撹拌翼付き圧力容器に投入し、撹拌翼を350rpmで撹拌しながら50℃で4時間の加熱を行うことで、単官能単量体及び架橋性単量体からなる外殻を形成させた。撹拌を維持したまま反応温度を105℃まで昇温し、2時間加熱することでTEOSのゲル化反応を進行させた。その後、反応系を室温まで冷却することで複合粒子を含む乳化液を得た。得られた乳化液に塩酸を加え、ピロリン酸マグネシウムを溶解させた後、吸引ろ過を行うことで乳化液から複合粒子を取り出した。水洗を繰り返し、精製を行った後、60℃の真空オーブンで乾燥を行うことで複合粒子を得た。
 得られた複合粒子の表面写真を図9(A)に、断面写真を図9(B)に示す。単官能単量体及び架橋性単量体に由来する外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体が形成されていることが確認できた。また、体積平均粒子径は20.7μmであり、複合粒子中の多孔質構造体の重量は27.0重量%であった。
(Example 5)
80 g of methyl methacrylate (MMA) as a monofunctional monomer, 80 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 160 g of tetraethoxysilane (TEOS) as a silica precursor, and hydrophobicity as hydrophobic silica particles Fumed silica R972 (EVONIK, BET specific surface area 110 ± 20 m 2 / g) 16 g, 1.6 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (Wako Pure Chemical Industries, Ltd.) (Product name V-65), (1R, 2S, 5R) -5-methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.) as a thermal acid generator A product consisting of 0.8 g of product name WPAG-699) was prepared. The viscosity of the mixture was 3.58 mPa · s.
On the other hand, 26 g of magnesium pyrophosphate and 0.128 g of lauryl phosphoric acid were added to 1280 g of ion-exchanged water as a suspension stabilizer to prepare an aqueous phase. The mixture was put into the aqueous phase, and emulsification / dispersion treatment was performed at 7000 rpm for 10 minutes using a homogenizer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35). The obtained emulsion is put into a 2 L pressure vessel with a stirring blade, and the stirring blade is heated at 50 ° C. for 4 hours while being stirred at 350 rpm, thereby comprising a monofunctional monomer and a crosslinkable monomer. An outer shell was formed. While maintaining the stirring, the reaction temperature was raised to 105 ° C., and the mixture was heated for 2 hours to allow the gelation reaction of TEOS to proceed. Thereafter, the reaction system was cooled to room temperature to obtain an emulsion containing the composite particles. Hydrochloric acid was added to the obtained emulsion to dissolve magnesium pyrophosphate, and then suction filtration was performed to take out composite particles from the emulsion. After repeated washing with water and purification, the composite particles were obtained by drying in a vacuum oven at 60 ° C.
FIG. 9A shows a surface photograph of the obtained composite particles, and FIG. 9B shows a cross-sectional photograph thereof. It was confirmed that an outer shell derived from the monofunctional monomer and the crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 20.7 μm, and the weight of the porous structure in the composite particles was 27.0% by weight.
(実施例6)
 疎水性シリカ粒子を12g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は2.39mPa・sであった。得られた複合粒子の表面写真を図10(A)に、断面写真を図10(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は9.5μmであり、複合粒子中の多孔質構造体の重量は24.2重量%であった。複合粒子中のシリカ重量は25.1%であった。
 加えて、内部多孔質構造体中の炭素原子の原子数濃度(%)を測定したところ、90.4%となり、外殻を形成する架橋ポリマー成分を含むことが確認できた。
(Example 6)
Composite particles were obtained in the same manner as in Example 5, except that 12 g of hydrophobic silica particles were used. The viscosity of the mixture was 2.39 mPa · s. FIG. 10A shows a surface photograph of the obtained composite particles, and FIG. 10B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle size was 9.5 μm, and the weight of the porous structure in the composite particles was 24.2% by weight. The weight of silica in the composite particles was 25.1%.
In addition, when the atomic number concentration (%) of carbon atoms in the internal porous structure was measured, it was 90.4%, and it was confirmed that the crosslinked polymer component forming the outer shell was included.
(実施例7)
 疎水性シリカ粒子を8g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は1.61mPa・sであった。得られた複合粒子の表面写真を図11(A)に、断面写真を図11(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は11.4μmであり、複合粒子中の多孔質構造体の重量は23.3重量%であった。
(Example 7)
Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic silica particles were used. The viscosity of the mixture was 1.61 mPa · s. FIG. 11A shows a surface photograph of the obtained composite particles, and FIG. 11B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 11.4 μm, and the weight of the porous structure in the composite particles was 23.3% by weight.
(実施例8)
 疎水性シリカ粒子を1.6g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は0.93mPa・sであった。得られた複合粒子の表面写真を図12(A)に、断面写真を図12(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は16.1μmであり、複合粒子中の多孔質構造体の重量は21.6重量%であった。
(Example 8)
Composite particles were obtained in the same manner as in Example 5, except that 1.6 g of hydrophobic silica particles were used. The viscosity of the mixture was 0.93 mPa · s. FIG. 12A shows a surface photograph of the obtained composite particles, and FIG. 12B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 16.1 μm, and the weight of the porous structure in the composite particles was 21.6% by weight.
(実施例9)
 疎水性シリカ粒子を24g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は8.07mPa・sであった。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は20.3μmであり、複合粒子中の多孔質構造体の重量は29.1重量%であった。
(Example 9)
Composite particles were obtained in the same manner as in Example 5, except that 24 g of hydrophobic silica particles were used. The viscosity of the mixture was 8.07 mPa · s. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle size was 20.3 μm, and the weight of the porous structure in the composite particles was 29.1% by weight.
(実施例10)
 疎水性シリカ粒子を36g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は46.3mPa・sであった。得られた複合粒子の表面写真を図13(A)に、断面写真を図13(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は21.6μmであり、複合粒子中の多孔質構造体の重量は31.8重量%であった。
(Example 10)
Composite particles were obtained in the same manner as in Example 5, except that 36 g of hydrophobic silica particles were used. The viscosity of the mixture was 46.3 mPa · s. FIG. 13A shows a surface photograph of the obtained composite particles, and FIG. 13B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. Further, the volume average particle diameter was 21.6 μm, and the weight of the porous structure in the composite particles was 31.8% by weight.
(実施例11)
 疎水性シリカ粒子として、疎水性フュームドシリカR974(EVONIK社、BET法による比表面積170±20m/g)を8g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は1.76mPa・sであった。得られた複合粒子の表面写真を図14(A)に、断面写真を図14(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は11.0μmであり、複合粒子中の多孔質構造体の重量は23.9重量%であった。
(Example 11)
Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic fumed silica R974 (EVONIK, specific surface area by BET method: 170 ± 20 m 2 / g) was used as the hydrophobic silica particles. The viscosity of the mixture was 1.76 mPa · s. FIG. 14A shows a surface photograph of the obtained composite particles, and FIG. 14B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 11.0 μm, and the weight of the porous structure in the composite particles was 23.9% by weight.
(実施例12)
 疎水性シリカ粒子として、疎水性フュームドシリカR976S(EVONIK社、BET法による比表面積240±25m/g)を8g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は1.54mPa・sであった。得られた複合粒子の表面写真を図15(A)に、断面写真を図15(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は10.8μmであり、複合粒子中の多孔質構造体の重量は24.0重量%であった。
(Example 12)
Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic fumed silica R976S (EVONIK, specific surface area of 240 ± 25 m 2 / g by BET method) was used as the hydrophobic silica particles. The viscosity of the mixture was 1.54 mPa · s. FIG. 15A shows a photograph of the surface of the obtained composite particles, and FIG. 15B shows a photograph of a cross section thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 10.8 μm, and the weight of the porous structure in the composite particles was 24.0% by weight.
(実施例13)
 疎水性シリカ粒子として、疎水性フュームドシリカR812(EVONIK社、BET法による比表面積260±30m/g)を8g使用したこと以外は、実施例5と同様にして複合粒子を得た。なお、混合物の粘度は1.27mPa・sであった。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は11.5μmであり、複合粒子中の多孔質構造体の重量は24.1重量%であった。
(Example 13)
Composite particles were obtained in the same manner as in Example 5, except that 8 g of hydrophobic fumed silica R812 (EVONIK, specific surface area according to BET method: 260 ± 30 m 2 / g) was used as the hydrophobic silica particles. The viscosity of the mixture was 1.27 mPa · s. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle size was 11.5 μm, and the weight of the porous structure in the composite particles was 24.1% by weight.
(実施例14)
 単官能単量体としてのメチルメタクリレート(MMA)100g、架橋性単量体としてのエチレングリコールジメタクリレート(EGDMA)100g、シリカ前駆体としてのテトラエトキシシラン(TEOS)200g、無機系増粘剤としてのスメクトン−STN(クニミネ工業株式会社 有機化スメクタイト)4g、重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)2g(和光純薬工業社製;製品名V−65)、からなる混合物を調整した。混合物の粘度は0.91mPa・sであった。
 一方、イオン交換水1140gに、懸濁安定剤としてポリビニルアルコール(日本合成化学工業社製;GL−05)60gを溶解させて水相を用意した。この水相中に前記混合物を入れてホモミキサー(セントラル科学貿易社製;製品名ポリトロンホモジナイサーPT10−35)を用いて、回転数5000rpmにて10分間乳化・分散処理を行った。得られた乳化液を2Lの攪拌翼付き圧力容器に投入し、攪拌翼を350rpmで攪拌しながら50℃で4時間の加熱を行うことで、単官能単量体及び架橋性単量体からなる外殻を形成させた。攪拌を維持したまま内部温度を30℃まで冷却し、25%アンモニア水(和光純薬工業株式会社)65gを添加し16時間攪拌することでTEOSのゲル化反応を進行させることで複合粒子を含む乳化液を得た。得られた乳化液に対して吸引ろ過を行うことで乳化液から複合粒子を取り出した。水洗を繰り返し、精製を行った後、60℃の真空オーブンで乾燥を行うことで複合粒子を得た。
 得られた複合粒子の断面写真を図16に示す。単官能単量体及び架橋性単量体に由来する外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は11.5μmであり、複合粒子中のシリカ重量は22.1重量%であった。
(Example 14)
100 g of methyl methacrylate (MMA) as a monofunctional monomer, 100 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 200 g of tetraethoxysilane (TEOS) as a silica precursor, and 100 g of an inorganic thickener 4 g of smecton-STN (organized smectite manufactured by Kunimine Industries Co., Ltd.), 2 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (product name V-65, manufactured by Wako Pure Chemical Industries, Ltd.), Was prepared. The viscosity of the mixture was 0.91 mPa · s.
On the other hand, an aqueous phase was prepared by dissolving 60 g of polyvinyl alcohol (GL-05, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) as a suspension stabilizer in 1140 g of ion-exchanged water. The mixture was put into the aqueous phase, and emulsification / dispersion treatment was carried out at 5,000 rpm for 10 minutes using a homomixer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35). The obtained emulsion is charged into a 2 L pressure vessel with stirring blades, and the mixture is heated at 50 ° C. for 4 hours while stirring the stirring blades at 350 rpm, thereby comprising a monofunctional monomer and a crosslinkable monomer. An outer shell was formed. While maintaining the agitation, the internal temperature is cooled to 30 ° C., 65 g of 25% aqueous ammonia (Wako Pure Chemical Industries, Ltd.) is added, and the mixture is agitated for 16 hours to allow the gelation reaction of TEOS to proceed, thereby containing the composite particles. An emulsion was obtained. The obtained emulsion was subjected to suction filtration to take out composite particles from the emulsion. After repeated washing with water and purification, the composite particles were obtained by drying in a vacuum oven at 60 ° C.
FIG. 16 shows a cross-sectional photograph of the obtained composite particles. It was confirmed that an outer shell derived from the monofunctional monomer and the crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 11.5 μm, and the weight of silica in the composite particles was 22.1% by weight.
(実施例15)
 無機系増粘剤としてクニビス−110(クニミネ工業株式会社 有機化ベントナイト)4gを使用した以外は、実施例14と同様にしてシリカ内包マイクロカプセル樹脂粒子を得た。混合物の粘度は1.01mPa・sであった。
 得られた複合粒子の断面写真を図17に示す。単官能単量体及び架橋性単量体に由来する外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は13.5μmであり、複合粒子中のシリカ重量は21.9重量%であった。
(Example 15)
Silica-encapsulated microcapsule resin particles were obtained in the same manner as in Example 14, except that 4 g of Kunibis-110 (organized bentonite) was used as an inorganic thickener. The viscosity of the mixture was 1.01 mPa · s.
FIG. 17 shows a cross-sectional photograph of the obtained composite particles. It was confirmed that an outer shell derived from the monofunctional monomer and the crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 13.5 μm, and the weight of silica in the composite particles was 21.9% by weight.
(比較例3)
 単官能単量体としてのメチルメタクリレート(MMA)80g、架橋性単量体としてのエチレングリコールジメタクリレート(EGDMA)80g、シリカ前駆体としてのテトラエトキシシラン(TEOS)128g、有機溶媒としてのトルエン32g、重合開始剤としての2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.6g(和光純薬工業社製;製品名V−65)、熱酸発生剤として(1R,2S,5R)−5−メチル−2−(プロパン−2−イル)シクロヘキシル4−メチルベンゼンスルホネート(和光純薬工業社製;製品名WPAG−699)0.8gを混合・溶解して、混合物を調製した。
 一方、イオン交換水1260gに、懸濁安定剤としてポリビニルアルコール(PVA)(日本合成化学社製;製品名ゴーセノールGL−05)20gを溶解させ、水相を用意した。この水相中に前記混合物を入れて、ホモジナイザー(セントラル科学貿易社製;製品名 ポリトロンホモジナイサーPT10−35)を用いて、回転数5000rpmにて3分間乳化・分散処理を行った。
 得られた乳化液を2Lの撹拌翼付き圧力容器に投入し、撹拌翼を350rpmで撹拌しながら50℃で4時間の加熱を行うことで、単官能単量体及び架橋性単量体からなる外殻を形成させた。撹拌を維持したまま反応温度を105℃まで昇温し、2時間加熱することでTEOSのゲル化反応を進行させた。その後、反応系を室温まで冷却することで複合粒子を含む乳化液を得た。
 得られた複合粒子を、遠心分離及び上澄みの分離に付すことで乳化液から取り出し、水洗を繰り返し、精製を行った後、60℃にて真空オーブンで乾燥させた。
 得られた複合粒子の表面写真を図18(A)に、断面写真を図18(B)に示す。単官能単量体及び架橋性単量体からなる外殻が形成されており、また、その内部にはシリカ粒子が互いに連結された多孔質構造体を形成されていることが確認できた。また、体積平均粒子径は10.4μmであり、複合粒子中の多孔質構造体の重量は17.2重量%であった。
(Comparative Example 3)
80 g of methyl methacrylate (MMA) as a monofunctional monomer, 80 g of ethylene glycol dimethacrylate (EGDMA) as a crosslinkable monomer, 128 g of tetraethoxysilane (TEOS) as a silica precursor, 32 g of toluene as an organic solvent, 1.6 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (product name V-65, manufactured by Wako Pure Chemical Industries, Ltd.) and (1R, 2S, 5R) as a thermal acid generator 0.8 g of -5-methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd .; product name: WPAG-699) was mixed and dissolved to prepare a mixture.
On the other hand, 20 g of polyvinyl alcohol (PVA) (manufactured by Nippon Gohsei; product name: Gohsenol GL-05) was dissolved in 1260 g of ion-exchanged water to prepare an aqueous phase. The mixture was put into the aqueous phase, and emulsification / dispersion treatment was carried out at 5000 rpm for 3 minutes using a homogenizer (manufactured by Central Kagaku Trading Co., Ltd .; product name: Polytron homogenizer PT10-35).
The obtained emulsion is put into a 2 L pressure vessel with a stirring blade, and the stirring blade is heated at 50 ° C. for 4 hours while being stirred at 350 rpm, thereby comprising a monofunctional monomer and a crosslinkable monomer. An outer shell was formed. While maintaining the stirring, the reaction temperature was raised to 105 ° C., and the mixture was heated for 2 hours to allow the gelation reaction of TEOS to proceed. Thereafter, the reaction system was cooled to room temperature to obtain an emulsion containing the composite particles.
The obtained composite particles were taken out of the emulsion by subjecting them to centrifugation and separation of the supernatant, repeatedly washed with water, purified, and dried in a vacuum oven at 60 ° C.
FIG. 18A shows a surface photograph of the obtained composite particles, and FIG. 18B shows a cross-sectional photograph thereof. It was confirmed that an outer shell composed of a monofunctional monomer and a crosslinkable monomer was formed, and that a porous structure in which silica particles were connected to each other was formed inside. The volume average particle diameter was 10.4 μm, and the weight of the porous structure in the composite particles was 17.2% by weight.
上記実施例5~15及び比較例3の原料種、その使用量(g)、及び混合物の粘度を表2にまとめて記載する。 Table 2 summarizes the raw material species of Examples 5 to 15 and Comparative Example 3, the amount (g) used, and the viscosity of the mixture.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(紫外可視近赤外光の反射特性評価)
 複合粒子の紫外光、可視光及び近赤外光に対する反射率を以下の手順で評価した。
 市販の水性塗料(アサヒペン社 商品名;水性多用途カラー クリア)10gに対し、複合粒子を2.5g加え、よく撹拌して粒子を分散し、評価用塗料を作製した。
 評価用塗料を隠蔽率試験紙の黒側にウエット厚250μmに設定したアプリケーターにて塗工した後、室温下で十分に乾燥させ、光反射性評価用サンプル板を得た。
 サンプル板の紫外光、可視光、及び近赤外光に対する反射率を以下の点順で評価した。
 反射率の測定装置として島津製作所社製の紫外可視近赤外分光光度計(Solid Spec3700)を使用し、サンプル板における塗工面の紫外光から近赤外光(波長300~2500nm)の反射特性を反射率(%)として測定した。なお、測定は60mmΦ積分球を用い、スペクトラロンを標準白板に使用して行った。得られた結果を図19に示す。
 図19から、実施例の複合粒子は、トルエンのような有機溶媒を使用せずとも、比較例3と同程度の紫外光から近赤外光のほぼ全ての波長における高い反射率を有することがわかる。
(Evaluation of reflection characteristics of ultraviolet, visible, and near-infrared light)
The reflectance of the composite particles with respect to ultraviolet light, visible light and near-infrared light was evaluated according to the following procedure.
2.5 g of composite particles were added to 10 g of a commercially available water-based paint (trade name of Asahipen Co .; water-based multi-purpose color clear), and the mixture was stirred well to disperse the particles to prepare a paint for evaluation.
The paint for evaluation was applied to the black side of the opacity test paper using an applicator set to a wet thickness of 250 μm, and then sufficiently dried at room temperature to obtain a sample plate for light reflectivity evaluation.
The reflectance of the sample plate to ultraviolet light, visible light, and near-infrared light was evaluated in the following order.
An ultraviolet-visible-near-infrared spectrophotometer (Solid Spec 3700) manufactured by Shimadzu Corporation was used as a reflectivity measuring device to measure the reflection characteristics from ultraviolet light to near-infrared light (wavelength 300 to 2500 nm) on the coated surface of the sample plate. It was measured as reflectivity (%). The measurement was carried out using a 60 mmΦ integrating sphere and using Spectralon as a standard white plate. The results obtained are shown in FIG.
From FIG. 19, it can be seen that the composite particles of the examples have a high reflectivity at almost all wavelengths from ultraviolet light to near-infrared light similar to that of Comparative Example 3 without using an organic solvent such as toluene. Understand.
(塗料組成物の製造例1)
 実施例1で得られた複合粒子2重量部と、市販のアクリル系水性つやあり塗料(カンペパピオ社製、商品名スーパーヒット)20重量部とを、撹拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、塗料組成物を得た。
 得られた塗料組成物を、クリアランス75μmのブレードをセットした塗工装置を用いてABS樹脂(アクリロニトリル−ブタジエン−スチレン樹脂)板上に塗布した後、乾燥することによって塗膜を得た。
(Production Example 1 of coating composition)
2 parts by weight of the composite particles obtained in Example 1 and 20 parts by weight of a commercially available acrylic water-based glossy paint (manufactured by Campe Papio Co., Ltd., trade name: Superhit) were mixed for 3 minutes using a stirring and defoaming apparatus. By defoaming for 1 minute, a coating composition was obtained.
The obtained coating composition was applied on an ABS resin (acrylonitrile-butadiene-styrene resin) plate using a coating device equipped with a blade having a clearance of 75 μm, and then dried to obtain a coating film.
(塗料組成物の製造例2)
 実施例5で得られた複合粒子2重量部と、市販のアクリル系水性つやあり塗料(カンペパピオ社製、商品名スーパーヒット)20重量部とを、撹拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、塗料組成物を得た。
 得られた塗料組成物を、クリアランス75μmのブレードをセットした塗工装置を用いてABS樹脂(アクリロニトリル−ブタジエン−スチレン樹脂)板上に塗布した後、乾燥することによって塗膜を得た。
(Production Example 2 of coating composition)
2 parts by weight of the composite particles obtained in Example 5 and 20 parts by weight of a commercially available acrylic water-based glossy paint (manufactured by Campe Papio Co., Ltd., trade name: Superhit) were mixed for 3 minutes using a stirring and defoaming apparatus. The coating composition was obtained by defoaming for 1 minute.
The obtained coating composition was applied on an ABS resin (acrylonitrile-butadiene-styrene resin) plate using a coating device equipped with a blade having a clearance of 75 μm, and then dried to obtain a coating film.
(光拡散性樹脂組成物及び光拡散フィルムの製造例1)
 実施例1で得られた複合粒子7.5重量部と、アクリル樹脂(DIC社製、製品名アクリディックA811)30重量部、架橋剤(DIC社製、製品名VM−D)10重量部、溶剤として酢酸ブチル50重量部とを撹拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、光拡散性樹脂組成物を得た。
 得られた光拡散性樹脂組成物を、クリアランス50μmのブレードをセットした塗工装置を用いて、厚さ125μmのPETフィルム上に塗布した後、70℃で10分乾燥することによって光拡散フィルムを得た。
(Production Example 1 of light diffusing resin composition and light diffusing film)
7.5 parts by weight of the composite particles obtained in Example 1, 30 parts by weight of an acrylic resin (manufactured by DIC, product name Acridic A811), 10 parts by weight of a crosslinking agent (manufactured by DIC, product name VM-D), 50 parts by weight of butyl acetate as a solvent was mixed for 3 minutes using a stirring and defoaming apparatus, and defoamed for 1 minute to obtain a light diffusing resin composition.
The obtained light-diffusing resin composition was coated on a 125-μm-thick PET film using a coating device equipped with a blade with a clearance of 50 μm, and then dried at 70 ° C. for 10 minutes to form a light-diffusing film. Obtained.
(光拡散性樹脂組成物及び光拡散フィルムの製造例2)
 実施例5で得られた複合粒子7.5重量部と、アクリル樹脂(DIC社製、製品名アクリディックA811)30重量部、架橋剤(DIC社製、製品名VM−D)10重量部、溶剤として酢酸ブチル50重量部とを撹拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、光拡散性樹脂組成物を得た。
 得られた光拡散性樹脂組成物を、クリアランス50μmのブレードをセットした塗工装置を用いて、厚さ125μmのPETフィルム上に塗布した後、70℃で10分乾燥することによって光拡散フィルムを得た。
(Production Example 2 of light diffusing resin composition and light diffusing film)
7.5 parts by weight of the composite particles obtained in Example 5, 30 parts by weight of an acrylic resin (manufactured by DIC, product name Acridic A811), 10 parts by weight of a crosslinking agent (manufactured by DIC, product name VM-D), 50 parts by weight of butyl acetate as a solvent was mixed for 3 minutes using a stirring and defoaming apparatus, and defoamed for 1 minute to obtain a light diffusing resin composition.
The obtained light-diffusing resin composition was coated on a 125-μm-thick PET film using a coating device equipped with a blade with a clearance of 50 μm, and then dried at 70 ° C. for 10 minutes to form a light-diffusing film. Obtained.
(化粧料の処方例)
(配合例1)
パウダーファンデーションの製造
・配合量
 実施例1で得られた複合粒子 10.0重量部
 赤色酸化鉄 3.0重量部
 黄色酸化鉄 2.5重量部
 黒色酸化鉄 0.5重量部
 酸化チタン 10.0重量部
 マイカ 20.0重量部
 タルク 44.0重量部
 流動パラフィン 5.0重量部
 ミリスチン酸オクチルドデシル 2.5重量部
 ワセリン 2.5重量部
 防腐剤 適量
 香料 適量
・製造法
 複合粒子、赤色酸化鉄、黄色酸化鉄、黒色酸化鉄、酸化チタン、マイカ、タルクをヘンシェルミキサーで混合し、これに流動パラフィン、ミリスチン酸オクチルドデシル、ワセリン及び防腐剤を混合溶解したものを加えて均一に混合する。これに、香料を加えて混合した後、粉砕して篩いに通す。これを、金皿に圧縮成形してパウダーファンデーションを得る。
(Example of cosmetic formulation)
(Formulation Example 1)
Production and blending amount of powder foundation Composite particles obtained in Example 1 10.0 parts by weight Red iron oxide 3.0 parts by weight Yellow iron oxide 2.5 parts by weight Black iron oxide 0.5 parts by weight Titanium oxide 10.0 Parts by weight Mica 20.0 parts by weight Talc 44.0 parts by weight Liquid paraffin 5.0 parts by weight Octyldodecyl myristate 2.5 parts by weight Vaseline 2.5 parts by weight Preservatives proper amount perfume proper amount / production method , Yellow iron oxide, black iron oxide, titanium oxide, mica, and talc are mixed with a Henschel mixer, and a mixture obtained by mixing and dissolving liquid paraffin, octyldodecyl myristate, vaseline, and a preservative is added and uniformly mixed. After adding a fragrance to the mixture and mixing, the mixture is pulverized and passed through a sieve. This is compression-molded on a metal plate to obtain a powder foundation.
(配合例2)
化粧乳液の製造
・配合量
 実施例1で得られた複合粒子 10.0重量部
 ステアリン酸 2.5重量部
 セチルアルコール 1.5重量部
 ワセリン 5.0重量部
 流動パラフィン 10.0重量部
 ポリエチレン(10モル)モノオレイン酸エステル 2.0重量部
 ポリエチレングリコール1500 3.0重量部
 トリエタノールアミン 1.0重量部
 精製水 64.5重量部
 香料 0.5重量部
 防腐剤 適量
・製造法
 まず、ステアリン酸、セチルアルコール、ワセリン、流動パラフィン、ポリエチレンモノオレイン酸エステルを加熱溶解して、ここへ複合粒子を添加・混合し、70℃に保温する(油相)。また、精製水にポリエチレングリコール、トリエタノールアミンを加え、加熱溶解し、70℃に保温する(水相)。水相に油相を加え、予備乳化を行い、その後ホモジナイザーで均一に乳化し、乳化後かき混ぜながら30℃まで冷却させることで化粧乳液を得る。
(Formulation Example 2)
Production and Compounding Amount of Cosmetic Emulsion 10.0 parts by weight of composite particles obtained in Example 1 2.5 parts by weight of stearic acid 1.5 parts by weight of cetyl alcohol 5.0 parts by weight of petrolatum 10.0 parts by weight of liquid paraffin 10.0 parts by weight of polyethylene ( 10 mol) Monooleate 2.0 parts by weight Polyethylene glycol 1500 3.0 parts by weight Triethanolamine 1.0 part by weight Purified water 64.5 parts by weight Fragrance 0.5 part by weight Preservatives Appropriate amount / production method First, stearin The acid, cetyl alcohol, petrolatum, liquid paraffin, and polyethylene monooleate are heated and dissolved, and the composite particles are added and mixed therein, and the mixture is kept at 70 ° C. (oil phase). Further, polyethylene glycol and triethanolamine are added to purified water, dissolved by heating, and kept at 70 ° C. (aqueous phase). The oil phase is added to the water phase, preliminarily emulsified, and thereafter uniformly emulsified with a homogenizer. After emulsification, the emulsion is cooled to 30 ° C. with stirring to obtain a cosmetic emulsion.
(配合例3)
パウダーファンデーションの製造
・配合量
 実施例5で得られた複合粒子 10.0重量部
 赤色酸化鉄 3.0重量部
 黄色酸化鉄 2.5重量部
 黒色酸化鉄 0.5重量部
 酸化チタン 10.0重量部
 マイカ 20.0重量部
 タルク 44.0重量部
 流動パラフィン 5.0重量部
 ミリスチン酸オクチルドデシル 2.5重量部
 ワセリン 2.5重量部
 防腐剤 適量
 香料 適量
・製造法
 複合粒子、赤色酸化鉄、黄色酸化鉄、黒色酸化鉄、酸化チタン、マイカ、タルクをヘンシェルミキサーで混合し、これに流動パラフィン、ミリスチン酸オクチルドデシル、ワセリン及び防腐剤を混合溶解したものを加えて均一に混合する。これに、香料を加えて混合した後、粉砕して篩いに通す。これを、金皿に圧縮成形してパウダーファンデーションを得る。
(Formulation Example 3)
Manufacture and blending amount of powder foundation Composite particles obtained in Example 5 10.0 parts by weight Red iron oxide 3.0 parts by weight Yellow iron oxide 2.5 parts by weight Black iron oxide 0.5 parts by weight Titanium oxide 10.0 Parts by weight Mica 20.0 parts by weight Talc 44.0 parts by weight Liquid paraffin 5.0 parts by weight Octyldodecyl myristate 2.5 parts by weight Vaseline 2.5 parts by weight Preservatives proper amount perfume proper amount / production method , Yellow iron oxide, black iron oxide, titanium oxide, mica, and talc are mixed with a Henschel mixer, and a mixture obtained by mixing and dissolving liquid paraffin, octyldodecyl myristate, vaseline, and a preservative is added and uniformly mixed. After adding a fragrance to the mixture and mixing, the mixture is pulverized and passed through a sieve. This is compression-molded on a metal plate to obtain a powder foundation.
(配合例4)
化粧乳液の製造
・配合量
 実施例5で得られた複合粒子 10.0重量部
 ステアリン酸 2.5重量部
 セチルアルコール 1.5重量部
 ワセリン 5.0重量部
 流動パラフィン 10.0重量部
 ポリエチレン(10モル)モノオレイン酸エステル 2.0重量部
 ポリエチレングリコール1500 3.0重量部
 トリエタノールアミン 1.0重量部
 精製水 64.5重量部
 香料 0.5重量部
 防腐剤 適量
・製造法
 まず、ステアリン酸、セチルアルコール、ワセリン、流動パラフィン、ポリエチレンモノオレイン酸エステルを加熱溶解して、ここへ複合粒子を添加・混合し、70℃に保温する(油相)。また、精製水にポリエチレングリコール、トリエタノールアミンを加え、加熱溶解し、70℃に保温する(水相)。水相に油相を加え、予備乳化を行い、その後ホモミキサーで均一に乳化し、乳化後かき混ぜながら30℃まで冷却させることで化粧乳液を得る。
(Formulation Example 4)
Production and Compounding Amount of Cosmetic Emulsion 10.0 parts by weight of composite particles obtained in Example 5 2.5 parts by weight of stearic acid 1.5 parts by weight of cetyl alcohol 5.0 parts by weight of vaseline 10.0 parts by weight of liquid paraffin Polyethylene ( 10 mol) Monooleate 2.0 parts by weight Polyethylene glycol 1500 3.0 parts by weight Triethanolamine 1.0 part by weight Purified water 64.5 parts by weight Fragrance 0.5 part by weight Preservatives Appropriate amount / production method First, stearin The acid, cetyl alcohol, petrolatum, liquid paraffin, and polyethylene monooleate are heated and dissolved, and the composite particles are added and mixed therein, and kept at 70 ° C. (oil phase). Further, polyethylene glycol and triethanolamine are added to purified water, dissolved by heating, and kept at 70 ° C. (aqueous phase). The oil phase is added to the water phase, preliminarily emulsified, and thereafter uniformly emulsified by a homomixer. After emulsification, the emulsion is cooled to 30 ° C. with stirring to obtain a cosmetic emulsion.

Claims (21)

  1.  架橋ポリマーから構成される外殻と、前記外殻により区画された空洞とを備え、前記空洞の内部に、第一の無機粒子としてのシリカ粒子が互いに連結された多孔質構造体と、シリカ粒子以外の第二の無機粒子とを含み、0.5~100μmの体積平均粒子径を有することを特徴とする有機無機複合粒子。 A porous structure comprising an outer shell made of a cross-linked polymer, and a cavity partitioned by the outer shell, in which a silica structure as first inorganic particles is connected to each other; Organic-inorganic composite particles comprising a second inorganic particle other than the above, and having a volume average particle diameter of 0.5 to 100 μm.
  2.  前記第二の無機粒子が1.8以上の屈折率を有する請求項1に記載の有機無機複合粒子。 The organic-inorganic composite particles according to claim 1, wherein the second inorganic particles have a refractive index of 1.8 or more.
  3.  前記第二の無機粒子が、動的光散乱法により測定された0.001~3μmの粒径を有する請求項1又は2に記載の有機無機複合粒子。 3. The organic-inorganic composite particles according to claim 1, wherein the second inorganic particles have a particle diameter of 0.001 to 3 μm measured by a dynamic light scattering method.
  4.  前記第一の無機粒子及び第二の無機粒子が、前記有機無機複合粒子の全重量に対して5~50重量%を有し、前記空洞に中空構造を与える請求項1~3のいずれか1項に記載の有機無機複合粒子。 4. The method according to claim 1, wherein the first inorganic particles and the second inorganic particles have a content of 5 to 50% by weight based on the total weight of the organic-inorganic composite particles, and provide the hollow structure with a hollow structure. Organic-inorganic composite particles according to the above item.
  5.  前記第二の無機粒子が、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化ニオブ、ケイ酸ジルコニウムから選択される粒子である請求項1~4のいずれか1項に記載の有機無機複合粒子。 The organic-inorganic composite particles according to any one of claims 1 to 4, wherein the second inorganic particles are particles selected from titanium oxide, zirconium oxide, cerium oxide, zinc oxide, niobium oxide, and zirconium silicate. .
  6.  請求項1~5のいずれか1項に記載の有機無機複合粒子を配合した化粧料。 <6> A cosmetic containing the organic-inorganic composite particles according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項に記載の有機無機複合粒子を配合した塗料組成物。 (6) A coating composition containing the organic-inorganic composite particles according to any one of (1) to (5).
  8.  請求項1~5のいずれか1項に記載の有機無機複合粒子を配合した断熱性樹脂組成物。 (6) A heat-insulating resin composition containing the organic-inorganic composite particles according to any one of (1) to (5).
  9.  請求項1~5のいずれか1項に記載の有機無機複合粒子を配合した光拡散性樹脂組成物。 <6> A light diffusing resin composition containing the organic-inorganic composite particles according to any one of <1> to <5>.
  10.  請求項1~5のいずれか1項に記載の有機無機複合粒子を配合した光拡散フィルム。 (6) A light diffusion film containing the organic-inorganic composite particles according to any one of (1) to (5).
  11.  請求項1~5のいずれか1項に記載の有機無機複合粒子の製造方法であって、
     ラジカル重合性の単官能単量体100重量部及び架橋性単量体20~150重量部と、シリカ前駆体としてのシリコンアルコキシド60~400重量部と、第二の無機粒子0.1~10重量部とを含む混合物を、ラジカル重合開始剤の存在下、水系媒体中で懸濁重合させることで、架橋ポリマーから構成される外殻と、前記外殻により区画された空洞とを形成する工程と、
     前記外殻の形成後又は外殻の形成と同時にシリコンアルコキシドをゲル化させることで、前記空洞の内部にシリカ粒子が互いに連結された多孔質構造体を形成する工程と
    を備えることを特徴とする有機無機複合粒子の製造方法。
    A method for producing organic-inorganic composite particles according to any one of claims 1 to 5,
    100 parts by weight of a radical polymerizable monofunctional monomer and 20 to 150 parts by weight of a crosslinkable monomer, 60 to 400 parts by weight of a silicon alkoxide as a silica precursor, and 0.1 to 10 parts by weight of a second inorganic particle And a mixture comprising a part and a suspension polymerization in an aqueous medium in the presence of a radical polymerization initiator to form an outer shell composed of a crosslinked polymer and a cavity defined by the outer shell. ,
    Gelling the silicon alkoxide after or simultaneously with the formation of the outer shell to form a porous structure in which silica particles are connected to each other inside the cavity. A method for producing organic-inorganic composite particles.
  12.  前記ゲル化が、前記外殻により区画された空洞内の酸又は塩基を触媒として行われ、前記酸又は塩基が、潜在性pH調整剤のエネルギー放射線又は熱による外部刺激により生じ、前記潜在性pH調整剤が、前記懸濁重合時の混合物中に前記潜在性pH調整剤を溶解させることにより前記空洞内に存在する請求項11に記載の有機無機複合粒子の製造方法。 The gelation is carried out by using an acid or a base in the cavity defined by the outer shell as a catalyst, and the acid or the base is generated by external stimulation by energy radiation or heat of the latent pH adjuster, and the latent pH is reduced. The method for producing organic-inorganic composite particles according to claim 11, wherein the modifier is present in the cavity by dissolving the latent pH modifier in the mixture during the suspension polymerization.
  13.  ラジカル重合性の単官能単量体及び架橋性単量体と、シリカ前駆体としてのシリコンアルコキシドと、無機系増粘剤とを含む混合物を、ラジカル重合開始剤の存在下かつ有機溶媒の非存在下、水系媒体中で懸濁重合させることで、架橋ポリマーから構成される外殻を形成する工程と、
     前記外殻の形成後又は外殻の形成と同時にシリコンアルコキシドから、前記外殻の内部にシリカ粒子が互いに連結された多孔質構造体を形成する工程と
    を備えることを特徴とする有機無機複合粒子の製造方法。
    A mixture containing a radically polymerizable monofunctional monomer and a crosslinkable monomer, a silicon alkoxide as a silica precursor, and an inorganic thickener is mixed in the presence of a radical polymerization initiator and in the absence of an organic solvent. A step of forming an outer shell composed of a crosslinked polymer by suspension polymerization in an aqueous medium,
    Forming a porous structure in which silica particles are connected to each other inside the outer shell from silicon alkoxide after or simultaneously with the formation of the outer shell from the silicon alkoxide. Manufacturing method.
  14.  前記混合物が、25℃において、0.90mPa・s以上の粘度を有する請求項13に記載の有機無機複合粒子の製造方法。 The method for producing organic-inorganic composite particles according to claim 13, wherein the mixture has a viscosity of 0.90 mPa · s or more at 25 ° C.
  15.  前記無機系増粘剤が、無水ケイ酸又は粘土鉱物である請求項13又は14に記載の有機無機複合粒子の製造方法。 The method for producing organic-inorganic composite particles according to claim 13 or 14, wherein the inorganic thickener is silicic anhydride or a clay mineral.
  16.  前記シリカ粒子が互いに連結された多孔質構造体が、EDX測定において炭素成分の含有を示す請求項13~15のいずれか1項に記載の有機無機複合粒子の製造方法。 16. The method for producing organic-inorganic composite particles according to any one of claims 13 to 15, wherein the porous structure in which the silica particles are connected to each other exhibits a carbon component in EDX measurement.
  17.  前記無機系増粘剤が、無水ケイ酸である疎水性シリカ粒子であり、前記疎水性シリカ粒子が、15~330m/gのBET法による比表面積を有する請求項15又は16に記載の有機無機複合粒子の製造方法。 17. The organic material according to claim 15, wherein the inorganic thickener is hydrophobic silica particles that are silicic anhydride, and the hydrophobic silica particles have a specific surface area of 15 to 330 m 2 / g by a BET method. A method for producing inorganic composite particles.
  18.  前記有機無機複合粒子が、0.5~100μmの体積平均粒子径を有する請求項13~17のいずれか1項に記載の有機無機複合粒子の製造方法。 18. The method for producing organic-inorganic composite particles according to any one of claims 13 to 17, wherein the organic-inorganic composite particles have a volume average particle diameter of 0.5 to 100 μm.
  19.  前記多孔質構造体が、前記有機無機複合粒子の全重量に対して5~50重量%を有する請求項13~18のいずれか1項に記載の有機無機複合粒子の製造方法。 19. The method for producing organic-inorganic composite particles according to any one of claims 13 to 18, wherein the porous structure has 5 to 50% by weight based on the total weight of the organic-inorganic composite particles.
  20.  前記疎水性シリカ粒子が、前記混合物中に、前記混合物100重量部に対し、0.5~100重量部含まれる請求項17~19のいずれか1項に記載の有機無機複合粒子の製造方法。 20. The method for producing organic-inorganic composite particles according to any one of claims 17 to 19, wherein the hydrophobic silica particles are contained in the mixture in an amount of 0.5 to 100 parts by weight based on 100 parts by weight of the mixture.
  21.  前記混合物が、前記単官能単量体を100重量部、前記架橋性単量体を20~150重量部、前記シリカ前駆体を60~400重量部含む請求項13~20のいずれか1項に記載の有機無機複合粒子の製造方法。 The mixture according to any one of claims 13 to 20, wherein the monofunctional monomer includes 100 parts by weight, the crosslinkable monomer includes 20 to 150 parts by weight, and the silica precursor includes 60 to 400 parts by weight. A method for producing the organic-inorganic composite particles according to the above.
PCT/IB2019/056673 2018-08-09 2019-08-06 Organic inorganic composite particle, method for producing same, and application thereof WO2020031079A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/264,130 US20210317317A1 (en) 2018-08-09 2019-08-06 Organic inorganic composite particle, method for producing same, and application thereof
EP19846718.5A EP3835328A4 (en) 2018-08-09 2019-08-06 Organic inorganic composite particle, method for producing same, and application thereof
CN201980050397.6A CN112513108A (en) 2018-08-09 2019-08-06 Organic-inorganic composite particles, method for producing same, and use thereof
KR1020217002816A KR20210028216A (en) 2018-08-09 2019-08-06 Organic-inorganic composite particles, manufacturing method and use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-150712 2018-08-09
JP2018150712 2018-08-09
JP2018-150714 2018-08-09
JP2018150714 2018-08-09
JP2019132979A JP2020026517A (en) 2018-08-09 2019-07-18 Method for producing organic-inorganic composite particles
JP2019-132979 2019-07-18
JP2019133837A JP2020026518A (en) 2018-08-09 2019-07-19 Organic inorganic composite particle, method for producing the same, and application thereof
JP2019-133837 2019-07-19

Publications (1)

Publication Number Publication Date
WO2020031079A1 true WO2020031079A1 (en) 2020-02-13

Family

ID=69414011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/056673 WO2020031079A1 (en) 2018-08-09 2019-08-06 Organic inorganic composite particle, method for producing same, and application thereof

Country Status (1)

Country Link
WO (1) WO2020031079A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022212376A1 (en) * 2021-03-29 2022-10-06 The Regents Of The University Of California Sprayable cool white coating based on ceramic microspheres
WO2024073831A1 (en) * 2022-10-05 2024-04-11 Instituto Hercílio Randon Premix and process for producing a cosmetic composition, cosmetic composition, method for photoprotection of a surface and use of the premix

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139663A (en) 1999-11-12 2001-05-22 Daicel Chem Ind Ltd Resin composition for optical shaping, its preparation process and optically shaped product
JP2009126909A (en) * 2007-11-21 2009-06-11 Idemitsu Kosan Co Ltd Overcoat film-forming composition and overcoat film comprising the same
JP2009237342A (en) 2008-03-27 2009-10-15 Sekisui Chem Co Ltd Light diffusion film, and method for manufacturing light diffusion film
WO2014030754A1 (en) 2012-08-24 2014-02-27 ロート製薬株式会社 Composition for skin comprising hollow polymer particles
JP2014051581A (en) * 2012-09-06 2014-03-20 Daicel Polymer Ltd Additive for thermoplastic resin
JP2016092142A (en) * 2014-10-31 2016-05-23 シチズンホールディングス株式会社 Wiring board and method for manufacturing light-emitting device using the same
JP2016100505A (en) * 2014-11-25 2016-05-30 日立化成株式会社 Sealant for solar battery, and solar battery module
WO2017150423A1 (en) 2016-02-29 2017-09-08 積水化成品工業株式会社 Silica-including microcapsule resin particles, method for producing same, and application thereof
JP2018150712A (en) 2017-03-13 2018-09-27 株式会社奥村組 Sludge processing equipment to be used for high-pressure injecting agitation method
JP2018150714A (en) 2017-03-13 2018-09-27 世紀東急工業株式会社 Asphalt finisher
JP2019133837A (en) 2018-01-31 2019-08-08 国立大学法人 東京大学 Secondary battery with electrolyte including nonpolar solvent
JP2019132979A (en) 2018-01-31 2019-08-08 株式会社第一興商 Karaoke device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139663A (en) 1999-11-12 2001-05-22 Daicel Chem Ind Ltd Resin composition for optical shaping, its preparation process and optically shaped product
JP2009126909A (en) * 2007-11-21 2009-06-11 Idemitsu Kosan Co Ltd Overcoat film-forming composition and overcoat film comprising the same
JP2009237342A (en) 2008-03-27 2009-10-15 Sekisui Chem Co Ltd Light diffusion film, and method for manufacturing light diffusion film
WO2014030754A1 (en) 2012-08-24 2014-02-27 ロート製薬株式会社 Composition for skin comprising hollow polymer particles
JP2014051581A (en) * 2012-09-06 2014-03-20 Daicel Polymer Ltd Additive for thermoplastic resin
JP2016092142A (en) * 2014-10-31 2016-05-23 シチズンホールディングス株式会社 Wiring board and method for manufacturing light-emitting device using the same
JP2016100505A (en) * 2014-11-25 2016-05-30 日立化成株式会社 Sealant for solar battery, and solar battery module
WO2017150423A1 (en) 2016-02-29 2017-09-08 積水化成品工業株式会社 Silica-including microcapsule resin particles, method for producing same, and application thereof
JP2018150712A (en) 2017-03-13 2018-09-27 株式会社奥村組 Sludge processing equipment to be used for high-pressure injecting agitation method
JP2018150714A (en) 2017-03-13 2018-09-27 世紀東急工業株式会社 Asphalt finisher
JP2019133837A (en) 2018-01-31 2019-08-08 国立大学法人 東京大学 Secondary battery with electrolyte including nonpolar solvent
JP2019132979A (en) 2018-01-31 2019-08-08 株式会社第一興商 Karaoke device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Introduction to Ceramics", 25 May 1981, UCHIDA ROKAKUHO SHINSHA, pages: 635 - 640
SUZUKI ET AL.: "Preparation of silica-including microcapsule by sol-gel reaction in polymer capsule", POLYMER PREPRINTS, JAPAN, vol. 64, no. 2, 2015, XP009515080

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022212376A1 (en) * 2021-03-29 2022-10-06 The Regents Of The University Of California Sprayable cool white coating based on ceramic microspheres
WO2024073831A1 (en) * 2022-10-05 2024-04-11 Instituto Hercílio Randon Premix and process for producing a cosmetic composition, cosmetic composition, method for photoprotection of a surface and use of the premix

Similar Documents

Publication Publication Date Title
US11806414B2 (en) Silica-including microcapsule resin particles, method for producing same, and application thereof
US20210317317A1 (en) Organic inorganic composite particle, method for producing same, and application thereof
JP3570730B2 (en) Cosmetic, silica-coated metal oxide powder and method for producing the same
EP2813519B1 (en) Porous resin particles, method for producing porous resin particles, and use of porous resin particles
JP6316309B2 (en) Composite particle, method for producing composite particle, and use thereof
JP2020026518A (en) Organic inorganic composite particle, method for producing the same, and application thereof
JP5075860B2 (en) Resin particle, its production method and its use
JP6185217B1 (en) Silica-encapsulated microcapsule resin particles, method for producing the same, and use thereof
WO2020031079A1 (en) Organic inorganic composite particle, method for producing same, and application thereof
WO2007037202A1 (en) Silica-combined polymer particle, process for producing the same, and use thereof
JPWO2013046374A1 (en) Resin particle, method for producing resin particle, and use thereof
JP2024050739A (en) Hollow particle and production method of the same
JP2020026517A (en) Method for producing organic-inorganic composite particles
KR102106870B1 (en) Emulsion type cosmetic composition comprising inorganic UV blocking agent
JP2004115541A (en) Cosmetic, silica coated metallic oxide powder and method for producing the powder
JP6682950B2 (en) Surface treated zinc oxide particles, dispersion, cosmetics and zinc oxide particles
JP6294204B2 (en) Composite particle, method for producing composite particle, and use thereof
JP2009013281A (en) Method of manufacturing mixed particles, and flat coating
JP7372085B2 (en) Pigment-containing hollow particles and method for producing the same
JP2021155298A (en) Porous structure including particle, manufacturing method and use thereof
EP2783678B1 (en) Porous resin particles, method of manufacturing the same, and use of the same
US8383689B2 (en) Skin cosmetics comprising cocoon-shaped polymer fine particles
JP2020164666A (en) Porous fine particle and method for producing the same
JP7379209B2 (en) Method for producing organic-inorganic composite particles
CA2665402C (en) Skin cosmetics comprising cocoon-shaped polymer fine particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002816

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846718

Country of ref document: EP

Effective date: 20210309