WO2019203046A1 - Precursor for wood flow forming and method for forming same - Google Patents
Precursor for wood flow forming and method for forming same Download PDFInfo
- Publication number
- WO2019203046A1 WO2019203046A1 PCT/JP2019/015302 JP2019015302W WO2019203046A1 WO 2019203046 A1 WO2019203046 A1 WO 2019203046A1 JP 2019015302 W JP2019015302 W JP 2019015302W WO 2019203046 A1 WO2019203046 A1 WO 2019203046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wood
- wax
- resin
- thermosetting resin
- molding
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K5/00—Treating of wood not provided for in groups B27K1/00, B27K3/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
Definitions
- the present invention relates to a wood fluid molding precursor (prepreg) and a molding method thereof, and more particularly to a wood fluid molding precursor obtained by impregnating a wood-based material with a thermosetting resin and a molding method thereof.
- thermosetting resin or thermoplastic resin is fluidized under specific conditions, and fluid molding of wood-based materials as a molding technique using the same.
- this processing method macroscopic large deformation can be given at a relatively high speed by accumulating the relative positional change (slip deformation) of microscopic cells constituting the wood.
- fluid molding using a thermosetting resin or thermoplastic resin as an additive to control slip deformation between cells and joining after deformation has been attempted so far, which is more complicated than compression technology, which is an existing technology. It has been shown that products with a simple shape and high strength can be obtained with high productivity (see, for example, Patent Documents 2 to 3).
- JP 2012-206300 A JP 2014-166711 A JP2015-95819A
- the present invention improves the deformation resistance of the wood material in the wood fluid molding using the thermosetting resin by modifying the wood material itself. It is an object of the present invention to provide a wood fluid molding precursor obtained by impregnating a wood-based material capable of improving moldability due to a decrease with a thermosetting resin, and a molding method thereof.
- the wood fluid molding precursor of the present invention is a wood fluid molding precursor obtained by impregnating a wood-based material with a thermosetting resin, and a lubricant composition together with the thermosetting resin.
- a wood material is impregnated with at least one of a certain oxidized polyalkylene wax and acid-modified polyalkylene wax.
- the lubricant composition can be filled mainly in the lumens of the cells of the woody material.
- “mainly filled in the lumen of the cell of the woody material” means that the lubricant composition is filled in the lumen of the cell of the woody material, and a part of the lubricant composition is on the surface of the cell wall. It means to adhere.
- an oxidized polyethylene wax can be used for the oxidized polyalkylene wax.
- acid-modified polypropylene wax can be used as the acid-modified polyalkylene wax.
- thermosetting resin a substance having a melting point that is the same as or lower than the curing temperature of the thermosetting resin can be used for the lubricant composition.
- the same temperature as or lower than the curing temperature of the thermosetting resin is not particularly limited, but specifically, the melting point of the lubricant composition is the thermosetting resin.
- the temperature may be lower by about 0 to 60 ° C., preferably about 1 to 30 ° C., and more preferably about 1 to 10 ° C. below the curing temperature.
- the molding method of the wood fluid molding precursor of the present invention is a molding method of a wood fluid molding precursor in which the wood material is impregnated with a thermosetting resin, wherein the wood fluid molding precursor is The molding is performed at a temperature higher than the curing temperature of the thermosetting resin using a molding die.
- “higher than the curing temperature of the thermosetting resin” is not particularly limited. Specifically, it is about 1 to 20 ° C. from the curing temperature of the thermosetting resin, preferably, The temperature can be increased by about 1 to 10 ° C, more preferably about 1 to 5 ° C.
- the wood material is impregnated with the thermosetting resin and at least one of the oxidized polyalkylene wax and the acid-modified polyalkylene wax as the lubricant composition. Therefore, the lubricant composition added (internally added) to the wood-based material exudes from the interior of the wood-based material during molding, thereby functioning as a lubricant and in the wood fluid molding using a thermosetting resin.
- the formability can be improved by reducing the deformation resistance of the wood-based material.
- FIG. 4 is an explanatory diagram showing a punch load F-punch stroke S diagram in a side extrusion experiment of melamine resin-impregnated wood prepared at a 30% concentration used in the same moldability evaluation.
- FIG. 4 is an explanatory diagram showing a punch load F-punch stroke S diagram in a side extrusion experiment of melamine resin-impregnated wood prepared at a 30% concentration used in the same moldability evaluation. It is explanatory drawing which shows the result of the same moldability evaluation. It is explanatory drawing which shows the addition amount-weight increase rate of the acid-modified polypropylene wax of the phenol resin impregnated wood prepared by the 30% density
- a wood fluid molding precursor is produced by diffusing a synthetic resin in a wood material, in particular, it is possible to diffuse the synthetic resin in the tissue of the wood material, more specifically, in the cell wall. It has been found to be extremely important for imparting fluid formability to wood based materials.
- the wood fluid molding precursor of the present invention is based on impregnating a wood-based material with a thermosetting resin, and further impregnating the wood-based material with a lubricant composition together with the thermosetting resin. ing.
- the thermosetting resin can be filled in the cell wall of the wood material
- the lubricant composition can be filled mainly in the lumen of the cell of the wood material.
- the lubricant composition fills the cell lumen of the wood-based material, and a part thereof adheres to the cell wall surface.
- the addition amount of the thermosetting resin and the lubricant composition impregnated and added (internally added) to the wood-based material is not particularly limited, but specifically, the wood-based material (raw material).
- thermosetting resin 1 to 100 parts by weight of a thermosetting resin, 1 to 50 parts by weight of a lubricant composition, preferably 5 to 80 parts by weight of a thermosetting resin and 5 to 40 parts of a lubricant composition.
- the amount can be 10 parts by weight, more preferably 10-50 parts by weight of the thermosetting resin, and 10-30 parts by weight of the lubricant composition.
- the woody material refers to a lignocellulosic material containing lignin, hemicellulose, and cellulose
- herbs can be used in addition to wood.
- wood such as cedar, hinoki and beech, and herbs such as kenaf, corn, sugar cane, hemp, rush and rice can be used.
- waste materials such as house demolition, furniture demolition, wood chips, thinned wood, rice husk, wood flour, waste paper, pruned branches, cut grass, fallen leaves, sugarcane pressed bagasse Can be used.
- waste materials such as house demolition, furniture demolition, wood chips, thinned wood, rice husk, wood flour, waste paper, pruned branches, cut grass, fallen leaves, sugarcane pressed bagasse Can be used.
- two or more of the above materials can be used in combination.
- thermosetting resin a thermosetting resin conventionally used as an impregnation material of a wood material in a fluid molding process of a wood material, for example, a resol type phenol resin (hereinafter simply referred to as “phenol resin”).
- phenol resin a resol type phenol resin
- various resins such as a melamine resin, a urea resin, an epoxy resin, and a polyurethane resin can be used.
- thermosetting resins are usually composed of a combination of a main resin and an auxiliary agent, and are used by impregnating the wood-based material in fluid molding processing of the wood-based material, so that they are dissolved in water. It is also desirable to have a dispersed form. Further, the combination of the main resin and the auxiliary agent is not particularly limited as long as the thermosetting reaction of the main resin proceeds, but the affinity with cellulose, hemicellulose, lignin, etc., which are the main components of the woody material. It is preferable to use a compound having a property, and it is particularly preferable to use a compound having affinity with an OH group. As the thermosetting resin, not only one kind of the above-mentioned ones but also a plurality of them can be used in combination.
- an oxidized polyalkylene wax or an acid-modified polyalkylene wax can be used as the lubricant composition.
- the oxidized polyalkylene wax includes those in which a carboxyl group or a hydroxyl group is added to the polyalkylene wax skeleton by a method such as air oxidation
- the acid-modified polyalkylene wax includes, for example, polyalkylene wax, , Modified products such as maleic acid modified, fumaric acid modified, itaconic acid modified and the like.
- the polyalkylene skeleton of the oxidized polyalkylene wax or the acid-modified polyalkylene wax is not particularly limited, but the polyalkylene having a repeating unit having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms, as the alkylene. Examples thereof include polyethylene, polypropylene, and ethylene-propylene copolymer.
- the essential components of the oxidized polyalkylene wax and the acid-modified polyalkylene wax are not particularly limited, but preferred examples include oxidized polyethylene wax and acid-modified polypropylene wax.
- these lubricant compositions that is, the oxidized polyalkylene wax and the acid-modified polyalkylene wax, can be used in combination of not only one type but also a plurality thereof.
- oxidized polyalkylene waxes and acid-modified polyalkylene waxes those having a number average molecular weight of about 1,000 to 200,000 and a melting point of 70 to 180 ° C. are desirable, and more preferably, the number average molecular weight is 1500 to 160000. The one having a melting point of 80 to 170 ° C. is desirable. If the molecular weight of the wax is extremely small, a sufficient viscosity effect (load supporting effect) may not be exhibited. Conversely, if the molecular weight is extremely large, friction may increase due to viscous resistance.
- the melting point of the lubricant composition is preferably the same as or lower than the curing temperature of the thermosetting resin so that the lubricant composition functions sufficiently as a lubricant.
- “the same temperature as or lower than the curing temperature of the thermosetting resin” is not particularly limited, but specifically, the melting point of the lubricant composition is the thermosetting resin.
- the temperature may be lower by about 0 to 60 ° C., preferably about 1 to 30 ° C., and more preferably about 1 to 10 ° C. below the curing temperature.
- the oxidized polyalkylene wax further has a melting point of 80 to 150 ° C., an acid value of 5 to 40 mgKOH / g, several An oxidized polyethylene wax having an average molecular weight of about 1500 to 5500, particularly about 2500 to 5500, and an acid-modified polyalkylene wax having a melting point of 105 to 180 ° C., an acid value of 1 to 90 mgKOH / g, a number average molecular weight of about 5000 to 200000, Particularly preferred are acid-modified polypropylene waxes of about 10,000 to 60,000.
- the wax component as described above is usually blended in a form dissolved or dispersed in an organic solvent and / or water.
- the lubricant composition is a wood-based material. In this fluid molding process, it is desirable to use a form dissolved or dispersed in water since it is used by impregnating a woody material.
- the solvent or dispersion medium of the lubricant composition is not particularly limited, and various types can be used, but sufficient solubility or uniform dispersibility with respect to the wax component can be exhibited. Furthermore, it is preferable that it can be evaporated or volatilized and removed at least under the processing conditions (temperature, pressure) during fluid molding, and specifically water or an aqueous dispersion medium mainly composed of water can be preferably used. In this way, in the embodiment in the form of a dispersion in which wax is dispersed using water or an aqueous dispersion medium mainly composed of water, the organic solvent volatilizes in the atmosphere during fluid molding. It is desirable because it does not pollute the work environment.
- the concentration (at the time of impregnation) of the oxidized polyalkylene wax or acid-modified polyalkylene wax in the lubricant composition in the form of a dispersion is particularly sufficient if it has sufficient fluidity to be used by impregnating the woody material. Although not limited, in general, for example, 0.1% by mass to 20% by mass, preferably 0.2% by mass to 15% by mass, and more preferably 0.5% by mass to 10% by mass. %. If the concentration is low, sufficient effects cannot be exhibited. If the concentration is high, the impregnation property to the wood-based material may be lowered.
- the lubricant composition used in the present invention comprises, as described above, an oxidized polyalkylene wax and / or an acid-modified polyalkylene wax as an essential component, and an embodiment in which the wax is incorporated alone in the composition.
- other general lubricating additives can be blended as optional components in the lubricant composition.
- Other typical lubricating additives typically include fats and oils such as animal and vegetable oils, fatty acids, fatty acid salts, esters, amines, sulfur compounds, phosphorus compounds, silicone compounds, and the like. Other than that, it doesn't matter.
- silicone compound examples include silicone oil, silicone wax, organopolysiloxane partially or wholly modified with an alkyl group, an aralkyl group, a carboxyl alkyl group or a carboxylic acid alkyl group, a hydroxyalkyl group, and an aminoalkyl group. Can be used.
- the blending amount of these other lubricants in the lubricant composition used in the present invention is such that fluidity and release properties are improved by the oxidized polyalkylene wax and / or acid-modified polyalkylene wax as essential components. There is no particular limitation as long as the properties are not impaired.
- the lubricant composition used in the present invention is an aqueous dispersion, that is, an emulsion system
- other additives such as various surfactants, dispersion stabilizers, and rust inhibitors are included in the composition. It is also possible to blend.
- the addition amount of these other additives in the embodiment of the emulsion system is not particularly limited.
- molding of this invention shape
- “higher than the curing temperature of the thermosetting resin” is not particularly limited. Specifically, it is about 1 to 20 ° C. from the curing temperature of the thermosetting resin, preferably, The temperature can be increased by about 1 to 10 ° C, more preferably about 1 to 5 ° C.
- the lubricant composition added (internally added) to the wood-based material exudes from the interior of the wood-based material during molding by impregnating the wood-based material with the lubricant composition together with the thermosetting resin. Therefore, it functions as a lubricant and decreases the deformation resistance of the wood-based material in the wood flow molding using a thermosetting resin, thereby increasing the deformation resistance due to resin curing and increasing the molding load due to uneven deformation, molding failure, It is possible to eliminate or reduce problems such as an increase in mold load and improve moldability.
- PF resin phenol resin
- PF resin oxidized polyethylene wax
- woody material raw material
- a cedar veneer having a thickness of about 3.0 mm fiber L direction: 160 mm ⁇ tangential T direction: 100 mm, bulk density 0.35 to 0.41 g / cm 3 ) was used.
- PF resin 30% by weight phenol resin (PF resin) (“Aikane Resin PX341” manufactured by Aika Kogyo Co., Ltd., weight average molecular weight of about 380) aqueous solution (this aqueous solution is also expressed as “30% PF” or “PF (30%)”) PEOwax (emulsion system) in a predetermined amount (0, 0.01, 0.05, 0.1, 0.5, 0.9, 1.5, 3, 6, 9% by weight)
- PF resin and PEOwax added with A was prepared and impregnated into a cedar veneer.
- the used PEOwax is as follows.
- the aqueous solution is prepared by adding ultrasonic vibration (40 kHz, 10 minutes), for example, if necessary, to increase dispersibility when the amount of PEOwax added is large.
- ultrasonic vibration was applied using a BRANSON 8500 series.
- the impregnation treatment is performed at room temperature by the reduced pressure pressurization impregnation method.
- the degree of treatment is the ratio of weight increase to dry weight (WPG), the amount of change in post-treatment dimensions relative to dry dimensions. Organized by ratio (BR).
- the addition amount to the woody material of PEOwax is 6.5 parts by weight with respect to 100 parts by weight of the dry weight of the woody material (raw material), It became 11.1 weight part, 19.1 weight part, and 29.4 weight part.
- DSC differential scanning calorimetry
- DMA dynamic mechanical analysis
- FIG. 1 An outline of the mold used in the formability evaluation is shown in FIG.
- This mold is composed of a square-head punch, a die, and a base plate (all made of SKD11).
- the side extrusion mold was heated by heat conduction from a hot platen, and the temperature at the place where the base plate and the material were in contact was set to 150 ° C. In the evaluation, the test was performed without applying a lubricant or the like.
- FIG. 2-1 shows the amount of added polyethylene wax of phenol resin-impregnated wood prepared at 30% concentration-weight increase rate and tangential T-direction swelling rate ( Hereinafter, it may be simply referred to as “swelling ratio”).
- swelling ratio tangential T-direction swelling rate
- the tangential T direction swelling rate will be described. Since wood is an orthotropic material, it is necessary to define the direction (surface) of interest when discussing physical properties. In general, the direction in which an annual ring is formed on the end surface of the tree with the tree extending direction as the fiber direction (L) and the L direction as a perpendicular is defined as the radial direction (R), and the tangential direction (T) with respect to the annual ring is defined. Surfaces formed by the main shafts (L, R, T) are referred to as plate (LT) surfaces, grids (LR), and throat (RT) surfaces, and the swelling rate of the single plate (plate) sample in the direction of the main axis The change occurs at a ratio of L: R: T ⁇ 1: 5: 10. This rate of change is derived from the cell structure, and since the rate of change is greatest in the tangential T direction, it is convenient to discuss the state of entry of substances into the cell wall.
- the experimental method is to measure the tangential length (T0) of a cedar veneer that has been dried to a constant weight at 105 ° C., and prepare it by depressurization and pressure impregnation treatment in the preparation solution (solute + wax insoluble content + solvent). The liquid was injected and impregnated. Thereafter, the cedar veneer was taken out from the preparation solution, dried (finally dried at room temperature under reduced pressure (not heated)), and the length T when the mass became a constant weight was measured. At this time, if the solute is infiltrated into the cell wall during the impregnation and drying, the cell wall is swollen, while the wax-insoluble matter cannot be infiltrated into the cell wall and is deposited on the cell wall surface.
- the weight increase rate is a value indicating the mass ratio of the introduced substance regardless of the inside or outside of the cell wall
- the swelling ratio is a value indicating the ratio of the introduced substance to the cell wall. Accordingly, it is confirmed that PEOwax is filled only in the lumen of the cell and does not enter the cell wall (the phenol resin tends to inhibit PEOwax from entering and filling the cell wall). did. That is, the mass increase rate is increased (the substance is introduced), but the swelling rate is not increased (rather, the swelling rate decreases with increasing the amount of added wax) into the cell wall. Means that there is no intrusion (decrease). If the addition of the wax increases the viscosity of the aqueous phenol resin solution, or if the phenols aggregate together to increase the apparent molecular size, penetration into the cell wall will be inhibited.
- FIG. 2-2 shows an enlarged cross-sectional photograph of the prepared impregnated wood.
- the PF resin is contained in the same amount in all the prepared woods, the complete filling of the cell lumen is hardly confirmed, and it appears that it is deposited on the surface of the cell wall lumen as indicated by the arrow in the figure.
- the PEOwax was filled in the entire lumen as in the cell lumen surrounded by the broken line in FIG.
- the abundance ratio clearly increased as the PEOwax concentration increased. From this, it was suggested that PF resin is mainly present in the cell wall and on the cell wall surface, and PEOwax is present in the woody material mainly in a form of filling the lumen.
- FIG. 3 and Table 1 show the outline and results of thermal analysis of the prepared wood-based material.
- DSC and DMA in FIG. 3 show the results of a PEOwax simple substance having a melting point near 125 ° C. and a wood-based material impregnated with PF resin and PEOwax.
- Tgh glass transition temperature
- Tp ( ⁇ ) curing peak temperature
- the DSC results in addition to confirming the softening temperature Tge and the curing start temperature Tce even at the first temperature rise of DMA, the relative ratio of the storage elastic modulus E ′ at 30 ° C. before and after curing was quantified.
- the Wax melting heat Q that can be converted into the amount of added wax was detected at the 1st temperature increase, the glass transition temperature Tgh, the curing peak temperature Tp, and the 2nd temperature increase.
- the DMA evaluates the curing degree ⁇ Ec ′ from the comparison of the curing start temperature Tce, the first temperature increase, and the 2nd temperature increase.
- Fig. 4-1 and Fig. 4-2 show the punch load F-punch in the side extrusion experiment of wood impregnated with 30% PF resin and PEOwax aqueous solution.
- a stroke S diagram is shown.
- a load peak (() appears when F is about 30 kN (S is about 7 mm), and the material to the side at this point The flow started. After reaching the peak, the load once decreased, but then began to increase and continued to increase. This was resistance due to sliding of the extruded material with the inner wall of the mold gap, and occurred because the contact surface increased as the extrusion length increased.
- the load peak value decreased at 0.9 or more, particularly 1.5%, and the load value at Se further decreased.
- the extrusion start load is remarkably reduced particularly when the addition amount of PEOwax is 1.5% or more.
- FIG. As shown in FIG. As a result, bleeding at the time of extrusion occurred, and an increase in the punch stroke S was recognized as an effect of reducing the load.
- the extrusion length le also increased due to these effects.
- FIG. 6 shows experimental results obtained by applying PEOwax (indicated as “PEw” in FIG. 6) to a mold and molding.
- PEOwax indicated as “PEw” in FIG. 6
- AE alkyl phosphate ester compound
- FIG. 7 and FIG. 8 show the experimental results of molding using beech and bamboo as the wood-based material (raw material). Although there is a difference in the degree of influence depending on the tree species of the woody material, it was confirmed that the moldability improved as the addition amount increased.
- Beech has a higher density (less voids) than cedar and a lower resin impregnation rate, so the extrusion length is shorter than cedar.
- bamboo has higher density, higher fiber rate, and less phenol resin impregnation, so extrusion hardly proceeds at 50 kN, but PEOwax (indicated as “PEW” in FIGS. 7 and 8). )) was added.
- FIG. 9 shows the experimental results of molding using a phenol resin and a melamine resin prepared at a concentration of 30% as thermosetting resins.
- PEOwax indicated as “PEW” in FIG. 9
- thermosetting resin melamine resin
- PEOwax acid-modified polypropylene wax
- the addition amount of PPwax to the woody material under the addition conditions of PPwax 1.5%, 3.0%, 6.0% is the woody material ( 12.9 parts by weight, 14.8 parts by weight, and 23.0 parts by weight with respect to 100 parts by weight of the dry weight of the material.
- FIG. 10-1 shows an enlarged cross-sectional photograph of the prepared impregnated wood.
- FIGS. 11-1 and 11-2 show the outline and results of thermal analysis of wood-based materials prepared using PEOwax and PPwax as the lubricant composition, respectively.
- the DSC and DMA shown in FIGS. 11-1 and 11-2 are the results of the PEOwax simple substance having a melting point around 125 ° C. and the wood-based material impregnated with MF resin and PEOwax, and the PPwax simple substance showing a melting point near 156 ° C.
- the results of the wood-based material impregnated with MF resin and PPwax are shown.
- the softening / curing behavior could not be detected, and only the wax heat of fusion Q that could be converted into the amount of added wax was detected.
- the degree of cure ⁇ Ec ′ was evaluated from the comparison of the 1st temperature rise to the softening temperature Tge, the curing start temperature Tce1, the curing end temperature Tce2, the 1st temperature rise and the 2nd temperature rise.
- the melamine resin has a slower curing reaction than the phenol resin, and the storage elastic modulus increases over a wide range.
- FIG. 9 shows a punch load F-punch stroke S diagram in a lateral extrusion experiment of a given wood.
- the amount of PEOwax added as shown in FIG. 12A, the reduction in the extrusion load and the increase in the extrusion length due to the increase in the amount of PEOwax are less effective than in the case of the PF resin.
- the amount of PEOwax added to the woody material is 4 parts by weight with respect to 100 parts by weight of the dry weight of the woody material (raw material). 0 parts by weight, 6.0 parts by weight, and 4.5 parts by weight (Here, the amount of addition does not increase under the 6.0% addition condition is due to variations in the density of the wood-based material (raw material). Possible cause.)
- FIG. 15 shows a side extrusion test of wood impregnated with an aqueous solution of phenol resin and PPW prepared at a concentration of 30%, which was performed in the same manner as in “1.3 Side extrusion mold and moldability evaluation”.
- Punch load F-Punch stroke S diagram is shown. It can be seen that the reduction of the extrusion load and the increase of the extrusion length due to the internal addition of PPW are not as effective as PEOwax. However, there is some fluidity improvement effect compared with the case where it is not added. Note that with 6.0% PEW, the push-in amount increased, and as shown in FIG. 16, the extrusion length le increased as shown in the photograph in FIG. 15. FIG.
- Table 3 show an outline and results of thermal analysis of the prepared wood-based material.
- DSC and DMA in FIG. 17 show the results of PPwax alone having a melting point near 156 ° C. and a wood-based material impregnated with PF resin and PPwax.
- the amount of added wax can be converted at 1st temperature rise, glass transition temperature Tgh, curing peak temperature Tp, and 2nd temperature rise from the DSC result of phenol resin-impregnated wood. Wax heat of fusion Q was detected. From the first temperature increase, the DMA evaluates the curing degree ⁇ Ec ′ from the comparison of the curing start temperature Tce, the first temperature increase, and the 2nd temperature increase. As the heat softening and heat curing behavior of the impregnated wood does not show any significant change in the temperature range due to the increase in the wax addition rate, the interaction between the phenolic resin and the wax is small, and may adversely affect fluid molding Was confirmed to be low.
- PPW can impart easy moldability because it achieves a lubrication effect and does not inhibit curing in fluid molding of wood impregnated with a phenol resin as a thermosetting resin.
- oxidized polyethylene wax was more effective in improving moldability.
- the melting point of the lubricant composition is determined by the lubricant composition being lubricated.
- the melting point of the lubricant composition is about the same as the curing temperature of the thermosetting resin (the curing temperature of the thermosetting resin + about 10 ° C.), and the molding is performed by raising the temperature to the melting point of the lubricant composition at the time of molding. In this case, it was confirmed that the lubricant composition sufficiently functions as a lubricant.
- the woody fluid molding precursor of the present invention and the molding method thereof have been described based on the embodiments thereof, but the present invention is not limited to the examples described in the above embodiments, and the gist thereof is The configuration can be changed as appropriate without departing from the scope.
- the wood fluid molding precursor of the present invention and the molding method thereof improve the moldability by reducing the deformation resistance of the wood material in the wood fluid molding using a thermosetting resin by modifying the wood material itself. Because it can be used, it is suitable for a wide range of uses such as interior and exterior building components, vehicle (aircraft, car, train) interior, vehicle parts, toys, musical instruments, home appliance exteriors, home appliance parts, furniture, tableware, etc. be able to.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
Abstract
Provided is a precursor for wood flow forming which comprises a wood material impregnated with a thermosetting resin. The precursor has been made to attain an improvement in formability in wood flow forming where a thermosetting resin is used, by altering the wood material itself to thereby reduce the deformation resistance of the wood material. The precursor for wood flow forming, which comprises a wood material impregnated with a thermosetting resin, is obtained by impregnating the wood material with a lubricant composition which is an oxidized polyalkylene wax and/or an acid-modified polyalkylene wax together with the thermosetting resin.
Description
本発明は、木質流動成形用前駆体(プリプレグ)及びその成形方法に関し、特に、木質系材料に熱硬化性樹脂を含浸させた木質流動成形用前駆体及びその成形方法に関するものである。
The present invention relates to a wood fluid molding precursor (prepreg) and a molding method thereof, and more particularly to a wood fluid molding precursor obtained by impregnating a wood-based material with a thermosetting resin and a molding method thereof.
近年、熱硬化性樹脂や熱可塑性樹脂を含浸させた木質系材料を、プラスチックに代わる成形材料として用いることが提案されている(例えば、特許文献1参照。)。
Recently, it has been proposed to use a wood-based material impregnated with a thermosetting resin or a thermoplastic resin as a molding material instead of plastic (for example, see Patent Document 1).
本件出願人は、このような熱硬化性樹脂や熱可塑性樹脂を含浸させた塊状の木材が、特定の条件下で流動化する現象を見出し、それを利用した成形技術として木質系材料の流動成形の開発に取り組んできた。
この加工法では、木材を構成する微視的な細胞の相対的位置変化(すべり変形)の蓄積によって、巨視的な大変形を比較的早い速度で与えることができる。
そして、これまでに細胞間でのすべり変形と変形後の接合を制御する添加剤として、熱硬化性樹脂や熱可塑性樹脂を用いた流動成形を試み、既存技術である圧縮加工に比べて、複雑な形状の製品や高強度な製品を、高い生産性で得られることを示してきた(例えば、特許文献2~3参照。)。 The present applicant has found a phenomenon in which massive wood impregnated with such a thermosetting resin or thermoplastic resin is fluidized under specific conditions, and fluid molding of wood-based materials as a molding technique using the same. Has been working on development.
In this processing method, macroscopic large deformation can be given at a relatively high speed by accumulating the relative positional change (slip deformation) of microscopic cells constituting the wood.
In addition, fluid molding using a thermosetting resin or thermoplastic resin as an additive to control slip deformation between cells and joining after deformation has been attempted so far, which is more complicated than compression technology, which is an existing technology. It has been shown that products with a simple shape and high strength can be obtained with high productivity (see, for example,Patent Documents 2 to 3).
この加工法では、木材を構成する微視的な細胞の相対的位置変化(すべり変形)の蓄積によって、巨視的な大変形を比較的早い速度で与えることができる。
そして、これまでに細胞間でのすべり変形と変形後の接合を制御する添加剤として、熱硬化性樹脂や熱可塑性樹脂を用いた流動成形を試み、既存技術である圧縮加工に比べて、複雑な形状の製品や高強度な製品を、高い生産性で得られることを示してきた(例えば、特許文献2~3参照。)。 The present applicant has found a phenomenon in which massive wood impregnated with such a thermosetting resin or thermoplastic resin is fluidized under specific conditions, and fluid molding of wood-based materials as a molding technique using the same. Has been working on development.
In this processing method, macroscopic large deformation can be given at a relatively high speed by accumulating the relative positional change (slip deformation) of microscopic cells constituting the wood.
In addition, fluid molding using a thermosetting resin or thermoplastic resin as an additive to control slip deformation between cells and joining after deformation has been attempted so far, which is more complicated than compression technology, which is an existing technology. It has been shown that products with a simple shape and high strength can be obtained with high productivity (see, for example,
ところで、このような木質系材料の流動成形の実用化のための課題として、木質系材料の変形抵抗を低下させることによる成形性改善が挙げられるが、特に、熱硬化性樹脂を用いた木質流動成形では、樹脂硬化に伴う変形抵抗増大や不均一変形による成形荷重の増大、成形不良、金型負荷の増大などの問題があった。
By the way, as a problem for practical application of flow molding of such a wood-based material, improvement of moldability by reducing the deformation resistance of the wood-based material can be mentioned, but in particular, the wood flow using a thermosetting resin In molding, there are problems such as an increase in deformation resistance due to resin curing, an increase in molding load due to non-uniform deformation, molding defects, and an increase in mold load.
この成形性改善のために、これまで、潤滑剤や離型剤の検討を行い、これらの材料を金型に塗布することによって、熱硬化性樹脂を用いた木質流動成形において、加熱高圧下での摩擦係数低減や平板圧縮における変形能の向上などの成果を得ている。
しかし、より大きな変形度が求められる場合では、潤滑剤や離型剤の金型への塗布のみの対応では、十分な効果が得られないことが分かってきた。 In order to improve this moldability, we have studied lubricants and mold release agents, and applied these materials to the mold, so that in wood flow molding using thermosetting resin, The results of reduction of friction coefficient and improvement of deformability in flat plate compression have been obtained.
However, when a greater degree of deformation is required, it has been found that a sufficient effect cannot be obtained only by applying a lubricant or a release agent to the mold.
しかし、より大きな変形度が求められる場合では、潤滑剤や離型剤の金型への塗布のみの対応では、十分な効果が得られないことが分かってきた。 In order to improve this moldability, we have studied lubricants and mold release agents, and applied these materials to the mold, so that in wood flow molding using thermosetting resin, The results of reduction of friction coefficient and improvement of deformability in flat plate compression have been obtained.
However, when a greater degree of deformation is required, it has been found that a sufficient effect cannot be obtained only by applying a lubricant or a release agent to the mold.
本発明は、上記熱硬化性樹脂を用いた木質流動成形の有する課題に鑑み、木質系材料自体を改質することによって、熱硬化性樹脂を用いた木質流動成形における木質系材料の変形抵抗の低下による成形性改善を図ることができるようにした木質系材料に熱硬化性樹脂を含浸させた木質流動成形用前駆体及びその成形方法を提供することを目的とする。
In view of the problems of the wood flow molding using the thermosetting resin, the present invention improves the deformation resistance of the wood material in the wood fluid molding using the thermosetting resin by modifying the wood material itself. It is an object of the present invention to provide a wood fluid molding precursor obtained by impregnating a wood-based material capable of improving moldability due to a decrease with a thermosetting resin, and a molding method thereof.
上記目的を達成するため、本発明の木質流動成形用前駆体は、木質系材料に熱硬化性樹脂を含浸させた木質流動成形用前駆体において、前記熱硬化性樹脂とともに、潤滑剤組成物である酸化ポリアルキレンワックス及び酸変性ポリアルキレンワックスの少なくとも一方を、木質系材料に含浸させてなることを特徴とする。
In order to achieve the above object, the wood fluid molding precursor of the present invention is a wood fluid molding precursor obtained by impregnating a wood-based material with a thermosetting resin, and a lubricant composition together with the thermosetting resin. A wood material is impregnated with at least one of a certain oxidized polyalkylene wax and acid-modified polyalkylene wax.
この場合において、前記潤滑剤組成物が、主に木質系材料の細胞の内腔に充填されてなるようにすることができる。
ここで、「主に木質系材料の細胞の内腔に充填されてなる」とは、潤滑剤組成物は、木質系材料の細胞の内腔に充填されるほか、その一部は細胞壁表面に付着することを意味する。 In this case, the lubricant composition can be filled mainly in the lumens of the cells of the woody material.
Here, “mainly filled in the lumen of the cell of the woody material” means that the lubricant composition is filled in the lumen of the cell of the woody material, and a part of the lubricant composition is on the surface of the cell wall. It means to adhere.
ここで、「主に木質系材料の細胞の内腔に充填されてなる」とは、潤滑剤組成物は、木質系材料の細胞の内腔に充填されるほか、その一部は細胞壁表面に付着することを意味する。 In this case, the lubricant composition can be filled mainly in the lumens of the cells of the woody material.
Here, “mainly filled in the lumen of the cell of the woody material” means that the lubricant composition is filled in the lumen of the cell of the woody material, and a part of the lubricant composition is on the surface of the cell wall. It means to adhere.
また、前記酸化ポリアルキレンワックスに、酸化ポリエチレンワックスを用いることができる。
Further, an oxidized polyethylene wax can be used for the oxidized polyalkylene wax.
また、前記酸変性ポリアルキレンワックスに、酸変性ポリプロピレンワックスを用いることができる。
Also, acid-modified polypropylene wax can be used as the acid-modified polyalkylene wax.
また、前記潤滑剤組成物に、熱硬化性樹脂の硬化温度と同じか、それよりも低温度の融点の物質を用いることができる。
ここで、「熱硬化性樹脂の硬化温度と同じか、それよりも低温度」とは、特に限定されるものではないが、具体的には、潤滑剤組成物の融点が、熱硬化性樹脂の硬化温度より、0~60℃程度、好ましくは、1~30℃程度、より好ましくは、1~10℃程度低い温度とすることができる。 In addition, a substance having a melting point that is the same as or lower than the curing temperature of the thermosetting resin can be used for the lubricant composition.
Here, “the same temperature as or lower than the curing temperature of the thermosetting resin” is not particularly limited, but specifically, the melting point of the lubricant composition is the thermosetting resin. The temperature may be lower by about 0 to 60 ° C., preferably about 1 to 30 ° C., and more preferably about 1 to 10 ° C. below the curing temperature.
ここで、「熱硬化性樹脂の硬化温度と同じか、それよりも低温度」とは、特に限定されるものではないが、具体的には、潤滑剤組成物の融点が、熱硬化性樹脂の硬化温度より、0~60℃程度、好ましくは、1~30℃程度、より好ましくは、1~10℃程度低い温度とすることができる。 In addition, a substance having a melting point that is the same as or lower than the curing temperature of the thermosetting resin can be used for the lubricant composition.
Here, “the same temperature as or lower than the curing temperature of the thermosetting resin” is not particularly limited, but specifically, the melting point of the lubricant composition is the thermosetting resin. The temperature may be lower by about 0 to 60 ° C., preferably about 1 to 30 ° C., and more preferably about 1 to 10 ° C. below the curing temperature.
また、本発明の木質流動成形用前駆体の成形方法は、前記木質系材料に熱硬化性樹脂を含浸させた木質流動成形用前駆体の成形方法であって、前記木質流動成形用前駆体を、成形型を用いて熱硬化性樹脂の硬化温度よりも高温下で成形することを特徴とする。
ここで、「熱硬化性樹脂の硬化温度よりも高温」とは、特に限定されるものではないが、具体的には、熱硬化性樹脂の硬化温度より、1~20℃程度、好ましくは、1~10℃程度、より好ましくは、1~5℃程度高い温度とすることができる。 Further, the molding method of the wood fluid molding precursor of the present invention is a molding method of a wood fluid molding precursor in which the wood material is impregnated with a thermosetting resin, wherein the wood fluid molding precursor is The molding is performed at a temperature higher than the curing temperature of the thermosetting resin using a molding die.
Here, “higher than the curing temperature of the thermosetting resin” is not particularly limited. Specifically, it is about 1 to 20 ° C. from the curing temperature of the thermosetting resin, preferably, The temperature can be increased by about 1 to 10 ° C, more preferably about 1 to 5 ° C.
ここで、「熱硬化性樹脂の硬化温度よりも高温」とは、特に限定されるものではないが、具体的には、熱硬化性樹脂の硬化温度より、1~20℃程度、好ましくは、1~10℃程度、より好ましくは、1~5℃程度高い温度とすることができる。 Further, the molding method of the wood fluid molding precursor of the present invention is a molding method of a wood fluid molding precursor in which the wood material is impregnated with a thermosetting resin, wherein the wood fluid molding precursor is The molding is performed at a temperature higher than the curing temperature of the thermosetting resin using a molding die.
Here, “higher than the curing temperature of the thermosetting resin” is not particularly limited. Specifically, it is about 1 to 20 ° C. from the curing temperature of the thermosetting resin, preferably, The temperature can be increased by about 1 to 10 ° C, more preferably about 1 to 5 ° C.
本発明の木質流動成形用前駆体及びその成形方法によれば、熱硬化性樹脂とともに、潤滑剤組成物である酸化ポリアルキレンワックス及び酸変性ポリアルキレンワックスの少なくとも一方を、木質系材料に含浸させることによって、木質系材料に添加(内添)された潤滑剤組成物が、成形時に木質系材料の内部から滲出することで、潤滑剤として機能し、熱硬化性樹脂を用いた木質流動成形における木質系材料の変形抵抗の低下による成形性の向上を図ることができる。
According to the wood fluid molding precursor and molding method therefor of the present invention, the wood material is impregnated with the thermosetting resin and at least one of the oxidized polyalkylene wax and the acid-modified polyalkylene wax as the lubricant composition. Therefore, the lubricant composition added (internally added) to the wood-based material exudes from the interior of the wood-based material during molding, thereby functioning as a lubricant and in the wood fluid molding using a thermosetting resin. The formability can be improved by reducing the deformation resistance of the wood-based material.
以下、本発明の木質流動成形用前駆体及びその成形方法の実施の形態を、図面等に基づいて説明する。
Hereinafter, embodiments of the wood fluid molding precursor and the molding method thereof according to the present invention will be described with reference to the drawings.
木質系材料に合成樹脂を拡散させて木質流動成形用前駆体を製造する場合、特に、木質系材料の組織内、より具体的には、細胞壁内に合成樹脂を拡散させるようにすることが、木質系材料に流動成形性を付与するために極めて重要であることが分かっている。
When a wood fluid molding precursor is produced by diffusing a synthetic resin in a wood material, in particular, it is possible to diffuse the synthetic resin in the tissue of the wood material, more specifically, in the cell wall. It has been found to be extremely important for imparting fluid formability to wood based materials.
そこで、本発明の木質流動成形用前駆体は、木質系材料に熱硬化性樹脂を含浸させることを基本とし、さらに、熱硬化性樹脂とともに、潤滑剤組成物を木質系材料に含浸させるようにしている。
これにより、熱硬化性樹脂が、木質系材料の細胞壁内に充填され、潤滑剤組成物が、主に木質系材料の細胞の内腔に充填されてなるようにすることができる。なお、潤滑剤組成物は、木質系材料の細胞の内腔に充填されるほか、その一部は細胞壁表面に付着することとなる。
ここで、木質系材料に含浸、添加(内添)される熱硬化性樹脂及び潤滑剤組成物の添加量は、特に限定されるものではないが、具体的には、木質系材料(素材)の乾燥重量100重量部に対して、熱硬化性樹脂1~100重量部、潤滑剤組成物1~50重量部、好ましくは、熱硬化性樹脂5~80重量部、潤滑剤組成物5~40重量部、より好ましくは、熱硬化性樹脂10~50重量部、潤滑剤組成物10~30重量部とすることができる。 Therefore, the wood fluid molding precursor of the present invention is based on impregnating a wood-based material with a thermosetting resin, and further impregnating the wood-based material with a lubricant composition together with the thermosetting resin. ing.
Thereby, the thermosetting resin can be filled in the cell wall of the wood material, and the lubricant composition can be filled mainly in the lumen of the cell of the wood material. In addition, the lubricant composition fills the cell lumen of the wood-based material, and a part thereof adheres to the cell wall surface.
Here, the addition amount of the thermosetting resin and the lubricant composition impregnated and added (internally added) to the wood-based material is not particularly limited, but specifically, the wood-based material (raw material). 1 to 100 parts by weight of a thermosetting resin, 1 to 50 parts by weight of a lubricant composition, preferably 5 to 80 parts by weight of a thermosetting resin and 5 to 40 parts of a lubricant composition. The amount can be 10 parts by weight, more preferably 10-50 parts by weight of the thermosetting resin, and 10-30 parts by weight of the lubricant composition.
これにより、熱硬化性樹脂が、木質系材料の細胞壁内に充填され、潤滑剤組成物が、主に木質系材料の細胞の内腔に充填されてなるようにすることができる。なお、潤滑剤組成物は、木質系材料の細胞の内腔に充填されるほか、その一部は細胞壁表面に付着することとなる。
ここで、木質系材料に含浸、添加(内添)される熱硬化性樹脂及び潤滑剤組成物の添加量は、特に限定されるものではないが、具体的には、木質系材料(素材)の乾燥重量100重量部に対して、熱硬化性樹脂1~100重量部、潤滑剤組成物1~50重量部、好ましくは、熱硬化性樹脂5~80重量部、潤滑剤組成物5~40重量部、より好ましくは、熱硬化性樹脂10~50重量部、潤滑剤組成物10~30重量部とすることができる。 Therefore, the wood fluid molding precursor of the present invention is based on impregnating a wood-based material with a thermosetting resin, and further impregnating the wood-based material with a lubricant composition together with the thermosetting resin. ing.
Thereby, the thermosetting resin can be filled in the cell wall of the wood material, and the lubricant composition can be filled mainly in the lumen of the cell of the wood material. In addition, the lubricant composition fills the cell lumen of the wood-based material, and a part thereof adheres to the cell wall surface.
Here, the addition amount of the thermosetting resin and the lubricant composition impregnated and added (internally added) to the wood-based material is not particularly limited, but specifically, the wood-based material (raw material). 1 to 100 parts by weight of a thermosetting resin, 1 to 50 parts by weight of a lubricant composition, preferably 5 to 80 parts by weight of a thermosetting resin and 5 to 40 parts of a lubricant composition. The amount can be 10 parts by weight, more preferably 10-50 parts by weight of the thermosetting resin, and 10-30 parts by weight of the lubricant composition.
本発明において、木質系材料としては、リグニンとヘミセルロースとセルロースとを含有するリグノセルロース系材料のことをいい、木材のほか、草本類を用いることができる。具体的には、スギ、ヒノキ、ブナ等の木材、ケナフ、トウモロコシ、サトウキビ、麻、イグサ、イネ等の草本類を用いることができる。また、材料としては、新しい材料のほか、家屋解体物、家具解体物、木屑、間伐材、籾殻、木粉、古紙、剪定枝、刈り草、落ち葉、サトウキビの圧搾滓(バガス)等の廃棄物を用いることができる。さらに、リグニンの含有量の少ない上質紙の古紙と、パルピングの工程で廃棄物として排出されるリグニンとを混合したものを用いることができる。また、上記の材料を2種以上組み合わせて用いることもできる。
In the present invention, the woody material refers to a lignocellulosic material containing lignin, hemicellulose, and cellulose, and herbs can be used in addition to wood. Specifically, wood such as cedar, hinoki and beech, and herbs such as kenaf, corn, sugar cane, hemp, rush and rice can be used. In addition to new materials, waste materials such as house demolition, furniture demolition, wood chips, thinned wood, rice husk, wood flour, waste paper, pruned branches, cut grass, fallen leaves, sugarcane pressed bagasse Can be used. Further, it is possible to use a mixture of high-quality waste paper having a low lignin content and lignin discharged as waste in the pulping process. Also, two or more of the above materials can be used in combination.
また、熱硬化性樹脂としては、従来、木質系材料の流動成形加工において木質系材料の含浸材料として用いられている熱硬化性樹脂、例えば、レゾール型フェノール樹脂(以下、単に、「フェノール樹脂」という。)、メラミン樹脂、ユリア樹脂、エポキシ樹脂、ポリウレタン樹脂等の各種樹脂を用いることができる。
ここで、これらの熱硬化性樹脂は、その硬化温度が、併用する潤滑剤組成物の融点よりも高い物質、若しくは同程度の物質を用いることが好ましい。
そして、これらの熱硬化性樹脂は、通常、主剤樹脂と助剤とを組み合わせるようにしたものからなり、木質系材料の流動成形加工において、木質系材料に含浸させて用いられるため、水中に溶解ないし分散された形態とすることが望ましい。
また、主剤樹脂と助剤との組み合わせは、主剤樹脂の熱硬化反応が進行するような組み合わせであれば特に制限はないが、木質系材料の主成分であるセルロース、ヘミセルロース、リグニンなどとの親和性がある化合物が使用されることが好ましく、特に、OH基との親和性を有する化合物が使用されることが好ましい。
熱硬化性樹脂は、上記のもののうち一種類のみを用いることのみならず、複数を組み合わせて用いることが可能である。 In addition, as the thermosetting resin, a thermosetting resin conventionally used as an impregnation material of a wood material in a fluid molding process of a wood material, for example, a resol type phenol resin (hereinafter simply referred to as “phenol resin”). And various resins such as a melamine resin, a urea resin, an epoxy resin, and a polyurethane resin can be used.
Here, for these thermosetting resins, it is preferable to use a substance having a curing temperature higher than or equal to the melting point of the lubricant composition used together.
These thermosetting resins are usually composed of a combination of a main resin and an auxiliary agent, and are used by impregnating the wood-based material in fluid molding processing of the wood-based material, so that they are dissolved in water. It is also desirable to have a dispersed form.
Further, the combination of the main resin and the auxiliary agent is not particularly limited as long as the thermosetting reaction of the main resin proceeds, but the affinity with cellulose, hemicellulose, lignin, etc., which are the main components of the woody material. It is preferable to use a compound having a property, and it is particularly preferable to use a compound having affinity with an OH group.
As the thermosetting resin, not only one kind of the above-mentioned ones but also a plurality of them can be used in combination.
ここで、これらの熱硬化性樹脂は、その硬化温度が、併用する潤滑剤組成物の融点よりも高い物質、若しくは同程度の物質を用いることが好ましい。
そして、これらの熱硬化性樹脂は、通常、主剤樹脂と助剤とを組み合わせるようにしたものからなり、木質系材料の流動成形加工において、木質系材料に含浸させて用いられるため、水中に溶解ないし分散された形態とすることが望ましい。
また、主剤樹脂と助剤との組み合わせは、主剤樹脂の熱硬化反応が進行するような組み合わせであれば特に制限はないが、木質系材料の主成分であるセルロース、ヘミセルロース、リグニンなどとの親和性がある化合物が使用されることが好ましく、特に、OH基との親和性を有する化合物が使用されることが好ましい。
熱硬化性樹脂は、上記のもののうち一種類のみを用いることのみならず、複数を組み合わせて用いることが可能である。 In addition, as the thermosetting resin, a thermosetting resin conventionally used as an impregnation material of a wood material in a fluid molding process of a wood material, for example, a resol type phenol resin (hereinafter simply referred to as “phenol resin”). And various resins such as a melamine resin, a urea resin, an epoxy resin, and a polyurethane resin can be used.
Here, for these thermosetting resins, it is preferable to use a substance having a curing temperature higher than or equal to the melting point of the lubricant composition used together.
These thermosetting resins are usually composed of a combination of a main resin and an auxiliary agent, and are used by impregnating the wood-based material in fluid molding processing of the wood-based material, so that they are dissolved in water. It is also desirable to have a dispersed form.
Further, the combination of the main resin and the auxiliary agent is not particularly limited as long as the thermosetting reaction of the main resin proceeds, but the affinity with cellulose, hemicellulose, lignin, etc., which are the main components of the woody material. It is preferable to use a compound having a property, and it is particularly preferable to use a compound having affinity with an OH group.
As the thermosetting resin, not only one kind of the above-mentioned ones but also a plurality of them can be used in combination.
また、潤滑剤組成物としては、酸化ポリアルキレンワックスや酸変性ポリアルキレンワックスを用いることができる。
In addition, as the lubricant composition, an oxidized polyalkylene wax or an acid-modified polyalkylene wax can be used.
ここで、酸化ポリアルキレンワックスとしては、空気酸化等の方法によりポリアルキレンワックス骨格にカルボキシル基や水酸基等を付与したものが含まれ、また、酸変性ポリアルキレンワックスとしては、ポリアルキレンワックスの、例えば、マレイン酸変性、フマル酸変性、イタコン酸変性等の変性体が挙げられる。また、酸化ポリアルキレンワックスや酸変性ポリアルキレンワックスのポリアルキレン骨格としては、特に限定されるものではないが、アルキレンとして炭素数2~6、特に、炭素数2~3の繰り返し単位を有するポリアルキレン、例えば、ポリエチレン、ポリプロピレン、あるいはエチレン-プロピレンコポリマー等が挙げられる。
Here, the oxidized polyalkylene wax includes those in which a carboxyl group or a hydroxyl group is added to the polyalkylene wax skeleton by a method such as air oxidation, and the acid-modified polyalkylene wax includes, for example, polyalkylene wax, , Modified products such as maleic acid modified, fumaric acid modified, itaconic acid modified and the like. In addition, the polyalkylene skeleton of the oxidized polyalkylene wax or the acid-modified polyalkylene wax is not particularly limited, but the polyalkylene having a repeating unit having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms, as the alkylene. Examples thereof include polyethylene, polypropylene, and ethylene-propylene copolymer.
必須成分の酸化ポリアルキレンワックスや酸変性ポリアルキレンワックスとしては、特に限定されるものではないが、例えば、酸化ポリエチレンワックスや酸変性ポリプロピレンワックスを好ましいものとして挙げることができる。
The essential components of the oxidized polyalkylene wax and the acid-modified polyalkylene wax are not particularly limited, but preferred examples include oxidized polyethylene wax and acid-modified polypropylene wax.
ところで、これらの潤滑剤組成物は、すなわち、酸化ポリアルキレンワックスや酸変性ポリアルキレンワックスは、これらのもののうち一種類のみを用いることのみならず、複数を組み合わせて用いることが可能である。
By the way, these lubricant compositions, that is, the oxidized polyalkylene wax and the acid-modified polyalkylene wax, can be used in combination of not only one type but also a plurality thereof.
また、これらの酸化ポリアルキレンワックスや酸変性ポリアルキレンワックスのうち、いずれも数平均分子量が1000~200000程度、融点が70~180℃のものが望ましく、より好ましくは、数平均分子量が1500~160000程度、融点が80~170℃のものが望ましい。ワックスの分子量が極端に小さい場合は十分な粘性効果(荷重支持効果)が発揮されないことが生じるおそれがあり、逆に分子量が極端に大きい場合は粘性抵抗による摩擦の増大がもたらされるおそれがある。また、潤滑剤組成物の融点は、潤滑剤組成物が潤滑剤として十分機能するために、熱硬化性樹脂の硬化温度と同じか、それよりも低温度の融点の物質を用いることが好ましい。
ここで、「熱硬化性樹脂の硬化温度と同じか、それよりも低温度」とは、特に限定されるものではないが、具体的には、潤滑剤組成物の融点が、熱硬化性樹脂の硬化温度より、0~60℃程度、好ましくは、1~30℃程度、より好ましくは、1~10℃程度低い温度とすることができる。 Of these oxidized polyalkylene waxes and acid-modified polyalkylene waxes, those having a number average molecular weight of about 1,000 to 200,000 and a melting point of 70 to 180 ° C. are desirable, and more preferably, the number average molecular weight is 1500 to 160000. The one having a melting point of 80 to 170 ° C. is desirable. If the molecular weight of the wax is extremely small, a sufficient viscosity effect (load supporting effect) may not be exhibited. Conversely, if the molecular weight is extremely large, friction may increase due to viscous resistance. Further, the melting point of the lubricant composition is preferably the same as or lower than the curing temperature of the thermosetting resin so that the lubricant composition functions sufficiently as a lubricant.
Here, “the same temperature as or lower than the curing temperature of the thermosetting resin” is not particularly limited, but specifically, the melting point of the lubricant composition is the thermosetting resin. The temperature may be lower by about 0 to 60 ° C., preferably about 1 to 30 ° C., and more preferably about 1 to 10 ° C. below the curing temperature.
ここで、「熱硬化性樹脂の硬化温度と同じか、それよりも低温度」とは、特に限定されるものではないが、具体的には、潤滑剤組成物の融点が、熱硬化性樹脂の硬化温度より、0~60℃程度、好ましくは、1~30℃程度、より好ましくは、1~10℃程度低い温度とすることができる。 Of these oxidized polyalkylene waxes and acid-modified polyalkylene waxes, those having a number average molecular weight of about 1,000 to 200,000 and a melting point of 70 to 180 ° C. are desirable, and more preferably, the number average molecular weight is 1500 to 160000. The one having a melting point of 80 to 170 ° C. is desirable. If the molecular weight of the wax is extremely small, a sufficient viscosity effect (load supporting effect) may not be exhibited. Conversely, if the molecular weight is extremely large, friction may increase due to viscous resistance. Further, the melting point of the lubricant composition is preferably the same as or lower than the curing temperature of the thermosetting resin so that the lubricant composition functions sufficiently as a lubricant.
Here, “the same temperature as or lower than the curing temperature of the thermosetting resin” is not particularly limited, but specifically, the melting point of the lubricant composition is the thermosetting resin. The temperature may be lower by about 0 to 60 ° C., preferably about 1 to 30 ° C., and more preferably about 1 to 10 ° C. below the curing temperature.
使用する潤滑剤組成物の一実施形態においては、酸化ポリアルキレンワックス又は酸変性ポリアルキレンワックスのうち、さらに、酸化ポリアルキレンワックスとしては、融点80~150℃、酸価5~40mgKOH/g、数平均分子量1500~5500程度、特に2500~5500程度の酸化ポリエチレンワックスが、また、酸変性ポリアルキレンワックスとしては、融点105~180℃、酸価1~90mgKOH/g、数平均分子量5000~200000程度、特に10000~60000程度の酸変性ポリプロピレンワックスが、それぞれ好ましい例として挙げることができる。
In one embodiment of the lubricant composition to be used, among the oxidized polyalkylene wax or acid-modified polyalkylene wax, the oxidized polyalkylene wax further has a melting point of 80 to 150 ° C., an acid value of 5 to 40 mgKOH / g, several An oxidized polyethylene wax having an average molecular weight of about 1500 to 5500, particularly about 2500 to 5500, and an acid-modified polyalkylene wax having a melting point of 105 to 180 ° C., an acid value of 1 to 90 mgKOH / g, a number average molecular weight of about 5000 to 200000, Particularly preferred are acid-modified polypropylene waxes of about 10,000 to 60,000.
また、潤滑剤組成物において、上記したようなワックス成分は、通常、有機溶媒及び/又は水中に溶解ないし分散された形態で配合されるが、本発明において、潤滑剤組成物は、木質系材料の流動成形加工において、木質系材料に含浸させて用いられるため、水中に溶解ないし分散された形態とすることが望ましい。
In the lubricant composition, the wax component as described above is usually blended in a form dissolved or dispersed in an organic solvent and / or water. In the present invention, the lubricant composition is a wood-based material. In this fluid molding process, it is desirable to use a form dissolved or dispersed in water since it is used by impregnating a woody material.
潤滑剤組成物の溶媒ないし分散媒としては、特に限定されるものではなく、各種のものを用いることができるが、ワックス成分に対し十分な溶解性ないしは均一な分散性を発揮できるものであり、さらに流動成形加工時の加工条件(温度、圧力)にて少なくとも蒸発ないし揮発除去できるものであることが好ましく、具体的には、水、ないしは水を主体とする水系分散媒が好ましく用いられ得る。
そして、このように、水、ないしは水を主体とする水系分散媒を用いて、ワックスを分散させた分散液の形態とした実施形態においては、流動成形加工時において有機溶媒が雰囲気中に揮発して、作業環境を汚染することもないので望ましい。 The solvent or dispersion medium of the lubricant composition is not particularly limited, and various types can be used, but sufficient solubility or uniform dispersibility with respect to the wax component can be exhibited. Furthermore, it is preferable that it can be evaporated or volatilized and removed at least under the processing conditions (temperature, pressure) during fluid molding, and specifically water or an aqueous dispersion medium mainly composed of water can be preferably used.
In this way, in the embodiment in the form of a dispersion in which wax is dispersed using water or an aqueous dispersion medium mainly composed of water, the organic solvent volatilizes in the atmosphere during fluid molding. It is desirable because it does not pollute the work environment.
そして、このように、水、ないしは水を主体とする水系分散媒を用いて、ワックスを分散させた分散液の形態とした実施形態においては、流動成形加工時において有機溶媒が雰囲気中に揮発して、作業環境を汚染することもないので望ましい。 The solvent or dispersion medium of the lubricant composition is not particularly limited, and various types can be used, but sufficient solubility or uniform dispersibility with respect to the wax component can be exhibited. Furthermore, it is preferable that it can be evaporated or volatilized and removed at least under the processing conditions (temperature, pressure) during fluid molding, and specifically water or an aqueous dispersion medium mainly composed of water can be preferably used.
In this way, in the embodiment in the form of a dispersion in which wax is dispersed using water or an aqueous dispersion medium mainly composed of water, the organic solvent volatilizes in the atmosphere during fluid molding. It is desirable because it does not pollute the work environment.
なお、分散液の形態における潤滑剤組成物中の酸化ポリアルキレンワックス又は酸変性ポリアルキレンワックスの濃度(含浸時)としては、木質系材料に含浸させて用いる上で十分な流動性があれば特に限定されるものではないが、一般的には、例えば、0.1質量%~20質量%、好ましくは、0.2質量%~15質量%、より好ましくは、0.5質量%~10質量%である。低濃度では十分な効果が発揮できず、高濃度では木質系材料への含浸性が低下するおそれがある。
The concentration (at the time of impregnation) of the oxidized polyalkylene wax or acid-modified polyalkylene wax in the lubricant composition in the form of a dispersion is particularly sufficient if it has sufficient fluidity to be used by impregnating the woody material. Although not limited, in general, for example, 0.1% by mass to 20% by mass, preferably 0.2% by mass to 15% by mass, and more preferably 0.5% by mass to 10% by mass. %. If the concentration is low, sufficient effects cannot be exhibited. If the concentration is high, the impregnation property to the wood-based material may be lowered.
本発明で用いる潤滑剤組成物は、上記したように酸化ポリアルキレンワックス及び/又は酸変性ポリアルキレンワックスを必須成分とするものであって、組成物中で当該ワックスを単独配合した実施形態のものであっても当然よいが、別の実施形態としては、潤滑剤組成物中には、任意成分として、その他の一般的な潤滑添加剤を配合することも可能である。その他の一般的な潤滑添加剤としては、代表的には、例えば、動植物油等の油脂類、脂肪酸類、脂肪酸塩類、エステル、アミン、硫黄系化合物、りん系化合物、シリコーン化合物などが挙げられるが、それ以外のものであっても構わない。シリコーン化合物としては、シリコーンオイル、シリコーンワックスのほか、アルキル基、アラルキル基、カルボキシルアルキル基又はカルボン酸アルキル基、ヒドロキシアルキル基、及びアミノアルキル基等により一部又は全体が変性されたオルガノポリシロキサン等を用いることができる。
The lubricant composition used in the present invention comprises, as described above, an oxidized polyalkylene wax and / or an acid-modified polyalkylene wax as an essential component, and an embodiment in which the wax is incorporated alone in the composition. However, as a matter of course, in another embodiment, other general lubricating additives can be blended as optional components in the lubricant composition. Other typical lubricating additives typically include fats and oils such as animal and vegetable oils, fatty acids, fatty acid salts, esters, amines, sulfur compounds, phosphorus compounds, silicone compounds, and the like. Other than that, it doesn't matter. Examples of the silicone compound include silicone oil, silicone wax, organopolysiloxane partially or wholly modified with an alkyl group, an aralkyl group, a carboxyl alkyl group or a carboxylic acid alkyl group, a hydroxyalkyl group, and an aminoalkyl group. Can be used.
本発明で用いる潤滑剤組成物中における、これらの他の潤滑剤の配合量は、必須成分である酸化ポリアルキレンワックス及び/又は酸変性ポリアルキレンワックスによる流動性の向上、離型性の向上といった特性を阻害しないものである限り、特に限定されるものではない。
The blending amount of these other lubricants in the lubricant composition used in the present invention is such that fluidity and release properties are improved by the oxidized polyalkylene wax and / or acid-modified polyalkylene wax as essential components. There is no particular limitation as long as the properties are not impaired.
さらに、本発明で用いる潤滑剤組成物が、水系分散液、すなわちエマルション系とした実施形態においては、組成物中に、各種界面活性剤や分散安定化剤、防錆剤などのその他の添加剤を配合することも可能である。エマルション系とした実施形態におけるこれらの他の添加剤の添加量としても特に限定されるものではない。
Furthermore, in the embodiment in which the lubricant composition used in the present invention is an aqueous dispersion, that is, an emulsion system, other additives such as various surfactants, dispersion stabilizers, and rust inhibitors are included in the composition. It is also possible to blend. The addition amount of these other additives in the embodiment of the emulsion system is not particularly limited.
そして、本発明の木質流動成形用前駆体の成形方法は、前記木質流動成形用前駆体を、成形型を用いて熱硬化性樹脂の硬化温度よりも高温下で成形する。
ここで、「熱硬化性樹脂の硬化温度よりも高温」とは、特に限定されるものではないが、具体的には、熱硬化性樹脂の硬化温度より、1~20℃程度、好ましくは、1~10℃程度、より好ましくは、1~5℃程度高い温度とすることができる。 And the shaping | molding method of the precursor for wood fluid shaping | molding of this invention shape | molds the said precursor for wood fluid shaping | molding using a shaping | molding die under high temperature rather than the curing temperature of thermosetting resin.
Here, “higher than the curing temperature of the thermosetting resin” is not particularly limited. Specifically, it is about 1 to 20 ° C. from the curing temperature of the thermosetting resin, preferably, The temperature can be increased by about 1 to 10 ° C, more preferably about 1 to 5 ° C.
ここで、「熱硬化性樹脂の硬化温度よりも高温」とは、特に限定されるものではないが、具体的には、熱硬化性樹脂の硬化温度より、1~20℃程度、好ましくは、1~10℃程度、より好ましくは、1~5℃程度高い温度とすることができる。 And the shaping | molding method of the precursor for wood fluid shaping | molding of this invention shape | molds the said precursor for wood fluid shaping | molding using a shaping | molding die under high temperature rather than the curing temperature of thermosetting resin.
Here, “higher than the curing temperature of the thermosetting resin” is not particularly limited. Specifically, it is about 1 to 20 ° C. from the curing temperature of the thermosetting resin, preferably, The temperature can be increased by about 1 to 10 ° C, more preferably about 1 to 5 ° C.
これにより、熱硬化性樹脂とともに、潤滑剤組成物を木質系材料に含浸させることによって、木質系材料に添加(内添)された潤滑剤組成物が、成形時に木質系材料の内部から滲出することで、潤滑剤として機能し、熱硬化性樹脂を用いた木質流動成形における木質系材料の変形抵抗の低下によって、樹脂硬化に伴う変形抵抗増大や不均一変形による成形荷重の増大、成形不良、金型負荷の増大などの問題点を解消ないし軽減し、成形性の向上を図ることができる。
As a result, the lubricant composition added (internally added) to the wood-based material exudes from the interior of the wood-based material during molding by impregnating the wood-based material with the lubricant composition together with the thermosetting resin. Therefore, it functions as a lubricant and decreases the deformation resistance of the wood-based material in the wood flow molding using a thermosetting resin, thereby increasing the deformation resistance due to resin curing and increasing the molding load due to uneven deformation, molding failure, It is possible to eliminate or reduce problems such as an increase in mold load and improve moldability.
以下、本発明の木質流動成形用前駆体及びその成形方法について、熱硬化性樹脂としてフェノール樹脂(以下、「PF樹脂」という場合がある。)を、潤滑剤組成物として酸化ポリエチレンワックス(以下、「PEOwax」という場合がある。)を、それぞれ用いて行った実施例について説明する。
Hereinafter, regarding the woody fluid molding precursor of the present invention and the molding method thereof, a phenol resin (hereinafter sometimes referred to as “PF resin”) as a thermosetting resin, and an oxidized polyethylene wax (hereinafter referred to as “PF resin”) as a lubricant composition. Examples that are performed using “PEOwax” may be described.
1.材料及び実験方法
1.1 木質系材料と調製条件
木質系材料(素材)として、厚さ約3.0mmのスギ単板(繊維L方向:160mm×接線T方向:100mm、かさ密度0.35~0.41g/cm3)を使用した。
30%重量濃度のフェノール樹脂(PF樹脂)(アイカ工業社製「アイカネオレジンPX341」、重量平均分子量約380)水溶液(この水溶液を、「30%PF」あるいは「PF(30%)」とも表記する。)を調製し、所定量(0、0.01、0.05、0.1、0.5、0.9、1.5、3、6、9重量%)のPEOwax(エマルション系)を添加したPF樹脂とPEOwaxの水溶液を調製し、スギ単板に含浸した。
ここで、使用したPEOwaxは、以下のとおりのものである。
<酸化ポリエチレンワックス>
・融点:138℃
・酸価:30mgKOH/g
・数平均分子量:2900
また、水溶液の調製には、単なる混合撹拌方法のほか、PEOwaxの添加量が多い場合は、必要に応じて、例えば、超音波振動(40kHz、10分間)を付加して、分散性を高めるようにする。超音波振動は、BRANSON社製 8500シリーズを使用して付加するようにした。
また、含浸処理は、室温で減圧加圧含浸法により行い、処理の程度は、表1に示すように、乾燥重量に対する重量増加量の比(WPG)、乾燥寸法に対する処理後寸法の変化量の比(BR)で整理した。
また、PEOwax1.5、3、6、9%の添加条件で、PEOwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、6.5重量部、11.1重量部、19.1重量部、29.4重量部になった。 1. Material and Experimental Method 1.1 Woody Material and Preparation Conditions As woody material (raw material), a cedar veneer having a thickness of about 3.0 mm (fiber L direction: 160 mm × tangential T direction: 100 mm, bulk density 0.35 to 0.41 g / cm 3 ) was used.
30% by weight phenol resin (PF resin) (“Aikane Resin PX341” manufactured by Aika Kogyo Co., Ltd., weight average molecular weight of about 380) aqueous solution (this aqueous solution is also expressed as “30% PF” or “PF (30%)”) PEOwax (emulsion system) in a predetermined amount (0, 0.01, 0.05, 0.1, 0.5, 0.9, 1.5, 3, 6, 9% by weight) An aqueous solution of PF resin and PEOwax added with A was prepared and impregnated into a cedar veneer.
Here, the used PEOwax is as follows.
<Oxidized polyethylene wax>
Melting point: 138 ° C
Acid value: 30 mg KOH / g
Number average molecular weight: 2900
In addition to the simple mixing and stirring method, the aqueous solution is prepared by adding ultrasonic vibration (40 kHz, 10 minutes), for example, if necessary, to increase dispersibility when the amount of PEOwax added is large. To. Ultrasonic vibration was applied using a BRANSON 8500 series.
In addition, the impregnation treatment is performed at room temperature by the reduced pressure pressurization impregnation method. As shown in Table 1, the degree of treatment is the ratio of weight increase to dry weight (WPG), the amount of change in post-treatment dimensions relative to dry dimensions. Organized by ratio (BR).
In addition, with the addition conditions of PEOwax 1.5, 3, 6, and 9%, the addition amount to the woody material of PEOwax is 6.5 parts by weight with respect to 100 parts by weight of the dry weight of the woody material (raw material), It became 11.1 weight part, 19.1 weight part, and 29.4 weight part.
1.1 木質系材料と調製条件
木質系材料(素材)として、厚さ約3.0mmのスギ単板(繊維L方向:160mm×接線T方向:100mm、かさ密度0.35~0.41g/cm3)を使用した。
30%重量濃度のフェノール樹脂(PF樹脂)(アイカ工業社製「アイカネオレジンPX341」、重量平均分子量約380)水溶液(この水溶液を、「30%PF」あるいは「PF(30%)」とも表記する。)を調製し、所定量(0、0.01、0.05、0.1、0.5、0.9、1.5、3、6、9重量%)のPEOwax(エマルション系)を添加したPF樹脂とPEOwaxの水溶液を調製し、スギ単板に含浸した。
ここで、使用したPEOwaxは、以下のとおりのものである。
<酸化ポリエチレンワックス>
・融点:138℃
・酸価:30mgKOH/g
・数平均分子量:2900
また、水溶液の調製には、単なる混合撹拌方法のほか、PEOwaxの添加量が多い場合は、必要に応じて、例えば、超音波振動(40kHz、10分間)を付加して、分散性を高めるようにする。超音波振動は、BRANSON社製 8500シリーズを使用して付加するようにした。
また、含浸処理は、室温で減圧加圧含浸法により行い、処理の程度は、表1に示すように、乾燥重量に対する重量増加量の比(WPG)、乾燥寸法に対する処理後寸法の変化量の比(BR)で整理した。
また、PEOwax1.5、3、6、9%の添加条件で、PEOwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、6.5重量部、11.1重量部、19.1重量部、29.4重量部になった。 1. Material and Experimental Method 1.1 Woody Material and Preparation Conditions As woody material (raw material), a cedar veneer having a thickness of about 3.0 mm (fiber L direction: 160 mm × tangential T direction: 100 mm, bulk density 0.35 to 0.41 g / cm 3 ) was used.
30% by weight phenol resin (PF resin) (“Aikane Resin PX341” manufactured by Aika Kogyo Co., Ltd., weight average molecular weight of about 380) aqueous solution (this aqueous solution is also expressed as “30% PF” or “PF (30%)”) PEOwax (emulsion system) in a predetermined amount (0, 0.01, 0.05, 0.1, 0.5, 0.9, 1.5, 3, 6, 9% by weight) An aqueous solution of PF resin and PEOwax added with A was prepared and impregnated into a cedar veneer.
Here, the used PEOwax is as follows.
<Oxidized polyethylene wax>
Melting point: 138 ° C
Acid value: 30 mg KOH / g
Number average molecular weight: 2900
In addition to the simple mixing and stirring method, the aqueous solution is prepared by adding ultrasonic vibration (40 kHz, 10 minutes), for example, if necessary, to increase dispersibility when the amount of PEOwax added is large. To. Ultrasonic vibration was applied using a BRANSON 8500 series.
In addition, the impregnation treatment is performed at room temperature by the reduced pressure pressurization impregnation method. As shown in Table 1, the degree of treatment is the ratio of weight increase to dry weight (WPG), the amount of change in post-treatment dimensions relative to dry dimensions. Organized by ratio (BR).
In addition, with the addition conditions of PEOwax 1.5, 3, 6, and 9%, the addition amount to the woody material of PEOwax is 6.5 parts by weight with respect to 100 parts by weight of the dry weight of the woody material (raw material), It became 11.1 weight part, 19.1 weight part, and 29.4 weight part.
WPG及びBRは、素材密度の影響を受けてばらついたが、密度との相関はそれぞれ決定係数R2=0.97及び0.69であった。
WPG and BR varied under the influence of the material density, but the correlation with the density was the determination coefficient R 2 = 0.97 and 0.69, respectively.
1.2 示差走査熱量測定及び動的粘弾性測定
示差走査熱量測定(Differential scanning calorimetry(DSC))及び動的粘弾性測定(Dynamic mechanical analysis(DMA))を行い、木質系材料の熱物性の変化を調べた。
ここで、示差走査熱量測定(Differential scanning calorimetry(DSC))は、TA instrument社製 Q200を使用し、動的粘弾性測定(Dynamic mechanical analysis(DMA))は、セイコーインスツルメンツ社製 熱機械的装置 TMA/SS-6000 粘弾性モードを使用した。
PEOwaxがPF樹脂含浸木材の軟化・硬化挙動に及ぼす影響を検討した。
試料は、端部から1mm程度の内部から採取した。 1.2 Differential scanning calorimetry and dynamic viscoelasticity measurement Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) are performed to change the thermal properties of wood-based materials. I investigated.
Here, the differential scanning calorimetry (DSC) uses Q200 made by TA instrument, and the dynamic mechanical analysis (DMA) makes thermomechanical device TMA made by Seiko Instruments. / SS-6000 Viscoelastic mode was used.
The effect of PEOwax on the softening and hardening behavior of PF resin-impregnated wood was examined.
The sample was taken from the inside of about 1 mm from the end.
示差走査熱量測定(Differential scanning calorimetry(DSC))及び動的粘弾性測定(Dynamic mechanical analysis(DMA))を行い、木質系材料の熱物性の変化を調べた。
ここで、示差走査熱量測定(Differential scanning calorimetry(DSC))は、TA instrument社製 Q200を使用し、動的粘弾性測定(Dynamic mechanical analysis(DMA))は、セイコーインスツルメンツ社製 熱機械的装置 TMA/SS-6000 粘弾性モードを使用した。
PEOwaxがPF樹脂含浸木材の軟化・硬化挙動に及ぼす影響を検討した。
試料は、端部から1mm程度の内部から採取した。 1.2 Differential scanning calorimetry and dynamic viscoelasticity measurement Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) are performed to change the thermal properties of wood-based materials. I investigated.
Here, the differential scanning calorimetry (DSC) uses Q200 made by TA instrument, and the dynamic mechanical analysis (DMA) makes thermomechanical device TMA made by Seiko Instruments. / SS-6000 Viscoelastic mode was used.
The effect of PEOwax on the softening and hardening behavior of PF resin-impregnated wood was examined.
The sample was taken from the inside of about 1 mm from the end.
1.3 側方押出し金型及び成形性評価
成形性評価で用いた金型の概略を図1に示す。
この金型は、角頭パンチ及びダイスとベースプレート(すべてSKD11製)から構成されている。
ダイスには、材料を投入する26×26mm2のコンテナ部と木質系材料が圧縮後に側方へ押出されて摺動する鏡面部のギャップ(t=1.2mm:押出し比21.7、CrNコーティング)が設けられている。
この側方押出し金型の加熱は、熱盤からの熱伝導により行い、ベースプレートと素材が接する箇所の温度を150℃に設定した。評価の際には、潤滑剤などの塗布は行わずに試験した。
予め所定温度に加熱した金型に、1.1の要領で調製した木質系材料約5g(小片4枚相当:相対湿度65%調湿)を切出・投入し、直ちにパンチを挿入し、パンチ荷重100Nまでの加圧を行い、2分間その状態を保持した(素材予熱)。このときのパンチストロークSを開始点(S=0)とした。流動性の高い木質系材料の接線方向が押出し方向になるように配置した。素材加熱後に、2.0mm/minのポンチ速度で目的荷重50kNまで加圧し、その際の荷重F-パンチストロークS線図を取得した。
木質系材料の調製条件によって、側方押出し挙動が変化するため、押出し開始荷重F(パンチ面圧P=F/262)並びに押出し長さleなどを成形性の評価項目とした。 1.3 Side Extrusion Mold and Formability Evaluation An outline of the mold used in the formability evaluation is shown in FIG.
This mold is composed of a square-head punch, a die, and a base plate (all made of SKD11).
The die has a gap between the 26 × 26 mm 2 container portion into which the material is charged and the mirror surface portion where the wooden material is extruded sideways after compression (t = 1.2 mm: extrusion ratio 21.7, CrN coating) ) Is provided.
The side extrusion mold was heated by heat conduction from a hot platen, and the temperature at the place where the base plate and the material were in contact was set to 150 ° C. In the evaluation, the test was performed without applying a lubricant or the like.
About 5 g of wood-based material prepared as described in 1.1 (equivalent to 4 pieces: humidity control with a relative humidity of 65%) is cut and put into a mold heated to a predetermined temperature in advance, and a punch is immediately inserted. Pressure was applied up to a load of 100 N, and the state was maintained for 2 minutes (material preheating). The punch stroke S at this time was set as the start point (S = 0). It arranged so that the tangential direction of the woody material with high fluidity could be the extrusion direction. After heating the material, pressurization was performed to a target load of 50 kN at a punch speed of 2.0 mm / min, and a load F-punch stroke S diagram at that time was obtained.
Since the side extrusion behavior changes depending on the preparation conditions of the wood-based material, the extrusion start load F (punch surface pressure P = F / 26 2 ), the extrusion length le, and the like were evaluated as moldability evaluation items.
成形性評価で用いた金型の概略を図1に示す。
この金型は、角頭パンチ及びダイスとベースプレート(すべてSKD11製)から構成されている。
ダイスには、材料を投入する26×26mm2のコンテナ部と木質系材料が圧縮後に側方へ押出されて摺動する鏡面部のギャップ(t=1.2mm:押出し比21.7、CrNコーティング)が設けられている。
この側方押出し金型の加熱は、熱盤からの熱伝導により行い、ベースプレートと素材が接する箇所の温度を150℃に設定した。評価の際には、潤滑剤などの塗布は行わずに試験した。
予め所定温度に加熱した金型に、1.1の要領で調製した木質系材料約5g(小片4枚相当:相対湿度65%調湿)を切出・投入し、直ちにパンチを挿入し、パンチ荷重100Nまでの加圧を行い、2分間その状態を保持した(素材予熱)。このときのパンチストロークSを開始点(S=0)とした。流動性の高い木質系材料の接線方向が押出し方向になるように配置した。素材加熱後に、2.0mm/minのポンチ速度で目的荷重50kNまで加圧し、その際の荷重F-パンチストロークS線図を取得した。
木質系材料の調製条件によって、側方押出し挙動が変化するため、押出し開始荷重F(パンチ面圧P=F/262)並びに押出し長さleなどを成形性の評価項目とした。 1.3 Side Extrusion Mold and Formability Evaluation An outline of the mold used in the formability evaluation is shown in FIG.
This mold is composed of a square-head punch, a die, and a base plate (all made of SKD11).
The die has a gap between the 26 × 26 mm 2 container portion into which the material is charged and the mirror surface portion where the wooden material is extruded sideways after compression (t = 1.2 mm: extrusion ratio 21.7, CrN coating) ) Is provided.
The side extrusion mold was heated by heat conduction from a hot platen, and the temperature at the place where the base plate and the material were in contact was set to 150 ° C. In the evaluation, the test was performed without applying a lubricant or the like.
About 5 g of wood-based material prepared as described in 1.1 (equivalent to 4 pieces: humidity control with a relative humidity of 65%) is cut and put into a mold heated to a predetermined temperature in advance, and a punch is immediately inserted. Pressure was applied up to a load of 100 N, and the state was maintained for 2 minutes (material preheating). The punch stroke S at this time was set as the start point (S = 0). It arranged so that the tangential direction of the woody material with high fluidity could be the extrusion direction. After heating the material, pressurization was performed to a target load of 50 kN at a punch speed of 2.0 mm / min, and a load F-punch stroke S diagram at that time was obtained.
Since the side extrusion behavior changes depending on the preparation conditions of the wood-based material, the extrusion start load F (punch surface pressure P = F / 26 2 ), the extrusion length le, and the like were evaluated as moldability evaluation items.
2.実験結果及び考察
2.1 PEOwaxとPF樹脂含浸木材の相互作用
図2-1に、30%濃度で調製したフェノール樹脂含浸木材の酸化ポリエチレンワックスの添加量-重量増加率及び接線T方向膨潤率(以下、単に、「膨潤率」という場合がある。)を示す。
図2-1に示すように、熱硬化性樹脂として30%濃度で調製したフェノール樹脂を用い、PEOwaxの添加量を1.5~9.0%と増加させると、重量増加率が増加し、接線T方向膨潤率が減少することを確認した。 2. Experimental results and discussion 2.1 Interaction between PEOwax and PF resin-impregnated wood Figure 2-1 shows the amount of added polyethylene wax of phenol resin-impregnated wood prepared at 30% concentration-weight increase rate and tangential T-direction swelling rate ( Hereinafter, it may be simply referred to as “swelling ratio”).
As shown in FIG. 2-1, when a phenol resin prepared at a concentration of 30% is used as the thermosetting resin and the addition amount of PEOwax is increased to 1.5 to 9.0%, the rate of weight increase increases. It was confirmed that the tangential T direction swelling rate decreased.
2.1 PEOwaxとPF樹脂含浸木材の相互作用
図2-1に、30%濃度で調製したフェノール樹脂含浸木材の酸化ポリエチレンワックスの添加量-重量増加率及び接線T方向膨潤率(以下、単に、「膨潤率」という場合がある。)を示す。
図2-1に示すように、熱硬化性樹脂として30%濃度で調製したフェノール樹脂を用い、PEOwaxの添加量を1.5~9.0%と増加させると、重量増加率が増加し、接線T方向膨潤率が減少することを確認した。 2. Experimental results and discussion 2.1 Interaction between PEOwax and PF resin-impregnated wood Figure 2-1 shows the amount of added polyethylene wax of phenol resin-impregnated wood prepared at 30% concentration-weight increase rate and tangential T-direction swelling rate ( Hereinafter, it may be simply referred to as “swelling ratio”).
As shown in FIG. 2-1, when a phenol resin prepared at a concentration of 30% is used as the thermosetting resin and the addition amount of PEOwax is increased to 1.5 to 9.0%, the rate of weight increase increases. It was confirmed that the tangential T direction swelling rate decreased.
ここで、接線T方向膨潤率について説明する。
木材は直交異方性材料であるため、物性などを議論する場合において、着目している方向(面)を定義する必要がある。一般的には、樹木の伸長方向を繊維方向(L)、L方向を垂線にとる木口面において年輪が形成される方向を半径方向(R)、年輪に対する接線方向(T)が定義される。この主軸(L,R,T)によって形成される面を、板目(LT)面、柾目(LR)、木口(RT)面といい、単板(板目)試料について膨潤率の主軸方向の変化は、L:R:T≒1:5:10の割合で生じる。この変化の割合は、細胞構造に由来するものであり、接線T方向が最も変化の割合が大きく生じるため、細胞壁中への物質の侵入状態を議論するには都合がよい。 Here, the tangential T direction swelling rate will be described.
Since wood is an orthotropic material, it is necessary to define the direction (surface) of interest when discussing physical properties. In general, the direction in which an annual ring is formed on the end surface of the tree with the tree extending direction as the fiber direction (L) and the L direction as a perpendicular is defined as the radial direction (R), and the tangential direction (T) with respect to the annual ring is defined. Surfaces formed by the main shafts (L, R, T) are referred to as plate (LT) surfaces, grids (LR), and throat (RT) surfaces, and the swelling rate of the single plate (plate) sample in the direction of the main axis The change occurs at a ratio of L: R: T≈1: 5: 10. This rate of change is derived from the cell structure, and since the rate of change is greatest in the tangential T direction, it is convenient to discuss the state of entry of substances into the cell wall.
木材は直交異方性材料であるため、物性などを議論する場合において、着目している方向(面)を定義する必要がある。一般的には、樹木の伸長方向を繊維方向(L)、L方向を垂線にとる木口面において年輪が形成される方向を半径方向(R)、年輪に対する接線方向(T)が定義される。この主軸(L,R,T)によって形成される面を、板目(LT)面、柾目(LR)、木口(RT)面といい、単板(板目)試料について膨潤率の主軸方向の変化は、L:R:T≒1:5:10の割合で生じる。この変化の割合は、細胞構造に由来するものであり、接線T方向が最も変化の割合が大きく生じるため、細胞壁中への物質の侵入状態を議論するには都合がよい。 Here, the tangential T direction swelling rate will be described.
Since wood is an orthotropic material, it is necessary to define the direction (surface) of interest when discussing physical properties. In general, the direction in which an annual ring is formed on the end surface of the tree with the tree extending direction as the fiber direction (L) and the L direction as a perpendicular is defined as the radial direction (R), and the tangential direction (T) with respect to the annual ring is defined. Surfaces formed by the main shafts (L, R, T) are referred to as plate (LT) surfaces, grids (LR), and throat (RT) surfaces, and the swelling rate of the single plate (plate) sample in the direction of the main axis The change occurs at a ratio of L: R: T≈1: 5: 10. This rate of change is derived from the cell structure, and since the rate of change is greatest in the tangential T direction, it is convenient to discuss the state of entry of substances into the cell wall.
実験方法は、105℃で恒量まで乾燥させたスギ単板の接線方向長さ(T0)を計測しておき、調製液(溶質+wax不溶分+溶媒)中に減圧・加圧含浸処理により、調製液を注入・含浸した。その後、スギ単板を調製液から取り出し、乾燥(最終的には常温減圧乾燥(加熱しない))させて質量が恒量になったときの長さTを計測した。このとき、含浸・乾燥中に溶質が細胞壁に浸入していれば細胞壁を膨潤させる一方、wax不溶分は細胞壁に浸入できないので細胞壁表面に沈着することになる。
重量増加率は、細胞壁内外に関わらず導入された物質の質量割合を示す値に対して、膨潤率は、導入された物質にうち細胞壁内にまで浸入した物質の割合を示す値となる。
これにより、PEOwaxが細胞の内腔のみに充填され、細胞壁内への浸入は生じていない(フェノール樹脂によって、PEOwaxが細胞壁内に浸入、充填されることを阻害する。)傾向にあることを確認した。すなわち、質量増加率が大きくなる(物質は導入されている)が、膨潤率が大きくなっていない(むしろ、wax添加量の増加に対して膨潤率は低下している)のは、細胞壁中への浸入物がない(減っている)ことを意味する。waxの添加によって、フェノール樹脂水溶液の粘性が増加したり、フェノール同士が凝集などを生じて見掛けの分子サイズが大きくなったりすると、細胞壁への浸入が阻害されることとなる。 The experimental method is to measure the tangential length (T0) of a cedar veneer that has been dried to a constant weight at 105 ° C., and prepare it by depressurization and pressure impregnation treatment in the preparation solution (solute + wax insoluble content + solvent). The liquid was injected and impregnated. Thereafter, the cedar veneer was taken out from the preparation solution, dried (finally dried at room temperature under reduced pressure (not heated)), and the length T when the mass became a constant weight was measured. At this time, if the solute is infiltrated into the cell wall during the impregnation and drying, the cell wall is swollen, while the wax-insoluble matter cannot be infiltrated into the cell wall and is deposited on the cell wall surface.
The weight increase rate is a value indicating the mass ratio of the introduced substance regardless of the inside or outside of the cell wall, and the swelling ratio is a value indicating the ratio of the introduced substance to the cell wall.
Accordingly, it is confirmed that PEOwax is filled only in the lumen of the cell and does not enter the cell wall (the phenol resin tends to inhibit PEOwax from entering and filling the cell wall). did. That is, the mass increase rate is increased (the substance is introduced), but the swelling rate is not increased (rather, the swelling rate decreases with increasing the amount of added wax) into the cell wall. Means that there is no intrusion (decrease). If the addition of the wax increases the viscosity of the aqueous phenol resin solution, or if the phenols aggregate together to increase the apparent molecular size, penetration into the cell wall will be inhibited.
重量増加率は、細胞壁内外に関わらず導入された物質の質量割合を示す値に対して、膨潤率は、導入された物質にうち細胞壁内にまで浸入した物質の割合を示す値となる。
これにより、PEOwaxが細胞の内腔のみに充填され、細胞壁内への浸入は生じていない(フェノール樹脂によって、PEOwaxが細胞壁内に浸入、充填されることを阻害する。)傾向にあることを確認した。すなわち、質量増加率が大きくなる(物質は導入されている)が、膨潤率が大きくなっていない(むしろ、wax添加量の増加に対して膨潤率は低下している)のは、細胞壁中への浸入物がない(減っている)ことを意味する。waxの添加によって、フェノール樹脂水溶液の粘性が増加したり、フェノール同士が凝集などを生じて見掛けの分子サイズが大きくなったりすると、細胞壁への浸入が阻害されることとなる。 The experimental method is to measure the tangential length (T0) of a cedar veneer that has been dried to a constant weight at 105 ° C., and prepare it by depressurization and pressure impregnation treatment in the preparation solution (solute + wax insoluble content + solvent). The liquid was injected and impregnated. Thereafter, the cedar veneer was taken out from the preparation solution, dried (finally dried at room temperature under reduced pressure (not heated)), and the length T when the mass became a constant weight was measured. At this time, if the solute is infiltrated into the cell wall during the impregnation and drying, the cell wall is swollen, while the wax-insoluble matter cannot be infiltrated into the cell wall and is deposited on the cell wall surface.
The weight increase rate is a value indicating the mass ratio of the introduced substance regardless of the inside or outside of the cell wall, and the swelling ratio is a value indicating the ratio of the introduced substance to the cell wall.
Accordingly, it is confirmed that PEOwax is filled only in the lumen of the cell and does not enter the cell wall (the phenol resin tends to inhibit PEOwax from entering and filling the cell wall). did. That is, the mass increase rate is increased (the substance is introduced), but the swelling rate is not increased (rather, the swelling rate decreases with increasing the amount of added wax) into the cell wall. Means that there is no intrusion (decrease). If the addition of the wax increases the viscosity of the aqueous phenol resin solution, or if the phenols aggregate together to increase the apparent molecular size, penetration into the cell wall will be inhibited.
図2-2に、調製した含浸木材の断面拡大写真を示す。
PF樹脂は、すべての調製木材に同程度含まれているが、細胞内腔への完全充填はほとんど確認できず、図中矢印のように細胞壁内腔表面に沈着しているようにみえる。
一方で、PEOwaxは、(a)図中破線で囲む細胞内腔のように、内腔全体に充填されていることが確認できた。また、その存在割合は、PEOwax濃度が増加するにつれて明らかに増えた。
このことから、PF樹脂は細胞壁内及び細胞壁表面に主に存在し、PEOwaxは主に内腔に充填する形態で木質系材料に存在していることが示唆された。 FIG. 2-2 shows an enlarged cross-sectional photograph of the prepared impregnated wood.
Although the PF resin is contained in the same amount in all the prepared woods, the complete filling of the cell lumen is hardly confirmed, and it appears that it is deposited on the surface of the cell wall lumen as indicated by the arrow in the figure.
On the other hand, it was confirmed that the PEOwax was filled in the entire lumen as in the cell lumen surrounded by the broken line in FIG. Moreover, the abundance ratio clearly increased as the PEOwax concentration increased.
From this, it was suggested that PF resin is mainly present in the cell wall and on the cell wall surface, and PEOwax is present in the woody material mainly in a form of filling the lumen.
PF樹脂は、すべての調製木材に同程度含まれているが、細胞内腔への完全充填はほとんど確認できず、図中矢印のように細胞壁内腔表面に沈着しているようにみえる。
一方で、PEOwaxは、(a)図中破線で囲む細胞内腔のように、内腔全体に充填されていることが確認できた。また、その存在割合は、PEOwax濃度が増加するにつれて明らかに増えた。
このことから、PF樹脂は細胞壁内及び細胞壁表面に主に存在し、PEOwaxは主に内腔に充填する形態で木質系材料に存在していることが示唆された。 FIG. 2-2 shows an enlarged cross-sectional photograph of the prepared impregnated wood.
Although the PF resin is contained in the same amount in all the prepared woods, the complete filling of the cell lumen is hardly confirmed, and it appears that it is deposited on the surface of the cell wall lumen as indicated by the arrow in the figure.
On the other hand, it was confirmed that the PEOwax was filled in the entire lumen as in the cell lumen surrounded by the broken line in FIG. Moreover, the abundance ratio clearly increased as the PEOwax concentration increased.
From this, it was suggested that PF resin is mainly present in the cell wall and on the cell wall surface, and PEOwax is present in the woody material mainly in a form of filling the lumen.
図3及び表1に、調製した木質系材料の熱分析の概略と結果を示す。
図3のDSC及びDMAは、125℃付近に融点を示すPEOwax単体とPF樹脂及びPEOwaxが含浸された木質系材料の結果を示している。
フェノール樹脂含浸木材のDSCの1st昇温では、ガラス転移温度Tgh、PF樹脂の硬化ピーク温度Tp(▼)が検出される。2nd昇温では、PEOwaxの含有率を把握できる融解熱QpeoがTm付近で定量された。それらDSC結果に応じてDMAの1st昇温でも軟化温度Tge、硬化開始温度Tceを確認することに加えて、硬化前後での30℃における貯蔵弾性率E’の相対比を定量した。
フェノール樹脂含浸木材のDSCの結果から、1st昇温で、ガラス転移温度Tghと硬化ピーク温度Tp、2nd昇温で、wax添加量の換算できるwax融解熱Qが検出された。DMAからは、1st昇温から硬化開始温度Tce、1st昇温と2nd昇温の比較から硬化度ΔEc’が評価される。含浸木材の熱軟化、熱硬化の挙動について、wax添加率の増加による、それらの温度域の大きな変化が認められないので、フェノール樹脂とwaxの相互作用は小さく、流動成形に悪影響を及ぼす可能性は低いことが確認された。
このように、PF樹脂の硬化温度よりも低温側にPEOwaxの融点Tmを設定する(Tm<Tp(142±3℃)、Tce(135±2℃))ことで、木質系材料の軟化状態で潤滑剤を滲出させて成形性の向上を図ることができる。 FIG. 3 and Table 1 show the outline and results of thermal analysis of the prepared wood-based material.
DSC and DMA in FIG. 3 show the results of a PEOwax simple substance having a melting point near 125 ° C. and a wood-based material impregnated with PF resin and PEOwax.
At the 1st temperature increase of the DSC of the phenol resin-impregnated wood, the glass transition temperature Tgh and the curing peak temperature Tp (▼) of the PF resin are detected. At a 2nd temperature increase, the heat of fusion Qpeo that can grasp the content of PEOwax was quantified in the vicinity of Tm. According to the DSC results, in addition to confirming the softening temperature Tge and the curing start temperature Tce even at the first temperature rise of DMA, the relative ratio of the storage elastic modulus E ′ at 30 ° C. before and after curing was quantified.
From the DSC results of the phenol resin-impregnated wood, the Wax melting heat Q that can be converted into the amount of added wax was detected at the 1st temperature increase, the glass transition temperature Tgh, the curing peak temperature Tp, and the 2nd temperature increase. From the first temperature increase, the DMA evaluates the curing degree ΔEc ′ from the comparison of the curing start temperature Tce, the first temperature increase, and the 2nd temperature increase. As the heat softening and heat curing behavior of the impregnated wood does not show any significant change in the temperature range due to the increase in the wax addition rate, the interaction between the phenolic resin and the wax is small, and may adversely affect fluid molding Was confirmed to be low.
Thus, by setting the melting point Tm of PEOwax to a lower temperature side than the curing temperature of the PF resin (Tm <Tp (142 ± 3 ° C.), Tce (135 ± 2 ° C.)) Lubricant can be leached to improve moldability.
図3のDSC及びDMAは、125℃付近に融点を示すPEOwax単体とPF樹脂及びPEOwaxが含浸された木質系材料の結果を示している。
フェノール樹脂含浸木材のDSCの1st昇温では、ガラス転移温度Tgh、PF樹脂の硬化ピーク温度Tp(▼)が検出される。2nd昇温では、PEOwaxの含有率を把握できる融解熱QpeoがTm付近で定量された。それらDSC結果に応じてDMAの1st昇温でも軟化温度Tge、硬化開始温度Tceを確認することに加えて、硬化前後での30℃における貯蔵弾性率E’の相対比を定量した。
フェノール樹脂含浸木材のDSCの結果から、1st昇温で、ガラス転移温度Tghと硬化ピーク温度Tp、2nd昇温で、wax添加量の換算できるwax融解熱Qが検出された。DMAからは、1st昇温から硬化開始温度Tce、1st昇温と2nd昇温の比較から硬化度ΔEc’が評価される。含浸木材の熱軟化、熱硬化の挙動について、wax添加率の増加による、それらの温度域の大きな変化が認められないので、フェノール樹脂とwaxの相互作用は小さく、流動成形に悪影響を及ぼす可能性は低いことが確認された。
このように、PF樹脂の硬化温度よりも低温側にPEOwaxの融点Tmを設定する(Tm<Tp(142±3℃)、Tce(135±2℃))ことで、木質系材料の軟化状態で潤滑剤を滲出させて成形性の向上を図ることができる。 FIG. 3 and Table 1 show the outline and results of thermal analysis of the prepared wood-based material.
DSC and DMA in FIG. 3 show the results of a PEOwax simple substance having a melting point near 125 ° C. and a wood-based material impregnated with PF resin and PEOwax.
At the 1st temperature increase of the DSC of the phenol resin-impregnated wood, the glass transition temperature Tgh and the curing peak temperature Tp (▼) of the PF resin are detected. At a 2nd temperature increase, the heat of fusion Qpeo that can grasp the content of PEOwax was quantified in the vicinity of Tm. According to the DSC results, in addition to confirming the softening temperature Tge and the curing start temperature Tce even at the first temperature rise of DMA, the relative ratio of the storage elastic modulus E ′ at 30 ° C. before and after curing was quantified.
From the DSC results of the phenol resin-impregnated wood, the Wax melting heat Q that can be converted into the amount of added wax was detected at the 1st temperature increase, the glass transition temperature Tgh, the curing peak temperature Tp, and the 2nd temperature increase. From the first temperature increase, the DMA evaluates the curing degree ΔEc ′ from the comparison of the curing start temperature Tce, the first temperature increase, and the 2nd temperature increase. As the heat softening and heat curing behavior of the impregnated wood does not show any significant change in the temperature range due to the increase in the wax addition rate, the interaction between the phenolic resin and the wax is small, and may adversely affect fluid molding Was confirmed to be low.
Thus, by setting the melting point Tm of PEOwax to a lower temperature side than the curing temperature of the PF resin (Tm <Tp (142 ± 3 ° C.), Tce (135 ± 2 ° C.)) Lubricant can be leached to improve moldability.
2.2 側方押出し実験による成形性評価
図4-1及び図4-2に、30%濃度で調製したPF樹脂とPEOwaxの水溶液を含浸させた木材の側方押出し実験におけるパンチ荷重F-パンチストロークS線図を示す。
図4-1において、極太線で示すPEOwaxの添加のない条件(0%)では、Fが約30kN(Sが約7mm)において荷重のピーク(▽)が現れ、この点で側方への材料流動が開始した。ピークを迎えた後、荷重は一旦、低下したが、その後増加に転じ、増加し続けた。これは、押出し材の金型ギャップ内壁との摺動による抵抗であり、押出し長さの増加とともに接触面が増えるために生じた。 2.2 Formability evaluation by side extrusion experiment Fig. 4-1 and Fig. 4-2 show the punch load F-punch in the side extrusion experiment of wood impregnated with 30% PF resin and PEOwax aqueous solution. A stroke S diagram is shown.
In Fig. 4-1, under the condition (0%) without addition of PEOwax indicated by the bold line, a load peak (() appears when F is about 30 kN (S is about 7 mm), and the material to the side at this point The flow started. After reaching the peak, the load once decreased, but then began to increase and continued to increase. This was resistance due to sliding of the extruded material with the inner wall of the mold gap, and occurred because the contact surface increased as the extrusion length increased.
図4-1及び図4-2に、30%濃度で調製したPF樹脂とPEOwaxの水溶液を含浸させた木材の側方押出し実験におけるパンチ荷重F-パンチストロークS線図を示す。
図4-1において、極太線で示すPEOwaxの添加のない条件(0%)では、Fが約30kN(Sが約7mm)において荷重のピーク(▽)が現れ、この点で側方への材料流動が開始した。ピークを迎えた後、荷重は一旦、低下したが、その後増加に転じ、増加し続けた。これは、押出し材の金型ギャップ内壁との摺動による抵抗であり、押出し長さの増加とともに接触面が増えるために生じた。 2.2 Formability evaluation by side extrusion experiment Fig. 4-1 and Fig. 4-2 show the punch load F-punch in the side extrusion experiment of wood impregnated with 30% PF resin and PEOwax aqueous solution. A stroke S diagram is shown.
In Fig. 4-1, under the condition (0%) without addition of PEOwax indicated by the bold line, a load peak (() appears when F is about 30 kN (S is about 7 mm), and the material to the side at this point The flow started. After reaching the peak, the load once decreased, but then began to increase and continued to increase. This was resistance due to sliding of the extruded material with the inner wall of the mold gap, and occurred because the contact surface increased as the extrusion length increased.
PEOwaxの添加量についてみると、0.9以上、特に、1.5%において荷重のピーク値の減少とそれ以上のSeにおける荷重値が低下した。このことは、PEOwaxの添加により易成形性効果が得られることを示しており、図4-1及び図4-2中の写真のとおり、押出し長さleが増大した。
このように、PEOwaxの添加量が、特に、1.5%以上において、顕著に押出し開始荷重が低下することが分かったが、図4-2に示すように、3.0%程度までの添加によって、押出し時の滲みだしが生じたため、パンチストロークSの増加によっても荷重の低減効果が認められた。押出し長さleもそれらの効果により増大した。 As for the amount of PEOwax added, the load peak value decreased at 0.9 or more, particularly 1.5%, and the load value at Se further decreased. This indicates that an easy moldability effect can be obtained by adding PEOwax, and the extrusion length le increased as shown in the photographs in FIGS. 4-1 and 4-2.
As described above, it was found that the extrusion start load is remarkably reduced particularly when the addition amount of PEOwax is 1.5% or more. However, as shown in FIG. As a result, bleeding at the time of extrusion occurred, and an increase in the punch stroke S was recognized as an effect of reducing the load. The extrusion length le also increased due to these effects.
このように、PEOwaxの添加量が、特に、1.5%以上において、顕著に押出し開始荷重が低下することが分かったが、図4-2に示すように、3.0%程度までの添加によって、押出し時の滲みだしが生じたため、パンチストロークSの増加によっても荷重の低減効果が認められた。押出し長さleもそれらの効果により増大した。 As for the amount of PEOwax added, the load peak value decreased at 0.9 or more, particularly 1.5%, and the load value at Se further decreased. This indicates that an easy moldability effect can be obtained by adding PEOwax, and the extrusion length le increased as shown in the photographs in FIGS. 4-1 and 4-2.
As described above, it was found that the extrusion start load is remarkably reduced particularly when the addition amount of PEOwax is 1.5% or more. However, as shown in FIG. As a result, bleeding at the time of extrusion occurred, and an increase in the punch stroke S was recognized as an effect of reducing the load. The extrusion length le also increased due to these effects.
これらの結果を図5にまとめると、PEOwaxの添加量0.5%以上において、パンチ面圧Pの低減効果が認められ、1.5%では、パンチ面圧Pは、PEOwaxの添加量0%のときの約40MPaから、約25MPaまで、9.0%では、約10MPaまで低下した。同時に、押出しストローク量(Sf-Se)の増大によって、押出し長さleは増大し、金型内に投入したフェノール樹脂含浸木材はすべて押出しきることができた。
ここで、「Se」は、押出し開始後のストローク(荷重のピークを越えた後のパンチストローク領域に相当)を、「Sf」は、押出し実験における最終ストローク(荷重50kN(final)の時におけるストローク)を意味する。
このように、PEOwaxは、熱硬化性樹脂含浸木材の流動成形において、樹脂硬化温度よりも低温側で潤滑効果を果たし、且つ、硬化阻害を生じないため、易成形性を付与できることを確認した。 When these results are summarized in FIG. 5, when the addition amount of PEOwax is 0.5% or more, the effect of reducing the punch surface pressure P is recognized. At 1.5%, the punch surface pressure P is 0% of the addition amount of PEOwax. From about 40 MPa at this time to about 25 MPa, at 9.0%, it decreased to about 10 MPa. At the same time, the extrusion length le increased with the increase of the extrusion stroke amount (Sf-Se), and all the phenol resin-impregnated wood put in the mold could be extruded.
Here, “Se” is a stroke after the start of extrusion (corresponding to a punch stroke region after exceeding the load peak), and “Sf” is a final stroke in the extrusion experiment (a stroke at a load of 50 kN (final)). ).
Thus, it was confirmed that PEOwax can impart easy moldability because it exerts a lubricating effect at a temperature lower than the resin curing temperature and does not inhibit curing in the fluid molding of thermosetting resin-impregnated wood.
ここで、「Se」は、押出し開始後のストローク(荷重のピークを越えた後のパンチストローク領域に相当)を、「Sf」は、押出し実験における最終ストローク(荷重50kN(final)の時におけるストローク)を意味する。
このように、PEOwaxは、熱硬化性樹脂含浸木材の流動成形において、樹脂硬化温度よりも低温側で潤滑効果を果たし、且つ、硬化阻害を生じないため、易成形性を付与できることを確認した。 When these results are summarized in FIG. 5, when the addition amount of PEOwax is 0.5% or more, the effect of reducing the punch surface pressure P is recognized. At 1.5%, the punch surface pressure P is 0% of the addition amount of PEOwax. From about 40 MPa at this time to about 25 MPa, at 9.0%, it decreased to about 10 MPa. At the same time, the extrusion length le increased with the increase of the extrusion stroke amount (Sf-Se), and all the phenol resin-impregnated wood put in the mold could be extruded.
Here, “Se” is a stroke after the start of extrusion (corresponding to a punch stroke region after exceeding the load peak), and “Sf” is a final stroke in the extrusion experiment (a stroke at a load of 50 kN (final)). ).
Thus, it was confirmed that PEOwax can impart easy moldability because it exerts a lubricating effect at a temperature lower than the resin curing temperature and does not inhibit curing in the fluid molding of thermosetting resin-impregnated wood.
3.酸化ポリエチレンワックスを用いたその他の実験結果
図6に、PEOwax(図6において、「PEw」と表記する。)を、金型に塗布して成形を行った実験結果を示す。
PEOwaxを金型に塗布して成形を行うことによって、成形性の向上に効果がある(汎用の積層板用添加離型剤(アルキルリン酸エステル系化合物(AE))に比べて効果が大きく、PEOwaxの添加との相乗効果が得られる。)ことを確認した。 3. Other Experimental Results Using Oxidized Polyethylene Wax FIG. 6 shows experimental results obtained by applying PEOwax (indicated as “PEw” in FIG. 6) to a mold and molding.
By applying PEOwax to a mold and performing molding, it is effective in improving moldability (effective compared to general-purpose laminate release additive (alkyl phosphate ester compound (AE)), A synergistic effect with the addition of PEOwax is obtained.)
図6に、PEOwax(図6において、「PEw」と表記する。)を、金型に塗布して成形を行った実験結果を示す。
PEOwaxを金型に塗布して成形を行うことによって、成形性の向上に効果がある(汎用の積層板用添加離型剤(アルキルリン酸エステル系化合物(AE))に比べて効果が大きく、PEOwaxの添加との相乗効果が得られる。)ことを確認した。 3. Other Experimental Results Using Oxidized Polyethylene Wax FIG. 6 shows experimental results obtained by applying PEOwax (indicated as “PEw” in FIG. 6) to a mold and molding.
By applying PEOwax to a mold and performing molding, it is effective in improving moldability (effective compared to general-purpose laminate release additive (alkyl phosphate ester compound (AE)), A synergistic effect with the addition of PEOwax is obtained.)
図7及び図8に、木質系材料(素材)として、ブナ及びタケを用いて成形を行った実験結果を示す。
木質系材料の樹種による影響度の差はあるが、いずれも添加量の増加に応じて、成形性は向上することを確認した。ブナはスギに比べて密度が高く(空隙が少ない。)、樹脂含浸率も低くなるため、押出し長さはスギに比べて短い。さらに、タケでは、より密度が高い上に繊維率が多く、フェノール樹脂の含浸量もより少ないため、50kNでは ほとんど押出しが進まないが、PEOwax(図7及び図8において、「PEW」と表記する。)の添加による効果が認められた。 FIG. 7 and FIG. 8 show the experimental results of molding using beech and bamboo as the wood-based material (raw material).
Although there is a difference in the degree of influence depending on the tree species of the woody material, it was confirmed that the moldability improved as the addition amount increased. Beech has a higher density (less voids) than cedar and a lower resin impregnation rate, so the extrusion length is shorter than cedar. Furthermore, bamboo has higher density, higher fiber rate, and less phenol resin impregnation, so extrusion hardly proceeds at 50 kN, but PEOwax (indicated as “PEW” in FIGS. 7 and 8). )) Was added.
木質系材料の樹種による影響度の差はあるが、いずれも添加量の増加に応じて、成形性は向上することを確認した。ブナはスギに比べて密度が高く(空隙が少ない。)、樹脂含浸率も低くなるため、押出し長さはスギに比べて短い。さらに、タケでは、より密度が高い上に繊維率が多く、フェノール樹脂の含浸量もより少ないため、50kNでは ほとんど押出しが進まないが、PEOwax(図7及び図8において、「PEW」と表記する。)の添加による効果が認められた。 FIG. 7 and FIG. 8 show the experimental results of molding using beech and bamboo as the wood-based material (raw material).
Although there is a difference in the degree of influence depending on the tree species of the woody material, it was confirmed that the moldability improved as the addition amount increased. Beech has a higher density (less voids) than cedar and a lower resin impregnation rate, so the extrusion length is shorter than cedar. Furthermore, bamboo has higher density, higher fiber rate, and less phenol resin impregnation, so extrusion hardly proceeds at 50 kN, but PEOwax (indicated as “PEW” in FIGS. 7 and 8). )) Was added.
図9に、熱硬化性樹脂として、30%濃度で調製したフェノール樹脂及びメラミン樹脂を用いて成形を行った実験結果を示す。
フェノール樹脂に比べて、メラミン樹脂を含浸した場合のPEOwax(図9において、「PEW」と表記。)の添加の効果は小さい(メラミン樹脂+PEOwax1.5%は、フェノール樹脂+PEOwax0.01%とほぼ同等の効果を示す。)。 FIG. 9 shows the experimental results of molding using a phenol resin and a melamine resin prepared at a concentration of 30% as thermosetting resins.
Compared with phenol resin, the effect of adding PEOwax (indicated as “PEW” in FIG. 9) when impregnated with melamine resin is small (melamine resin + PEOwax 1.5% is almost equivalent to phenol resin + PEOwax 0.01%) Shows the effect.)
フェノール樹脂に比べて、メラミン樹脂を含浸した場合のPEOwax(図9において、「PEW」と表記。)の添加の効果は小さい(メラミン樹脂+PEOwax1.5%は、フェノール樹脂+PEOwax0.01%とほぼ同等の効果を示す。)。 FIG. 9 shows the experimental results of molding using a phenol resin and a melamine resin prepared at a concentration of 30% as thermosetting resins.
Compared with phenol resin, the effect of adding PEOwax (indicated as “PEW” in FIG. 9) when impregnated with melamine resin is small (melamine resin + PEOwax 1.5% is almost equivalent to phenol resin + PEOwax 0.01%) Shows the effect.)
4.熱硬化性樹脂としてメラミン樹脂を用いた実験結果
そこで、熱硬化性樹脂としてメラミン樹脂(以下、「MF」という場合がある。)を用い、PEOwaxの添加量を増加させて成形を行うとともに、併せて、潤滑剤組成物として酸変性ポリプロピレンワックス(以下、「PPwax」、「PPW」という場合がある。)を用いて行った実験結果を、図10~図13に示す。
ここで、使用した酸変性ポリプロピレンワックスは、以下のとおりのものである。
<酸変性ポリプロピレンワックス>
・融点:167℃
・酸価:41mgKOH/g
・数平均分子量:36000
また、木質系材料(素材)として、厚さ約3.0mmのスギ単板(繊維L方向:160mm×接線T方向:100mm、かさ密度0.35~0.41g/cm3)を使用した。
また、メラミン樹脂と酸化ポリエチレンワックス(PEOwax)の場合で、PEOwax1.5%、3.0%、6.0%の添加条件で、PEOwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、4.8重量部、7.6重量部、12.0重量部になった。
また、メラミン樹脂と酸変性ポリプロピレンワックス(PPwax)の場合で、PPwax1.5%、3.0%、6.0%の添加条件で、PPwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、12.9重量部、14.8重量部、23.0重量部になった。 4). Experimental Results Using Melamine Resin as Thermosetting Resin Therefore, melamine resin (hereinafter sometimes referred to as “MF”) is used as the thermosetting resin, and the amount of PEOwax added is increased. 10 to 13 show the results of experiments conducted using acid-modified polypropylene wax (hereinafter sometimes referred to as “PPwax” or “PPW”) as the lubricant composition.
Here, the acid-modified polypropylene wax used is as follows.
<Acid-modified polypropylene wax>
Melting point: 167 ° C
Acid value: 41 mg KOH / g
Number average molecular weight: 36000
Further, a cedar veneer having a thickness of about 3.0 mm (fiber L direction: 160 mm × tangential T direction: 100 mm, bulk density of 0.35 to 0.41 g / cm 3 ) was used as the wood-based material (raw material).
In addition, in the case of melamine resin and oxidized polyethylene wax (PEOwax), the addition amount of PEOwax to the woody material under the addition conditions of PEOwax 1.5%, 3.0%, 6.0% ), And 4.8 parts by weight, 7.6 parts by weight, and 12.0 parts by weight.
In addition, in the case of melamine resin and acid-modified polypropylene wax (PPwax), the addition amount of PPwax to the woody material under the addition conditions of PPwax 1.5%, 3.0%, 6.0% is the woody material ( 12.9 parts by weight, 14.8 parts by weight, and 23.0 parts by weight with respect to 100 parts by weight of the dry weight of the material.
そこで、熱硬化性樹脂としてメラミン樹脂(以下、「MF」という場合がある。)を用い、PEOwaxの添加量を増加させて成形を行うとともに、併せて、潤滑剤組成物として酸変性ポリプロピレンワックス(以下、「PPwax」、「PPW」という場合がある。)を用いて行った実験結果を、図10~図13に示す。
ここで、使用した酸変性ポリプロピレンワックスは、以下のとおりのものである。
<酸変性ポリプロピレンワックス>
・融点:167℃
・酸価:41mgKOH/g
・数平均分子量:36000
また、木質系材料(素材)として、厚さ約3.0mmのスギ単板(繊維L方向:160mm×接線T方向:100mm、かさ密度0.35~0.41g/cm3)を使用した。
また、メラミン樹脂と酸化ポリエチレンワックス(PEOwax)の場合で、PEOwax1.5%、3.0%、6.0%の添加条件で、PEOwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、4.8重量部、7.6重量部、12.0重量部になった。
また、メラミン樹脂と酸変性ポリプロピレンワックス(PPwax)の場合で、PPwax1.5%、3.0%、6.0%の添加条件で、PPwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、12.9重量部、14.8重量部、23.0重量部になった。 4). Experimental Results Using Melamine Resin as Thermosetting Resin Therefore, melamine resin (hereinafter sometimes referred to as “MF”) is used as the thermosetting resin, and the amount of PEOwax added is increased. 10 to 13 show the results of experiments conducted using acid-modified polypropylene wax (hereinafter sometimes referred to as “PPwax” or “PPW”) as the lubricant composition.
Here, the acid-modified polypropylene wax used is as follows.
<Acid-modified polypropylene wax>
Melting point: 167 ° C
Acid value: 41 mg KOH / g
Number average molecular weight: 36000
Further, a cedar veneer having a thickness of about 3.0 mm (fiber L direction: 160 mm × tangential T direction: 100 mm, bulk density of 0.35 to 0.41 g / cm 3 ) was used as the wood-based material (raw material).
In addition, in the case of melamine resin and oxidized polyethylene wax (PEOwax), the addition amount of PEOwax to the woody material under the addition conditions of PEOwax 1.5%, 3.0%, 6.0% ), And 4.8 parts by weight, 7.6 parts by weight, and 12.0 parts by weight.
In addition, in the case of melamine resin and acid-modified polypropylene wax (PPwax), the addition amount of PPwax to the woody material under the addition conditions of PPwax 1.5%, 3.0%, 6.0% is the woody material ( 12.9 parts by weight, 14.8 parts by weight, and 23.0 parts by weight with respect to 100 parts by weight of the dry weight of the material.
図10-1に示すように、熱硬化性樹脂として30%濃度で調製したメラミン樹脂を用い、PEOwaxの添加量を1.5、3.0及び6.0%と増加させると、重量増加率が増加し、接線T方向膨潤率が減少することを確認した。
図10-1に、調製した含浸木材の断面拡大写真を示す。 As shown in FIG. 10-1, when a melamine resin prepared at a concentration of 30% was used as the thermosetting resin and the addition amount of PEOwax was increased to 1.5, 3.0, and 6.0%, the weight increase rate It was confirmed that the tangential T-direction swelling rate decreased.
FIG. 10-1 shows an enlarged cross-sectional photograph of the prepared impregnated wood.
図10-1に、調製した含浸木材の断面拡大写真を示す。 As shown in FIG. 10-1, when a melamine resin prepared at a concentration of 30% was used as the thermosetting resin and the addition amount of PEOwax was increased to 1.5, 3.0, and 6.0%, the weight increase rate It was confirmed that the tangential T-direction swelling rate decreased.
FIG. 10-1 shows an enlarged cross-sectional photograph of the prepared impregnated wood.
また、図10-2に示すように、熱硬化性樹脂として30%濃度で調製したメラミン樹脂を用い、PPwaxの添加量を1.5、3.0及び6.0%と増加させると、重量増加率が増加し、接線T方向膨潤率が減少することを確認した。
これにより、PEOwaxやPPwaxが細胞の内腔のみに充填され、細胞壁内への浸入は生じていない(メラミン樹脂によって、PEOwaxが細胞壁内に浸入、充填されることを阻害する。)傾向にあることを確認した。すなわち、質量増加率が大きくなる(物質は導入されている)が、膨潤率が大きくなっていない(むしろ、wax添加量の増加に対して膨潤率は低下している)のは、細胞壁中への浸入物がない(減っている)ことを意味する。waxの添加によって、メラミン樹脂水溶液の粘性が増加したり、メラミン同士が凝集などを生じて見掛けの分子サイズが大きくなったりすると、細胞壁への浸入が阻害されることとなる。 Further, as shown in FIG. 10-2, when a melamine resin prepared at a concentration of 30% is used as a thermosetting resin and the amount of PPwax added is increased to 1.5, 3.0, and 6.0%, the weight It was confirmed that the increase rate increased and the tangential T-direction swelling rate decreased.
Thereby, PEOwax and PPwax are filled only in the lumen of the cell, and no penetration into the cell wall occurs (the melamine resin tends to inhibit the penetration and filling of the PEOwax into the cell wall). It was confirmed. That is, the mass increase rate is increased (the substance is introduced), but the swelling rate is not increased (rather, the swelling rate decreases with increasing the amount of added wax) into the cell wall. Means that there is no intrusion (decrease). When the viscosity of the aqueous melamine resin solution increases or the apparent molecular size increases due to aggregation of the melamines due to the addition of the wax, penetration into the cell wall is inhibited.
これにより、PEOwaxやPPwaxが細胞の内腔のみに充填され、細胞壁内への浸入は生じていない(メラミン樹脂によって、PEOwaxが細胞壁内に浸入、充填されることを阻害する。)傾向にあることを確認した。すなわち、質量増加率が大きくなる(物質は導入されている)が、膨潤率が大きくなっていない(むしろ、wax添加量の増加に対して膨潤率は低下している)のは、細胞壁中への浸入物がない(減っている)ことを意味する。waxの添加によって、メラミン樹脂水溶液の粘性が増加したり、メラミン同士が凝集などを生じて見掛けの分子サイズが大きくなったりすると、細胞壁への浸入が阻害されることとなる。 Further, as shown in FIG. 10-2, when a melamine resin prepared at a concentration of 30% is used as a thermosetting resin and the amount of PPwax added is increased to 1.5, 3.0, and 6.0%, the weight It was confirmed that the increase rate increased and the tangential T-direction swelling rate decreased.
Thereby, PEOwax and PPwax are filled only in the lumen of the cell, and no penetration into the cell wall occurs (the melamine resin tends to inhibit the penetration and filling of the PEOwax into the cell wall). It was confirmed. That is, the mass increase rate is increased (the substance is introduced), but the swelling rate is not increased (rather, the swelling rate decreases with increasing the amount of added wax) into the cell wall. Means that there is no intrusion (decrease). When the viscosity of the aqueous melamine resin solution increases or the apparent molecular size increases due to aggregation of the melamines due to the addition of the wax, penetration into the cell wall is inhibited.
図11-1及び図11-2並びに表2-1及び表2-2に、潤滑剤組成物としてPEOwax及びPPwaxをそれぞれ用いて調製した木質系材料の熱分析の概略と結果を示す。
図11-1及び図11-2のDSC及びDMAは、125℃付近に融点を示すPEOwax単体とMF樹脂及びPEOwaxが含浸された木質系材料の結果、並びに、156℃付近に融点を示すPPwax単体とMF樹脂及びPPwaxが含浸された木質系材料の結果を示している。
メラミン樹脂含浸木材のDSC結果からは、軟化・硬化挙動を検出することができず、wax添加量の換算できるwax融解熱Qのみが検出された。DMA結果からは、1st昇温から軟化温度Tge、硬化開始温度Tce1、硬化終了温度Tce2、1st昇温と2nd昇温の比較から硬化度ΔEc’を評価した。
メラミン樹脂は、フェノール樹脂に比べて硬化反応の進行が遅く、広範囲に亘って貯蔵弾性率が増加した。含浸木材の熱軟化、熱硬化の挙動について、wax添加率の増加に対して硬化温度の高温側シフトが若干みられるものの、硬化度は確実に1以上に上昇しており、流動成形に悪影響を及ぼす可能性は低いことが確認された。 11-1 and 11-2, and Table 2-1 and Table 2-2 show the outline and results of thermal analysis of wood-based materials prepared using PEOwax and PPwax as the lubricant composition, respectively.
The DSC and DMA shown in FIGS. 11-1 and 11-2 are the results of the PEOwax simple substance having a melting point around 125 ° C. and the wood-based material impregnated with MF resin and PEOwax, and the PPwax simple substance showing a melting point near 156 ° C. The results of the wood-based material impregnated with MF resin and PPwax are shown.
From the DSC result of the melamine resin-impregnated wood, the softening / curing behavior could not be detected, and only the wax heat of fusion Q that could be converted into the amount of added wax was detected. From the DMA results, the degree of cure ΔEc ′ was evaluated from the comparison of the 1st temperature rise to the softening temperature Tge, the curing start temperature Tce1, the curing end temperature Tce2, the 1st temperature rise and the 2nd temperature rise.
The melamine resin has a slower curing reaction than the phenol resin, and the storage elastic modulus increases over a wide range. Regarding the thermal softening and thermal curing behavior of the impregnated wood, although the high temperature side shift of the curing temperature is slightly seen with respect to the increase of the wax addition rate, the degree of curing has definitely risen to 1 or more, which has an adverse effect on fluid molding. It was confirmed that the effect was low.
図11-1及び図11-2のDSC及びDMAは、125℃付近に融点を示すPEOwax単体とMF樹脂及びPEOwaxが含浸された木質系材料の結果、並びに、156℃付近に融点を示すPPwax単体とMF樹脂及びPPwaxが含浸された木質系材料の結果を示している。
メラミン樹脂含浸木材のDSC結果からは、軟化・硬化挙動を検出することができず、wax添加量の換算できるwax融解熱Qのみが検出された。DMA結果からは、1st昇温から軟化温度Tge、硬化開始温度Tce1、硬化終了温度Tce2、1st昇温と2nd昇温の比較から硬化度ΔEc’を評価した。
メラミン樹脂は、フェノール樹脂に比べて硬化反応の進行が遅く、広範囲に亘って貯蔵弾性率が増加した。含浸木材の熱軟化、熱硬化の挙動について、wax添加率の増加に対して硬化温度の高温側シフトが若干みられるものの、硬化度は確実に1以上に上昇しており、流動成形に悪影響を及ぼす可能性は低いことが確認された。 11-1 and 11-2, and Table 2-1 and Table 2-2 show the outline and results of thermal analysis of wood-based materials prepared using PEOwax and PPwax as the lubricant composition, respectively.
The DSC and DMA shown in FIGS. 11-1 and 11-2 are the results of the PEOwax simple substance having a melting point around 125 ° C. and the wood-based material impregnated with MF resin and PEOwax, and the PPwax simple substance showing a melting point near 156 ° C. The results of the wood-based material impregnated with MF resin and PPwax are shown.
From the DSC result of the melamine resin-impregnated wood, the softening / curing behavior could not be detected, and only the wax heat of fusion Q that could be converted into the amount of added wax was detected. From the DMA results, the degree of cure ΔEc ′ was evaluated from the comparison of the 1st temperature rise to the softening temperature Tge, the curing start temperature Tce1, the curing end temperature Tce2, the 1st temperature rise and the 2nd temperature rise.
The melamine resin has a slower curing reaction than the phenol resin, and the storage elastic modulus increases over a wide range. Regarding the thermal softening and thermal curing behavior of the impregnated wood, although the high temperature side shift of the curing temperature is slightly seen with respect to the increase of the wax addition rate, the degree of curing has definitely risen to 1 or more, which has an adverse effect on fluid molding. It was confirmed that the effect was low.
図12-1及び図12-2に、上記「1.3 側方押出し金型及び成形性評価」と同様の方法で行った、30%濃度で調製したメラミン樹脂とPEOwax又はPPwaxの水溶液を含浸させた木材の側方押出し実験におけるパンチ荷重F-パンチストロークS線図を示す。
PEOwaxの添加量についてみると、図12-1に示すように、PEOwaxの添加量の増加による押出し荷重の低減や押出し長さの増加は、PF樹脂の場合に比べて効果が小さい。これは、MF樹脂含浸木材の軟化及び硬化挙動がPF樹脂と大きく異なるためであり、PEOwaxの融点がMF硬化温度に比べて低すぎることが要因と考えられる。なお、離型剤としてPEOwaxの使用は、成形性改善に効果が認められる。
一方、PPwaxの添加量についてみると、図12-2に示すように、離型剤の使用がない場合においても、PPwaxの添加量の増加による押出し荷重の低減や押出し長さの増加が認められた。これは、PPwaxの融点とメラミン樹脂含浸木材の硬化温度のバランスがちょうど良い温度域にあったためと推察される。
これらの結果を図13にまとめると、PEOwaxは、メラミン樹脂含浸木材に対して、成形(押出開始面圧の低減と押出し長さの増大)を改善する効果は小さいが、PPwaxは、メラミン樹脂含浸木材の成形改善に対して非常に効果的に作用することが分かる。 12-1 and 12-2 were impregnated with a melamine resin prepared at a concentration of 30% and an aqueous solution of PEOwax or PPwax, which was carried out in the same manner as in “1.3 Side extrusion mold and moldability evaluation” above. FIG. 9 shows a punch load F-punch stroke S diagram in a lateral extrusion experiment of a given wood.
Regarding the amount of PEOwax added, as shown in FIG. 12A, the reduction in the extrusion load and the increase in the extrusion length due to the increase in the amount of PEOwax are less effective than in the case of the PF resin. This is because the softening and curing behavior of the MF resin-impregnated wood is significantly different from that of the PF resin, and it is considered that the melting point of PEOwax is too low compared to the MF curing temperature. In addition, use of PEOwax as a mold release agent is effective for improving moldability.
On the other hand, regarding the amount of PPwax added, as shown in FIG. 12-2, a decrease in the extrusion load and an increase in the extrusion length were observed due to an increase in the amount of PPwax added even when no release agent was used. It was. This is presumably because the balance between the melting point of PPwax and the curing temperature of the melamine resin-impregnated wood was in a good temperature range.
When these results are summarized in FIG. 13, PEOwax has little effect on improving molding (reduction of extrusion start surface pressure and increase of extrusion length) with respect to melamine resin-impregnated wood, but PPwax is impregnated with melamine resin. It turns out that it acts very effectively on the improvement of the molding of wood.
PEOwaxの添加量についてみると、図12-1に示すように、PEOwaxの添加量の増加による押出し荷重の低減や押出し長さの増加は、PF樹脂の場合に比べて効果が小さい。これは、MF樹脂含浸木材の軟化及び硬化挙動がPF樹脂と大きく異なるためであり、PEOwaxの融点がMF硬化温度に比べて低すぎることが要因と考えられる。なお、離型剤としてPEOwaxの使用は、成形性改善に効果が認められる。
一方、PPwaxの添加量についてみると、図12-2に示すように、離型剤の使用がない場合においても、PPwaxの添加量の増加による押出し荷重の低減や押出し長さの増加が認められた。これは、PPwaxの融点とメラミン樹脂含浸木材の硬化温度のバランスがちょうど良い温度域にあったためと推察される。
これらの結果を図13にまとめると、PEOwaxは、メラミン樹脂含浸木材に対して、成形(押出開始面圧の低減と押出し長さの増大)を改善する効果は小さいが、PPwaxは、メラミン樹脂含浸木材の成形改善に対して非常に効果的に作用することが分かる。 12-1 and 12-2 were impregnated with a melamine resin prepared at a concentration of 30% and an aqueous solution of PEOwax or PPwax, which was carried out in the same manner as in “1.3 Side extrusion mold and moldability evaluation” above. FIG. 9 shows a punch load F-punch stroke S diagram in a lateral extrusion experiment of a given wood.
Regarding the amount of PEOwax added, as shown in FIG. 12A, the reduction in the extrusion load and the increase in the extrusion length due to the increase in the amount of PEOwax are less effective than in the case of the PF resin. This is because the softening and curing behavior of the MF resin-impregnated wood is significantly different from that of the PF resin, and it is considered that the melting point of PEOwax is too low compared to the MF curing temperature. In addition, use of PEOwax as a mold release agent is effective for improving moldability.
On the other hand, regarding the amount of PPwax added, as shown in FIG. 12-2, a decrease in the extrusion load and an increase in the extrusion length were observed due to an increase in the amount of PPwax added even when no release agent was used. It was. This is presumably because the balance between the melting point of PPwax and the curing temperature of the melamine resin-impregnated wood was in a good temperature range.
When these results are summarized in FIG. 13, PEOwax has little effect on improving molding (reduction of extrusion start surface pressure and increase of extrusion length) with respect to melamine resin-impregnated wood, but PPwax is impregnated with melamine resin. It turns out that it acts very effectively on the improvement of the molding of wood.
5.フェノール樹脂と酸変性ポリアルキレンワックスを用いた実験結果
以下、熱硬化性樹脂としてフェノール樹脂を、潤滑剤組成物として酸変性ポリアルキレンワックスを、それぞれ用いて行った実験結果を、図14~図17に示す。
ここで、木質系材料(素材)として、厚さ約3.0mmのスギ単板(繊維L方向:160mm×接線T方向:100mm、かさ密度0.35~0.41g/cm3)を使用した。
また、PEOwax1.5%、3.0%、6.0%の添加条件で、PEOwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、4.0重量部、6.0重量部、4.5重量部になった(ここで、6.0%添加条件で添加量が上昇していないのは、木質系材料(素材)の密度のバラつきが原因と考えられる。)。 5). Experimental Results Using Phenol Resin and Acid-Modified Polyalkylene Wax Hereinafter, experimental results performed using phenol resin as the thermosetting resin and acid-modified polyalkylene wax as the lubricant composition are shown in FIGS. Shown in
Here, a cedar veneer having a thickness of about 3.0 mm (fiber L direction: 160 mm × tangential T direction: 100 mm, bulk density of 0.35 to 0.41 g / cm 3 ) was used as the wood-based material (raw material). .
In addition, under the addition conditions of PEOwax 1.5%, 3.0%, and 6.0%, the amount of PEOwax added to the woody material is 4 parts by weight with respect to 100 parts by weight of the dry weight of the woody material (raw material). 0 parts by weight, 6.0 parts by weight, and 4.5 parts by weight (Here, the amount of addition does not increase under the 6.0% addition condition is due to variations in the density of the wood-based material (raw material). Possible cause.)
以下、熱硬化性樹脂としてフェノール樹脂を、潤滑剤組成物として酸変性ポリアルキレンワックスを、それぞれ用いて行った実験結果を、図14~図17に示す。
ここで、木質系材料(素材)として、厚さ約3.0mmのスギ単板(繊維L方向:160mm×接線T方向:100mm、かさ密度0.35~0.41g/cm3)を使用した。
また、PEOwax1.5%、3.0%、6.0%の添加条件で、PEOwaxの木質系材料への添加量は、木質系材料(素材)の乾燥重量100重量部に対して、4.0重量部、6.0重量部、4.5重量部になった(ここで、6.0%添加条件で添加量が上昇していないのは、木質系材料(素材)の密度のバラつきが原因と考えられる。)。 5). Experimental Results Using Phenol Resin and Acid-Modified Polyalkylene Wax Hereinafter, experimental results performed using phenol resin as the thermosetting resin and acid-modified polyalkylene wax as the lubricant composition are shown in FIGS. Shown in
Here, a cedar veneer having a thickness of about 3.0 mm (fiber L direction: 160 mm × tangential T direction: 100 mm, bulk density of 0.35 to 0.41 g / cm 3 ) was used as the wood-based material (raw material). .
In addition, under the addition conditions of PEOwax 1.5%, 3.0%, and 6.0%, the amount of PEOwax added to the woody material is 4 parts by weight with respect to 100 parts by weight of the dry weight of the woody material (raw material). 0 parts by weight, 6.0 parts by weight, and 4.5 parts by weight (Here, the amount of addition does not increase under the 6.0% addition condition is due to variations in the density of the wood-based material (raw material). Possible cause.)
図14に示すように、熱硬化性樹脂として30%濃度で調製したフェノール樹脂を用い、PPWの添加量を1.5、3.0及び6.0%と増加させると、重量増加率が増加する傾向にあり、接線T方向膨潤率は減少をもたらすことを確認した(PEOwaxと同様。)。ここで、対比のために、PEOwax(図14において、「PEW」と表記する。)(添加量:6.0%)を並記した(以下同じ。)。
これにより、PPWが細胞の内腔のみに充填され、細胞壁内への浸入は生じていない(フェノール樹脂によって、PPWが細胞壁内に浸入、充填されることを阻害する。)傾向にあることを確認した。
図15に、上記「1.3 側方押出し金型及び成形性評価」と同様の方法で行った、30%濃度で調製したフェノール樹脂とPPWの水溶液を含浸させた木材の側方押出し実験におけるパンチ荷重F-パンチストロークS線図を示す。
PPWの内部添加による押出し荷重の低減や押出し長さの増加は、PEOwaxほどには効果がないことが分かる。ただし、添加しない場合と比べては、多少の流動性向上効果はある。なお、6.0%PEWでは、押し込み量が増加したことで、図16に示すとともに、図15中の写真のとおり、押出し長さleは増大した。
図17及び表3に、調製した木質系材料の熱分析の概略と結果を示す。
図17のDSC及びDMAは、156℃付近に融点を示すPPwax単体とPF樹脂及びPPwaxが含浸された木質系材料の結果を示している。 As shown in FIG. 14, when a phenol resin prepared at a concentration of 30% is used as the thermosetting resin and the addition amount of PPW is increased to 1.5, 3.0, and 6.0%, the weight increase rate increases. It was confirmed that the tangential T-direction swelling rate decreased (similar to PEOwax). Here, for comparison, PEOwax (indicated as “PEW” in FIG. 14) (added amount: 6.0%) is shown in parallel (the same applies hereinafter).
As a result, it is confirmed that PPW is filled only in the lumen of the cell, and does not enter the cell wall (the phenol resin impedes PPW from entering and filling the cell wall). did.
FIG. 15 shows a side extrusion test of wood impregnated with an aqueous solution of phenol resin and PPW prepared at a concentration of 30%, which was performed in the same manner as in “1.3 Side extrusion mold and moldability evaluation”. Punch load F-Punch stroke S diagram is shown.
It can be seen that the reduction of the extrusion load and the increase of the extrusion length due to the internal addition of PPW are not as effective as PEOwax. However, there is some fluidity improvement effect compared with the case where it is not added. Note that with 6.0% PEW, the push-in amount increased, and as shown in FIG. 16, the extrusion length le increased as shown in the photograph in FIG. 15.
FIG. 17 and Table 3 show an outline and results of thermal analysis of the prepared wood-based material.
DSC and DMA in FIG. 17 show the results of PPwax alone having a melting point near 156 ° C. and a wood-based material impregnated with PF resin and PPwax.
これにより、PPWが細胞の内腔のみに充填され、細胞壁内への浸入は生じていない(フェノール樹脂によって、PPWが細胞壁内に浸入、充填されることを阻害する。)傾向にあることを確認した。
図15に、上記「1.3 側方押出し金型及び成形性評価」と同様の方法で行った、30%濃度で調製したフェノール樹脂とPPWの水溶液を含浸させた木材の側方押出し実験におけるパンチ荷重F-パンチストロークS線図を示す。
PPWの内部添加による押出し荷重の低減や押出し長さの増加は、PEOwaxほどには効果がないことが分かる。ただし、添加しない場合と比べては、多少の流動性向上効果はある。なお、6.0%PEWでは、押し込み量が増加したことで、図16に示すとともに、図15中の写真のとおり、押出し長さleは増大した。
図17及び表3に、調製した木質系材料の熱分析の概略と結果を示す。
図17のDSC及びDMAは、156℃付近に融点を示すPPwax単体とPF樹脂及びPPwaxが含浸された木質系材料の結果を示している。 As shown in FIG. 14, when a phenol resin prepared at a concentration of 30% is used as the thermosetting resin and the addition amount of PPW is increased to 1.5, 3.0, and 6.0%, the weight increase rate increases. It was confirmed that the tangential T-direction swelling rate decreased (similar to PEOwax). Here, for comparison, PEOwax (indicated as “PEW” in FIG. 14) (added amount: 6.0%) is shown in parallel (the same applies hereinafter).
As a result, it is confirmed that PPW is filled only in the lumen of the cell, and does not enter the cell wall (the phenol resin impedes PPW from entering and filling the cell wall). did.
FIG. 15 shows a side extrusion test of wood impregnated with an aqueous solution of phenol resin and PPW prepared at a concentration of 30%, which was performed in the same manner as in “1.3 Side extrusion mold and moldability evaluation”. Punch load F-Punch stroke S diagram is shown.
It can be seen that the reduction of the extrusion load and the increase of the extrusion length due to the internal addition of PPW are not as effective as PEOwax. However, there is some fluidity improvement effect compared with the case where it is not added. Note that with 6.0% PEW, the push-in amount increased, and as shown in FIG. 16, the extrusion length le increased as shown in the photograph in FIG. 15.
FIG. 17 and Table 3 show an outline and results of thermal analysis of the prepared wood-based material.
DSC and DMA in FIG. 17 show the results of PPwax alone having a melting point near 156 ° C. and a wood-based material impregnated with PF resin and PPwax.
図3に示すPEOwaxの場合と同様、PPWについても、フェノール樹脂含浸木材のDSCの結果から、1st昇温で、ガラス転移温度Tghと硬化ピーク温度Tp、2nd昇温で、wax添加量の換算できるwax融解熱Qが検出された。DMAからは、1st昇温から硬化開始温度Tce、1st昇温と2nd昇温の比較から硬化度ΔEc’が評価される。含浸木材の熱軟化、熱硬化の挙動について、wax添加率の増加による、それらの温度域の大きな変化が認められないので、フェノール樹脂とwaxの相互作用は小さく、流動成形に悪影響を及ぼす可能性は低いことが確認された。
このように、PPWは、熱硬化性樹脂としてフェノール樹脂を含浸させた木材の流動成形において、潤滑効果を果たし、且つ、硬化阻害を生じないため、易成形性を付与できることを確認した。
ここで、酸化ポリエチレンワックスと酸変性ポリプロピレンワックスの実験結果を対比すると、酸化ポリエチレンワックスの方が成形性向上に効果が高いことが分かった。
この一要因としては、融点(PPWのTm=156℃>フェノール樹脂の硬化温度>PEWのTm=125℃)の違いによるものと考えられ、潤滑剤組成物の融点は、潤滑剤組成物が潤滑剤として十分機能するために、熱硬化性樹脂の硬化温度よりも低温度の融点の物質を用いることが好ましいといえる。ただし、潤滑剤組成物の融点が熱硬化性樹脂の硬化温度と同程度(熱硬化性樹脂の硬化温度+10℃程度)で、成形時に潤滑剤組成物の融点程度まで昇温させて成形を行う場合は、潤滑剤組成物が潤滑剤として十分機能することを確認した。 As in the case of PEOwax shown in FIG. 3, for PPW, the amount of added wax can be converted at 1st temperature rise, glass transition temperature Tgh, curing peak temperature Tp, and 2nd temperature rise from the DSC result of phenol resin-impregnated wood. Wax heat of fusion Q was detected. From the first temperature increase, the DMA evaluates the curing degree ΔEc ′ from the comparison of the curing start temperature Tce, the first temperature increase, and the 2nd temperature increase. As the heat softening and heat curing behavior of the impregnated wood does not show any significant change in the temperature range due to the increase in the wax addition rate, the interaction between the phenolic resin and the wax is small, and may adversely affect fluid molding Was confirmed to be low.
Thus, it was confirmed that PPW can impart easy moldability because it achieves a lubrication effect and does not inhibit curing in fluid molding of wood impregnated with a phenol resin as a thermosetting resin.
Here, comparing the experimental results of oxidized polyethylene wax and acid-modified polypropylene wax, it was found that oxidized polyethylene wax was more effective in improving moldability.
One reason for this is considered to be due to the difference in melting point (PPW Tm = 156 ° C.> phenolic resin curing temperature> PEW Tm = 125 ° C.). The melting point of the lubricant composition is determined by the lubricant composition being lubricated. In order to function sufficiently as an agent, it may be preferable to use a substance having a melting point lower than the curing temperature of the thermosetting resin. However, the melting point of the lubricant composition is about the same as the curing temperature of the thermosetting resin (the curing temperature of the thermosetting resin + about 10 ° C.), and the molding is performed by raising the temperature to the melting point of the lubricant composition at the time of molding. In this case, it was confirmed that the lubricant composition sufficiently functions as a lubricant.
このように、PPWは、熱硬化性樹脂としてフェノール樹脂を含浸させた木材の流動成形において、潤滑効果を果たし、且つ、硬化阻害を生じないため、易成形性を付与できることを確認した。
ここで、酸化ポリエチレンワックスと酸変性ポリプロピレンワックスの実験結果を対比すると、酸化ポリエチレンワックスの方が成形性向上に効果が高いことが分かった。
この一要因としては、融点(PPWのTm=156℃>フェノール樹脂の硬化温度>PEWのTm=125℃)の違いによるものと考えられ、潤滑剤組成物の融点は、潤滑剤組成物が潤滑剤として十分機能するために、熱硬化性樹脂の硬化温度よりも低温度の融点の物質を用いることが好ましいといえる。ただし、潤滑剤組成物の融点が熱硬化性樹脂の硬化温度と同程度(熱硬化性樹脂の硬化温度+10℃程度)で、成形時に潤滑剤組成物の融点程度まで昇温させて成形を行う場合は、潤滑剤組成物が潤滑剤として十分機能することを確認した。 As in the case of PEOwax shown in FIG. 3, for PPW, the amount of added wax can be converted at 1st temperature rise, glass transition temperature Tgh, curing peak temperature Tp, and 2nd temperature rise from the DSC result of phenol resin-impregnated wood. Wax heat of fusion Q was detected. From the first temperature increase, the DMA evaluates the curing degree ΔEc ′ from the comparison of the curing start temperature Tce, the first temperature increase, and the 2nd temperature increase. As the heat softening and heat curing behavior of the impregnated wood does not show any significant change in the temperature range due to the increase in the wax addition rate, the interaction between the phenolic resin and the wax is small, and may adversely affect fluid molding Was confirmed to be low.
Thus, it was confirmed that PPW can impart easy moldability because it achieves a lubrication effect and does not inhibit curing in fluid molding of wood impregnated with a phenol resin as a thermosetting resin.
Here, comparing the experimental results of oxidized polyethylene wax and acid-modified polypropylene wax, it was found that oxidized polyethylene wax was more effective in improving moldability.
One reason for this is considered to be due to the difference in melting point (PPW Tm = 156 ° C.> phenolic resin curing temperature> PEW Tm = 125 ° C.). The melting point of the lubricant composition is determined by the lubricant composition being lubricated. In order to function sufficiently as an agent, it may be preferable to use a substance having a melting point lower than the curing temperature of the thermosetting resin. However, the melting point of the lubricant composition is about the same as the curing temperature of the thermosetting resin (the curing temperature of the thermosetting resin + about 10 ° C.), and the molding is performed by raising the temperature to the melting point of the lubricant composition at the time of molding. In this case, it was confirmed that the lubricant composition sufficiently functions as a lubricant.
以上、本発明の木質流動成形用前駆体及びその成形方法について、その実施の形態に基づいて説明したが、本発明は上記実施の形態に記載した例に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
As described above, the woody fluid molding precursor of the present invention and the molding method thereof have been described based on the embodiments thereof, but the present invention is not limited to the examples described in the above embodiments, and the gist thereof is The configuration can be changed as appropriate without departing from the scope.
本発明の木質流動成形用前駆体及びその成形方法は、木質系材料自体を改質することによって、熱硬化性樹脂を用いた木質流動成形における木質系材料の変形抵抗の低下による成形性改善を図ることができることから、インテリア、エクステリア等の建築部材、車両(航空機、車、列車)内装、車両部品、おもちゃ、楽器、家電外装、家電部品、家具、食器等、多岐に亘る用途に好適に用いることができる。
The wood fluid molding precursor of the present invention and the molding method thereof improve the moldability by reducing the deformation resistance of the wood material in the wood fluid molding using a thermosetting resin by modifying the wood material itself. Because it can be used, it is suitable for a wide range of uses such as interior and exterior building components, vehicle (aircraft, car, train) interior, vehicle parts, toys, musical instruments, home appliance exteriors, home appliance parts, furniture, tableware, etc. be able to.
Claims (6)
- 木質系材料に熱硬化性樹脂を含浸させた木質流動成形用前駆体において、前記熱硬化性樹脂とともに、潤滑剤組成物である酸化ポリアルキレンワックス及び酸変性ポリアルキレンワックスの少なくとも一方を、木質系材料に含浸させてなることを特徴とする木質流動成形用前駆体。 In a wood fluid molding precursor in which a thermosetting resin is impregnated with a wood material, together with the thermosetting resin, at least one of an oxidized polyalkylene wax and an acid-modified polyalkylene wax as a lubricant composition is used. A wood fluid molding precursor characterized by being impregnated with a material.
- 前記潤滑剤組成物が、主に木質系材料の細胞の内腔に充填されてなることを特徴とする請求項1に記載の木質流動成形用前駆体。 2. The wood fluid molding precursor according to claim 1, wherein the lubricant composition is mainly filled in the lumen of a wood material cell.
- 前記酸化ポリアルキレンワックスが、酸化ポリエチレンワックスであることを特徴とする請求項1又は2に記載の木質流動成形用前駆体。 3. The woody fluid molding precursor according to claim 1 or 2, wherein the oxidized polyalkylene wax is an oxidized polyethylene wax.
- 前記酸変性ポリアルキレンワックスが、酸変性ポリプロピレンワックスであることを特徴とする請求項1又は2に記載の木質流動成形用前駆体。 The woody fluid molding precursor according to claim 1 or 2, wherein the acid-modified polyalkylene wax is an acid-modified polypropylene wax.
- 前記潤滑剤組成物が、熱硬化性樹脂の硬化温度と同じか、それよりも低温度の融点の物質からなることを特徴とする請求項1~4のいずれか1項に記載の木質流動成形用前駆体。 The woody fluid molding according to any one of claims 1 to 4, wherein the lubricant composition is made of a substance having a melting point equal to or lower than a curing temperature of the thermosetting resin. Precursor.
- 請求項1~5のいずれか1項に記載の木質系材料に熱硬化性樹脂を含浸させた木質流動成形用前駆体の成形方法であって、前記木質流動成形用前駆体を、成形型を用いて熱硬化性樹脂の硬化温度よりも高温下で成形することを特徴とする木質流動成形用前駆体の成形方法。 A method for forming a wood fluid molding precursor obtained by impregnating a wood-based material according to any one of claims 1 to 5 with a thermosetting resin, wherein the wood fluid molding precursor is formed using a molding die. A molding method for a wood fluid molding precursor, wherein the molding is performed at a temperature higher than a curing temperature of a thermosetting resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018081665A JP7117713B2 (en) | 2018-04-20 | 2018-04-20 | Precursor for wood flow molding and method for molding the same |
JP2018-081665 | 2018-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203046A1 true WO2019203046A1 (en) | 2019-10-24 |
Family
ID=68239092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015302 WO2019203046A1 (en) | 2018-04-20 | 2019-04-08 | Precursor for wood flow forming and method for forming same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7117713B2 (en) |
WO (1) | WO2019203046A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230193036A1 (en) * | 2020-06-30 | 2023-06-22 | National Institute Of Advanced Industrial Science And Technology | Flow molding woody material and flow molding material including same and woody molded body |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0222005A (en) * | 1988-07-09 | 1990-01-24 | Toyota Motor Corp | Wooden molded piece |
JP2012206300A (en) * | 2011-03-29 | 2012-10-25 | Panasonic Corp | Plant-based biomass forming material, method for producing plant-based biomass molding compound using the same, and plant-based biomass molding compound obtained by the method |
WO2017074980A2 (en) * | 2015-10-27 | 2017-05-04 | Dow Global Technologies Llc | Treated porous material |
WO2017159418A1 (en) * | 2016-03-16 | 2017-09-21 | 三菱エンジニアリングプラスチックス株式会社 | Polyamide resin composition and molded article |
-
2018
- 2018-04-20 JP JP2018081665A patent/JP7117713B2/en active Active
-
2019
- 2019-04-08 WO PCT/JP2019/015302 patent/WO2019203046A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0222005A (en) * | 1988-07-09 | 1990-01-24 | Toyota Motor Corp | Wooden molded piece |
JP2012206300A (en) * | 2011-03-29 | 2012-10-25 | Panasonic Corp | Plant-based biomass forming material, method for producing plant-based biomass molding compound using the same, and plant-based biomass molding compound obtained by the method |
WO2017074980A2 (en) * | 2015-10-27 | 2017-05-04 | Dow Global Technologies Llc | Treated porous material |
WO2017159418A1 (en) * | 2016-03-16 | 2017-09-21 | 三菱エンジニアリングプラスチックス株式会社 | Polyamide resin composition and molded article |
Also Published As
Publication number | Publication date |
---|---|
JP2019188648A (en) | 2019-10-31 |
JP7117713B2 (en) | 2022-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Diop et al. | Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards | |
Siakeng et al. | Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. | |
Fang et al. | Effects of surface modification methods on mechanical and interfacial properties of high-density polyethylene-bonded wood veneer composites | |
Bao et al. | Effect of density on the hygroscopicity and surface characteristics of hybrid poplar compreg | |
Al-Oqla | Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials | |
PL181856B1 (en) | Shaped profile made of environmentally acceptable material or containing such material, method of its manufacturing as well as application | |
Agnantopoulou et al. | Development of biodegradable composites based on wood waste flour and thermoplastic starch | |
Khalil et al. | Development and material properties of new hybrid medium density fibreboard from empty fruit bunch and rubberwood | |
US9381677B2 (en) | Process for particleboard manufacture | |
Megiatto Jr et al. | Phenolic matrices and sisal fibers modified with hydroxy terminated polybutadiene rubber: Impact strength, water absorption, and morphological aspects of thermosets and composites | |
US9428648B2 (en) | Wheat gluten based compositions and articles made therefrom | |
Gadhave et al. | A study on the effect of starch–polyvinyl alcohol blends by addition of citric acid and boric acid for enhancement in performance properties of polyvinyl acetate-based wood adhesive | |
Zaman et al. | Effect of coir fiber content and compatibilizer on the properties of unidirectional coir fiber/polypropylene composites | |
Hammiche et al. | Synthesis of a new compatibilisant agent PVC‐g‐MA and its use in the PVC/alfa composites | |
Khalil et al. | New approach to oil palm trunk core lumber material properties enhancement via resin impregnation | |
Nicollin et al. | High density biocomposite from natural fibers and tannin resin | |
WO2019203046A1 (en) | Precursor for wood flow forming and method for forming same | |
Chaydarreh et al. | Developing 3-layer tea oil camellia (Camellia oleifera Abel.) shells-based particleboard with systematic study on particle geometry and distribution | |
Gama et al. | PU/lignocellulosic composites produced from recycled raw materials | |
Song et al. | Effect of heat treatment or alkali treatment of veneers on the mechanical properties of eucalyptus veneer/polyethylene film plywood composites | |
Duns et al. | Physical and mechanical properties of modified wheat straw-filled polyethylene composites | |
Prachayawarakorn et al. | Effect of neem wood sawdust content on properties of biodegradable thermoplastic acetylated cassava starch/neem wood sawdust composites | |
Dhakal et al. | Potential of Date Palm Fibers (DPFs) as a Sustainable Reinforcement for Bio‐Composites and its Property Enhancement for Key Applications: A Review | |
Zhu et al. | A formaldehyde-free bio-composite sheet used as adhesive with excellent water-wet bonding performance | |
JP6183824B2 (en) | Method for producing thermoplastic wood material and thermoplastic wood material produced thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19788830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19788830 Country of ref document: EP Kind code of ref document: A1 |