WO2020022428A1 - 光導波路部材コネクタおよびその製造方法 - Google Patents

光導波路部材コネクタおよびその製造方法 Download PDF

Info

Publication number
WO2020022428A1
WO2020022428A1 PCT/JP2019/029209 JP2019029209W WO2020022428A1 WO 2020022428 A1 WO2020022428 A1 WO 2020022428A1 JP 2019029209 W JP2019029209 W JP 2019029209W WO 2020022428 A1 WO2020022428 A1 WO 2020022428A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
connector
gap
inner bottom
waveguide member
Prior art date
Application number
PCT/JP2019/029209
Other languages
English (en)
French (fr)
Inventor
直人 古根川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217002257A priority Critical patent/KR20210035186A/ko
Priority to US17/262,416 priority patent/US11536909B2/en
Priority to CN201980049476.5A priority patent/CN112513704A/zh
Publication of WO2020022428A1 publication Critical patent/WO2020022428A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • G02B6/3861Adhesive bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present invention relates to an optical waveguide member connector and a method for manufacturing the same.
  • an optical connector kit including an optical waveguide and a connector member is known (for example, see Patent Document 1).
  • the connector member includes a housing having a U-shaped cross section that opens upward and a lid having a flat plate shape.
  • the end of the optical waveguide is fitted into the housing of the connector member from above, and then, while pressing the optical waveguide from above so as to close the upper end of the housing, the lid is closed. Deploy.
  • the optical waveguide has a very small thickness and flexibility, the optical waveguide is liable to be deformed such as warping by itself. Therefore, in the above-described proposal, since there is no lid, even if the bottom surface of the housing and the lower surface of the optical waveguide are in close contact with each other when the housing and the optical waveguide are mounted, the optical waveguide is not attached after the housing and the optical waveguide are mounted. The wave path warpage cannot be sufficiently suppressed. Specifically, it cannot be suppressed that the optical waveguide rises away from the bottom surface of the lid.
  • the position of the one end face of the optical waveguide with respect to the housing is not arranged at a desired position, and as a result, there is a problem that the reliability of optical connection with another optical member is reduced.
  • the present invention can suppress deformation of an optical waveguide member while reducing the number of components and simplifying the configuration, and an optical waveguide member connector having excellent optical connection reliability, and an optical waveguide member having reduced manufacturing man-hours Provided is a method for manufacturing a connector.
  • the present invention (1) provides an optical waveguide member having an optical waveguide, a connector having the optical waveguide member mounted thereon, and having a substantially U-shape in cross section, and an adhesive member for bonding the optical waveguide member and the connector.
  • the optical waveguide member includes a bottom surface extending along a first direction orthogonal to a direction in which the optical waveguide extends and a thickness direction, and a shape extending to one side in the thickness direction from both edges of the bottom surface in the first direction.
  • a side surface and a second side surface wherein the connector has an inner bottom surface in contact with the bottom surface; a first inner side surface facing the first side surface with a first gap in the first direction; A side surface and a second inner side surface facing the first direction with a second gap therebetween, wherein the adhesive member is provided on the inner bottom surface, the first inner side surface, and the first side surface facing the first gap.
  • the first gap is filled so as to contact
  • the second gap is filled in the second gap so as to contact the inner bottom face facing the second gap, the second inner side face and the second side face, and the first gap has a length L1 in the first direction.
  • the ratio (L1 / L0) of the inner bottom surface to the length L0 in the first direction and the ratio (L2 / L0) of the length L2 of the second gap in the first direction to the length L0 of the inner bottom surface in the first direction are: , Each having an optical waveguide member connector of 0.01 or more.
  • the optical waveguide member is attached to the connector by an adhesive member filling the first gap and the second gap. Therefore, the connector can mount the optical waveguide member without the lid. As a result, the number of parts can be reduced and the configuration can be simplified.
  • the ratio (L1 / L0) of the length L1 of the first gap in the first direction to the length L0 of the inner bottom surface in the first direction, and the length L2 of the second gap in the first direction are different.
  • the ratio (L2 / L0) of the inner bottom surface to the length L0 in the first direction is as large as 0.01 or more. Therefore, the adhesive member in the first gap can firmly adhere the inner bottom surface and the first inner side surface of the connector to the first side surface of the optical waveguide member, and the adhesive member in the second gap can be adhered to the inner bottom surface and the connector of the optical waveguide member.
  • the second inner side surface and the second side surface of the optical waveguide member can be firmly bonded.
  • the bottom surface of the optical waveguide member can be reliably brought into contact with the inner bottom surface of the connector, thereby suppressing the floating of the optical waveguide member from the inner bottom surface of the connector. can do.
  • the position of the end face of the optical waveguide for inputting / outputting an optical signal in the optical waveguide member with respect to the connector is arranged at a desired position, so that the optical connection reliability with another optical member can be improved. Excellent in nature.
  • the optical waveguide member may have a ceiling surface facing the bottom surface in the thickness direction and connecting one end edge in the thickness direction of the first side surface and one end edge in the thickness direction of the second side surface.
  • the adhesive member is in continuous contact with one end in the first direction of the ceiling surface and the first side surface, and is continuous with the other end in the first direction of the ceiling surface and the second side surface.
  • the adhesive member continuously contacts one end of the ceiling surface in the first direction and the first side surface, and continuously contacts the other end of the ceiling surface in the first direction and the second side surface. Therefore, the connector and the optical waveguide member can be more firmly adhered to each other by such an adhesive member.
  • the present invention (3) provides the connector, wherein the connector has a first connector end face on which an optical waveguide member end face for inputting / outputting an optical signal in the optical waveguide member is arranged, and the ceiling is located near the first connector end face.
  • the ceiling surface located near the end surface of the first connector has an exposed region exposed to one side in the thickness direction from the adhesive member at an intermediate portion between both ends in the first direction. To the pressing member. Then, by pressing the exposed region toward the other side in the thickness direction by the pressing member, the bottom surface of the optical waveguide member can be more reliably brought into contact with the inner bottom surface of the connector while suppressing deformation of the optical waveguide member.
  • the connector may further include a second connector end face facing the first connector end face in a direction in which the optical waveguide extends, and the ceiling surface located near the second connector end face.
  • the optical waveguide member connector according to (3) wherein the intermediate portion has a covering region that is covered by the adhesive member and is continuous with both ends of the ceiling surface in the first direction.
  • the ceiling surface located in the vicinity of the second connector end surface has, at the intermediate portion, a covering area covered with an adhesive member that is continuous with both ends in the first direction of the ceiling surface.
  • the present invention (5) includes the optical waveguide member connector according to any one of (2) to (4), wherein the adhesive member is continuous in a direction in which the optical waveguide extends.
  • the adhesive member is continuous in the direction in which the optical waveguide extends, the adhesive strength of the optical waveguide member to the connector can be increased over the direction in which the optical waveguide extends.
  • the optical waveguide member according to any one of (1) to (5), wherein the optical waveguide member includes an alignment mark disposed on at least one of both ends in the first direction. Includes member connectors.
  • the optical waveguide is provided with the alignment mark, so that the positional accuracy is excellent.
  • the optical waveguide includes a core optically connected to another optical member, and a dummy core not optically connected to another optical member, and the alignment mark is the dummy core. , (6).
  • the present invention (8) includes the optical waveguide member connector according to any one of (1) to (7), wherein the connector has a through hole facing the inner bottom surface and penetrating in a thickness direction.
  • the bottom surface of the optical waveguide member can be more reliably brought into contact with the inner bottom surface of the connector.
  • the present invention includes an optical waveguide, a bottom surface extending along a first direction orthogonal to a direction in which the optical waveguide extends and a thickness direction, and one end in the thickness direction from both edges of the bottom surface in the first direction.
  • An optical waveguide member having a first side surface and a second side surface extending therefrom; a substantially U-shaped cross-sectional view; an inner bottom surface; and a first inner side surface extending in the thickness direction from both ends of the inner bottom surface in the first direction.
  • the connector when the connector is provided with the lid, when the optical waveguide member and the connector are arranged together with the adhesive, since the adhesive is covered from the outside by the connector and the lid, the adhesive is irradiated with ultraviolet rays. Therefore, an ultraviolet-curing adhesive cannot be used, and in this case, a thermosetting adhesive having a long tact time must be used.
  • the lid is not disposed, so that the ultraviolet curable adhesive is placed on one side in the thickness direction. Will be exposed. Therefore, ultraviolet rays can be irradiated to the ultraviolet-curable adhesive from one side in the thickness direction, and the ultraviolet-curable adhesive can be cured in a short time. Therefore, the tact time can be shortened. As a result, manufacturing efficiency can be improved.
  • the optical waveguide member connector of the present invention is excellent in optical connection reliability.
  • the manufacturing method of the optical waveguide member connector of the present invention can improve the manufacturing efficiency.
  • FIGS. 1A to 1D are front views showing steps of an optical / electrical hybrid board connector which is an embodiment of an optical waveguide member connector and a method of manufacturing the same according to the present invention
  • FIG. 1B is a first step of preparing a board and a connector
  • FIG. 1B is a second step of bringing the bottom surface into contact with the inner bottom surface
  • FIG. 1C is a third step of filling the first gap and the second gap with an ultraviolet curing adhesive.
  • 1D shows a fourth step of irradiating the ultraviolet-curable adhesive with ultraviolet light.
  • 2A to 2D are front sectional views corresponding to FIGS. 1A to 1D, and are sectional views taken along line AA of FIG. 3D.
  • FIG. 2A shows a first step
  • FIG. 2A shows a first step
  • FIG. 2C shows a third step
  • FIG. 2D shows a fourth step
  • 3A to 3D are plan views corresponding to FIGS. 1A to 1D.
  • FIG. 3A shows a first step
  • FIG. 3B shows a second step
  • FIG. 3C shows a third step
  • FIG. Four steps are shown.
  • 4A and 4B are modifications of the embodiment shown in FIG. 3D.
  • FIG. 4A is a plan view
  • FIG. 4B is a cross-sectional view taken along line BB of FIG. 4A.
  • FIG. 5 shows a front view of a modification of the embodiment shown in FIG. 1D.
  • An optical / electrical hybrid board connector which is an embodiment of an optical waveguide member connector and a method for manufacturing the same according to the present invention and a method for manufacturing the same will be described with reference to FIGS. 1A to 3D.
  • FIG. 3C and FIG. 3D are plan views, but in order to clearly show the bonding member 4, the bonding member 4 is drawn by hatching.
  • the opto-electric hybrid board connector 1 includes an opto-electric hybrid board 2, a connector 3, and an adhesive member 4.
  • the opto-electric hybrid board 2 has a ceiling surface 9 and a bottom surface 8 facing each other at an interval in the thickness direction, and is arranged in a longitudinal direction (a direction orthogonal to the thickness direction) (an example of a direction in which an optical waveguide 19 described later extends). It has an elongated sheet (film) shape. Each of the bottom surface 8 and the ceiling surface 9 extends in the longitudinal direction and the width direction (a direction orthogonal to the thickness direction and the longitudinal direction) (an example of a first direction).
  • the opto-electric hybrid board 2 includes a first side surface 12 that connects one width direction edge of the ceiling surface 9 and one width direction edge of the bottom surface 8, a width direction other edge of the ceiling surface 9, and a width direction of the bottom surface 8. And a second side surface 13 connecting the edges.
  • the ceiling surface 9 connects one end in the thickness direction of the first side surface 12 and one end in the thickness direction of the second side surface 13.
  • the bottom surface 8 connects the other end in the thickness direction of the first side surface 12 and the other end in the thickness direction of the second side surface 13.
  • the opto-electric hybrid board 2 includes a first end face 10 as an example of an end face of an optical waveguide member connecting one longitudinal end edge of the ceiling surface 9 and one longitudinal end edge of the bottom surface 8, and another longitudinal end of the ceiling surface 9.
  • a second end face (not shown) that connects the edge and the other longitudinal edge of the bottom surface 8.
  • the first end face 10 inputs and outputs an optical signal in an optical waveguide 19 described later.
  • the opto-electric hybrid board 2 integrally has the above-described ceiling surface 9, bottom surface 8, first side surface 12, second side surface 13, first end surface 10, and second end surface (not shown).
  • the opto-electric hybrid board 2 integrally has, at one end in the longitudinal direction, a mounting area 6 to be mounted on the connector 3 and a non-mounting area 7 continuing to the other longitudinal side of the mounting area 6.
  • the ceiling surface 9 in the mounting area 6 has two margin areas 49 located at one end and the other end in the width direction, and a first area 67 and a second area 68 located at an intermediate part between the two margin areas 49.
  • the first area 67 is located on one side in the longitudinal direction of the ceiling surface 9 in the mounting area 6.
  • the second area 68 is located on the other side in the longitudinal direction of the ceiling surface 9 in the mounting area 6.
  • the mounting area 6 includes one end in the longitudinal direction of the ceiling surface 9, one end in the longitudinal direction of the bottom surface 8, one end in the longitudinal direction of the first side surface 12, one end in the longitudinal direction of the second side surface 13, and the first end surface 10. Having.
  • the opto-electric hybrid board 2 includes an electric circuit board 18 and an optical waveguide 19 in the thickness direction.
  • the opto-electric hybrid board 2 includes an electric circuit board 18 and an optical waveguide 19 in order toward one side in the thickness direction.
  • the opto-electric hybrid board 2 includes only the electric circuit board 18 and the optical waveguide 19.
  • the electric circuit board 18 has a sheet (film) shape extending in the longitudinal direction.
  • the other surface in the thickness direction of the electric circuit board 18 forms the bottom surface 8 of the opto-electric hybrid board 2.
  • the electric circuit board 18 includes, for example, a metal support substrate, a base insulating layer, a conductor layer, and a cover insulating layer in this order in the thickness direction.
  • the optical waveguide 19 is arranged on one surface in the thickness direction of the electric circuit board 18.
  • the optical waveguide 19 has a sheet (film) shape extending in the longitudinal direction.
  • One surface in the thickness direction of the optical waveguide 19 forms the ceiling surface 9 of the opto-electric hybrid board 2.
  • the optical waveguide 19 includes a clad 20 and a core 21 covered by the clad 20.
  • the optical waveguide 19 is a strip-type optical waveguide, and includes an under clad 23, a core 21, and an over clad 24. Further, the optical waveguide 19 includes a dummy core 22.
  • the under cladding 23 is included in the cladding 20.
  • the under cladding 23 has a layer shape extending in the longitudinal direction.
  • the under cladding 23 is arranged on one surface in the thickness direction of the electric circuit board 18.
  • the core 21 is a signal core for transmitting light in the longitudinal direction.
  • the plurality of cores 21 are arranged on one surface in the thickness direction of the under cladding 23 at intervals in the width direction.
  • the plurality of cores 21 extend in the longitudinal direction.
  • the plurality of cores 21 overlap the clad 20.
  • the over cladding 24 is included in the cladding 20.
  • the over cladding 24 has a layer shape extending in the longitudinal direction.
  • Each of the two side surfaces of the over cladding 24 coincides with each of the two side surfaces of the under cladding 23 when projected in the thickness direction.
  • the dummy core 22 is not a core for inputting and outputting light to and from another optical member (not shown) to which the opto-electric hybrid board 2 is optically connected, but for aligning the opto-electric hybrid board 2 with the connector 3. Is an alignment mark. Therefore, the dummy core 22 can emit inspection light and the like used for the above-described alignment.
  • the dummy cores 22 are arranged at both ends in the width direction of the optical waveguide 19 (the opto-electric hybrid board 2). Each of the two dummy cores 22 is formed on each of the two side surfaces of the over cladding 24 so as to protrude outward in the width direction from each of the two side surfaces. Each of the two dummy cores 22 has the same cross-sectional shape as each of the cores 21. Each of the two dummy cores 22 is in contact with the side surface of the over clad 24 and extends in the thickness direction, two extending surfaces 52 extending outward in the width direction from both ends in the thickness direction of the contact surface, and two extending surfaces. The outer surface 52 is integrally provided with a dummy outer surface 5 connecting the outer edges in the width direction.
  • Each of the two dummy cores 22 overlaps with the core 21 when projected in the width direction.
  • the one surface and the other surface in the thickness direction of the dummy core 22 coincide with the one surface and the other surface in the thickness direction of the core 21 when projected in the width direction.
  • each of the two side surfaces of the optical waveguide 19 has two exposed sides exposed from the dummy core 22 on each of the two side surfaces of the under clad 23, each of the two side surfaces of the over clad 24, and each of the two dummy cores 22. It is formed integrally and continuously from the two extending surfaces 52 and the dummy outer surface 5.
  • the core 21, and the dummy core 22 for example, a transparent resin such as an epoxy resin and an acrylic resin is used.
  • the refractive index of the core 21 and the dummy core 22 is higher than the refractive index of the clad 20.
  • the refractive indices of the core 21 and the dummy core 22 may be the same or different, and are preferably the same.
  • the thickness of the clad 20 is, for example, 20 ⁇ m or more, preferably 30 ⁇ m or more, and is, for example, 4000 ⁇ m or less, preferably 200 ⁇ m or less.
  • the thickness of each of the core 21 and the dummy core 22 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and is, for example, 2000 ⁇ m or less, preferably 70 ⁇ m or less.
  • Each width of the core 21 and the dummy core 22 is, for example, 10 ⁇ m or more, preferably 150 ⁇ m or more, and is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the thickness of the opto-electric hybrid board 2 is, for example, 25 ⁇ m or more, preferably 40 ⁇ m or more, and is, for example, 5000 ⁇ m or less, preferably 250 ⁇ m or less.
  • the maximum length L5 in the width direction in the mounting region 6 of the opto-electric hybrid board 2 will be described later, but the width L0 of the inner bottom surface 31, the length L1 of the first gap 57 in the width direction, and the second gap 58 Is adjusted so that the width-wise length L2 of the above-mentioned and their ratio fall within a desired range.
  • the connector 3 does not have a lid, and the mounting area 6 of the opto-electric hybrid board 2 is fixed and mounted.
  • the connector 3 has a substantially U-shape that is open toward one side in the thickness direction when viewed from the front and in a normal cross section.
  • the connector 3 supports the mounting area 6 of the opto-electric hybrid board 2 from the other side in the thickness direction and both outer sides in the width direction.
  • 1A, 2A, and 3A specifically, the connector 3 integrally includes a bottom wall 26, a first side wall 27, and a second side wall 28.
  • the bottom wall 26 has a substantially rectangular flat plate shape extending in the longitudinal direction of the opto-electric hybrid board 2.
  • the bottom wall 26 has an inner bottom surface 31 and a lower surface 32 which face each other at an interval in the thickness direction.
  • the bottom wall 26 is a bottom wall one end surface 14 which is an end surface connecting the longitudinal one end edge of the inner bottom surface 31 and the longitudinal one end edge of the lower surface 32, and the longitudinal other end edge and the lower surface 32 of the inner bottom surface 31.
  • a bottom wall other end surface 17 which is the other end surface for connecting the other end in the longitudinal direction.
  • the inner bottom surface 31 is in contact with the bottom surface 8 of the mounting area 6 of the opto-electric hybrid board 2 and the adhesive member 4.
  • the bottom wall 26 has a through hole 29 penetrating in the thickness direction.
  • the through hole 29 faces the inner bottom surface 31 and the lower surface 32.
  • the through-hole 29 is formed on one side in the longitudinal direction of the bottom wall 26, and is formed at a middle portion in the width direction.
  • the through hole 29 has a substantially circular shape in plan view extending in the thickness direction of the bottom wall 26.
  • the inner diameter L3 of the through hole 29 is set shorter than the width of the bottom surface 8 of the opto-electric hybrid board 2.
  • the first side wall 27 has a substantially rectangular flat plate shape extending from one end in the width direction of the bottom wall 26 toward one side in the thickness direction. As shown in FIGS. 2B and 3B, the first side wall 27 is spaced apart from the first inner side surface 38 facing the opto-electric hybrid board 2 described above and outside the width direction of the first inner side surface 38. It has a first outer surface 39 and a first connection surface 40 that connects one edge in the thickness direction of the first inner surface 38 and the first outer surface 39.
  • the first side wall 27 includes a first side wall one end surface 61 that connects one longitudinal end edge of the first inner side surface 38 and the first outer side surface 39, and a longitudinal direction other than the first inner side surface 38 and the first outer side surface 39. And a first side wall other end surface 62 connecting the edges.
  • the first inner side surface 38 is not in contact with the opto-electric hybrid board 2, and is opposed to the opto-electric hybrid board 2 in the width direction via a first gap 57 (described later).
  • the first inner side surface 38 makes a right angle with the inner bottom surface 31.
  • the first side wall one end surface 61 is flush with the bottom wall one end surface.
  • the other end face 62 of the first side wall is flush with the other end face 17 of the bottom wall.
  • the second side wall 28 has a substantially rectangular flat plate shape extending from the other end in the width direction of the bottom wall 26 toward one side in the thickness direction.
  • the second side wall 28 is opposed to the first side wall 27 in the width direction with a space provided with the opto-electric hybrid board 2 and the adhesive member 4 described below.
  • the second side wall 28 has a second inner side surface 44 facing the opto-electric hybrid board 2 and a second inner side surface 44 spaced apart from the second inner side surface 44 in the width direction. It has an outer side surface 45 and a second connecting surface 46 that connects one edge in the thickness direction of the second inner side surface 44 and the second outer side surface 45.
  • the second side wall 28 includes a second side wall one end surface 63 that connects one longitudinal end edge of the second inner side surface 44 and the second outer side surface 45, and a longitudinal other end edge of the second inner side surface 44 and the second outer side surface 45. And the other end surface 64 of the second side wall connecting the second side wall.
  • the second inner side surface 44 is not in contact with the opto-electric hybrid board 2, and is opposed to the opto-electric hybrid board 2 in the width direction via a second gap 58 (described later).
  • the second inner side surface 44 makes a right angle with the inner bottom surface 31.
  • the second side wall one end surface 63 is flush with the bottom wall one end surface.
  • the bottom wall end face 14, the first side wall end face 61, and the second side wall end face 63 are flush with each other and form a single plane.
  • the connector end surface 65 is formed.
  • the first connector end face 65 is disposed near (preferably flush with) the first end face 10. More specifically, the first connector end face 65 is projected when projected in the thickness direction. , And the first end face 10.
  • the other end face 17 of the bottom wall, the other end face 62 of the first side wall, and the other end face 64 of the second side wall are flush with each other and form one plane.
  • the second connector end face 66 Is composed.
  • the second connector end face 66 faces the first connector end face 65 on the other longitudinal side.
  • the dimensions of the connector 3 are appropriately adjusted according to the dimensions of the opto-electric hybrid board 2.
  • the width L0 of the inner bottom surface 31 is changed to the width L1 of the first gap 57 and the second gap 58 described below. Is set so that the ratio of the width to the width L2 is within a desired range.
  • the width L0 of the inner bottom surface 31 in the width direction is, for example, 50 mm or less, preferably 5 mm or less, and is, for example, 2 mm or more, preferably 3 mm or more.
  • the connector 3 accommodates the opto-electric hybrid board 2.
  • the mounting area 6 of the opto-electric hybrid board 2 is housed in a housing space 59 defined by the inner bottom surface 31, the first inner side surface 38, and the second inner side surface 44.
  • the bottom surface 8 of the mounting area 6 is in contact with the inner bottom surface 31 at the widthwise intermediate portion.
  • first gap 57 is formed between the opto-electric hybrid board 2 and the first side wall 27 to separate them in the width direction. Specifically, a first gap 57 is formed between the first side surface 12 and the first inner side surface 38 on one side in the thickness direction of one end in the width direction of the inner bottom surface 31.
  • the ratio (L1 / L0) of the length L1 in the width direction of the first gap 57 to the length L0 in the width direction of the inner bottom surface 31 is 0.01 or more.
  • the adhesive member 4 (first adhesive member 53) described below, which fills the first gap 57, will be connected to the inner bottom surface 31 of the connector 3 and the first inner member The side surface 38 and the first side surface 12 of the opto-electric hybrid board 2 cannot be firmly bonded.
  • the width L1 in the width direction of the first gap 57 is the shortest length between the first side surface 12 and the first inner side surface 38, and is located closest to the first inner side surface 38 in the first side surface 12. This is the distance between the surface and the first inner side surface 38.
  • the length L1 in the width direction of the first gap 57 is the length of the dummy outer surface 5 of the dummy core 22 facing the first gap 57 and the first inner surface 38.
  • the ratio (L1 / L0) is preferably 0.013 or more, more preferably 0.015 or more, further preferably 0.02 or more, and for example, 1.0 or less.
  • a second gap 58 is formed between the opto-electric hybrid board 2 and the second side wall 28 to separate them in the width direction. Specifically, a second gap 58 is formed between the second side surface 13 and the second inner side surface 44 on one side in the thickness direction of the other end in the width direction of the inner bottom surface 31.
  • the ratio (L2 / L0) of the length L2 in the width direction of the second gap 58 to the length L0 in the width direction of the inner bottom surface 31 is 0.01 or more.
  • the adhesive member 4 (the second adhesive member 54) filled in the second gap 58 is formed between the inner bottom surface 31 and the second inner side surface 44 of the connector 3; The second side surface 13 of the opto-electric hybrid board 2 cannot be firmly bonded.
  • the width L2 in the width direction of the second gap 58 is the shortest length between the second side surface 13 and the second inner side surface 44, and is located closest to the second inner side surface 44 in the second side surface 13. This is the distance between the surface and the first inner side surface 38.
  • the width L2 of the second gap 58 in the width direction is the length of the dummy outer surface 5 of the dummy core 22 facing the second gap 58 and the second inner surface 44.
  • the ratio (L2 / L0) is preferably at least 0.013, more preferably at least 0.015, even more preferably at least 0.02, and for example, at most 1.0.
  • the two ratios are all 0.01 or more. That is, the ratio (L1 / L0) is 0.01 or more, and the ratio (L2 / L0) is 0.01 or more.
  • Embodiments in which one of the two ratios is less than 0.01 are not included in the present invention. If one of the two ratios is less than 0.01, the bottom surface 8 of the opto-electric hybrid board 2 cannot reliably contact the inner bottom surface 31 of the connector 3.
  • the ratio (L1 / L0) and the ratio (L2 / L0) may be the same or different, and are preferably the same.
  • the bonding member 4 bonds the opto-electric hybrid board 2 and the connector 3.
  • the bonding member 4 includes a first bonding member 53 filled in the first gap 57 and a second bonding member 54 filled in the second gap 58 as separate bodies.
  • the first adhesive member 53 is in contact with the inner bottom surface 31, the first inner side surface 38, and the first side surface 12 facing the first gap 57. Further, the first adhesive member 53 is also in contact with one end in the width direction of the ceiling surface 9. That is, the first adhesive member 53 is in continuous contact with one end of the ceiling surface 9 of the opto-electric hybrid board 2 in the width direction and the first side surface 12. That is, the first adhesive member 53 covers the ridge line between the ceiling surface 9 and the first side surface 12.
  • the first adhesive member 53 has a substantially hook shape whose tip is pointed toward the other side in the width direction in a front view and a front sectional view.
  • the first adhesive member 53 has a shape extending continuously in the longitudinal direction. Specifically, the first adhesive member 53 is attached to the entire surface in the longitudinal direction of the inner bottom surface 31 facing the first gap 57, the entire surface in the thickness direction on the first inner side surface 38 and the entire longitudinal direction in the intermediate portion, and The entire surface extending in the longitudinal direction of the first side surface 12 in the region 6 and the entire surface extending in the longitudinal direction of one end in the width direction of the ceiling surface 9 in the mounting region 6 are in contact with each other.
  • the second adhesive member 54 is in contact with the inner bottom surface 31, the second inner side surface 44, and the second side surface 13 facing the second gap 58. Further, the second adhesive member 54 is also in contact with the other end in the width direction of the ceiling surface 9. That is, the second adhesive member 54 is in continuous contact with the other end in the width direction of the ceiling surface 9 of the opto-electric hybrid board 2 and the second side surface 13. That is, the second adhesive member 54 covers the ridge line between the ceiling surface 9 and the second side surface 13.
  • the second adhesive member 54 has a substantially hook shape with its tip pointed to one side in the width direction in a front view and a front sectional view.
  • the second adhesive member 54 has a shape extending continuously in the longitudinal direction. Specifically, the second adhesive member 54 is attached to the entire length of the inner bottom surface 31 facing the second gap 58 in the longitudinal direction, the entire thickness of the second inner side surface 44 on the other side in the thickness direction, and the entire length of the intermediate portion in the longitudinal direction. The entire surface extending in the longitudinal direction of the second side surface 13 in the region 6 and the entire surface extending in the longitudinal direction of the other end in the width direction of the ceiling surface 9 in the mounting region 6 are in contact with each other.
  • the second adhesive member 54 is not continuous with the first adhesive member 53 but is independent, and is arranged at an interval on the other side in the width direction of the first adhesive member 53 in a plan view.
  • first adhesive member 53 and the second adhesive member 54 expose the first region 67 and the second region 68 of the ceiling surface 9 to one side in the thickness direction.
  • both the first region 67 and the second region 68 are exposed regions 69.
  • the adhesive member 4 does not exist between the bottom surface 8 and the inner bottom surface 31.
  • a cured product of a curable adhesive for example, a plasticized product of a thermoplastic adhesive (including hot melt) and the like are included.
  • a cured product of a curable adhesive is used from the viewpoint of obtaining high adhesive strength, and more preferably, a cured product of an ultraviolet curable adhesive is used from the viewpoint of securing a short tact time.
  • the method for manufacturing the opto-electric hybrid board connector 1 includes a first step of preparing the opto-electric hybrid board 2 and the connector 3 (see FIGS. 1A and 2A), and a second step of bringing the bottom surface 8 into contact with the inner bottom surface 31 (FIG. 2B and 3B), a third step of filling the first gap 57 and the second gap 58 with the ultraviolet curing adhesive (see FIGS. 1C, 2C and 3C), and irradiating the ultraviolet curing adhesive with ultraviolet rays. (See FIGS. 1D, 2D and 3D).
  • the opto-electric hybrid board 2 and the connector 3 are prepared.
  • the electric circuit board 18 is prepared, and then the optical waveguide 19 is formed on one side in the thickness direction of the electric circuit board 18.
  • the under cladding 23 is formed with a width wider than a predetermined width, and then, on one surface in the thickness direction of the under cladding 23, the core 21 and the dummy core 22 are simultaneously formed.
  • the over cladding 24 is arranged so as to cover the core 21 on one surface in the thickness direction of the under cladding 23 but not to cover the dummy core 22.
  • both ends of the under cladding 23 in the width direction are removed.
  • the other surface in the thickness direction of the dummy core 22 is exposed.
  • the opto-electric hybrid board 2 is manufactured.
  • the connector 3 having the above-described shape is formed from a resin by a molding method such as extrusion molding.
  • the opto-electric hybrid board 2 Before being mounted on the connector 3, the opto-electric hybrid board 2 has flexibility and a curved shape (property) in a cross-sectional view and a front view. As shown in FIGS. 1A and 2A, the central portion in the width direction is curved so as to rise toward one side in the thickness direction.
  • the bottom surface 8 is brought into contact with the inner bottom surface 31.
  • the first gap 57 in which the first side surface 12 and the first inner side surface 38 face each other is defined by the above-described width direction length L1
  • the second side surface is formed by the above width direction length L2.
  • the opto-electric hybrid board 2 is placed on the bottom wall 26 such that a second gap 58 in which the 13 and the second inner surface 44 face each other is defined.
  • the opto-electric hybrid board 2 is arranged at the center of the inner bottom surface 31 in the width direction.
  • the first region 67 of the ceiling surface 9 is pressed by the pressing member 37 toward the other direction in the thickness direction.
  • the pressing member 37 has a flat pressing surface 43 on the other surface in the thickness direction.
  • the width L4 of the pressing surface 43 in the width direction is adjusted in advance so that the pressing surface 43 overlaps one of the longitudinal ends of all the cores 21 when the pressing member 37 presses the first region 67.
  • the length L4 in the width direction of the pressing surface 43 is adjusted so that the pressing surface 43 does not contact the margin region 49 of the ceiling surface 9.
  • a suction device (not shown) is connected to the through hole 29 while the pressing member 37 is pressed, and the suction device is driven to apply a negative pressure to the through hole 29 so that the bottom surface 8 is brought into close contact with the inner bottom surface 31. .
  • the bottom surface 8 is brought into close contact with the inner bottom surface 31 by the pressing of the pressing member 37 and the driving of the suction device, whereby the shape of the opto-electric hybrid board 2 becomes a flat shape along the width direction.
  • the through hole 29 is closed by the bottom surface 8.
  • the first gap 57 and the second gap 58 are defined.
  • the second step positioning of the opto-electric hybrid board 2 with respect to the connector 3 is performed.
  • light is input from the other end surface of the dummy core 22 in the longitudinal direction, light is emitted from one end surface, and the emitted light is confirmed by a camera (shown) opposed to the first end surface 10 and the like.
  • the alignment of the board 2 with respect to the connector 3 is performed.
  • the first gap 57 and the second gap 58 are filled with an ultraviolet curable adhesive.
  • the type of the ultraviolet-curable adhesive is not particularly limited, and is appropriately selected from, for example, an acrylic adhesive, an epoxy adhesive, and a silicone adhesive.
  • the properties of the ultraviolet curable adhesive are not particularly limited, and may be liquid, semi-solid, or solid.
  • the ultraviolet curable adhesive is arranged from one side in the thickness direction of each of the first gap 57 and the second gap 58.
  • the ultraviolet-curable adhesive contacts the inner bottom surface 31, the first inner side surface 38, the first side surface 12, and one end in the width direction of the ceiling surface 9 facing the first gap 57.
  • the ultraviolet-curable adhesive contacts the inner bottom surface 31, the second inner side surface 44, the second side surface 13, and the other end in the width direction of the ceiling surface 9 facing the second gap 58. .
  • ultraviolet rays are irradiated to the ultraviolet-curable adhesive.
  • ultraviolet light is applied to the ultraviolet-curable adhesive from one side in the thickness direction of the ultraviolet-curable adhesive.
  • the irradiation time of the ultraviolet ray is appropriately set depending on the irradiation energy, and is, for example, 100 seconds or less, preferably 20 seconds or less, and for example, 1 second or more.
  • the ultraviolet curable adhesive is cured by the irradiation of the ultraviolet light, and the adhesive member 4 is formed from the cured product of the ultraviolet curable adhesive.
  • one end in the width direction of the first side surface 12 and the ceiling surface 9 of the opto-electric hybrid board 2 is connected to the inner bottom surface 31 and the first inner side surface 38 facing the first gap 57 via the first adhesive member 53.
  • Fixed to The other end in the width direction of the second side surface 13 and the ceiling surface 9 of the opto-electric hybrid board 2 is fixed to the inner bottom surface 31 and the second inner side surface 44 facing the second gap 58 via the second adhesive member 54. Is done.
  • the opto-electric hybrid board 2 is mounted on the connector 3.
  • the opto-electric hybrid board connector 1 is manufactured.
  • the opto-electric hybrid board 2 is attached to the connector 3 with the adhesive member 4 filling the first gap 57 and the second gap 58. Therefore, the connector 3 can mount the opto-electric hybrid board 2 without the lid as described in Patent Document 1. As a result, the number of parts can be reduced and the configuration can be simplified.
  • the ratio (L1 / L0) of the length L1 of the first gap 57 in the first direction to the length L0 of the inner bottom surface 31 in the first direction, and the first gap L2 of the second gap 58 The ratio (L2 / L0) of the direction length L2 to the first direction length L0 of the inner bottom surface 31 is as large as 0.01 or more. Therefore, the first adhesive member 53 in the first gap 57 can firmly adhere the inner bottom surface 31 and the first inner side surface 38 facing the first gap 57 in the connector 3 to the first side surface 12 of the opto-electric hybrid board 2. Further, the second adhesive member 54 in the second gap 58 firmly adheres the inner bottom surface 31 and the second inner surface 44 facing the second gap 58 in the connector 3 to the second side surface 13 of the opto-electric hybrid board 2. it can.
  • the bottom surface 8 of the opto-electric hybrid board 2 can be reliably brought into contact with the inner bottom surface 31 of the connector 3, so that the Lifting of the connector 3 from the inner bottom surface 31 can be suppressed.
  • the position of the first end face 10 for inputting / outputting an optical signal on the opto-electric hybrid board 2 with respect to the connector 3 is arranged at a desired position. Excellent optical connection reliability.
  • the inner bottom surface 31 of the connector 3 is in contact with the bottom surface 8 of the opto-electric hybrid board 2, that is, there is no thick adhesive member 4 between the inner bottom surface 31 and the bottom surface 8, A decrease in the positional accuracy of the first end face 10 with respect to the connector 3 due to the presence of the member 4 is suppressed.
  • the opto-electric hybrid mounting is performed by the adhesive member 4 filled in the first gap 57 and the second gap 58.
  • the board 2 can reliably contact the inner bottom surface 31 of the connector 3.
  • the first adhesive member 53 is continuously in contact with one end in the width direction of the ceiling surface 9 and the first side surface 12, and the second adhesive member 54 is in contact with the ceiling surface 9.
  • the other end in the width direction is in continuous contact with the second side surface 13. Therefore, the connector 3 and the opto-electric hybrid board connector 1 can be more firmly bonded by the bonding member 4 including the first bonding member 53 and the second bonding member 54.
  • the pressing member 37 can be pressed against the exposed area 69. . Then, by pressing the exposed region 69 toward the other side in the thickness direction by the pressing member 37, the bottom surface 8 of the opto-electric hybrid board connector 1 is held down while the floating of the opto-electric hybrid board connector 1 is suppressed. 31 makes it possible to make contact more reliably.
  • the bonding members 4 (the first bonding member 53 and the second bonding member 54) are continuous in the longitudinal direction, the opto-electric hybrid board 2 extends over the longitudinal direction.
  • the adhesive strength to the connector 3 can be increased.
  • the opto-electric hybrid board 2 includes the dummy core 22 as an alignment mark, so that the positional accuracy is excellent.
  • the alignment mark provided separately from the opto-electric hybrid board 2 (more specifically, the alignment mark formed in a separate process from the core 21) is not used.
  • the dummy core 22 formed together with the core 21 is an alignment mark, so that the positional accuracy is excellent while suppressing an increase in the number of parts.
  • the bottom surface 8 of the opto-electric hybrid board 2 can be more reliably brought into contact with the inner bottom surface 31 of the connector 3.
  • the connector 3 is mounted with the opto-electric hybrid board connector 1 without providing a cover, so that the number of manufacturing steps can be reduced.
  • the adhesive is externally covered by the connector and the lid when the connector 3 and the connector 3 are arranged together with the adhesive. Cannot be applied to the adhesive, and an ultraviolet-curable adhesive cannot be used. In such a case, a thermosetting adhesive must be used.
  • the lid is not disposed even if the first gap 57 and the second gap 58 are filled with the ultraviolet curable adhesive.
  • the agent is exposed on one side in the thickness direction. Therefore, ultraviolet rays can be irradiated to the ultraviolet-curable adhesive from one side in the thickness direction, and the ultraviolet-curable adhesive can be cured in a short time. Therefore, the tact time can be shortened. As a result, manufacturing efficiency can be improved.
  • the opto-electric hybrid board 2 includes the electric circuit board 18 and the optical waveguide 19 in order toward one side in the thickness direction. For example, although not illustrated, they are sequentially arranged toward the other side in the thickness direction. It can also be provided.
  • the dummy core 22 is formed as the same layer as the core 21, but may be formed as another layer. Further, the dummy core 22 may be arranged on one surface in the thickness direction of the under cladding 23 so as to be covered with the over cladding 24.
  • the opto-electric hybrid board 2 includes the dummy core 22. For example, although not shown, the opto-electric hybrid board 2 may be configured without the dummy core 22.
  • the dummy cores 22 are arranged at both ends in the width direction of the opto-electric hybrid board 2, but may be arranged at only one of both ends in the width direction.
  • the opto-electric hybrid board 2 is illustrated as an example of the optical waveguide member.
  • the example of the optical waveguide member does not include the electric circuit board 18 and includes the optical waveguide 19. Is provided.
  • an example of the optical waveguide member is the optical waveguide 19.
  • one example of the optical waveguide member connector is an optical waveguide connector.
  • the bonding member 4 can include the third bonding member 55 disposed in the second region 68 integrally with the first bonding member 53 and the second bonding member 54.
  • the third adhesive member 55 is continuous with the first adhesive member 53 and the second adhesive member 54 located on both sides in the width direction of the second region 68.
  • the third adhesive member 55 covers the second area 68 of the ceiling surface 9. Therefore, the second region 68 is a covered region 70 that is covered with the third adhesive member 55 on the ceiling surface 9.
  • the ceiling surface 9 of the modification shown in FIGS. 4A and 4B only the first region 67 is the exposed region 69.
  • the adhesive strength of the opto-electric hybrid board 2 to the connector 3 is increased. Can be.
  • the adhesive member 4 may expose both ends in the width direction of the ceiling surface 9. Specifically, the first adhesive member 53 does not contact one end of the ceiling surface 9 in the width direction of the opto-electric hybrid board 2 but only the first side surface 12 in the first gap 57. In the second gap 58, the second adhesive member 54 does not contact the other end of the ceiling surface 9 in the width direction of the opto-electric hybrid board 2 but only contacts the second side surface 13.
  • Example 1 As shown in FIGS. 1A and 2A, the opto-electric hybrid board 2 having a maximum length L5 (FIGS. 1B and 2B) in the mounting area 6 of 3 mm and a connector having a width L0 in the width direction of the inner bottom surface 31 of 5 mm. 3 was prepared (first step).
  • the bottom surface 8 was brought into contact with the inner bottom surface 31 so that the first gap 57 and the second gap 58 were formed (second step).
  • the width L1 of the first gap 57 was 1.00 mm
  • the width L2 of the second gap 58 was 1.00 mm.
  • the ratio (L1 / L0) and the ratio (L2 / L0) were both 0.200.
  • Example 1 and Comparative Example 2 Except that the dimensions were changed as described in Table 1, the same processing as in Example 1 was performed to manufacture the opto-electric hybrid board connector 1.
  • the optical waveguide member connector of the present invention is used, for example, for an opto-electric hybrid board connector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光電気混載基板コネクタ31は、光電気混載基板2とコネクタ3と接着部材4とを備える。光電気混載基板2は、底面8と第1側面12と第2側面13とを有する。コネクタ3は、内底面31と第1内側面38と第2内側面44とを有する。接着部材4が、第1隙間57に臨む内底面31、第1内側面38および第1側面12に接触する第1接着部材53と、第1隙間57に充填され、第2隙間58に臨む内底面31、第2内側面44および第2側面13に接触する第2接着部材54とを備える。第1隙間57の幅L1の、内底面31の幅L0に対する比(L1/L0)、および、第2隙間58の幅L2の、内底面31の幅L0に対する比(L2/L0)が、それぞれ、0.01以上である。

Description

光導波路部材コネクタおよびその製造方法
 本発明は、光導波路部材コネクタおよびその製造方法に関する。
 従来、光導波路と、コネクタ部材とを備える光コネクタキットが知られている(例えば、特許文献1参照。)。特許文献1の光コネクタキットでは、コネクタ部材が、上側に向かって開く断面コ字形状のハウジングと、平板形状の蓋体とを備えている。
 特許文献1の光コネクタキットを得るには、コネクタ部材のハウジングに光導波路の端部を上側から嵌め込み、その後、ハウジングの上端部を閉塞するように、光導波路を上側から押し付けながら、蓋体を配置する。
特開2017-191157号公報
 近年、部品点数の削減、構成の簡易化、製造工数の低減の観点から、蓋体を備えないコネクタ部材を備える光コネクタキットが要求されている。
 そこで、特許文献1に記載の光コネクタキットのコネクタ部材が、蓋体を備えない構成が試案される。
 しかし、光導波路は、厚みが非常に薄く、また、可撓性を有するので、光導波路は、単独では、反りなどの変形を生じ易い。そのため、上記した試案では、蓋体がないので、たとえ、ハウジングおよび光導波路の装着時に、ハウジングの底面と、光導波路の下面とが密着していても、ハウジングおよび光導波路の装着後には、光導波路の反りを十分に抑制することができない。具体的には、光導波路が蓋体の底面から遠ざかるように、浮き上がることを抑制できない。
 そうすると、コネクタ部材において、光導波路の一端面の、ハウジングに対する位置が所望位置に配置されず、その結果、別の光学部材との光学的な接続信頼性が低下するという不具合がある。
 一方、ハウジングの底面と、光導波路の下面との間に接着剤を配置して、上記した浮き上がりを抑制することが検討されるが、この場合には、やはり、接着剤が厚みを有することに起因して、光導波路の一端面の位置精度が低下するという不具合がある。
 本発明は、部品点数の削減および構成の簡易化を図りながら、光導波路部材の変形を抑制でき、光学的な接続信頼性に優れる光導波路部材コネクタ、および、製造工数が低減された光導波路部材コネクタの製造方法を提供する。
 本発明(1)は、光導波路を備える光導波路部材と、前記光導波路部材を装着し、断面視略コ字形状を有するコネクタと、前記光導波路部材と前記コネクタとを接着する接着部材とを備え、前記光導波路部材は、前記光導波路が延びる方向および厚み方向に直交する第1方向に沿って延びる底面と、前記底面の第1方向両端縁から厚み方向一方側に延びる形状を有する第1側面および第2側面とを有し、前記コネクタは、前記底面と接触する内底面と、前記第1側面と前記第1方向に第1隙間を隔てて対向する第1内側面と、前記第2側面と前記第1方向に第2隙間を隔てて対向する第2内側面とを有し、前記接着部材が、前記第1隙間に臨む前記内底面、前記第1内側面および前記第1側面に接触するように、前記第1隙間に充填され、かつ、前記第2隙間に臨む前記内底面、前記第2内側面および前記第2側面に接触するように、前記第2隙間に充填され、前記第1隙間の第1方向長さL1の、前記内底面の第1方向長さL0に対する比(L1/L0)、および、前記第2隙間の第1方向長さL2の、前記内底面の第1方向長さL0に対する比(L2/L0)が、それぞれ、0.01以上である、光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、光導波路部材が、第1隙間および第2隙間に充填される接着部材によって、コネクタに接着されて装着されている。そのため、コネクタは、蓋体を備えずとも、光導波路部材を装着できる。その結果、部品点数の削減および構成の簡易化を図ることができる。
 また、光導波路部材コネクタでは、第1隙間の第1方向長さL1の、内底面の第1方向長さL0に対する比(L1/L0)、および、第2隙間の第1方向長さL2の、内底面の第1方向長さL0に対する比(L2/L0)が、それぞれ、0.01以上と大きい。そのため、第1隙間における接着部材が、コネクタの内底面および第1内側面と、光導波路部材の第1側面とを強固に接着でき、かつ、第2隙間における接着部材が、コネクタの内底面および第2内側面と、光導波路部材の第2側面とを強固に接着できる。
 その結果、たとえ、コネクタが蓋体を備えずとも、光導波路部材の底面を、コネクタの内底面に確実に接触させることができ、これにより、光導波路部材のコネクタの内底面からの浮き上がりを抑制することができる。
 従って、この光導波路部材コネクタによれば、光導波路部材において光信号を入出力する光導波路端面の、コネクタに対する位置が、所望位置に配置され、そのため、別の光学部材との光学的な接続信頼性に優れる。
 さらに、コネクタの内底面と光導波路部材の底面とが接触しているので、光導波路端面の、コネクタに対する位置精度の低下が抑制される。一方、コネクタの内底面と光導波路部材の底面との間に接着部材がなくても、第1隙間および第2隙間に充填された接着部材によって、光導波路部材がコネクタの内底面に密接することができる。
 本発明(2)は、前記光導波路部材は、前記底面と前記厚み方向に対向し、前記第1側面の前記厚み方向一端縁および前記第2側面の前記厚み方向一端縁を連結する天井面をさらに有し、前記接着部材は、前記天井面の第1方向一端部と前記第1側面とに連続して接触し、前記天井面の第1方向他端部と前記第2側面とに連続して接触している、(1)に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、接着部材が、天井面の第1方向一端部と第1側面とに連続して接触し、天井面の第1方向他端部と第2側面とに連続して接触しているので、かかる接着部材によって、コネクタと光導波路部材とをより一層強固に接着することができる。
 本発明(3)は、前記コネクタは、前記光導波路部材における光信号を入出力する光導波路部材端面が配置される第1コネクタ端面を有し、前記第1コネクタ端面の近傍に位置する前記天井面は、前記第1方向両端部の間の中間部において、前記接着部材から厚み方向一方側に露出する露出領域を有する、(2)に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、第1コネクタ端面の近傍に位置する天井面が、第1方向両端部の間の中間部において、接着部材から厚み方向一方側に露出する露出領域を有するので、露出領域に押し付け部材を押し付けることができる。すると、押し付け部材によって、露出領域を厚み方向他方側に向けて押し付けることにより、光導波路部材の変形を抑制しつつ、光導波路部材の底面をコネクタの内底面により一層確実に接触させることができる。
 本発明(4)は、前記コネクタは、前記第1コネクタ端面に対して前記光導波路が延びる方向において対向する第2コネクタ端面をさらに有し、前記第2コネクタ端面の近傍に位置する前記天井面は、前記中間部において、前記天井面の第1方向両端部に連続する前記接着部材によって被覆される被覆領域を有する、(3)に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、第2コネクタ端面の近傍に位置する天井面は、中間部において、天井面の第1方向両端部に連続する接着部材によって被覆される被覆領域を有するので、光導波路部材のコネクタに対する接着強度を高めることができる。
 本発明(5)は、前記接着部材が、前記光導波路が延びる方向に連続している、(2)~(4)のいずれか一方に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、接着部材が、光導波路が延びる方向に連続しているので、光導波路が延びる方向にわたって、光導波路部材のコネクタに対する接着強度を高めることができる。
 本発明(6)は、前記光導波路部材は、前記第1方向両端部の少なくともいずれか一方に配置されるアラインメントマークを備える、(1)~(5)のいずれか一項に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、光導波路が、アラインメントマークを備えるので、位置精度に優れる。
 本発明(7)は、前記光導波路は、別の光学部材と光学的に接続されるコアと、別の光学部材と光学的に接続されないダミーコアとを備え、前記アラインメントマークが、前記ダミーコアである、(6)に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、光導波路とは別に設けられるアラインメントマークではなく、光導波路が備えるダミーコアがアラインメントマークであるので、部品点数の増加を抑制しながら、位置精度に優れる。
 本発明(8)は、前記コネクタは、前記内底面に臨み、厚み方向を貫通する貫通孔を備える、(1)~(7)のいずれか一項に記載の光導波路部材コネクタを含む。
 この光導波路部材コネクタでは、貫通孔に吸引装置を接続し、吸引装置を駆動すれば、光導波路部材の底面を、コネクタの内底面により確実に接触させることができる。
 本発明(9)は、光導波路を備えており、前記光導波路が延びる方向および厚み方向に直交する第1方向に沿って延びる底面と、前記底面の第1方向両端縁から厚み方向一方側に延びる第1側面および第2側面とを有する光導波路部材と、断面視略コ字形状を有しており、内底面と、前記内底面の第1方向両端縁から厚み方向に延びる第1内側面および第2内側面とを有するコネクタとを準備する第1工程、前記第1側面と第1内側面とが前記第1方向に第1隙間を隔てて対向し、かつ、前記第2側面と第2内側面とが前記第1方向に第2隙間を隔てて対向するように、前記底面を前記内底面に接触させる第2工程、前記第1隙間および前記第2隙間に紫外線硬化型接着剤を充填する第3工程、および、紫外線を前記紫外線硬化型接着剤に対して前記厚み方向一方側から照射する第4工程を備え、前記第1隙間の第1方向長さL1の、前記内底面の第1方向長さL0に対する比(L1/L0)、および、前記第2隙間の第1方向長さL2の、前記内底面の第1方向長さL0に対する比(L2/L0)が、それぞれ、0.01以上である、光導波路部材コネクタの製造方法を含む。
 しかるに、コネクタが蓋体を備えれば、光導波路部材およびコネクタに対して接着剤とともに配置する場合に、接着剤がコネクタおよび蓋体によって外部から覆われていることから、紫外線を接着剤に照射できず、そのため、紫外線硬化型接着剤を用いることができず、そうすると、タクトタイムが長い熱硬化型の接着剤を用いざるを得ない。
 しかし、この光導波路部材コネクタの製造方法では、第1隙間および第2隙間に紫外線硬化型接着剤を充填しても、蓋体を配置しないので、紫外線硬化型接着剤は、厚み方向一方側に露出される。そのため、厚み方向一方側から、紫外線を紫外線硬化型接着剤に照射でき、そして、紫外線硬化型接着剤を、短時間で硬化することができる。そのため、タクトタイムを短くすることができる。その結果、製造効率を向上させることができる。
 本発明の光導波路部材コネクタは、光学的な接続信頼性に優れる。
 本発明の光導波路部材コネクタの製造方法は、製造効率を向上させることができる。
図1A~図1Dは、本発明の光導波路部材コネクタおよびその製造方法の一実施形態である光電気混載基板コネクタおよびその製造方法の各工程における正面図であって、図1Aが、光電気混載基板およびコネクタを準備する第1工程、図1Bが、底面を内底面に接触させる第2工程、図1Cが、紫外線硬化型接着剤を第1隙間および第2隙間に充填する第3工程、図1Dが、紫外線を紫外線硬化型接着剤に照射する第4工程を示す。 図2A~図2Dは、図1A~図1Dに対応する正断面図であって、図3DのA-A線に示す断面図であって、図2Aが、第1工程、図2Bが、第2工程、図2Cが、第3工程、図2Dが、第4工程を示す。 図3A~図3Dは、図1A~図1Dに対応する平面図であって、図3Aが、第1工程、図3Bが、第2工程、図3Cが、第3工程、図3Dが、第4工程を示す。 図4Aおよび図4Bは、図3Dに示す一実施形態の変形例であり、図4Aが、平面図、図4Bが、図4AのB-B線に沿う断面図を示す。 図5は、図1Dに示す一実施形態の変形例の正面図を示す。
 本発明の光導波路部材コネクタおよびその製造方法の一実施形態である光電気混載基板コネクタおよびその製造方法を、図1A~図3Dを参照して説明する。
 なお、図1A~図1Dにおいて、後述するアンダークラッド23およびオーバークラッド24は、その境界が実際には、視認されないことから、それらの間の境界を描画していない。一方、図2A~図2Dでは、上記境界を描画することにより、アンダークラッド23およびオーバークラッド24を明確にしている。
 また、図3Cおよび図3Dは、平面図であるが、接着部材4を明確に示すために、接着部材4をハッチングで描画している。
 図1D、図2Dおよび図3Dに示すように、光電気混載基板コネクタ1は、光電気混載基板2と、コネクタ3と、接着部材4とを備える。
 光電気混載基板2は、厚み方向に互いに間隔を隔てて対向する天井面9および底面8を有し、長手方向(厚み方向に直交する方向)(後述する光導波路19が延びる方向の一例)に延びるシート(フィルム)形状を有する。底面8および天井面9のそれぞれは、長手方向および幅方向(厚み方向および長手方向に直交する方向)(第1方向の一例)に延びる。
 また、光電気混載基板2は、天井面9の幅方向一端縁および底面8の幅方向一端縁を連結する第1側面12と、天井面9の幅方向他端縁および底面8の幅方向他端縁を連結する第2側面13とを有する。換言すれば、天井面9は、第1側面12の厚み方向一端縁と、第2側面13の厚み方向一端縁とを連結している。また、底面8は、第1側面12の厚み方向他端縁と、第2側面13の厚み方向他端縁とを連結している。
 さらに、光電気混載基板2は、天井面9の長手方向一端縁および底面8の長手方向一端縁を連結する光導波路部材端面の一例としての第1端面10と、天井面9の長手方向他端縁および底面8の長手方向他端縁を連結する第2端面(図示せず)とを有する。第1端面10は、後述する光導波路19における光信号を入出力する。
 光電気混載基板2は、上記した天井面9、底面8、第1側面12、第2側面13、第1端面10および第2端面(図示せず)を一体的に有する。
 また、光電気混載基板2は、長手方向一端部において、コネクタ3に装着される装着領域6と、装着領域6の長手方向他方側に連続する非装着領域7とを一体的に有する。装着領域6における天井面9は、その幅方向一端部および他端部に位置する2つのマージン領域49と、2つのマージン領域49の間の中間部に位置する第1領域67および第2領域68とを有する。第1領域67は、装着領域6における天井面9の長手方向一方側部分に位置する。第2領域68は、装着領域6における天井面9の長手方向他方側部分に位置する。
 装着領域6は、上記した天井面9の長手方向一端部、底面8の長手方向一端部、第1側面12の長手方向一端部、第2側面13の長手方向一端部、および、第1端面10を有する。
 また、この光電気混載基板2は、電気回路基板18と、光導波路19とを厚み方向に順に備える。この一実施形態では、光電気混載基板2は、電気回路基板18と、光導波路19とを厚み方向一方側に向かって順に備える。好ましくは、光電気混載基板2は、電気回路基板18と、光導波路19とのみを備える。
 電気回路基板18は、長手方向に延びるシート(フィルム)形状を有する。電気回路基板18の厚み方向他方面は、光電気混載基板2の底面8を形成する。なお、この電気回路基板18は、図示しないが、例えば、金属支持基板、ベース絶縁層、導体層、および、カバー絶縁層を厚み方向他方側に向かって順に備える。
 光導波路19は、電気回路基板18の厚み方向一方面に配置されている。光導波路19は、長手方向に延びるシート(フィルム)形状を有する。光導波路19の厚み方向一方面は、光電気混載基板2の天井面9を形成する。
 光導波路19は、クラッド20と、クラッド20に被覆されるコア21とを備えている。具体的には、光導波路19は、ストリップ型光導波路であって、アンダークラッド23と、コア21と、オーバークラッド24とを備える。さらに、光導波路19は、ダミーコア22を備える。
 アンダークラッド23は、クラッド20に含まれる。アンダークラッド23は、長手方向に延びる層形状を有する。アンダークラッド23は、電気回路基板18の厚み方向一方面に配置されている。
 コア21は、光を長手方向に伝送する信号コアである。コア21は、アンダークラッド23の厚み方向一方面において、幅方向に互いに間隔を隔てて複数配置されている。複数のコア21は、長手方向に延びている。なお、複数のコア21は、クラッド20に重複している。
 オーバークラッド24は、クラッド20に含まれる。オーバークラッド24は、長手方向に延びる層形状を有する。オーバークラッド24の2つの側面のそれぞれは、厚み方向に投影したときに、アンダークラッド23の2つの側面のそれぞれと一致している。
 ダミーコア22は、光電気混載基板2が光学的に接続される別の光学部材(図示せず)に対して光を入出力するコアではなく、光電気混載基板2をコネクタ3に位置合わせするためのアラインメントマークである。そのため、ダミーコア22は、上記した位置合わせのときに用いられる検査光などを出射可能である。
 ダミーコア22は、光導波路19(光電気混載基板2)の幅方向両端部に配置されている。2つのダミーコア22のそれぞれは、オーバークラッド24の2つの側面のそれぞれに、2つの側面のそれぞれから幅方向外側に向かって突出するように形成されている。2つのダミーコア22のそれぞれは、コア21のそれぞれと同一の断面視形状を有する。2つのダミーコア22のそれぞれは、オーバークラッド24の側面に接触し、厚み方向に延びる接触面と、接触面の厚み方向両端縁から幅方向外側に向かって延びる2つの延出面52と、2つの延出面52の幅方向外端縁を連結するダミー外側面5とを一体的に備える。
 また、2つのダミーコア22は、いずれも、幅方向に投影したときに、コア21と重複する。ダミーコア22の厚み方向一方面および他方面は、幅方向に投影したときに、コア21の厚み方向一方面および他方面のそれぞれと一致している。
 従って、光導波路19の2つの側面のそれぞれは、アンダークラッド23の2つの側面のそれぞれと、オーバークラッド24の2つの側面のそれぞれにおいてダミーコア22から露出する露出面と、2つのダミーコア22のそれぞれの2つの延出面52およびダミー外側面5とから一体的に連続して形成されている。
 クラッド20、コア21およびダミーコア22の材料としては、例えば、エポキシ樹脂、アクリル樹脂などの透明性樹脂が挙げられる。クラッド20、コア21およびダミーコア22のうち、コア21およびダミーコア22の屈折率は、クラッド20の屈折率に対して、高い。コア21およびダミーコア22の屈折率は、同一または相異なっていてもよく、好ましくは、同一である。
 クラッド20の厚みは、例えば、20μm以上、好ましくは、30μm以上であり、また、例えば、4000μm以下、好ましくは、200μm以下である。コア21およびダミーコア22のそれぞれの厚みは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、2000μm以下、好ましくは、70μm以下である。コア21およびダミーコア22のそれぞれの幅は、例えば、10μm以上、好ましくは、150μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。
 光電気混載基板2の厚みは、例えば、25μm以上、好ましくは、40μm以上であり、また、例えば、5000μm以下、好ましくは、250μm以下である。
 また、光電気混載基板2の装着領域6における幅方向の最大長さL5は、後述するが、内底面31の幅方向長さL0、第1隙間57の幅方向長さL1、第2隙間58の幅方向長さL2、それらの比が所望の範囲となるように、調整される。
 コネクタ3は、蓋体を備えず、光電気混載基板2の装着領域6を固定して装着する。
 コネクタ3は、厚み方向一方側に向かって開放される正面視および正断面視略コ字形状を有する。コネクタ3は、光電気混載基板2の装着領域6を、厚み方向他方側および幅方向両外側から支持している。図1A、図2Aおよび図3Aに示すように、具体的には、コネクタ3は、底壁26と、第1側壁27と、第2側壁28とを一体的に備える。
 底壁26は、光電気混載基板2の長手方向に延びる略矩形平板形状を有する。底壁26は、厚み方向に互いに間隔を隔てて対向する内底面31および下面32を有する。また、底壁26は、内底面31の長手方向一端縁および下面32の長手方向一端縁を連結する一端面である底壁一端面14と、内底面31の長手方向他端縁および下面32の長手方向他端縁を連結する他端面である底壁他端面17とを備える。
 図1Cおよび図2Cに示すように、内底面31は、光電気混載基板2の装着領域6の底面8、および、接着部材4と接触している。
 図2Aおよび図3Aに示すように、また、底壁26は、厚み方向を貫通する貫通孔29を有する。貫通孔29は、内底面31および下面32に臨んでいる。貫通孔29は、底壁26の長手方向一方側部分であって、幅方向中間部に形成されている。貫通孔29は、底壁26の厚み方向に延びる平面視略円形状を有する。貫通孔29の内径L3は、光電気混載基板2の底面8の幅より短く設定される。
 第1側壁27は、底壁26の幅方向一端部から厚み方向一方側に向かって延びる略矩形平板形状を有する。図2Bおよび図3Bに示すように、第1側壁27は、上記した光電気混載基板2に面する第1内側面38と、第1内側面38の幅方向外側に間隔を隔てて配置される第1外側面39と、第1内側面38および第1外側面39の厚み方向一端縁を連結する第1連結面40とを有する。また、第1側壁27は、第1内側面38および第1外側面39の長手方向一端縁を連結する第1側壁一端面61と、第1内側面38および第1外側面39の長手方向他端縁を連結する第1側壁他端面62とを有する。
 第1内側面38は、光電気混載基板2に接触しておらず、第1隙間57(後述)を介して光電気混載基板2と幅方向に対向配置されている。第1内側面38は、内底面31と直角を成す。
 図3Aに示すように、第1側壁一端面61は、底壁一端面14と面一である。
 第1側壁他端面62は、底壁他端面17と面一である。
 第2側壁28は、底壁26の幅方向他端部から厚み方向一方側に向かって延びる略矩形平板形状を有する。第2側壁28は、第1側壁27に対して、光電気混載基板2および次に説明する接着部材4が設けられる間隔を隔てて、幅方向に対向配置されている。図2Bおよび図3Bに示すように、第2側壁28は、光電気混載基板2に面する第2内側面44と、第2内側面44の幅方向外側に間隔を隔てて配置される第2外側面45と、第2内側面44および第2外側面45の厚み方向一端縁を連結する第2連結面46とを有する。第2側壁28は、第2内側面44および第2外側面45の長手方向一端縁を連結する第2側壁一端面63と、第2内側面44および第2外側面45の長手方向他端縁を連結する第2側壁他端面64とを有する。
 第2内側面44は、光電気混載基板2に接触しておらず、第2隙間58(後述)を介して光電気混載基板2と幅方向に対向配置されている。第2内側面44は、内底面31と直角を成す。
 図3Aに示すように、第2側壁一端面63は、底壁一端面14と面一である。
 第2側壁他端面64は、底壁他端面17と面一である。
 このコネクタ3では、底壁一端面14、第1側壁一端面61および第2側壁一端面63は、それらが面一であって、1つの平面を形成しており、具体的には、第1コネクタ端面65を構成している。この第1コネクタ端面65は、第1端面10の近傍に(好ましくは、面一となるように)配置されており、具体的には、第1コネクタ端面65は、厚み方向に投影したときに、第1端面10と重複している。
 また、底壁他端面17、第1側壁他端面62および第2側壁他端面64は、それらが面一であって、1つの平面を形成しており、具体的には、第2コネクタ端面66を構成している。第2コネクタ端面66は、第1コネクタ端面65に対して長手方向他方側に対向している。
 コネクタ3の寸法は、光電気混載基板2の寸法によって適宜調整され、例えば、内底面31の幅方向長さL0は、次に説明する第1隙間57の幅方向長さL1および第2隙間58の幅方向長さL2のそれぞれとに対する比が所望の範囲となるように、設定される。具体的には、内底面31の幅方向長さL0は、例えば、50mm以下、好ましくは、5mm以下であり、また、例えば、2mm以上、好ましくは、3mm以上である。
 このコネクタ3には、光電気混載基板2が収容される。具体的には、内底面31、第1内側面38および第2内側面44によって区画される収容空間59に、光電気混載基板2の装着領域6が収容されている。具体的には、装着領域6の底面8が、内底面31の幅方向中間部において接触している。
 光電気混載基板2と、第1側壁27との間には、それらを幅方向に隔てる第1隙間57が形成されている。具体的には、第1側面12と、第1内側面38との間には、内底面31の幅方向一端部の厚み方向一方側において、第1隙間57が形成されている。
 第1隙間57の幅方向長さL1の、内底面31の幅方向長さL0に対する比(L1/L0)が、0.01以上である。
 比(L1/L0)が0.01未満であれば、この第1隙間57に充填される次に説明する接着部材4(第1接着部材53)が、コネクタ3の内底面31および第1内側面38と、光電気混載基板2の第1側面12とを強固に接着することができない。
 第1隙間57の幅方向長さL1は、第1側面12と、第1内側面38との最短長さであって、第1側面12において第1内側面38に対して最も近くに位置する面と、第1内側面38との距離である。この一実施形態では、第1隙間57の幅方向長さL1は、第1隙間57に臨むダミーコア22のダミー外側面5と、第1内側面38との長さである。
 比(L1/L0)は、好ましくは、0.013以上、より好ましくは、0.015以上、さらに好ましくは、0.02以上であり、また、例えば、1.0以下である。
 また、光電気混載基板2と、第2側壁28との間には、それらを幅方向に隔てる第2隙間58が形成されている。具体的には、第2側面13と、第2内側面44との間には、内底面31の幅方向他端部の厚み方向一方側において、第2隙間58が形成されている。
 第2隙間58の幅方向長さL2の、内底面31の幅方向長さL0に対する比(L2/L0)が、0.01以上である。
 比(L2/L0)が0.01未満であれば、この第2隙間58に充填される接着部材4(第2接着部材54)が、コネクタ3の内底面31および第2内側面44と、光電気混載基板2の第2側面13とを強固に接着することができない。
 第2隙間58の幅方向長さL2は、第2側面13と、第2内側面44との最短長さであって、第2側面13において第2内側面44に対して最も近くに位置する面と、第1内側面38との距離である。一実施形態では、第2隙間58の幅方向長さL2は、第2隙間58に臨むダミーコア22のダミー外側面5と、第2内側面44との長さである。
 比(L2/L0)は、好ましくは、0.013以上、より好ましくは、0.015以上、さらに好ましくは、0.02以上であり、また、例えば、1.0以下である。
 この一実施形態では、2つの比、具体的には、比(L1/L0)、および、比(L2/L0)は、いずれも、0.01以上である。つまり、比(L1/L0)が0.01以上であり、かつ、比(L2/L0)も0.01以上である。2つの比のうち、一方でも、0.01未満となる態様は、本発明に含まれない。2つの比のうち、一方でも、0.01未満となれば、光電気混載基板2の底面8が、コネクタ3の内底面31に確実に接触させることができない。
 比(L1/L0)、および、比(L2/L0)は、同一または相異なっていてもよく、好ましくは、同一である。
 図1D、図2Dおよび図3Dに示すように、接着部材4は、光電気混載基板2とコネクタ3とを接着する。接着部材4は、第1隙間57に充填される第1接着部材53と、第2隙間58に充填される第2接着部材54とを別体で備える。
 第1接着部材53は、第1隙間57に臨む内底面31、第1内側面38および第1側面12に接触している。さらに、第1接着部材53は、天井面9の幅方向一端部にも接触している。つまり、第1接着部材53は、光電気混載基板2の天井面9の幅方向一端部と第1側面12とに連続して接触している。すなわち、第1接着部材53は、天井面9と第1側面12との稜線を被覆している。
 また、第1接着部材53は、正面視および正断面視において、先端が幅方向他方側に尖る略鉤形状を有する。
 また、第1接着部材53は、長手方向に連続して延びる形状を有する。具体的には、第1接着部材53は、第1隙間57に臨む内底面31の長手方向にわたる全面と、第1内側面38において厚み方向他方側部分および中間部における長手方向にわたる全面と、装着領域6における第1側面12の長手方向にわたる全面と、装着領域6における天井面9の幅方向一端部の長手方向にわたる全面とに接触している。
 第2接着部材54は、第2隙間58に臨む内底面31、第2内側面44および第2側面13に接触している。さらに、第2接着部材54は、天井面9の幅方向他端部にも接触している。つまり、第2接着部材54は、光電気混載基板2の天井面9の幅方向他端部と第2側面13とに連続して接触している。すなわち、第2接着部材54は、天井面9と第2側面13との稜線を被覆している。
 また、第2接着部材54は、正面視および正断面視において、先端が幅方向一方側に尖る略鉤形状を有する。
 また、第2接着部材54は、長手方向に連続して延びる形状を有する。具体的には、第2接着部材54は、第2隙間58に臨む内底面31の長手方向にわたる全面と、第2内側面44において厚み方向他方側部分および中間部における長手方向にわたる全面と、装着領域6における第2側面13の長手方向にわたる全面と、装着領域6における天井面9の幅方向他端部の長手方向にわたる全面とに接触している。
 また、第2接着部材54は、第1接着部材53と連続しておらず、独立しており、平面視において、第1接着部材53の幅方向他方側に間隔を隔てて配置されている。
 これにより、第1接着部材53および第2接着部材54は、天井面9の第1領域67および第2領域68を厚み方向一方側に露出している。この一実施形態では、第1領域67および第2領域68の両方が、露出領域69である。
 なお、接着部材4は、底面8と内底面31との間に存在しない。
 接着部材4としては、例えば、硬化型接着剤の硬化物、例えば、熱可塑型接着剤(ホットメルトを含む)の可塑化物などが挙げられる。好ましくは、高い接着強度を得る観点から、硬化型接着剤の硬化物が挙げられ、より好ましくは、短いタクトタイムを確保する観点から、紫外線硬化型接着剤の硬化物が挙げられる。
 次に、この光電気混載基板コネクタ1の製造方法を説明する。
 光電気混載基板コネクタ1の製造方法は、光電気混載基板2およびコネクタ3を準備する第1工程(図1Aおよび図2A参照)、底面8を内底面31に接触させる第2工程(図1B、図2Bおよび図3B参照)、紫外線硬化型接着剤を第1隙間57および第2隙間58に充填する第3工程(図1C、図2Cおよび図3C参照)、紫外線を紫外線硬化型接着剤に照射する第4工程(図1D、図2Dおよび図3D参照)を備える。
 図1Aおよび図2Aに示すように、第1工程では、光電気混載基板2およびコネクタ3をそれぞれ準備する。
 第1工程において、光電気混載基板2を準備するには、まず、電気回路基板18を準備し、その後、光導波路19を電気回路基板18の厚み方向一方側で作り込む。具体的には、電気回路基板18の厚み方向一方面において、アンダークラッド23を、予定の幅より広幅で形成し、次いで、アンダークラッド23の厚み方向一方面に、コア21およびダミーコア22を同時に形成し、続いて、オーバークラッド24を、アンダークラッド23の厚み方向一方面に、コア21を被覆するが、ダミーコア22を被覆しないように配置し、その後、アンダークラッド23の幅方向両端部を除去して、ダミーコア22の厚み方向他方面を露出させる。これによって、光電気混載基板2を製造する。
 また、樹脂から、例えば、押出成形などの成形方法によって、上記した形状のコネクタ3を成形する。
 なお、コネクタ3に装着される前においては、光電気混載基板2は、断面視および正面視において、可撓性を有して、湾曲する形状(性質)を有しており、具体的には、図1Aおよび図2Aに示すように、幅方向中央部が厚み方向一方側に向かって浮き上がるように、湾曲している。
 図1B、図2Bおよび図3Bに示すように、次いで、第2工程では、底面8を内底面31に接触させる。具体的には、上記した幅方向長さL1で、第1側面12と第1内側面38とが対向する第1隙間57が区画され、かつ、上記した幅方向長さL2で、第2側面13と第2内側面44とが対向する第2隙間58が区画されるように、光電気混載基板2を底壁26に載置する。具体的には、光電気混載基板2を内底面31の幅方向中央部に配置する。
 このとき、例えば、押し付け部材37によって、天井面9の第1領域67を厚み方向他方向側に向かって押し付ける。
 押し付け部材37は、厚み方向他方面において、平坦な押し付け面43を有する。なお、押し付け面43は、押し付け部材37が第1領域67を押し付けるときに、すべてのコア21の長手方向一端部と重複するように、押し付け面43の幅方向長さL4が予め調整されている。一方、押し付け面43は、天井面9のマージン領域49と接触しないように、押し付け面43の幅方向長さL4が調整されている。
 さらには、押し付け部材37の押し付けとともに、貫通孔29に吸引装置(図示しない)を接続し、吸引装置を駆動して、貫通孔29内を負圧することによって、底面8を内底面31に密着させる。
 上記した押し付け部材37の押し付け、および、吸引装置の駆動によって、底面8が内底面31に密着することによって、光電気混載基板2の形状が幅方向に沿う平坦形状となる。
 なお、貫通孔29は、底面8によって閉塞されている。
 この第2工程では、第1隙間57および第2隙間58が区画されている。
 同時に、第2工程では、光電気混載基板2のコネクタ3に対する位置決めを実施する。例えば、ダミーコア22の長手方向他端面から光を入力し、一端面から光を出射させて、この出射光を、第1端面10に対向配置したカメラ(図示)などによって確認して、光電気混載基板2のコネクタ3に対するアラインメントを実施する。
 図1C、図2Cおよび図3Cに示すように、次いで、第3工程では、紫外線硬化型接着剤を第1隙間57および第2隙間58に充填する。
 紫外線硬化型接着剤の種類は、特に限定されず、例えば、アクリル接着剤、エポキシ接着剤、シリコーン接着剤などから適宜選択される。紫外線硬化型接着剤の性状は、特に限定されず、液状、半固体状、固体状のいずれであってもよい。
 紫外線硬化型接着剤を、第1隙間57および第2隙間58のそれぞれの厚み方向一方側から配置する。
 これにより、紫外線硬化型接着剤は、第1隙間57では、第1隙間57に臨む内底面31、第1内側面38、第1側面12、および、天井面9の幅方向一端部に接触する。
 また、紫外線硬化型接着剤は、第2隙間58では、第2隙間58に臨む内底面31、第2内側面44、第2側面13、および、天井面9の幅方向他端部に接触する。
 この第3工程でも、押し付け部材37の押し付け、および、吸引装置の駆動が継続される。
 図1Cおよび図2Cの矢印で示すように、その後、第4工程では、紫外線を紫外線硬化型接着剤に照射する。具体的には、紫外線を、紫外線硬化型接着剤の厚み方向一方側から、紫外線硬化型接着剤に対して、照射する。紫外線の照射時間は、照射エネルギーによって適宜設定されるが、例えば、100秒以下、好ましくは、20秒以下であり、また、例えば、1秒以上である。
 紫外線の照射によって、紫外線硬化型接着剤が硬化して、紫外線硬化型接着剤の硬化物から接着部材4が形成される。
 具体的には、光電気混載基板2の第1側面12および天井面9の幅方向一端部が、第1接着部材53を介して、第1隙間57に臨む内底面31および第1内側面38に固定される。また、光電気混載基板2の第2側面13および天井面9の幅方向他端部が、第2接着部材54を介して、第2隙間58に臨む内底面31および第2内側面44に固定される。
 これによって、光電気混載基板2がコネクタ3に装着される。
 その後、吸引装置の駆動を停止するとともに、押し付け部材37を天井面9から引き上げる。
 この際、光電気混載基板2の底面8に、たとえ、底面8が内底面31から離れる力(弾性力、回復力)が作用されても、光電気混載基板2の第1側面12および天井面9の幅方向両端部が、接着部材4によって、コネクタ3に強固に固定されているため、底面8には、平坦状を維持し、内底面31に接触するような張力が作用する。そのため、吸引装置の駆動の停止、および、押し付け部材37の離間後であっても、底面8は、内底面31との接触(密接)状態を継続する。
 これによって、光電気混載基板コネクタ1が製造される。
 そして、この光電気混載基板コネクタ1では、光電気混載基板2が、第1隙間57および第2隙間58に充填される接着部材4によって、コネクタ3に接着されて装着されている。そのため、コネクタ3は、特許文献1に記載されるような蓋体を備えずとも、光電気混載基板2を装着できる。その結果、部品点数の削減および構成の簡易化を図ることができる。
 また、光電気混載基板コネクタ1では、第1隙間57の第1方向長さL1の、内底面31の第1方向長さL0に対する比(L1/L0)、および、第2隙間58の第1方向長さL2の、内底面31の第1方向長さL0に対する比(L2/L0)が、それぞれ、0.01以上と大きい。そのため、第1隙間57における第1接着部材53が、コネクタ3において第1隙間57に臨む内底面31および第1内側面38と、光電気混載基板2の第1側面12とを強固に接着でき、かつ、第2隙間58における第2接着部材54が、コネクタ3において第2隙間58に臨む内底面31および第2内側面44と、光電気混載基板2の第2側面13とを強固に接着できる。
 その結果、たとえ、コネクタ3が蓋体を備えずとも、光電気混載基板2の底面8を、コネクタ3の内底面31に確実に接触させることができ、これにより、光電気混載基板2の、コネクタ3の内底面31からの浮き上がりを抑制することができる。
 従って、この光電気混載基板コネクタ1によれば、光電気混載基板2において光信号を入出力する第1端面10の、コネクタ3に対する位置が、所望位置に配置され、そのため、別の光学部材との光学的な接続信頼性に優れる。
 さらに、コネクタ3の内底面31と光電気混載基板2の底面8とが接触しているので、つまり、内底面31と底面8との間に、厚みを有する接着部材4が存在しないので、接着部材4の存在に起因する、第1端面10の、コネクタ3に対する位置精度の低下が抑制される。一方、コネクタ3の内底面31と光電気混載基板2の底面8との間に接着部材4がなくても、第1隙間57および第2隙間58に充填された接着部材4によって、光電気混載基板2がコネクタ3の内底面31に確実に接触することができる。
 また、この光電気混載基板コネクタ1では、第1接着部材53が、天井面9の幅方向一端部と第1側面12とに連続して接触し、第2接着部材54が、天井面9の幅方向他端部と第2側面13とに連続して接触している。そのため、第1接着部材53および第2接着部材54を備える接着部材4によって、コネクタ3と光電気混載基板コネクタ1とをより一層強固に接着することができる。
 また、この光電気混載基板コネクタ1では、第1端面10の近傍に位置する天井面9が、露出領域69(第1領域67)を有するので、露出領域69に押し付け部材37を押し付けることができる。すると、押し付け部材37によって、露出領域69を厚み方向他方側に向けて押し付けることにより、光電気混載基板コネクタ1の浮きを抑制しつつ、光電気混載基板コネクタ1の底面8をコネクタ3の内底面31により一層確実に接触させることができる。
 また、この光電気混載基板コネクタ1では、接着部材4(第1接着部材53および第2接着部材54のそれぞれ)が、長手方向に連続しているので、長手方向にわたって、光電気混載基板2のコネクタ3に対する接着強度を高めることができる。
 また、この光電気混載基板コネクタ1では、光電気混載基板2が、アラインメントマークとしてのダミーコア22を備えるので、位置精度に優れる。
 また、この光電気混載基板コネクタ1では、光電気混載基板2とは別に設けられるアラインメントマーク(より具体的には、コア21と別の工程で形成されるアラインメントマーク)ではなく、光電気混載基板2に包含され、コア21とともに形成されるダミーコア22がアラインメントマークであるので、部品点数の増加を抑制しながら、位置精度に優れる。
 また、貫通孔29に吸引装置を接続し、吸引装置を駆動するので、光電気混載基板2の底面8を、コネクタ3の内底面31により確実に接触させることができる。
 また、この光電気混載基板コネクタ1の製造方法では、コネクタ3は、蓋体を備えずとも、光電気混載基板コネクタ1を装着するので、製造工数の低減を図ることができる。
 しかるに、コネクタ3が蓋体を備えれば、光電気混載基板コネクタ1およびコネクタ3に対して接着剤とともに配置する場合に、接着剤がコネクタおよび蓋体によって外部から覆われていることから、紫外線を接着剤に照射できず、紫外線硬化型接着剤を用いることができず、そうすると熱硬化型の接着剤を用いざるを得ない。
 しかし、この一実施形態における光電気混載基板コネクタ1の製造方法では、第1隙間57および第2隙間58に紫外線硬化型接着剤を充填しても、蓋体を配置しないので、紫外線硬化型接着剤は、厚み方向一方側に露出される。そのため、厚み方向一方側から、紫外線を紫外線硬化型接着剤に照射でき、そして、紫外線硬化型接着剤を、短時間で硬化することができる。そのため、タクトタイムを短くすることができる。その結果、製造効率を向上させることができる。
  変形例
 次に、一実施形態の変形例を説明する。以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例を適宜組み合わせることができる。さらに、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。
 一実施形態では、光電気混載基板2は、電気回路基板18と、光導波路19とを厚み方向一方側に向かって順に備えるが、例えば、図示しないが、それらを厚み方向他方側に向かって順に備えることもできる。
 一実施形態では、ダミーコア22が、コア21と同一の層として形成されているが、別の層として形成されていてもよい。また、ダミーコア22が、アンダークラッド23の厚み方向一方面に、オーバークラッド24に被覆されるように、配置されていてもよい。なお、光電気混載基板2は、ダミーコア22を備えるが、例えば、図示しないが、ダミーコア22を備えずに、光電気混載基板2を構成することもできる。
 また、一実施形態では、ダミーコア22は、光電気混載基板2の幅方向両端部に配置されているが、幅方向両端部のうちいずれか一方のみに配置されていてもよい。
 また、一実施形態では、光導波路部材の一例としての光電気混載基板2を例示しているが、例えば、図示しないが、光導波路部材の一例は、電気回路基板18を備えず、光導波路19を備える。好ましくは、光導波路部材の一例は、光導波路19である。この場合には、光導波路部材コネクタの一例は、光導波路コネクタである。
 図4Aおよび図4Bに示すように、接着部材4は、第2領域68に配置される第3接着部材55を第1接着部材53および第2接着部材54と一体的に備えることができる。
 第3接着部材55は、第2領域68の幅方向両側に位置する第1接着部材53および第2接着部材54に連続する。第3接着部材55は、天井面9の第2領域68を被覆している。そのため、第2領域68は、天井面9において、第3接着部材55に被覆される被覆領域70である。一方、この図4Aおよび図4Bに示す変形例の天井面9では、第1領域67のみが露出領域69である。
 図4Aおよび図4Bに示す光電気混載基板コネクタ1では、天井面9が、第3接着部材55によって被覆される被覆領域70を有するので、光電気混載基板2のコネクタ3に対する接着強度を高めることができる。
 図5に示すように、接着部材4が、天井面9の幅方向両端部を露出することもできる。具体的には、第1接着部材53は、第1隙間57において、光電気混載基板2に対しては、天井面9の幅方向一端部に接触せず、第1側面12のみに接触する。第2接着部材54は、第2隙間58において、光電気混載基板2に対しては、天井面9の幅方向他端部に接触せず、第2側面13のみに接触する。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1
 図1Aおよび図2Aに示すように、装着領域6における最大長さL5(図1Bおよび図2B)が3mmである光電気混載基板2と、内底面31の幅方向長さL0が5mmであるコネクタ3とを準備した(第1工程)。
 図1Bおよび図2Bに示すように、次いで、第1隙間57および第2隙間58が形成されるように、底面8を内底面31に接触させた(第2工程)。第1隙間57の幅L1は、1.00mmであり、第2隙間58の幅L2は、1.00mmであった。すると、比(L1/L0)、および、比(L2/L0)が、いずれも、0.200であった。
 図1Cおよび図2Cに示すように、紫外線硬化型アクリル接着剤を、第1隙間57および第2隙間58に充填した(第3工程)。
 図1Cおよび図2Cの矢印で示すように、厚み方向一方側から紫外線を紫外線硬化型アクリル接着剤に照射して、硬化物を形成した。これにより、図1Dおよび図2C第1接着部材53および第2接着部材54を備える接着部材4を形成した。これにより、光電気混載基板コネクタ1を製造した。
 この光電気混載基板コネクタ1では、底面8が内底面31に接触しており、光電気混載基板2は平坦状であった。
 光電気混載基板コネクタ1における寸法を表1に転記する。
  実施例1~比較例2
 寸法を、表1に記載の通りに変更した以外は、実施例1と同様に処理して、光電気混載基板コネクタ1を製造した。
 比較例1および2の光電気混載基板コネクタ1では、底面8が内底面31から浮き上がった。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 本発明の光導波路部材コネクタは、例えば、光電気混載基板コネクタに用いられる。
1 光電気混載基板コネクタ
2 光電気混載基板
3 コネクタ
4 接着部材
8 底面
10 第1端面
12 第1側面
13 第2側面
21 コア
22 ダミーコア
29 貫通孔
31 内底面
38 第1内側面
44 第2内側面
57 第1隙間
58 第2隙間
69 露出領域
70 被覆領域

Claims (9)

  1.  光導波路を備える光導波路部材と、
     前記光導波路部材を装着し、断面視略コ字形状を有するコネクタと、
     前記光導波路部材と前記コネクタとを接着する接着部材とを備え、
     前記光導波路部材は、
      前記光導波路が延びる方向および厚み方向に直交する第1方向に沿って延びる底面と、
      前記底面の第1方向両端縁から厚み方向一方側に延びる形状を有する第1側面および第2側面とを有し、
     前記コネクタは、
      前記底面と接触する内底面と、
      前記第1側面と前記第1方向に第1隙間を隔てて対向する第1内側面と、
      前記第2側面と前記第1方向に第2隙間を隔てて対向する第2内側面とを有し、
     前記接着部材が、前記第1隙間に臨む前記内底面、前記第1内側面および前記第1側面に接触するように、前記第1隙間に充填され、かつ、前記第2隙間に臨む前記内底面、前記第2内側面および前記第2側面に接触するように、前記第2隙間に充填され、
     前記第1隙間の第1方向長さL1の、前記内底面の第1方向長さL0に対する比(L1/L0)、および、前記第2隙間の第1方向長さL2の、前記内底面の第1方向長さL0に対する比(L2/L0)が、それぞれ、0.01以上であることを特徴とする、光導波路部材コネクタ。
  2.  前記光導波路部材は、前記底面と前記厚み方向に対向し、前記第1側面の前記厚み方向一端縁および前記第2側面の前記厚み方向一端縁を連結する天井面をさらに有し、
     前記接着部材は、
      前記天井面の第1方向一端部と前記第1側面とに連続して接触し、
      前記天井面の第1方向他端部と前記第2側面とに連続して接触していることを特徴とする、請求項1に記載の光導波路部材コネクタ。
  3.  前記コネクタは、前記光導波路部材における光信号を入出力する光導波路部材端面が配置される第1コネクタ端面を有し、
     前記第1コネクタ端面の近傍に位置する前記天井面は、前記第1方向両端部の間の中間部において、前記接着部材から厚み方向一方側に露出する露出領域を有することを特徴とする、請求項2に記載の光導波路部材コネクタ。
  4.  前記コネクタは、前記第1コネクタ端面に対して前記光導波路が延びる方向において対向する第2コネクタ端面をさらに有し、
     前記第2コネクタ端面の近傍に位置する前記天井面は、前記中間部において、前記天井面の第1方向両端部に連続する前記接着部材によって被覆される被覆領域を有することを特徴とする、請求項3に記載の光導波路部材コネクタ。
  5.  前記接着部材が、前記光導波路が延びる方向に連続していることを特徴とする、請求項2に記載の光導波路部材コネクタ。
  6.  前記光導波路部材は、前記第1方向両端部の少なくともいずれか一方に配置されるアラインメントマークを備えることを特徴とする、請求項1に記載の光導波路部材コネクタ。
  7.  前記光導波路は、
     別の光学部材と光学的に接続されるコアと、
     別の光学部材と光学的に接続されないダミーコアとを備え、
     前記アラインメントマークが、前記ダミーコアであることを特徴とする、請求項6に記載の光導波路部材コネクタ。
  8.  前記コネクタは、
     前記内底面に臨み、厚み方向を貫通する貫通孔を備えることを特徴とする、請求項1に記載の光導波路部材コネクタ。
  9.  光導波路を備えており、前記光導波路が延びる方向および厚み方向に直交する第1方向に沿って延びる底面と、前記底面の第1方向両端縁から厚み方向一方側に延びる第1側面および第2側面とを有する光導波路部材と、 断面視略コ字形状を有しており、内底面と、前記内底面の第1方向両端縁から厚み方向に延びる第1内側面および第2内側面とを有するコネクタとを準備する第1工程、
     前記第1側面と第1内側面とが前記第1方向に第1隙間を隔てて対向し、かつ、前記第2側面と第2内側面とが前記第1方向に第2隙間を隔てて対向するように、前記底面を前記内底面に接触させる第2工程、
     前記第1隙間および前記第2隙間に紫外線硬化型接着剤を充填する第3工程、および、
     紫外線を前記紫外線硬化型接着剤に対して前記厚み方向一方側から照射する第4工程を備え、
     前記第1隙間の第1方向長さL1の、前記内底面の第1方向長さL0に対する比(L1/L0)、および、前記第2隙間の第1方向長さL2の、前記内底面の第1方向長さL0に対する比(L2/L0)が、それぞれ、0.01以上であることを特徴とする、光導波路部材コネクタの製造方法。
     
PCT/JP2019/029209 2018-07-25 2019-07-25 光導波路部材コネクタおよびその製造方法 WO2020022428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217002257A KR20210035186A (ko) 2018-07-25 2019-07-25 광도파로 부재 커넥터 및 그 제조 방법
US17/262,416 US11536909B2 (en) 2018-07-25 2019-07-25 Optical waveguide member connector and method for producing the same
CN201980049476.5A CN112513704A (zh) 2018-07-25 2019-07-25 光波导路构件连接器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018139649A JP7258486B2 (ja) 2018-07-25 2018-07-25 光導波路部材コネクタおよびその製造方法
JP2018-139649 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022428A1 true WO2020022428A1 (ja) 2020-01-30

Family

ID=69180741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029209 WO2020022428A1 (ja) 2018-07-25 2019-07-25 光導波路部材コネクタおよびその製造方法

Country Status (6)

Country Link
US (1) US11536909B2 (ja)
JP (1) JP7258486B2 (ja)
KR (1) KR20210035186A (ja)
CN (1) CN112513704A (ja)
TW (1) TW202011064A (ja)
WO (1) WO2020022428A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298748A1 (en) * 2007-05-31 2008-12-04 Terry Dean Cox Direct-connect optical splitter module
JP2013228622A (ja) * 2012-04-26 2013-11-07 Fujitsu Ltd 光導波路コネクタの製造方法、光導波路の作製方法及び光導波路コネクタ
JP2014029445A (ja) * 2012-07-31 2014-02-13 Sumitomo Bakelite Co Ltd 光配線部品および光配線部品の製造方法
JP2014106409A (ja) * 2012-11-28 2014-06-09 International Business Maschines Corporation 複数積層の光導波路コネクタ
US20160377817A1 (en) * 2015-06-24 2016-12-29 International Business Machines Corporation Single-mode polymer waveguide connector

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156435A (ja) 1998-06-22 2000-06-06 Fujitsu Ltd 半導体装置及びその製造方法
CN102349009B (zh) 2009-03-11 2014-08-13 国际商业机器公司 用于组装挠性光波导带的方法及间隔物,以及这样的带的组装叠层
JP2012194401A (ja) 2011-03-16 2012-10-11 Nitto Denko Corp 光電気混載基板およびその製法
JP6202662B2 (ja) 2012-11-27 2017-09-27 日東電工株式会社 光電気混載基板およびその製法
JP6114127B2 (ja) 2013-07-05 2017-04-12 株式会社Nttドコモ 通信端末、文字表示方法、プログラム
EP3120173A1 (en) * 2014-03-19 2017-01-25 3M Innovative Properties Company Optical connector
JP6460515B2 (ja) * 2014-10-24 2019-01-30 日東電工株式会社 光電気混載基板およびその製法
JP6547308B2 (ja) 2015-01-29 2019-07-24 住友ベークライト株式会社 光配線部品、端面保護部材付き光配線部品および電子機器
JP2017090838A (ja) 2015-11-17 2017-05-25 住友ベークライト株式会社 光配線部品、光コネクターおよび電子機器
JP6842633B2 (ja) 2016-04-12 2021-03-17 日東電工株式会社 光導波路用コネクタ部材およびそれを用いた光コネクタキット、並びにそれによって得られる光配線
US20190219777A1 (en) * 2016-08-31 2019-07-18 Sumitomo Electric Industries, Ltd. Optical connection structure
JP6834406B2 (ja) 2016-11-28 2021-02-24 住友ベークライト株式会社 光配線部品、光配線部品の接続方法および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298748A1 (en) * 2007-05-31 2008-12-04 Terry Dean Cox Direct-connect optical splitter module
JP2013228622A (ja) * 2012-04-26 2013-11-07 Fujitsu Ltd 光導波路コネクタの製造方法、光導波路の作製方法及び光導波路コネクタ
JP2014029445A (ja) * 2012-07-31 2014-02-13 Sumitomo Bakelite Co Ltd 光配線部品および光配線部品の製造方法
JP2014106409A (ja) * 2012-11-28 2014-06-09 International Business Maschines Corporation 複数積層の光導波路コネクタ
US20160377817A1 (en) * 2015-06-24 2016-12-29 International Business Machines Corporation Single-mode polymer waveguide connector

Also Published As

Publication number Publication date
US20210294043A1 (en) 2021-09-23
TW202011064A (zh) 2020-03-16
JP2020016751A (ja) 2020-01-30
US11536909B2 (en) 2022-12-27
JP7258486B2 (ja) 2023-04-17
KR20210035186A (ko) 2021-03-31
CN112513704A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US8041159B2 (en) Optical/electrical hybrid substrate and method of manufacturing the same
US9983372B2 (en) Optical device, printed circuit board
JP2011095295A (ja) 光モジュールの光ファイバブロックおよびその製造方法
US7801399B2 (en) Method of forming optical waveguide
JP2006065163A (ja) 光導波路装置
WO2014196251A1 (ja) 光電気混載モジュール
US20130037209A1 (en) Optical fiber connection method and optical fiber connecting device
WO2020022428A1 (ja) 光導波路部材コネクタおよびその製造方法
JP2019032459A (ja) フェルール及びフェルールの製造方法
JP6602687B2 (ja) 光電気混載デバイス
JP2008109048A (ja) 光半導体装置及び光伝送装置
JP2009122162A (ja) 光基板の製造方法及び光基板、光集積回路、光インターコネクタ、光合分波器
JP4962265B2 (ja) 光導波路製造方法
US10444446B2 (en) Optical module
JP2010060821A (ja) フレキシブル光電気配線及びその製造方法
US20160178863A1 (en) Opto-electric hybrid module
US20190219759A1 (en) Optical waveguide
JP2020020930A (ja) 光モジュール
JP3107155B2 (ja) 半導体レーザモジュール
JP2007004101A (ja) 光モジュール
WO2022107762A1 (ja) 光学接続構造
JP2019174541A (ja) 光モジュール
US20220291463A1 (en) Opto-electric composite transmission module
TWI781162B (zh) 光電混合基板、連接器組及其製造方法
JP2011095599A (ja) 光結合構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840200

Country of ref document: EP

Kind code of ref document: A1