WO2020012800A1 - Odor sensor and method for manufacturing odor sensor - Google Patents
Odor sensor and method for manufacturing odor sensor Download PDFInfo
- Publication number
- WO2020012800A1 WO2020012800A1 PCT/JP2019/020959 JP2019020959W WO2020012800A1 WO 2020012800 A1 WO2020012800 A1 WO 2020012800A1 JP 2019020959 W JP2019020959 W JP 2019020959W WO 2020012800 A1 WO2020012800 A1 WO 2020012800A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference electrode
- film
- substance adsorption
- electrode
- opening
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000000126 substance Substances 0.000 claims abstract description 187
- 238000001179 sorption measurement Methods 0.000 claims abstract description 166
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 238000002161 passivation Methods 0.000 claims description 73
- 239000003205 fragrance Substances 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 abstract description 46
- 239000010408 film Substances 0.000 description 270
- 238000001514 detection method Methods 0.000 description 63
- 230000035945 sensitivity Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 20
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 239000002184 metal Substances 0.000 description 13
- 238000012546 transfer Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229920000767 polyaniline Polymers 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4141—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0011—Sample conditioning
- G01N33/0019—Sample conditioning by preconcentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0031—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
Definitions
- the present disclosure relates to an odor sensor and a method for manufacturing the odor sensor.
- a sensor disclosed in Non-Patent Document 1 is known as an odor sensor having sensitivity to odor.
- a polyaniline sensitive film odorous substance adsorption film
- Si 3 N 4 ion sensitive film
- a mesh electrode is provided on the surface of the polyaniline sensitive film in order to achieve both application of a predetermined reference voltage (Vgate) to the polyaniline sensitive film and exposure of gas to the polyaniline sensitive film (that is, adsorption of an odorant). Is provided.
- Vgate predetermined reference voltage
- Non-Patent Document 1 a mesh electrode is also provided on the sensing unit. For this reason, there is a problem that the odor cannot be appropriately detected in the sensing unit (pixel) immediately below the mesh electrode.
- One aspect of the present disclosure is to provide an odor sensor capable of suitably detecting an odor and a method for manufacturing the odor sensor.
- An odor sensor includes: an ion sensor including at least one sensing unit provided on a substrate, the sensing unit provided with a sensitive film that changes an electric potential according to a state of an object to be measured; A substance adsorption film as a measurement object, which changes its state by adsorbing an odor substance, and a reference electrode for applying a reference voltage to the substance adsorption film.
- the reference electrode is arranged so as to be separated from the sensitive film and not to overlap with the sensing unit when viewed from the thickness direction of the substrate.
- the odor can be detected based on a potential change of the sensitive film according to a change in the state of the substance adsorption film when the substance adsorption film adsorbs the odor substance.
- a reference voltage to the substance adsorption film.
- the odor substance in this configuration, it is difficult for the odor substance to be adsorbed to a portion immediately below the electrode of the substance adsorption film (a portion hidden by the electrode and not exposed to the outside), so that the odor cannot be appropriately detected by the sensing unit immediately below the electrode. There's a problem.
- the reference electrode for applying the reference voltage to the substance adsorption film is separated from the sensitive film and is arranged so as not to overlap with the sensing part when viewed from the thickness direction of the substrate. This solves the problem of arranging the mesh electrodes as described above. Therefore, according to the above-mentioned odor sensor, it is possible to suitably detect the odor.
- the odor sensor further includes a passivation layer provided so as to cover the ion sensor, the substance adsorption film is provided so as to cover the passivation layer, and the sensitive film has a first opening provided in the passivation layer.
- the reference electrode is provided between the substance adsorption film and the substrate, and is in contact with the substance adsorption film through the second opening provided in the passivation layer. Good.
- the reference electrode can be easily formed by disposing the metal wiring using, for example, a CMOS process. . This makes it possible to create a reference electrode with high reproducibility. Further, since the reference electrode can be formed in the CMOS process, it is possible to suppress the generation of extra steps for forming the reference electrode. Further, it is possible to easily supply a voltage to the reference electrode via a pad built in the ion sensor.
- the odor sensor further includes a passivation layer provided so as to cover the ion sensor, the substance adsorption film is provided so as to cover the passivation layer, and the sensitive film is provided through an opening provided in the passivation layer.
- the reference electrode is in contact with the substance adsorption film, and may be disposed at an outer edge of the sensing unit when viewed from the thickness direction of the substrate, and may include a portion exposed inside the opening and in contact with the substance adsorption film. . In this case, it is possible to suitably apply the reference voltage to the substance adsorption film inside the opening provided on the sensing unit.
- the reference electrode may be provided at least on the surface of the substance adsorption film opposite to the substrate.
- the electrode provided on the outer surface (surface opposite to the substrate) of the substance adsorption film together with the built-in electrode as described above is provided as a reference electrode, the contact between the substance adsorption film and the reference electrode is made. By increasing the area, the reference voltage can be more reliably and stably applied to the substance adsorption film.
- the reference electrode may be provided only on the outer surface of the substance-adsorbing film. In this case, processing such as creation of the built-in electrode and formation of the opening (second opening) of the passivation layer as described above can be omitted. .
- the arrangement pitch of the sensing units on the substrate can be reduced by the amount by which the built-in electrodes can be omitted.
- the size of the odor sensor can be reduced.
- the spatial resolution can be improved.
- the ion sensor may have a plurality of sensing units arranged one-dimensionally or two-dimensionally on a substrate, and one substance adsorption film may be arranged on sensitive films of two or more sensing units.
- a plurality of sensing units can correspond to one substance adsorption film.
- the ion sensor may include a plurality of sensing units arranged one-dimensionally or two-dimensionally on a substrate, and a plurality of substance adsorption films may be arranged on sensitive films of different sensing units.
- a complex odor pattern is detected based on an output value of a sensing unit corresponding to each substance adsorption film by providing a plurality of substance adsorption films respectively reacting with different odor substances on one ion sensor. It is possible to do.
- a plurality of ion sensors provided with different substance adsorption films may be used, but in this case, measurement may need to be performed in consideration of individual differences (variations in sensitivity) between the ion sensors.
- the overall device scale increases.
- the configuration in which a plurality of substance adsorption films are arranged on one ion sensor as described above such a problem can be solved.
- the sensing unit corresponding to another substance adsorption film may be used. There is an effect that the measurement can be continued based on the output value.
- the ion sensor has a plurality of sensing units arranged one-dimensionally or two-dimensionally on a substrate, and the reference electrode has a distance between the sensitive film and the reference electrode of each of the plurality of sensing units substantially equal to each other. It may be arranged so that it becomes. From the findings of the present inventors, it has been confirmed that the sensitivity of the sensing unit can be affected by the distance between the sensitive film of the sensing unit and the reference electrode. Therefore, by arranging the reference electrodes such that the distance between the sensitive film of each sensing unit and the reference electrode is substantially the same as described above, the sensitivity of each sensing unit can be made uniform.
- a method for manufacturing an odor sensor includes a step of preparing an ion sensor having a sensing unit provided on a substrate provided with a sensitive film that changes an electric potential according to a state of a measurement target, A step in which a substance adsorption film as a measurement object that changes state by adsorbing an odorant is disposed on the sensitive film, and a reference electrode that applies a reference voltage to the substance adsorption film is separated from the sensitive film, Arranging the sensing unit so as not to overlap with the sensing unit when viewed from the thickness direction of the substrate.
- the substance adsorption film may be provided so as to cover the sensitive film and the reference electrode after the reference electrode is disposed.
- an odor sensor having a structure in which the reference electrode is built inside the substance adsorption film is obtained.
- the above manufacturing method includes a step of forming a passivation layer on the ion sensor so as to cover the reference electrode after the reference electrode is disposed, and a step of forming the first opening in the passivation layer to expose at least a part of the sensitive film to the outside. Forming a second opening for exposing at least a part of the reference electrode to the outside.
- the substance adsorption film is provided so as to cover the passivation layer after the first opening and the second opening are formed, contacts the sensitive film through the first opening, and connects to the reference electrode through the second opening. May contact. In this case, even when the reference electrode and the sensing unit are disposed at relatively distant positions when viewed from the thickness direction, a configuration capable of applying a reference voltage to the substance adsorption film disposed on the sensitive film is provided. realizable.
- the above manufacturing method includes a step of forming a passivation layer on the ion sensor so as to cover the reference electrode after the reference electrode is disposed at an outer edge of the sensing unit as viewed from the thickness direction of the substrate. Forming an opening exposing at least a part of the film and at least a part of the reference electrode to the outside. Further, the substance adsorption film may be provided so as to cover the passivation layer after the opening is formed, and may be in contact with the sensitive film and the reference electrode in the opening. In this case, by arranging the reference electrode at the outer edge of the sensing unit viewed from the thickness direction, an opening common to the reference electrode and the sensitive film is formed, so that the reference voltage is applied to the substance adsorption film arranged on the sensitive film. Can be realized.
- At least a part of the reference electrode may be provided so as to cover a part of the substance adsorption film after the substance adsorption film is disposed.
- an odor sensor having a structure in which at least a part of the reference electrode is arranged outside the substance adsorption film is obtained.
- an odor sensor capable of suitably detecting an odor and a method for manufacturing the odor sensor can be provided.
- FIG. 1 is a schematic plan view of the odor sensor according to the first embodiment.
- FIG. 2 is a diagram schematically illustrating a cross-sectional configuration of the detection unit.
- FIG. 3 is a diagram illustrating an example of the operation of the detection unit.
- FIG. 4 is a diagram illustrating another example of the operation of the detection unit.
- FIG. 5 is a diagram illustrating a measurement result of the odor sensor of the comparative example and a measurement result of the odor sensor of the example.
- FIG. 6 is a diagram illustrating an example of the arrangement configuration of the reference electrodes.
- FIG. 7 is a diagram schematically illustrating a cross-sectional configuration of a detection unit including a first modification of the reference electrode.
- FIG. 1 is a schematic plan view of the odor sensor according to the first embodiment.
- FIG. 2 is a diagram schematically illustrating a cross-sectional configuration of the detection unit.
- FIG. 3 is a diagram illustrating an example of the operation of the detection unit.
- FIG. 8 is a diagram schematically illustrating a cross-sectional configuration of a detection unit including a second modification of the reference electrode.
- FIG. 9 is a diagram illustrating a layout example of a detection unit including a third modification of the reference electrode.
- FIG. 10 is a diagram schematically illustrating a cross-sectional configuration of a main part of a detection unit including a third modification of the reference electrode.
- FIG. 11 is a diagram schematically illustrating a cross-sectional configuration of a detection unit of the odor sensor according to the second embodiment.
- FIG. 12 is a diagram illustrating a third example of the operation of the detection unit 5A illustrated in FIG.
- FIG. 1 is a schematic plan view of the odor sensor 1 according to the first embodiment.
- the odor sensor 1 includes an ion sensor 2, a plurality of (five in this case) substance adsorption films 3 provided on the ion sensor 2, and a reference voltage Vref (reference) And a reference electrode 4 for applying a voltage.
- the ion sensor 2 is a sensor in which a plurality of detectors 5 arranged two-dimensionally are formed on a semiconductor substrate 100.
- the ion sensor 2 is a so-called charge transfer type CMOS image sensor.
- the plurality of detectors 5 are arranged in a pixel formation region A (in the present embodiment, a rectangular region provided in the center of the chip) provided on the chip of the ion sensor 2 in M rows and N columns (for example, 256 rows and 256 columns).
- the pixels are arranged two-dimensionally in (rows) to form a pixel array.
- M and N are integers of 2 or more.
- One detection unit 5 corresponds to one detection unit (pixel).
- the size (pixel size) of one detection unit 5 is, for example, 30 ⁇ m ⁇ 30 ⁇ m.
- Each substance adsorption film 3 is disposed (formed) so as to straddle the plurality of detection units 5 in the pixel formation region A.
- the substance adsorption film 3 is a thin film that changes a state (for example, electrical characteristics such as impedance) by adsorbing a predetermined odor substance.
- the “smell” stimulates the sense of smell of an organism such as a human or an animal
- the “smell substance” refers to a chemical substance that causes an odor (for example, when a specific molecule alone or a specific molecule group is a predetermined molecule).
- a polyaniline sensitive film or the like can be used as the substance adsorption film 3.
- the detection unit 5 provided with the substance adsorption film 3 among the detection units 5 arranged in the pixel formation region A functions as a unit detection element capable of detecting an odor.
- the substance adsorption film 3 may be provided on the entire pixel formation region A (that is, all the detection units 5 arranged in the pixel formation region A) or on the detection unit 5 where the substance adsorption film 3 is not provided. May be present.
- FIG. 1 schematically shows an example of a layout common to the detection units 5.
- FIG. 2 is a diagram schematically illustrating a cross-sectional configuration of the detection unit 5 along the line II-II in FIG.
- each detection unit 5 is formed on one main surface side of the semiconductor substrate 100 (substrate).
- the semiconductor substrate 100 is a semiconductor substrate of the first conductivity type (for example, n-type) formed of, for example, silicon.
- an injection diode section 21 (hereinafter, “ID section 21”), a floating diffusion section 31 (hereinafter, “FD section 31”), which is a first conductivity type region, And a reset drain section 41 (hereinafter, referred to as an “RD section 41”).
- the diffusion layer 11 of the second conductivity type (for example, p-type) is formed between the ID part 21 and the FD part 31 of the semiconductor substrate 100.
- a first conductivity type region 12 doped with the first conductivity type is formed on the surface of the diffusion layer 11.
- an input control gate electrode 22 (hereinafter, “ICG electrode 22”), a transfer gate electrode 32 (hereinafter, “TG electrode 32”), and a reset gate are provided via an insulating protective film 110.
- An electrode 42 (hereinafter, “RG electrode 42”) is formed.
- the protective film 110 for example, SiO 2 or the like can be used.
- an amplifier (signal amplifier) 33 for amplifying an out signal corresponding to the amount of charge accumulated in the FD unit 31, and a measuring unit (not shown) for amplifying the out signal amplified by the amplifier 33
- an output circuit 34 for outputting the data to
- the sensitive film 13 is provided via the protective film 110.
- the sensitive film 13 is an ion-sensitive film having a property of changing a potential (membrane potential) according to a state of a measurement target arranged on the sensitive film 13.
- the substance adsorption film 3 is a measurement target.
- the sensitive film 13 for example, Si 3 N 4 or the like can be used.
- the sensitive film 13 covers a part of the ICG electrode 22 and the TG electrode 32 so that the ICG electrode 22 and the TG electrode 32 do not come into contact with the substance adsorption film 3. Is formed.
- the sensitive film 13 may be provided only between the ICG electrode 22 and the TG electrode 32, or may be formed so as not to cover a part of the ICG electrode 22 and the TG electrode 32. That is, the sensitive film 13 may be formed only on the protective film 110 between the ICG electrode 22 and the TG electrode 32.
- An insulating passivation layer 120 is formed on the main surface of the semiconductor substrate 100 so as to cover the members provided on the main surface of the semiconductor substrate 100.
- As the passivation layer 120 for example, Si 3 N 4 or the like can be used.
- the substance adsorption film 3 is provided so as to cover the passivation layer 120.
- An opening 120a (first opening) for exposing the upper surface of the sensitive film 13 to the outside is formed in the passivation layer 120.
- the sensitive film 13 is in contact with the substance adsorption film 3 via the opening 120a.
- the reference electrode 4 is provided inside the substance adsorption film 3 (that is, between the substance adsorption film 3 and the semiconductor substrate 100). As shown in FIGS. 1 and 2, the reference electrode 4 is arranged so as to be separated from the sensitive film 13 and not overlap the sensitive film 13 when viewed from the thickness direction D of the semiconductor substrate 100.
- the reference electrode 4 is, for example, a metal wiring formed by a CMOS process.
- the reference electrode 4 in each detection unit 5, when viewed from the thickness direction D, the reference electrode 4 includes a sensing unit 10 (described in detail later, the sensitive film 13 between the ICG electrode 22 and the TG electrode 32). Is disposed at a position separated from the sensing unit 10 on one side (the left side in FIG. 1) of the region where the is provided.
- the reference electrode 4 is arranged so as not to physically contact the sensing unit 10 (mainly the sensitive film 13).
- the reference electrode 4 extends in the up-down direction in FIG. 1 so as to be parallel to one side surface of the sensing unit 10.
- the distance d1 between the sensing unit 10 and the reference electrode 4 as viewed from the thickness direction D is, for example, 3 ⁇ m.
- the width w1 of the reference electrode 4 (that is, the width of the metal wiring constituting the reference electrode 4) is, for example, 10.5 ⁇ m.
- the reference electrode 4 is provided, for example, on a second wiring layer that is farther from the main surface of the semiconductor substrate 100 than the first wiring layer.
- the first wiring layer is provided with, for example, a metal wiring (not shown) for supplying a voltage to the ICG electrode 22, the TG electrode 32, the RG electrode 42, and the like. That is, the reference electrode 4 is provided on the second wiring layer closer to the outer surface of the passivation layer 120 than the first wiring layer.
- the reference electrode 4 only needs to be formed of a material capable of applying a voltage in contact with the substance adsorption film 3.
- the reference electrode 4 for example, Al—Si—Cu or the like can be used.
- a reference voltage Vref is supplied to the reference electrode 4 from an electrode pad (not shown) of the ion sensor 2.
- An opening 120b (second opening) for exposing the upper surface of the reference electrode 4 to the outside is formed in the passivation layer 120.
- the reference electrode 4 is in contact with the substance adsorption film 3 via the opening 120a. Thereby, the reference voltage Vref is applied to the substance adsorption film 3 at the contact portion between the reference electrode 4 and the substance adsorption film 3. Note that, in the example of FIG.
- the upper surface of the reference electrode 4 is located at a position recessed toward the semiconductor substrate 100 from the upper surface of the passivation layer 120. Further, the opening width w2 of the opening 120b (the width of a portion exposed to the outside of the reference electrode 4) is smaller than the width w1 of the reference electrode 4. The opening width w2 is, for example, 8 ⁇ m. However, the reference electrode 4 may be provided so that the upper surface of the reference electrode 4 is continuous (partially connected) with a portion of the passivation layer 120 where the opening 120b is not formed. In this case, the width w1 of the reference electrode 4 matches the opening width w2.
- the depth of the opening 120a is larger than the depth of the opening 120b. That is, the sensitive film 13 is disposed at a position recessed toward the semiconductor substrate 100 from the reference electrode 4.
- the detection unit 5 includes a sensing unit 10, a supply unit 20, a movement / accumulation unit 30, and a removal unit 40.
- the electric charge is an electron.
- the sensing unit 10 is a region where the sensitive film 13 is exposed to the outside (that is, with respect to the substance adsorption film 3) through the opening 120a of the passivation layer 120. More specifically, the sensing unit 10 is a region where the sensitive film 13 faces the first conductivity type region 12 via the protective film 110 between the ICG electrode 22 and the TG electrode 32. That is, the sensing unit 10 is a sensing region configured by stacking the above-described diffusion layer 11, the first conductivity type region 12, the protective film 110, and the sensitive film 13.
- the state for example, impedance
- a potential change occurs in the sensitive film 13 according to the change in the state. According to the potential change of the sensitive film 13, the depth of the potential well 14 of the diffusion layer 11 facing the sensitive film 13 changes.
- the supply unit 20 includes the ID unit 21 and the ICG electrode 22 described above.
- the ID part 21 is a part for injecting charges into the potential well 14.
- the ICG electrode 22 is a part that controls the amount of charge injected from the ID part 21 to the potential well 14. For example, by lowering the potential (potential) of the ID portion 21 and adjusting the voltage of the ICG electrode 22, the charges charged to the ID portion 21 can be supplied to the potential well 14.
- the moving / accumulating unit 30 includes the TG electrode 32 and the FD unit 31.
- the TG electrode 32 is a portion for transferring charges from the potential well 14 to the FD section 31.
- the FD section 31 is a section that accumulates charges transferred from the potential well 14. Specifically, by changing the voltage of the TG electrode 32, the potential of a region (hereinafter, referred to as a “TG region”) of the semiconductor substrate 100 facing the TG electrode 32 is changed, and the charge filled in the potential well 14 is changed to FD. It can be transferred and stored in the unit 31.
- the removing unit 40 is configured by the RG electrode 42 and the RD unit 41.
- the removing section 40 is a section for resetting (removing) the electric charge accumulated in the FD section 31. Specifically, by changing the voltage of the RG electrode 42, the potential of a region (hereinafter, referred to as an “RG region”) of the semiconductor substrate 100 facing the RG electrode 42 is changed, and the charge accumulated in the FD portion 31 is changed to RD. It can be discharged to the section 41 (VDD).
- FIG. 3 is a diagram illustrating an example of a basic operation of the detection unit 5.
- the state for example, impedance
- the potential of the sensitive film 13 located immediately below the portion is changed.
- a change occurs, and the depth of the potential well 14 changes according to the change in the potential.
- the potential of the ID section 21 is lowered, so that the ID section 21 is charged with electric charge.
- the charge charged in the ID section 21 is injected into the potential well 14 beyond a region (hereinafter, referred to as an “ICG region”) of the semiconductor substrate 100 facing the ICG electrode 22.
- the potential of the TG region is controlled so as to be lower than the potential of the ID section 21. Therefore, the electric charge injected into the potential well 14 does not reach the FD portion 31 beyond the TG region.
- the potential of the ID portion 21 is restored (pulled up), so that electric charges are extracted from the ID portion 21.
- the electric charge that has been cut off by the ICG region remains in the potential well 14.
- the amount of charge remaining in the potential well 14 corresponds to the depth of the potential well 14 (that is, a change in impedance of the substance adsorption film 3).
- the charge stored in the FD section 31 is discharged to the RD section 41 by increasing the voltage of the RG electrode 42.
- the RD section 41 is connected to a VDD power supply. As a result, the RD section 41 absorbs the negatively charged electric charge.
- the method of injecting charges into the potential well 14 is not limited to the example of FIG. 3 described above.
- the potential of the ID section 21 by setting the potential of the ID section 21 constant and adjusting the voltage of the ICG electrode 22, charges having the same potential as the ID section 21 may be injected into the potential well 14.
- the potential of the ID portion 21 is set to a constant value lower than the potential of the potential well 14 and higher than the potential of the TG region.
- the potential of the ICG area is made lower than the potential of the ID section 21.
- FIG. 4B by setting the potential of the ICG region higher than the potential of the potential well 14, charges are supplied from the ID portion 21 to the potential well 14.
- the ion sensor 2 having the sensing unit 10 provided with the sensitive film 13 formed on the semiconductor substrate 100 is prepared.
- the reference electrode 4 is arranged so as to be separated from the sensitive film 13 and not to overlap with the sensing unit 10 when viewed from the thickness direction D.
- a passivation layer 120 is formed on the ion sensor 2 (that is, on the main surface of the semiconductor substrate 100). Note that the passivation layer 120 may be formed in a plurality of steps in stages.
- the reference electrode 4 is disposed on the first passivation layer, and then the second passivation layer covering the reference electrode 4 is formed.
- the passivation layer 120 may be formed by forming the passivation layer.
- the passivation layer 120 is formed on the ion sensor 2 so as to cover the reference electrode 4.
- at least a part of the reference electrode 4 in the present embodiment, an opening 120a for exposing at least a part of the sensitive film 13 (a part of the upper surface of the sensitive film 13 in the present embodiment) to the outside).
- An opening 120b exposing a part of the upper surface of the reference electrode 4 to the outside is formed by etching or the like.
- the substance adsorption film 3 is disposed on the sensitive film 13. More specifically, the substance adsorption film 3 is provided so as to cover the passivation layer 120, and contacts the sensitive film 13 through the opening 120a and contacts the reference electrode 4 through the opening 120b. As described above, in the above manufacturing method, the substance adsorption film 3 is provided so as to cover the sensitive film 13 and the reference electrode 4 after the reference electrode 4 is disposed.
- the odor sensor 1 including the plurality of detection units 5 having the structure shown in FIG.
- the opening 120b By forming the opening 120b, a configuration capable of applying the reference voltage Vref to the substance adsorption film 3 disposed on the sensitive film 13 can be realized.
- the odor is detected based on a change in the potential of the sensitive film 13 according to a change in the state of the substance adsorption film 3 (for example, a change in impedance) when the substance adsorption film 3 adsorbs the odor substance. Can be detected.
- a change in the potential of the sensitive film 13 for example, a change in the state of the substance adsorption film 3 (for example, a change in impedance) when the substance adsorption film 3 adsorbs the odor substance.
- Vref the reference voltage
- an electrode for example, a mesh electrode
- the upper surface of the substance adsorption film 3 including a portion overlapping the sensing unit 10 when viewed in the thickness direction D.
- FIG. 5A See FIG. 5A
- the reference electrode 4 for applying the reference voltage Vref to the substance adsorption film 3 is arranged so as to be separated from the sensitive film 13 and not to overlap with the sensing unit 10 when viewed from the thickness direction D. I have. This solves the problem when using the mesh electrode as described above.
- the odor sensor 1 when the sensitivity to odor is caused by a change in impedance of the substance adsorption film 3, if the sensitive film 13 and the reference electrode 4 are too close, the sensitivity to odor is likely to be lost.
- the reference electrode 4 is separated from the sensitive film 13 and is arranged so as not to overlap with the sensing unit 10 when viewed from the thickness direction D, so that the sensitive film 13 and the reference electrode 4 come closer to each other. Can be prevented from being too long. As a result, it is possible to prevent the sensitive film 13 from being unable to properly detect an odor due to the sensitive film 13 being too close to the reference electrode 4. Therefore, according to the odor sensor 1, it is possible to preferably detect the odor.
- the reference electrode 4 is arranged so as to face the ICG electrode 22 or the TG electrode 32, the voltage is pulsed before and after the transfer of the electric charge to the ICG electrode 22 or the TG electrode 32 (especially, the FD section 31).
- the potential (Vref) of the reference electrode 4 may be disturbed by the changed TG electrode 32).
- the reference electrode 4 is arranged so as not to overlap with either the ICG electrode 22 or the TG electrode 32 when viewed from the thickness direction D. Thereby, the occurrence of the above-described problem can be suppressed.
- the substance adsorption film 3 is provided so as to cover the passivation layer 120.
- the sensitive film 13 is in contact with the substance adsorption film 3 through an opening 120a provided in the passivation layer 120.
- the reference electrode 4 is provided between the substance adsorption film 3 and the semiconductor substrate 100, and comes into contact with the substance adsorption film 3 that has entered the opening 120b through an opening 120b provided in the passivation layer 120. I have.
- the reference electrode 4 can be easily formed by disposing the metal wiring using, for example, a CMOS process. It becomes possible. This makes it possible to create the reference electrode 4 with high reproducibility.
- the reference electrode 4 can be formed in the CMOS process, it is possible to suppress the generation of extra steps for forming the reference electrode 4. Further, it is possible to easily supply a voltage to the reference electrode 4 through an electrode pad (not shown) built in the ion sensor 2.
- the ion sensor 2 has a plurality of sensing units 10 (detection units 5) two-dimensionally arranged on the semiconductor substrate 100.
- One substance adsorption film 3 is arranged on two or more sensing units 10. That is, one substance adsorption film 3 is arranged so as to straddle a plurality of unit detection elements (pixels).
- a plurality of sensing units 10 can correspond to one substance adsorption film 3.
- the statistical value for example, the average value
- the output values (out signals) of the plurality of sensing units 10 the variation in the sensitivity in the measurement can be reduced.
- the other sensing units 10 that is, other detection units 5 are not used.
- the measurement (odor detection) using the substance adsorption film 3 can be performed.
- imaging measurement (measurement of two-dimensional distribution of odor) can be performed based on output values of the plurality of sensing units 10. Accordingly, for example, it is possible to find out the source of the odor in the sample by grasping the diffusion direction of the odor and arranging the sample near the odor sensor 1.
- a plurality of substance adsorption films 3 are arranged on different sensing units 10 (detection units 5). That is, a plurality (five in the present embodiment) of the substance adsorption films 3 are formed independently on one ion sensor 2 (that is, one sensor chip). For example, by providing a plurality of substance adsorbing films 3 (that is, a plurality of substance adsorbing films having different characteristics) reacting to different odor substances on one ion sensor 2, a sensing unit corresponding to each substance adsorbing film 3 is provided. Complex odor patterns can be detected based on the ten output values (out signals).
- a plurality of ion sensors provided with different substance adsorption films 3 may be used, but in this case, measurement may need to be performed in consideration of individual differences (variations in sensitivity) between the ion sensors. In addition, as the number of required ion sensors increases, the overall device scale increases. On the other hand, according to the configuration in which the plurality of substance adsorption films 3 are arranged on one ion sensor 2 as described above, such a problem can be solved. Further, even when a plurality of the same kind of substance adsorption films 3 are provided on one ion sensor 2, when some of the substance adsorption films 3 do not function properly in the ion sensor 2, the other substance adsorption films 3 are not provided. There is an effect that the measurement can be continued based on the output value of the corresponding sensing unit 10.
- the plurality of substance adsorption films 3 provided on one ion sensor 2 may be a plurality of substance adsorption films having the same material (polyaniline in the present embodiment) having different component amounts (contents).
- a plurality of substance adsorption films formed of different materials may be used.
- the plurality of substance adsorbing films are referred to by referring to the table information. It becomes possible to specify the odor substance corresponding to the combination of the respective measurement results of No. 3.
- the reference electrode 4 is arranged such that the distance between the sensitive film 13 of each of the plurality of sensing units 10 and the reference electrode 4 is substantially the same.
- the reference electrode 4 is arranged such that the distance d1 between the sensing unit 10 and the reference electrode 4 when viewed from the thickness direction D is constant (for example, 3 ⁇ m). ing. Thereby, the sensitivity of each sensing unit 10 can be made uniform.
- FIG. 5A is a diagram showing the measurement result (sensitivity) of each pixel (each sensing unit) when the odor sensor according to the comparative example (hereinafter simply referred to as “comparative example”) is exposed to ammonia gas, by shading. is there.
- FIG. 5B is a diagram in which the measurement results (sensitivity) of each pixel (each sensing unit) when the odor sensor according to the example (hereinafter simply referred to as “example”) is exposed to ammonia gas are represented by shading. is there.
- the comparative example is an odor sensor in which the mesh electrode ME is arranged on the substance adsorption film 3 as in the structure described in Non-Patent Document 1.
- the embodiment is an odor sensor that employs a built-in electrode (reference electrode 4) as in the odor sensor 1 described above.
- a high-sensitivity region p1 of the lightest color (color close to white) and a low-sensitivity region p2 of close to black correspond to a region corresponding to the sensing unit exhibiting sensitivity equal to or higher than a certain level (that is, the smell of ammonia gas is detected Area).
- the high-sensitivity area p1 is an area that has a higher sensitivity than the low-sensitivity area p2.
- the dead area p3 represented by a slightly darker color than the high-sensitivity area p1 is an area corresponding to a sensing unit (dead pixel) that does not exhibit sensitivity.
- the dead area p3 was formed in a mesh shape.
- a mesh-shaped dead area p3 is an area corresponding to a portion covered by the mesh electrode ME. Since the odor substance is not adsorbed on the portion of the substance adsorption film 3 covered with the mesh electrode ME, it is considered that such a mesh-shaped insensitive region p3 was formed. On the other hand, in the region corresponding to the portion not covered by the mesh electrode ME, sensitivity regarding odor was obtained.
- the low-sensitivity region p2 is formed in a portion far from the mesh electrode ME (the center of the region surrounded by the mesh electrode ME on all sides), and a portion relatively close to the mesh electrode ME (on all sides is surrounded by the mesh electrode ME).
- a high sensitivity region p1 was formed at the edge of the region). That is, it has been confirmed that a sensitivity difference occurs between the sensing unit arranged relatively close to the mesh electrode ME and the sensing unit arranged relatively far from the mesh electrode ME.
- FIG. 5B no mesh electrode is provided, and the distance between the sensitive film 13 of each sensing unit 10 and the reference electrode 4 is substantially the same.
- a substantially uniform high-sensitivity region p1 was formed. From such measurement results, the effect of arranging the sensing films 13 of the plurality of sensing units 10 and the reference electrode 4 such that the distances between the sensing films 13 and the reference electrode 4 are substantially the same was confirmed.
- the detection units 5 of the layout shown in the right part of FIG. 2), a pair of reference electrodes 4 extending in parallel with each other when viewed from the thickness direction D are arranged so as to sandwich both sides of one sensing unit 10. Further, the distance d2 between the sensing unit 10 of the one detection unit 5 and the reference electrode 4 disposed so as to pass over the detection unit 5 on the right of the one detection unit 5 is substantially equal to the distance d1. Has been adjusted.
- the layout of the reference electrode 4 is not limited to the above example.
- the reference electrode 4 may be arranged so as to surround four sides of the sensing unit 10 of each detection unit 5 when viewed from the thickness direction D.
- a common reference electrode 4 (for example, an electrode formed in a rectangular shape when viewed from the thickness direction D) may be arranged.
- the positional relationship between the sensitive film 13 of each sensing unit 10 (each pixel) and the reference electrode 4 is shared.
- the distance between the sensitive film 13 of each sensing unit 10 and the reference electrode 4 close to the sensitive film 13 can be made substantially the same.
- the sensitivity of each sensing unit 10 can be made uniform.
- the reference electrode 4 is connected to each sensing unit 10 (pixel). Each time), the positional relationship (distance) between the sensitive film 13 and the reference electrode 4 may be different.
- FIG. 7 is a diagram schematically illustrating a cross-sectional configuration of the detection unit 5 including the reference electrode 200 according to the first modification.
- the reference electrode 200 of the first modified example has a second electrode 202 and a third electrode 203 in addition to the first electrode 201 configured similarly to the above-described reference electrode 4.
- the second electrode 202 is provided on the outer surface 3a of the substance adsorption film 3 (that is, on the surface opposite to the semiconductor substrate 100).
- the second electrode 202 is an electrode member having a membrane structure (film shape) formed along the outer surface 3a of the substance adsorption film 3.
- the second electrode 202 is created using, for example, a MEMS process.
- the second electrode 202 has an opening 202a for exposing a portion of the substance adsorption film 3 corresponding to the sensing unit 10 to the outside.
- the opening 202a is provided so as to include the sensing unit 10, the ICG electrode 22, and the TG electrode 32 when viewed from the thickness direction D.
- the second electrode 202 is arranged so as not to overlap the sensing unit 10, the ICG electrode 22, and the TG electrode 32 when viewed from the thickness direction D.
- the second electrode 202 can be formed in a lattice shape so as to surround four sides of each sensing unit 10 when viewed from the thickness direction D.
- the third electrode 203 is an electrode member that electrically connects the first electrode 201 and the second electrode 202 via the opening 120b of the passivation layer 120 and supports the second electrode 202.
- the third electrode 203 is a wall-shaped member that is arranged at the center in the width direction of the first electrode 201 and extends along the first electrode 201.
- the third electrode 203 may be composed of one or more columnar members.
- Such an odor sensor including the reference electrode 200 is, for example, a step of forming the second electrode 202 and the third electrode 203 by a MEMS process or the like after performing the above-described method of manufacturing the odor sensor 1 including the reference electrode 4. Is obtained.
- the odor sensor including the reference electrode 200 at least a part of the reference electrode (here, the second electrode 202 and the third electrode 203) is disposed after the substance adsorption film 3 is disposed. Is provided so as to cover a part of. Thereby, an odor sensor having a structure in which at least a part of the reference electrode is arranged outside the substance adsorption film 3 is obtained.
- the reference voltage Vref can be more reliably and stably applied to the substance adsorption film 3 by increasing the contact area between the substance adsorption film 3 and the reference electrode. .
- FIG. 8 is a diagram schematically illustrating a cross-sectional configuration of the detection unit 5 including the reference electrode 300 according to the second modification.
- the reference electrode 300 of the second modified example has a first electrode 301 and a second electrode 302 configured similarly to the second electrode 202 and the third electrode 203 of the reference electrode 200.
- the built-in electrodes such as the reference electrode 4 and the first electrode 201 described above have not been formed in the CMOS process.
- the lower end of the second electrode 302 is disposed on the upper surface of the passivation layer 120.
- the first electrode 301 is electrically connected to an electrode pad P provided at an arbitrary position outside the pixel array in the ion sensor 2, so that the reference voltage Vref is applied from the electrode pad P. .
- the step of arranging the reference electrode 4 and the step of forming the opening 120b are omitted, while the first electrode 301 is omitted.
- a step of forming the second electrode 302 by a MEMS process or the like is, in the method of manufacturing an odor sensor including the reference electrode 300, at least a part of the reference electrode (here, the first electrode 301 and the second electrode 302) is disposed after the material adsorption film 3 is disposed. Is provided so as to cover a part of. Thereby, an odor sensor having a structure in which at least a part of the reference electrode is arranged outside the substance adsorption film 3 is obtained.
- the reference electrode 300 of the second modification in the CMOS process, processes such as creation of the built-in electrodes such as the reference electrode 4 and the first electrode 201 and formation of the opening 120b can be omitted.
- the arrangement pitch of the sensing units 10 (detection units 5) on the semiconductor substrate 100 can be reduced by the amount by which the built-in electrodes can be omitted.
- the size of the odor sensor 1 can be reduced.
- the spatial resolution can be improved.
- FIG. 9 is a diagram illustrating a layout example of the detection unit 5 including the reference electrode 400 according to the third modification.
- the reference electrode 400 is disposed at the outer edge (outer peripheral portion) of the sensing unit 10 when viewed from the thickness direction D.
- a reference electrode 400 metal wiring formed in an annular shape so as to surround the sensing unit 10 is provided.
- FIG. 10 is a diagram schematically illustrating a cross-sectional configuration of a main part of the detection unit 5 including the reference electrode 400 (a peripheral portion of the sensing unit 10).
- an opening 121 is formed in the passivation layer 120 so as to include the sensing unit 10 when viewed from the thickness direction D.
- the sensitive film 13 is in contact with the substance adsorption film 3 that has entered the opening 121 via the opening 121.
- the opening 121 includes a first opening 121a and a second opening 121b.
- the first opening 121a extends from the upper surface of the passivation layer 120 to the upper surface 400a of the reference electrode 400.
- the second opening 121b communicates with the first opening 121a and reaches the upper surface of the sensitive film 13 (the surface opposite to the semiconductor substrate 100).
- the reference electrode 400 includes a portion exposed inside the opening 121 and in contact with the substance adsorption film 3.
- a part of the upper surface 400 a and the inner side surface 400 b of the reference electrode 400 are exposed inside the opening 121 and are in contact with the substance adsorption film 3.
- a part of the upper surface 400a of the reference electrode 400 forms a part of a bottom surface of the first opening 121a.
- the inner surface 400b of the reference electrode 400 forms a part of the inner surface of the second opening 121b.
- the reference electrode 400 is provided on the same layer (for example, the first wiring layer described above) as the metal wiring E1 for applying a voltage to the ICG electrode 22 and the metal wiring E2 for applying a voltage to the TG electrode 32.
- a layer above the first wiring layer (for example, the second wiring layer on which the reference electrode 4 is provided in the above embodiment) ) Can be used as a layer for arranging a metal wiring for applying a voltage to the RD section 41 or the RG electrode 42 and the like.
- the degree of freedom in designing the metal wiring can be improved.
- arranging the metal wiring in the first wiring layer near the main surface of the semiconductor substrate 100 is more effective than arranging the metal wiring in the second wiring layer far from the main surface of the semiconductor substrate 100. It can be formed with high positional accuracy. Therefore, by disposing the reference electrode 400 in the first wiring layer, the positional accuracy of the reference electrode 400 can be improved. Further, by bringing the plurality of surfaces (upper surface 400a and inner side surface 400b) of reference electrode 400 into contact with substance adsorption film 3, substance adsorption film 3 and reference electrode 400 can be more reliably brought into contact.
- the ion sensor 2 having the sensing unit 10 provided with the sensitive film 13 formed on the semiconductor substrate 100 is prepared.
- the reference electrode 400 is arranged on the semiconductor substrate 100 (the ion sensor 2) so as to be separated from the sensitive film 13 at the outer edge of the sensing unit 10 as viewed in the thickness direction D.
- a passivation layer 120 that covers the semiconductor substrate 100 (ion sensor 2) and the reference electrode 400 is formed. Note that the passivation layer 120 may be formed in a plurality of steps in stages.
- a reference electrode 400 is provided on the first passivation layer, and then a second passivation layer covering the reference electrode 400 is formed.
- the passivation layer 120 may be formed by forming the passivation layer.
- the passivation layer 120 is formed on the ion sensor 2 so as to cover the reference electrode 4.
- the substance adsorption film 3 is formed from the reference electrode 400 to the sensitive film 13 at least inside the second opening 121b.
- the substance adsorption film 3 is provided so as to cover the passivation layer 120, and contacts the sensitive film 13 and the reference electrode 400 in the opening 121. That is, the reference electrode 400 (part of the upper surface 400a and the inner side surface 400b) and the sensitive film 13 provided in the sensing unit 10 are connected by a part of the substance adsorption film 3 that has entered the opening 121. That is, the substance adsorption film 3 is connected to at least the reference electrode 400 and the sensitive film 13 provided in the sensing unit 10.
- the substance adsorption film 3 is provided so as to cover the sensitive film 13 and the reference electrode 400 after the reference electrode 400 is disposed.
- an odor sensor including the plurality of detection units 5 having the structure shown in FIG. 10 that is, the structure in which the reference electrode 400 is embedded inside the substance adsorption film 3) is obtained.
- the reference electrode 400 is disposed at the outer edge of the sensing unit 10 as viewed in the thickness direction D, so that an opening 121 common to the reference electrode 400 and the sensitive film 13 is formed.
- a configuration capable of applying the reference voltage Vref to the disposed substance adsorption film 3 can be realized.
- the reference voltage Vref can be suitably applied to the substance adsorption film 3 inside the opening 121 provided on the sensing unit 10.
- the connection from the reference electrode to the sensitive film 13 via the substance adsorption film 3 is performed.
- a peak portion a portion going from the reference electrode to the upper surface of the passivation layer 120 via the another opening
- a valley portion a portion going from the upper surface of the passivation layer 120 to the sensitive film 13 via the opening 121). Will be included.
- the substance adsorption film 3 and the reference electrode 400 can be connected within the opening 121. That is, the above-described peaks and valleys are not included in the path from the reference electrode 400 to the sensitive film 13 via the substance adsorption film 3. Thereby, the occurrence of disconnection of the substance adsorption film 3 as described above can be suppressed.
- FIG. 11 is a diagram schematically illustrating a cross-sectional configuration of the detection unit 5A of the odor sensor according to the second embodiment.
- the odor sensor of the second embodiment is different from the odor sensor 1 of the first embodiment in that a so-called ISFET ion sensor 2A is provided instead of the ion sensor 2 which is a so-called charge transfer type CMOS image sensor. I have.
- Other configurations are the same as those of the odor sensor 1.
- the ion sensor 2A differs from the ion sensor 2 in that, as a unit detection element, a detection unit 5A adopting an ISFET measurement method is used instead of the detection unit 5 adopting a charge transfer measurement method. I have.
- n + -type regions 131 to 133 are formed on one main surface side of the semiconductor substrate 100. Further, two gate electrodes 134 and 135 are formed on the main surface of the semiconductor substrate 100 with the insulating protective film 110 interposed therebetween. Gate electrode 134 is located between n + -type region 131 and n + -type region 132.
- a MOS transistor includes the n + -type region 131, the n + -type region 132, and the gate electrode 134.
- An ID signal (voltage) is supplied to the n + type region 131 from a control unit (not shown).
- Gate electrode 135 is located between n + -type region 132 and n + -type region 133.
- the gate electrode 135 is supplied with a TG signal (voltage) from a control unit (not shown).
- the n + type region 133 is electrically connected to a measurement circuit (not shown).
- a conductive member 136 on which the sensitive film 13 is placed is electrically connected to the gate electrode 134 via a conductive connection member 137.
- the portion where the sensitive film 13 is provided on the conductive member 136 functions as the sensing unit 10A.
- the sensing part 10A is a region where the sensitive film 13 is exposed to the outside (that is, with respect to the substance adsorption film 3) through an opening 120a of the passivation layer 120 described later.
- the conductive member 136 has, for example, a rectangular shape substantially the same size as the sensitive film 13 when viewed from the thickness direction D.
- the sensitive film 13 is formed on the upper surface of the conductive member 136.
- an insulating passivation layer 120 is provided on the main surface of the semiconductor substrate 100 so as to cover the member provided on the main surface of the semiconductor substrate 100 as described above. Is formed. Further, the substance adsorption film 3 is provided so as to cover the passivation layer 120.
- the passivation layer 120 has an opening 120a for exposing the upper surface of the sensitive film 13 to the outside. The sensitive film 13 is in contact with the substance adsorption film 3 via the opening 120a.
- the reference electrode 4 is disposed so as not to overlap with the sensitive film 13 and the gate electrode 135 when viewed from the thickness direction D of the semiconductor substrate 100.
- the reference electrode 4 is in contact with the substance adsorption film 3 via an opening 120b provided in the passivation layer 120.
- the upper surface of the sensitive film 13 and the upper surface of the reference electrode 4 are located at positions recessed toward the semiconductor substrate 100 from the upper surface of the passivation layer 120. May be provided so that the upper surface of the sensitive film 13 or the reference electrode 4 is continuous with the portion of the passivation layer 120 where the openings 120a and 120b are not formed (to be connected flat).
- the operation principle of the detection unit 5A will be described. First, an outline of the operation principle will be described.
- the characteristic of the substance adsorption film 3 changes, and the membrane potential of the sensitive film 13 changes accordingly.
- the potential of the gate electrode 134 electrically connected to the sensitive film 13 changes.
- the odor detected in the substance adsorption film 3 (that is, the odor substance adsorbed by the substance adsorption film 3) is measured as a change in the current or voltage of a signal (out signal) corresponding to such a change in the potential of the gate electrode 134. Is done.
- the detected odor substance can be specified.
- first to third examples of the operation (driving method) of the detection unit 5A will be described. However, a method other than these examples may be used as a driving method of the detection unit 5A.
- the first example is a driving method generally adopted in ISFET.
- the first example is a driving method that focuses on the fact that the magnitude of the current flowing between the n + -type region 131 and the n + -type region 132 changes according to the change in the potential of the gate electrode 134 described above. That is, when the potential of the gate electrode 134 changes in accordance with the change in the characteristics of the substance adsorption film 3 described above, the magnitude of the current flowing between the n + -type region 131 and the n + -type region 132 changes.
- the gate electrode 135 is used as a switch, and the switch is turned on by changing a TG signal applied to the gate electrode 135.
- the state is switched to a state in which the charge of the n + type region 132 flows to the n + type region 133 via the region (hereinafter, “TG region”) facing the gate electrode 135.
- TG region the region facing the gate electrode 135.
- the current flowing between the n + -type region 131 and the n + -type region 132 is output as an out signal via the TG region and the n + -type region 133.
- the out signal is converted into a voltage in a measuring unit (not shown).
- a change in the characteristics of the substance adsorption film 3 is measured as a change in the voltage of the out signal.
- a region (hereinafter, referred to as a “gate region”) facing the gate electrode 134 in the semiconductor substrate 100 generally functions as an ICG region in the above-described charge transfer type detection unit 5, and n +
- the third example will be described in detail with reference to FIG.
- the depth of the potential well in the gate region changes according to a change in the potential of the sensitive film 13.
- FIG. 12B by controlling the ID signal, the potential of the n + type region 131 (“ID” in FIG. 12) is reduced. As a result, the n + -type region 131 is charged with electric charge.
- the charge charged in the n + -type region 131 is injected into the n + -type region 132 beyond the gate region.
- the potential of the TG region is controlled to be lower than the potential of the n + type region 131. Therefore, the charge injected into the n + type region 132 does not reach the n + type region 133 (“out” in FIG. 12) beyond the TG region.
- the potential of the n + -type region 131 by being returned to the original (raised), the charge from the n + -type region 131 is withdrawn.
- the charges worn by the gate region remain in the n + -type region 132.
- the amount of charge remaining in the n + type region 132 corresponds to the depth of the potential well in the gate region (that is, the change in impedance of the substance adsorption film 3).
- the odor sensor according to the second embodiment is configured based on the ion sensor 2A including the detection unit 5A as a unit detection element as described above, the same effect as the odor sensor 1 described above can be obtained. Further, the odor sensor of the second embodiment is obtained by the same manufacturing method as that of the odor sensor 1 described above.
- the conductive member 136 and the connection member 137 may be omitted. In that case, the sensitive film 13 constituting the sensing unit 10A may be formed directly on the gate electrode 134. However, by providing the conductive member 136 and the connection member 137, it is possible to bring the upper surface of the sensitive film 13 closer to the surface of the passivation layer 120 and to reduce the depth of the opening 120a.
- a plurality of sensing units may be arranged two-dimensionally or one-dimensionally.
- the ion sensor may include only one sensing unit (detection unit).
- the semiconductor substrate 100 is used as the substrate on which the sensing unit 10 is formed.
- the substrate on which the sensing unit 10 is formed does not necessarily need to be a semiconductor substrate.
- a substrate other than a semiconductor on which a semiconductor film or the like is formed may be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
This odor sensor is provided with: an ion sensor obtained by forming, on a semiconductor substrate, a sensing part provided with a sensitive film in which an electric potential is varied in accordance with a state of a measurement object; a substance adsorption film disposed on the sensitive film, a state of the adsorption film being varied by adsorption of an odor substance thereto; and a reference electrode for applying a reference voltage to the substance adsorption film. The reference electrode is separated from the sensitive film, and is disposed so as not to overlap the sensing part as viewed from the thickness direction of the semiconductor substrate.
Description
本開示は、匂いセンサ及び匂いセンサの製造方法に関する。
The present disclosure relates to an odor sensor and a method for manufacturing the odor sensor.
匂いに感度を有する匂いセンサとして、非特許文献1に開示されたセンサが知られている。上記センサでは、いわゆる電荷転送型pHイメージセンサのイオン感応膜(Si3N4)上に、ポリアニリン感応膜(匂い物質吸着膜)が成膜されている。上記センサでは、ポリアニリン感応膜への所定の参照電圧(Vgate)の印加とポリアニリン感応膜へのガス曝露(すなわち、匂い物質の吸着)とを両立させるために、ポリアニリン感応膜の表面にメッシュ電極が設けられている。
A sensor disclosed in Non-Patent Document 1 is known as an odor sensor having sensitivity to odor. In the above-mentioned sensor, a polyaniline sensitive film (odorous substance adsorption film) is formed on an ion sensitive film (Si 3 N 4 ) of a so-called charge transfer type pH image sensor. In the above sensor, a mesh electrode is provided on the surface of the polyaniline sensitive film in order to achieve both application of a predetermined reference voltage (Vgate) to the polyaniline sensitive film and exposure of gas to the polyaniline sensitive film (that is, adsorption of an odorant). Is provided.
非特許文献1に記載のセンサでは、センシング部上にもメッシュ電極が設けられている。このため、メッシュ電極直下のセンシング部(画素)において匂いを適切に検出できないという問題がある。
セ ン サ In the sensor described in Non-Patent Document 1, a mesh electrode is also provided on the sensing unit. For this reason, there is a problem that the odor cannot be appropriately detected in the sensing unit (pixel) immediately below the mesh electrode.
本開示の一側面は、好適に匂いを検出することが可能な匂いセンサ及びその製造方法を提供することを目的とする。
の 一 One aspect of the present disclosure is to provide an odor sensor capable of suitably detecting an odor and a method for manufacturing the odor sensor.
本開示の一側面に係る匂いセンサは、測定対象の状態に応じて電位を変化させる感応膜が設けられた少なくとも1つのセンシング部を基板上に形成してなるイオンセンサと、感応膜上に配置され、匂い物質を吸着することにより状態を変化させる、測定対象としての物質吸着膜と、物質吸着膜に参照電圧を印加する参照電極と、を備える。参照電極は、感応膜から離間すると共に、基板の厚み方向から見てセンシング部と重ならないように配置されている。
An odor sensor according to one aspect of the present disclosure includes: an ion sensor including at least one sensing unit provided on a substrate, the sensing unit provided with a sensitive film that changes an electric potential according to a state of an object to be measured; A substance adsorption film as a measurement object, which changes its state by adsorbing an odor substance, and a reference electrode for applying a reference voltage to the substance adsorption film. The reference electrode is arranged so as to be separated from the sensitive film and not to overlap with the sensing unit when viewed from the thickness direction of the substrate.
上記匂いセンサによれば、物質吸着膜が匂い物質を吸着した際の物質吸着膜の状態の変化に応じた感応膜の電位変化に基づいて、匂いを検出することができる。このような匂い検出(測定)を実施するためには、物質吸着膜に参照電圧を印加する必要がある。このための構成として、例えば、物質吸着膜の上面(基板の厚み方向から見てセンシング部と重なる部分を含む)に電極(例えばメッシュ電極)を配置する構成が考えられる。しかし、この構成では、物質吸着膜の電極直下の部分(電極に隠されてしまい外部に露出しない部分)に匂い物質が吸着され難くなるため、電極直下のセンシング部において適切に匂いを検出できないという問題がある。一方、上記匂いセンサでは、物質吸着膜に参照電圧を印加するための参照電極は、感応膜から離間すると共に、基板の厚み方向から見てセンシング部と重ならないように配置されている。これにより、上述したようなメッシュ電極を配置する場合の問題が解消される。従って、上記匂いセンサによれば、好適に匂いを検出することが可能となる。
According to the odor sensor, the odor can be detected based on a potential change of the sensitive film according to a change in the state of the substance adsorption film when the substance adsorption film adsorbs the odor substance. In order to perform such odor detection (measurement), it is necessary to apply a reference voltage to the substance adsorption film. As a configuration for this purpose, for example, a configuration in which an electrode (for example, a mesh electrode) is arranged on the upper surface of the substance adsorption film (including a portion that overlaps with the sensing unit when viewed in the thickness direction of the substrate) can be considered. However, in this configuration, it is difficult for the odor substance to be adsorbed to a portion immediately below the electrode of the substance adsorption film (a portion hidden by the electrode and not exposed to the outside), so that the odor cannot be appropriately detected by the sensing unit immediately below the electrode. There's a problem. On the other hand, in the odor sensor, the reference electrode for applying the reference voltage to the substance adsorption film is separated from the sensitive film and is arranged so as not to overlap with the sensing part when viewed from the thickness direction of the substrate. This solves the problem of arranging the mesh electrodes as described above. Therefore, according to the above-mentioned odor sensor, it is possible to suitably detect the odor.
上記匂いセンサは、イオンセンサを覆うように設けられたパッシベーション層を更に備え、物質吸着膜は、パッシベーション層を覆うように設けられており、感応膜は、パッシベーション層に設けられた第1開口を介して物質吸着膜と接触しており、参照電極は、物質吸着膜と基板との間に設けられており、パッシベーション層に設けられた第2開口を介して物質吸着膜と接触していてもよい。このように、参照電極を物質吸着膜よりも内側に内蔵する構成を採用する場合、例えばCMOSプロセス等を用いてメタル配線を配設することにより、容易に参照電極を作成することが可能となる。これにより、再現性高く参照電極を作成することが可能となる。また、CMOSプロセス内で参照電極を作成することが可能となるため、参照電極を作成するための余分な工数の発生を抑制できる。また、イオンセンサに内蔵されたパッドを介して、参照電極への電圧供給を容易化できる。
The odor sensor further includes a passivation layer provided so as to cover the ion sensor, the substance adsorption film is provided so as to cover the passivation layer, and the sensitive film has a first opening provided in the passivation layer. The reference electrode is provided between the substance adsorption film and the substrate, and is in contact with the substance adsorption film through the second opening provided in the passivation layer. Good. As described above, when the configuration in which the reference electrode is embedded inside the substance adsorption film is employed, the reference electrode can be easily formed by disposing the metal wiring using, for example, a CMOS process. . This makes it possible to create a reference electrode with high reproducibility. Further, since the reference electrode can be formed in the CMOS process, it is possible to suppress the generation of extra steps for forming the reference electrode. Further, it is possible to easily supply a voltage to the reference electrode via a pad built in the ion sensor.
上記匂いセンサは、イオンセンサを覆うように設けられたパッシベーション層を更に備え、物質吸着膜は、パッシベーション層を覆うように設けられており、感応膜は、パッシベーション層に設けられた開口を介して物質吸着膜と接触しており、参照電極は、基板の厚み方向から見てセンシング部の外縁部に配置されると共に、上記開口の内部に露出して物質吸着膜と接触する部分を含んでもよい。この場合、センシング部上に設けられた開口の内側において、物質吸着膜に対する参照電圧の印加を好適に行うことができる。
The odor sensor further includes a passivation layer provided so as to cover the ion sensor, the substance adsorption film is provided so as to cover the passivation layer, and the sensitive film is provided through an opening provided in the passivation layer. The reference electrode is in contact with the substance adsorption film, and may be disposed at an outer edge of the sensing unit when viewed from the thickness direction of the substrate, and may include a portion exposed inside the opening and in contact with the substance adsorption film. . In this case, it is possible to suitably apply the reference voltage to the substance adsorption film inside the opening provided on the sensing unit.
参照電極は、少なくとも物質吸着膜の基板とは反対側の表面に設けられていてもよい。例えば、上述したような内蔵電極と共に物質吸着膜の外表面(基板とは反対側の表面)に設けられた電極が参照電極として設けられている場合には、物質吸着膜と参照電極との接触面積を増やすことにより、物質吸着膜に対してより確実且つ安定的に参照電圧を印加することができる。一方、参照電極は物質吸着膜の外表面のみに設けられてもよく、この場合には、上述したような内蔵電極の作成及びパッシベーション層の開口(第2開口)の形成等の処理を省略できる。また、内蔵電極を省略できる分だけ基板上のセンシング部の配列ピッチを小さくすることが可能となる。その結果、匂いセンサの小型化を図ることができる。或いは、匂い分布測定(イメージング)を行う場合には、空間分解能の向上を図ることができる。
The reference electrode may be provided at least on the surface of the substance adsorption film opposite to the substrate. For example, when the electrode provided on the outer surface (surface opposite to the substrate) of the substance adsorption film together with the built-in electrode as described above is provided as a reference electrode, the contact between the substance adsorption film and the reference electrode is made. By increasing the area, the reference voltage can be more reliably and stably applied to the substance adsorption film. On the other hand, the reference electrode may be provided only on the outer surface of the substance-adsorbing film. In this case, processing such as creation of the built-in electrode and formation of the opening (second opening) of the passivation layer as described above can be omitted. . In addition, the arrangement pitch of the sensing units on the substrate can be reduced by the amount by which the built-in electrodes can be omitted. As a result, the size of the odor sensor can be reduced. Alternatively, when odor distribution measurement (imaging) is performed, the spatial resolution can be improved.
イオンセンサは、基板上に一次元状又は二次元状に配列された複数のセンシング部を有し、1つの物質吸着膜は、2以上のセンシング部の感応膜上に配置されていてもよい。この場合、1つの物質吸着膜に複数のセンシング部を対応させることができる。これにより、例えば複数のセンシング部の出力値の統計値(例えば平均値)を用いることにより、測定における感度のばらつきを低減できる。また、一部のセンシング部が不良である場合であっても、他のセンシング部を使用することにより測定を実施することができる。
The ion sensor may have a plurality of sensing units arranged one-dimensionally or two-dimensionally on a substrate, and one substance adsorption film may be arranged on sensitive films of two or more sensing units. In this case, a plurality of sensing units can correspond to one substance adsorption film. Thus, for example, by using the statistical value (for example, the average value) of the output values of the plurality of sensing units, the variation in the sensitivity in the measurement can be reduced. Further, even when some of the sensing units are defective, measurement can be performed by using other sensing units.
イオンセンサは、基板上に一次元状又は二次元状に配列された複数のセンシング部を有し、複数の物質吸着膜が、それぞれ異なるセンシング部の感応膜上に配置されていてもよい。この場合、例えばそれぞれ異なる匂い物質に反応する複数の物質吸着膜を1つのイオンセンサ上に設けることにより、各物質吸着膜に対応するセンシング部の出力値に基づいて、複雑な匂いのパターンを検出することが可能となる。なお、それぞれ異なる物質吸着膜が設けられた複数のイオンセンサを用いることも考えられるが、この場合、イオンセンサ間の個体差(感度のばらつき)を考慮して測定を行う必要が生じ得る。また、必要となるイオンセンサの個数が増えることにより、全体としての装置規模が大型化してしまう。一方、上述したように複数の物質吸着膜を1つのイオンセンサ上に配置する構成によれば、このような問題を解消できる。また、複数の同種の物質吸着膜を1つのイオンセンサ上に設ける場合にも、当該イオンセンサにおいて一部の物質吸着膜が適切に機能しないときに、他の物質吸着膜に対応するセンシング部の出力値に基づいて測定を継続することが可能となるという効果が奏される。
The ion sensor may include a plurality of sensing units arranged one-dimensionally or two-dimensionally on a substrate, and a plurality of substance adsorption films may be arranged on sensitive films of different sensing units. In this case, for example, a complex odor pattern is detected based on an output value of a sensing unit corresponding to each substance adsorption film by providing a plurality of substance adsorption films respectively reacting with different odor substances on one ion sensor. It is possible to do. Note that a plurality of ion sensors provided with different substance adsorption films may be used, but in this case, measurement may need to be performed in consideration of individual differences (variations in sensitivity) between the ion sensors. In addition, as the number of required ion sensors increases, the overall device scale increases. On the other hand, according to the configuration in which a plurality of substance adsorption films are arranged on one ion sensor as described above, such a problem can be solved. Further, even when a plurality of the same kind of substance adsorption films are provided on one ion sensor, when some of the substance adsorption films do not function properly in the ion sensor, the sensing unit corresponding to another substance adsorption film may be used. There is an effect that the measurement can be continued based on the output value.
イオンセンサは、基板上に一次元状又は二次元状に配列された複数のセンシング部を有し、参照電極は、複数のセンシング部の各々の感応膜と参照電極との距離が互いに略同一となるように配置されていてもよい。本発明者の知見により、センシング部の感度は、当該センシング部の感応膜と参照電極との距離による影響を受け得ることが確認された。従って、上記のように各センシング部の感応膜と参照電極との距離が互いに略同一となるように参照電極が配置されることにより、各センシング部の感度を均一化することができる。
The ion sensor has a plurality of sensing units arranged one-dimensionally or two-dimensionally on a substrate, and the reference electrode has a distance between the sensitive film and the reference electrode of each of the plurality of sensing units substantially equal to each other. It may be arranged so that it becomes. From the findings of the present inventors, it has been confirmed that the sensitivity of the sensing unit can be affected by the distance between the sensitive film of the sensing unit and the reference electrode. Therefore, by arranging the reference electrodes such that the distance between the sensitive film of each sensing unit and the reference electrode is substantially the same as described above, the sensitivity of each sensing unit can be made uniform.
本開示の一側面に係る匂いセンサの製造方法は、測定対象の状態に応じて電位を変化させる感応膜が設けられたセンシング部を基板上に形成してなるイオンセンサが準備される工程と、匂い物質を吸着することにより状態を変化させる測定対象としての物質吸着膜が、感応膜上に配置される工程と、物質吸着膜に参照電圧を印加する参照電極が、感応膜から離間すると共に、基板の厚み方向から見てセンシング部と重ならないように配置される工程と、を含む。
A method for manufacturing an odor sensor according to an aspect of the present disclosure includes a step of preparing an ion sensor having a sensing unit provided on a substrate provided with a sensitive film that changes an electric potential according to a state of a measurement target, A step in which a substance adsorption film as a measurement object that changes state by adsorbing an odorant is disposed on the sensitive film, and a reference electrode that applies a reference voltage to the substance adsorption film is separated from the sensitive film, Arranging the sensing unit so as not to overlap with the sensing unit when viewed from the thickness direction of the substrate.
上記製造方法によれば、上述した効果を奏する匂いセンサを好適に製造することができる。
According to the above manufacturing method, it is possible to suitably manufacture an odor sensor having the above-described effects.
上記製造方法において、物質吸着膜は、参照電極が配置された後に、感応膜及び参照電極を覆うように設けられてもよい。これにより、物質吸着膜の内側に参照電極が内蔵された構造の匂いセンサが得られる。
In the above manufacturing method, the substance adsorption film may be provided so as to cover the sensitive film and the reference electrode after the reference electrode is disposed. Thus, an odor sensor having a structure in which the reference electrode is built inside the substance adsorption film is obtained.
上記製造方法は、参照電極が配置された後に、参照電極を覆うようにイオンセンサ上にパッシベーション層が形成される工程と、パッシベーション層に、感応膜の少なくとも一部を外部に露出させる第1開口と参照電極の少なくとも一部を外部に露出させる第2開口とが形成される工程と、を更に含んでもよい。また、物質吸着膜は、第1開口及び第2開口が形成された後に、パッシベーション層を覆うように設けられ、第1開口を介して感応膜に接触すると共に第2開口を介して参照電極に接触してもよい。この場合、厚み方向から見て参照電極とセンシング部とが比較的離れた位置に配置される場合においても、感応膜上に配置された物質吸着膜に参照電圧を印加することが可能な構成を実現できる。
The above manufacturing method includes a step of forming a passivation layer on the ion sensor so as to cover the reference electrode after the reference electrode is disposed, and a step of forming the first opening in the passivation layer to expose at least a part of the sensitive film to the outside. Forming a second opening for exposing at least a part of the reference electrode to the outside. In addition, the substance adsorption film is provided so as to cover the passivation layer after the first opening and the second opening are formed, contacts the sensitive film through the first opening, and connects to the reference electrode through the second opening. May contact. In this case, even when the reference electrode and the sensing unit are disposed at relatively distant positions when viewed from the thickness direction, a configuration capable of applying a reference voltage to the substance adsorption film disposed on the sensitive film is provided. realizable.
上記製造方法は、参照電極が基板の厚み方向から見たセンシング部の外縁部に配置された後に、参照電極を覆うようにイオンセンサ上にパッシベーション層が形成される工程と、パッシベーション層に、感応膜の少なくとも一部及び参照電極の少なくとも一部を外部に露出させる開口が形成される工程と、を更に含んでもよい。また、物質吸着膜は、開口が形成された後に、パッシベーション層を覆うように設けられ、開口内において感応膜及び参照電極に接触してもよい。この場合、参照電極を厚み方向から見たセンシング部の外縁部に配置することにより、参照電極及び感応膜に共通の開口を形成することで、感応膜上に配置された物質吸着膜に参照電圧を印加することが可能な構成を実現できる。
The above manufacturing method includes a step of forming a passivation layer on the ion sensor so as to cover the reference electrode after the reference electrode is disposed at an outer edge of the sensing unit as viewed from the thickness direction of the substrate. Forming an opening exposing at least a part of the film and at least a part of the reference electrode to the outside. Further, the substance adsorption film may be provided so as to cover the passivation layer after the opening is formed, and may be in contact with the sensitive film and the reference electrode in the opening. In this case, by arranging the reference electrode at the outer edge of the sensing unit viewed from the thickness direction, an opening common to the reference electrode and the sensitive film is formed, so that the reference voltage is applied to the substance adsorption film arranged on the sensitive film. Can be realized.
参照電極の少なくとも一部は、物質吸着膜が配置された後に、物質吸着膜の一部を覆うように設けられてもよい。これにより、物質吸着膜の外側に参照電極の少なくとも一部が配置された構造の匂いセンサが得られる。
少 な く と も At least a part of the reference electrode may be provided so as to cover a part of the substance adsorption film after the substance adsorption film is disposed. Thus, an odor sensor having a structure in which at least a part of the reference electrode is arranged outside the substance adsorption film is obtained.
本開示の一側面によれば、好適に匂いを検出することが可能な匂いセンサ及びその製造方法が提供され得る。
According to an embodiment of the present disclosure, an odor sensor capable of suitably detecting an odor and a method for manufacturing the odor sensor can be provided.
以下、添付図面を参照しながら本開示の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。本開示は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals will be used for the same or equivalent elements, and redundant description will be omitted. The present disclosure is not limited to these examples, but is indicated by the appended claims, and is intended to include any modifications within the scope and meaning equivalent to the appended claims.
(第1実施形態)
図1は、第1実施形態の匂いセンサ1の概略平面図である。同図に示されるように、匂いセンサ1は、イオンセンサ2と、イオンセンサ2上に設けられた複数(ここでは5つ)の物質吸着膜3と、物質吸着膜3に参照電圧Vref(基準電圧)を印加する参照電極4と、を備える。 (1st Embodiment)
FIG. 1 is a schematic plan view of the odor sensor 1 according to the first embodiment. As shown in FIG. 1, the odor sensor 1 includes anion sensor 2, a plurality of (five in this case) substance adsorption films 3 provided on the ion sensor 2, and a reference voltage Vref (reference) And a reference electrode 4 for applying a voltage.
図1は、第1実施形態の匂いセンサ1の概略平面図である。同図に示されるように、匂いセンサ1は、イオンセンサ2と、イオンセンサ2上に設けられた複数(ここでは5つ)の物質吸着膜3と、物質吸着膜3に参照電圧Vref(基準電圧)を印加する参照電極4と、を備える。 (1st Embodiment)
FIG. 1 is a schematic plan view of the odor sensor 1 according to the first embodiment. As shown in FIG. 1, the odor sensor 1 includes an
イオンセンサ2は、二次元状に配列された複数の検出部5が半導体基板100上に形成されたセンサである。イオンセンサ2は、いわゆる電荷転送型のCMOSイメージセンサである。複数の検出部5は、イオンセンサ2のチップ上に設けられた画素形成領域A(本実施形態では、チップ中央部に設けられた矩形状の領域)に、M行N列(例えば256行256列)に二次元状に配列されることにより、画素アレイを構成している。M及びNは2以上の整数である。1つの検出部5は、1つの検出単位(画素)に対応している。1つの検出部5のサイズ(画素サイズ)は、例えば30μm×30μmである。
The ion sensor 2 is a sensor in which a plurality of detectors 5 arranged two-dimensionally are formed on a semiconductor substrate 100. The ion sensor 2 is a so-called charge transfer type CMOS image sensor. The plurality of detectors 5 are arranged in a pixel formation region A (in the present embodiment, a rectangular region provided in the center of the chip) provided on the chip of the ion sensor 2 in M rows and N columns (for example, 256 rows and 256 columns). The pixels are arranged two-dimensionally in (rows) to form a pixel array. M and N are integers of 2 or more. One detection unit 5 corresponds to one detection unit (pixel). The size (pixel size) of one detection unit 5 is, for example, 30 μm × 30 μm.
各物質吸着膜3は、画素形成領域A内において、複数の検出部5に跨るように配置(成膜)されている。物質吸着膜3は、所定の匂い物質を吸着することにより状態(例えばインピーダンス等の電気的特性)を変化させる薄膜である。ここで、「匂い」とは、人間、動物等の生物の嗅覚を刺激するものであり、「匂い物質」とは、匂いの原因となる化学物質(例えば、特定の分子単体又は分子群が所定の濃度で集合したもの)である。物質吸着膜3としては、例えばポリアニリン感応膜等が用いられ得る。画素形成領域A内に配置された検出部5のうち物質吸着膜3が設けられた検出部5が、匂いを検出可能な単位検出素子として機能する。なお、物質吸着膜3は、画素形成領域Aの全体(すなわち、画素形成領域Aに配置された全ての検出部5)に設けられてもよいし、物質吸着膜3が設けられない検出部5が存在してもよい。
物質 Each substance adsorption film 3 is disposed (formed) so as to straddle the plurality of detection units 5 in the pixel formation region A. The substance adsorption film 3 is a thin film that changes a state (for example, electrical characteristics such as impedance) by adsorbing a predetermined odor substance. Here, the “smell” stimulates the sense of smell of an organism such as a human or an animal, and the “smell substance” refers to a chemical substance that causes an odor (for example, when a specific molecule alone or a specific molecule group is a predetermined molecule). ). As the substance adsorption film 3, for example, a polyaniline sensitive film or the like can be used. The detection unit 5 provided with the substance adsorption film 3 among the detection units 5 arranged in the pixel formation region A functions as a unit detection element capable of detecting an odor. Note that the substance adsorption film 3 may be provided on the entire pixel formation region A (that is, all the detection units 5 arranged in the pixel formation region A) or on the detection unit 5 where the substance adsorption film 3 is not provided. May be present.
図1の右部は、各検出部5に共通のレイアウト例を模式的に示している。図2は、図1におけるII-II線に沿った検出部5の断面構成を模式的に示す図である。これらに示されるように、各検出部5は、半導体基板100(基板)の一方の主面側に形成されている。半導体基板100は、例えばシリコンにより形成された第1導電型(一例として、n型)の半導体基板である。各検出部5において、半導体基板100の主面に沿って、それぞれ第1導電型領域であるインジェクションダイオード部21(以下「ID部21」)、フローティングディフュージョン部31(以下「FD部31」)、及びリセットドレイン部41(以下「RD部41」)が形成されている。半導体基板100のID部21とFD部31との間には、第2導電型(一例として、p型)の拡散層11が形成されている。拡散層11の表面には、第1導電型にドープされた第1導電型領域12が形成されている。
(1) The right part of FIG. 1 schematically shows an example of a layout common to the detection units 5. FIG. 2 is a diagram schematically illustrating a cross-sectional configuration of the detection unit 5 along the line II-II in FIG. As shown in these figures, each detection unit 5 is formed on one main surface side of the semiconductor substrate 100 (substrate). The semiconductor substrate 100 is a semiconductor substrate of the first conductivity type (for example, n-type) formed of, for example, silicon. In each of the detecting sections 5, along the main surface of the semiconductor substrate 100, an injection diode section 21 (hereinafter, “ID section 21”), a floating diffusion section 31 (hereinafter, “FD section 31”), which is a first conductivity type region, And a reset drain section 41 (hereinafter, referred to as an “RD section 41”). The diffusion layer 11 of the second conductivity type (for example, p-type) is formed between the ID part 21 and the FD part 31 of the semiconductor substrate 100. On the surface of the diffusion layer 11, a first conductivity type region 12 doped with the first conductivity type is formed.
半導体基板100の主面上には、絶縁性の保護膜110を介して、インプットコントロールゲート電極22(以下「ICG電極22」)、トランスファーゲート電極32(以下「TG電極32」)、及びリセットゲート電極42(以下「RG電極42」)が形成されている。保護膜110としては、例えばSiO2等が用いられ得る。また、半導体基板100の主面上には、FD部31に蓄積された電荷量に応じたout信号を増幅させるアンプ(信号増幅器)33と、アンプ33により増幅されたout信号を図示しない測定部に出力する出力回路34と、が設けられている。
On the main surface of the semiconductor substrate 100, an input control gate electrode 22 (hereinafter, “ICG electrode 22”), a transfer gate electrode 32 (hereinafter, “TG electrode 32”), and a reset gate are provided via an insulating protective film 110. An electrode 42 (hereinafter, “RG electrode 42”) is formed. As the protective film 110, for example, SiO 2 or the like can be used. Further, on the main surface of the semiconductor substrate 100, an amplifier (signal amplifier) 33 for amplifying an out signal corresponding to the amount of charge accumulated in the FD unit 31, and a measuring unit (not shown) for amplifying the out signal amplified by the amplifier 33 And an output circuit 34 for outputting the data to
ICG電極22とTG電極32との間の領域には、保護膜110を介して感応膜13が設けられている。感応膜13は、感応膜13上に配置された測定対象の状態に応じて電位(膜電位)を変化させる性質を有するイオン感応膜である。本実施形態では、物質吸着膜3が測定対象となる。感応膜13としては、例えばSi3N4等が用いられ得る。感応膜13は、ICG電極22及びTG電極32が物質吸着膜3と接触しないように、ICG電極22及びTG電極32の一部を覆うようにして、ICG電極22からTG電極32にかけてひとつながりに形成されている。ただし、感応膜13は、ICG電極22とTG電極32との間にのみ設けられてもよく、ICG電極22及びTG電極32の一部を覆わないように形成されてもよい。すなわち、感応膜13は、ICG電極22とTG電極32との間において、保護膜110上にのみ形成されてもよい。
In the region between the ICG electrode 22 and the TG electrode 32, the sensitive film 13 is provided via the protective film 110. The sensitive film 13 is an ion-sensitive film having a property of changing a potential (membrane potential) according to a state of a measurement target arranged on the sensitive film 13. In the present embodiment, the substance adsorption film 3 is a measurement target. As the sensitive film 13, for example, Si 3 N 4 or the like can be used. The sensitive film 13 covers a part of the ICG electrode 22 and the TG electrode 32 so that the ICG electrode 22 and the TG electrode 32 do not come into contact with the substance adsorption film 3. Is formed. However, the sensitive film 13 may be provided only between the ICG electrode 22 and the TG electrode 32, or may be formed so as not to cover a part of the ICG electrode 22 and the TG electrode 32. That is, the sensitive film 13 may be formed only on the protective film 110 between the ICG electrode 22 and the TG electrode 32.
これらの半導体基板100の主面上に設けられた部材を覆うように、半導体基板100の主面上には、絶縁性のパッシベーション層120が形成されている。パッシベーション層120としては、例えばSi3N4等が用いられ得る。物質吸着膜3は、パッシベーション層120を覆うように設けられている。パッシベーション層120には、感応膜13の上面を外部に露出させるための開口120a(第1開口)が形成されている。感応膜13は、開口120aを介して物質吸着膜3と接触している。
An insulating passivation layer 120 is formed on the main surface of the semiconductor substrate 100 so as to cover the members provided on the main surface of the semiconductor substrate 100. As the passivation layer 120, for example, Si 3 N 4 or the like can be used. The substance adsorption film 3 is provided so as to cover the passivation layer 120. An opening 120a (first opening) for exposing the upper surface of the sensitive film 13 to the outside is formed in the passivation layer 120. The sensitive film 13 is in contact with the substance adsorption film 3 via the opening 120a.
参照電極4は、物質吸着膜3の内側(すなわち、物質吸着膜3と半導体基板100との間)に設けられている。図1及び図2に示されるように、参照電極4は、感応膜13から離間すると共に、半導体基板100の厚み方向Dから見て、感応膜13と重ならないように配置されている。参照電極4は、例えばCMOSプロセスによって形成されたメタル配線である。図1に示されるように、各検出部5において、参照電極4は、厚み方向Dから見て、センシング部10(詳しくは後述するが、ICG電極22とTG電極32との間において感応膜13が設けられた領域)の一方側(図1における左側)において、センシング部10から離間した位置に配置されている。つまり、参照電極4は、センシング部10(主に感応膜13)と物理的に接触しないように配置されている。参照電極4は、センシング部10の一方側の側面と平行となるように、図1における上下方向に沿って延びている。厚み方向Dから見たセンシング部10と参照電極4との距離d1は、例えば3μmである。参照電極4の幅w1(すなわち、参照電極4を構成するメタル配線の幅)は、例えば10.5μmである。参照電極4は、例えば、第1配線層よりも半導体基板100の主面から離れた第2配線層に配設される。第1配線層には、例えば、ICG電極22、TG電極32、RG電極42等に電圧を供給するための図示しないメタル配線が設けられる。つまり、参照電極4は、第1配線層よりもパッシベーション層120の外表面に近い第2配線層に配設されている。
The reference electrode 4 is provided inside the substance adsorption film 3 (that is, between the substance adsorption film 3 and the semiconductor substrate 100). As shown in FIGS. 1 and 2, the reference electrode 4 is arranged so as to be separated from the sensitive film 13 and not overlap the sensitive film 13 when viewed from the thickness direction D of the semiconductor substrate 100. The reference electrode 4 is, for example, a metal wiring formed by a CMOS process. As shown in FIG. 1, in each detection unit 5, when viewed from the thickness direction D, the reference electrode 4 includes a sensing unit 10 (described in detail later, the sensitive film 13 between the ICG electrode 22 and the TG electrode 32). Is disposed at a position separated from the sensing unit 10 on one side (the left side in FIG. 1) of the region where the is provided. That is, the reference electrode 4 is arranged so as not to physically contact the sensing unit 10 (mainly the sensitive film 13). The reference electrode 4 extends in the up-down direction in FIG. 1 so as to be parallel to one side surface of the sensing unit 10. The distance d1 between the sensing unit 10 and the reference electrode 4 as viewed from the thickness direction D is, for example, 3 μm. The width w1 of the reference electrode 4 (that is, the width of the metal wiring constituting the reference electrode 4) is, for example, 10.5 μm. The reference electrode 4 is provided, for example, on a second wiring layer that is farther from the main surface of the semiconductor substrate 100 than the first wiring layer. The first wiring layer is provided with, for example, a metal wiring (not shown) for supplying a voltage to the ICG electrode 22, the TG electrode 32, the RG electrode 42, and the like. That is, the reference electrode 4 is provided on the second wiring layer closer to the outer surface of the passivation layer 120 than the first wiring layer.
参照電極4は、物質吸着膜3に接触して電圧を印加することが可能な材料で形成されていればよい。参照電極4としては、例えばAl-Si-Cu等が用いられ得る。参照電極4には、イオンセンサ2が備える図示しない電極パッドから参照電圧Vrefが供給される。パッシベーション層120には、参照電極4の上面を外部に露出させるための開口120b(第2開口)が形成されている。参照電極4は、開口120aを介して物質吸着膜3と接触している。これにより、参照電極4と物質吸着膜3との接触部において、物質吸着膜3に参照電圧Vrefが印加される。なお、図2の例では、参照電極4の上面は、パッシベーション層120の上面よりも半導体基板100側に窪んだ位置に位置している。また、開口120bの開口幅w2(参照電極4の外部に露出する部分の幅)は、参照電極4の幅w1より小さくされている。開口幅w2は、例えば8μmである。ただし、参照電極4は、参照電極4の上面がパッシベーション層120の開口120bが形成されていない部分と連続するように(フラットに接続されるように)設けられてもよい。この場合、参照電極4の幅w1と開口幅w2とは一致する。
The reference electrode 4 only needs to be formed of a material capable of applying a voltage in contact with the substance adsorption film 3. As the reference electrode 4, for example, Al—Si—Cu or the like can be used. A reference voltage Vref is supplied to the reference electrode 4 from an electrode pad (not shown) of the ion sensor 2. An opening 120b (second opening) for exposing the upper surface of the reference electrode 4 to the outside is formed in the passivation layer 120. The reference electrode 4 is in contact with the substance adsorption film 3 via the opening 120a. Thereby, the reference voltage Vref is applied to the substance adsorption film 3 at the contact portion between the reference electrode 4 and the substance adsorption film 3. Note that, in the example of FIG. 2, the upper surface of the reference electrode 4 is located at a position recessed toward the semiconductor substrate 100 from the upper surface of the passivation layer 120. Further, the opening width w2 of the opening 120b (the width of a portion exposed to the outside of the reference electrode 4) is smaller than the width w1 of the reference electrode 4. The opening width w2 is, for example, 8 μm. However, the reference electrode 4 may be provided so that the upper surface of the reference electrode 4 is continuous (partially connected) with a portion of the passivation layer 120 where the opening 120b is not formed. In this case, the width w1 of the reference electrode 4 matches the opening width w2.
開口120aの深さは、開口120bの深さよりも大きい。すなわち、感応膜13は、参照電極4よりも半導体基板100側に窪んだ位置に配置されている。
The depth of the opening 120a is larger than the depth of the opening 120b. That is, the sensitive film 13 is disposed at a position recessed toward the semiconductor substrate 100 from the reference electrode 4.
次に、検出部5の機能構成及び動作原理について説明する。検出部5は、センシング部10と、供給部20と、移動・蓄積部30と、除去部40と、を備える。なお、本実施形態では、電荷は電子である。
Next, the functional configuration and operation principle of the detection unit 5 will be described. The detection unit 5 includes a sensing unit 10, a supply unit 20, a movement / accumulation unit 30, and a removal unit 40. In this embodiment, the electric charge is an electron.
センシング部10は、パッシベーション層120の開口120aを介して感応膜13が外部に(すなわち、物質吸着膜3に対して)露出した領域である。より具体的には、センシング部10は、ICG電極22とTG電極32との間において、感応膜13が保護膜110を介して第1導電型領域12と対向する領域である。すなわち、センシング部10は、上述した拡散層11、第1導電型領域12、保護膜110及び感応膜13が積層されることによって構成されたセンシング領域である。物質吸着膜3が所定の匂い物質を吸着すると、物質吸着膜3の状態(例えばインピーダンス)の変化が生じる。そして、感応膜13において、当該状態の変化に応じた電位変化が生じる。この感応膜13の電位変化に応じて、感応膜13と対向する拡散層11のポテンシャル井戸14の深さが変化する。
The sensing unit 10 is a region where the sensitive film 13 is exposed to the outside (that is, with respect to the substance adsorption film 3) through the opening 120a of the passivation layer 120. More specifically, the sensing unit 10 is a region where the sensitive film 13 faces the first conductivity type region 12 via the protective film 110 between the ICG electrode 22 and the TG electrode 32. That is, the sensing unit 10 is a sensing region configured by stacking the above-described diffusion layer 11, the first conductivity type region 12, the protective film 110, and the sensitive film 13. When the substance adsorption film 3 adsorbs a predetermined odor substance, the state (for example, impedance) of the substance adsorption film 3 changes. Then, a potential change occurs in the sensitive film 13 according to the change in the state. According to the potential change of the sensitive film 13, the depth of the potential well 14 of the diffusion layer 11 facing the sensitive film 13 changes.
供給部20は、上述したID部21及びICG電極22により構成される。ID部21は、ポテンシャル井戸14に電荷を注入するための部分である。ICG電極22は、ID部21からポテンシャル井戸14への電荷注入量を制御する部分である。例えば、ID部21のポテンシャル(電位)を下げると共にICG電極22の電圧を調節することにより、ID部21にチャージされる電荷をポテンシャル井戸14に供給することができる。
The supply unit 20 includes the ID unit 21 and the ICG electrode 22 described above. The ID part 21 is a part for injecting charges into the potential well 14. The ICG electrode 22 is a part that controls the amount of charge injected from the ID part 21 to the potential well 14. For example, by lowering the potential (potential) of the ID portion 21 and adjusting the voltage of the ICG electrode 22, the charges charged to the ID portion 21 can be supplied to the potential well 14.
移動・蓄積部30は、TG電極32及びFD部31により構成される。TG電極32は、ポテンシャル井戸14からFD部31に電荷を転送するための部分である。FD部31は、ポテンシャル井戸14から転送された電荷を蓄積する部分である。具体的には、TG電極32の電圧を変化させることにより、半導体基板100においてTG電極32と対向する領域(以下「TG領域」)のポテンシャルを変化させ、ポテンシャル井戸14に充填された電荷をFD部31に転送及び蓄積することができる。
(4) The moving / accumulating unit 30 includes the TG electrode 32 and the FD unit 31. The TG electrode 32 is a portion for transferring charges from the potential well 14 to the FD section 31. The FD section 31 is a section that accumulates charges transferred from the potential well 14. Specifically, by changing the voltage of the TG electrode 32, the potential of a region (hereinafter, referred to as a “TG region”) of the semiconductor substrate 100 facing the TG electrode 32 is changed, and the charge filled in the potential well 14 is changed to FD. It can be transferred and stored in the unit 31.
除去部40は、RG電極42及びRD部41により構成される。除去部40は、FD部31に蓄積された電荷をリセット(除去)するための部分である。具体的には、RG電極42の電圧を変化させることにより、半導体基板100においてRG電極42と対向する領域(以下「RG領域」)のポテンシャルを変化させ、FD部31に蓄積された電荷をRD部41(VDD)へと排出することができる。
The removing unit 40 is configured by the RG electrode 42 and the RD unit 41. The removing section 40 is a section for resetting (removing) the electric charge accumulated in the FD section 31. Specifically, by changing the voltage of the RG electrode 42, the potential of a region (hereinafter, referred to as an “RG region”) of the semiconductor substrate 100 facing the RG electrode 42 is changed, and the charge accumulated in the FD portion 31 is changed to RD. It can be discharged to the section 41 (VDD).
図3は、検出部5の基本動作例を示す図である。図3の(A)に示されるように、測定対象である物質吸着膜3において匂い物質が吸着された部分の状態(例えばインピーダンス)が変化すると、当該部分の直下に位置する感応膜13の電位変化が生じ、当該電位変化に応じてポテンシャル井戸14の深さが変化する。続いて、図3の(B)に示されるように、ID部21のポテンシャルが下げられることにより、ID部21に電荷がチャージされる。ID部21にチャージされた電荷は、半導体基板100においてICG電極22と対向する領域(以下「ICG領域」)を超えて、ポテンシャル井戸14へと注入される。このとき、TG領域のポテンシャルは、ID部21のポテンシャルよりも低くなるように制御される。従って、ポテンシャル井戸14へ注入される電荷がTG領域を超えてFD部31に達することはない。
FIG. 3 is a diagram illustrating an example of a basic operation of the detection unit 5. As shown in FIG. 3A, when the state (for example, impedance) of the portion where the odorant is adsorbed in the substance adsorption film 3 to be measured changes, the potential of the sensitive film 13 located immediately below the portion is changed. A change occurs, and the depth of the potential well 14 changes according to the change in the potential. Subsequently, as shown in FIG. 3B, the potential of the ID section 21 is lowered, so that the ID section 21 is charged with electric charge. The charge charged in the ID section 21 is injected into the potential well 14 beyond a region (hereinafter, referred to as an “ICG region”) of the semiconductor substrate 100 facing the ICG electrode 22. At this time, the potential of the TG region is controlled so as to be lower than the potential of the ID section 21. Therefore, the electric charge injected into the potential well 14 does not reach the FD portion 31 beyond the TG region.
続いて、図3の(C)に示されるように、ID部21のポテンシャルが元に戻される(引き上げられる)ことにより、ID部21から電荷が引き抜かれる。その結果、ICG領域によってすり切られた電荷がポテンシャル井戸14に残る。ポテンシャル井戸14に残された電荷量は、ポテンシャル井戸14の深さ(すなわち、物質吸着膜3のインピーダンス変化)に対応している。
(3) Subsequently, as shown in FIG. 3C, the potential of the ID portion 21 is restored (pulled up), so that electric charges are extracted from the ID portion 21. As a result, the electric charge that has been cut off by the ICG region remains in the potential well 14. The amount of charge remaining in the potential well 14 corresponds to the depth of the potential well 14 (that is, a change in impedance of the substance adsorption film 3).
続いて、図3の(D)に示されるように、TG電極32の電圧が上げられることにより、ポテンシャル井戸14に残された電荷がFD部31に転送される。その後、TG電極32の電圧が元に戻されることにより、図3の(E)に示される状態となる。このような状態において、FD部31に蓄積された電荷量に応じた信号(out信号)が、アンプ33及び出力回路34を介して図示しない測定部に出力される。これにより、測定部において、物質吸着膜3において検出された匂い(すなわち、物質吸着膜3に吸着された匂い物質)が、出力電圧の変化として測定される。続いて、図3の(F)に示されるように、RG電極42の電圧が上げられることにより、FD部31に蓄積された電荷がRD部41に排出される。RD部41は、VDD電源に接続されている。これにより、RD部41において、負にチャージされた電荷が吸い上げられる。
(3) Subsequently, as shown in FIG. 3D, the charge remaining in the potential well 14 is transferred to the FD portion 31 by increasing the voltage of the TG electrode 32. Thereafter, when the voltage of the TG electrode 32 is restored, the state shown in FIG. In such a state, a signal (out signal) corresponding to the amount of charge accumulated in the FD unit 31 is output to a measurement unit (not shown) via the amplifier 33 and the output circuit 34. As a result, in the measuring section, the odor detected in the substance adsorption film 3 (that is, the odor substance adsorbed on the substance adsorption film 3) is measured as a change in the output voltage. Subsequently, as shown in FIG. 3 (F), the charge stored in the FD section 31 is discharged to the RD section 41 by increasing the voltage of the RG electrode 42. The RD section 41 is connected to a VDD power supply. As a result, the RD section 41 absorbs the negatively charged electric charge.
なお、上述した図3の(B)~(E)の動作は、複数回繰り返されてもよい。これにより、FD部31に蓄積される電荷量を増大させ、繰り返し回数だけout信号を増幅させることができる。また、このような繰り返し動作によってout信号を増幅させることにより、アンプ33が省略されてもよい。
Note that the above-described operations of (B) to (E) of FIG. 3 may be repeated a plurality of times. Thus, the amount of charge stored in the FD section 31 can be increased, and the out signal can be amplified by the number of repetitions. The amplifier 33 may be omitted by amplifying the out signal by such a repetitive operation.
ただし、ポテンシャル井戸14への電荷注入方法は、上述した図3の例に限られない。例えば、図4に示されるように、ID部21のポテンシャルを一定とし、ICG電極22の電圧を調整することにより、ポテンシャル井戸14にID部21と同等のポテンシャルの電荷が注入されてもよい。具体的には、図4の(A)に示されるように、ID部21のポテンシャルは、ポテンシャル井戸14のポテンシャルよりも低く且つTG領域のポテンシャルよりも高い一定の値に設定される。一方、ICG領域のポテンシャルは、ID部21のポテンシャルよりも低くされる。続いて、図4の(B)に示されるように、ICG領域のポテンシャルをポテンシャル井戸14のポテンシャルよりも高くすることにより、ID部21からポテンシャル井戸14へと電荷が供給される。続いて、図4の(C)に示されるように、再びICG領域のポテンシャルをID部21のポテンシャルよりも低くすることにより、ICG領域によってすり切られた電荷がポテンシャル井戸14に残る。以上により、ポテンシャル井戸14にID部21と同等のポテンシャルの電荷が蓄積される。なお、図4の例におけるその後の動作は、図3の(D)~(F)の動作と同様である。
However, the method of injecting charges into the potential well 14 is not limited to the example of FIG. 3 described above. For example, as shown in FIG. 4, by setting the potential of the ID section 21 constant and adjusting the voltage of the ICG electrode 22, charges having the same potential as the ID section 21 may be injected into the potential well 14. Specifically, as shown in FIG. 4A, the potential of the ID portion 21 is set to a constant value lower than the potential of the potential well 14 and higher than the potential of the TG region. On the other hand, the potential of the ICG area is made lower than the potential of the ID section 21. Subsequently, as shown in FIG. 4B, by setting the potential of the ICG region higher than the potential of the potential well 14, charges are supplied from the ID portion 21 to the potential well 14. Subsequently, as shown in FIG. 4C, the potential of the ICG region is made lower than the potential of the ID portion 21 again, so that the electric charge that has been cut off by the ICG region remains in the potential well 14. As described above, charges having the same potential as the ID portion 21 are accumulated in the potential well 14. The subsequent operation in the example of FIG. 4 is the same as the operation of (D) to (F) of FIG.
次に、匂いセンサ1の製造方法の一例について説明する。まず、感応膜13が設けられたセンシング部10を半導体基板100上に形成してなるイオンセンサ2が準備される。続いて、参照電極4が、感応膜13から離間すると共に、厚み方向Dから見てセンシング部10と重ならないように配置される。続いて、イオンセンサ2上(すなわち、半導体基板100の主面上)に、パッシベーション層120が形成される。なお、パッシベーション層120は、複数回に分けて段階的に形成されてもよい。例えば、半導体基板100及び感応膜13を覆う第1のバッシベ―ション層が形成された後に、当該第1のパッシベーション層の上に参照電極4が配設され、その後参照電極4を覆う第2のバッシベ―ション層が形成されることにより、パッシベーション層120が形成されてもよい。このようにして、参照電極4を覆うようにイオンセンサ2上にパッシベーション層120が形成される。続いて、パッシベーション層120に、感応膜13の少なくとも一部(本実施形態では、感応膜13の上面の一部)を外部に露出させる開口120aと参照電極4の少なくとも一部(本実施形態では、参照電極4の上面の一部)を外部に露出させる開口120bがエッチング等により形成される。続いて、物質吸着膜3が、感応膜13上に配置される。より具体的には、物質吸着膜3は、パッシベーション層120を覆うように設けられ、開口120aを介して感応膜13に接触すると共に開口120bを介して参照電極4に接触する。このように、上記製造方法では、物質吸着膜3は、参照電極4が配置された後に、感応膜13及び参照電極4を覆うように設けられる。以上により、図2に示した構造(すなわち、物質吸着膜3よりも内側に参照電極4が内蔵された構造)を有する複数の検出部5を備えた匂いセンサ1が得られる。また、上記製造方法では、厚み方向Dから見て参照電極4とセンシング部10とが比較的離れた位置に配置される場合においても、参照電極4及び感応膜13のそれぞれに対応する開口120a及び開口120bを形成することにより、感応膜13上に配置された物質吸着膜3に参照電圧Vrefを印加することが可能な構成を実現できる。
Next, an example of a method for manufacturing the odor sensor 1 will be described. First, the ion sensor 2 having the sensing unit 10 provided with the sensitive film 13 formed on the semiconductor substrate 100 is prepared. Subsequently, the reference electrode 4 is arranged so as to be separated from the sensitive film 13 and not to overlap with the sensing unit 10 when viewed from the thickness direction D. Subsequently, a passivation layer 120 is formed on the ion sensor 2 (that is, on the main surface of the semiconductor substrate 100). Note that the passivation layer 120 may be formed in a plurality of steps in stages. For example, after the first passivation layer covering the semiconductor substrate 100 and the sensitive film 13 is formed, the reference electrode 4 is disposed on the first passivation layer, and then the second passivation layer covering the reference electrode 4 is formed. The passivation layer 120 may be formed by forming the passivation layer. Thus, the passivation layer 120 is formed on the ion sensor 2 so as to cover the reference electrode 4. Subsequently, in the passivation layer 120, at least a part of the reference electrode 4 (in the present embodiment, an opening 120a for exposing at least a part of the sensitive film 13 (a part of the upper surface of the sensitive film 13 in the present embodiment) to the outside). , An opening 120b exposing a part of the upper surface of the reference electrode 4 to the outside is formed by etching or the like. Subsequently, the substance adsorption film 3 is disposed on the sensitive film 13. More specifically, the substance adsorption film 3 is provided so as to cover the passivation layer 120, and contacts the sensitive film 13 through the opening 120a and contacts the reference electrode 4 through the opening 120b. As described above, in the above manufacturing method, the substance adsorption film 3 is provided so as to cover the sensitive film 13 and the reference electrode 4 after the reference electrode 4 is disposed. As described above, the odor sensor 1 including the plurality of detection units 5 having the structure shown in FIG. 2 (that is, the structure in which the reference electrode 4 is embedded inside the substance adsorption film 3) is obtained. Further, in the above-described manufacturing method, even when the reference electrode 4 and the sensing unit 10 are disposed at relatively distant positions when viewed from the thickness direction D, the openings 120a and the openings 120a corresponding to the reference electrode 4 and the sensitive film 13, respectively. By forming the opening 120b, a configuration capable of applying the reference voltage Vref to the substance adsorption film 3 disposed on the sensitive film 13 can be realized.
次に、匂いセンサ1の作用効果について説明する。上述した匂いセンサ1によれば、物質吸着膜3が匂い物質を吸着した際の物質吸着膜3の状態の変化(例えばインピーダンスの変化)に応じた感応膜13の電位変化に基づいて、匂いを検出することができる。このような匂い検出(測定)を実施するためには、物質吸着膜3に参照電圧Vrefを印加する必要がある。このための構成として、例えば、非特許文献1に記載された構成のように、物質吸着膜3の上面(厚み方向Dから見てセンシング部10と重なる部分を含む)に電極(例えばメッシュ電極)を配置する構成(図5の(A)参照)が考えられる。しかし、この構成では、物質吸着膜3の電極直下の部分(電極に隠されてしまい外部に露出しない部分)に匂い物質が吸着され難くなるため、電極直下のセンシング部10において適切に匂いを検出できないという問題がある。一方、匂いセンサ1では、物質吸着膜3に参照電圧Vrefを印加するための参照電極4は、感応膜13から離間すると共に、厚み方向Dから見てセンシング部10と重ならないように配置されている。これにより、上述したようなメッシュ電極を使用する場合の問題が解消される。
Next, the operation and effect of the odor sensor 1 will be described. According to the odor sensor 1 described above, the odor is detected based on a change in the potential of the sensitive film 13 according to a change in the state of the substance adsorption film 3 (for example, a change in impedance) when the substance adsorption film 3 adsorbs the odor substance. Can be detected. In order to perform such odor detection (measurement), it is necessary to apply the reference voltage Vref to the substance adsorption film 3. As a configuration for this, for example, as in the configuration described in Non-Patent Document 1, an electrode (for example, a mesh electrode) is provided on the upper surface of the substance adsorption film 3 (including a portion overlapping the sensing unit 10 when viewed in the thickness direction D). (See FIG. 5A) can be considered. However, in this configuration, it is difficult for the odor substance to be adsorbed to the portion of the substance adsorption film 3 directly below the electrode (the portion hidden by the electrode and not exposed to the outside), so that the odor is appropriately detected by the sensing unit 10 immediately below the electrode. There is a problem that can not be. On the other hand, in the odor sensor 1, the reference electrode 4 for applying the reference voltage Vref to the substance adsorption film 3 is arranged so as to be separated from the sensitive film 13 and not to overlap with the sensing unit 10 when viewed from the thickness direction D. I have. This solves the problem when using the mesh electrode as described above.
また、例えば、匂いに対する感度が物質吸着膜3のインピーダンスの変化に起因する場合には、感応膜13と参照電極4とを近づけすぎると、匂いに対する感度が失われる可能性が高い。一方、匂いセンサ1では、参照電極4が、感応膜13から離間すると共に、厚み方向Dから見てセンシング部10と重ならないように配置されることにより、感応膜13と参照電極4とが近づきすぎることを防止できる。その結果、感応膜13と参照電極4とが近すぎることが原因で感応膜13において適切に匂いを検出できなくなることを抑制できる。従って、匂いセンサ1によれば、好適に匂いを検出することが可能となる。
Also, for example, when the sensitivity to odor is caused by a change in impedance of the substance adsorption film 3, if the sensitive film 13 and the reference electrode 4 are too close, the sensitivity to odor is likely to be lost. On the other hand, in the odor sensor 1, the reference electrode 4 is separated from the sensitive film 13 and is arranged so as not to overlap with the sensing unit 10 when viewed from the thickness direction D, so that the sensitive film 13 and the reference electrode 4 come closer to each other. Can be prevented from being too long. As a result, it is possible to prevent the sensitive film 13 from being unable to properly detect an odor due to the sensitive film 13 being too close to the reference electrode 4. Therefore, according to the odor sensor 1, it is possible to preferably detect the odor.
ここで、仮に、参照電極4をICG電極22又はTG電極32と対向するように配置した場合、ICG電極22又はTG電極32(特に、FD部31への電荷の転送前後においてパルス状に電圧を変化させるTG電極32)によって、参照電極4の電位(Vref)が乱される可能性がある。一方、図1及び図2に示されるように、匂いセンサ1では、参照電極4は、厚み方向Dから見てICG電極22及びTG電極32のいずれとも重ならないように配置されている。これにより、上述したような問題の発生を抑制することができる。
Here, if the reference electrode 4 is arranged so as to face the ICG electrode 22 or the TG electrode 32, the voltage is pulsed before and after the transfer of the electric charge to the ICG electrode 22 or the TG electrode 32 (especially, the FD section 31). The potential (Vref) of the reference electrode 4 may be disturbed by the changed TG electrode 32). On the other hand, as shown in FIGS. 1 and 2, in the odor sensor 1, the reference electrode 4 is arranged so as not to overlap with either the ICG electrode 22 or the TG electrode 32 when viewed from the thickness direction D. Thereby, the occurrence of the above-described problem can be suppressed.
また、匂いセンサ1では、物質吸着膜3は、パッシベーション層120を覆うように設けられている。感応膜13は、パッシベーション層120に設けられた開口120aを介して物質吸着膜3と接触している。参照電極4は、物質吸着膜3と半導体基板100との間に設けられており、パッシベーション層120に設けられた開口120bを介して、当該開口120b内に入り込んだ物質吸着膜3と接触している。このように、参照電極4を物質吸着膜3よりも内側に内蔵する構成を採用する場合、例えばCMOSプロセス等を用いてメタル配線を配設することにより、容易に参照電極4を作成することが可能となる。これにより、再現性高く参照電極4を作成することが可能となる。また、CMOSプロセス内で参照電極4を作成することが可能となるため、参照電極4を作成するための余分な工数の発生を抑制できる。また、イオンセンサ2に内蔵された電極パッド(不図示)を介して、参照電極4への電圧供給を容易化できる。
(4) In the odor sensor 1, the substance adsorption film 3 is provided so as to cover the passivation layer 120. The sensitive film 13 is in contact with the substance adsorption film 3 through an opening 120a provided in the passivation layer 120. The reference electrode 4 is provided between the substance adsorption film 3 and the semiconductor substrate 100, and comes into contact with the substance adsorption film 3 that has entered the opening 120b through an opening 120b provided in the passivation layer 120. I have. As described above, in the case where the configuration in which the reference electrode 4 is embedded inside the substance adsorption film 3 is adopted, the reference electrode 4 can be easily formed by disposing the metal wiring using, for example, a CMOS process. It becomes possible. This makes it possible to create the reference electrode 4 with high reproducibility. Further, since the reference electrode 4 can be formed in the CMOS process, it is possible to suppress the generation of extra steps for forming the reference electrode 4. Further, it is possible to easily supply a voltage to the reference electrode 4 through an electrode pad (not shown) built in the ion sensor 2.
また、匂いセンサ1では、イオンセンサ2は、半導体基板100上に二次元状に配列された複数のセンシング部10(検出部5)を有している。1つの物質吸着膜3は、2以上のセンシング部10上に配置されている。すなわち、1つの物質吸着膜3は、複数の単位検出素子(画素)に跨るように配置されている。この場合、1つの物質吸着膜3に複数のセンシング部10を対応させることができる。これにより、例えば複数のセンシング部10の出力値(out信号)の統計値(例えば平均値)を用いることにより、測定における感度のばらつきを低減できる。また、1つの物質吸着膜3に対応する一部のセンシング部10が不良である場合(すなわち、不良画素が発生した場合)であっても、他のセンシング部10(すなわち、他の検出部5)を使用することにより当該物質吸着膜3を用いた測定(匂い検出)を実施することができる。また、複数のセンシング部10の出力値に基づいて、イメージング測定(匂いの二次元分布の測定)を行うことも可能となる。これにより、例えば、匂いの拡散方向を把握したり、匂いセンサ1の近くにサンプルを配置することにより、サンプルにおける匂いの発生源を発見したりすること等が可能となる。
In the odor sensor 1, the ion sensor 2 has a plurality of sensing units 10 (detection units 5) two-dimensionally arranged on the semiconductor substrate 100. One substance adsorption film 3 is arranged on two or more sensing units 10. That is, one substance adsorption film 3 is arranged so as to straddle a plurality of unit detection elements (pixels). In this case, a plurality of sensing units 10 can correspond to one substance adsorption film 3. Thus, for example, by using the statistical value (for example, the average value) of the output values (out signals) of the plurality of sensing units 10, the variation in the sensitivity in the measurement can be reduced. Further, even when some of the sensing units 10 corresponding to one substance adsorption film 3 are defective (that is, when a defective pixel is generated), the other sensing units 10 (that is, other detection units 5) are not used. ), The measurement (odor detection) using the substance adsorption film 3 can be performed. Further, imaging measurement (measurement of two-dimensional distribution of odor) can be performed based on output values of the plurality of sensing units 10. Accordingly, for example, it is possible to find out the source of the odor in the sample by grasping the diffusion direction of the odor and arranging the sample near the odor sensor 1.
また、匂いセンサ1では、複数の物質吸着膜3が、それぞれ異なるセンシング部10(検出部5)上に配置されている。すなわち、1つのイオンセンサ2(すなわち、1つのセンサチップ)上に、複数(本実施形態では5つ)の物質吸着膜3が、互いに独立して形成されている。例えば、それぞれ異なる匂い物質に反応する複数の物質吸着膜3(すなわち、互いに特性の異なる複数の物質吸着膜)を1つのイオンセンサ2上に設けることにより、各物質吸着膜3に対応するセンシング部10の出力値(out信号)に基づいて、複雑な匂いのパターンを検出することが可能となる。なお、それぞれ異なる物質吸着膜3が設けられた複数のイオンセンサを用いることも考えられるが、この場合、イオンセンサ間の個体差(感度のばらつき)を考慮して測定を行う必要が生じ得る。また、必要となるイオンセンサの個数が増えることにより、全体としての装置規模が大型化してしまう。一方、上述したように複数の物質吸着膜3を1つのイオンセンサ2上に配置する構成によれば、このような問題を解消できる。また、複数の同種の物質吸着膜3を1つのイオンセンサ2上に設ける場合にも、当該イオンセンサ2において一部の物質吸着膜3が適切に機能しないときに、他の物質吸着膜3に対応するセンシング部10の出力値に基づいて測定を継続することが可能となるという効果が奏される。
(4) In the odor sensor 1, a plurality of substance adsorption films 3 are arranged on different sensing units 10 (detection units 5). That is, a plurality (five in the present embodiment) of the substance adsorption films 3 are formed independently on one ion sensor 2 (that is, one sensor chip). For example, by providing a plurality of substance adsorbing films 3 (that is, a plurality of substance adsorbing films having different characteristics) reacting to different odor substances on one ion sensor 2, a sensing unit corresponding to each substance adsorbing film 3 is provided. Complex odor patterns can be detected based on the ten output values (out signals). Note that a plurality of ion sensors provided with different substance adsorption films 3 may be used, but in this case, measurement may need to be performed in consideration of individual differences (variations in sensitivity) between the ion sensors. In addition, as the number of required ion sensors increases, the overall device scale increases. On the other hand, according to the configuration in which the plurality of substance adsorption films 3 are arranged on one ion sensor 2 as described above, such a problem can be solved. Further, even when a plurality of the same kind of substance adsorption films 3 are provided on one ion sensor 2, when some of the substance adsorption films 3 do not function properly in the ion sensor 2, the other substance adsorption films 3 are not provided. There is an effect that the measurement can be continued based on the output value of the corresponding sensing unit 10.
ここで、1つのイオンセンサ2上に設けられる複数の物質吸着膜3は、同一の材料(本実施形態ではポリアニリン)の成分量(含有量)が互いに異なる複数の物質吸着膜であってもよいし、互いに異なる材料で形成された複数の物質吸着膜であってもよい。このように成分量又は材料が互いに異なる複数の物質吸着膜3を用いることにより、各物質吸着膜3の測定結果の組み合わせに基づいて、様々な匂い物質を検出することが可能となる。例えば、複数の物質吸着膜の測定結果の組み合わせと特定の匂い物質とを対応付けたテーブル情報(匂いデータベース)が予め用意されている場合、当該テーブル情報を参照することにより、複数の物質吸着膜3の各々の測定結果の組み合わせに対応する匂い物質を特定することが可能となる。
Here, the plurality of substance adsorption films 3 provided on one ion sensor 2 may be a plurality of substance adsorption films having the same material (polyaniline in the present embodiment) having different component amounts (contents). Alternatively, a plurality of substance adsorption films formed of different materials may be used. By using a plurality of substance adsorption films 3 having different component amounts or materials as described above, various odor substances can be detected based on a combination of measurement results of each substance adsorption film 3. For example, when table information (smell database) in which a combination of the measurement results of a plurality of substance adsorbing films and a specific odor substance are prepared in advance, the plurality of substance adsorbing films are referred to by referring to the table information. It becomes possible to specify the odor substance corresponding to the combination of the respective measurement results of No. 3.
また、本発明者の知見により、センシング部10の感度は、当該センシング部10の感応膜13と参照電極4との距離による影響を受け得ることが確認された。そこで、匂いセンサ1では、参照電極4は、複数のセンシング部10の各々の感応膜13と参照電極4との距離が互いに略同一となるように配置されている。具体的には、上述したように、各検出部5において、参照電極4は、厚み方向Dから見たセンシング部10と参照電極4との距離d1が一定(例えば3μm)となるように配置されている。これにより、各センシング部10の感度を均一化することができる。
Also, from the knowledge of the present inventors, it was confirmed that the sensitivity of the sensing unit 10 can be affected by the distance between the sensitive film 13 of the sensing unit 10 and the reference electrode 4. Therefore, in the odor sensor 1, the reference electrode 4 is arranged such that the distance between the sensitive film 13 of each of the plurality of sensing units 10 and the reference electrode 4 is substantially the same. Specifically, as described above, in each detection unit 5, the reference electrode 4 is arranged such that the distance d1 between the sensing unit 10 and the reference electrode 4 when viewed from the thickness direction D is constant (for example, 3 μm). ing. Thereby, the sensitivity of each sensing unit 10 can be made uniform.
図5を参照して、上記効果について補足する。図5の(A)は、比較例に係る匂いセンサ(以下単に「比較例」)にアンモニアガスを曝露した際における各画素(各センシング部)の測定結果(感度)を濃淡によって表した図である。図5の(B)は、実施例に係る匂いセンサ(以下単に「実施例」)にアンモニアガスを曝露した際における各画素(各センシング部)の測定結果(感度)を濃淡によって表した図である。比較例は、非特許文献1に記載の構造のようにメッシュ電極MEを物質吸着膜3上に配置した匂いセンサである。実施例は、上述した匂いセンサ1と同様に内蔵電極(参照電極4)を採用した匂いセンサである。図5において、最も薄い色(白に近い色)の高感度領域p1と黒色に近い低感度領域p2は、一定以上の感度を示したセンシング部に対応する領域(すなわち、アンモニアガスの匂いが検出された領域)である。高感度領域p1は、低感度領域p2よりも大きい感度を示した領域である。一方、高感度領域p1よりも若干濃い色で表された不感領域p3は、感度を示さなかったセンシング部(不感画素)に対応する領域である。
効果 The above effect will be supplemented with reference to FIG. FIG. 5A is a diagram showing the measurement result (sensitivity) of each pixel (each sensing unit) when the odor sensor according to the comparative example (hereinafter simply referred to as “comparative example”) is exposed to ammonia gas, by shading. is there. FIG. 5B is a diagram in which the measurement results (sensitivity) of each pixel (each sensing unit) when the odor sensor according to the example (hereinafter simply referred to as “example”) is exposed to ammonia gas are represented by shading. is there. The comparative example is an odor sensor in which the mesh electrode ME is arranged on the substance adsorption film 3 as in the structure described in Non-Patent Document 1. The embodiment is an odor sensor that employs a built-in electrode (reference electrode 4) as in the odor sensor 1 described above. In FIG. 5, a high-sensitivity region p1 of the lightest color (color close to white) and a low-sensitivity region p2 of close to black correspond to a region corresponding to the sensing unit exhibiting sensitivity equal to or higher than a certain level (that is, the smell of ammonia gas is detected Area). The high-sensitivity area p1 is an area that has a higher sensitivity than the low-sensitivity area p2. On the other hand, the dead area p3 represented by a slightly darker color than the high-sensitivity area p1 is an area corresponding to a sensing unit (dead pixel) that does not exhibit sensitivity.
図5の(A)に示されるように、比較例では、不感領域p3が網目状に形成された。このような網目状の不感領域p3は、メッシュ電極MEに覆われた部分に対応する領域である。物質吸着膜3においてメッシュ電極MEに覆われた部分に匂い物質が吸着されないため、このような網目状の不感領域p3が形成されたと考えられる。一方、メッシュ電極MEに覆われていない部分に対応する領域においては、匂いに関する感度が得られた。しかし、メッシュ電極MEから遠い部分(四方をメッシュ電極MEに包囲された領域の中心部)に低感度領域p2が形成され、メッシュ電極MEから比較的近い部分(四方をメッシュ電極MEに包囲された領域の縁部)に高感度領域p1が形成された。つまり、メッシュ電極MEから比較的近い位置に配置されたセンシング部とメッシュ電極MEから比較的遠い位置に配置されたセンシング部との間で感度差が生じることが確認された。
As shown in FIG. 5A, in the comparative example, the dead area p3 was formed in a mesh shape. Such a mesh-shaped dead area p3 is an area corresponding to a portion covered by the mesh electrode ME. Since the odor substance is not adsorbed on the portion of the substance adsorption film 3 covered with the mesh electrode ME, it is considered that such a mesh-shaped insensitive region p3 was formed. On the other hand, in the region corresponding to the portion not covered by the mesh electrode ME, sensitivity regarding odor was obtained. However, the low-sensitivity region p2 is formed in a portion far from the mesh electrode ME (the center of the region surrounded by the mesh electrode ME on all sides), and a portion relatively close to the mesh electrode ME (on all sides is surrounded by the mesh electrode ME). A high sensitivity region p1 was formed at the edge of the region). That is, it has been confirmed that a sensitivity difference occurs between the sensing unit arranged relatively close to the mesh electrode ME and the sensing unit arranged relatively far from the mesh electrode ME.
一方、図5の(B)に示されるように、メッシュ電極が設けられておらず、且つ、各センシング部10の感応膜13と参照電極4との距離が略同一となるように構成された実施例では、ほぼ一様な高感度領域p1が形成された。このような測定結果から、複数のセンシング部10の各々の感応膜13と参照電極4との距離が互いに略同一となるように配置することによる効果が確認された。
On the other hand, as shown in FIG. 5B, no mesh electrode is provided, and the distance between the sensitive film 13 of each sensing unit 10 and the reference electrode 4 is substantially the same. In the example, a substantially uniform high-sensitivity region p1 was formed. From such measurement results, the effect of arranging the sensing films 13 of the plurality of sensing units 10 and the reference electrode 4 such that the distances between the sensing films 13 and the reference electrode 4 are substantially the same was confirmed.
なお、より具体的には、本実施形態及び上記実施例では、図1の右部に示したレイアウトの検出部5が二次元状(格子状)に配列されることにより、図6の(A)に示すように、厚み方向Dから見て、互いに平行に延びる一対の参照電極4が、1つのセンシング部10の両側を挟むように配置されている。また、一の検出部5のセンシング部10と当該一の検出部5の右隣りの検出部5上を通るように配置された参照電極4との距離d2は、距離d1と略同一となるように調整されている。
More specifically, in the present embodiment and the above example, the detection units 5 of the layout shown in the right part of FIG. 2), a pair of reference electrodes 4 extending in parallel with each other when viewed from the thickness direction D are arranged so as to sandwich both sides of one sensing unit 10. Further, the distance d2 between the sensing unit 10 of the one detection unit 5 and the reference electrode 4 disposed so as to pass over the detection unit 5 on the right of the one detection unit 5 is substantially equal to the distance d1. Has been adjusted.
ただし、参照電極4のレイアウトは、上記例に限られない。例えば、図6の(B)に示されるように、参照電極4は、厚み方向Dから見て、各検出部5のセンシング部10の四方を包囲するように配置されてもよい。また、図6の(C)に示されるように、厚み方向Dから見て、2行2列に配置された4つのセンシング部10(4画素)毎に、当該4画素からなる領域の中心位置に、共通の参照電極4(例えば厚み方向Dから見て矩形状に形成された電極)が配置されてもよい。いずれのレイアウトによっても、各センシング部10(各画素)の感応膜13と参照電極4との位置関係が共通化される。これにより、各センシング部10の感応膜13と当該感応膜13に近接する参照電極4との距離を略同一にすることができる。その結果、各センシング部10の感度を均一化することができる。ただし、各センシング部10の感度を均一にする必要がない場合、或いはあえてセンシング部10間で感度差(感度勾配)を持たせたい場合等には、参照電極4は、センシング部10毎(画素毎)に感応膜13と参照電極4との位置関係(距離)が異なるように配置されてもよい。
However, the layout of the reference electrode 4 is not limited to the above example. For example, as shown in FIG. 6B, the reference electrode 4 may be arranged so as to surround four sides of the sensing unit 10 of each detection unit 5 when viewed from the thickness direction D. Also, as shown in FIG. 6C, the center position of the region composed of the four pixels for each of the four sensing units 10 (four pixels) arranged in two rows and two columns when viewed from the thickness direction D. In addition, a common reference electrode 4 (for example, an electrode formed in a rectangular shape when viewed from the thickness direction D) may be arranged. In any layout, the positional relationship between the sensitive film 13 of each sensing unit 10 (each pixel) and the reference electrode 4 is shared. Thus, the distance between the sensitive film 13 of each sensing unit 10 and the reference electrode 4 close to the sensitive film 13 can be made substantially the same. As a result, the sensitivity of each sensing unit 10 can be made uniform. However, when it is not necessary to make the sensitivity of each sensing unit 10 uniform, or when it is desired to have a sensitivity difference (sensitivity gradient) between the sensing units 10, the reference electrode 4 is connected to each sensing unit 10 (pixel). Each time), the positional relationship (distance) between the sensitive film 13 and the reference electrode 4 may be different.
(参照電極の第1変形例)
図7は、第1変形例の参照電極200を含む検出部5の断面構成を模式的に示す図である。第1変形例の参照電極200は、上述した参照電極4と同様に構成された第1電極201に加えて、第2電極202及び第3電極203を有する。 (First Modification of Reference Electrode)
FIG. 7 is a diagram schematically illustrating a cross-sectional configuration of thedetection unit 5 including the reference electrode 200 according to the first modification. The reference electrode 200 of the first modified example has a second electrode 202 and a third electrode 203 in addition to the first electrode 201 configured similarly to the above-described reference electrode 4.
図7は、第1変形例の参照電極200を含む検出部5の断面構成を模式的に示す図である。第1変形例の参照電極200は、上述した参照電極4と同様に構成された第1電極201に加えて、第2電極202及び第3電極203を有する。 (First Modification of Reference Electrode)
FIG. 7 is a diagram schematically illustrating a cross-sectional configuration of the
第2電極202は、物質吸着膜3の外表面3a(すなわち、半導体基板100とは反対側の表面)に設けられている。第2電極202は、物質吸着膜3の外表面3aに沿って形成されたメンブレン構造(膜状)の電極部材である。第2電極202は、例えばMEMSプロセスを用いて作成される。第2電極202には、センシング部10に対応する物質吸着膜3の部分を外部に露出させるための開口202aが形成されている。本実施形態では、開口202aは、厚み方向Dから見て、センシング部10、ICG電極22及びTG電極32を包含するように設けられている。すなわち、第2電極202は、厚み方向Dから見て、センシング部10、ICG電極22及びTG電極32と重ならないように配置されている。第2電極202は、例えば、図6の(B)に示したように、厚み方向Dから見て、各センシング部10の四方を取り囲むように格子状に形成され得る。
{Circle around (2)} The second electrode 202 is provided on the outer surface 3a of the substance adsorption film 3 (that is, on the surface opposite to the semiconductor substrate 100). The second electrode 202 is an electrode member having a membrane structure (film shape) formed along the outer surface 3a of the substance adsorption film 3. The second electrode 202 is created using, for example, a MEMS process. The second electrode 202 has an opening 202a for exposing a portion of the substance adsorption film 3 corresponding to the sensing unit 10 to the outside. In the present embodiment, the opening 202a is provided so as to include the sensing unit 10, the ICG electrode 22, and the TG electrode 32 when viewed from the thickness direction D. That is, the second electrode 202 is arranged so as not to overlap the sensing unit 10, the ICG electrode 22, and the TG electrode 32 when viewed from the thickness direction D. For example, as shown in FIG. 6B, the second electrode 202 can be formed in a lattice shape so as to surround four sides of each sensing unit 10 when viewed from the thickness direction D.
第3電極203は、パッシベーション層120の開口120bを介して第1電極201と第2電極202とを電気的に接続すると共に、第2電極202を支持する電極部材である。一例として、第3電極203は、第1電極201の幅方向中央部に配置され、第1電極201に沿って延びる壁状部材である。或いは、第3電極203は、一以上の柱状部材によって構成されてもよい。このような参照電極200を含む匂いセンサは、例えば、上述した参照電極4を含む匂いセンサ1の製造方法を実施した後に、更に第2電極202及び第3電極203をMEMSプロセス等によって形成する工程を実施することにより得られる。すなわち、参照電極200を含む匂いセンサの製造方法においては、参照電極の少なくとも一部(ここでは第2電極202及び第3電極203)は、物質吸着膜3が配置された後に、物質吸着膜3の一部を覆うように設けられる。これにより、物質吸着膜3の外側に参照電極の少なくとも一部が配置された構造の匂いセンサが得られる。
The third electrode 203 is an electrode member that electrically connects the first electrode 201 and the second electrode 202 via the opening 120b of the passivation layer 120 and supports the second electrode 202. As an example, the third electrode 203 is a wall-shaped member that is arranged at the center in the width direction of the first electrode 201 and extends along the first electrode 201. Alternatively, the third electrode 203 may be composed of one or more columnar members. Such an odor sensor including the reference electrode 200 is, for example, a step of forming the second electrode 202 and the third electrode 203 by a MEMS process or the like after performing the above-described method of manufacturing the odor sensor 1 including the reference electrode 4. Is obtained. That is, in the manufacturing method of the odor sensor including the reference electrode 200, at least a part of the reference electrode (here, the second electrode 202 and the third electrode 203) is disposed after the substance adsorption film 3 is disposed. Is provided so as to cover a part of. Thereby, an odor sensor having a structure in which at least a part of the reference electrode is arranged outside the substance adsorption film 3 is obtained.
第1変形例の参照電極200によれば、物質吸着膜3と参照電極との接触面積を増やすことにより、物質吸着膜3に対してより確実且つ安定的に参照電圧Vrefを印加することができる。
According to the reference electrode 200 of the first modified example, the reference voltage Vref can be more reliably and stably applied to the substance adsorption film 3 by increasing the contact area between the substance adsorption film 3 and the reference electrode. .
(参照電極の第2変形例)
図8は、第2変形例の参照電極300を含む検出部5の断面構成を模式的に示す図である。第2変形例の参照電極300は、参照電極200の第2電極202及び第3電極203と同様に構成された第1電極301及び第2電極302を有する。一方、参照電極300では、CMOSプロセスの段階で、上述した参照電極4及び第1電極201のような内蔵電極が作成されていない。このため、第2電極302の下端は、パッシベーション層120の上面に配置されている。参照電極300では、第1電極301は、イオンセンサ2における画素アレイ外の任意の場所に設けられた電極パッドPに電気的に接続されることにより、電極パッドPから参照電圧Vrefが印加される。 (Second Modification of Reference Electrode)
FIG. 8 is a diagram schematically illustrating a cross-sectional configuration of thedetection unit 5 including the reference electrode 300 according to the second modification. The reference electrode 300 of the second modified example has a first electrode 301 and a second electrode 302 configured similarly to the second electrode 202 and the third electrode 203 of the reference electrode 200. On the other hand, in the reference electrode 300, the built-in electrodes such as the reference electrode 4 and the first electrode 201 described above have not been formed in the CMOS process. For this reason, the lower end of the second electrode 302 is disposed on the upper surface of the passivation layer 120. In the reference electrode 300, the first electrode 301 is electrically connected to an electrode pad P provided at an arbitrary position outside the pixel array in the ion sensor 2, so that the reference voltage Vref is applied from the electrode pad P. .
図8は、第2変形例の参照電極300を含む検出部5の断面構成を模式的に示す図である。第2変形例の参照電極300は、参照電極200の第2電極202及び第3電極203と同様に構成された第1電極301及び第2電極302を有する。一方、参照電極300では、CMOSプロセスの段階で、上述した参照電極4及び第1電極201のような内蔵電極が作成されていない。このため、第2電極302の下端は、パッシベーション層120の上面に配置されている。参照電極300では、第1電極301は、イオンセンサ2における画素アレイ外の任意の場所に設けられた電極パッドPに電気的に接続されることにより、電極パッドPから参照電圧Vrefが印加される。 (Second Modification of Reference Electrode)
FIG. 8 is a diagram schematically illustrating a cross-sectional configuration of the
参照電極300を含む匂いセンサは、例えば、上述した参照電極4を含む匂いセンサ1の製造方法において、参照電極4を配置する工程及び開口120bを形成する工程を省略する一方で、第1電極301及び第2電極302をMEMSプロセス等によって形成する工程を実施することにより得られる。すなわち、参照電極300を含む匂いセンサの製造方法においては、参照電極の少なくとも一部(ここでは第1電極301及び第2電極302)は、物質吸着膜3が配置された後に、物質吸着膜3の一部を覆うように設けられる。これにより、物質吸着膜3の外側に参照電極の少なくとも一部が配置された構造の匂いセンサが得られる。
In the odor sensor including the reference electrode 300, for example, in the method of manufacturing the odor sensor 1 including the reference electrode 4, the step of arranging the reference electrode 4 and the step of forming the opening 120b are omitted, while the first electrode 301 is omitted. And a step of forming the second electrode 302 by a MEMS process or the like. That is, in the method of manufacturing an odor sensor including the reference electrode 300, at least a part of the reference electrode (here, the first electrode 301 and the second electrode 302) is disposed after the material adsorption film 3 is disposed. Is provided so as to cover a part of. Thereby, an odor sensor having a structure in which at least a part of the reference electrode is arranged outside the substance adsorption film 3 is obtained.
第2変形例の参照電極300によれば、CMOSプロセスにおいて、上述した参照電極4及び第1電極201のような内蔵電極の作成及び開口120bの形成等の処理を省略できる。また、内蔵電極を省略できる分だけ半導体基板100上のセンシング部10(検出部5)の配列ピッチを小さくすることが可能となる。その結果、匂いセンサ1の小型化を図ることができる。或いは、匂い分布測定(イメージング)を行う場合には、空間分解能の向上を図ることができる。
According to the reference electrode 300 of the second modification, in the CMOS process, processes such as creation of the built-in electrodes such as the reference electrode 4 and the first electrode 201 and formation of the opening 120b can be omitted. In addition, the arrangement pitch of the sensing units 10 (detection units 5) on the semiconductor substrate 100 can be reduced by the amount by which the built-in electrodes can be omitted. As a result, the size of the odor sensor 1 can be reduced. Alternatively, when odor distribution measurement (imaging) is performed, the spatial resolution can be improved.
(参照電極の第3変形例)
図9及び図10を参照して、参照電極の第3変形例について説明する。図9は、第3変形例の参照電極400を含む検出部5のレイアウト例を示す図である。図9に示されるように、参照電極400は、厚み方向Dから見てセンシング部10の外縁部(外周部)に配置される。すなわち、各検出部5において、上述した参照電極4及び開口120bが形成されない代わりに、センシング部10を包囲するように環状に形成された参照電極400(メタル配線)が配設されている。 (Third Modification of Reference Electrode)
A third modification of the reference electrode will be described with reference to FIGS. FIG. 9 is a diagram illustrating a layout example of thedetection unit 5 including the reference electrode 400 according to the third modification. As shown in FIG. 9, the reference electrode 400 is disposed at the outer edge (outer peripheral portion) of the sensing unit 10 when viewed from the thickness direction D. In other words, instead of forming the above-described reference electrode 4 and the opening 120b in each detection unit 5, a reference electrode 400 (metal wiring) formed in an annular shape so as to surround the sensing unit 10 is provided.
図9及び図10を参照して、参照電極の第3変形例について説明する。図9は、第3変形例の参照電極400を含む検出部5のレイアウト例を示す図である。図9に示されるように、参照電極400は、厚み方向Dから見てセンシング部10の外縁部(外周部)に配置される。すなわち、各検出部5において、上述した参照電極4及び開口120bが形成されない代わりに、センシング部10を包囲するように環状に形成された参照電極400(メタル配線)が配設されている。 (Third Modification of Reference Electrode)
A third modification of the reference electrode will be described with reference to FIGS. FIG. 9 is a diagram illustrating a layout example of the
図10は、参照電極400を含む検出部5の要部(センシング部10の周辺部分)の断面構成を模式的に示す図である。図10に示されるように、パッシベーション層120には、厚み方向Dから見てセンシング部10を包含するように形成された開口121が形成されている。感応膜13は、当該開口121を介して、当該開口121内に入り込んだ物質吸着膜3と接触している。開口121は、第1開口部121aと第2開口部121bとからなる。第1開口部121aは、パッシベーション層120の上面から参照電極400の上面400aまで達している。第2開口部121bは、第1開口部121aと連通し、感応膜13の上面(半導体基板100とは反対側の面)まで達している。
FIG. 10 is a diagram schematically illustrating a cross-sectional configuration of a main part of the detection unit 5 including the reference electrode 400 (a peripheral portion of the sensing unit 10). As shown in FIG. 10, an opening 121 is formed in the passivation layer 120 so as to include the sensing unit 10 when viewed from the thickness direction D. The sensitive film 13 is in contact with the substance adsorption film 3 that has entered the opening 121 via the opening 121. The opening 121 includes a first opening 121a and a second opening 121b. The first opening 121a extends from the upper surface of the passivation layer 120 to the upper surface 400a of the reference electrode 400. The second opening 121b communicates with the first opening 121a and reaches the upper surface of the sensitive film 13 (the surface opposite to the semiconductor substrate 100).
参照電極400は、開口121の内部に露出して物質吸着膜3と接触する部分を含む。本実施形態では、参照電極400の上面400aの一部と内側面400bとが、開口121の内部に露出しており、物質吸着膜3に接触している。参照電極400の上面400aの一部は、第1開口部121aの底面の一部を構成している。参照電極400の内側面400bは、第2開口部121bの内面の一部を構成している。
The reference electrode 400 includes a portion exposed inside the opening 121 and in contact with the substance adsorption film 3. In the present embodiment, a part of the upper surface 400 a and the inner side surface 400 b of the reference electrode 400 are exposed inside the opening 121 and are in contact with the substance adsorption film 3. A part of the upper surface 400a of the reference electrode 400 forms a part of a bottom surface of the first opening 121a. The inner surface 400b of the reference electrode 400 forms a part of the inner surface of the second opening 121b.
一例として、参照電極400は、ICG電極22に電圧を印加するためのメタル配線E1及びTG電極32に電圧を印加するためのメタル配線E2と同じレイヤ(例えば、上述した第1配線層)に設けられている。このように、参照電極400をメタル配線E1,E2と同一のレイヤに設けることにより、第1配線層よりも上のレイヤ(例えば、上記実施形態において参照電極4が配設される第2配線層)を、RD部41又はRG電極42等に電圧を印加するためのメタル配線を配設するためのレイヤとして活用することが可能となる。これにより、メタル配線の設計自由度を向上させることができる。また、半導体基板100の主面に近い第1配線層にメタル配線を配設した方が、半導体基板100の主面から遠い第2配線層にメタル配線を配設する場合よりも、メタル配線を高い位置精度で形成することができる。従って、第1配線層に参照電極400を配設することにより、参照電極400の位置精度を向上させることができる。また、参照電極400の複数の面(上面400a及び内側面400b)を物質吸着膜3と接触させることにより、物質吸着膜3と参照電極400とをより確実に接触させることができる。
As an example, the reference electrode 400 is provided on the same layer (for example, the first wiring layer described above) as the metal wiring E1 for applying a voltage to the ICG electrode 22 and the metal wiring E2 for applying a voltage to the TG electrode 32. Has been. Thus, by providing the reference electrode 400 on the same layer as the metal wirings E1 and E2, a layer above the first wiring layer (for example, the second wiring layer on which the reference electrode 4 is provided in the above embodiment) ) Can be used as a layer for arranging a metal wiring for applying a voltage to the RD section 41 or the RG electrode 42 and the like. As a result, the degree of freedom in designing the metal wiring can be improved. In addition, arranging the metal wiring in the first wiring layer near the main surface of the semiconductor substrate 100 is more effective than arranging the metal wiring in the second wiring layer far from the main surface of the semiconductor substrate 100. It can be formed with high positional accuracy. Therefore, by disposing the reference electrode 400 in the first wiring layer, the positional accuracy of the reference electrode 400 can be improved. Further, by bringing the plurality of surfaces (upper surface 400a and inner side surface 400b) of reference electrode 400 into contact with substance adsorption film 3, substance adsorption film 3 and reference electrode 400 can be more reliably brought into contact.
次に、参照電極400を含む匂いセンサの製造方法の一例について説明する。まず、感応膜13が設けられたセンシング部10を半導体基板100上に形成してなるイオンセンサ2が準備される。続いて、半導体基板100(イオンセンサ2)上に、厚み方向Dから見たセンシング部10の外縁部において、感応膜13から離間するように参照電極400が配置される。続いて、半導体基板100(イオンセンサ2)及び参照電極400を覆うパッシベーション層120が形成される。なお、パッシベーション層120は、複数回に分けて段階的に形成されてもよい。例えば、半導体基板100及び感応膜13を覆う第1のバッシベ―ション層が形成された後に、当該第1のパッシベーション層の上に参照電極400が配設され、その後参照電極400を覆う第2のバッシベ―ション層が形成されることにより、パッシベーション層120が形成されてもよい。このようにして、参照電極4を覆うようにイオンセンサ2上にパッシベーション層120が形成される。
Next, an example of a method for manufacturing an odor sensor including the reference electrode 400 will be described. First, the ion sensor 2 having the sensing unit 10 provided with the sensitive film 13 formed on the semiconductor substrate 100 is prepared. Subsequently, the reference electrode 400 is arranged on the semiconductor substrate 100 (the ion sensor 2) so as to be separated from the sensitive film 13 at the outer edge of the sensing unit 10 as viewed in the thickness direction D. Subsequently, a passivation layer 120 that covers the semiconductor substrate 100 (ion sensor 2) and the reference electrode 400 is formed. Note that the passivation layer 120 may be formed in a plurality of steps in stages. For example, after a first passivation layer covering the semiconductor substrate 100 and the sensitive film 13 is formed, a reference electrode 400 is provided on the first passivation layer, and then a second passivation layer covering the reference electrode 400 is formed. The passivation layer 120 may be formed by forming the passivation layer. Thus, the passivation layer 120 is formed on the ion sensor 2 so as to cover the reference electrode 4.
続いて、パッシベーション層120をエッチングすることにより、感応膜13の少なくとも一部(本実施形態では、感応膜13の上面の一部)及び参照電極400の少なくとも一部(本実施形態では、上面400aの一部及び内側面400b)を外部に露出させるための開口121が形成される。
Subsequently, by etching the passivation layer 120, at least a part of the sensitive film 13 (a part of the upper surface of the sensitive film 13 in the present embodiment) and at least a part of the reference electrode 400 (the upper surface 400a in the present embodiment). And an opening 121 for exposing a part of the inner surface 400b) to the outside.
続いて、少なくとも第2開口部121bの内側において、参照電極400から感応膜13にかけて、物質吸着膜3が形成される。本実施形態では、図10に示されるように、物質吸着膜3は、パッシベーション層120を覆うように設けられ、開口121内において感応膜13及び参照電極400に接触する。つまり、開口121に入り込んだ物質吸着膜3の一部により、参照電極400(上面400aの一部及び内側面400b)とセンシング部10に設けられた感応膜13とが接続される。すなわち、物質吸着膜3は、少なくとも、参照電極400からセンシング部10に設けられた感応膜13まで繋がった状態となる。このように、上記製造方法では、物質吸着膜3は、参照電極400が配置された後に、感応膜13及び参照電極400を覆うように設けられる。以上により、図10に示した構造(すなわち、物質吸着膜3よりも内側に参照電極400が内蔵された構造)を有する複数の検出部5を備えた匂いセンサが得られる。また、この場合、参照電極400を厚み方向Dから見たセンシング部10の外縁部に配置することにより、参照電極400及び感応膜13に共通の開口121を形成することで、感応膜13上に配置された物質吸着膜3に参照電圧Vrefを印加することが可能な構成を実現できる。
Subsequently, the substance adsorption film 3 is formed from the reference electrode 400 to the sensitive film 13 at least inside the second opening 121b. In the present embodiment, as shown in FIG. 10, the substance adsorption film 3 is provided so as to cover the passivation layer 120, and contacts the sensitive film 13 and the reference electrode 400 in the opening 121. That is, the reference electrode 400 (part of the upper surface 400a and the inner side surface 400b) and the sensitive film 13 provided in the sensing unit 10 are connected by a part of the substance adsorption film 3 that has entered the opening 121. That is, the substance adsorption film 3 is connected to at least the reference electrode 400 and the sensitive film 13 provided in the sensing unit 10. As described above, in the above manufacturing method, the substance adsorption film 3 is provided so as to cover the sensitive film 13 and the reference electrode 400 after the reference electrode 400 is disposed. As described above, an odor sensor including the plurality of detection units 5 having the structure shown in FIG. 10 (that is, the structure in which the reference electrode 400 is embedded inside the substance adsorption film 3) is obtained. Further, in this case, the reference electrode 400 is disposed at the outer edge of the sensing unit 10 as viewed in the thickness direction D, so that an opening 121 common to the reference electrode 400 and the sensitive film 13 is formed. A configuration capable of applying the reference voltage Vref to the disposed substance adsorption film 3 can be realized.
以上述べた第3変形例の参照電極400によれば、センシング部10上に設けられた開口121の内側において、物質吸着膜3に対する参照電圧Vrefの印加を好適に行うことができる。例えば、開口121とは別の開口(上述した開口120bのような開口)を介して参照電極と物質吸着膜3とを接続する場合、物質吸着膜3を介した参照電極から感応膜13への経路中に、山部(参照電極から上記別の開口を介してパッシベーション層120の上面へと向かう部分)と谷部(パッシベーション層120の上面から開口121を介して感応膜13へと向かう部分)とが含まれることになる。その結果、物質吸着膜3に段切れが発生するおそれが高くなる。一方、参照電極400によれば、物質吸着膜3と参照電極400とを開口121内で接続させることができる。すなわち、物質吸着膜3を介した参照電極400から感応膜13への経路中に上述した山部及び谷部等が含まれない。これにより、上述したような物質吸着膜3の段切れの発生を抑制できる。
According to the reference electrode 400 of the third modification described above, the reference voltage Vref can be suitably applied to the substance adsorption film 3 inside the opening 121 provided on the sensing unit 10. For example, when the reference electrode and the substance adsorption film 3 are connected via an opening different from the opening 121 (an opening such as the above-described opening 120b), the connection from the reference electrode to the sensitive film 13 via the substance adsorption film 3 is performed. In the path, a peak portion (a portion going from the reference electrode to the upper surface of the passivation layer 120 via the another opening) and a valley portion (a portion going from the upper surface of the passivation layer 120 to the sensitive film 13 via the opening 121). Will be included. As a result, there is a high possibility that the material adsorption film 3 is disconnected. On the other hand, according to the reference electrode 400, the substance adsorption film 3 and the reference electrode 400 can be connected within the opening 121. That is, the above-described peaks and valleys are not included in the path from the reference electrode 400 to the sensitive film 13 via the substance adsorption film 3. Thereby, the occurrence of disconnection of the substance adsorption film 3 as described above can be suppressed.
(第2実施形態)
図11は、第2実施形態の匂いセンサの検出部5Aの断面構成を模式的に示す図である。第2実施形態の匂いセンサは、いわゆる電荷転送型のCMOSイメージセンサであるイオンセンサ2に代えて、いわゆるISFET型のイオンセンサ2Aを備える点で、第1実施形態の匂いセンサ1と相違している。その他の構成については、匂いセンサ1と同様である。イオンセンサ2Aは、単位検出素子として、電荷転送型の測定方式が採用された検出部5に代えてISFET型の測定方式が採用された検出部5Aを備える点で、イオンセンサ2と相違している。 (2nd Embodiment)
FIG. 11 is a diagram schematically illustrating a cross-sectional configuration of thedetection unit 5A of the odor sensor according to the second embodiment. The odor sensor of the second embodiment is different from the odor sensor 1 of the first embodiment in that a so-called ISFET ion sensor 2A is provided instead of the ion sensor 2 which is a so-called charge transfer type CMOS image sensor. I have. Other configurations are the same as those of the odor sensor 1. The ion sensor 2A differs from the ion sensor 2 in that, as a unit detection element, a detection unit 5A adopting an ISFET measurement method is used instead of the detection unit 5 adopting a charge transfer measurement method. I have.
図11は、第2実施形態の匂いセンサの検出部5Aの断面構成を模式的に示す図である。第2実施形態の匂いセンサは、いわゆる電荷転送型のCMOSイメージセンサであるイオンセンサ2に代えて、いわゆるISFET型のイオンセンサ2Aを備える点で、第1実施形態の匂いセンサ1と相違している。その他の構成については、匂いセンサ1と同様である。イオンセンサ2Aは、単位検出素子として、電荷転送型の測定方式が採用された検出部5に代えてISFET型の測定方式が採用された検出部5Aを備える点で、イオンセンサ2と相違している。 (2nd Embodiment)
FIG. 11 is a diagram schematically illustrating a cross-sectional configuration of the
検出部5Aでは、半導体基板100の一方の主面側に、3つの第1導電型(ここではn型)のn+型領域131~133が形成されている。また、半導体基板100の主面上には、絶縁性の保護膜110を介して、2つのゲート電極134,135が形成されている。ゲート電極134は、n+型領域131とn+型領域132との間に位置している。n+型領域131、n+型領域132及びゲート電極134により、MOSトランジスタが構成されている。n+型領域131には、図示しない制御部からID信号(電圧)が与えられる。ゲート電極135は、n+型領域132とn+型領域133との間に位置している。ゲート電極135には、図示しない制御部からTG信号(電圧)が与えられる。n+型領域133は、図示しない測定回路と電気的に接続されている。感応膜13が載置される導電部材136が、導電性の接続部材137を介してゲート電極134と電気的に接続されている。導電部材136上に感応膜13が設けられた部分が、センシング部10Aとして機能する。センシング部10Aは、後述するパッシベーション層120の開口120aを介して感応膜13が外部に(すなわち、物質吸着膜3に対して)露出した領域である。導電部材136は、例えば、厚み方向Dから見て、感応膜13とほぼ同じ大きさの矩形状をなしている。導電部材136の上面に感応膜13が成膜されている。
In the detection unit 5A, three first conductivity type (here, n-type) n + -type regions 131 to 133 are formed on one main surface side of the semiconductor substrate 100. Further, two gate electrodes 134 and 135 are formed on the main surface of the semiconductor substrate 100 with the insulating protective film 110 interposed therebetween. Gate electrode 134 is located between n + -type region 131 and n + -type region 132. A MOS transistor includes the n + -type region 131, the n + -type region 132, and the gate electrode 134. An ID signal (voltage) is supplied to the n + type region 131 from a control unit (not shown). Gate electrode 135 is located between n + -type region 132 and n + -type region 133. The gate electrode 135 is supplied with a TG signal (voltage) from a control unit (not shown). The n + type region 133 is electrically connected to a measurement circuit (not shown). A conductive member 136 on which the sensitive film 13 is placed is electrically connected to the gate electrode 134 via a conductive connection member 137. The portion where the sensitive film 13 is provided on the conductive member 136 functions as the sensing unit 10A. The sensing part 10A is a region where the sensitive film 13 is exposed to the outside (that is, with respect to the substance adsorption film 3) through an opening 120a of the passivation layer 120 described later. The conductive member 136 has, for example, a rectangular shape substantially the same size as the sensitive film 13 when viewed from the thickness direction D. The sensitive film 13 is formed on the upper surface of the conductive member 136.
第1実施形態の検出部5と同様に、上述したような半導体基板100の主面上に設けられた部材を覆うように、半導体基板100の主面上には、絶縁性のパッシベーション層120が形成されている。また、物質吸着膜3は、パッシベーション層120を覆うように設けられている。パッシベーション層120には、感応膜13の上面を外部に露出させるための開口120aが形成されている。感応膜13は、開口120aを介して物質吸着膜3と接触している。また、参照電極4は、半導体基板100の厚み方向Dから見て、感応膜13及びゲート電極135と重ならないように配置されている。また、各検出部5Aに対して図11に示した構造が共通的に適用されることにより、厚み方向Dから見た各センシング部10Aの感応膜13と参照電極4との距離(位置関係)は、略同一とされている。参照電極4は、パッシベーション層120に設けられた開口120bを介して物質吸着膜3と接触している。なお、図11の例では、感応膜13の上面及び参照電極4の上面は、パッシベーション層120の上面よりも半導体基板100側に窪んだ位置に位置しているが、感応膜13又は参照電極4は、感応膜13又は参照電極4の上面がパッシベーション層120の開口120a,120bが形成されていない部分と連続するように(フラットに接続されるように)設けられてもよい。
Similarly to the detection unit 5 of the first embodiment, an insulating passivation layer 120 is provided on the main surface of the semiconductor substrate 100 so as to cover the member provided on the main surface of the semiconductor substrate 100 as described above. Is formed. Further, the substance adsorption film 3 is provided so as to cover the passivation layer 120. The passivation layer 120 has an opening 120a for exposing the upper surface of the sensitive film 13 to the outside. The sensitive film 13 is in contact with the substance adsorption film 3 via the opening 120a. The reference electrode 4 is disposed so as not to overlap with the sensitive film 13 and the gate electrode 135 when viewed from the thickness direction D of the semiconductor substrate 100. In addition, the structure shown in FIG. 11 is commonly applied to each of the detection units 5A, so that the distance (positional relationship) between the sensitive film 13 and the reference electrode 4 of each of the sensing units 10A viewed from the thickness direction D. Are substantially the same. The reference electrode 4 is in contact with the substance adsorption film 3 via an opening 120b provided in the passivation layer 120. In the example of FIG. 11, the upper surface of the sensitive film 13 and the upper surface of the reference electrode 4 are located at positions recessed toward the semiconductor substrate 100 from the upper surface of the passivation layer 120. May be provided so that the upper surface of the sensitive film 13 or the reference electrode 4 is continuous with the portion of the passivation layer 120 where the openings 120a and 120b are not formed (to be connected flat).
次に、検出部5Aの動作原理について説明する。まず、動作原理の概要について説明する。物質吸着膜3に匂い物質が吸着すると、物質吸着膜3の特性変化が生じ、これに応じて感応膜13の膜電位が変化する。その結果、感応膜13と電気的に接続されたゲート電極134の電位が変化する。物質吸着膜3において検出された匂い(すなわち、物質吸着膜3に吸着された匂い物質)は、このようなゲート電極134の電位変化に応じた信号(out信号)の電流又は電圧の変化として測定される。そして、例えば、このような測定結果と上述したような匂いデータベースとを照合することにより、検出された匂い物質を特定することができる。以下、検出部5Aの動作(駆動方法)の第1~第3の例について説明する。ただし、検出部5Aの駆動方法としては、これらの例以外の方法が用いられてもよい。
Next, the operation principle of the detection unit 5A will be described. First, an outline of the operation principle will be described. When the odor substance is adsorbed on the substance adsorption film 3, the characteristic of the substance adsorption film 3 changes, and the membrane potential of the sensitive film 13 changes accordingly. As a result, the potential of the gate electrode 134 electrically connected to the sensitive film 13 changes. The odor detected in the substance adsorption film 3 (that is, the odor substance adsorbed by the substance adsorption film 3) is measured as a change in the current or voltage of a signal (out signal) corresponding to such a change in the potential of the gate electrode 134. Is done. Then, for example, by comparing such a measurement result with the above-mentioned odor database, the detected odor substance can be specified. Hereinafter, first to third examples of the operation (driving method) of the detection unit 5A will be described. However, a method other than these examples may be used as a driving method of the detection unit 5A.
(第1の例)
第1の例は、ISFETにおいて一般に採用される駆動方法である。第1の例は、上述したゲート電極134の電位変化に応じてn+型領域131とn+型領域132との間に流れる電流の大きさが変化することに着目した駆動方法である。すなわち、上述した物質吸着膜3の特性変化に応じて、ゲート電極134の電位が変化すると、n+型領域131とn+型領域132との間に流れる電流の大きさが変化する。ここで、ゲート電極135をスイッチとして使用し、ゲート電極135に与えるTG信号を変化させることにより、スイッチをONにする。すなわち、n+型領域132の電荷がゲート電極135と対向する領域(以下「TG領域」)を介してn+型領域133に流れる状態に切り替えられる。これにより、n+型領域131とn+型領域132との間に流れる電流は、TG領域及びn+型領域133を介してout信号として出力される。その後、例えば、out信号は図示しない測定部において電圧に変換される。その結果、物質吸着膜3の特性変化が、out信号の電圧変化として測定される。 (First example)
The first example is a driving method generally adopted in ISFET. The first example is a driving method that focuses on the fact that the magnitude of the current flowing between the n + -type region 131 and the n + -type region 132 changes according to the change in the potential of the gate electrode 134 described above. That is, when the potential of the gate electrode 134 changes in accordance with the change in the characteristics of the substance adsorption film 3 described above, the magnitude of the current flowing between the n + -type region 131 and the n + -type region 132 changes. Here, the gate electrode 135 is used as a switch, and the switch is turned on by changing a TG signal applied to the gate electrode 135. In other words, the state is switched to a state in which the charge of the n + type region 132 flows to the n + type region 133 via the region (hereinafter, “TG region”) facing the gate electrode 135. As a result, the current flowing between the n + -type region 131 and the n + -type region 132 is output as an out signal via the TG region and the n + -type region 133. Thereafter, for example, the out signal is converted into a voltage in a measuring unit (not shown). As a result, a change in the characteristics of the substance adsorption film 3 is measured as a change in the voltage of the out signal.
第1の例は、ISFETにおいて一般に採用される駆動方法である。第1の例は、上述したゲート電極134の電位変化に応じてn+型領域131とn+型領域132との間に流れる電流の大きさが変化することに着目した駆動方法である。すなわち、上述した物質吸着膜3の特性変化に応じて、ゲート電極134の電位が変化すると、n+型領域131とn+型領域132との間に流れる電流の大きさが変化する。ここで、ゲート電極135をスイッチとして使用し、ゲート電極135に与えるTG信号を変化させることにより、スイッチをONにする。すなわち、n+型領域132の電荷がゲート電極135と対向する領域(以下「TG領域」)を介してn+型領域133に流れる状態に切り替えられる。これにより、n+型領域131とn+型領域132との間に流れる電流は、TG領域及びn+型領域133を介してout信号として出力される。その後、例えば、out信号は図示しない測定部において電圧に変換される。その結果、物質吸着膜3の特性変化が、out信号の電圧変化として測定される。 (First example)
The first example is a driving method generally adopted in ISFET. The first example is a driving method that focuses on the fact that the magnitude of the current flowing between the n + -
(第2の例)
第2の例では、ゲート電極135のスイッチをONにした状態で、n+型領域131に与えるID信号を変化させることにより、n+型領域131に対して電荷が注入される。その後、n+型領域131への電荷の注入が停止され、電荷の注入が停止された際のout信号の電圧が測定部によって測定される。その結果、測定部において、物質吸着膜3の特性変化が、out信号の電圧変化として測定される。 (Second example)
In a second example, while turns ON the switch of thegate electrode 135, by changing the ID signal to be supplied to the n + -type region 131, charge to the n + type region 131 is implanted. Thereafter, the injection of charges into the n + -type region 131 is stopped, and the voltage of the out signal when the injection of charges is stopped is measured by the measurement unit. As a result, a change in the characteristics of the substance adsorption film 3 is measured as a change in the voltage of the out signal in the measurement unit.
第2の例では、ゲート電極135のスイッチをONにした状態で、n+型領域131に与えるID信号を変化させることにより、n+型領域131に対して電荷が注入される。その後、n+型領域131への電荷の注入が停止され、電荷の注入が停止された際のout信号の電圧が測定部によって測定される。その結果、測定部において、物質吸着膜3の特性変化が、out信号の電圧変化として測定される。 (Second example)
In a second example, while turns ON the switch of the
(第3の例)
第3の例は、概略的には、半導体基板100においてゲート電極134と対向する領域(以下「ゲート領域」)を、上述した電荷転送型の検出部5におけるICG領域として機能させると共に、n+型領域132を、検出部5におけるFD部31として機能させる方式である。図12を参照して、第3の例について詳細に説明する。図12の(A)に示されるように、ゲート領域のポテンシャル井戸の深さは、感応膜13の電位変化に応じて変化する。図12の(B)に示されるように、ID信号を制御することにより、n+型領域131(図12における「ID」)のポテンシャルが下げられる。これにより、n+型領域131に電荷がチャージされる。n+型領域131にチャージされた電荷は、ゲート領域を超えてn+型領域132へと注入される。このとき、TG領域のポテンシャルは、n+型領域131のポテンシャルよりも低くなるように制御される。従って、n+型領域132へ注入される電荷がTG領域を超えてn+型領域133(図12における「out」)に達することはない。 (Third example)
In the third example, a region (hereinafter, referred to as a “gate region”) facing thegate electrode 134 in the semiconductor substrate 100 generally functions as an ICG region in the above-described charge transfer type detection unit 5, and n + This is a method in which the mold region 132 functions as the FD unit 31 in the detection unit 5. The third example will be described in detail with reference to FIG. As shown in FIG. 12A, the depth of the potential well in the gate region changes according to a change in the potential of the sensitive film 13. As shown in FIG. 12B, by controlling the ID signal, the potential of the n + type region 131 (“ID” in FIG. 12) is reduced. As a result, the n + -type region 131 is charged with electric charge. The charge charged in the n + -type region 131 is injected into the n + -type region 132 beyond the gate region. At this time, the potential of the TG region is controlled to be lower than the potential of the n + type region 131. Therefore, the charge injected into the n + type region 132 does not reach the n + type region 133 (“out” in FIG. 12) beyond the TG region.
第3の例は、概略的には、半導体基板100においてゲート電極134と対向する領域(以下「ゲート領域」)を、上述した電荷転送型の検出部5におけるICG領域として機能させると共に、n+型領域132を、検出部5におけるFD部31として機能させる方式である。図12を参照して、第3の例について詳細に説明する。図12の(A)に示されるように、ゲート領域のポテンシャル井戸の深さは、感応膜13の電位変化に応じて変化する。図12の(B)に示されるように、ID信号を制御することにより、n+型領域131(図12における「ID」)のポテンシャルが下げられる。これにより、n+型領域131に電荷がチャージされる。n+型領域131にチャージされた電荷は、ゲート領域を超えてn+型領域132へと注入される。このとき、TG領域のポテンシャルは、n+型領域131のポテンシャルよりも低くなるように制御される。従って、n+型領域132へ注入される電荷がTG領域を超えてn+型領域133(図12における「out」)に達することはない。 (Third example)
In the third example, a region (hereinafter, referred to as a “gate region”) facing the
続いて、図12の(C)に示されるように、n+型領域131のポテンシャルが元に戻される(引き上げられる)ことにより、n+型領域131から電荷が引き抜かれる。その結果、ゲート領域によってすり切られた電荷がn+型領域132に残る。n+型領域132に残された電荷量は、ゲート領域のポテンシャル井戸の深さ(すなわち、物質吸着膜3のインピーダンス変化)に対応している。
Subsequently, as shown in FIG. 12 (C), the potential of the n + -type region 131 by being returned to the original (raised), the charge from the n + -type region 131 is withdrawn. As a result, the charges worn by the gate region remain in the n + -type region 132. The amount of charge remaining in the n + type region 132 corresponds to the depth of the potential well in the gate region (that is, the change in impedance of the substance adsorption film 3).
続いて、図12の(D)に示されるように、ゲート電極135の電圧が上げられることにより、n+型領域132に残された電荷がn+型領域133に転送される。その後、ゲート電極135の電圧が元に戻されることにより、図12の(E)に示される状態となる。このような状態において、n+型領域133に蓄積された電荷量に応じた信号(すなわち、物質吸着膜3の特性変化に応じた信号)がout信号として測定部に出力される。
Subsequently, as shown in (D) of FIG. 12, by the voltage of the gate electrode 135 is raised, the charge remaining in the n + -type region 132 is transferred to the n + -type region 133. After that, when the voltage of the gate electrode 135 is restored, the state shown in FIG. In such a state, a signal corresponding to the amount of charge stored in the n + type region 133 (that is, a signal corresponding to a change in the characteristics of the substance adsorption film 3) is output to the measurement unit as an out signal.
上述したような検出部5Aを単位検出素子として備えるイオンセンサ2Aをベースとして第2実施形態の匂いセンサを構成した場合においても、上述した匂いセンサ1と同様の効果を奏することができる。また、第2実施形態の匂いセンサは、上述した匂いセンサ1の製造方法と同様の製造方法により得られる。なお、導電部材136及び接続部材137は省略されてもよい。その場合、センシング部10Aを構成する感応膜13は、ゲート電極134上に直接的に形成されてもよい。ただし、導電部材136及び接続部材137を設けることにより、感応膜13の上面をパッシベーション層120の表面に近づけることができ、開口120aの深さを小さくできるという効果が奏される。
(4) Even when the odor sensor according to the second embodiment is configured based on the ion sensor 2A including the detection unit 5A as a unit detection element as described above, the same effect as the odor sensor 1 described above can be obtained. Further, the odor sensor of the second embodiment is obtained by the same manufacturing method as that of the odor sensor 1 described above. Note that the conductive member 136 and the connection member 137 may be omitted. In that case, the sensitive film 13 constituting the sensing unit 10A may be formed directly on the gate electrode 134. However, by providing the conductive member 136 and the connection member 137, it is possible to bring the upper surface of the sensitive film 13 closer to the surface of the passivation layer 120 and to reduce the depth of the opening 120a.
以上、本開示の好適な実施形態について詳細に説明されたが、本開示は上記実施形態に限定されない。例えば、イオンセンサにおいて、複数のセンシング部(検出部)は、二次元状に配列されてもよいし、一次元状に配列されてもよい。また、イオンセンサは、1つのセンシング部(検出部)のみを有してもよい。
Although the preferred embodiments of the present disclosure have been described above in detail, the present disclosure is not limited to the above embodiments. For example, in an ion sensor, a plurality of sensing units (detection units) may be arranged two-dimensionally or one-dimensionally. Further, the ion sensor may include only one sensing unit (detection unit).
また、上記実施形態では、センシング部10が形成された基板として半導体基板100が用いられたが、センシング部10が形成された基板は必ずしも半導体基板でなくてもよく、例えば表面に半導体領域(例えば半導体膜等)が形成された半導体以外の基板であってもよい。
Further, in the above-described embodiment, the semiconductor substrate 100 is used as the substrate on which the sensing unit 10 is formed. However, the substrate on which the sensing unit 10 is formed does not necessarily need to be a semiconductor substrate. A substrate other than a semiconductor on which a semiconductor film or the like is formed may be used.
1…匂いセンサ、2,2A…イオンセンサ、3…物質吸着膜、4,200,300,400…参照電極、5,5A…検出部、10,10A…センシング部、13…感応膜、100…半導体基板、120…パッシベーション層、120a…開口(第1開口)、120b…開口(第2開口)、121…開口、121a…第1開口部、121b…第2開口部。
DESCRIPTION OF SYMBOLS 1 ... Odor sensor, 2, 2A ... Ion sensor, 3 ... Substance adsorption film, 4, 200, 300, 400 ... Reference electrode, 5, 5A ... Detection part, 10, 10A ... Sensing part, 13 ... Sensitive film, 100 ... Semiconductor substrate, 120: passivation layer, 120a: opening (first opening), 120b: opening (second opening), 121: opening, 121a: first opening, 121b: second opening.
Claims (12)
- 測定対象の状態に応じて電位を変化させる感応膜が設けられた少なくとも1つのセンシング部を基板上に形成してなるイオンセンサと、
前記感応膜上に配置され、匂い物質を吸着することにより状態を変化させる、前記測定対象としての物質吸着膜と、
前記物質吸着膜に参照電圧を印加する参照電極と、を備え、
前記参照電極は、前記感応膜から離間すると共に、前記基板の厚み方向から見て前記センシング部と重ならないように配置されている、匂いセンサ。 An ion sensor in which at least one sensing unit provided with a sensitive film that changes a potential according to a state of a measurement target is formed on a substrate;
A substance adsorption film as the measurement object, which is disposed on the sensitive film and changes a state by adsorbing an odorant,
A reference electrode for applying a reference voltage to the substance adsorption film,
The odor sensor, wherein the reference electrode is separated from the sensitive film and is arranged so as not to overlap with the sensing unit when viewed from a thickness direction of the substrate. - 前記イオンセンサを覆うように設けられたパッシベーション層を更に備え、
前記物質吸着膜は、前記パッシベーション層を覆うように設けられており、
前記感応膜は、前記パッシベーション層に設けられた第1開口を介して前記物質吸着膜と接触しており、
前記参照電極は、前記物質吸着膜と前記基板との間に設けられており、前記パッシベーション層に設けられた第2開口を介して前記物質吸着膜と接触している、請求項1に記載の匂いセンサ。 Further comprising a passivation layer provided to cover the ion sensor,
The substance adsorption film is provided so as to cover the passivation layer,
The sensitive film is in contact with the substance adsorption film through a first opening provided in the passivation layer,
2. The reference electrode according to claim 1, wherein the reference electrode is provided between the substance adsorption film and the substrate, and is in contact with the substance adsorption film via a second opening provided in the passivation layer. Odor sensor. - 前記イオンセンサを覆うように設けられたパッシベーション層を更に備え、
前記物質吸着膜は、前記パッシベーション層を覆うように設けられており、
前記感応膜は、前記パッシベーション層に設けられた開口を介して前記物質吸着膜と接触しており、
前記参照電極は、前記基板の厚み方向から見て前記センシング部の外縁部に配置されると共に、前記開口の内部に露出して前記物質吸着膜と接触する部分を含む、請求項1に記載の匂いセンサ。 Further comprising a passivation layer provided to cover the ion sensor,
The substance adsorption film is provided so as to cover the passivation layer,
The sensitive film is in contact with the substance adsorption film through an opening provided in the passivation layer,
2. The reference electrode according to claim 1, wherein the reference electrode is disposed at an outer edge of the sensing unit when viewed from a thickness direction of the substrate, and includes a portion exposed inside the opening and in contact with the substance adsorption film. 3. Odor sensor. - 前記参照電極は、少なくとも前記物質吸着膜の前記基板とは反対側の表面に設けられている、請求項1~3のいずれか一項に記載の匂いセンサ。 The odor sensor according to any one of claims 1 to 3, wherein the reference electrode is provided on at least a surface of the substance adsorption film opposite to the substrate.
- 前記イオンセンサは、前記基板上に一次元状又は二次元状に配列された複数の前記センシング部を有し、
1つの前記物質吸着膜は、2以上の前記センシング部の前記感応膜上に配置されている、請求項1~4のいずれか一項に記載の匂いセンサ。 The ion sensor has a plurality of sensing units arranged one-dimensionally or two-dimensionally on the substrate,
The odor sensor according to any one of claims 1 to 4, wherein one substance adsorption film is disposed on the sensitive films of two or more of the sensing units. - 前記イオンセンサは、前記基板上に一次元状又は二次元状に配列された複数の前記センシング部を有し、
複数の前記物質吸着膜が、それぞれ異なる前記センシング部の前記感応膜上に配置されている、請求項1~5のいずれか一項に記載の匂いセンサ。 The ion sensor has a plurality of sensing units arranged one-dimensionally or two-dimensionally on the substrate,
The odor sensor according to any one of claims 1 to 5, wherein a plurality of the substance adsorption films are respectively arranged on the sensitive films of the different sensing units. - 前記イオンセンサは、前記基板上に一次元状又は二次元状に配列された複数の前記センシング部を有し、
前記参照電極は、前記複数の前記センシング部の各々の前記感応膜と前記参照電極との距離が互いに略同一となるように配置されている、請求項1~6のいずれか一項に記載の匂いセンサ。 The ion sensor has a plurality of sensing units arranged one-dimensionally or two-dimensionally on the substrate,
7. The reference electrode according to claim 1, wherein the reference electrode is arranged such that a distance between the sensitive film of each of the plurality of sensing units and the reference electrode is substantially equal to each other. Odor sensor. - 測定対象の状態に応じて電位を変化させる感応膜が設けられたセンシング部を基板上に形成してなるイオンセンサが準備される工程と、
匂い物質を吸着することにより状態を変化させる前記測定対象としての物質吸着膜が、前記感応膜上に配置される工程と、
前記物質吸着膜に参照電圧を印加する参照電極が、前記感応膜から離間すると共に、前記基板の厚み方向から見て前記センシング部と重ならないように配置される工程と、を含む匂いセンサの製造方法。 A step of preparing an ion sensor formed on a substrate with a sensing unit provided with a sensitive film that changes the potential according to the state of the measurement target,
A step of disposing a substance adsorption film as the measurement object that changes a state by adsorbing an odorant, on the sensitive film,
A reference electrode for applying a reference voltage to the substance-adsorbing film is arranged so as to be separated from the sensitive film and not to overlap with the sensing unit when viewed in the thickness direction of the substrate. Method. - 前記物質吸着膜は、前記参照電極が配置された後に、前記感応膜及び前記参照電極を覆うように設けられる、請求項8に記載の匂いセンサの製造方法。 The method for manufacturing an odor sensor according to claim 8, wherein the substance adsorption film is provided so as to cover the sensitive film and the reference electrode after the reference electrode is arranged.
- 前記参照電極が配置された後に、前記参照電極を覆うように前記イオンセンサ上にパッシベーション層が形成される工程と、
前記パッシベーション層に、前記感応膜の少なくとも一部を外部に露出させる第1開口と前記参照電極の少なくとも一部を外部に露出させる第2開口とが形成される工程と、を更に含み、
前記物質吸着膜は、前記第1開口及び前記第2開口が形成された後に、前記パッシベーション層を覆うように設けられ、前記第1開口を介して前記感応膜に接触すると共に前記第2開口を介して前記参照電極に接触する、請求項9に記載の匂いセンサの製造方法。 After the reference electrode is disposed, a step of forming a passivation layer on the ion sensor to cover the reference electrode,
A step of forming a first opening for exposing at least a part of the sensitive film to the outside and a second opening for exposing at least a part of the reference electrode to the outside in the passivation layer, further comprising:
The substance adsorbing film is provided so as to cover the passivation layer after the first opening and the second opening are formed, contacts the sensitive film through the first opening, and opens the second opening. The method for producing an odor sensor according to claim 9, wherein the odor sensor is in contact with the reference electrode via a scent sensor. - 前記参照電極が前記基板の厚み方向から見た前記センシング部の外縁部に配置された後に、前記参照電極を覆うように前記イオンセンサ上にパッシベーション層が形成される工程と、
前記パッシベーション層に、前記感応膜の少なくとも一部及び前記参照電極の少なくとも一部を外部に露出させる開口が形成される工程と、を更に含み、
前記物質吸着膜は、前記開口が形成された後に、前記パッシベーション層を覆うように設けられ、前記開口内において前記感応膜及び前記参照電極に接触する、請求項9に記載の匂いセンサの製造方法。 After the reference electrode is disposed at the outer edge of the sensing unit viewed from the thickness direction of the substrate, a step of forming a passivation layer on the ion sensor to cover the reference electrode,
An opening that exposes at least a part of the sensitive film and at least a part of the reference electrode to the outside in the passivation layer, further comprising:
The method for manufacturing an odor sensor according to claim 9, wherein the substance adsorption film is provided so as to cover the passivation layer after the opening is formed, and is in contact with the sensitive film and the reference electrode in the opening. . - 前記参照電極の少なくとも一部は、前記物質吸着膜が配置された後に、前記物質吸着膜の一部を覆うように設けられる、請求項8に記載の匂いセンサの製造方法。 9. The method for manufacturing an odor sensor according to claim 8, wherein at least a part of the reference electrode is provided so as to cover a part of the substance adsorption film after the substance adsorption film is disposed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980046068.4A CN112400108B (en) | 2018-07-12 | 2019-05-27 | Odor sensor and method for manufacturing same |
DE112019003549.5T DE112019003549T5 (en) | 2018-07-12 | 2019-05-27 | Odor sensor and method for making an odor sensor |
US17/255,014 US11921081B2 (en) | 2018-07-12 | 2019-05-27 | Odor sensor and method for manufacturing odor sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018132452A JP7269559B2 (en) | 2018-07-12 | 2018-07-12 | Odor sensor and method for manufacturing odor sensor |
JP2018-132452 | 2018-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020012800A1 true WO2020012800A1 (en) | 2020-01-16 |
Family
ID=69142881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/020959 WO2020012800A1 (en) | 2018-07-12 | 2019-05-27 | Odor sensor and method for manufacturing odor sensor |
Country Status (6)
Country | Link |
---|---|
US (1) | US11921081B2 (en) |
JP (1) | JP7269559B2 (en) |
CN (1) | CN112400108B (en) |
DE (1) | DE112019003549T5 (en) |
TW (1) | TWI827611B (en) |
WO (1) | WO2020012800A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7391540B2 (en) * | 2019-05-31 | 2023-12-05 | 浜松ホトニクス株式会社 | Odor sensor and odor detection method |
TWI702392B (en) * | 2019-12-20 | 2020-08-21 | 財團法人工業技術研究院 | Gas sensing device and detection method of gas concentration |
TWI759927B (en) * | 2020-10-28 | 2022-04-01 | 國立清華大學 | Sensing cell and sensing device |
CN114280116B (en) * | 2021-12-22 | 2023-03-17 | 北京航空航天大学 | Sensing chip with on-chip reference electrode based on CMOS (complementary Metal-oxide-semiconductor transistor) process |
CN114533930B (en) * | 2022-02-24 | 2024-01-09 | 北京京东方技术开发有限公司 | Odor film, manufacturing method, method for controlling odor emission of odor film and display panel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007292734A (en) * | 2006-04-26 | 2007-11-08 | Samsung Electronics Co Ltd | Field-effect transistor for ionic substance detection, and ionic substance detection method using the same |
JP2010127757A (en) * | 2008-11-27 | 2010-06-10 | Hitachi Ltd | Radio sensor chip and measuring system |
JP2012078180A (en) * | 2010-09-30 | 2012-04-19 | Dainippon Printing Co Ltd | Biosensor |
JP2012207991A (en) * | 2011-03-29 | 2012-10-25 | Rohm Co Ltd | Image sensor |
JP2012233876A (en) * | 2011-04-28 | 2012-11-29 | Honeywell Internatl Inc | Electronic ph sensor die packaging |
WO2017018449A1 (en) * | 2015-07-30 | 2017-02-02 | シャープ株式会社 | Biosensor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08152423A (en) * | 1991-05-24 | 1996-06-11 | Kaoru Santo | Odor sensor |
JPH0683753A (en) | 1992-08-31 | 1994-03-25 | Fujitsu Ltd | Method for variably managing bus id |
JP2006242900A (en) * | 2005-03-07 | 2006-09-14 | Mitsubishi Chemicals Corp | Sensor unit, reaction field cell unit and analyzing apparatus |
TWI422818B (en) | 2010-01-11 | 2014-01-11 | Nat Chip Implementation Ct Nat Applied Res Lab | Hydrogen ion sensitive field effect transistor and manufacturing method thereof |
JP5597871B2 (en) | 2010-09-08 | 2014-10-01 | 国立大学法人九州大学 | Odor distribution imaging device |
JP6083753B2 (en) * | 2011-08-12 | 2017-02-22 | 国立大学法人豊橋技術科学大学 | Chemical / physical phenomenon detection apparatus and detection method |
WO2017085796A1 (en) * | 2015-11-17 | 2017-05-26 | 株式会社アロマビット | Odor sensor and odor measurement system |
WO2017122338A1 (en) * | 2016-01-15 | 2017-07-20 | 株式会社日立製作所 | Artificial olfactory sensing system |
US20170173262A1 (en) * | 2017-03-01 | 2017-06-22 | François Paul VELTZ | Medical systems, devices and methods |
JP7391540B2 (en) * | 2019-05-31 | 2023-12-05 | 浜松ホトニクス株式会社 | Odor sensor and odor detection method |
JP7579630B2 (en) * | 2019-07-26 | 2024-11-08 | 浜松ホトニクス株式会社 | Odor detection device and odor detection method |
-
2018
- 2018-07-12 JP JP2018132452A patent/JP7269559B2/en active Active
-
2019
- 2019-05-27 WO PCT/JP2019/020959 patent/WO2020012800A1/en active Application Filing
- 2019-05-27 CN CN201980046068.4A patent/CN112400108B/en active Active
- 2019-05-27 DE DE112019003549.5T patent/DE112019003549T5/en active Pending
- 2019-05-27 US US17/255,014 patent/US11921081B2/en active Active
- 2019-06-05 TW TW108119491A patent/TWI827611B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007292734A (en) * | 2006-04-26 | 2007-11-08 | Samsung Electronics Co Ltd | Field-effect transistor for ionic substance detection, and ionic substance detection method using the same |
JP2010127757A (en) * | 2008-11-27 | 2010-06-10 | Hitachi Ltd | Radio sensor chip and measuring system |
JP2012078180A (en) * | 2010-09-30 | 2012-04-19 | Dainippon Printing Co Ltd | Biosensor |
JP2012207991A (en) * | 2011-03-29 | 2012-10-25 | Rohm Co Ltd | Image sensor |
JP2012233876A (en) * | 2011-04-28 | 2012-11-29 | Honeywell Internatl Inc | Electronic ph sensor die packaging |
WO2017018449A1 (en) * | 2015-07-30 | 2017-02-02 | シャープ株式会社 | Biosensor |
Non-Patent Citations (2)
Title |
---|
"Development of potentiometric miniature gas sensor arrays feasible for small olfactory chips and gas recognition from their response patterns", CHEMICAL SENSORS, vol. 33, no. B, 2017, pages 55 - 57 * |
SHINMYO ET AL.: "Gas distribution imaging by charge-transfer-type sensor arrays with polyaniline senstivie layer", 2017, pages 11-330 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
Also Published As
Publication number | Publication date |
---|---|
TWI827611B (en) | 2024-01-01 |
CN112400108B (en) | 2024-06-11 |
CN112400108A (en) | 2021-02-23 |
DE112019003549T5 (en) | 2021-04-01 |
TW202006353A (en) | 2020-02-01 |
JP2020008522A (en) | 2020-01-16 |
JP7269559B2 (en) | 2023-05-09 |
US11921081B2 (en) | 2024-03-05 |
US20210262975A1 (en) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020012800A1 (en) | Odor sensor and method for manufacturing odor sensor | |
DE112014002312B4 (en) | Integrated infrared radiation imaging device and manufacturing method | |
US8497562B2 (en) | Solid-state image pickup device | |
US10142570B1 (en) | Imaging device and image acquisition device | |
CN110278396B (en) | Image pickup apparatus | |
US20190214427A1 (en) | Image sensor including pixel electrodes, control electrode, photoelectric conversion film, transparent electrode, and connector | |
KR100876729B1 (en) | Imaging device | |
US20130056619A1 (en) | Solid-state image pickup apparatus and drive method therefor | |
CN114174815A (en) | Odor detection device and odor detection method | |
US20210313378A1 (en) | Photoelectric conversion device | |
CN110596202A (en) | Gas-sensitive field effect transistor device and gas-sensitive field effect transistor device array | |
US8980540B2 (en) | Method of manufacturing solid-state image sensor | |
CN111198216A (en) | Detection device | |
US10845329B2 (en) | Ion concentration distribution measuring device | |
US20240219340A1 (en) | Odor sensor and odor sensing method | |
JP3587131B2 (en) | Photosensor array and method of manufacturing the same | |
JP4726176B2 (en) | Solid-state imaging device | |
JP2020085498A (en) | Humidity detector and temperature detector | |
WO2022137680A1 (en) | Ion sensor and ion sensor manufacturing method | |
JP2024004089A (en) | Odor sensor element array | |
CN106783900B (en) | SOI pixel detector structure | |
KR100896432B1 (en) | SOI image sensor and manufacturing method thereof | |
JP2006351729A (en) | Junction type field effect transistor, manufacturing method thereof, and solid-state imaging apparatus | |
Nakazawa et al. | Multimodal proton and fluorescence image sensor for bio applications | |
KR20070025791A (en) | Test pattern of cmos image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19834526 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19834526 Country of ref document: EP Kind code of ref document: A1 |