WO2019171447A1 - 車両のステアリング制御方法および車両のステアリング制御装置 - Google Patents
車両のステアリング制御方法および車両のステアリング制御装置 Download PDFInfo
- Publication number
- WO2019171447A1 WO2019171447A1 PCT/JP2018/008437 JP2018008437W WO2019171447A1 WO 2019171447 A1 WO2019171447 A1 WO 2019171447A1 JP 2018008437 W JP2018008437 W JP 2018008437W WO 2019171447 A1 WO2019171447 A1 WO 2019171447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- torque
- clutch
- mode
- wheel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0463—Controlling the motor calculating assisting torque from the motor based on driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/001—Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
- B62D5/005—Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
- B62D5/006—Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback power actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/043—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by clutch means between driving element, e.g. motor, and driven element, e.g. steering column or steering gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/24—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
- B62D1/28—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
- B62D1/286—Systems for interrupting non-mechanical steering due to driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/001—Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
- B62D5/003—Backup systems, e.g. for manual steering
Definitions
- the present disclosure relates to a vehicle steering control method and a vehicle steering control device.
- a vehicle steering control device called a steer-by-wire system
- the steered wheels are steered by the driving force of the steered actuator in a clutch released state in which the steering wheel and steered wheels are mechanically disconnected in a normal state.
- the steered wheel is steered by the steering force of the steering wheel in a clutch engagement state in which the steering wheel and the steered wheel are mechanically coupled.
- the reaction force motor is driven based on detection of a torque sensor for detecting steering torque with respect to the steering wheel, and assist torque for assisting steering is generated.
- an automatic operation control device In such an automatic operation control device, the steered wheel is automatically steered using the steered actuator of the above-described conventional vehicle steering control device, and the steered wheel is steered with the hand released from the steering wheel. It is possible.
- the inventor of the present application determines that the steer-by-wire system is abnormal during the steering angle control in the steer-by-wire control in the clutch disengaged state during such automatic operation control, and engages the clutch and engages the clutch. Then, it has been found that the following problems occur when assist control of manual operation is started from automatic operation control. That is, in the above-described vehicle steering control device, when the automatic driving control is performed, when the driver is in the released state, the force for holding the handle may be small even if the driver subsequently holds the handle. . Therefore, when the driver is letting it go and the steer-by-wire system is judged to be abnormal and the clutch is engaged, there are settings such as the variable gear ratio on the steering wheel side and the steered wheel side with the clutch in between.
- the present invention has been made paying attention to the above-described problem, and provides a vehicle steering control method and a vehicle steering control device that can suppress the vibration of the steering wheel at the time of clutch engagement and suppress the uncomfortable feeling given to the driver. For the purpose.
- the vehicle steering control method and the vehicle steering control device release a clutch capable of mechanically connecting and disconnecting the steering wheel and the steered wheel and based on the steered angle command, the steering angle and the steered wheel of the steering wheel.
- a steer-by-wire mode for controlling the turning angle of the steered wheel; and an assist control mode for engaging the clutch and applying an assist torque corresponding to the detected torque of the torque sensor to the steered wheel. Then, in the transition from the steer-by-wire mode in the automatic operation mode to the assist control mode in the manual operation mode, the assist torque is set to a value corresponding to the detected torque until a predetermined time limit elapses after the clutch is engaged. Restrict.
- the output of the assist torque is suppressed when the steering control is switched from the steer-by-wire mode in the automatic operation mode to the assist control mode in the manual operation mode. . Therefore, even when the torque sensor vibrates at the time of clutch engagement, the output of the assist torque corresponding to the detected torque including this vibration component is suppressed. Thereby, the vibration of the steering wheel can be suppressed as compared with the case where the assist torque is not limited immediately after the clutch is engaged.
- FIG. 1 is an overall system diagram showing a steering-by-wire system to which a vehicle steering control method and a vehicle steering control device of Embodiment 1 are applied. It is explanatory drawing of the mechanical system of the said steering by wire system at the time of system normal (at the time of steer-by-wire mode in automatic operation mode). It is explanatory drawing of the motor / clutch control system which operate
- FIG. 6 is an explanatory diagram showing an angular velocity difference between the steering wheel side of the clutch and the steering gear in the first embodiment.
- FIG. 6 is a fade-in time characteristic diagram showing a hand-in fade-in time and a non-hand-off fade-in time according to the angular velocity difference in the first embodiment.
- 6 is a gain characteristic diagram showing a gain change in assist torque from the start of the EPS control mode in the first embodiment.
- 6 is a time chart illustrating an operation example of a comparative example with respect to the first embodiment.
- 3 is a time chart illustrating an operation example of the first embodiment.
- the steering control device for a vehicle according to the first embodiment is applied to a vehicle equipped with a steering-by-wire system that transmits the movement of the steering wheel to the left and right front wheels instead of electric signals.
- the steering control device for a vehicle according to the first embodiment will be described by being divided into “entire system”, “motor / clutch control system”, and “fade-in control”.
- FIG. 1 shows a steering-by-wire system to which the vehicle steering control method and the vehicle steering control device of Embodiment 1 are applied. The overall system will be described below with reference to FIG.
- the steering-by-wire system includes a steering wheel 1, a steering force actuator 2, a steering clutch 3, a steering actuator 4, and left and right front wheels (steered wheels) 5 and 6 as mechanical systems.
- the steering-by-wire system also includes a steering force control module 7, a main turning angle control module 8, and a sub turning angle control module 9 as control systems.
- the steering force actuator 2 includes a three-phase AC reaction force motor 10 that can input torque to the steering wheel 1.
- the steering force actuator 2 generates a torque corresponding to the reaction force from the road surface by the drive current from the steering force control module 7 with respect to the steering operation force in the manual operation mode in which the steering is manually performed (normal time). generate.
- the manual operation mode at this time is a normal manual operation mode, and the control is performed with the steering clutch 3 released.
- the steering force actuator 2 functions as a steering actuator that steers the steering wheel 1 in the turning direction in the automatic driving mode in which the driver releases his hand from the steering wheel 1.
- the steering clutch 3 has an electromagnetic clutch structure. When power is supplied from the steering force control module 7, the clutch is released and the upper and lower steering shafts 11 and 12 are disconnected. In the system protection mode or when the system is abnormal, the power supply from the steering force control module 7 is cut off, the steering clutch 3 is connected, and the upper and lower steering shafts 11 and 12 are mechanically connected.
- the steered actuator 4 is an actuator that can steer the left and right front wheels 5 and 6, and includes a main steered motor 13, a sub-steered motor 14, and a steering gear mechanism 15.
- the main turning motor 13 is a three-phase AC motor, and generates a steering torque by a drive current from the main turning angle control module 8.
- the sub-steering motor 14 is a three-phase AC motor, and generates steering torque by the drive current from the sub-steering angle control module 9.
- the steering gear mechanism 15 converts pinion torque into rack axial force, rotates the knuckle arm, and changes the direction of the left front wheel 5 and the right front wheel 6. Further, as will be described later, the steering actuator 4 applies assist torque to the steering torque from the steering wheel 1 in the engaged state of the steering clutch 3 in the assist control mode in the manual operation mode in which the driver steers when an abnormality occurs.
- the steering force control module 7, the main turning angle control module 8, and the sub turning angle control module 9 are connected to each other via a FlexRay communication line 17 so as to exchange information.
- the detected torque of the torque sensor 20, the steering angle detected by the steering angle sensor 21, and the turning angle detected by the turning angle sensor 22 are input to the steering force control module 7.
- the torque sensor 20 is provided on the lower steering shaft 12 and detects a transmission torque (axial torque) in the steering shaft 12. Further, as is well known, the torque sensor 20 includes a torsion bar (not shown) having a lower twisting rigidity than the steering shaft 12, and a steering that acts on the steering shaft 12 based on the twist displacement amount of the torsion bar. Detect direction torque.
- the steering angle sensor 21 is provided in a steering torque transmission system of the steering wheel 1 such as the upper steering shaft 11 and detects the steering angle.
- the turning angle sensor 22 is provided in a transmission system for turning torque in the vicinity of the steering gear mechanism 15 and detects the turning angle of the left and right front wheels 5 and 6.
- FIG. 2A is an explanatory diagram of the mechanical system of the steering-by-wire system when the system is normal (in the steer-by-wire mode in the automatic operation mode).
- FIG. 2B shows a motor / clutch control system that operates when the steering force control module 7, the main turning angle control module 8, and the sub turning angle control module 9 are normal (in the steer-by-wire mode in the automatic operation mode). It is explanatory drawing.
- the steering clutch 3 is released and the upper and lower steering shafts 11 and 12 are disconnected as shown in FIG. 2A.
- the steering wheel 1 is steered by the reaction force motor 10 and the left and right front wheels 5 and 6 are steered by the main turning motor 13 and the sub turning motor 14. .
- the steering wheel 1 is steered mainly to inform the driver of the turning direction of the left and right front wheels 5 and 6. Further, the left and right front wheels 5 and 6 are steered mainly by driving the main steered motor 13, and the sub steered motor 14 is driven when a large torque is required for the steered operation. Further, when one of the both turning motors 13 and 14 fails, the other motor is used for turning. As described above, when both the steering motors 13 and 14 are driven, only one of the both steering motors 13 and 14 may be driven, or both the steering motors 13 and 14 may be driven simultaneously. However, in the following description, it is expressed that both the steered motors 13 and 14 are simply driven regardless of these drive control states.
- steer-by-wire control in which the left and right front wheels 5 and 6 are steered according to the steering angle of the driver.
- the steering motors 13 and 14 are driven according to the steering angle while applying a steering reaction force by the reaction force motor 10 to the steering of the steering wheel 1.
- the left and right front wheels 5, 6 are steered according to the steering amount.
- the automatic driving controller 100 shown in FIG. 2B controls acceleration / steering / braking of the vehicle based on information such as the driving situation and the surrounding environment.
- Examples of the automatic driving by the automatic driving controller 100 include control for following the preceding vehicle, control for preventing deviation from the driving lane, and control for traveling along a preset route.
- a turning angle command value that indicates the turning angle determined by the automatic operation controller 100 is input to the steering force control module 7. Further, from the steering force control module 7 and the two control modules 8 and 9 for controlling the steered angle, the steered angle and the steered angle command current according to the steered angle command value are changed to the reaction force motor 10 and the dual steered motor. 13 and 14 are output. That is, the automatic driving controller 100 executes steering control as part of the automatic driving control.
- FIG. 2B shows components of the steering force control module 7 that output a command current to both the steering motors 13 and 14 in the steer-by-wire mode in the automatic operation mode when the system is normal.
- a steering wheel tire distribution unit 71 As shown in FIG. 2B, a steering wheel tire distribution unit 71, a reaction force motor control unit 72, a variable gear unit 73, an addition unit 74, and a turning motor control unit 75 are provided.
- the steering wheel tire distribution unit 71 converts the steering angle command value output from the automatic operation controller 100 into a steering wheel command angle that is the steering angle of the steering wheel 1 and a tire minute command angle that causes the left and right front wheels 5 and 6 to steer. Distribute.
- the steering wheel command angle is a command value for driving the reaction force motor 10 to actually steer the steering wheel 1 in the turning direction.
- the reaction force motor control unit 72 to which the steering wheel command angle is input drives the reaction force motor 10 to steer the steering wheel 1.
- the left and right front wheels 5 and 6 are automatically steered.
- the steering wheel 1 is steered (turned) to steer the vehicle.
- the relationship between the steering angle of the steering wheel 1 in the automatic operation mode and the turning angle of the left and right front wheels 5 and 6 is the case of steering in the steer-by-wire mode in the manual operation mode. The relationship is not consistent.
- the steering wheel 1 in the steer-by-wire mode in the automatic operation mode, the steering wheel 1 is steered for the purpose of reporting the steering direction to the driver as described above. For example, when driving at low speed, a driving situation in which the turning angle increases tends to occur. However, in the steer-by-wire mode in the automatic operation mode, the steering angle of the steering wheel 1 at the time of turning is necessary for turning. It is controlled so as to keep it lower than the steering angle. In addition, there is a tendency to give a corrected rudder angle during high-speed driving, but it is not necessary to inform the driver of such a corrected rudder angle. Keep the corners low.
- the steering angle and the steering angle are distributed so as to keep the steering angle of the steering wheel 1 low with respect to the steering angle necessary for actual steering.
- the distribution ratio between the steering angle and the turning angle is not constant, but is variably controlled depending on the traveling state.
- the variable gear unit 73 gives a predetermined gear ratio to the turning angle of the left and right front wheels 5 and 6 with respect to the steering angle of the steering wheel 1.
- the variable gear unit 73 controls the steering angle with respect to the steering angle to have a predetermined relationship according to the vehicle speed.
- the steering is performed.
- the direction of the corner and the size of the angle are controlled for the purpose of visually reporting to the driver.
- the relationship between the steering angle and the steering angle is stored in advance as a map or an arithmetic expression.
- the adding unit 74 adds the tire minute command angle output from the variable gear unit 73 and the second tire minute command angle output from the steering wheel tire distributing unit 71, and uses the added value as a final steering command.
- the current is output to the steered motor control unit 75.
- the steering motor control part 75 outputs the steering command electric current which steers the right-and-left front wheels 5 and 6 only the angle according to the steering command angle to each steering motor 13 and 14.
- the steering force control module 7 and the turning angle control modules 8 and 9 are a power assist control unit 76 (hereinafter referred to as EPS control unit 76) and a gain adjustment unit shown in FIG. 77 and a second adder 78.
- EPS control unit 76 power assist control unit 76
- the EPS control unit 76 performs control to transition to an assist control mode (hereinafter referred to as an EPS control mode) when any abnormality occurs in the motor / clutch control system in the automatic operation mode.
- an EPS control mode the steering clutch 3 is engaged and steering by the driver is assisted according to the torque detected by the torque sensor 20. That is, the EPS control unit 76 adds a torque assist command current to the steering command current output from the steering motor control unit 75 based on the steering angle command value from the automatic operation controller 100 and further to the second addition unit 78. By adding, the steering torque is assisted and reduced.
- the gain adjustment unit 77 multiplies the assist torque signal output from the EPS control unit 76 by a gain k (coefficient) of 1 or less. That is, in the first embodiment, the assist torque is limited from the time of transition to the EPS control mode (clutch engagement) until a fade-in time (time limit) described later elapses, and after the fade-in time elapses. Execute fade-in control to release the restriction. In this fade-in control, the assist torque is limited to a value smaller than the value corresponding to the detected torque of the torque sensor 20, and when the fade-in time has elapsed, the limitation is released to a value corresponding to the detected torque. . Specifically, the assist torque is gradually increased from a value of 0% to a value of 100% with respect to a value corresponding to the detected torque of the torque sensor 20 during the lapse of the fade-in time.
- the gain adjustment unit 77 multiplies the value corresponding to the detected torque of the torque sensor 20 by the gain k that increases from 0 to 1.
- the gain adjusting unit 77 is compared with the case where the driver touches the steering wheel 1 when the hand releases the hand from the steering wheel 1 based on the detection of the hand release sensor 80 (when the driver touches the steering wheel 1). And set the fade-in time longer. That is, when releasing the hand, the time for limiting the assist torque is set longer than when the steering wheel 1 is gripped or touched.
- the detection of the hand release by the hand release sensor 80 can be detected by, for example, a touch sensor provided on the steering wheel 1 or when the magnitude of the steering reaction force is a predetermined value or less. It can also be detected by a change in the steering angle, a change in the motor current of the reaction force motor 10, a change in the detected torque value of the torque sensor 20, or the like.
- the second addition unit 78 adds the output of the steered motor control unit 75 and the output of the gain adjustment unit 77. Note that when the system malfunctions or the control is temporarily interrupted and it is determined that the system is not normal and the manual operation mode is shifted to the assist control mode, the steering angle control by the automatic operation controller 100 is immediately performed. Continue for a predetermined time without stopping. The duration is about several seconds, for example.
- the second addition unit 78 adds the output of the steered motor control unit 75 and the output of the gain adjustment unit 77. To do. That is, while the output of the turning angle command value by the automatic operation controller 100 is continued, the second addition unit 78 adds the turning angle command current based on the automatic operation control and the torque assist command current based on the EPS control. To do. And the command current of the turning angle based on this added value is output to both the turning motors 13 and 14.
- the manual operation mode in which only the torque assist command current based on the EPS control mode is output to both the turning motors 13 and 14. Shift to EPS control.
- control by the automatic operation controller 100 may be continued without shifting to the EPS control in the manual operation mode in which the steering clutch 3 is engaged.
- the output of the torque assist command current to the steered motors 13 and 14, that is, the output of the assist torque may be stopped.
- the steering clutch 3 is engaged and the upper and lower steering shafts 11 and 12 are directly connected.
- a warning or display for prompting the driver to perform manual steering is performed to notify that the present system is abnormal.
- any failure of either the sensor or each motor occurs, or the temperature of any sensor or each motor rises, temporarily limiting its operation. There are cases.
- the steering torque is detected by the torque sensor 20, and the steering motors 13 and 14 are driven according to the detected torque to generate assist torque. Reduce steering torque.
- the above-described fade-in control is executed, and the assist torque is detected by the torque sensor 20. Delay the timing of the value according to.
- step S1 it is determined whether or not the driver is currently in the automatic driving mode in which steering is not being performed. If the driver is in the automatic driving mode, the process proceeds to step S2. Exit. In the case of the automatic operation mode, the steering control is performed in the steer-by-wire mode at the normal time. Further, when it is not the automatic driving mode (when NO is determined in step S1), it is determined that the steering control is performed in the above-described normal manual driving mode.
- step S2 which proceeds to the steer-by-wire mode in the automatic operation mode, it is determined whether or not the operation is currently in the release mode based on the detection of the release sensor 80. Set the operation flag to “Leave”. If it is determined in step S2 that the release operation is not in progress, the process proceeds to step S4, and the release operation flag is set to “non-release”. The determination as to whether or not the hand-off operation is being performed is based on detection of the hand-off sensor 80. “Non-handed” is a state in which the driver is not steering, but the steering wheel 1 is touched or held.
- step S5 it is determined whether or not it is abnormal.
- the term “non-normal” means that when this system has some sort of failure, or when the temperature of each motor 10, 13, 14 or battery (not shown) rises, this temperature decreases. There is a case where driving of a part of the motor is temporarily stopped.
- Step S7 which proceeds when it is determined to be normal in step S5, performs processing for storing an angular difference between the steering angular velocity on the steering wheel 1 side and the turning angular velocity on the steering gear mechanism 15 side with the steering clutch 3 interposed therebetween.
- the steering angular velocity is obtained from the detection value of the steering angle sensor 21.
- the turning angular velocity is obtained from the detected value of the turning angle sensor 22.
- FIG. 5 is a diagram showing a difference between an angular velocity (steering angular velocity) on the steering gear mechanism 15 side with the steering clutch 3 interposed therebetween and an angular velocity (steering angular velocity) on the steering wheel 1 side.
- an angular velocity difference is generated between the angular velocity on the steering wheel 1 side (steering angular velocity) and the angular velocity on the steering gear mechanism 15 side (steering angular velocity) at the time of turning.
- step S7 the latest angular velocity difference at that time is stored.
- step S6 which proceeds when it is determined in step S5 that it is abnormal (transition to the EPS control mode of the manual operation mode), an angular difference between the latest steering angular velocity and the turning angular velocity currently stored is acquired. Proceed to S8. Further, when transitioning to the EPS control mode based on the determination that the vehicle is abnormal, the steering clutch 3 is immediately engaged by the control performed in parallel with the fade-in control. In step S8 following step S6, it is determined whether or not the current release operation flag is set to “release”. If the hand-off operation flag is set to “hand-off”, the process proceeds to step S9 to determine the hand-off fade-in time. On the other hand, if the hand-off operation flag is set to “non-hands-off”, the process proceeds to step S10 to determine a non-hand-off time fade-in time.
- hand-in fade-out time and non-hand-off fade-in time are set according to the angular velocity difference based on the map or the arithmetic expression shown in FIG. FIG. 6 shows the relationship between the hand-in fade-in time and the non-hand-off fade-in time, and the angular velocity difference.
- the larger the angular velocity difference the longer the hand-off fade-in time and the non-hand-off fade-in time are set.
- the hand-off fade-in time is set longer than the non-hand-off fade-in time as compared to the angular velocity difference (fade-in time).
- These hand-off fade-in time and non-hand-off fade-in time are times for limiting the assist torque to a value corresponding to the assist torque signal output from the EPS control unit 76.
- the assist torque is controlled to be a value less than 100% of the value corresponding to the assist torque signal output from the EPS control unit 76.
- step S11 that proceeds after determining the fade-in time when released and the fade-in time when not released in steps S9 and S10, the torque assist command current is determined according to either of the fade-in times.
- the assist torque output from the EPS control unit 76 is multiplied by the gain k to determine the torque assist command current.
- the assist torque at the start of the EPS control mode transition is set to 0% of the value corresponding to the assist torque signal output from the EPS control unit 76, and according to the assist torque signal when each fade-in time elapses. It is increased in a linear proportion so as to be 100% of the measured value.
- This comparative example is a value that immediately responds to the torque detected by the torque sensor 20 (output from the EPS control unit 76) when transitioning to the EPS control mode due to an abnormality during the steer-by-wire mode in the automatic operation mode.
- This is an example in which the assist torque is output.
- an angular velocity difference is generated between the steering angular velocity on the steering wheel 1 side and the turning angular velocity on the steering gear mechanism 15 side (see FIG. 5).
- FIG. 8 is a time chart showing an operation state in this comparative example.
- the state shifts from the steer-by-wire mode to the EPS control mode, and at this point, the disengaged steering clutch 3 is engaged.
- vibration occurs in the torque sensor 20 from time t01, and the detected torque of the torque sensor 20 changes as illustrated. Also, this vibration is such that the larger the angular velocity difference, the larger the amplitude and the longer it takes to vibrate.
- the angular velocity difference is relatively small, it converges at the time t02, whereas the angular velocity difference is relatively Is larger at time t03, which is later than time t02.
- the steering wheel 1 When the assist torque of 100% of the value corresponding to the detected torque of the torque sensor 20 is generated, the steering wheel 1 causes the vibration generated in the torque sensor 20 and the assist torque according to the detected torque to be changed to FIG. Vibrations as shown occur. Similarly, the left and right front wheels 5 and 6 also generate minute vibrations due to vibrations generated in the torque sensor 20 and assist torque. Therefore, in the comparative example, the driver may feel uncomfortable due to the vibration of the steering wheel 1 and the vibrations of the left and right front wheels 5 and 6.
- the difference in angular velocity between the latest stored steering angular velocity on the steering wheel 1 side and the turning angular velocity on the steering gear mechanism 15 side. Is acquired (S6). Then, according to this angular velocity difference, when the driver does not touch the steering wheel 1, the fade-in time is determined when the driver releases the hand, and when the driver touches the steering wheel 1, the non-handed fade-in is determined. Determine the time.
- FIG. 9 is a time chart of an operation example of the first embodiment.
- the torque sensor 20 is vibrated due to the difference in angular velocity between the steering angular velocity and the turning angular velocity, as in the comparative example.
- the detected torque vibrates.
- the high frequency component which is a vibration component is shown.
- the assist torque is limited to the output of the EPS control unit 76 according to the detection of the torque sensor 20 at the time t1 when the mode is changed to the EPS control mode. That is, the assist torque is set to a value of 0% with respect to the output of the EPS control unit 76 at the time t1 when transitioning to the EPS control mode.
- the assist torque is gradually increased by gradually increasing the gain k multiplied by the output of the EPS control unit 76.
- the assist torque is set to a value that is 100% of the output of the EPS control unit 76 at time t2 after the vibration of the torque sensor 20 is settled (when the fade-in time has elapsed).
- the assist torque including the vibration component of the torque sensor 20 is restricted from being added to the assist torque, and vibration can be suppressed as compared with the comparative example.
- the assist torque by both the steering motors 13 and 14 to a value less than 100% of the output of the EPS control unit 76, it is possible to suppress slight vibrations in the left and right front wheels 5 and 6.
- the vibration of the steering wheel 1 immediately after the steering clutch 3 is engaged and the vibrations of the left and right front wheels 5 and 6 can be suppressed.
- the time from the time t1 to the time t2 (fade-in time), which is the time for limiting the assist torque as described above, depends on the angular velocity difference between the steering angular velocity and the turning angular velocity, as shown in FIG. decide. That is, with the steering clutch 3 interposed therebetween, the greater the difference in angular velocity between the angular velocity on the steering wheel 1 (steering angular velocity) and the angular velocity on the left and right front wheels 5 and 6 (steering angular velocity), the twist in the torque sensor 20, that is, The vibration becomes larger and the convergence time becomes longer.
- the gain k multiplied by the output of the EPS control unit 76 which is a value corresponding to the detected torque of the torque sensor 20, is gradually increased so that the assist torque is gradually increased. ing. Therefore, in order to gradually increase the assist torque based on the EPS control, for example, at the time of t2, the assist torque rapidly increases compared to the case where the output of the EPS control unit 76 is suddenly changed from 0% to 100%. This can suppress the uncomfortable feeling given to the driver.
- the vibration of the steering wheel 1 is suppressed by the driver's hand, the amplitude is small, and the vibration time is also short. Vibration is less likely to appear visually.
- the fade-in time when not letting go is set shorter than the fade-in time when letting go.
- the vibration of the torque detected by the torque sensor 20 is suppressed as shown in the figure by the steering torque of the driver, the vibration of the torque detected by the torque sensor 20 is small, and the time is also short. Therefore, even when the assist torque is set to a value of 100% of the output of the EPS control unit 76 from the transition point to the EPS control mode, the vibration of the steering wheel 1 and the vibrations of the left and right front wheels 5 and 6 hardly occur. It does not give the passenger a sense of incongruity. Thereby, the discomfort given to the driver by the vibration of the steering wheel 1 can be suppressed while eliminating the delay in assist due to the EPS control.
- the vehicle steering control method of Embodiment 1 is as follows: Steering wheel 1; A steering clutch 3 capable of mechanically connecting and disconnecting the steering wheel 1 and the left and right front wheels 5, 6; A reaction force motor 10 as a steering actuator that applies torque to the steering wheel 1; A main steering motor 13 and a sub-steering motor 14 that steer left and right front wheels 5 and 6; A torque sensor 20 for detecting a transmission torque of a torque transmission system between the steering wheel 1 and the left and right front wheels 5 and 6; In vehicles equipped with Steer-by-wire mode for releasing the steering clutch 3 and controlling the steering angle of the steering wheel 1 and the turning angles of the left and right front wheels 5 and 6 based on the turning angle command; An EPS control mode in which the steering clutch 3 is engaged and assist torque corresponding to the torque detected by the torque sensor 20 is applied to the left and right front wheels 5 and 6; Have When shifting from the steer
- the value corresponding to the detected torque of the torque sensor 20 is limited (t1 to t2 in FIG. 9). Therefore, it is possible to suppress the vibration of the steering wheel 1 and the vibrations of the left and right front wheels 5 and 6 immediately after the steering clutch 3 is engaged, and the uncomfortable feeling given to the driver.
- the vehicle steering control method of Embodiment 1 is as follows:
- the fade-in time is a time corresponding to the angular velocity difference between the steering angular velocity that is the angular velocity on the steering wheel 1 side and the turning angular velocity that is the angular velocity on the left and right front wheels 5 and 6 with the steering clutch 3 interposed therebetween. That is, the magnitude and time of vibration of the torque sensor 20 depend on the angular velocity difference. Therefore, by limiting the assist torque according to the angular velocity difference, the time for limiting the assist torque while more reliably suppressing the vibration of the steering wheel 1 and the vibration of the left and right front wheels 5 and 6 caused by the vibration of the torque sensor 20. Can be kept short.
- the vehicle steering control method of Embodiment 1 is as follows: It is determined whether or not the driver touches the steering wheel 1 (S2 in FIG. 4). When it is determined that the driver is touching (S10 in FIG. 4), it is determined that the driver is not touching (S10 in FIG. 4) ( Compared with S9) of FIG. 4, the fade-in time is shortened. Therefore, when dry touches the steering wheel 1 and vibration is not easily generated when the torque sensor 20 is fastened, the fade-in time can be shortened and the time for limiting the assist torque by the EPS control can be further shortened.
- the vehicle steering control method of Embodiment 1 is as follows: In the case of the manual operation mode in which the driver steers before the steering clutch 3 is engaged, the assist torque is immediately set to a value (EPS) corresponding to the detected torque of the torque sensor 20 without limiting after the steering clutch 3 is engaged.
- EPS a value corresponding to the detected torque of the torque sensor 20 without limiting after the steering clutch 3 is engaged.
- the output of the controller 76 is not limited). Therefore, during the steering of the driver, the difference in angular velocity is small in the steering clutch 3, and even if the angular difference occurs, the vibration of the torque sensor 20 is suppressed by the steering by the driver. Therefore, even if the assist torque is not limited immediately after the steering clutch 3 is engaged, the assist torque does not become a vibration component of the steering wheel 1 and the left and right front wheels 5 and 6. Thereby, the delay of the assist by EPS control can be eliminated.
- Embodiment 1 The vehicle steering control method of Embodiment 1 is as follows: Gradually release the assist torque limit during the fade-in time. Therefore, when the fade-in time elapses, the limitation of the assist torque is suddenly released, and the uncomfortable feeling due to the sudden change of the assist torque can be suppressed.
- the vehicle steering control method of Embodiment 1 is as follows:
- the assist torque is determined by multiplying a value corresponding to the detected torque of the torque sensor 20 by a gain k of 1 or less, and the gain k is gradually increased from 0 to 1 during the fade-in time. Therefore, the assist torque can be smoothly increased toward the end point of the fade-in time at a rate of 100%, and a sense of incongruity due to a change in the assist torque can be suppressed.
- the vehicle steering control device of the first embodiment is Steering wheel 1; A steering clutch 3 capable of mechanically connecting and disconnecting the steering wheel 1 and the left and right front wheels 5, 6; A reaction force motor 10 as a steering actuator that applies torque to the steering wheel 1; A main steering motor 13 and a sub-steering motor 14 that steer left and right front wheels 5 and 6; A torque sensor 20 for detecting a transmission torque of a torque transmission system between the steering wheel 1 and the left and right front wheels 5 and 6; The steering clutch 3 is released and the steer-by-wire mode for controlling the steering angle of the steering wheel 1 and the turning angles of the left and right front wheels 5 and 6 based on the turning angle command, and the detection of the torque sensor 20 by fastening the steering clutch 3 A steering force control module 7 and a main turning angle control module 8 as a turning control unit, and a sub turning angle control module 9 having an EPS control mode in which an assist torque corresponding to the torque is applied to the left and right front wheels 5 and 6.
- Each of the control modules 7 to 9 performs a fade-in after engaging the steering clutch 3 in transition from the steer-by-wire mode in the automatic operation mode in which the driver does not perform steering to the EPS control mode in the manual operation mode in which the driver performs steering.
- the assist torque is limited to a value corresponding to the torque detected by the torque sensor 20 until time elapses. Therefore, it is possible to suppress the vibration of the steering wheel 1 and the vibrations of the left and right front wheels 5 and 6 immediately after the steering clutch 3 is engaged, and the uncomfortable feeling given to the driver.
- the assist torque limit is gradually released toward the timing at which the assist torque is set to a value corresponding to the detection value of the torque sensor during the limit time.
- the assist torque may be set to 0 during the time limit, and may be a value corresponding to the detected value of the torque sensor ON or OFF at the end of the time limit, or the ratio may be increased stepwise.
- the release amount is not released in a linear proportion as in the present embodiment, but the release amount is relatively suppressed immediately after the clutch is engaged, and then the relative amount is increased with time.
- the release amount may be increased to release it in a quadratic function. In such a case, since the vibration amount of the torque sensor increases as the initial transition to the assist control mode, the assist torque is greatly limited according to the initial vibration amount so that the steering wheel and the steered wheels Vibration can be further suppressed.
- the vibration of the torque sensor which is a problem of the present embodiment, is generated when the steering clutch is engaged with a difference in angular velocity between the steering wheel side and the steered wheel side during turning. Therefore, it may be added as a starting condition of control for limiting the assist torque after the steering clutch is engaged whether or not the steering is being performed or whether or not an angular velocity difference has occurred.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
転舵中のクラッチ締結時のステアリングホイールの振動を抑制し、運転者に与える違和感を抑制可能な車両のステアリング制御方法を提供する。 そのため、自動運転モードにおけるステアリングホイール(1)と左右前輪(5,6)とを機械的に断接するステアリングクラッチ(3)を解放したステアバイワイヤモードから、手動運転モードにおけるステアリングクラッチ(3)を締結してトルクセンサ(20)の検出トルクに応じたアシストトルクを左右前輪(5,6)に対して与えるEPS制御モードに遷移するにあたり、ステアリングクラッチ(3)を締結し、ステアリングクラッチ(3)の締結後、所定の制限時間が経過するまでアシストトルクを、トルクセンサ(20)の検出トルクに応じた値に対して制限する車両のステアリング制御方法とした。
Description
本開示は、車両のステアリング制御方法および車両のステアリング制御装置に関する。
従来、ステアバイワイヤ方式と称される車両のステアリング制御装置が知られている(例えば、特許文献1参照)。
この従来技術では、正常時はステアリングホイールと転舵輪とを機械的に切り離したクラッチ解放状態で転舵アクチュエータの駆動力によって転舵輪を転舵する。一方、非正常時は、ステアリングホイールと転舵輪とを機械的に連結したクラッチ締結状態でステアリングホイールの操舵力によって転舵輪を転舵するようにしている。また、このときステアリングホイールに対する操舵トルクを検出するトルクセンサの検出に基づいて反力モータを駆動させ、操舵を補助するアシストトルクを生じさせるようにしている。
この従来技術では、正常時はステアリングホイールと転舵輪とを機械的に切り離したクラッチ解放状態で転舵アクチュエータの駆動力によって転舵輪を転舵する。一方、非正常時は、ステアリングホイールと転舵輪とを機械的に連結したクラッチ締結状態でステアリングホイールの操舵力によって転舵輪を転舵するようにしている。また、このときステアリングホイールに対する操舵トルクを検出するトルクセンサの検出に基づいて反力モータを駆動させ、操舵を補助するアシストトルクを生じさせるようにしている。
ところで、近年、自動運転制御装置が提案されている。このような自動運転制御装置では、上述の従来の車両のステアリング制御装置の転舵アクチュエータを用い転舵輪の転舵を自動的に行うもので、ステアリングホイールから手を放した状態での転舵を可能としている。
しかしながら、本願発明者は、このような自動運転制御時でクラッチ解放状態のステアバイワイヤ制御での転舵角制御中に、ステアバイワイヤシステムが非正常と判断して、クラッチを締結し、クラッチを締結し、自動運転制御から手動運転のアシスト制御を開始する際に、下記の問題が生じることを知見した。
すなわち、上述の車両のステアリング制御装置において、自動運転制御を行っている場合、ドライバは手放し状態であるときには、その後、ドライバがハンドルを把持していても、ハンドルを保持する力が小さい場合がある。そのため、ドライバが手放し状態で、ステアバイワイヤシステムが非正常と判断して、クラッチを締結する際、クラッチを挟んでステアリングホイール側と転舵輪側とでは、可変ギア比などの設定もあって、両者の間に角速度差が生じる。このように、ドライバがハンドルを把持していても、ハンドルを保持する力が小さい状態で、かつステアリングホイール側と転舵輪側とに角速度差が生じた状態でクラッチを締結すると、その操舵力の伝達系に設けられたトルクセンサに捻じれが生じるとともに、振動が発生する
このトルクセンサの振動により、ドライバがハンドルを保持する力が小さい状態のステアリングホイールが振動するとともに、トルクセンサの振動により検出される操舵トルクに応じたアシストトルクを発生させることで、この振動が助長され運転者に違和感を与えるおそれがあった。
すなわち、上述の車両のステアリング制御装置において、自動運転制御を行っている場合、ドライバは手放し状態であるときには、その後、ドライバがハンドルを把持していても、ハンドルを保持する力が小さい場合がある。そのため、ドライバが手放し状態で、ステアバイワイヤシステムが非正常と判断して、クラッチを締結する際、クラッチを挟んでステアリングホイール側と転舵輪側とでは、可変ギア比などの設定もあって、両者の間に角速度差が生じる。このように、ドライバがハンドルを把持していても、ハンドルを保持する力が小さい状態で、かつステアリングホイール側と転舵輪側とに角速度差が生じた状態でクラッチを締結すると、その操舵力の伝達系に設けられたトルクセンサに捻じれが生じるとともに、振動が発生する
このトルクセンサの振動により、ドライバがハンドルを保持する力が小さい状態のステアリングホイールが振動するとともに、トルクセンサの振動により検出される操舵トルクに応じたアシストトルクを発生させることで、この振動が助長され運転者に違和感を与えるおそれがあった。
本発明は、上記問題に着目してなされたもので、クラッチ締結時のステアリングホイールの振動を抑制し、運転者に与える違和感を抑制可能な車両のステアリング制御方法および車両のステアリング制御装置を提供することを目的とする。
本開示の車両のステアリング制御方法および車両のステアリング制御装置は、ステアリングホイールと転舵輪とを機械的に断接を可能なクラッチを解放して転舵角指令に基づいてステアリングホイールの操舵角および転舵輪の転舵角を制御するステアバイワイヤモードと、前記クラッチを締結して前記トルクセンサの検出トルクに応じたアシストトルクを前記転舵輪に対して与えるアシスト制御モードと、を有する。
そして、自動運転モードにおけるステアバイワイヤモードから、手動運転モードにおけるアシスト制御モードに遷移するにあたり、クラッチを締結した後、所定の制限時間が経過するまでアシストトルクを、検出トルクに応じた値に対して制限する。
そして、自動運転モードにおけるステアバイワイヤモードから、手動運転モードにおけるアシスト制御モードに遷移するにあたり、クラッチを締結した後、所定の制限時間が経過するまでアシストトルクを、検出トルクに応じた値に対して制限する。
本開示の車両のステアリング制御方法および車両のステアリング制御装置では、自動運転モードにおけるステアバイワイヤモードから手動運転モードにおけるアシスト制御モードに遷移するにあたり、クラッチの締結した際に、アシストトルクの出力を抑制する。
したがって、クラッチ締結時に、トルクセンサが振動しても、この振動成分を含む検出トルクに応じたアシストトルクの出力を抑制する。これにより、クラッチ締結直後からアシストトルクを制限しないものと比べ、ステアリングホイールの振動を抑制できる。
したがって、クラッチ締結時に、トルクセンサが振動しても、この振動成分を含む検出トルクに応じたアシストトルクの出力を抑制する。これにより、クラッチ締結直後からアシストトルクを制限しないものと比べ、ステアリングホイールの振動を抑制できる。
以下、本開示の車両のステアリング制御方法および車両のステアリング制御装置の実施の形態を、図面に基づいて説明する。
(実施の形態1)
実施の形態1の車両のステアリング制御装置は、ステアリングホイールの動きを電気信号に替えて左右前輪に伝えるステアリングバイワイヤシステムを搭載した車両に適用したものである。以下、実施の形態1の車両のステアリング制御装置について、「全体システム」、「モータ/クラッチ制御系」、「フェードイン制御」に分けて説明する。
(実施の形態1)
実施の形態1の車両のステアリング制御装置は、ステアリングホイールの動きを電気信号に替えて左右前輪に伝えるステアリングバイワイヤシステムを搭載した車両に適用したものである。以下、実施の形態1の車両のステアリング制御装置について、「全体システム」、「モータ/クラッチ制御系」、「フェードイン制御」に分けて説明する。
[全体システム]
図1は、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置が適用されたステアリングバイワイヤシステムを示す。以下、図1に基づき、全体システムについて説明する。
図1は、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置が適用されたステアリングバイワイヤシステムを示す。以下、図1に基づき、全体システムについて説明する。
ステアリングバイワイヤシステムは、機械系として、ステアリングホイール1と、ステアリングフォースアクチュエータ2と、ステアリングクラッチ3と、転舵アクチュエータ4と、左右前輪(転舵輪)5,6と、を備えている。
また、ステアリングバイワイヤシステムは、制御系として、ステアリングフォースコントロールモジュール7と、メイン転舵角コントロールモジュール8と、サブ転舵角コントロールモジュール9と、を備えている。
ステアリングフォースアクチュエータ2は、ステアリングホイール1に対してトルクを入力可能な三相交流の反力モータ10を有する。
なお、ステアリングフォースアクチュエータ2は、手動により操舵を行う手動運転モード時(正常時)には、ステアリング操作力に対し、ステアリングフォースコントロールモジュール7からの駆動電流によって路面からの反力に相当するトルクを発生させる。なお、この時の手動運転モードとは、正常時の手動運転モードであり、ステアリングクラッチ3を解放した状態での制御となる。
また、このステアリングフォースアクチュエータ2は、ドライバがステアリングホイール1から手を離した自動運転モード時には、転舵方向にステアリングホイール1を操舵させる操舵アクチュエータとして機能する。
なお、ステアリングフォースアクチュエータ2は、手動により操舵を行う手動運転モード時(正常時)には、ステアリング操作力に対し、ステアリングフォースコントロールモジュール7からの駆動電流によって路面からの反力に相当するトルクを発生させる。なお、この時の手動運転モードとは、正常時の手動運転モードであり、ステアリングクラッチ3を解放した状態での制御となる。
また、このステアリングフォースアクチュエータ2は、ドライバがステアリングホイール1から手を離した自動運転モード時には、転舵方向にステアリングホイール1を操舵させる操舵アクチュエータとして機能する。
ステアリングクラッチ3は、電磁クラッチ構造であり、ステアリングフォースコントロールモジュール7から通電されるとクラッチ解放とされ、上下のステアリングシャフト11,12が切り離される。なお、システム保護モード時やシステム異常時には、ステアリングフォースコントロールモジュール7からの通電が遮断されてステアリングクラッチ3が結合され、上下のステアリングシャフト11,12を機械的に連結される。
転舵アクチュエータ4は、左右前輪5,6を転舵可能なアクチュエータであり、メイン転舵モータ13と、サブ転舵モータ14と、ステアリングギア機構15と、を有する。
なお、メイン転舵モータ13は、三相交流モータであり、メイン転舵角コントロールモジュール8からの駆動電流によって操舵トルクを発生させる。サブ転舵モータ14は、三相交流モータであり、サブ転舵角コントロールモジュール9からの駆動電流によって操舵トルクを発生させる。ステアリングギア機構15は、ピニオントルクをラック軸力に変換し、ナックルアームを回転させ、左前輪5と右前輪6の向きを変える。
さらに、後述するが転舵アクチュエータ4は、異常発生時にドライバが操舵する手動運転モードにおけるアシスト制御モード時には、ステアリングクラッチ3の締結状態でステアリングホイール1からの操舵トルクに対してアシストトルクを与える。
なお、メイン転舵モータ13は、三相交流モータであり、メイン転舵角コントロールモジュール8からの駆動電流によって操舵トルクを発生させる。サブ転舵モータ14は、三相交流モータであり、サブ転舵角コントロールモジュール9からの駆動電流によって操舵トルクを発生させる。ステアリングギア機構15は、ピニオントルクをラック軸力に変換し、ナックルアームを回転させ、左前輪5と右前輪6の向きを変える。
さらに、後述するが転舵アクチュエータ4は、異常発生時にドライバが操舵する手動運転モードにおけるアシスト制御モード時には、ステアリングクラッチ3の締結状態でステアリングホイール1からの操舵トルクに対してアシストトルクを与える。
ステアリングフォースコントロールモジュール7とメイン転舵角コントロールモジュール8とサブ転舵角コントロールモジュール9は、フレックレイ通信線17を介して相互に情報交換可能に接続されている。
また、ステアリングフォースコントロールモジュール7には、トルクセンサ20の検出トルクと、操舵角センサ21が検出する操舵角と、転舵角センサ22が検出する転舵角とが入力される。
トルクセンサ20は、下側のステアリングシャフト12に設けられ、ステアリングシャフト12における伝達トルク(軸回りトルク)を検出する。また、このトルクセンサ20は、周知のように、ステアリングシャフト12よりも捻じれ剛性が低いトーションバー(不図示)を備え、このトーションバーの捻じれ変位量に基づいてステアリングシャフト12に作用する操舵方向のトルクを検出する。
操舵角センサ21は、上側のステアリングシャフト11などのステアリングホイール1の操舵トルクの伝達系に設けられ、操舵角を検出する。転舵角センサ22は、ステアリングギア機構15の近傍の転舵トルクの伝達系に設けられ、左右前輪5,6の転舵角を検出する。
[モータ/クラッチ制御系]
次に、実施の形態1のステアリングバイワイヤシステムにおけるモータ/クラッチ制御系について説明する。
なお、本実施の形態1では、ステアリングフォースコントロールモジュール7、メイン転舵角コントロールモジュール8、サブ転舵角コントロールモジュール9は、転舵角の制御に関し、それぞれ、並列に制御を実行する。このように並列して制御を行い、各コントロールモジュール7~9の出力値を比較することで、各コントロールモジュール7~9の異常の有無を確認するとともに、そのいずれかが失陥しても、転舵角の制御を継続できるようにしている。
次に、実施の形態1のステアリングバイワイヤシステムにおけるモータ/クラッチ制御系について説明する。
なお、本実施の形態1では、ステアリングフォースコントロールモジュール7、メイン転舵角コントロールモジュール8、サブ転舵角コントロールモジュール9は、転舵角の制御に関し、それぞれ、並列に制御を実行する。このように並列して制御を行い、各コントロールモジュール7~9の出力値を比較することで、各コントロールモジュール7~9の異常の有無を確認するとともに、そのいずれかが失陥しても、転舵角の制御を継続できるようにしている。
以下に、これら各コントロールモジュール7~9において、システムの正常時(自動運転モードにおけるステアバイワイヤモード時)に動作する構成要素と、非正常時(手動運転モードにおけるアシスト制御モード時)に動作する構成要素とに分けて説明する。
まず、システム正常時(自動運転モードでのステアバイワイヤモード時)に動作する構成要素について説明する。
図2Aはシステム正常時(自動運転モードでのステアバイワイヤモード時)におけるステアリングバイワイヤシステムの機械系の説明図である。また、図2Bは、ステアリングフォースコントロールモジュール7、メイン転舵角コントロールモジュール8、サブ転舵角コントロールモジュール9における正常時(自動運転モードでのステアバイワイヤモード時)に動作するモータ/クラッチ制御系の説明図である。
図2Aはシステム正常時(自動運転モードでのステアバイワイヤモード時)におけるステアリングバイワイヤシステムの機械系の説明図である。また、図2Bは、ステアリングフォースコントロールモジュール7、メイン転舵角コントロールモジュール8、サブ転舵角コントロールモジュール9における正常時(自動運転モードでのステアバイワイヤモード時)に動作するモータ/クラッチ制御系の説明図である。
システム正常時におけるステアバイワイヤモード時には、図2Aに示すように、ステアリングクラッチ3を解放し、上下のステアリングシャフト11,12を切り離した状態とする。
そして、ドライバが操舵を行わない自動運転モードでは、反力モータ10によりステアリングホイール1を操舵するとともに、メイン転舵モータ13およびサブ転舵モータ14により左右前輪5,6を転舵させる制御を行う。
そして、ドライバが操舵を行わない自動運転モードでは、反力モータ10によりステアリングホイール1を操舵するとともに、メイン転舵モータ13およびサブ転舵モータ14により左右前輪5,6を転舵させる制御を行う。
なお、この際のステアリングホイール1の操舵は、主として左右前輪5,6の転舵方向をドライバに報せるために行う。また、左右前輪5,6の転舵は、主としてメイン転舵モータ13の駆動により行い、転舵に大きなトルクが必要な場合にサブ転舵モータ14を駆動させる。さらに、両転舵モータ13,14のいずれかが失陥した場合は、もう一方のモータにより転舵を行う。このように、両転舵モータ13,14を駆動させる場合、両転舵モータ13,14の一方のみを駆動させる場合や、両転舵モータ13,14を同時に駆動させる場合がある。しかし、以下の説明では、これらの駆動制御状態にかかわらず、単に両転舵モータ13,14を駆動させると表現する。
また、ステアバイワイヤモードでは、ドライバが操舵を行った手動運転モードの際は、ドライバの操舵角に応じて、左右前輪5,6を転舵させる、いわゆるステアバイワイヤ制御も実行する。この手動運転モードでのステアバイワイヤモードにおける操舵時には、ステアリングホイール1の操舵に対し、反力モータ10により操舵反力を与えつつ、操舵角に応じて両転舵モータ13,14を駆動させて、左右前輪5,6を操舵量に応じて転舵させる。
なお、上述のドライバが操舵を行わない自動運転モード時は、図2Bに示す自動運転コントローラ100が、走行状況や周辺環境等の情報に基づいて車両の加速・転舵・制動の制御を行う。この自動運転コントローラ100による自動運転としては、先行車に追従走行する制御や、走行車線からの逸脱防止を行う制御や、予め設定されたルートに沿って走行する制御などがある。
そして、この自動運転モード時には、自動運転コントローラ100により決定された転舵角を指示する転舵角指令値が、ステアリングフォースコントロールモジュール7に入力される。さらに、ステアリングフォースコントロールモジュール7および転舵角をコントロールする両コントロールモジュール8,9から、転舵角指令値に応じた転舵角および操舵角の指令電流が、反力モータ10および両転舵モータ13,14に出力される。すなわち、自動運転コントローラ100は、自動運転制御の一部としてステアリング制御を実行する。
図2Bは、ステアリングフォースコントロールモジュール7において、システム正常時の自動運転モードでのステアバイワイヤモード時に、両転舵モータ13,14に指令電流を出力する構成要素を示している。この構成要素として、図2Bに示すように、ハンドルタイヤ分配部71、反力モータ制御部72、可変ギア部73、加算部74、転舵モータ制御部75を備える。
ハンドルタイヤ分配部71は、自動運転コントローラ100から出力された転舵角指令値を、ステアリングホイール1の操舵角であるハンドル分指令角と、左右前輪5,6を転舵させるタイヤ分指令角に分配する。
ここで、ハンドル分指令角は、ステアリングホイール1を転舵方向に実際に操舵すべく反力モータ10を駆動させる指令値である。そして、このハンドル分指令角が入力された反力モータ制御部72は、反力モータ10を駆動させることで、ステアリングホイール1を操舵させる。
すなわち、自動運転モードにおけるステアバイワイヤモード時には、左右前輪5,6の転舵を自動的に行うが、その際に、ステアリングホイール1を操舵(回動)させて、車両の転舵が成されていることを、視覚的にドライバに報せるようにしている。
このため、本実施の形態1では、この自動運転モード時のステアリングホイール1の操舵角と、左右前輪5,6の転舵角との関係は、手動運転モードでのステアバイワイヤモードで操舵する場合の関係とは一致するものではない。
つまり、自動運転モードにおけるステアバイワイヤモード時には、上記のようにドライバに転舵方向を報せる目的でステアリングホイール1の操舵を行う。例えば、低速走行時には、転舵角が大きくなる運転状況が生じがちであるが、自動運転モードにおけるステアバイワイヤモード時には、このような転舵の際のステアリングホイール1の操舵角は、転舵に必要な操舵角に比べ低く抑えるよう制御する。また、高速走行時には、修正舵角を与える状況が生じがちであるが、このような修正舵角についてはドライバに報せる必要が無いため、上記と同様に転舵に必要な操舵角に比べ操舵角を低く抑える。このように、自動運転制御時には、実際の転舵に必要な操舵角に対し、ステアリングホイール1の操舵角を低く抑えるように、上記の操舵角と転舵角との分配を行う。なお、この操舵角と転舵角との分配割合は、一定ではなく、走行状況により可変に制御する。
可変ギア部73は、ステアリングホイール1の操舵角度に対する左右前輪5,6の転舵角度に所定のギア比を与える。この可変ギア部73は、手動運転モードでのステアバイワイヤモードでは、操舵角に対する転舵角が車速に応じ所定の関係となるように制御するが、自動運転モードでは、上述のように、転舵角の方向やその角度の大きさを、ドライバに視覚的に報せる目的で制御する。この場合の転舵角と操舵角との関係は、マップあるいは演算式として予め記憶されている。
加算部74は、可変ギア部73から出力されるタイヤ分指令角と、ハンドルタイヤ分配部71から出力される第2のタイヤ分指令角とを加算し、その加算値を最終的な転舵指令電流として、転舵モータ制御部75に出力する。
そして、転舵モータ制御部75は、左右前輪5,6を、転舵指令角に応じた角度だけ転舵させる転舵指令電流を、各転舵モータ13,14に出力する。
そして、転舵モータ制御部75は、左右前輪5,6を、転舵指令角に応じた角度だけ転舵させる転舵指令電流を、各転舵モータ13,14に出力する。
次に、ステアリングフォースコントロールモジュール7および両転舵角コントロールモジュール8,9における、システム非正常時(手動運転モードでのアシスト制御モード時)に動作する構成要素について説明する。
ステアリングフォースコントロールモジュール7および両転舵角コントロールモジュール8,9は、非正常時に動作する構成要素として、図3Bに示す、パワーアシスト制御部76(以下、EPS制御部76と称する)、ゲイン調整部77、第2の加算部78を備える。
EPS制御部76は、自動運転モードにおいて、モータ/クラッチ制御系に何らかの異常が発生した場合、アシスト制御モード(以下、EPS制御モードという)に遷移する制御を行う。このEPS制御モードでは、ステアリングクラッチ3を締結した上で、トルクセンサ20の検出トルクに応じてドライバによる操舵を補助する。
すなわち、EPS制御部76は、自動運転コントローラ100からの転舵角指令値により転舵モータ制御部75から出力される転舵指令電流に、さらに、第2の加算部78においてトルクアシスト指令電流を加算することで、操舵トルクを補助して軽減する。
すなわち、EPS制御部76は、自動運転コントローラ100からの転舵角指令値により転舵モータ制御部75から出力される転舵指令電流に、さらに、第2の加算部78においてトルクアシスト指令電流を加算することで、操舵トルクを補助して軽減する。
ゲイン調整部77は、EPS制御部76から出力されるアシストトルク信号に、1以下のゲインk(係数)を乗じる。すなわち、本実施の形態1では、EPS制御モードへの遷移(クラッチ締結)時点から、後述のフェードイン時間(制限時間)が経過するまでの間、アシストトルクを制限し、フェードイン時間の経過後に制限を解除するフェードイン制御を実行する。このフェードイン制御では、アシストトルクを、トルクセンサ20の検出トルクに応じた値よりも小さな値に制限し、フェードイン時間が経過した時点で、制限を解除して検出トルクに応じた値とする。具体的には、アシストトルクを、フェードイン時間の経過する間に、トルクセンサ20の検出トルクに応じた値に対して0%の値から、100%の値となるまで徐々に増加させる。
そこで、ゲイン調整部77は、アシストトルクがトルクセンサ20の検出トルクに応じた値に対して、0から1まで増加するゲインkを乗じる。
また、ゲイン調整部77は、手放しセンサ80の検出に基づいて、ドライバがステアリングホイール1から手を放している際には、ステアリングホイール1に手を触れている場合(非手放しの場合)と比較して、フェードイン時間を長く設定する。すなわち、手放し時には、ステアリングホイール1を握ったり触ったりしているときよりも、アシストトルクを制限する時間を長く設定する。
なお、手放しセンサ80は、ドライバがステアリングホイール1から手を放しているか否(非手放し=握っている、手を触れている)かを検出する。この手放しセンサ80による手放しの検出は、例えば、ステアリングホイール1に設けたタッチセンサにより検出したり、操舵反力の大きさが所定値以下であることで検出したりすることができる。また、操舵角度の変化や、反力モータ10のモータ電流の変化や、トルクセンサ20の検出トルク値の変化などで検出することもできる。
第2の加算部78では、転舵モータ制御部75の出力と、ゲイン調整部77との出力とを加算する。
なお、本システムに何らかの失陥が生じたり、一時的に制御を中断したりして非正常と判定して手動運転モードのアシスト制御モードに遷移する場合、直ちに自動運転コントローラ100による転舵角制御を中止せずに、所定時間継続する。なお、この継続時間は、例えば、数秒程度である。
なお、本システムに何らかの失陥が生じたり、一時的に制御を中断したりして非正常と判定して手動運転モードのアシスト制御モードに遷移する場合、直ちに自動運転コントローラ100による転舵角制御を中止せずに、所定時間継続する。なお、この継続時間は、例えば、数秒程度である。
したがって、自動運転モードのステアバイワイヤモードから手動運転モードのアシスト制御モードへの遷移時には、第2の加算部78では、転舵モータ制御部75の出力と、ゲイン調整部77との出力とを加算する。すなわち、自動運転コントローラ100による転舵角指令値の出力の継続中は、自動運転制御に基づく転舵角指令電流と、EPS制御に基づくトルクアシスト指令電流とを、第2の加算部78で加算する。そして、この加算値に基づく転舵角の指令電流を両転舵モータ13,14に出力する。また、所定時間が経過して自動運転コントローラ100による転舵角指令値の出力を終了した場合は、EPS制御モードに基づくトルクアシスト指令電流のみを両転舵モータ13,14に出力する手動運転モードのEPS制御に移行する。なお、異常の状態によっては、このステアリングクラッチ3を締結した手動運転モードのEPS制御に移行することなく自動運転コントローラ100による制御を継続する場合もある。また、逆に、異常の状態によっては、両転舵モータ13,14に対するトルクアシスト指令電流の出力、すなわち、アシストトルクの出力を停止する場合もある。
[フェードイン制御]
以下に、フェードイン制御について説明する。
上述したように、自動運転モードのステアバイワイヤモードにおいて正常時には、図2Aに示すように、ステアリングクラッチ3を解放し、上下のステアリングシャフト11,12を切り離した状態とする。そして、自動運転コントローラ100で決定された転舵角指令値に基づいて、反力モータ10および各転舵モータ13,14を駆動させる。これにより、必要に応じて左右前輪5,6を転舵させるとともに、その転舵方向が分かるようにステアリングホイール1を操舵させる。
以下に、フェードイン制御について説明する。
上述したように、自動運転モードのステアバイワイヤモードにおいて正常時には、図2Aに示すように、ステアリングクラッチ3を解放し、上下のステアリングシャフト11,12を切り離した状態とする。そして、自動運転コントローラ100で決定された転舵角指令値に基づいて、反力モータ10および各転舵モータ13,14を駆動させる。これにより、必要に応じて左右前輪5,6を転舵させるとともに、その転舵方向が分かるようにステアリングホイール1を操舵させる。
一方、非正常時には、手動運転モードのEPS制御モード(アシスト制御モード)に遷移する。この手動運転モードのEPS制御モードへの遷移の際には、図3Aに示すように、ステアリングクラッチ3を締結し、上下のステアリングシャフト11,12を直結状態する。同時に、あるいは、ステアリングクラッチ3の締結前に、ドライバに手動による操舵を促すための警報や表示などによる報知を行って、本システムが異常であることを報知する。なお、非正常時とは、各センサや各モータのいずれかに何らかの失陥が生じたり、あるいは、各センサや各モータのいずれかの温度が上昇したりし、一時的にその作動を制限する場合などがある。
また、EPS制御モードでは、ドライバがステアリングホイール1を操舵した場合、トルクセンサ20によりその操舵トルクを検出し、この検出トルクに応じて各転舵モータ13,14を駆動させてアシストトルクを発生させ操舵トルクを軽減する。
さらに、本実施の形態1では、自動運転モードのステアバイワイヤモードから、手動運転モードのEPS制御モードに遷移する際には、前述のフェードイン制御を実行し、アシストトルクがトルクセンサ20の検出トルクに応じた値となるタイミングを遅らせる。
このフェードイン制御の処理の流れを図4のフローチャートに基づいて説明する。なお、この図4に示すフェードイン制御の処理は、走行中に、所定の周期(例えば、30ms)で繰り返し実行される。
まず、ステップS1では、現在、ドライバが操舵を行っていない自動運転モード中か否か判定し、自動運転モード中であれば、ステップS2に進み、自動運転モード中でなければ、1回の処理を終了する。なお、自動運転モードの場合、正常時には、ステアバイワイヤモードでステアリング制御を行っている。また、自動運転モードではない場合(ステップS1においてNOとの判定の場合)には、前述した正常時の手動運転モードでステアリング制御を行っていると判定したことになる。
まず、ステップS1では、現在、ドライバが操舵を行っていない自動運転モード中か否か判定し、自動運転モード中であれば、ステップS2に進み、自動運転モード中でなければ、1回の処理を終了する。なお、自動運転モードの場合、正常時には、ステアバイワイヤモードでステアリング制御を行っている。また、自動運転モードではない場合(ステップS1においてNOとの判定の場合)には、前述した正常時の手動運転モードでステアリング制御を行っていると判定したことになる。
自動運転モード中のステアバイワイヤモードの場合に進むステップS2では、手放しセンサ80の検出に基づいて、現在、手放し運転中か否か判定し、手放し運転中であれば、ステップS3に進んで、手放し運転フラグを「手放し」に設定する。また、ステップS2において、手放し運転中でなければ、ステップS4に進んで、手放し運転フラグを「非手放し」に設定する。なお、この手放し運転中か否かの判定は、手放しセンサ80の検出に基づく。また、「非手放し」とは、ドライバが操舵を行っていないが、ステアリングホイール1には、手を触れていたり、握っていたりする状態である。
ステップS3、S4に続くステップS5では、非正常か否かを判定し、非正常時はステップS6に進み、正常時にはステップS7に進む。なお、前述したように、非正常とは、本システムに何らかの失陥が生じた場合や、各モータ10,13,14やバッテリ(不図示)などの温度上昇により、この温度が低下するまで、一時的に一部モータなどの駆動を停止する場合などがある。
ステップS5において正常との判定時に進むステップS7は、ステアリングクラッチ3を挟んで、ステアリングホイール1側の操舵角速度と、ステアリングギア機構15側の転舵角速度との角度差を記憶する処理を行った上で、1回の処理を終了する。なお、操舵角速度は、操舵角センサ21の検出値から求める。また、転舵角速度は、転舵角センサ22の検出値から求める。
図5は、ステアリングクラッチ3を挟んだステアリングギア機構15側の角速度(転舵角速度)と、ステアリングホイール1側の角速度(操舵角速度)との差を表す図である。前述したように、ステアリングクラッチ3を解放した状態では、転舵時に、ステアリングホイール1側の角速度(操舵角速度)と、ステアリングギア機構15側の角速度(転舵角速度)とに角速度差が生じる。そこで、ステップS7では、その時点で最新の角速度差を記憶する。
一方、ステップS5において非正常(手動運転モードのEPS制御モードへ遷移)と判定した場合に進むステップS6では、現在記憶されている最新の操舵角速度と転舵角速度との角度差を取得し、ステップS8に進む。また、非正常との判定によりEPS制御モードへ遷移する際には、フェードイン制御と並行して実施する制御により、直ちに、ステアリングクラッチ3の締結を行う。
ステップS6に続くステップS8では、現在の手放し運転フラグが「手放し」に設定されているか否か判定する。
そして、手放し運転フラグが「手放し」に設定されている場合は、ステップS9に進んで、手放し時フェードイン時間を決定する。一方、手放し運転フラグが「非手放し」に設定されている場合は、ステップS10に進んで、非手放し時フェードイン時間を決定する。
ステップS6に続くステップS8では、現在の手放し運転フラグが「手放し」に設定されているか否か判定する。
そして、手放し運転フラグが「手放し」に設定されている場合は、ステップS9に進んで、手放し時フェードイン時間を決定する。一方、手放し運転フラグが「非手放し」に設定されている場合は、ステップS10に進んで、非手放し時フェードイン時間を決定する。
これらの手放し時フェードイン時間および非手放し時フェードイン時間は、図6に示すマップあるいは演算式に基づいて、角速度差に応じて設定する。図6は、手放し時フェードイン時間および非手放し時フェードイン時間と、角速度差との関係を示すもので、角速度差が大きいほど、手放し時フェードイン時間および非手放し時フェードイン時間を長く設定する。また、手放し時フェードイン時間は、非手放し時フェードイン時間よりも、角速度差に対する時間(フェードイン時間)を長く設定する。
これらの手放し時フェードイン時間および非手放し時フェードイン時間は、アシストトルクを、EPS制御部76から出力されるアシストトルク信号に応じた値に対して制限する時間である。なお、このアシストトルクの制限時には、アシストトルクが、EPS制御部76から出力されるアシストトルク信号に応じた値の100%未満の値となるように制御する。
ステップS9、S10において手放し時フェードイン時間および非手放し時フェードイン時間を決定した後に進むステップS11では、両フェードイン時間のいずれかに応じてトルクアシスト指令電流を決定する。
すなわち、図3Bに示すゲイン調整部77においてEPS制御部76から出力されるアシストトルクにゲインkを乗じてトルクアシスト指令電流を決定する。ゲインkは、EPS制御モード遷移開始時のアシストトルクを、EPS制御部76から出力されるアシストトルク信号に応じた値の0%の値とし、各フェードイン時間の経過時点でアシストトルク信号に応じた値の100%の値とするよう一次比例で増加させる。
(実施の形態1の作用)
以下に、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の作用を説明する。
この作用の説明において、まず、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の解決課題を比較例に基づいて説明する。
以下に、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の作用を説明する。
この作用の説明において、まず、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の解決課題を比較例に基づいて説明する。
この比較例は、自動運転モードにおけるステアバイワイヤモード中に、異常発生に伴い、EPS制御モードに遷移した際に、直ちに、トルクセンサ20の検出トルクに応答する値(EPS制御部76からの出力)のアシストトルクを出力するようにした例である。
自動運転モードでの転舵角制御中には、ステアリングホイール1側の操舵角速度と、ステアリングギア機構15側の転舵角速度とに角速度差が生じる(図5参照)。
この状態で、異常が生じ、非正常との判定によりEPS制御モードに遷移し、ステアリングクラッチ3を締結すると、トルクセンサ20のトーションバー(不図示)の捻じれの反力が生じトルクセンサ20に振動が発生する(図3B参照)。
図8は、この比較例における動作状態を示すタイムチャートであり、t01の時点で、ステアバイワイヤモードからEPS制御モードに遷移し、この時点で、解放状態のステアリングクラッチ3を締結する。したがって、t01の時点から、上述のトルクセンサ20において振動が生じ、トルクセンサ20の検出トルクが図示のように変化する。また、この振動は、角速度差が大きい程振幅が大きくなるとともに振動する時間が長くなるもので、相対的に角速度差が小さい場合は、t02の時点で収束するのに対し、角速度差が相対的に大きい場合は、t02の時点よりも遅いt03の時点で収束する。
そして、このトルクセンサ20の検出トルクに応じた値の100%のアシストトルクを発生させた場合、ステアリングホイール1では、トルクセンサ20に生じる振動およびその検出トルクに応じてアシストトルクにより、図3Aに示すような振動が生じる。同様に、左右前輪5,6においても、トルクセンサ20に生じる振動およびアシストトルクにより微振動が生じる。
したがって、比較例では、このようなステアリングホイール1の振動および左右前輪5,6の振動により、ドライバに違和感を与えるおそれがある。
したがって、比較例では、このようなステアリングホイール1の振動および左右前輪5,6の振動により、ドライバに違和感を与えるおそれがある。
次に、本実施の形態1において、ドライバが操舵を行わない自動運転モードにおけるステアバイワイヤモードから、ドライバが操舵を行う手動運転モードにおけるEPS制御モードに遷移する場合について説明する。
本実施の形態1では、自動運転モード中にステアバイワイヤモードからEPS制御モードに遷移する際は、最新の記憶したステアリングホイール1側の操舵角速度とステアリングギア機構15側の転舵角速度との角速度差を取得する(S6)。そして、この角速度差に応じ、ドライバがステアリングホイール1に手を触れていない手放し時には、手放し時フェードイン時間を決定し、ドライバがステアリングホイール1に手を触れた非手放し時には、非手放し時フェードイン時間を決定する。
本実施の形態1では、自動運転モード中にステアバイワイヤモードからEPS制御モードに遷移する際は、最新の記憶したステアリングホイール1側の操舵角速度とステアリングギア機構15側の転舵角速度との角速度差を取得する(S6)。そして、この角速度差に応じ、ドライバがステアリングホイール1に手を触れていない手放し時には、手放し時フェードイン時間を決定し、ドライバがステアリングホイール1に手を触れた非手放し時には、非手放し時フェードイン時間を決定する。
図9は、実施の形態1の動作例をタイムチャートである。
この図9に示す動作例では、t1の時点で異常発生に伴いステアリングクラッチ3を締結することで、比較例と同様に、操舵角速度と転舵角速度との角速度差によりトルクセンサ20に振動が生じ、その検出トルク(トルクセンサ値)が振動する。なお、トルクセンサ値としては、振動成分である高周波成分のみを示している。
この図9に示す動作例では、t1の時点で異常発生に伴いステアリングクラッチ3を締結することで、比較例と同様に、操舵角速度と転舵角速度との角速度差によりトルクセンサ20に振動が生じ、その検出トルク(トルクセンサ値)が振動する。なお、トルクセンサ値としては、振動成分である高周波成分のみを示している。
このとき、実施の形態1では、EPS制御モードに遷移したt1の時点で、アシストトルクを、トルクセンサ20の検出に応じたEPS制御部76の出力に対して制限する。すなわち、EPS制御モードに遷移したt1の時点では、アシストトルクを、EPS制御部76の出力に対して0%の値とする。
その後、フェードイン時間の経過に伴い、EPS制御部76の出力に乗じるゲインkを徐々に上昇させることでアシストトルクを徐々に上昇させる。そして、トルクセンサ20の振動が収まった後のt2の時点(フェードイン時間の経過時点)で、アシストトルクをEPS制御部76の出力の100%の値とする。
したがって、ステアリングホイール1では、アシストトルクにトルクセンサ20の振動成分を含むアシストトルクが加わることが制限されて、比較例と比べ、振動を抑えることができる。
同様に、両転舵モータ13,14によるアシストトルクを、EPS制御部76の出力の100%未満の値に制限することにより、左右前輪5,6における微振動を抑えることができる。
このように、ステアリングクラッチ3の締結直後のステアリングホイール1の振動および左右前輪5,6の振動を抑えることができるため、ドライバに与える違和感も抑えることができる。
同様に、両転舵モータ13,14によるアシストトルクを、EPS制御部76の出力の100%未満の値に制限することにより、左右前輪5,6における微振動を抑えることができる。
このように、ステアリングクラッチ3の締結直後のステアリングホイール1の振動および左右前輪5,6の振動を抑えることができるため、ドライバに与える違和感も抑えることができる。
しかも、このようにアシストトルクを制限する時間であるt1の時点からt2の時点までの時間(フェードイン時間)は、図6に示すように、操舵角速度と転舵角速度との角速度差に応じて決定する。
すなわち、ステアリングクラッチ3を挟んで、ステアリングホイール1側の角速度(操舵角速度)と左右前輪5,6側の角速度(転舵角速度)との角速度差が大きいほど、トルクセンサ20における捻じれ、つまり、振動が大きくなり、その収束時間が長くなる。
よって、角速度差が大きいほど、アシストトルクを制限する時間を長く確保することで、トルクセンサ20の振動を原因とする上記のステアリングホイール1の振動および左右前輪5,6の振動をより確実に抑えることができる。
すなわち、ステアリングクラッチ3を挟んで、ステアリングホイール1側の角速度(操舵角速度)と左右前輪5,6側の角速度(転舵角速度)との角速度差が大きいほど、トルクセンサ20における捻じれ、つまり、振動が大きくなり、その収束時間が長くなる。
よって、角速度差が大きいほど、アシストトルクを制限する時間を長く確保することで、トルクセンサ20の振動を原因とする上記のステアリングホイール1の振動および左右前輪5,6の振動をより確実に抑えることができる。
加えて、アシストトルクを制限する際に、トルクセンサ20の検出トルクに応じた値であるEPS制御部76の出力に対して乗じるゲインkを徐々に増加させ、アシストトルクを徐々に増加するようにしている。
したがって、EPS制御に基づくアシストトルクを徐々に増加するため、例えば、t2の時点で、EPS制御部76の出力に対し0%から100%に急変化させた場合と比較して、アシストトルクの急上昇によりドライバに与える違和感を抑えることができる。
したがって、EPS制御に基づくアシストトルクを徐々に増加するため、例えば、t2の時点で、EPS制御部76の出力に対し0%から100%に急変化させた場合と比較して、アシストトルクの急上昇によりドライバに与える違和感を抑えることができる。
一方、ステアリングクラッチ3を締結するt1の時点で、ドライバの手がステアリングホイール1に触れている場合は、ドライバの手によりステアリングホイール1の振動が抑えられ、その振幅が小さいとともに、振動時間も短く、振動が視覚的に現れにくい。このため、本実施の形態1では、非手放し時フェードイン時間を手放し時フェードイン時間よりも短く設定する。これにより、EPS制御によるアシストの遅れ時間を短くしつつ、ステアリングホイール1の振動および左右前輪5,6の振動によりドライバに与える違和感を抑えることができる。
さらに、ステアリングクラッチ3を締結するt1の時点の前に自動運転制御をキャンセルしドライバがステアリングホイール1を手動操作する手動運転モードとしている場合は、非手放し時フェードイン時間を設定せずに、t1の時点でEPS制御部76の出力の100%の値のアシストトルクを出力する(図9)。すなわち、手動運転モード(正常時)の場合、図4のフローチャートのステップS1においてNOと判定し(S12にて手動運転モードと判定とする)、この場合、フェードイン制御(アシストトルクの制限)を実行しない。
つまり、既にドライバによってステアリングホイール1を手動操作しており、ステアリングクラッチ3が締結されても、締結直後のステアリングホイール1の振動が発生しにくいことから、t1の時点で直ちに100%の値のアシストトルクを出力する。
このように、ドライバが操舵中である場合は、ドライバによる操舵トルクによってトルクセンサ20の検出トルクの振動が図示のように抑制され、トルクセンサ20の検出トルクの振動は小さく、その時間も短い。 よって、EPS制御モードへの遷移時点からアシストトルクを、EPS制御部76の出力の100%の値としても、ステアリングホイール1の振動や左右前輪5,6の振動は殆ど振動が生じることが無く、乗員に違和感を与えることは無い。
これにより、EPS制御によるアシストの遅れを無くしつつ、ステアリングホイール1の振動によりドライバに与える違和感を抑えることができる。
これにより、EPS制御によるアシストの遅れを無くしつつ、ステアリングホイール1の振動によりドライバに与える違和感を抑えることができる。
(実施の形態1の効果)
以下に、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の効果を列挙する。
1)実施の形態1の車両のステアリング制御方法は、
ステアリングホイール1と、
ステアリングホイール1と左右前輪5,6とを機械的に断接を可能なステアリングクラッチ3と、
ステアリングホイール1に対してトルクを与える操舵アクチュエータとしての反力モータ10と、
左右前輪5,6輪を転舵させるメイン転舵モータ13およびサブ転舵モータ14と、
ステアリングホイール1と左右前輪5,6との間のトルク伝達系の伝達トルクを検出するトルクセンサ20と、
を備えた車両において、
ステアリングクラッチ3を解放して転舵角指令に基づいてステアリングホイール1の操舵角および左右前輪5,6の転舵角を制御するステアバイワイヤモードと、
ステアリングクラッチ3を締結してトルクセンサ20の検出トルクに応じたアシストトルクを左右前輪5,6に対して与えるEPS制御モードと、
を有し、
ドライバが操舵を行わない自動運転モードにおけるステアバイワイヤモードから、ドライバが操舵を行う手動モードにおけるEPS制御モードに遷移するにあたり、ステアリングクラッチ3を締結した後、フェードイン時間が経過するまでアシストトルクを、トルクセンサ20の検出トルクに応じた値に対して制限する(図9のt1~t2)。
したがって、ステアリングクラッチ3の締結直後のステアリングホイール1の振動および左右前輪5,6の振動を抑え、ドライバに与える違和感を抑えることができる。
以下に、実施の形態1の車両のステアリング制御方法および車両のステアリング制御装置の効果を列挙する。
1)実施の形態1の車両のステアリング制御方法は、
ステアリングホイール1と、
ステアリングホイール1と左右前輪5,6とを機械的に断接を可能なステアリングクラッチ3と、
ステアリングホイール1に対してトルクを与える操舵アクチュエータとしての反力モータ10と、
左右前輪5,6輪を転舵させるメイン転舵モータ13およびサブ転舵モータ14と、
ステアリングホイール1と左右前輪5,6との間のトルク伝達系の伝達トルクを検出するトルクセンサ20と、
を備えた車両において、
ステアリングクラッチ3を解放して転舵角指令に基づいてステアリングホイール1の操舵角および左右前輪5,6の転舵角を制御するステアバイワイヤモードと、
ステアリングクラッチ3を締結してトルクセンサ20の検出トルクに応じたアシストトルクを左右前輪5,6に対して与えるEPS制御モードと、
を有し、
ドライバが操舵を行わない自動運転モードにおけるステアバイワイヤモードから、ドライバが操舵を行う手動モードにおけるEPS制御モードに遷移するにあたり、ステアリングクラッチ3を締結した後、フェードイン時間が経過するまでアシストトルクを、トルクセンサ20の検出トルクに応じた値に対して制限する(図9のt1~t2)。
したがって、ステアリングクラッチ3の締結直後のステアリングホイール1の振動および左右前輪5,6の振動を抑え、ドライバに与える違和感を抑えることができる。
2)実施の形態1の車両のステアリング制御方法は、
フェードイン時間は、ステアリングクラッチ3を挟んでステアリングホイール1側の角速度である操舵角速度と左右前輪5,6側の角速度である転舵角速度との角速度差に応じた時間とする。
すなわち、トルクセンサ20の振動の大きさおよび時間は、角速度差に応じる。したがって、角速度差に応じてアシストトルクを制限することで、トルクセンサ20の振動を原因とするステアリングホイール1の振動および左右前輪5,6の振動をより確実に抑えつつ、アシストトルクを制限する時間を短く抑えることができる。
フェードイン時間は、ステアリングクラッチ3を挟んでステアリングホイール1側の角速度である操舵角速度と左右前輪5,6側の角速度である転舵角速度との角速度差に応じた時間とする。
すなわち、トルクセンサ20の振動の大きさおよび時間は、角速度差に応じる。したがって、角速度差に応じてアシストトルクを制限することで、トルクセンサ20の振動を原因とするステアリングホイール1の振動および左右前輪5,6の振動をより確実に抑えつつ、アシストトルクを制限する時間を短く抑えることができる。
3)実施の形態1の車両のステアリング制御方法は、
ステアリングホイール1にドライバが手を触れているか否かを判定し(図4のS2)、手を触れていると判定した場合(図4のS10)は、手を触れていないと判定した場合(図4のS9)に比べて、フェードイン時間を短くする。
したがって、ドライがステアリングホイール1に手を触れてトルクセンサ20の締結時に振動が生じにくい場合は、フェードイン時間を短くして、EPS制御によるアシストトルクを制限する時間をより短くすることができる。
ステアリングホイール1にドライバが手を触れているか否かを判定し(図4のS2)、手を触れていると判定した場合(図4のS10)は、手を触れていないと判定した場合(図4のS9)に比べて、フェードイン時間を短くする。
したがって、ドライがステアリングホイール1に手を触れてトルクセンサ20の締結時に振動が生じにくい場合は、フェードイン時間を短くして、EPS制御によるアシストトルクを制限する時間をより短くすることができる。
4)実施の形態1の車両のステアリング制御方法は、
ステアリングクラッチ3の締結前に、ドライバが操舵を行う手動運転モードの場合は、ステアリングクラッチ3を締結した後、制限を行うことなく、アシストトルクを直ちにトルクセンサ20の検出トルクに応じた値(EPS制御部76の出力を制限しない値)とする。
したがって、ドライバの操舵中は、ステアリングクラッチ3に角速度差が小さく、また、角度差が生じていてもドライバによる操舵によってトルクセンサ20の振動が抑制される。よって、ステアリングクラッチ3の締結直後にアシストトルクを制限しなくても、アシストトルクがステアリングホイール1や左右前輪5,6の振動成分となることが無い。
これにより、EPS制御によるアシストの遅れを無くすことができる。
ステアリングクラッチ3の締結前に、ドライバが操舵を行う手動運転モードの場合は、ステアリングクラッチ3を締結した後、制限を行うことなく、アシストトルクを直ちにトルクセンサ20の検出トルクに応じた値(EPS制御部76の出力を制限しない値)とする。
したがって、ドライバの操舵中は、ステアリングクラッチ3に角速度差が小さく、また、角度差が生じていてもドライバによる操舵によってトルクセンサ20の振動が抑制される。よって、ステアリングクラッチ3の締結直後にアシストトルクを制限しなくても、アシストトルクがステアリングホイール1や左右前輪5,6の振動成分となることが無い。
これにより、EPS制御によるアシストの遅れを無くすことができる。
5)実施の形態1の車両のステアリング制御方法は、
フェードイン時間中のアシストトルクの制限を徐々に解除する。
したがって、フェードイン時間の経過時に、アシストトルクの制限を急に解除してアシストトルクが急変化することによる違和感を抑えることができる。
フェードイン時間中のアシストトルクの制限を徐々に解除する。
したがって、フェードイン時間の経過時に、アシストトルクの制限を急に解除してアシストトルクが急変化することによる違和感を抑えることができる。
6)実施の形態1の車両のステアリング制御方法は、
アシストトルクを、トルクセンサ20の検出トルクに応じた値に対して1以下のゲインkを乗じて決定し、かつ、ゲインkを、フェードイン時間中に0から1まで徐々に増加させる。
したがって、アシストトルクを、100%の割合とするフェードイン時間の終了時点に向けてスムーズに上昇させることができ、アシストトルクの変化による違和感を抑えることができる。
アシストトルクを、トルクセンサ20の検出トルクに応じた値に対して1以下のゲインkを乗じて決定し、かつ、ゲインkを、フェードイン時間中に0から1まで徐々に増加させる。
したがって、アシストトルクを、100%の割合とするフェードイン時間の終了時点に向けてスムーズに上昇させることができ、アシストトルクの変化による違和感を抑えることができる。
7)実施の形態1の車両のステアリング制御装置は、
ステアリングホイール1と、
ステアリングホイール1と左右前輪5,6とを機械的に断接を可能なステアリングクラッチ3と、
ステアリングホイール1に対してトルクを与える操舵アクチュエータとしての反力モータ10と、
左右前輪5,6輪を転舵させるメイン転舵モータ13およびサブ転舵モータ14と、
ステアリングホイール1と左右前輪5,6との間のトルク伝達系の伝達トルクを検出するトルクセンサ20と、
ステアリングクラッチ3を解放して転舵角指令に基づいてステアリングホイール1の操舵角および左右前輪5,6の転舵角を制御するステアバイワイヤモードと、ステアリングクラッチ3を締結してトルクセンサ20の検出トルクに応じたアシストトルクを左右前輪5,6に対して与えるEPS制御モードと、を有する転舵制御部としてのステアリングフォースコントロールモジュール7およびメイン転舵角コントロールモジュール8,サブ転舵角コントロールモジュール9と、
を備え、
各コントロールモジュール7~9は、ドライバが操舵を行わない自動運転モードにおけるステアバイワイヤモードから、ドライバが操舵を行う手動運転モードにおけるEPS制御モードに遷移するにあたり、ステアリングクラッチ3を締結した後、フェードイン時間が経過するまで、アシストトルクを、トルクセンサ20の検出トルクに応じた値に対して制限する。
したがって、ステアリングクラッチ3の締結直後のステアリングホイール1の振動および左右前輪5,6の振動を抑え、ドライバに与える違和感を抑えることができる。
ステアリングホイール1と、
ステアリングホイール1と左右前輪5,6とを機械的に断接を可能なステアリングクラッチ3と、
ステアリングホイール1に対してトルクを与える操舵アクチュエータとしての反力モータ10と、
左右前輪5,6輪を転舵させるメイン転舵モータ13およびサブ転舵モータ14と、
ステアリングホイール1と左右前輪5,6との間のトルク伝達系の伝達トルクを検出するトルクセンサ20と、
ステアリングクラッチ3を解放して転舵角指令に基づいてステアリングホイール1の操舵角および左右前輪5,6の転舵角を制御するステアバイワイヤモードと、ステアリングクラッチ3を締結してトルクセンサ20の検出トルクに応じたアシストトルクを左右前輪5,6に対して与えるEPS制御モードと、を有する転舵制御部としてのステアリングフォースコントロールモジュール7およびメイン転舵角コントロールモジュール8,サブ転舵角コントロールモジュール9と、
を備え、
各コントロールモジュール7~9は、ドライバが操舵を行わない自動運転モードにおけるステアバイワイヤモードから、ドライバが操舵を行う手動運転モードにおけるEPS制御モードに遷移するにあたり、ステアリングクラッチ3を締結した後、フェードイン時間が経過するまで、アシストトルクを、トルクセンサ20の検出トルクに応じた値に対して制限する。
したがって、ステアリングクラッチ3の締結直後のステアリングホイール1の振動および左右前輪5,6の振動を抑え、ドライバに与える違和感を抑えることができる。
以上、本開示の車両のステアリング制御方法および車両のステアリング制御装置を実施の形態に基づき説明してきたが、具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
例えば、実施の形態では、制限時間中に、アシストトルクを、トルクセンサの検出値に応じた値とするタイミングに向けて、アシストトルクの制限を徐々に解除する例を示したが、これに限定されない。例えば、制限時間中は、アシストトルクを0とし、制限時間の終了時に、ON,OFF的にトルクセンサの検出値に応じた値としてもよいし、また、段階的に割合を上昇させてもよい。
あるいは、アシストトルクの制限を解除する際に、本実施の形態のように一次比例で解除するのではなく、クラッチ締結直後は、相対的に解除量を抑え、その後、時間経過に伴って相対的に解除量を大きくし二次関数的に解除させてもよい。このようにした場合、トルクセンサの振動は、アシスト制御モードへの遷移の初期ほど振動量が大きいため、この初期の振動量に応じてアシストトルクを大きく制限することで、ステアリングホイールや転舵輪の振動を、より抑えることができる。
あるいは、アシストトルクの制限を解除する際に、本実施の形態のように一次比例で解除するのではなく、クラッチ締結直後は、相対的に解除量を抑え、その後、時間経過に伴って相対的に解除量を大きくし二次関数的に解除させてもよい。このようにした場合、トルクセンサの振動は、アシスト制御モードへの遷移の初期ほど振動量が大きいため、この初期の振動量に応じてアシストトルクを大きく制限することで、ステアリングホイールや転舵輪の振動を、より抑えることができる。
さらに、本実施の形態の課題であるトルクセンサの振動は、転舵中にステアリングホイール側と転舵輪側とで角速度差が生じている状態でステアリングクラッチを締結した際に生じるものである。したがって、ステアリングクラッチ締結後にアシストトルクを制限する制御の開始条件として、転舵中であるか否か、あるいは、角速度差が生じているか否かを加えてもよい。
1 ステアリングホイール
2 ステアリングフォースアクチュエータ
3 ステアリングクラッチ
4 転舵アクチュエータ
5 左前輪(転舵輪)
6 右前輪(転舵輪)
7 ステアリングフォースコントロールモジュール(転舵制御部)
8 メイン転舵角コントロールモジュール(転舵制御部)
9 サブ転舵角コントロールモジュール(転舵制御部)
10 反力モータ
11 (上側の)ステアリングシャフト
12 (下側の)ステアリングシャフト
13 メイン転舵モータ
14 サブ転舵モータ
15 ステアリングギア機構
20 トルクセンサ
76 パワーアシスト制御部(EPS制御部)
100 自動運転コントローラ
k ゲイン(係数)
2 ステアリングフォースアクチュエータ
3 ステアリングクラッチ
4 転舵アクチュエータ
5 左前輪(転舵輪)
6 右前輪(転舵輪)
7 ステアリングフォースコントロールモジュール(転舵制御部)
8 メイン転舵角コントロールモジュール(転舵制御部)
9 サブ転舵角コントロールモジュール(転舵制御部)
10 反力モータ
11 (上側の)ステアリングシャフト
12 (下側の)ステアリングシャフト
13 メイン転舵モータ
14 サブ転舵モータ
15 ステアリングギア機構
20 トルクセンサ
76 パワーアシスト制御部(EPS制御部)
100 自動運転コントローラ
k ゲイン(係数)
Claims (7)
- ステアリングホイールと、
前記ステアリングホイールと転舵輪とを機械的に断接を可能なクラッチと、
前記ステアリングホイールに対してトルクを与える操舵アクチュエータと、
前記転舵輪を転舵させる転舵アクチュエータと、
前記ステアリングホイールと前記転舵輪との間のトルク伝達系の伝達トルクを検出するトルクセンサと、
を備えた車両において、
前記クラッチを解放して転舵角指令に基づいて前記ステアリングホイールの操舵角および前記転舵輪の転舵角を制御するステアバイワイヤモードと、
前記クラッチを締結して前記トルクセンサの検出トルクに応じたアシストトルクを前記転舵輪に対して与えるアシスト制御モードと、
を有し、
自動運転モードにおける前記ステアバイワイヤモードから手動運転モードにおける前記アシスト制御モードに遷移するにあたり、前記クラッチを締結した後、所定の制限時間が経過するまで前記アシストトルクを、前記検出トルクに応じた値に対して制限する車両のステアリング制御方法。 - 請求項1に記載の車両のステアリング制御方法において、
前記制限時間は、前記クラッチを挟んで前記ステアリングホイール側の角速度である操舵角速度と前記転舵輪側の角速度である転舵角速度との角速度差に応じた時間とする車両のステアリング制御方法。 - 請求項1または請求項2に記載の車両のステアリング制御方法において、
前記ステアリングホイールにドライバが手を触れているか否かを判定し、手を触れていると判定した場合は、手を触れていないと判定した場合に比べて、前記制限時間を短くする車両のステアリング制御方法。 - 請求項1~請求項3のいずれか1項に記載の車両のステアリング制御方法において、
前記クラッチの締結前に、前記手動運転モードにおける前記ステアバイワイヤモードであった場合は、前記クラッチを締結した後、前記制限を行うことなく、前記アシスト制御モードの前記アシストトルクを直ちに前記検出トルクに応じた値とする車両のステアリング制御方法。 - 請求項1~請求項4のいずれか1項に記載の車両のステアリング制御方法において、
前記制限時間中に、前記制限を徐々に解除する車両のステアリング制御方法。 - 請求項5に記載の車両のステアリング制御方法において、
前記アシストトルクを、前記検出トルクに応じた値に対して1以下の係数を乗じて決定し、かつ、前記係数を、前記制限時間中に0から1まで徐々に増加させる車両のステアリング制御方法。 - ステアリングホイールと、
前記ステアリングホイールと転舵輪とを機械的に断接を可能なクラッチと、
前記ステアリングホイールに対してトルクを与える操舵アクチュエータと、
前記転舵輪を転舵させる転舵アクチュエータと、
前記ステアリングホイールと前記転舵輪との間のトルク伝達系の伝達トルクを検出するトルクセンサと、
前記クラッチを解放して転舵角指令に基づいて前記ステアリングホイールの操舵角および前記転舵輪の転舵角を制御するステアバイワイヤモードと、前記クラッチを締結して前記トルクセンサの検出トルクに応じたアシストトルクを前記転舵輪に対して与えるアシスト制御モードと、を有する転舵制御部と、
を備え、
前記転舵制御部は、自動運転モードにおける前記ステアバイワイヤモードから手動運転モードにおける前記アシスト制御モードに遷移するにあたり、前記クラッチを締結した後、所定の制限時間が経過するまで前記アシストトルクを、前記検出トルクに応じた値に対して制限する車両のステアリング制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020504508A JP6729838B2 (ja) | 2018-03-06 | 2018-03-06 | 車両のステアリング制御方法および車両のステアリング制御装置 |
EP18908429.6A EP3763603B1 (en) | 2018-03-06 | 2018-03-06 | Vehicle steering control method and vehicle steering control device |
CN201880090686.4A CN111801267B (zh) | 2018-03-06 | 2018-03-06 | 车辆的转向控制方法及车辆的转向控制装置 |
PCT/JP2018/008437 WO2019171447A1 (ja) | 2018-03-06 | 2018-03-06 | 車両のステアリング制御方法および車両のステアリング制御装置 |
US16/971,714 US11066096B2 (en) | 2018-03-06 | 2018-03-06 | Vehicle steering control method and vehicle steering control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/008437 WO2019171447A1 (ja) | 2018-03-06 | 2018-03-06 | 車両のステアリング制御方法および車両のステアリング制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019171447A1 true WO2019171447A1 (ja) | 2019-09-12 |
Family
ID=67846991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008437 WO2019171447A1 (ja) | 2018-03-06 | 2018-03-06 | 車両のステアリング制御方法および車両のステアリング制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11066096B2 (ja) |
EP (1) | EP3763603B1 (ja) |
JP (1) | JP6729838B2 (ja) |
CN (1) | CN111801267B (ja) |
WO (1) | WO2019171447A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210001922A1 (en) * | 2019-07-05 | 2021-01-07 | Subaru Corporation | Vehicle steering assist device |
CN113525508A (zh) * | 2021-07-23 | 2021-10-22 | 深圳华一精品科技有限公司 | 一种方向盘的控制方法、控制系统、车辆、计算机设备及计算机可读存储介质 |
CN114190086A (zh) * | 2020-07-13 | 2022-03-15 | 日本精工株式会社 | 手放开检测装置以及操舵装置 |
JP7039747B1 (ja) * | 2021-04-23 | 2022-03-22 | ナブテスコ株式会社 | コラムアシスト式操舵装置、操舵ユニット、補助力演算方法、およびプログラム |
JP2022150431A (ja) * | 2021-03-26 | 2022-10-07 | 本田技研工業株式会社 | 自動運転車両の操舵装置及びこれを備えた自動運転車両 |
JP2022150401A (ja) * | 2021-03-26 | 2022-10-07 | 本田技研工業株式会社 | 自動運転車両の操舵装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102546961B1 (ko) * | 2018-07-20 | 2023-06-23 | 현대모비스 주식회사 | 스티어 바이 와이어 장치 |
JP7205373B2 (ja) * | 2019-05-07 | 2023-01-17 | 株式会社デンソー | 回転電機制御装置 |
JP6979091B2 (ja) * | 2020-01-29 | 2021-12-08 | 本田技研工業株式会社 | 車両制御装置、車両、車両制御方法及びプログラム |
JP7376407B2 (ja) * | 2020-03-27 | 2023-11-08 | 株式会社ジェイテクト | 操舵制御装置 |
WO2021199964A1 (ja) * | 2020-03-31 | 2021-10-07 | 株式会社デンソー | 提示制御装置、提示制御プログラム、自動走行制御システムおよび自動走行制御プログラム |
KR20220064457A (ko) * | 2020-11-11 | 2022-05-19 | 현대자동차주식회사 | 자율주행 차량의 조종 제어권 전환 제어방법 |
CN112874628A (zh) * | 2021-02-02 | 2021-06-01 | 南京经纬达汽车科技有限公司 | 一种具有失效防护功能的线控冗余转向系统及其控制方法 |
JP2022164333A (ja) * | 2021-04-16 | 2022-10-27 | トヨタ自動車株式会社 | 車両制御システム及び車両制御方法 |
HU231511B1 (hu) * | 2021-07-09 | 2024-05-28 | Aimotive Kft | Kormányzási rendszer autonóm jármű teszt vezetéséhez való használatra, leválasztási eljárás és adatfeldolgozó rendszer, számítógépes programtermék és számítógéppel olvasható tárolóeszköz az eljárás megvalósításához |
CN113415341B (zh) * | 2021-07-20 | 2022-07-22 | 恒大新能源汽车投资控股集团有限公司 | 基于线控转向系统的方向盘静默控制方法和装置 |
CN113954956A (zh) * | 2021-11-19 | 2022-01-21 | 扬州动源车用泵业有限公司 | 一种线控主动四轮转向控制装置及其控制方法与控制模式 |
CN114435466B (zh) * | 2022-01-20 | 2023-09-22 | 河北工程大学 | 一种可实现模式切换的线控转向系统及其控制方法 |
DE102022210528A1 (de) | 2022-10-05 | 2024-04-11 | Volkswagen Aktiengesellschaft | Lenksystem für Kraftfahrzeuge |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003237607A (ja) * | 2002-02-19 | 2003-08-27 | Toyota Motor Corp | 車両の操舵装置 |
JP2009208551A (ja) * | 2008-03-03 | 2009-09-17 | Toyota Motor Corp | 車両の操舵支援装置 |
JP2011235891A (ja) * | 2011-07-14 | 2011-11-24 | Nissan Motor Co Ltd | 車両用操舵制御装置 |
JP2014133531A (ja) * | 2013-01-11 | 2014-07-24 | Nissan Motor Co Ltd | 車両用操舵制御装置及び車両用操舵制御方法 |
JP2015044479A (ja) | 2013-08-28 | 2015-03-12 | Ntn株式会社 | 車両用操舵装置 |
JP2015063244A (ja) * | 2013-09-25 | 2015-04-09 | 日産自動車株式会社 | 車両用運転制御装置及び車両用運転制御方法 |
JP2017165128A (ja) * | 2016-03-14 | 2017-09-21 | 株式会社デンソー | 運転支援装置 |
JP2017222356A (ja) * | 2014-12-02 | 2017-12-21 | 日本精工株式会社 | 電動パワーステアリング装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6363305B1 (en) * | 1999-09-17 | 2002-03-26 | Delphi Technologies, Inc. | Steer-by-wire system |
US7004279B2 (en) * | 2003-08-28 | 2006-02-28 | Nissan Motor Co., Ltd. | Vehicle steering system |
JP4349309B2 (ja) * | 2004-09-27 | 2009-10-21 | 日産自動車株式会社 | 車両用操舵制御装置 |
US7664584B2 (en) * | 2005-03-01 | 2010-02-16 | Nissan Motor Co., Ltd. | Steering control system |
JP4839793B2 (ja) * | 2005-11-19 | 2011-12-21 | 日産自動車株式会社 | 車両用操舵制御装置 |
JP4420036B2 (ja) * | 2007-02-05 | 2010-02-24 | 日産自動車株式会社 | 車両用操舵制御装置 |
JP6108974B2 (ja) * | 2013-06-14 | 2017-04-05 | 日立オートモティブシステムズ株式会社 | 車両制御システム |
JP2018020743A (ja) | 2016-08-05 | 2018-02-08 | 株式会社ジェイテクト | 車両用操舵装置 |
US10358162B2 (en) * | 2016-10-03 | 2019-07-23 | Jtekt Corporation | Steering control device |
CN106945719A (zh) | 2017-01-16 | 2017-07-14 | 南京航空航天大学 | 一种复合转向系统及其模式切换方法 |
CN107512305B (zh) | 2017-08-08 | 2019-08-27 | 南京汽车集团有限公司 | 线控转向系统及其稳定性控制方法 |
-
2018
- 2018-03-06 CN CN201880090686.4A patent/CN111801267B/zh active Active
- 2018-03-06 WO PCT/JP2018/008437 patent/WO2019171447A1/ja unknown
- 2018-03-06 EP EP18908429.6A patent/EP3763603B1/en active Active
- 2018-03-06 JP JP2020504508A patent/JP6729838B2/ja active Active
- 2018-03-06 US US16/971,714 patent/US11066096B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003237607A (ja) * | 2002-02-19 | 2003-08-27 | Toyota Motor Corp | 車両の操舵装置 |
JP2009208551A (ja) * | 2008-03-03 | 2009-09-17 | Toyota Motor Corp | 車両の操舵支援装置 |
JP2011235891A (ja) * | 2011-07-14 | 2011-11-24 | Nissan Motor Co Ltd | 車両用操舵制御装置 |
JP2014133531A (ja) * | 2013-01-11 | 2014-07-24 | Nissan Motor Co Ltd | 車両用操舵制御装置及び車両用操舵制御方法 |
JP2015044479A (ja) | 2013-08-28 | 2015-03-12 | Ntn株式会社 | 車両用操舵装置 |
JP2015063244A (ja) * | 2013-09-25 | 2015-04-09 | 日産自動車株式会社 | 車両用運転制御装置及び車両用運転制御方法 |
JP2017222356A (ja) * | 2014-12-02 | 2017-12-21 | 日本精工株式会社 | 電動パワーステアリング装置 |
JP2017165128A (ja) * | 2016-03-14 | 2017-09-21 | 株式会社デンソー | 運転支援装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3763603A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210001922A1 (en) * | 2019-07-05 | 2021-01-07 | Subaru Corporation | Vehicle steering assist device |
US11498618B2 (en) * | 2019-07-05 | 2022-11-15 | Subaru Corporation | Vehicle steering assist device |
CN114190086A (zh) * | 2020-07-13 | 2022-03-15 | 日本精工株式会社 | 手放开检测装置以及操舵装置 |
CN114190086B (zh) * | 2020-07-13 | 2023-12-22 | 日本精工株式会社 | 手放开检测装置以及操舵装置 |
JP2022150431A (ja) * | 2021-03-26 | 2022-10-07 | 本田技研工業株式会社 | 自動運転車両の操舵装置及びこれを備えた自動運転車両 |
JP2022150401A (ja) * | 2021-03-26 | 2022-10-07 | 本田技研工業株式会社 | 自動運転車両の操舵装置 |
JP7181959B2 (ja) | 2021-03-26 | 2022-12-01 | 本田技研工業株式会社 | 自動運転車両の操舵装置 |
JP7184949B2 (ja) | 2021-03-26 | 2022-12-06 | 本田技研工業株式会社 | 自動運転車両の操舵装置及びこれを備えた自動運転車両 |
JP7039747B1 (ja) * | 2021-04-23 | 2022-03-22 | ナブテスコ株式会社 | コラムアシスト式操舵装置、操舵ユニット、補助力演算方法、およびプログラム |
US11807314B2 (en) | 2021-04-23 | 2023-11-07 | Nabtesco Corporation | Steering device and steering unit device |
CN113525508A (zh) * | 2021-07-23 | 2021-10-22 | 深圳华一精品科技有限公司 | 一种方向盘的控制方法、控制系统、车辆、计算机设备及计算机可读存储介质 |
CN113525508B (zh) * | 2021-07-23 | 2022-04-15 | 深圳华一精品科技有限公司 | 一种方向盘的控制方法、控制系统、车辆、计算机设备及计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20200391790A1 (en) | 2020-12-17 |
EP3763603B1 (en) | 2022-04-13 |
JP6729838B2 (ja) | 2020-07-29 |
JPWO2019171447A1 (ja) | 2020-07-02 |
EP3763603A1 (en) | 2021-01-13 |
US11066096B2 (en) | 2021-07-20 |
CN111801267A (zh) | 2020-10-20 |
EP3763603A4 (en) | 2021-03-17 |
CN111801267B (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019171447A1 (ja) | 車両のステアリング制御方法および車両のステアリング制御装置 | |
CN107848573B (zh) | 动力转向装置的控制装置以及动力转向装置 | |
JP5135722B2 (ja) | 車両用操舵装置 | |
JP5494176B2 (ja) | 車両用操舵装置 | |
EP2772413B1 (en) | Electric power steering apparatus | |
JP4997478B2 (ja) | 車両用操舵装置 | |
WO2014054253A1 (ja) | 車両用操舵制御装置及び車両用操舵制御方法 | |
JP2014133521A (ja) | 車両用操舵制御装置及び車両用操舵制御方法 | |
JP2007137294A (ja) | 車両用操舵制御装置 | |
JP5983017B2 (ja) | 車両の操舵制御装置 | |
JP6996350B2 (ja) | 車両のステアリング制御方法および車両のステアリング制御装置 | |
JP5310088B2 (ja) | 車両用操舵装置、車両用操舵方法、車両用操舵装置付き車両 | |
JP7307000B2 (ja) | 操舵制御装置 | |
KR20130012371A (ko) | 차량의 차륜 정렬 제어방법 | |
JP2017013636A (ja) | 自動操舵装置 | |
JP5546431B2 (ja) | 電動パワーステアリング装置 | |
JP3884238B2 (ja) | 電動パワーステアリング装置 | |
JP6153438B2 (ja) | 車両用操舵装置および操舵輪の自励振動検知方法 | |
JP4978347B2 (ja) | 車両用操舵装置 | |
JP4635648B2 (ja) | 車両用操舵装置 | |
JP4997533B2 (ja) | 車両制御装置 | |
JP4595557B2 (ja) | 車両用操舵装置 | |
JP2016094160A (ja) | 自動運転装置 | |
JP2007296977A (ja) | 車両用走行制御装置 | |
JP2007020354A (ja) | 車両用操舵装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18908429 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020504508 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018908429 Country of ref document: EP Effective date: 20201006 |