WO2019157669A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019157669A1
WO2019157669A1 PCT/CN2018/076761 CN2018076761W WO2019157669A1 WO 2019157669 A1 WO2019157669 A1 WO 2019157669A1 CN 2018076761 W CN2018076761 W CN 2018076761W WO 2019157669 A1 WO2019157669 A1 WO 2019157669A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
information
field
nack
ack
Prior art date
Application number
PCT/CN2018/076761
Other languages
English (en)
French (fr)
Inventor
苏立焱
李超君
夏金环
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18906130.2A priority Critical patent/EP3745629B1/en
Priority to PCT/CN2018/076761 priority patent/WO2019157669A1/zh
Priority to CN201880089063.5A priority patent/CN111699645B/zh
Publication of WO2019157669A1 publication Critical patent/WO2019157669A1/zh
Priority to US16/988,963 priority patent/US20210007126A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the transmission of services in a long term evolution (LTE) communication system is based on base station scheduling, wherein the basic unit of scheduling is generally one subframe, and the duration is 1 ms; or, the basic unit of scheduling may be called a transmission time. Transmission time interval (TTI).
  • TTI Transmission time interval
  • URLLC ultra reliable & low latency communications
  • a shorter time scheduling unit that is, a short transmission time interval (sTTI)
  • the sTTI includes multiple time lengths, where the shortest is 2 or 3 time domain symbols, and the time domain symbols herein may be orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the process starts in sTTI#0, and at least sTTI#8 or sTTI#12 can perform HARQ-based retransmission, so the UE can go to sTTI#12 or sTTI#16 to complete TB demodulation, so even According to the timing calculation of n+4, the HARQ-based retransmission also takes at least 2 ms. It can be seen that even if scheduling is performed in units of sTTI, the low latency requirement of URLLC cannot be satisfied.
  • the embodiment of the present application discloses a communication method and device, which can effectively meet the low latency requirement of the URLLC.
  • a first aspect of the embodiments of the present application provides a communication method, including: receiving downlink control information DCI, where the DCI is used to schedule a transport block TB to be transmitted on a downlink channel; wherein, if the DCI satisfies a first condition, The acknowledgement ACK or the negative acknowledgement NACK is not fed back, the ACK is used to indicate that the TB has been correctly received, and the NACK is used to indicate that the TB is not correctly received.
  • the ACK or the NACK may not be fed back, so that the interaction time between the devices may be reduced, thereby ensuring the completion of the service transmission within 1 ms and satisfying the low latency of the URLLC. Claim.
  • the first condition includes:
  • the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and the value of the format identifier field in the DCI is equal to The third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a first field, where the first field is used to indicate the number of times the TB is repeatedly transmitted.
  • the DCI includes a second field, where the second field is used to indicate whether the TB is repeatedly transmitted in a next time unit; or the DCI includes a third field, where the The three fields are used to indicate the sequence number in which the TB is repeatedly transmitted.
  • the DCI includes resource allocation information, modulation and coding mode MCS information, and cyclic redundancy check CRC information, and does not include information related to feeding back the ACK or the NACK.
  • the information related to feeding back the ACK or the NACK includes: hybrid automatic repeat request HARQ process number information, ACK or NACK resource indication ARI information, and downlink allocation indication DAI information.
  • the second aspect of the embodiment of the present application further provides a communication method, including:
  • DCI Downlink control information
  • the DCI is used to schedule the transport block TB to transmit on the downlink channel; and the DCI is sent to the user equipment; wherein, if the DCI satisfies the first condition, the DCI indicates the The user equipment does not feed back a positive acknowledgement ACK or a negative acknowledgement NACK, the ACK is used to indicate that the TB has been correctly received, and the NACK is used to indicate that the TB is not correctly received.
  • the first condition includes: a load size of the DCI is equal to a first value; or a load size of the DCI is less than a first threshold; or a load size of the DCI is equal to a first And a value of the format identifier field in the DCI is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a first field, where the first field is used to indicate an indication field that the TB is repeated.
  • the DCI includes a second field, where the second field is used to indicate whether the TB is repeatedly transmitted in a next time unit; or the DCI includes a third field, where The third field is used to indicate the sequence number of the TB to be repeatedly transmitted.
  • the DCI includes resource allocation information, modulation and coding mode MCS information, and cyclic redundancy check CRC information, and does not include information related to feeding back the ACK or NACK.
  • the information related to feeding back the ACK or NACK includes: hybrid automatic repeat request HARQ process number information, ACK or NACK resource indication ARI information, and downlink allocation indication DAI information.
  • the user equipment can be instructed not to feed back ACK or NACK, so that the interaction time between the devices can be reduced, thereby ensuring the completion of the service transmission within 1 ms and satisfying the low time of the URLLC. Delay request.
  • a third aspect of the present application provides a communication apparatus, including:
  • a receiving unit configured to receive downlink control information DCI, where the DCI is used to schedule a transport block TB to be transmitted on a downlink channel;
  • the acknowledgement ACK or the negative acknowledgement NACK is not fed back, the ACK is used to indicate that the TB has been correctly received, and the NACK is used to indicate that the TB is not correctly received.
  • the fourth aspect of the present application further provides a communication device, including:
  • a generating unit configured to generate downlink control information DCI, where the DCI is used to schedule a transport block TB to be transmitted on a downlink channel;
  • a sending unit configured to send the DCI to the user equipment, where the DCI indicates that the user equipment does not feed back a positive acknowledgement ACK or a negative acknowledgement NACK if the DCI satisfies the first condition; Instructing that the TB has been correctly received, the NACK is used to indicate that the TB is not correctly received.
  • the fifth aspect of the present application further provides a communication method, including:
  • the DCI is used for uplink grant; determining content of the DCI, where the DCI satisfies a second condition, the DCI includes information indicating non-periodic channel state information CSI transmission, or The DCI includes information indicating that the uplink semi-persistent scheduling SPS is activated or deactivated.
  • the second condition includes: a load size of the DCI is equal to a first value; or a load size of the DCI is less than a first threshold; or a load size of the DCI is equal to a first And a value of the format identifier field in the DCI is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation.
  • the DCI includes a fifth field, where the fifth field indicates that the uplink SPS is activated or deactivated, the fifth field is used to indicate a modulation and coding mode MCS; Where the fourth field indicates the aperiodic CSI transmission, the fifth field is used to indicate a CSI request.
  • the DCI includes a sixth field, where the sixth field is a virtual cyclic redundancy check CRC, and when the DCI is used to activate an uplink SPS, the virtual CRC is set to a predefined a third bit sequence; when the DCI is used to deactivate the uplink SPS, the virtual CRC is set to a predefined fourth bit sequence.
  • the sixth field is a virtual cyclic redundancy check CRC
  • the DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information.
  • the sixth aspect of the present application further provides a communication method, including:
  • DCI Downlink control information
  • the DCI is used for uplink grant; wherein the DCI satisfies a second condition, and the DCI includes information indicating a non-periodic channel state information CSI transmission, or the DCI includes an uplink semi-static indication Scheduling SPS activation or deactivation information; sending the DCI to the user equipment.
  • the second condition includes: a load size of the DCI is equal to a first value; or a load size of the DCI is less than a first threshold; or a load size of the DCI is equal to a first And a value of the format identifier field in the DCI is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation.
  • the DCI includes a fifth field, where the fifth field indicates that the uplink SPS is activated or deactivated, the fifth field is used to indicate a modulation and coding mode MCS; Where the fourth field indicates the aperiodic CSI transmission, the fifth field is used to indicate a CSI request.
  • the DCI includes a sixth field, where the sixth field is a virtual cyclic redundancy check CRC, and when the DCI is used to activate an uplink SPS, the virtual CRC is set to a predefined a third bit sequence; when the DCI is used to deactivate the uplink SPS, the virtual CRC is set to a predefined fourth bit sequence.
  • the sixth field is a virtual cyclic redundancy check CRC
  • the DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information.
  • a seventh aspect of the present application provides a communication apparatus, including:
  • a receiving unit configured to receive downlink control information DCI, where the DCI is used for uplink authorization;
  • a determining unit configured to determine content of the DCI, where the DCI satisfies a second condition, the DCI includes information indicating a non-periodic channel state information CSI transmission, or the DCI includes an uplink semi-persistent scheduling SPS activation Or deactivate the information.
  • the second condition includes: a load size of the DCI is equal to a first value; or a load size of the DCI is less than a first threshold; or a load size of the DCI is equal to a first And a value of the format identifier field in the DCI is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation.
  • the DCI includes a fifth field, where the fifth field indicates that the uplink SPS is activated or deactivated, the fifth field is used to indicate a modulation and coding mode MCS; Where the fourth field indicates the aperiodic CSI transmission, the fifth field is used to indicate a CSI request.
  • the DCI includes a sixth field, where the sixth field is a virtual cyclic redundancy check CRC, and when the DCI is used to activate an uplink SPS, the virtual CRC is set to a predefined a third bit sequence; when the DCI is used to deactivate the uplink SPS, the virtual CRC is set to a predefined fourth bit sequence.
  • the sixth field is a virtual cyclic redundancy check CRC
  • the DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information.
  • the eighth aspect of the present application further provides a communication apparatus, including:
  • a generating unit configured to generate downlink control information DCI, where the DCI is used for uplink authorization, where the DCI satisfies a second condition, and the DCI includes information indicating a non-periodic channel state information CSI transmission, or the DCI Including information indicating that the uplink semi-persistent scheduling SPS is activated or deactivated;
  • a sending unit configured to send the DCI to the user equipment.
  • the second condition includes: a load size of the DCI is equal to a first value; or a load size of the DCI is less than a first threshold; or a load size of the DCI is equal to a first And a value of the format identifier field in the DCI is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation.
  • the DCI includes a fifth field, where the fifth field indicates that the uplink SPS is activated or deactivated, the fifth field is used to indicate a modulation and coding mode MCS; Where the fourth field indicates the aperiodic CSI transmission, the fifth field is used to indicate a CSI request.
  • the DCI includes a sixth field, where the sixth field is a virtual cyclic redundancy check CRC, and when the DCI is used to activate an uplink SPS, the virtual CRC is set to a predefined a third bit sequence; when the DCI is used to deactivate the uplink SPS, the virtual CRC is set to a predefined fourth bit sequence.
  • the sixth field is a virtual cyclic redundancy check CRC
  • the DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information.
  • the ninth aspect of the present application further provides a communication apparatus, which can implement the communication method of the first aspect or the fifth aspect.
  • the communication device may be a chip such as a baseband chip, or a communication chip or the like; or the communication device may be a device such as a terminal device or the like.
  • the communication device can implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the communication device includes: a processor, a memory; the memory for storing a program; the processor, a program for executing the memory storage, when the program is executed
  • the communication device can be implemented to implement the communication method provided by the above embodiments.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the communication device may also include only the processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the receiving unit may be an input unit, such as an input circuit or an input communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver).
  • the communication device in the embodiment shown in the present application is a terminal device or a user device, but should not be construed as limiting the embodiments of the present application.
  • the tenth aspect of the present application further provides a communication apparatus, which can implement the communication method of the second aspect or the sixth aspect.
  • the communication device may be a chip such as a baseband chip, or a communication chip or the like; or the communication device may be a device such as a network device, a baseband single board, or the like.
  • the communication device can implement the above method by software, hardware, or by executing corresponding software by hardware.
  • the communication device when part or all of the foregoing communication methods are implemented by software, the communication device includes: a processor, a memory; the memory is configured to store a program; and the processor is configured to: The program stored in the memory is executed, and when the program is executed, the communication device can implement the communication method provided by the above embodiment.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the communication device may also include only the processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the sending unit may be an output unit, such as an output circuit or a communication interface.
  • the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • the communication device in the embodiment shown in the present application is a network device, but should not be construed as limiting the embodiments of the present application.
  • An eleventh aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a twelfth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • 1 is a timing diagram of feedback ACK or NACK provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of time-frequency resources provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a HARQ mechanism provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of downlink transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a relationship between a subframe in an uplink transmission and an sTTI according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a relationship between a downlink transmission subframe and an sTTI according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a relationship between a downlink transmission subframe and an sTTI according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a relationship between a downlink transmission subframe and an sTTI according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a transmission manner provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a transmission manner provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a transmission manner provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • 15 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • 16 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • 17 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a transmission manner provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • time-frequency resources are divided into OFDM or single carrier frequency division multiplexing access (SC-FDMA) symbols in the time domain dimension (hereinafter referred to as time domain symbols, abbreviated as symbols).
  • time domain symbols the sub-carrier in the frequency domain dimension, and the smallest resource granularity is called a resource element (RE), that is, a time-frequency symbol representing a time-domain symbol in the time domain and a sub-carrier on the frequency domain.
  • RE resource element
  • FIG. 2 is a schematic structural diagram of a time-frequency resource according to an embodiment of the present disclosure, where an RE is an OFDM symbol in the time domain and a subcarrier in the frequency domain.
  • the transmission of services in the LTE system is based on base station scheduling.
  • the upper layer data packet is scheduled at the physical layer, it is divided into data packets in units of transport blocks (TBs).
  • TBs transport blocks
  • the basic time unit of scheduling is generally one subframe.
  • the duration is 1ms. Since the TTI and the physical meaning of the subframe are substantially the same, the TTI and the subframe are sometimes mixed. Therefore, the subframe and the TTI in the embodiment of the present application can be used interchangeably.
  • a subframe generally includes two time slots, and one time slot generally includes seven time domain symbols.
  • the basic structure of a typical time-frequency resource in an LTE system is a subcarrier spacing of 15 kHz, a time domain symbol duration of about 70 us, and a cyclic prefix duration of about 4 to 6 us, and 14 symbols per 1 ms.
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application, and the solution in the present application is applicable to the communication system.
  • the communication system may include at least one network device (only one shown, such as the base station eNB in the figure) and one or more user equipments connected to the network device (such as UE1 to UE3 in the figure).
  • the network device may be a device that can communicate with the user equipment.
  • the network device can be any device with wireless transceiving capabilities. This includes but is not limited to base stations.
  • the base station may be a base station NodeB, or the base station is an evolved base station eNodeB, or the base station is a base station gNB in a 5G communication system, or the base station is a base station in a future communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, or the like in a wireless fidelity (WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device may also be a wearable device or an in-vehicle device.
  • the network device may also be a small station, a transmission reference point (TRP), or the like.
  • TRP transmission reference point
  • the user equipment is a wireless transceiver function that can be deployed on land, indoors or outdoors, handheld, wearable or on-board; it can also be deployed on the water, such as on ships; it can also be deployed in the air, for example in Aircraft, balloons or satellites.
  • the user equipment can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) user device, augmented reality (AR) user equipment, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transport safety Wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiment of the present application does not limit the application scenario.
  • User equipment may also be referred to as a terminal device, an access user equipment, a mobile station, a mobile station, a remote station, a remote user equipment, a mobile device, a terminal, a wireless communication device, a UE agent, or a UE device.
  • the base station when there is data to be transmitted between the base station and the UE, the base station first transmits downlink control information (DCI) to the UE through the control channel.
  • the control channel here includes a physical downlink control channel (PDCCH) or a short physical downlink control channel (sPDCCH), and the control channel can carry a physical downlink shared channel (PDSCH) or a physical Scheduling information of the TB in the uplink shared channel (PUSCH).
  • the DCI includes resource allocation information of the scheduled TB, modulation coding mode, and control information such as HARQ.
  • the downlink control channel in the application may be a PDCCH or an sPDCCH. The following describes the PDCCH as an example in the present application.
  • control channel element in this application may be the CCE or a short control channel element (sCCE).
  • sCCE short control channel element
  • one PDCCH is transmitted on n consecutive CCEs, where the CCE is a unit of physical resources, and each CCE contains 36 REs.
  • the PDCCH has four formats, which respectively correspond to an aggregation level (AL) ⁇ 1, 2, 4, 8 ⁇ . That is, the AL of the PDCCH carrying the DCI may be any one of AL1, AL2, AL4, or AL8.
  • the base station may determine the AL of the PDCCH according to factors such as channel quality. For example, if the PDCCH is sent to a UE with a better downlink channel quality (for example, a UE located at a cell center), the CPDCCH may be used to transmit the PDCCH; if the PDCCH is sent to a UE with a poor downlink channel quality (for example, The UE located at the edge of the cell may need to use 8 CCEs to transmit the PDCCH to achieve sufficient robustness. However, for the UE, it is not known which CCEs the base station transmits the PDCCH, so the PDCCH needs to be blindly detected.
  • the base station configures a search space (SS), that is, a PDCCH candidate set, by using the high-layer signaling, and the PDCCH candidate set includes a plurality of PDCCH candidates (PDCCH candidates), and the UE selects the DCI format according to the need, Detecting whether a PDCCH transmitted to the UE is carried on each PDCCH candidate in the search space.
  • SS search space
  • the search space of each UE includes 22 PDCCH candidates
  • the PDCCH candidate distributions of different ALs are as shown in Table 1.
  • the base station If the base station receives the ACK fed back by the UE, it starts to construct a new TB, and sends the new TB as soon as possible after k subframes, that is, subframe #n+2k or later; if, instead, the base station Upon receiving the NACK fed back by the UE, the UE may resend the data of the same TB in the HARQ process in the subframe #n+2k or later, and the UE may receive the HARQ process twice before and after. The data in the field is HARQ merged to improve reception performance.
  • LTE uses a stop-and-wait protocol to transmit data, that is, uses multiple parallel stop-and-wait HARQ processes:
  • the base station can use another HARQ process to continue transmitting data.
  • the two processes in which the HARQ process number (HPN) is 1 and 2 are sent in parallel, and the base station sends TB1 to the UE through the HPN1, and the base station also waits for the UE to feed back an ACK or a NACK.
  • the TB2 can be sent to the UE through the HPN2.
  • the base station After the base station receives the feedback message of the TB1, if the feedback result received by the base station is NACK, the base station can resend the TB1 to the UE. That is, each time the base station receives the ACK fed back by the UE, the HARQ process is used to transmit another TB. In order to avoid confusion between TBs transmitted by multiple HARQ processes, the HPI should be included in the DCI every time the DCI is transmitted.
  • FIG. 5 is a schematic flowchart of a downlink transmission according to an embodiment of the present application.
  • the downlink transmission process may be implemented based on the communication system shown in FIG. 3. As shown in FIG. 5, the downlink transmission process at least includes:
  • the base station sends the DCI through the PDCCH, and sends the downlink data to the UE by using the PDSCH, where the DCI carries the time-frequency resource location where the PDSCH is located, the modulation and coding mode, the cyclic redundancy check (CRC), and the feedback ACK or NACK related information and so on.
  • the DCI carries the time-frequency resource location where the PDSCH is located, the modulation and coding mode, the cyclic redundancy check (CRC), and the feedback ACK or NACK related information and so on.
  • CRC cyclic redundancy check
  • the UE After receiving the DCI, the UE blindly detects the DCI according to the search space SS configured in the high layer signaling in each subframe.
  • the CRC sequence can be descrambled by the UE with the scrambling code unique to the UE. If the CRC can be verified, the DCI is sent to the UE. Otherwise, the DCI is not sent to the UE, and the UE can continue to blindly detect the next DCI.
  • the UE After the UE detects the DCI, determine the follow-up behavior according to the DCI format. For example, receiving downlink data, or grouping packets and performing uplink data transmission. Different DCI formats may also indicate different transmission schemes, such as single antenna port transmission, multi-antenna port open loop transmission, multi-antenna port closed loop transmission, and the like.
  • the UE determines a time-frequency resource location (ie, a time-frequency resource of the PDSCH) used by the downlink data transmission according to the resource allocation bit field in the DCI. Then, according to the modulation and coding scheme (MCS) bit field in the DCI and the resource allocation bit field, the transport block size (TBS) of the downlink transmission is confirmed.
  • MCS modulation and coding scheme
  • TBS transport block size
  • Table 2 The table shows the corresponding TBS size under different MCS indexes (I TBS ) and the number of different resource blocks (RBs) allocated.
  • TBS shown in Table 2 is only an example and should not be construed as limiting the embodiments of the present application.
  • the UE demodulates the downlink data according to the TBS calculated in step 503. If the data obtained after demodulation can pass the CRC check, the data decoding is successful, and the data decoding fails.
  • the UE feeds back whether the data is correctly decoded in a predefined timing, that is, feedback ACK or NACK.
  • the UE may determine a time-frequency resource used for feeding back an ACK or a NACK according to the DCI.
  • the base station repeatedly sends downlink data, and indicates, by using the DCI, the downlink data is the same as the downlink data that is transmitted last time.
  • the base station when the base station repeatedly sends downlink data, the following two situations may occur:
  • Case 1 After receiving the ACK or NACK, the base station determines whether to repeatedly send downlink data (or, also referred to as re-transmission), and does not retransmit the downlink data when receiving the ACK; In case, the downlink data is retransmitted;
  • Case 2 The base station repeatedly transmits downlink data (or, also referred to as repeated transmission repetition) before receiving the ACK or NACK.
  • the UE After receiving the downlink data repeatedly sent by the base station, the UE performs combined decoding on the downlink data that is repeatedly sent by the base station.
  • FIG. 5 is only an example of downlink transmission.
  • the steps shown above may be more than the above-described steps. Therefore, the downlink transmission process shown in FIG. 5 should not be construed as having a limited meaning.
  • 5G includes the important technical requirement of URLLC, which is a new type of service introduced in 5G systems. Simply put, this service requires 32-byte (ie, 256-bit) transmission (low latency) in 1 ms, and the probability of success is 99.999% (that is, the error rate is 10 -5 , high reliability); or 32-byte transmission is completed within 10 ms.
  • the research finds that if the base station inherits the transmission mode of the control channel and the data channel in the existing LTE system, it cannot effectively satisfy the high reliability of the URLLC service and the requirement of low delay (for example, 32-byte transmission is completed within 1 ms). Therefore, how to use the technology in the LTE system to achieve the above reliability and delay requirements has become an urgent problem to be solved.
  • FIG. 6 is a schematic diagram showing a relationship between a subframe and an sTTI in uplink scheduling
  • FIG. 7 to FIG. 9 are schematic diagrams showing a relationship between a subframe and an sTTI in downlink scheduling.
  • one subframe ie, 14 OFDM symbols
  • six sTTIs having a length of 2 or 3 symbols.
  • the present application proposes a communication method, which can effectively meet the low latency requirement of the URLLC service on the basis of satisfying the reliability.
  • the communication method in the embodiment of the present application will be described below.
  • FIG. 10 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 10, the communication method includes:
  • the network device generates downlink control information DCI, where the DCI is used to schedule the transport block TB to transmit on the downlink channel.
  • the DCI may also be a DCI scrambled by a cell radio network temporary identifier (C-RNTI).
  • C-RNTI cell radio network temporary identifier
  • the format of the DCI generated by the network device may be a first DCI format, where the first DCI format may be used to represent the DCI as a compact DCI (ie, compact DCI).
  • the first DCI format can be understood as compressing or deleting some information in the DCI of the LTE, so that the load size of the DCI is reduced.
  • the payload size here refers to the payload size.
  • the redundant information herein can refer to the encoded parity bits.
  • the network device generates the DCI, and specifically, the network device generates the DCI according to the first DCI format.
  • first DCI format is only a name, and therefore, the “first” DCI format in the embodiment of the present application should not be construed as limiting the embodiment of the present application.
  • the network device sends the DCI to the user equipment.
  • the user equipment receives the DCI, where the DCI meets the first condition, and the ACK or NACK of the TB scheduled by the DCI does not need to be fed back, or the ACK does not need to be fed back, or the NACK does not need to be fed back.
  • the reason why the NACK does not need to be fed back is that the network device does not have sufficient time to retransmit according to the NACK fed back by the user equipment under the 1 ms delay requirement, so the user equipment does not need to feed back the NACK. Since the network device actively transmits the TB repeatedly, even if the user equipment does not feed back the NACK, the reliable transmission of the TB is not affected. The reason why the ACK does not need to be fed back is that under the 1 ms delay requirement, the network device does not have sufficient time to terminate the repeated transmission according to the ACK fed back by the user equipment, so the user equipment does not need to feed back the ACK.
  • the first condition may be a condition related to whether the user equipment feeds back an ACK or a NACK.
  • the DCI satisfies the first condition, which may be understood as the format of the DCI satisfies the first DCI format.
  • the user equipment may determine, after receiving the DCI, whether the format of the DCI meets the first DCI format. If the format of the DCI meets the first DCI format, the user equipment may not provide feedback. ACK or NACK. Therefore, in a case where the format of the DCI satisfies the first DCI format, the condition of the first DCI format may be a condition satisfied by a payload size such as DCI.
  • the foregoing first condition may include: the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and in the DCI
  • the value of the DCI format identifier field is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the payload size of the DCI can be specifically understood as the number of information bits of the DCI.
  • the foregoing first value, the first threshold value, the second value, and the third value may be configured by higher layer signaling or may be predefined.
  • the foregoing high layer signaling may specifically be radio resource control (RRC) signaling.
  • RRC radio resource control
  • the predefined definition may be specifically defined as that the values are preset in the user equipment, such as the values may be in the user. Make settings when the device is factory set.
  • the first value and the second value may be a bit number
  • the third value is also a bit sequence such as "1", "0", "11", etc., therefore, the embodiment of the present application is for Whether a numerical value, a second numerical value, and a third numerical value are specifically numerical values or sequences are not uniquely defined.
  • the AL threshold may also be configured by higher layer signaling or may be predefined.
  • improving the AL is a method for enhancing the reliability of the PDCCH. Therefore, in the embodiment of the present application, the maximum supported AL can be raised from 8 to 16. Therefore, in the embodiment of the present application, the foregoing AL threshold may be greater than or equal to 8, that is, the network device may use 8 CCEs to transmit the PDCCH carrying the DCI, or the network device may also use the 16 CCEs to send the PDCCH carrying the DCI. It can be understood that the embodiment of the present application does not limit the maximum supportable AL. In the future communication system, the maximum supportable AL may also be 32 or the like.
  • step 1003 after the user equipment needs to determine whether the DCI meets the first condition, the user equipment determines whether the first condition is met, where the user equipment is In the case that the above DCI is detected on the PDCCH whose AL is greater than the AL threshold, the user equipment may determine that the DCI satisfies the first condition. Alternatively, the user equipment may determine whether the first condition or the like is satisfied according to the load size of the DCI. Alternatively, it can be understood that when the user equipment detects the DCI on the PDCCH whose AL is greater than the AL threshold, the user equipment may determine that the DCI satisfies the first condition without continuing to detect the load size of the DCI.
  • the user equipment when the user equipment detects the DCI on the PDCCH whose AL is greater than the AL threshold, the user equipment continues to detect the payload size of the DCI to further confirm whether the DCI satisfies the first condition or the like.
  • the relationship between the condition that the load size of the DCI is satisfied and the condition that the AL of the PDCCH carrying the DCI meets is not uniquely limited.
  • the first condition may further include: for example, explicitly adding, by using a newly added bit field, the ACK/NACK is not fed back in the DCI, that is, adding a 1-bit bit field in the DCI, when the field in the bit field is 1.
  • the UE does not feed back the ACK/NACK; or, through the implicit indication of the format of the DCI, for example, using different scrambling codes to indicate whether the UE feeds back ACK/NACK, if the DCI received by the UE is scrambled using the first scrambling code, the UE does not feedback.
  • ACK/NACK may further include: for example, explicitly adding, by using a newly added bit field, the ACK/NACK is not fed back in the DCI, that is, adding a 1-bit bit field in the DCI, when the field in the bit field is 1.
  • the UE does not feed back the ACK/NACK; or, through the implicit indication of the format of the DCI, for example, using different scrambling codes to indicate whether the
  • the DCI includes not only resource allocation information, MCS information, CRC information, but also information related to feedback ACK or NACK.
  • the user equipment may not feed back an ACK or a NACK, and the foregoing DCI may include resource allocation information, MCS information, and CRC information, and does not include and feed back the ACK.
  • the information related to the feedback ACK or the NACK in the embodiment of the present application may also be referred to as information related to the HARQ process, and the like.
  • the following is an example of information related to feedback ACK or NACK.
  • the resource allocation information may be used to indicate the location of the time-frequency resource where the PDSCH is located, and the user equipment may use the resource allocation information to learn the location of the time-frequency resource where the PDSCH is located, thereby receiving downlink data.
  • the MCS information may be used to indicate a modulation and coding mode
  • the CRC information may be used to indicate that the user equipment checks the received DCI.
  • the foregoing information related to feeding back the ACK or the NACK includes: HARQ process number information, ACK or NACK resource indicator (ARI) information, and downlink assignment indicator (DAI) information.
  • the foregoing information related to the feedback ACK or the NACK may further include a redundancy version (RV) indication information.
  • RV redundancy version
  • the ARI information for indicating the frequency domain resource used for feeding back the HARQ information may not be included in the DCI.
  • the ARI information and the DAI information used to indicate the number of downlink TBs may not be included in the DCI.
  • the DCI process number information may not be included in the DCI.
  • the DCI may also not include the ARI information at the same time, and is used to indicate the initial version of the user equipment and Retransmit the version of the RV information.
  • the DCI may not include the ARI information, the RV indication information, and the HARQ process number information at the same time.
  • the user equipment can learn the number of downlink data that the network device sends to the user equipment according to the DAI information, so that the network device can be notified whether the downlink data is correctly received when the ACK or the NACK is fed back. Therefore, in this embodiment, The DCI may also not include ARI information, RV information, HARQ process number information, and DAI information.
  • the information not included in the DCI may be any combination of the above ARI information, HARQ process number information, and DAI information.
  • the information that is not included in the DCI may be any combination of the above ARI information, the RV indication information, the HARQ process number information, and the DAI information, and the like.
  • the network device may also use the first DCI format to trigger downlink semi-persistent scheduling (SPS) transmission, and the network device informs the user equipment in a predefined manner that the first DCI meets one of the following conditions or The plurality of times, the first DCI is used to activate the SPS;
  • SPS downlink semi-persistent scheduling
  • the CRC check bit of the PDCCH carrying the DCI is scrambled using the SPS C-RNTI;
  • All or part of the first DCI except for the uplink and downlink distinguishing indication information, the resource allocation information, and the MCS information is set as a predefined first bit sequence, for example, all zeros.
  • the network device informs the user equipment in a predefined manner that the first DCI is used to release the SPS when the first DCI satisfies one or more of the following conditions;
  • the CRC check bit of the PDCCH carrying the DCI is scrambled using the SPS C-RNTI;
  • All or part of the information other than the uplink and downlink distinguishing indication information and the resource allocation information in the first DCI is set as a predefined second bit sequence, for example, all of 1.
  • FIG. 10 illustrates the format of the DCI in the case where the user equipment does not feed back ACK or NACK.
  • the following describes in detail how the network device transmits the TB to the user equipment.
  • a method of transmitting a TB by a network device will be described below with reference to FIGS. 11 through 13. It can be understood that FIG. 11 to FIG. 13 are exemplified by taking the time unit as an sTTI. In a specific implementation, other time units such as a subframe or a time slot may be used, or other smaller times may be used.
  • the following are only examples, and are not to be construed as limiting the embodiments of the present application.
  • the network device can schedule most resources or even all resources in one sTTI to one user equipment (set to UE1) for transmitting TB to the user equipment through one sTTI.
  • Transmission mode 1 improves the reliability of data transmission by increasing the frequency domain resources of data transmission.
  • the network device transmits a TB to the user equipment by using multiple sTTIs, and the same TB is transmitted in each sTTI in the multiple sTTIs, and the TBs in the multiple sTTIs are scheduled by the same DCI, and different The TBs in the sTTI have the same frequency domain resources within different sTITs.
  • the user equipment After receiving all TBs, the user equipment performs merge decoding.
  • the network device transmits TB to the user equipment through multiple sTTIs, and the same TB is transmitted in each sTTI in the multiple sTTIs, and the TBs in each sTTI are scheduled by respective independent DCIs.
  • DCI is transmitted in both sTTI0 and sTTI1.
  • the user equipment After receiving all TBs, the user equipment performs merge decoding.
  • Both transmission mode 2 and transmission mode 3 increase the reliability of data transmission by increasing the time domain resources of data transmission. Compared with the second transmission mode, each transmission sTTI has a corresponding DCI independent scheduling, so the resource allocation flexibility is higher, and the reliability of the corresponding data transmission is also higher.
  • the control signaling overhead of the transmission mode 3 is greater than that of the transmission mode 2.
  • the embodiment of the present application further provides a communication method
  • FIG. 14 is an embodiment of the present application.
  • a schematic flowchart of a communication method is provided, as shown in FIG. 14, the communication method includes at least:
  • the network device generates a DCI, where the DCI is used to schedule a TB to transmit on a downlink channel.
  • the network device sends the DCI to the user equipment.
  • the foregoing network device transmits the TB by using resources in at least two time units.
  • the TB of the resource transmission in the at least two time units is scheduled by one DCI, where the DCI includes a first field, and the first field is used by The number of times the TB is repeatedly transmitted is indicated.
  • the network device when the network device transmits the TB according to the transmission mode shown in FIG. 12, the network device can effectively indicate the user equipment by adding the first field in the DCI, and the network device repeatedly transmits the TB several times. In turn, the user equipment can combine and decode all the received data after receiving the data repeatedly transmitted repeatedly.
  • the first field may be included in the DCI generated by the network device, thereby indicating that the user equipment transmits the TB only once. Therefore, in the specific implementation, the embodiments of the present application are not limited to the above three implementation manners.
  • FIG. 15 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method includes at least:
  • the network device generates a DCI, where the DCI is used to schedule a TB to transmit on a downlink channel.
  • the network device sends the DCI to the user equipment.
  • the network device transmits the TB by using resources in at least two time units, where the TB is scheduled by DCI corresponding to each time unit in the at least two time units; the DCI includes a second field, and the second The field is used to indicate whether the TB is repeatedly transmitted in the next time unit; or the DCI includes a third field, and the third field is used to indicate the sequence number of the TB being repeatedly transmitted.
  • the frequency domain resources in each time unit may be different each time the network device transmits the TB. Therefore, in this case, the network device needs to indicate the time-frequency resource location of the TB for the user equipment by using the DCI.
  • the TB in each time unit is scheduled by the DCI in each time unit.
  • the DCI may include a second field indicating, by the second field, whether the user equipment transmits the TB in the next minimum transmission time unit, or The DCI may also include a third field, by which the user equipment knows that the received TB is the first transmission.
  • FIG. 16 is a schematic flowchart of a communication method according to an embodiment of the present disclosure, where the network device transmits TB through at least two time units, the TBs in the at least two time units are the same, and the TB is determined by a DCI.
  • the communication method includes at least:
  • the network device generates a DCI, where the DCI is used to schedule a TB to transmit on a downlink channel, where the DCI is a DCI that satisfies the first condition.
  • the first condition is the same as that in the communication method shown in FIG. 10, and will not be described in detail herein.
  • the DCI includes a first field, where the first field is used to indicate the number of times the TB is repeatedly transmitted; or, in a case where the DCI does not include the first field, the number of times the TB is repeatedly transmitted is not
  • the number of times threshold is exceeded, wherein the number of times threshold is configured by higher layer signaling or is predefined.
  • the threshold of the number of times may be 3.
  • the foregoing DCI may include resource allocation information, MCS information, and CRC information, and does not include information related to feedback ACK or NACK.
  • the specific implementation manner is referred to FIG. 10 and will not be described in detail herein.
  • the network device sends the DCI to the user equipment.
  • the user equipment receives the DCI, and determines whether the DCI meets the first condition. If the DCI meets the first condition, the ACK or the NACK is not fed back.
  • step 1603 can be referred to the implementation manner shown in FIG. 10, and details are not described herein.
  • the network device sends the TB to the user equipment by using resources in at least two time units.
  • the resources in the at least two time units are all data of the TB, and the at least two time units are The data transmission is all scheduled by the same DCI.
  • the user equipment After receiving the TB, the user equipment performs combined decoding on the TB according to the DCI.
  • the user equipment may perform combined decoding on the TB after receiving all the TBs.
  • FIG. 18 is a transmission mode provided by the embodiment of the present application, in which the network device may not indicate to the user equipment that the DCI is repeatedly transmitted. frequency.
  • the network device (such as gNB in the figure) sends TB to the user equipment (such as UE1 in the figure) through sTTI1 and sTTI2, respectively.
  • UE1 may first allocate resources according to resource allocation (RA) in the DCI.
  • RA resource allocation
  • MCS decode the TB on sTTI1, if the decoding is correct, the decoding ends.
  • the UE1 waits for the TB transmitted in the next time unit (such as sTTI2), and combines the TB on the sTTI2 with the TB on the sTTI1. If the merge decoding is correct, the decoding ends. Otherwise, the UE1 continues to receive the TB transmitted in the next time unit. Alternatively, the UE1 stops performing merge decoding until the number of times threshold is reached. As shown in FIG. 17, since the network device transmits the TB of the UE2 on the next sTTI, when the user equipment decodes for the third time, it is inevitably erroneous because the data of other UEs is mixed. Compared with the manner in which the first field is included in the DCI, the manner of not including the first field in FIG. 18 does not increase the probability of decoding errors of the user equipment, but the DCI load size is smaller, and the DCI transmission is improved. Reliability.
  • FIG. 17 is a schematic flowchart of a communication method according to an embodiment of the present disclosure, where the network device transmits data of the same TB through at least two time units in the network device, and the data of the TB in each time unit is The DCI is scheduled independently in time units.
  • the communication method includes at least:
  • the network device generates a DCI, where the DCI is used to schedule a TB to transmit on a downlink channel, where the DCI is a DCI that satisfies a first condition, where the DCI includes a second field, and the second field is used to indicate the next one. Whether the TB is repeatedly transmitted in the time unit; or the third field is included in the DCI, and the third field is used to indicate the serial number of the TB being repeatedly transmitted.
  • the network device sends the DCI to the user equipment.
  • the user equipment receives the DCI, and determines whether the DCI meets the first condition. If the DCI satisfies the first condition, the ACK is not fed back, and the ACK is used to indicate that the TB is correctly decoded. NACK is used to indicate that the above TB is not correctly decoded.
  • the network device sends the TB to the user equipment by using resources in at least two time units.
  • the resources in the at least two time units are all transmitted by the TB, and the TB is determined by DCI in each time unit. Scheduling.
  • the user equipment After receiving the TB, the user equipment performs combined decoding on the TB according to the DCI.
  • the indication field of the second field is 1-bit information, indicating whether the TB is repeatedly transmitted in the next sTTI.
  • the indication field in the DCI of sTTI1 is 1, indicating that TB is repeatedly transmitted in sTTI2.
  • the indication field in the DCI of sTTI2 is 0, which means that there is no repeated transmission of TB in sTTI3. Then, the user equipment receives the TB on sTTI1, and after receiving the TB on sTTI2, it can merge and decode.
  • the third field indicates that the TB is repeatedly transmitted several times.
  • the DCI on the sTTI1 indicates that the TB is the first transmission
  • the DCI on the sTT2 indicates that the TB is the second transmission
  • the DCI is not detected on the sTTI3
  • the third field in the DCI is detected to indicate the first time.
  • the transmission indicates that the TB on sTTI3 is different from the TB on sTTI1 and sTTI2, and the user equipment can combine and decode the TBs on sTTI1 and sTTI2.
  • the third field may also be referred to as a sequence number indicating that the DCI is repeatedly transmitted, that is, an indication.
  • the DCI is the first repeated transmission.
  • the communication method shown in FIG. 17 is compared with FIG. 16, assuming that UE1 has occupied most of the resources in sTTI1, and the remaining resources are too small, so that UE1 transmits even if the communication method shown in FIG. 16 is used, scheduling 3 The remaining resources of sTTI1 are not able to meet the reliability requirements. At this time, the communication method shown in FIG. 17 is used for transmission, which can effectively avoid waste of resources.
  • the network device can not only indicate whether the user equipment feeds back ACK or NACK through the DCI, but also reduces the delay of the transmission, and can effectively ensure the reliability of the transmission in the case of multi-time unit scheduling. Meets the 1ms latency requirement and reliability requirements of URLLC. And because the user equipment does not need to feed back ACK or NACK, the network device does not receive the ACK or NACK, and thus there is no repeated transmission of data according to the ACK or NACK fed back by the user equipment, thereby avoiding other data when repeatedly transmitting data. User-induced interference.
  • the terminal device determines, according to the high layer signaling, the search space SS and the DCI format that needs to be detected on each PDCCH candidate.
  • the aggregation level of the PDCCH candidate included in the SS is included in the set ⁇ 1, 2, 4, 8, 16 ⁇ , and the network device indicates, by using the high layer signaling, the PDCCH candidate of each aggregation level to the terminal device, And which resources (CCE) are located.
  • CCE resources
  • the number of PDCCH candidates of different ALs included in the foregoing SS is as shown in Table 3.
  • the network device indicates, by using the high layer signaling, that the terminal device detects the first DCI format when the AL is greater than or equal to M, and detects other DCI formats when the AL is less than or equal to N, where M is greater than or equal to N.
  • the terminal device detects the first DCI format when the AL is greater than or equal to M, and detects other DCI formats when the AL is less than or equal to N, where M is greater than or equal to N.
  • the terminal device may not directly determine whether the DCI is the first DCI format, and thus the terminal device may It also needs to be determined according to the format of the DCI, such as determining the size of the load according to the DCI, and the like.
  • the terminal device performs blind detection on the DCI. If the format of the blindly detected DCI is the first DCI format, the terminal device does not feed back ACK or NACK.
  • the terminal device may also determine that the data corresponding to the DCI is a 1 ms URLLC service, otherwise corresponding to other services.
  • the terminal device may feed back an ACK or a NACK to the network device.
  • the first DCI format includes a resource allocation, an MCS bit field, and a CRC check bit; and does not include a HARQ related bit field, such as a HARQ process ID, a redundancy version indication, a downlink allocation indication DAI, and an ACK or NACK resource indication.
  • a HARQ related bit field such as a HARQ process ID, a redundancy version indication, a downlink allocation indication DAI, and an ACK or NACK resource indication.
  • the DCI of the first DCI format may include at least the following information:
  • Up and down distinguishing indication information (1 bit); can be used to distinguish whether the DCI is used for uplink scheduling or downlink scheduling.
  • Resource allocation information (4 to 9 bits); can be used to indicate the location of the time-frequency resource where the data received by the terminal device is located.
  • MCS bit field (up to 5 bits); can be used to indicate the modulation and coding mode of the terminal device.
  • DM-RS position indication information (0 to 1 bit, depending on the high layer signaling configuration);
  • precoding information (with or without, the size depends on the high-level signaling configuration, up to 6bits);
  • g used/unused sPDCCH resource indication (with or without, the size depends on the high-level signaling configuration, up to 2 bits);
  • the DCI of the first DCI format can occupy 26 to 42 bits.
  • the information included in the DCI of the first DCI format in the embodiment of the present application is only an example. In a specific implementation, the information shown above may not be used, and therefore the foregoing first DCI format should not be used.
  • the DCI is understood to be a limitation on the embodiments of the present application.
  • the terminal device receives and demodulates the downlink data according to the indication of the DCI.
  • the downlink data may be downlink data of a single transmission as shown in FIG. 11, or may be a DCI as shown in FIG. 12, and downlink data repeatedly transmitted may also be multiple DCIs as shown in FIG. And repeat the transmitted downlink data.
  • the specific embodiment of the present application is not limited.
  • the terminal device determines whether the downlink data is correctly received. In the case where the format of the DCI is the first DCI format, the terminal device does not feed back ACK/NACK information. In the case where the format of the DCI is other DCI formats, the terminal device needs to feed back ACK/NACK information. In the present application, the terminal device identifies whether the ACK/NACK should be fed back through the DCI format, thereby avoiding transmitting the PUCCH when unnecessary, causing interference to other terminal devices.
  • FIG. 19 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 19, the communication method includes at least the following steps.
  • the network device generates a DCI, where the DCI is used for uplink authorization, and the DCI meets a second condition, where the DCI includes information indicating an aperiodic CSI transmission, or the DCI includes information indicating an uplink SPS activation or deactivation.
  • the DCI can be used to schedule uplink transmissions, but does not include scheduling uplink data transmission. Therefore, in the embodiment of the present application, the uplink authorization specifically refers to the channel state information (CSI) transmission through the DCI, or the uplink authorization specifically refers to the uplink SPS activation or deactivation through the DCI.
  • CSI channel state information
  • the format of the DCI generated by the network device may be a second DCI format, where the second DCI format may be used to represent the DCI as a compact DCI. Therefore, the network device generates the DCI, and specifically, the network device generates the DCI according to the second DCI format.
  • the DCI satisfies the second condition. Specifically, it can be understood that the format of the DCI satisfies the second DCI format.
  • the foregoing second condition includes: the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and the format identifier in the DCI is The value of the field is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the related implementation manner of the DCI load size can also refer to the communication method shown in FIG. 10, which will not be described in detail herein.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation. It can be understood that the fourth field may be specifically used to distinguish the DCI for indicating aperiodic CSI transmission or for indicating uplink SPS activation or deactivation.
  • the DCI includes a fifth field, where the fifth field is used to indicate the uplink SPS activation or deactivation, the fifth field is used to indicate a modulation and coding mode MCS, and the fourth field is used to indicate the aperiodic CSI.
  • the fifth field above is used to indicate a CSI request. It can be understood that in the case where the fourth field indicates aperiodic CSI transmission, the fifth field indicates whether the user equipment is to transmit the content included in the aperiodic CSI, the CSI, and whether the CSI is in the form of a broadband or a narrowband.
  • the content included in the CSI is, for example, a precoding matrix indication (PMI), a rank indication (RI), and a channel quality indicator (CQI).
  • PMI precoding matrix indication
  • RI rank indication
  • CQI channel quality indicator
  • Broadband means that all bandwidths only feed back an average CSI (such as PMI, RI, and CQI).
  • Narrowband means that one CSI is fed back every N RBs, where the value of N is predefined.
  • the DCI includes a sixth field, where the sixth field is a virtual cyclic redundancy check CRC.
  • the virtual CRC is set to a predefined third bit sequence; when the DCI is used.
  • the virtual CRC described above is set to a predefined fourth bit sequence.
  • the third bit sequence may be all 0 sequences, and the fourth bit sequence may all be 1 sequence.
  • the virtual CRC described above is a predefined bit sequence added by the network device in the DCI, and its function is similar to the CRC. Specifically, after the user equipment receives the DCI and determines, by using the scrambling code, that the DCI is sent by the network device to the user, it is also required to verify whether the virtual CRC in the DCI is a predefined sequence. If the sequence is a predefined sequence, The DCI is sent to the network device by the network device, and the user equipment further processes the DCI, for example, reading corresponding information from each bit field of the DCI; if the sequence is not a predefined sequence, the DCI is only demodulated. In the process, it happens to pass the CRC test, but it is not actually sent by the network device to itself. In this case, the user equipment discards the DCI without further processing.
  • the first is that by setting the virtual CRC, the payload size of the second DCI format can be aligned with the first DCI format, thereby reducing the number of blind detections required by the user equipment when detecting the first DCI format and the second DCI format.
  • the second is to further reduce the false alarm probability of the second DCI format by setting a virtual CRC.
  • some DCIs that are not sent to the user equipment may happen to pass the CRC check.
  • the CRC has a total of 16 bits, so that the probability of passing the CRC check is 2 - 16 (about 1.5 ⁇ 10 -5 ). This probability is not small enough in the URLLC system, and needs to be further reduced, and increased.
  • the X-bit virtual CRC can reduce this probability to 2 - (16 + X) . It is beneficial to improve the reliability of system transmission.
  • the foregoing DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information. It is to be understood that the DCI may also include the uplink and downlink distinguishing indication information and the like. Therefore, in a specific implementation, the DCI may further include other information, which is not limited in this application.
  • the DCI may include the following information: upper and lower downlink indication information (1 bit); SPS activation/release and CSI request differentiation indication information (1 bit) Resource allocation (6 to 9 bits); aperiodic CSI request or MCS (X bits); virtual CRC check bits (Y bits); CRC check bits (16 bits).
  • the virtual CRC check bits are used to further distinguish between SPS activation or SPS release.
  • the network device sends the DCI to the user equipment.
  • the user equipment receives the DCI, and determines the content of the DCI.
  • the DCI satisfies a second condition, where the DCI includes information indicating an aperiodic CSI transmission, or the DCI includes information indicating an uplink SPS activation or deactivation.
  • the load size of the downlink DCI can be reduced, so that the proportion of redundant information in the DCI is increased, thereby improving transmission reliability.
  • FIG. 20 is a communication device provided by an embodiment of the present application.
  • the communication device may be a user equipment or a chip applied to the user equipment.
  • the communication device may include: a receiving unit 2001.
  • the receiving unit 2001 may be configured to receive downlink control information DCI, where the DCI is used to schedule the transport block TB to be transmitted on the downlink channel; wherein, if the DCI meets the first condition, the communications device does not Feedback ACK or NACK, the above ACK is used to indicate that the TB has been correctly received, and the NACK is used to indicate that the TB is not correctly received.
  • the acknowledgement ACK or the negative acknowledgement NACK may not be fed back, thereby reducing the interaction time between the devices, thereby ensuring completion of the transmission of the service within 1 ms, and satisfying the URLLC. Low latency requirements.
  • the foregoing first condition includes: the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and the format identifier in the DCI is The value of the field is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a first field, where the first field is used to indicate the number of times the TB is repeatedly transmitted.
  • the DCI includes a second field, where the second field is used to indicate whether the TB is repeatedly transmitted in a next time unit; or the DCI includes a third field, where the third field is used to indicate that the TB is repeatedly transmitted. Serial number.
  • the DCI includes resource allocation information, modulation and coding mode MCS information, and cyclic redundancy check CRC information, and does not include information related to feeding back the ACK or the NACK.
  • the foregoing information related to feeding back the ACK or the NACK includes: hybrid automatic repeat request HARQ process number information, ACK or NACK resource indication ARI information, and downlink allocation indication DAI information.
  • the communication device shown in FIG. 20 can be used to execute the flow of the method shown in FIG. 10, and can also be used to execute the flow of the method shown in FIG. 16 or FIG. 17, therefore, a specific implementation manner. Reference may also be made to the foregoing embodiments, and will not be described in detail herein.
  • the communication device shown in FIG. 20 may further include a determining unit 2002, specifically, as follows:
  • the receiving unit 2001 is further configured to receive a DCI, where the DCI is used for uplink authorization;
  • the determining unit 2002 is configured to determine content of the DCI, where the DCI meets a second condition, where the DCI includes information indicating a non-periodic channel state information CSI transmission, or the DCI includes an uplink semi-persistent scheduling SPS activation or deactivation. Information.
  • the foregoing second condition includes: the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and the format identifier in the DCI is The value of the field is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation.
  • the foregoing DCI includes a fifth field, where the fifth field is used to indicate the modulation and coding mode MCS, and the fourth field is used to indicate the aperiodic CSI transmission in the fourth field.
  • the fifth field is used to indicate a CSI request.
  • the DCI includes a sixth field, and the sixth field is a virtual cyclic redundancy check CRC.
  • the virtual CRC is set to a predefined third bit sequence; when the DCI is used.
  • the virtual CRC is set to a predefined fourth bit sequence.
  • the foregoing DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information.
  • the load size of the downlink DCI can be reduced, so that the proportion of redundant information in the DCI is increased, thereby improving transmission reliability.
  • FIG. 21 is a communication device according to an embodiment of the present disclosure.
  • the communication device may be a network device or a chip applied to a network device.
  • the communication device may include: a generating unit 2101 and a sending unit. 2102.
  • the generating unit 2101 is configured to generate downlink control information DCI, where the DCI is used to schedule the transmission block TB to be transmitted on the downlink channel, and the sending unit 2102 is configured to send the DCI to the user equipment, where When the DCI satisfies the first condition, the DCI indicates that the user equipment does not feed back a positive acknowledgement ACK or a negative acknowledgement NACK; the ACK is used to indicate that the TB has been correctly received, and the NACK is used to indicate that the TB is not correctly received.
  • the foregoing first condition includes: the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and the format identifier in the DCI is The value of the field is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a first field, where the first field is used to indicate an indication field that the TB is repeated.
  • the DCI includes a second field, where the second field is used to indicate whether the TB is repeatedly transmitted in the next time unit; or the DCI includes a third field, where the third field is used to indicate that the TB is repeatedly transmitted. Serial number.
  • the foregoing DCI includes resource allocation information, modulation and coding mode MCS information, and cyclic redundancy check CRC information, and does not include information related to feeding back the ACK or NACK.
  • the foregoing information related to feeding back the foregoing ACK or NACK includes: hybrid automatic repeat request HARQ process number information, ACK or NACK resource indication ARI information, and downlink allocation indication DAI information.
  • the user equipment may be instructed not to feed back the positive acknowledgement ACK or the negative acknowledgement NACK, thereby reducing the interaction time between the devices, and ensuring that the service transmission is completed within 1 ms. Low latency requirements for URLLC.
  • FIG. 21 can be used to execute the flow of the method shown in FIG. 10, and can also be used to execute the flow of the method shown in FIG. 14 and FIG.
  • the flow of the method shown in FIG. 16 or FIG. 17 can be referred to the foregoing embodiment, and details are not described herein again.
  • the generating unit 2101 is configured to generate downlink control information DCI, where the DCI is used for uplink grant, where the DCI meets the second condition, and the DCI includes information indicating that the aperiodic channel state information CSI is transmitted. Or the foregoing DCI includes information indicating that the uplink semi-persistent scheduling SPS is activated or deactivated;
  • the sending unit 2102 is configured to send the DCI to the user equipment.
  • the foregoing second condition includes: the load size of the DCI is equal to the first value; or the load size of the DCI is less than the first threshold; or the load size of the DCI is equal to the second value, and the format identifier in the DCI is The value of the field is equal to the third value; or the aggregation level AL of the PDCCH carrying the DCI is greater than or equal to the AL threshold.
  • the DCI includes a fourth field, where the fourth field is used to indicate the aperiodic CSI transmission, or is used to indicate the uplink SPS activation or deactivation.
  • the foregoing DCI includes a fifth field, where the fifth field is used to indicate the modulation and coding mode MCS, and the fourth field is used to indicate the aperiodic CSI transmission in the fourth field.
  • the fifth field is used to indicate a CSI request.
  • the DCI includes a sixth field, and the sixth field is a virtual cyclic redundancy check CRC.
  • the virtual CRC is set to a predefined third bit sequence; when the DCI is used.
  • the virtual CRC is set to a predefined fourth bit sequence.
  • the foregoing DCI includes resource allocation information and cyclic redundancy check CRC information, and does not include hybrid automatic repeat request HARQ process number information.
  • FIG. 22 is a schematic structural diagram of a user equipment 2200 according to an embodiment of the present application.
  • the user equipment may perform an operation of the user equipment in the method illustrated in FIGS. 10, 14 to 17, and 19, or the user equipment may also perform the operation of the user equipment illustrated in FIG.
  • Figure 22 shows only the main components of the user equipment.
  • the user equipment 2200 includes a processor, a memory, an antenna, and input and output devices.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire user equipment, executing the software program, and processing the data of the software program, for example, for supporting the user equipment to perform FIG. 10, FIG. 14 to FIG. 17, and FIG. The process described.
  • Memory is primarily used to store software programs and data.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves. It will be appreciated that the antenna may also be referred to as a transceiver.
  • the transceiver can be used, for example, to perform the step 1003 in FIG. 10 to receive the DCI.
  • User equipment 2200 may also include input and output devices, such as a touch screen, display screen, keyboard, etc., primarily for receiving data input by the user and outputting data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 22 shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used for the entire user.
  • the device controls, executes software programs, and processes data for the software program.
  • the processor may also be a network processor (NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the processor in FIG. 22 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the user equipment may include a plurality of baseband processors to accommodate different network standards, and the user equipment may include a plurality of central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
  • the above baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit described above can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • an antenna having a transceiving function can be regarded as a transceiving unit 2201 of the user equipment 2200
  • a processor having a processing function can be regarded as a processing unit 2202 of the user equipment 2200.
  • the user equipment 2200 includes a transceiver unit 2201 and a processing unit 2202.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 2201 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 2201 is regarded as a sending unit, that is, the transceiver unit 2201 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the transceiving unit 2201 can be used to perform the method performed by the receiving unit 2001 shown in FIG.
  • FIG. 23 is a schematic structural diagram of a network device 2300 according to an embodiment of the present application.
  • the network device can perform the operations of the network device in the method shown in FIG. 10, FIG. 14 to FIG. 17, and FIG. 19, or the network device can also perform the operation of the network device shown in FIG.
  • Network device 2300 includes one or more remote radio unit (RRU) 2301 and one or more baseband units (BBUs) 2302.
  • the RRU 2301 described above may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2311 and a radio frequency unit 2312.
  • the RRU2301 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the DCI described above in the foregoing embodiment to a user equipment.
  • the above BBU 2302 part is mainly used for performing baseband processing, controlling network devices, and the like.
  • the RRU 2301 and the BBU 2302 may be physically disposed together or physically separated, that is, a distributed network device.
  • the BBU 2302 is a control center of a network device, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, and spreading.
  • the above BBU processing unit
  • the BBU 2302 may be configured by one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may support different access modes of the wireless connection. Network access.
  • the BBU 2302 described above also includes a memory 2321 and a processor 2322.
  • the above memory 2321 is used to store necessary messages and data.
  • the processor 2322 is configured to control the network device to perform necessary actions, such as controlling the network device to execute the processes shown in FIG. 10, FIG. 14 to FIG. 17, and FIG.
  • the above memory 2321 and processor 2322 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor.
  • the necessary circuits are also provided on each board.
  • the processor can be a CPU, NP or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the above PLD may be a CPLD, an FPGA, a GAL, or any combination thereof.
  • the memory may include volatile memory, such as RAM; the memory may also include non-volatile memory, such as flash memory, hard disk or solid state hard disk; the memory may also include a combination of the above types of memory.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • the foregoing storage medium includes: a read-only memory (ROM) or a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法和通信装置,该通信方法包括:接收DCI,该DCI用于调度TB在下行信道上传输,并在该DCI满足第一条件的情况下,不反馈ACK或NACK,该ACK用于指示该TB已正确接收,该NACK用于指示该TB未正确接收。还公开了相应的通信装置。采用本申请实施例能够有效满足URLLC的低时延要求。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
长期演进(long term evolution,LTE)通信系统中业务的传输是基于基站调度的,其中,调度的基本单位一般为一个子帧,时长为1ms;或者,也可以称调度的基本单位为一个传输时间间隔(transmission time interval,TTI)。然而,随着通信技术的不断发展和进步,第五代(5th-generation,5G)通信系统中引入了新型业务类型如高可靠低时延通信(ultra reliable&low latency communications,URLLC)业务。
对于URLLC业务来说,不仅要求高可靠性,而且还要求低时延,如在低时延方面,URLLC业务要求在1ms内完成业务的传输。因此为了满足低时延要求,LTE通信系统中引入了更短的时间调度单位,即短传输时间间隔(shortened transmission time interval,sTTI)。该sTTI中包含多种时间长度,其中,最短的为2或3个时域符号,这里的时域符号可以为正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。如图1所示,系统根据不同的用户设备(user equipment,UE)的能力,支持n+4或n+6的时序,这表示若某一混合自动重传请求(hybrid automatic repeat request,HARQ)进程在sTTI#0进行初传,则至少要在sTTI#8或sTTI#12才能进行基于HARQ的重传,由此UE大约要到sTTI#12或sTTI#16才能完成TB的解调,所以即使按n+4的时序计算,基于HARQ的重传也至少需要2ms。由此可见,即使以sTTI为单位进行调度,也无法满足URLLC的低时延要求。
发明内容
本申请实施例公开了一种通信方法及装置,能够有效满足URLLC的低时延要求。
本申请实施例第一方面提供了一种通信方法,包括:接收下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;其中,在所述DCI满足第一条件的情况下,不反馈肯定应答ACK或否定应答NACK,所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
实施本申请实施例,在该DCI满足第一条件的情况下,可以不反馈ACK或NACK,从而可以减少设备之间的交互时间,进而保证在1ms内完成业务的传输,满足URLLC的低时延要求。
在一个可选的实现方式中,所述第一条件包括:
所述DCI的载荷大小等于第一数值;或所述DCI的载荷大小小于第一门限值;或所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
在一个可选的实现方式中,所述DCI包括第一字段,所述第一字段用于指示所述TB被重复传输的次数。
在一个可选的实现方式中,所述DCI包括第二字段,所述第二字段用于指示在下一个时间单位中是否重复传输所述TB;或者,所述DCI包括第三字段,所述第三字段用于指示所述TB被重复传输的序号。
在一个可选的实现方式中,所述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈所述ACK或所述NACK相关的信息。
在一个可选的实现方式中,所述与反馈所述ACK或所述NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
本申请实施例第二方面还提供了一种通信方法,包括:
生成下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;将所述DCI发往用户设备;其中,在所述DCI满足第一条件的情况下,所述DCI指示所述用户设备不反馈肯定应答ACK或否定应答NACK,所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
在一个可选的实现方式中,所述第一条件包括:所述DCI的载荷大小等于第一数值;或所述DCI的载荷大小小于第一门限值;或所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
在一个可选的实现方式中,所述DCI包括第一字段,所述第一字段用于指示所述TB被重复次数的指示域。
在一个可选的实现方式中,所述DCI包括第二字段,所述第二字段用于指示在下一个时间单位中是否重复传输有所述TB;或者,所述DCI包括第三字段,所述第三字段用于指示所述TB被重复传输的序号。
在一个可选的实现方式中,所述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈所述ACK或NACK相关的信息。
在一个可选的实现方式中,所述与反馈所述ACK或NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
实施本申请实施例,通过生成满足第一条件的DCI,可以指示用户设备不反馈ACK或NACK,从而可以减少设备之间的交互时间,进而保证在1ms内完成业务的传输,满足URLLC的低时延要求。
本申请第三方面提供了一种通信装置,包括:
接收单元,用于接收下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;
其中,在所述DCI满足第一条件的情况下,不反馈肯定应答ACK或否定应答NACK,所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
本申请第四方面还提供了一种通信装置,包括:
生成单元,用于生成下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;
发送单元,用于将所述DCI发往用户设备;其中,在所述DCI满足第一条件的情况下,所述DCI指示所述用户设备不反馈肯定应答ACK或否定应答NACK;所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
本申请第五方面还提供了一种通信方法,包括:
接收下行控制信息DCI,所述DCI用于上行授权;确定所述DCI的内容,其中,所述DCI满足第二条件,所述DCI包括指示非周期信道状态信息CSI传输的信息,或者,所述DCI包括指示上行半静态调度SPS激活或去激活的信息。
在一个可选的实现方式中,所述第二条件包括:所述DCI的载荷大小等于第一数值;或所述DCI的载荷大小小于第一门限值;或所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
在一个可选的实现方式中,所述DCI包括第四字段,所述第四字段用于指示所述非周期CSI传输,或者用于指示所述上行SPS激活或去激活。
在一个可选的实现方式中,所述DCI包括第五字段,在所述第四字段指示所述上行SPS激活或去激活的情况下,所述第五字段用于指示调制编码方式MCS;在所述第四字段指示所述非周期CSI传输的情况下,所述第五字段用于指示CSI请求。
在一个可选的实现方式中,所述DCI包括第六字段,所述第六字段为虚拟循环冗余校验CRC,当所述DCI用于激活上行SPS时,所述虚拟CRC置为预定义的第三比特序列;当所述DCI用于去激活上行SPS时,所述虚拟CRC置为预定义的第四比特序列。
在一个可选的实现方式中,所述DCI中包括资源分配信息以及循环冗余校验CRC信息,不包括混合自动重传请求HARQ进程号信息。
本申请第六方面还提供了一种通信方法,包括:
生成下行控制信息DCI,所述DCI用于上行授权;其中,所述DCI满足第二条件,且所述DCI包括指示非周期信道状态信息CSI传输的信息,或者,所述DCI包括指示上行半静态调度SPS激活或去激活的信息;将所述DCI发往用户设备。
在一个可选的实现方式中,所述第二条件包括:所述DCI的载荷大小等于第一数值;或所述DCI的载荷大小小于第一门限值;或所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
在一个可选的实现方式中,所述DCI包括第四字段,所述第四字段用于指示所述非周期CSI传输,或者用于指示所述上行SPS激活或去激活。
在一个可选的实现方式中,所述DCI包括第五字段,在所述第四字段指示所述上行SPS激活或去激活的情况下,所述第五字段用于指示调制编码方式MCS;在所述第四字段指示所述非周期CSI传输的情况下,所述第五字段用于指示CSI请求。
在一个可选的实现方式中,所述DCI包括第六字段,所述第六字段为虚拟循环冗余校验CRC,当所述DCI用于激活上行SPS时,所述虚拟CRC置为预定义的第三比特序列;当所述DCI用于去激活上行SPS时,所述虚拟CRC置为预定义的第四比特序列。
在一个可选的实现方式中,所述DCI中包括资源分配信息以及循环冗余校验CRC信 息,不包括混合自动重传请求HARQ进程号信息。
本申请第七方面提供了一种通信装置,包括:
接收单元,用于接收下行控制信息DCI,所述DCI用于上行授权;
确定单元,用于确定所述DCI的内容,其中,所述DCI满足第二条件,所述DCI包括指示非周期信道状态信息CSI传输的信息,或者,所述DCI包括指示上行半静态调度SPS激活或去激活的信息。
在一个可选的实现方式中,所述第二条件包括:所述DCI的载荷大小等于第一数值;或所述DCI的载荷大小小于第一门限值;或所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
在一个可选的实现方式中,所述DCI包括第四字段,所述第四字段用于指示所述非周期CSI传输,或者用于指示所述上行SPS激活或去激活。
在一个可选的实现方式中,所述DCI包括第五字段,在所述第四字段指示所述上行SPS激活或去激活的情况下,所述第五字段用于指示调制编码方式MCS;在所述第四字段指示所述非周期CSI传输的情况下,所述第五字段用于指示CSI请求。
在一个可选的实现方式中,所述DCI包括第六字段,所述第六字段为虚拟循环冗余校验CRC,当所述DCI用于激活上行SPS时,所述虚拟CRC置为预定义的第三比特序列;当所述DCI用于去激活上行SPS时,所述虚拟CRC置为预定义的第四比特序列。
在一个可选的实现方式中,所述DCI中包括资源分配信息以及循环冗余校验CRC信息,不包括混合自动重传请求HARQ进程号信息。
本申请第八方面还提供了一种通信装置,包括:
生成单元,用于生成下行控制信息DCI,所述DCI用于上行授权;其中,所述DCI满足第二条件,且所述DCI包括指示非周期信道状态信息CSI传输的信息,或者,所述DCI包括指示上行半静态调度SPS激活或去激活的信息;
发送单元,用于将所述DCI发往用户设备。
在一个可选的实现方式中,所述第二条件包括:所述DCI的载荷大小等于第一数值;或所述DCI的载荷大小小于第一门限值;或所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
在一个可选的实现方式中,所述DCI包括第四字段,所述第四字段用于指示所述非周期CSI传输,或者用于指示所述上行SPS激活或去激活。
在一个可选的实现方式中,所述DCI包括第五字段,在所述第四字段指示所述上行SPS激活或去激活的情况下,所述第五字段用于指示调制编码方式MCS;在所述第四字段指示所述非周期CSI传输的情况下,所述第五字段用于指示CSI请求。
在一个可选的实现方式中,所述DCI包括第六字段,所述第六字段为虚拟循环冗余校验CRC,当所述DCI用于激活上行SPS时,所述虚拟CRC置为预定义的第三比特序列;当所述DCI用于去激活上行SPS时,所述虚拟CRC置为预定义的第四比特序列。
在一个可选的实现方式中,所述DCI中包括资源分配信息以及循环冗余校验CRC信 息,不包括混合自动重传请求HARQ进程号信息。
本申请第九方面还提供了一种通信装置,可以实现上述第一方面或第五方面的通信方法。例如所述通信装置可以是芯片如基带芯片,或通信芯片等;或者该通信装置可以是设备如终端设备等。该通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
当上述通信方法中的部分或全部通过软件来实现时,通信装置包括:处理器、存储器;所述存储器,用于存储程序;所述处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
在一个可选的实现方式中,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可选的实现方式中,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
其中,当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者输入通信接口。当所述通信装置为设备时,接收单元可以是接收器(也可以称为接收机)。
可以理解的是,本申请所示的实施例中所述通信装置为终端设备或用户设备,但是不应理解为对本申请实施例的限定。
本申请第十方面还提供了一种通信装置,可以实现上述第二方面或第六方面的通信方法。例如所述通信装置可以是芯片如基带芯片,或通信芯片等;或者该通信装置可以是设备如网络设备、基带单板等。该通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可选的实现方式中,当上述通信方法中的部分或全部通过软件来实现时,通信装置包括:处理器、存储器;所述存储器,用于存储程序;所述处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
在一个可选的实现方式中,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可选的实现方式中,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
其中,当所述通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为设备时,发送单元可以是发射器(也可以称为发射机)。
可以理解的是,本申请所示的实施例中所述通信装置为网络设备,但是不应理解为对本申请实施例的限定。
本申请第十一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请第十二方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是本申请实施例提供的反馈ACK或NACK的时序示意图;
图2是本申请实施例提供的时频资源的结构示意图;
图3是本申请实施例提供的通信系统的示意图;
图4是本申请实施例提供的HARQ机制的示意图;
图5是本申请实施例提供的下行传输的流程示意图;
图6是本申请实施例提供的上行传输中子帧与sTTI的关系示意图;
图7是本申请实施例提供的下行传输中子帧与sTTI的关系示意图;
图8是本申请实施例提供的下行传输中子帧与sTTI的关系示意图;
图9是本申请实施例提供的下行传输中子帧与sTTI的关系示意图;
图10是本申请实施例提供的通信方法的流程示意图;
图11是本申请实施例提供的传输方式的示意图;
图12是本申请实施例提供的传输方式的示意图;
图13是本申请实施例提供的传输方式的示意图;
图14是本申请实施例提供的通信方法的流程示意图;
图15是本申请实施例提供的通信方法的流程示意图;
图16是本申请实施例提供的通信方法的流程示意图;
图17是本申请实施例提供的通信方法的流程示意图;
图18是本申请实施例提供的传输方式的示意图;
图19是本申请实施例提供的通信方法的流程示意图;
图20是本申请实施例提供的通信装置的结构示意图;
图21是本申请实施例提供的通信装置的结构示意图;
图22是本申请实施例提供的用户设备的结构示意图;
图23是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
在LTE系统中,时频资源被划分成时间域维度上的OFDM或单载波频分复用多址(single carrier frequency division multiplexing access,SC-FDMA)符号(以下均称时域符号,简称符号)和频率域维度上的子载波,而最小的资源粒度叫做资源单位(resource element,RE),即表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。图2是本申请实施例提供的一种时频资源的结构示意图,其中,一个RE在时域上为一个OFDM符号,频域上为一个子载波。
LTE系统中业务的传输是基于基站调度,上层的数据包在物理层进行调度时被划分成以传输块(transport block,TB)为单位的数据包,调度的基本时间单位一般是一个子帧,时长为1ms。由于TTI与子帧的物理意义基本一致,所以有时会将TTI和子帧混用,因此本申请实施例中的子帧和TTI可被互换使用。一个子帧一般包括两个时隙,一个时隙一般包括7个时域符号。因此,LTE系统中典型的时频资源基本结构是15KHz的子载波间隔、 大约70us的时域符号时长以及4~6us左右的循环前缀时长,每1ms包含14个符号。
可以理解的是,LTE演进系统中还会考虑引入更短的时间调度单位,比如以一个时隙甚至几个时域符号为单位的调度方式等。因此,不应将上述描述理解为对本申请实施例的限定。
图3是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备(仅示出一个,如图中的基站eNB)以及与该网络设备连接的一个或多个用户设备(如图中的UE1~UE3)。
其中,网络设备可以是能和用户设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备。包括但不限于基站。例如,该基站可以为基站NodeB,或者,该基站为演进型基站eNodeB,又或者该基站为5G通信系统中的基站gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
用户设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。用户设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)用户设备、增强现实(augmented reality,AR)用户设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户设备有时也可以称为终端设备、接入用户设备、移动站、移动台、远方站、远程用户设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
在图3所示的通信系统中,当基站与UE进行之间有数据需要传输时,一般先由基站通过控制信道将下行控制信息(downlink control information,DCI)发送给UE。这里的控制信道包括:物理下行控制信道(physical downlink control channel,PDCCH)或短物理下行控制信道(shortened PDCCH,sPDCCH),该控制信道可以承载物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)中TB的调度信息。DCI包括被调度的TB的资源分配信息,调制编码方式以及HARQ等控制信息。在申请中的下行控制信道可以是PDCCH也可以是sPDCCH。以下本申请中以PDCCH为例进行描述,但本申请对下行控制信道的具体名称不做限定。同时本申请中的控制信道元素(control channel element,CCE)可以为该CCE,也可以为短控制信道元素(shortened CCE,sCCE)。以下本申请中以CCE为例进行描述,但是本申请不限于此。
具体地,一个PDCCH在n个连续的CCE上传输,其中CCE是一种物理资源的单位, 每个CCE包含36个RE。其中,PDCCH有4种格式,分别对应聚合等级(aggregationlevel,AL){1,2,4,8}。也就是说,承载DCI的PDCCH的AL可以为AL1、AL2、AL4或AL8中的任意一个AL。
其中,基站可以根据信道质量等因素来决定PDCCH的AL。例如:如果该PDCCH是发给下行信道质量比较好的UE(例如位于小区中心的UE),则可以使用1个CCE来发送该PDCCH;如果该PDCCH是发给下行信道质量比较差的UE(例如位于小区边缘的UE),则可能需要使用8个CCE来发送该PDCCH,以达到足够的鲁棒性。但是,对于UE来说,并不知道基站在哪些CCE上发送了PDCCH,所以需要对PDCCH进行盲检测。具体来说,基站通过高层信令,为UE配置搜索空间(search space,SS),即PDCCH候选集合,该PDCCH候选集合中包含若干个PDCCH候选(PDCCH candidate),UE根据需要检测的DCI格式,检测搜索空间内的每一个PDCCH候选上是否承载了发送给该UE的PDCCH。具体地,LTE系统中,每个UE的搜索空间包含22个PDCCH候选,其中不同AL的PDCCH候选分布如表1。
表1各种AL下PDCCH候选个数
AL PDCCH候选个数
1 6
2 6
4 6
8 4
上述介绍了控制信道相关的背景,下面将介绍LTE中HARQ机制的流程。
以下行为例,UE在子帧#n接收到PDSCH中承载的TB之后,如果译码正确,则UE在子帧#n+k的上行链路上反馈肯定应答(acknowledgement,ACK);如果译码失败,则在上行链路上反馈否定应答(negative acknowledgment,NACK),其中k为预定义或高层信令通知的,在LTE系统中,k=4。如果基站接收到UE反馈的ACK,则开始组建新的TB,并最快在k个子帧后,即子帧#n+2k或更靠后的子帧上发送该新的TB;相反,如果基站接收到UE反馈的NACK,则会在子帧#n+2k或更靠后的子帧上给UE重新发送HARQ进程中同一个TB的数据,进而UE可以将前后两次接收到的该HARQ进程中的数据进行HARQ合并来提升接收性能。
从上述描述可见,单个HARQ进程无法实现在时域上连续传输,这显然极大的限制了系统的吞吐量。因此,LTE使用停等协议来发送数据,即使用多个并行的停-等的HARQ进程:当一个HARQ进程在等待ACK或NACK时,基站可以使用另一个HARQ进程来继续传输数据。如图4所示,HARQ进程号(HARQ process number,HPN)为1和2的两个进程并行发送,基站通过HPN1发送TB1给UE,在等待该UE反馈ACK或NACK的过程中,该基站还可以通过HPN2发送TB2给UE,当该基站接收到TB1的反馈消息后,如该基站收到的反馈结果为NACK,则该基站便可以重新发送TB1给该UE。也就是说,每当基站接收到UE反馈的ACK后,便使用该HARQ进程传输另一个TB。其中,为避免多个HARQ进程传输的TB之间混淆,所以每次传输DCI时,该DCI中应包含HPN。
图5是本申请实施例提供的一种下行传输的流程示意图,该下行传输过程可基于图3所示的通信系统下实现。如图5所示,该下行传输过程至少包括:
501、基站通过PDCCH发送DCI以及通过PDSCH发送下行数据给UE,其中DCI中承载有PDSCH所在的时频资源位置,调制编码方式,循环冗余校验(cyclic redundancy check,CRC)以及与反馈ACK或NACK相关的信息等等。
502、UE在收到DCI后,在每个子帧内根据高层信令配置的搜索空间SS,盲检测DCI。
其中,在盲检测DCI时,UE可以用该UE独有的扰码对CRC序列进行解扰,如果解扰后的CRC能够验证通过,则说明该DCI是发送给该UE的。否则该DCI不是发送给该UE的,则该UE可以继续盲检测下一个DCI。
503、当UE检测到DCI以后,根据DCI格式决定后续行为。例如接收下行数据,或者组包并进行上行数据发送。不同的DCI格式还可能指示不同的传输方案,例如单天线端口传输、多天线端口开环传输、多天线端口闭环传输等。
具体地,UE根据DCI中的资源分配比特域确定下行数据传输所使用的时频资源位置(也即PDSCH的时频资源)。再根据DCI中的调制编码方式(modulation and coding scheme,MCS)比特域和上述资源分配比特域共同查表确认下行传输的传输块大小(transport blocksize,TBS)。所查表格如表2,表格中表示的是在不同MCS索引(I TBS)和,分配不同的资源块(resource block,RB)个数的条件下对应的TBS大小。
表2 TBS表格
Figure PCTCN2018076761-appb-000001
可以理解的是,表2所示的TBS仅为一种示例,不应理解为对本申请实施例的限定。
504、UE根据步骤503中计算出的TBS,解调下行数据。若解调后得到的数据可以通过CRC校验,则说明数据译码成功,反之说明数据译码失败。
505、UE在预定义的时序中反馈是否正确译码数据,即反馈ACK或NACK。其中,该UE可以根据DCI确定反馈ACK或NACK所使用的时频资源。
506、基站重复发送下行数据,并通过DCI指示该下行数据与上一次传输的下行数据相同。
可选的,基站重复发送下行数据时可能有下面两种情况:
情况一、基站在收到ACK或NACK之后确定是否重复发送下行数据(或,也称为重传re-transmission),在收到ACK的情况下,不重传该下行数据;在收到NACK的情况下,重传该下行数据;
情况二、基站在收到ACK或NACK之前就重复发送下行数据(或,也称为重复发送repetition)。
507、UE在收到基站重复发送的下行数据后,将基站多次重复发送的下行数据进行合并译码。
可以理解的是,图5仅为一种下行传输的示例,在具体实现中,可能不止上述所示的步骤,因此,图5所示的下行传输过程不应理解为具有限定意义。
以上所描述的技术背景是在LTE系统下示出的,目前5G技术已经开始讨论,5G从兼容性的角度可以分为两条分支,其中一条为兼容LTE的持续演进,另一条为不兼容LTE的新无线(new radio,NR)技术。无论对于上述哪个分支,5G都包括URLLC这一重要技术需求,URLLC是5G系统中引入的新型业务类型。简单地说,这种业务要求在1ms内完成32byte(即256比特)传输(低时延),且成功概率达到99.999%(即错误率10 -5,高可靠性);或者10ms内完成32byte传输,且成功概率达到99.99%(即错误率10 -4,较宽容的高可靠性)。可以理解的是,上述32byte仅为示例,不应理解为对本申请实施例的限定。
然而研究发现,基站如果沿用现有LTE系统中的控制信道和数据信道的传输方式,则无法有效满足URLLC业务的高可靠性以及低时延的需求(如1ms内完成32byte传输)。因此如何利用LTE系统中的技术达到上述可靠性和时延需求,成为一个亟待解决的问题。
其中,为满足低时延的要求,LTE演进系统中引入更短的时间调度单位即sTTI,sTTI包含多种时间长度,其中最短的为2或3个时域符号。如图6至图9,图6示出的是在上行调度时子帧与sTTI的关系示意图,图7至图9是在下行调度时子帧与sTTI的关系示意图。如图6至图9中,一个子帧(即14个OFDM符号)被分为6个长度为2或3符号的sTTI。
可以理解的是,即使按照sTTI为时间单位进行调度,至少也得需要2ms才能完成基于HARQ的重传机制(如图1所示)。
这就是说基于HARQ的重传无法满足URLLC的1ms时延需求。或者称URLLC中的1ms时延需求,使得现有技术中反馈ACK或NACK对UE来说毫无意义(基站即使接收到ACK/NACK,也无法及时为该UE调度重传)。因此,在1ms时延需求下,UE通过PUCCH反馈ACK/NACK,只会对其他非URLLC以及10ms时延需求的URLLC用户造成干扰。
由此,基于上述背景,本申请提出了一种通信方法,在满足可靠性的基础上,还可以有效地满足URLLC业务的低时延需求。以下将介绍本申请实施例中的通信方法。
图10是本申请实施例提供的一种通信方法的流程示意图,如图10所示,该通信方法包括:
1001、网络设备生成下行控制信息DCI,上述DCI用于调度传输块TB在下行信道上传输。
其中,可能的,该DCI也可以是被小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的DCI。
可选地,本申请实施例中,网络设备生成的DCI的格式可以为第一DCI格式,该第一DCI格式可用于表征该DCI为紧凑的DCI(即compact DCI)。形象地说,该第一DCI格式可以理解为将LTE的DCI中一些信息进行压缩或删除,使得DCI的载荷大小降低,可理解的是,这里的载荷大小指的是payload size。具体地,在相同的时频资源上传输更少的信息比特的情况下,每个信息比特上的信噪比就会提高,所以更多的冗余信息使得采用compact DCI的PDCCH的传输可靠性更高。可理解,这里的冗余信息可以指编码后的校验比特。上述网络设备生成DCI,具体可以为网络设备依据第一DCI格式生成DCI。
可以理解的是,上述第一DCI格式中的“第一”仅为一种名称,因此,不应将本申请实施例中的“第一”DCI格式理解为对本申请实施例的限定。
1002、上述网络设备将上述DCI发往用户设备。
1003、上述用户设备接收上述DCI,其中,上述DCI满足第一条件且上述DCI调度的上述TB的ACK或NACK不需要被反馈,或者,ACK不需要被反馈,或者NACK不需要被反馈。
其中,NACK不需要被反馈的原因在于在1ms时延需求下,网络设备没有充足的时间根据用户设备反馈的NACK进行重传,所以用户设备不需要反馈NACK。由于网络设备会主动对TB进行重复传输,所以即便用户设备不反馈NACK,也不会影响该TB的可靠传输。ACK不需要被反馈的原因在于在1ms时延需求下,网络设备没有充足的时间根据用户设备反馈的ACK终止重复传输,所以用户设备不需要反馈ACK。
其中,第一条件可以为与用户设备是否反馈ACK或NACK相关的条件。可选的,在网络设备依据第一DCI格式生成DCI的情况下,DCI满足第一条件具体可以理解为该DCI的格式满足第一DCI格式。可选的,步骤1003也可以为用户设备在接收到DCI后,可以确定该DCI的格式是否满足第一DCI格式,在该DCI的格式满足第一DCI格式的情况下,该用户设备可以不反馈ACK或NACK。因此,在DCI的格式满足第一DCI格式的情况下,该第一DCI格式的条件可以为如DCI的载荷大小所满足的条件。
可选地,上述第一条件可以包括:上述DCI的载荷大小等于第一数值;或上述DCI的载荷大小小于第一门限值;或上述DCI的载荷大小等于第二数值,且上述DCI中的DCI格式标识字段的取值等于第三数值;或承载上述DCI的PDCCH的聚合等级AL大于或等于AL门限。
本申请实施例中,DCI的载荷大小具体可以理解为DCI的信息比特数。可以理解的是,上述第一数值、第一门限值、第二数值以及第三数值可以由高层信令配置,或者为预定义的。可理解,上述高层信令具体可以为无线资源控制(radio resource control,RRC)信令。 具体地,在第一数值、第一门限值、第二数值以及第三数值为预定义的情况下,该预定义具体可以理解为这些数值预先设置于用户设备中,如这些数值可以在用户设备出厂设置时,进行设置。具体地,上述第一数值和第二数值可以为一种比特数,而上述第三数值也是一种比特序列如“1”、“0”、“11”等,因此,本申请实施例对于第一数值、第二数值以及第三数值具体为数值还是序列不作唯一性限定。
具体地,第一数值可以为:32比特;第一门限值可以为:37比特;第二数值可以为:第一数值+1,即33比特;第三数值可以为:1。
在第一条件包括承载DCI的PDCCH的AL大于或等于AL门限的情况下,该AL门限也可以由高层信令配置,或者为预定义的。在具体实现中,提高AL是增强PDCCH可靠性的方法,因此,本申请实施例中可以将最大支持的AL从8提升至16。由此,本申请实施例中上述AL门限可以大于或等于8,即网络设备可以使用8个CCE来发送承载DCI的PDCCH,或者该网络设备还可以使用16个CCE来发送承载DCI的PDCCH。可理解,本申请实施例对于最大可支持的AL不作限定,在未来通信系统中,最大可支持的AL也可能为32等。
可选的,在步骤1003中,在用户设备接收到DCI后,在用户设备需要确定该DCI是否满足第一条件的情况下,该用户设备确定是否满足第一条件的情况包括:上述用户设备在AL大于AL门限的PDCCH上检测到上述DCI的情况下,该用户设备可以确定该DCI满足第一条件。或者,该用户设备也可以依据该DCI的载荷大小来确定是否满足第一条件等。或者,也可以理解为用户设备在AL大于AL门限的PDCCH上检测到上述DCI时,则该用户设备便可以不需要继续检测该DCI的载荷大小,就可以确定该DCI满足第一条件。或者,该用户设备在AL大于AL门限的PDCCH上检测到上述DCI时,该用户设备继续检测该DCI的载荷大小,来进一步确认该DCI是否满足第一条件等。本申请实施例对于DCI的载荷大小所满足的条件以及承载DCI的PDCCH的AL所满足的条件的关系不作唯一性限定。
可选的,第一条件还可以包括:比如DCI中通过新增的比特域显式指示不反馈ACK/NACK,即在DCI中新增一个1bit的比特域,当比特域中的字段为1时,UE不反馈ACK/NACK;或者,通过DCI的格式隐式指示,例如使用不同的扰码指示UE是否反馈ACK/NACK,若UE接收到的DCI使用第一扰码加扰,则UE不反馈ACK/NACK。
可以理解的是,在图5所示的下行传输的流程示意图中,DCI中不仅包括资源分配信息、MCS信息、CRC信息,还包括了与反馈ACK或NACK相关的信息。然而本申请实施例中,用户设备在接收到DCI后,该用户设备可以不反馈ACK或NACK,由此,上述DCI中可包括资源分配信息、MCS信息以及CRC信息,且不包括与反馈上述ACK或上述NACK相关的信息。或者,本申请实施例中的与反馈ACK或NACK相关的信息,还可以称为HARQ进程相关的信息等,本申请不作限定。以下将以与反馈ACK或NACK相关的信息为例进行说明。
其中,资源分配信息可以用于指示PDSCH所在的时频资源位置,用户设备通过该资源分配信息可以得知PDSCH所在时频资源位置,从而接收下行数据。MCS信息可以用于指示调制编码方式,CRC信息可用于指示用户设备对接收到的DCI进行校验等。具体地, 上述与反馈上述ACK或上述NACK相关的信息包括:HARQ进程号信息、ACK或NACK资源指示(ACK or NACKresource indicator,ARI)信息以及下行分配指示(downlink assignment indicator,DAI)信息。可选的,上述与反馈ACK或NACK相关的信息还可能包括冗余版本(redundancy version,RV)指示信息。
本申请实施例中,由于用户设备不需要反馈ACK或NACK,因此DCI中可以不包括用于指示反馈HARQ信息所使用的频域资源的ARI信息。或者,由于用户设备不反馈ACK或NACK,因此DCI中还可以不包括ARI信息以及用于指示下行TB数量的DAI信息。或者,该DCI中还可以不包括HARQ进程号信息。或者,由于用户设备不反馈ACK或NACK,同时网络设备可以不接收ACK或NACK,以及不重传TB,因此,该DCI中还可以同时不包括ARI信息,以及用于指示用户设备初传版本和重传版本为多少的RV信息。或者,由于不存在初传和重传,因此该DCI中还可以同时不包括ARI信息、RV指示信息以及HARQ进程号信息。其中,用户设备可以依据DAI信息得知网络设备发送给该用户设备的下行数据的数量,从而可以在反馈ACK或NACK时,告知网络设备是否正确接收到了该下行数据,因此,本申请实施例中,DCI中还可以同时不包括ARI信息、RV信息、HARQ进程号信息以及DAI信息。
可以理解的是,DCI中不包括的信息,可以是以上ARI信息、HARQ进程号信息以及DAI信息中的任意组合。或者,该DCI中不包括的信息还可以是以上ARI信息、RV指示信息、HARQ进程号信息以及DAI信息中的任意组合等,本申请实施例不作唯一性限定。
可选的,网络设备还可以使用第一DCI格式触发下行半静态调度(semi-persistent scheduling,SPS)传输,网络设备通过预定义的方式,告知用户设备当第一DCI满足下面条件中的一条或多条时,该第一DCI用于激活SPS;
1.承载该DCI的PDCCH的CRC校验位使用SPS C-RNTI进行加扰;
2.第一DCI中除了上、下行区分指示信息、资源分配信息、MCS信息以外的其他信息中的全部或部分置为预定义的第一比特序列,例如全为0。
网络设备通过预定义的方式,告知用户设备当第一DCI满足下面条件中的一条或多条时,该第一DCI用于释放SPS;
1.承载该DCI的PDCCH的CRC校验位使用SPS C-RNTI进行加扰;
2.第一DCI中除了上、下行区分指示信息、资源分配信息以外的其他信息中的全部或部分置为预定义的第二比特序列,例如全为1。
图10介绍了在用户设备不反馈ACK或NACK的情况下,DCI的格式。以下将具体介绍网络设备如何传输TB给用户设备。以下将结合图11至图13来说明网络设备传输TB的方法。可以理解的是,图11至图13是以时间单位为sTTI为例来说明的,在具体实现中,还可以是其他时间单位如子帧或时隙,或者,还可以是其他更小的时间单位等,因此,以下仅为示例,不应理解为对本申请实施例的限定。
传输方式一、
如图11所示,网络设备可以将一个sTTI内的大部分资源甚至全部资源都调度给一个用户设备(设为UE1),用于通过一个sTTI向用户设备传输TB。传输方式一通过增加数据 传输的频域资源,从而提高数据传输的可靠性。
传输方式二、
如图12所示,网络设备通过多个sTTI向用户设备传输TB,该多个sTTI内的每一个sTTI内传输的为相同的TB,且该多个sTTI内的TB由同一个DCI调度,不同sTTI内的TB在不同的sTIT内的频域资源相同。用户设备在接收到全部TB之后,进行合并译码。
传输方式三、
如图13所示,网络设备通过多个sTTI向用户设备传输TB,该多个sTTI内的每一个sTTI内传输的为相同的TB,且每个sTTI内的TB由各自独立的DCI调度。如图13所示,在sTTI0与sTTI1中均传输有DCI。用户设备在接收到全部TB之后,进行合并译码。传输方式二和传输方式三都是通过增加数据传输的时域资源,从而提高数据传输的可靠性。传输方式三与传输二相比,由于每个sTTI均有对应的DCI独立调度,因此资源分配的灵活性更高,对应的数据传输的可靠性也更高。另一方面,也正由于传输方式三中每个sTTI都有独立的DCI,因此传输方式三的控制信令开销要大于传输方式二。
依据以上传输方式,在网络设备通过多个sTTI向用户设备传输TB的过程中,为了提高可靠性,尽管网络设备在多个sTTI内传输的TB相同,但是对于用户设备来说,用户设备并不知道该网络设备多次传输的TB是否相同,更不知道网络设备重复传输了几次TB,因此,结合上述传输方式,本申请实施例还提供了一种通信方法,图14是本申请实施例提供的一种通信方法的流程示意图,如图14所示,该通信方法至少包括:
1401、网络设备生成DCI,上述DCI用于调度TB在下行信道上传输。
1402、上述网络设备将上述DCI发往用户设备。
1403、上述网络设备通过至少两个时间单位中的资源传输上述TB;其中,上述至少两个时间单位中的资源传输的TB由一个上述DCI调度,上述DCI包括第一字段,上述第一字段用于指示上述TB被重复传输的次数。
例如,在网络设备依据图12所示的传输方式传输TB时,该网络设备通过在DCI中增加第一字段,从而可以有效地指示用户设备,该网络设备重复传输了几次TB。进而使得用户设备在接收完多次重复传输的数据后,可以对所有接收到的数据进行合并译码。
可以理解的是,在具体实现中,在网络设备依据图11所示的传输方式传输TB时,该网络设备生成的DCI中也可以包含上述第一字段,从而指示用户设备该TB仅传输一次。因此,在具体实现中,对于上述三种实现方式本申请实施例不作唯一性限定。
可选的,结合上述传输方式,本申请实施例还提供了一种通信方法,图15是本申请实施例提供的一种通信方法的流程示意图,如图15所示,该通信方法至少包括:
1501、网络设备生成DCI,上述DCI用于调度TB在下行信道上传输。
1502、上述网络设备将上述DCI发往用户设备。
1503、上述网络设备通过至少两个时间单位中的资源传输上述TB,其中,上述TB由与上述至少两个时间单位中的各个时间单位对应的DCI调度;上述DCI包括第二字段,上述第二字段用于指示在下一个时间单位中是否重复传输上述TB;或者,上述DCI包括第三字段,上述第三字段用于指示上述TB被重复传输的序号。
本申请实施例中,由于网络设备每次传输TB时,每个时间单位中的频域资源可能不 同,因此,该情况下,网络设备需要通过DCI来为用户设备指示TB的时频资源位置。因此在网络设备通过至少两个时间单位传输TB时,该每个时间单位中的TB均由该每个时间单位中的DCI进行调度。为了使得用户设备明确得知接收到的TB是否为重复传输的TB,因此,DCI中可以包括第二字段,通过该第二字段指示用户设备在下一个最小传输时间单位中是否传输有该TB,或者,该DCI中也可以包括第三字段,通过该第三字段使得该用户设备得知接收到的TB是第几次传输。
以上是本申请实施例结合图11至图13的传输方式而提供的一种通信方法,以下本申请实施例将结合图10所示的通信方法以及图11至图13的传输方式,提出一种通信方法(如图16和图17)。图16是本申请实施例提供的一种通信方法的流程示意图,该通信方法是在网络设备通过至少两个时间单位传输TB,该至少两个时间单位内的TB相同,且该TB由一个DCI调度的情况下示出的,如图16所示,该通信方法至少包括:
1601、网络设备生成DCI,其中,上述DCI用于调度TB在下行信道上传输,上述DCI为满足第一条件的DCI。
其中,该第一条件与图10所示的通信方法中的实现方式相同,这里不再详述。
可选的,该DCI中包含第一字段,上述第一字段用于指示上述TB被重复传输的次数;或者,在该DCI不包含上述第一字段的情况下,上述TB被重复传输的次数不超过次数阈值,其中,上述次数阈值由高层信令配置,或者为预定义的。可选的,该次数阈值可为3。
具体地,上述DCI中可以包含资源分配信息、MCS信息以及CRC信息,且不包括与反馈ACK或NACK相关的信息。具体的实现方式参考图10,这里不再详述。
1602、上述网络设备将上述DCI发往用户设备。
1603、上述用户设备接收上述DCI,确定上述DCI是否满足第一条件;其中,在上述DCI满足第一条件的情况下,不反馈ACK或NACK。
可理解,步骤1603的具体实现方式可以参考图10所示的实现方式,这里不再详述。
1604、上述网络设备通过至少两个时间单位内的资源将上述TB发往上述用户设备;其中,上述至少两个时间单位内的资源传输的均为上述TB的数据,上述至少两个时间单位内的数据传输均由同一个DCI调度。
1605、上述用户设备在接收到上述TB后,依据上述DCI对上述TB进行合并译码。
其中,在上述DCI中包含第一字段的情况下,该用户设备可以在接收到所有的TB后,对该TB进行合并译码。
而在上述DCI不包含第一字段的情况下,如图18,图18是本申请实施例提供的一种传输方式,在该传输方式下,网络设备可以不向用户设备指示DCI被重复传输的次数。举例来说,网络设备(如图中gNB)分别通过sTTI1和sTTI2向用户设备(如图中UE1)发送TB,UE1在接收到DCI后,可以首先根据DCI中的资源分配(resource allocation,RA)和MCS,对sTTI1上的TB进行译码,若译码正确,则译码结束。否则该UE1等待下一个时间单位(如sTTI2)传输的TB,将该sTTI2上的TB与sTTI1上的TB合并译码,若合并译码正确,则译码结束。否则,该UE1继续接收下一个时间单位传输的TB。或者,直到达到次数阈值,则该UE1停止进行合并译码。如图17所示,由于网络设备在下一个sTTI 上传输的是UE2的TB,因此,用户设备在第三次进行译码时,由于混入了其他UE的数据,因此必然错误。相对于DCI中包含第一字段的方式,图18所示的不包含第一字段的方式,并不会增加用户设备译码错误的概率,反而使得DCI的载荷大小更小了,提高了DCI传输的可靠性。
图17是本申请实施例提供的一种通信方法的流程示意图,该通信方法可在网络设备通过至少两个时间单位传输同一个TB的数据,且该每个时间单位内的TB的数据由每个时间单位内的DCI独立调度。如图17所示,该通信方法至少包括:
1701、网络设备生成DCI,其中,上述DCI用于调度TB在下行信道上传输,上述DCI为满足第一条件的DCI;其中,上述DCI中包含第二字段,上述第二字段用于指示在下一个时间单位中是否重复传输有上述TB;或者,上述DCI中包含有第三字段,上述第三字段用于指示上述TB被重复传输的序号。
1702、上述网络设备将上述DCI发往用户设备。
1703、上述用户设备接收上述DCI,确定上述DCI是否满足第一条件;其中,在上述DCI满足第一条件的情况下,不反馈ACK或NACK,上述ACK用于指示上述TB已正确译码,上述NACK用于指示上述TB未正确译码。
1704、上述网络设备通过至少两个时间单位内的资源将上述TB发往上述用户设备;其中,上述至少两个时间单位内的资源传输的均为上述TB,上述TB由各个时间单位内的DCI调度。
1705、上述用户设备在接收到上述TB后,依据上述DCI对上述TB进行合并译码。
具体地,在DCI中包含第二字段的情况下,例如,第二字段的指示域为1bit信息,指示下一个sTTI中是否重复传输有TB。sTTI1的DCI中的指示域为1,则表示sTTI2中重复传输有TB。而sTTI2的DCI中的指示域为0,则表示sTTI3中没有重复传输TB。则用户设备在sTTI1上接收到TB,以及在sTTI2上接收到TB后,便可以合并译码。
具体地,在DCI中包含第三字段的情况下,通过第三字段指示该TB为被几次重复传输。例如,sTTI1上的DCI指示上述TB为第一次传输,sTT2上的DCI指示上述TB为第二次传输,在sTTI3上没有检测到上述DCI,或者检测到DCI中的第三字段指示第一次传输,则表示sTTI3上的TB与sTTI1和sTTI2上的TB不同,则用户设备便可以将sTTI1和sTTI2上的TB进行合并译码。而若sTTI3上的DCI指示第三次传输,则表示该sTTI3中的TB与sTTI1和sTTI2上的TB相同。可理解,由于在每个时间单位中传输的均为相同的TB,且在每个时间单位中均传输有DCI,因此该第三字段也可以称为指示该DCI被重复传输的序号,即指示该DCI为第几次重复传输。图17所示的通信方法,相对于图16来说,假设UE1已占用sTTI1中的大部分资源,且剩余的资源过少,则使得UE1即使使用图16所示的通信方法来传输,调度3倍的sTTI1的剩余资源,也无法达到可靠性需求。这时采用图17所示的通信方法来进行传输,可以有效避免资源浪费。
实施本申请实施例,网络设备不仅可以通过DCI指示用户设备是否反馈ACK或NACK,减少传输的时延,还可以在多时间单位调度的情况下,有效地确保传输的可靠性。满足了URLLC的1ms时延需求以及可靠性需求。以及由于用户设备不需要反馈ACK或NACK,该网络设备也就不存在接收该ACK或NACK,从而也不存在依据用户设备反馈的ACK或 NACK重复传输数据,进而避免了在重复传输数据时对其他用户造成的干扰。
可以理解的是,以上所描述的各个实施例的侧重点不同,因此未详尽描述的实现方式,还可参考其他实施例,这里不再一一详述。
为了更形象地说明图16和图17所示的通信方法,以下本申请实施例将以终端设备以及网络设备交互为例,说明本申请实施例中的通信方法,具体场景下的通信方法的实现如下:
1)、终端设备根据高层信令,确定搜索空间SS以及在每个PDCCH候选上需要检测的DCI格式。
可选的,上述SS包含的PDCCH候选的聚合等级包含于集合{1,2,4,8,16}中,网络设备通过高层信令向终端设备指示每种聚合等级的PDCCH候选共有几个,以及位于哪些资源(CCE)上。
可选的,上述SS包含的不同AL的PDCCH候选个数如表3所示。
表3各种AL下PDCCH候选个数
AL PDCCH候选个数
1 6
2 6
4 6
8 4
16 2
可选的,网络设备通过高层信令指示终端设备在AL大于等于M时检测第一DCI格式,在AL小于等于N时检测其他DCI格式,其中M大于等于N。可理解,这里所描述的其他DCI格式可为与第一DCI格式不同的DCI格式,如该其他DCI格式的DCI中可以包括与反馈ACK或NACK相关的信息。具体的,M=N=8;或者M=16,N=8。可以理解的是,在M=N=8时,终端设备在AL等于8的PDCCH上检测到DCI时,该终端设备可能无法直接确定该DCI是否为第一DCI格式,由此,该终端设备可能还需要根据该DCI的格式来确定,如根据该DCI的载荷大小确定等。
2)、终端设备对DCI进行盲检测,若盲检测到的DCI的格式为第一DCI格式,则该终端设备不反馈ACK或NACK。
可理解的是,在终端设备检测到该DCI的格式为第一DCI格式的情况下,该终端设备也可以确定该DCI对应的数据为1ms URLLC业务,否则对应其他业务。
可选的,在终端设备盲检测到的DCI的格式为其他DCI格式的情况下,该终端设备便可以向网络设备反馈ACK或NACK。
可选的,第一DCI格式中包含资源分配、MCS比特域、CRC校验位;不包含HARQ相关的比特域,例如HARQ进程号、冗余版本指示、下行分配指示DAI和ACK或NACK 资源指示ARI。
可选的,第一DCI格式的DCI中至少可包含以下信息:
a、上、下行区分指示信息(1bit);可用来区分该DCI是用于上行调度还是下行调度。
b、资源分配信息(4~9bits);可用于指示终端设备接收到的数据所在的时频资源位置。
c、MCS比特域(最多5bits);可用于指示终端设备调制编码方式。
d、重复传输指示域(0~2bits);如可为上述实施例中的第一字段,或者第二字段,或者第三字段。
e、DM-RS位置指示信息(0~1bit,取决于高层信令配置);
f、预编码信息(有无、大小取决于高层信令配置,最多6bits);
g、使用/未使用的sPDCCH资源指示(有无、大小取决于高层信令配置,最多2bits);
h、CRC校验位(16bits);
也就是说,第一DCI格式的DCI可以占用26~42bits。
可以理解,本申请实施例中的第一DCI格式的DCI中所包含的信息仅为一种示例,在具体实现中,可能不止以上所示出的信息,因此不应将上述第一DCI格式的DCI理解为对本申请实施例的限定。
3)、终端设备根据DCI的指示,接收并解调下行数据。
其中,下行数据可能是如图11所示的单次传输的下行数据,也可能是如图12所示的一个DCI,且重复传输的下行数据,也可能是如图13所示的多个DCI,且重复传输的下行数据。具体为哪种传输方式,本申请实施例不作限定。
终端设备确定是否正确接收了下行数据。在DCI的格式为第一DCI格式的情况下,则该终端设备不反馈ACK/NACK信息。在DCI的格式为其他DCI格式的情况下,该终端设备需要反馈ACK/NACK信息。在本申请中,终端设备通过DCI格式识别是否应该反馈ACK/NACK,进而避免在不必要的时候发送PUCCH,对其他终端设备造成干扰。
图19是本申请实施例提供的一种通信方法的流程示意图,如图19所示,该通信方法至少包括以下步骤。
1901、网络设备生成DCI,上述DCI用于上行授权,且上述DCI满足第二条件,上述DCI包括指示非周期CSI传输的信息,或者,上述DCI包括指示上行SPS激活或去激活的信息。
可理解,该DCI可用于调度上行传输,但是不包括调度上行数据传输。因此本申请实施例中,上行授权具体指的是通过DCI指示非周期信道状态信息(channel state information,CSI)传输,或者上行授权具体指的是通过DCI指示上行SPS激活或去激活。
可选的,本申请实施例中,网络设备生成的DCI的格式可以为第二DCI格式,该第二DCI格式可用于表征该DCI为紧凑的DCI。因此,网络设备生成DCI,具体可以为该网络设备依据第二DCI格式生成DCI。该DCI满足第二条件具体可以理解为该DCI的格式满足第二DCI格式。
具体地,上述第二条件包括:上述DCI的载荷大小等于第一数值;或上述DCI的载荷大小小于第一门限值;或上述DCI的载荷大小等于第二数值,且上述DCI中的格式标识字 段的取值等于第三数值;或承载上述DCI的PDCCH的聚合等级AL大于或等于AL门限。可以理解的是,DCI的载荷大小的相关实现方式还可以参考图10所示的通信方法,这里不再详述。
可选的,上述DCI包括第四字段,上述第四字段用于指示上述非周期CSI传输,或者用于指示上述上行SPS激活或去激活。可理解,该第四字段具体可用于区分该DCI用于指示非周期CSI传输或用于指示上行SPS激活或去激活。
可选的,上述DCI包括第五字段,在上述第四字段指示上述上行SPS激活或去激活的情况下,上述第五字段用于指示调制编码方式MCS;在上述第四字段指示上述非周期CSI传输的情况下,上述第五字段用于指示CSI请求。可理解,在第四字段指示非周期CSI传输的情况下,第五字段指示用户设备是否要发送非周期CSI、CSI中包含的内容,以及该CSI是以宽带还是窄带的形式反馈。其中,CSI中包含的内容如预编码矩阵指示(precoding matrix indication,PMI)、秩指示(rank indication,RI)以及信道质量指示(channel quality indicator,CQI)。其中,宽带的意思是全部带宽只反馈一个平均的CSI(如PMI、RI和CQI),窄带的意思是每N个RB反馈一个CSI,其中N的值是预定义的。
可选的,上述DCI包括第六字段,上述第六字段为虚拟循环冗余校验CRC,当上述DCI用于激活上行SPS时,上述虚拟CRC置为预定义的第三比特序列;当上述DCI用于去激活上行SPS时,上述虚拟CRC置为预定义的第四比特序列。具体地,第三比特序列可全为0序列,第四比特序列可全为1序列。
上述虚拟CRC,是网络设备在DCI中添加的一段预定义的比特序列,其功能与CRC类似。具体来说,当用户设备接收到DCI,并通过扰码确定该DCI是网络设备发送给自己的之后,还需要验证DCI中的虚拟CRC是否为预定义的序列,若该序列为预定义序列,则说明该DCI是网络设备发送给自己的,用户设备进一步处理该DCI,例如从该DCI的各个比特域中读取相应的信息;若该序列非预定义序列,则说明该DCI只是在解调过程中,恰巧通过了CRC检验,但实际上不是网络设备发送给自己的。在这种情况下,用户设备丢弃该DCI,不进行进一步处理。
这样设计的好处有两点:
第一是通过设置虚拟CRC,可以将第二DCI格式的载荷大小与第一DCI格式对齐,进而减少用户设备在检测第一DCI格式和第二DCI格式时所需的盲检测次数。
第二是通过设置虚拟CRC,可以进一步降低第二DCI格式的虚警概率。如上面所述,某些不是发送给用户设备的DCI,可能恰巧通过CRC检验。在现有LTE系统中,CRC共16比特,使得恰巧通过CRC检验的概率为2 -16(约等于1.5×10 -5),这一概率在URLLC系统中还不够小,需要进一步降低,而增加X比特虚拟CRC,可以使得这一概率降至2 -(16+X)。有利于提高系统传输的可靠性。
具体地,上述DCI中包括资源分配信息以及循环冗余校验CRC信息,不包括混合自动重传请求HARQ进程号信息。可理解,该DCI还可以包括上下行区分指示信息等,因此,在具体实现中,该DCI还可以包括其他信息,本申请不作限定。
更了为形象地说明本申请实施例中满足第二条件的DCI,因此,该DCI中可包含以下信息:上、下行区分指示信息(1bit);SPS激活/释放与CSI请求区分指示信息(1bit); 资源分配(6~9bits);非周期CSI请求或MCS(X bits);虚拟CRC校验位(Y bits);CRC校验位(16bits)。可选的,X为CSI请求和MCS中的较大值,例如若非周期CSI触发所需的比特数为3,SPS激活中MCS指示所需的比特数为4,则X=max{3,4}=4。此时,在非周期CSI触发时,需要补一个0以凑齐4比特,对齐CSI请求和MCS字段的比特数。可选的,使用虚拟CRC校验位进一步区分SPS激活或SPS释放。
1902、上述网络设备将上述DCI发往用户设备。
1903、上述用户设备接收上述DCI,确定上述DCI的内容。
其中,上述DCI满足第二条件,上述DCI包括指示非周期CSI传输的信息,或者,上述DCI包括指示上行SPS激活或去激活的信息。
实施本申请实施例,可以减小下行DCI的载荷大小,使得DCI中的冗余信息占比增大,从而提高传输可靠性。
以上详细描述了本申请提供的通信方法,以下将具体描述本申请提供的通信装置。
图20是本申请实施例提供的一种通信装置,该通信装置可以是用户设备,也可以是应用于用户设备的芯片,如图20所示,该通信装置可包括:接收单元2001。
在一个实施例中,该接收单元2001可以用于接收下行控制信息DCI,上述DCI用于调度传输块TB在下行信道上传输;其中,在上述DCI满足第一条件的情况下,该通信装置不反馈ACK或NACK,上述ACK用于指示上述TB已正确接收,上述NACK用于指示上述TB未正确接收。实施本申请实施例,在该DCI满足第一条件的情况下,可以不反馈肯定应答ACK或否定应答NACK,从而可以减少设备之间的交互时间,进而保证在1ms内完成业务的传输,满足URLLC的低时延要求。
具体地,上述第一条件包括:上述DCI的载荷大小等于第一数值;或上述DCI的载荷大小小于第一门限值;或上述DCI的载荷大小等于第二数值,且上述DCI中的格式标识字段的取值等于第三数值;或承载上述DCI的PDCCH的聚合等级AL大于或等于AL门限。
具体地,上述DCI包括第一字段,上述第一字段用于指示上述TB被重复传输的次数。
具体地,上述DCI包括第二字段,上述第二字段用于指示在下一个时间单位中是否重复传输上述TB;或者,上述DCI包括第三字段,上述第三字段用于指示上述TB被重复传输的序号。
具体地,上述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈上述ACK或上述NACK相关的信息。
具体地,上述与反馈上述ACK或上述NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
可以理解的是,图20所示的通信装置可以用于执行如图10所示的方法的流程,也可以用于执行如图16或图17所示的方法的流程,因此,具体的实现方式还可以参考前述实施例,这里不再详述。
在另一个实施例中,图20所示的通信装置还可以包括确定单元2002,具体地,如下所示:
上述接收单元2001,还用于接收DCI,上述DCI用于上行授权;
确定单元2002,用于确定上述DCI的内容,其中,上述DCI满足第二条件,上述DCI包括指示非周期信道状态信息CSI传输的信息,或者,上述DCI包括指示上行半静态调度SPS激活或去激活的信息。
具体地,上述第二条件包括:上述DCI的载荷大小等于第一数值;或上述DCI的载荷大小小于第一门限值;或上述DCI的载荷大小等于第二数值,且上述DCI中的格式标识字段的取值等于第三数值;或承载上述DCI的PDCCH的聚合等级AL大于或等于AL门限。
具体地,上述DCI包括第四字段,上述第四字段用于指示上述非周期CSI传输,或者用于指示上述上行SPS激活或去激活。
具体地,上述DCI包括第五字段,在上述第四字段指示上述上行SPS激活或去激活的情况下,上述第五字段用于指示调制编码方式MCS;在上述第四字段指示上述非周期CSI传输的情况下,上述第五字段用于指示CSI请求。
具体地,上述DCI包括第六字段,上述第六字段为虚拟循环冗余校验CRC,当上述DCI用于激活上行SPS时,上述虚拟CRC置为预定义的第三比特序列;当上述DCI用于去激活上行SPS时,上述虚拟CRC置为预定义的第四比特序列。
具体地,上述DCI中包括资源分配信息以及循环冗余校验CRC信息,不包括混合自动重传请求HARQ进程号信息。
实施本申请实施例,可以减小下行DCI的载荷大小,使得DCI中的冗余信息占比增大,从而提高传输可靠性。
可以理解的是,图20所示的通信装置可以用于执行如图19所示的方法的流程,因此,具体的实现方式还可以参考前述实施例,这里不再详述。
图21是本申请实施例提供的一种通信装置,该通信装置可以是网络设备,也可以是应用于网络设备的芯片,如图21所示,该通信装置可包括:生成单元2101和发送单元2102。
在一个实施例中,生成单元2101,可用于生成下行控制信息DCI,上述DCI用于调度传输块TB在下行信道上传输;发送单元2102,用于将上述DCI发往用户设备;其中,在上述DCI满足第一条件的情况下,上述DCI指示上述用户设备不反馈肯定应答ACK或否定应答NACK;上述ACK用于指示上述TB已正确接收,上述NACK用于指示上述TB未正确接收。
具体地,上述第一条件包括:上述DCI的载荷大小等于第一数值;或上述DCI的载荷大小小于第一门限值;或上述DCI的载荷大小等于第二数值,且上述DCI中的格式标识字段的取值等于第三数值;或承载上述DCI的PDCCH的聚合等级AL大于或等于AL门限。
具体地,上述DCI包括第一字段,上述第一字段用于指示上述TB被重复次数的指示域。
具体地,上述DCI包括第二字段,上述第二字段用于指示在下一个时间单位中是否重复传输有上述TB;或者,上述DCI包括第三字段,上述第三字段用于指示上述TB被重复传输的序号。
具体地,上述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈上述ACK或NACK相关的信息。
具体地,上述与反馈上述ACK或NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
实施本申请实施例,通过生成满足第一条件的DCI,可以指示用户设备不反馈肯定应答ACK或否定应答NACK,从而可以减少设备之间的交互时间,进而保证在1ms内完成业务的传输,满足URLLC的低时延要求。
可以理解的是,图21所示的通信装置可以用于执行如图10所示的方法的流程,也可以用于执行如图14和图15所示的方法的流程,也可以用于执行如图16或图17所示的方法的流程,因此,具体的实现方式还可以参考前述实施例,这里不再详述。
在另一个实施例中,生成单元2101,用于生成下行控制信息DCI,上述DCI用于上行授权;其中,上述DCI满足第二条件,且上述DCI包括指示非周期信道状态信息CSI传输的信息,或者,上述DCI包括指示上行半静态调度SPS激活或去激活的信息;
发送单元2102,用于将上述DCI发往用户设备。
具体地,上述第二条件包括:上述DCI的载荷大小等于第一数值;或上述DCI的载荷大小小于第一门限值;或上述DCI的载荷大小等于第二数值,且上述DCI中的格式标识字段的取值等于第三数值;或承载上述DCI的PDCCH的聚合等级AL大于或等于AL门限。
具体地,上述DCI包括第四字段,上述第四字段用于指示上述非周期CSI传输,或者用于指示上述上行SPS激活或去激活。
具体地,上述DCI包括第五字段,在上述第四字段指示上述上行SPS激活或去激活的情况下,上述第五字段用于指示调制编码方式MCS;在上述第四字段指示上述非周期CSI传输的情况下,上述第五字段用于指示CSI请求。
具体地,上述DCI包括第六字段,上述第六字段为虚拟循环冗余校验CRC,当上述DCI用于激活上行SPS时,上述虚拟CRC置为预定义的第三比特序列;当上述DCI用于去激活上行SPS时,上述虚拟CRC置为预定义的第四比特序列。
具体地,上述DCI中包括资源分配信息以及循环冗余校验CRC信息,不包括混合自动重传请求HARQ进程号信息。
可以理解的是,图21所示的通信装置可以用于执行如图19所示的方法的流程,因此,具体的实现方式还可以参考前述实施例,这里不再详述。
以通信装置为用户设备为例,图22为本申请实施例提供的一种用户设备2200的结构示意图。该用户设备可执行如图10、图14至图17以及图19所示出的方法中的用户设备的操作,或者该用户设备也可以执行图20所示的用户设备的操作。
为了便于说明,图22仅示出了用户设备的主要部件。如图22所示,用户设备2200包括处理器、存储器、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持用户设备执行图10、图14至图17以及图19所描述的流程。存储器主要用于存储软件程序和数据。天线主要用于收发电磁波形式的射频信号。可理解该天线也可称为收发器。该收发器例如可以用于执行图10中的步骤1003部分,接收DCI,具体可参照上面相关部分的描述。又例如可以用于执行图16中的步骤1603部分,接收DCI,具体可参照上 面相关部分的描述。用户设备2200还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图22仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,图22中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。上述基带处理器也可以表述为基带处理电路或者基带处理芯片。上述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在申请实施例中,可以将具有收发功能的天线视为用户设备2200的收发单元2201,将具有处理功能的处理器视为用户设备2200的处理单元2202。如图22所示,用户设备2200包括收发单元2201和处理单元2202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元2201中用于实现接收功能的器件视为接收单元,将收发单元2201中用于实现发送功能的器件视为发送单元,即收发单元2201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。例如,在一个实施例中,收发单元2201可用于执 行图20所示的接收单元2001所执行的方法。
可理解的是,本申请实施例中的用户设备的实现方式,具体可参考前述各个实施例,这里不再详述。
图23为本申请实施例提供的网络设备2300的结构示意图。该网络设备可执行如图10、图14至图17以及图19所示的方法中的网络设备的操作,或者该网络设备也可以执行图21所示的网络设备的操作。
网络设备2300包括一个或多个远端射频单元(remote radio unit,RRU)2301和一个或多个基带单元(baseband unit,BBU)2302。上述RRU2301可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2311和射频单元2312。上述RRU2301部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向用户设备发送上述实施例中上述的DCI。上述BBU2302部分主要用于进行基带处理,对网络设备进行控制等。上述RRU2301与BBU2302可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。
上述BBU2302为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如上述BBU(处理单元)可以用于控制网络设备执行图10、图14至图17以及图19所示的流程。
在一个示例中,上述BBU2302可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。上述BBU2302还包括存储器2321和处理器2322。上述存储器2321用以存储必要的消息和数据。上述处理器2322用于控制网络设备进行必要的动作,例如控制网络设备执行图10、图14至图17以及图19所示的流程。上述存储器2321和处理器2322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。可选的,处理器可以是CPU,NP或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。存储器可以包括易失性存储器,例如RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器还可以包括上述种类的存储器的组合。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存储存储器(random access memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;
    其中,在所述DCI满足第一条件的情况下,不反馈肯定应答ACK或否定应答NACK,所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
  2. 根据权利要求1所述的方法,其特征在于,所述第一条件包括:
    所述DCI的载荷大小等于第一数值;或
    所述DCI的载荷大小小于第一门限值;或
    所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或
    承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
  3. 根据权利要求1或2所述的方法,其特征在于,所述DCI包括第一字段,所述第一字段用于指示所述TB被重复传输的次数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述DCI包括第二字段,所述第二字段用于指示在下一个时间单位中是否重复传输所述TB;
    或者,所述DCI包括第三字段,所述第三字段用于指示所述TB被重复传输的序号。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈所述ACK或所述NACK相关的信息。
  6. 根据权利要求5所述的方法,其特征在于,所述与反馈所述ACK或所述NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
  7. 一种通信方法,其特征在于,包括:
    生成下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;
    将所述DCI发往用户设备;其中,在所述DCI满足第一条件的情况下,所述DCI指示所述用户设备不反馈肯定应答ACK或否定应答NACK;所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
  8. 根据权利要求7所述的方法,其特征在于,所述第一条件包括:
    所述DCI的载荷大小等于第一数值;或
    所述DCI的载荷大小小于第一门限值;或
    所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或
    承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
  9. 根据权利要求7或8所述的方法,其特征在于,所述DCI包括第一字段,所述第一字段用于指示所述TB被重复次数的指示域。
  10. 根据权利要求7或8所述的方法,其特征在于,所述DCI包括第二字段,所述第二字段用于指示在下一个时间单位中是否重复传输有所述TB;
    或者,所述DCI包括第三字段,所述第三字段用于指示所述TB被重复传输的序号。
  11. 根据权利要求7至10任意一项所述的方法,其特征在于,所述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈所述ACK或NACK相关的信息。
  12. 根据权利要求11所述的方法,其特征在于,所述与反馈所述ACK或NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
  13. 一种通信装置,其特征在于,包括:
    接收单元,用于接收下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;
    其中,在所述DCI满足第一条件的情况下,不反馈肯定应答ACK或否定应答NACK,所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
  14. 根据权利要求13所述的装置,其特征在于,所述第一条件包括:
    所述DCI的载荷大小等于第一数值;或
    所述DCI的载荷大小小于第一门限值;或
    所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或
    承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
  15. 根据权利要求13或14所述的装置,其特征在于,所述DCI包括第一字段,所述第一字段用于指示所述TB被重复传输的次数。
  16. 根据权利要求13或14所述的装置,其特征在于,所述DCI包括第二字段,所述第二字段用于指示在下一个时间单位中是否重复传输所述TB;
    或者,所述DCI包括第三字段,所述第三字段用于指示所述TB被重复传输的序号。
  17. 根据权利要求13至16任意一项所述的装置,其特征在于,所述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈所述ACK或所述NACK相关的信息。
  18. 根据权利要求17所述的装置,其特征在于,所述与反馈所述ACK或所述NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
  19. 一种通信装置,其特征在于,包括:
    生成单元,用于生成下行控制信息DCI,所述DCI用于调度传输块TB在下行信道上传输;
    发送单元,用于将所述DCI发往用户设备;其中,在所述DCI满足第一条件的情况下,所述DCI指示所述用户设备不反馈肯定应答ACK或否定应答NACK;所述ACK用于指示所述TB已正确接收,所述NACK用于指示所述TB未正确接收。
  20. 根据权利要求19所述的装置,其特征在于,所述第一条件包括:
    所述DCI的载荷大小等于第一数值;或
    所述DCI的载荷大小小于第一门限值;或
    所述DCI的载荷大小等于第二数值,且所述DCI中的格式标识字段的取值等于第三数值;或
    承载所述DCI的PDCCH的聚合等级AL大于或等于AL门限。
  21. 根据权利要求19或20所述的装置,其特征在于,所述DCI包括第一字段,所述第一字段用于指示所述TB被重复次数的指示域。
  22. 根据权利要求19或20所述的装置,其特征在于,所述DCI包括第二字段,所述第二字段用于指示在下一个时间单位中是否重复传输有所述TB;
    或者,所述DCI包括第三字段,所述第三字段用于指示所述TB被重复传输的序号。
  23. 根据权利要求19至22任意一项所述的装置,其特征在于,所述DCI中包括资源分配信息、调制编码方式MCS信息以及循环冗余校验CRC信息,不包括与反馈所述ACK或NACK相关的信息。
  24. 根据权利要求23所述的装置,其特征在于,所述与反馈所述ACK或NACK相关的信息包括:混合自动重传请求HARQ进程号信息、ACK或NACK资源指示ARI信息以及下行分配指示DAI信息。
PCT/CN2018/076761 2018-02-13 2018-02-13 通信方法及装置 WO2019157669A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18906130.2A EP3745629B1 (en) 2018-02-13 2018-02-13 Communication method and device
PCT/CN2018/076761 WO2019157669A1 (zh) 2018-02-13 2018-02-13 通信方法及装置
CN201880089063.5A CN111699645B (zh) 2018-02-13 2018-02-13 通信方法及装置
US16/988,963 US20210007126A1 (en) 2018-02-13 2020-08-10 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076761 WO2019157669A1 (zh) 2018-02-13 2018-02-13 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/988,963 Continuation US20210007126A1 (en) 2018-02-13 2020-08-10 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019157669A1 true WO2019157669A1 (zh) 2019-08-22

Family

ID=67619738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076761 WO2019157669A1 (zh) 2018-02-13 2018-02-13 通信方法及装置

Country Status (4)

Country Link
US (1) US20210007126A1 (zh)
EP (1) EP3745629B1 (zh)
CN (1) CN111699645B (zh)
WO (1) WO2019157669A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207477A1 (en) * 2020-04-08 2021-10-14 Qualcomm Incorporated Out-of-order handling without flow control feedback
WO2022082408A1 (en) * 2020-10-20 2022-04-28 Zte Corporation Architecture for transmission indication
EP4228347A4 (en) * 2020-11-06 2023-12-13 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND COMMUNICATION APPARATUS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904912B2 (en) * 2018-03-31 2021-01-26 Lenovo (Singapore) Pte. Ltd. Method and apparatus for communicating a transport block in an unlicensed uplink transmission on a wireless network
WO2020145460A1 (ko) * 2019-01-10 2020-07-16 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
US11533097B2 (en) * 2019-04-26 2022-12-20 Electronics And Telecommunications Research Institute Method and apparatus for ultra reliable and low latency communication
CN114614945A (zh) * 2020-12-09 2022-06-10 北京九天微星科技发展有限公司 卫星通信系统中的下行链路解码反馈方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150003382A1 (en) * 2010-08-09 2015-01-01 Samsung Electronics Co., Ltd. Transmission of harq control information from a user equipment for downlink carrier aggregation
CN104769857A (zh) * 2012-11-01 2015-07-08 Lg电子株式会社 在无线通信系统中支持设备特性的调度组的方法和装置
US20180007709A1 (en) * 2015-01-23 2018-01-04 Lg Electronics Inc. Method of transmitting/receiving signal in wireless communication system supporting machine type communication and device therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195742A (zh) * 2010-03-16 2011-09-21 华为技术有限公司 一种物理下行控制信道的配置方法、网络设备和终端
RU2527753C2 (ru) * 2010-03-22 2014-09-10 Самсунг Электроникс Ко., Лтд. Мультиплексирование управляющей информации и информации данных от пользовательского оборудования в физическом канале данных
WO2017078128A1 (ja) * 2015-11-05 2017-05-11 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN113067679A (zh) * 2016-07-18 2021-07-02 Oppo广东移动通信有限公司 传输数据的方法和装置
CN106941723B (zh) * 2017-05-05 2020-09-11 宇龙计算机通信科技(深圳)有限公司 一种数据传输方法及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150003382A1 (en) * 2010-08-09 2015-01-01 Samsung Electronics Co., Ltd. Transmission of harq control information from a user equipment for downlink carrier aggregation
CN104769857A (zh) * 2012-11-01 2015-07-08 Lg电子株式会社 在无线通信系统中支持设备特性的调度组的方法和装置
US20180007709A1 (en) * 2015-01-23 2018-01-04 Lg Electronics Inc. Method of transmitting/receiving signal in wireless communication system supporting machine type communication and device therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DCI design for URLLC", 3GPP TSG RAN WG1 MEETING #91, R1-1719408, 1 December 2017 (2017-12-01), XP051369317, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/wgl_r11/TSGR1_91/Docs/R1-1719408.zip> *
HUAWEI ET AL.: "PDSCH reliability for URLLC", 3GPP TSG RAN WG1 MEETING #91, R1-1719407, 1 December 2017 (2017-12-01), XP051369316, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/wg1_r11/TSGR1_91/Docs/R1-1719407.zip> *
See also references of EP3745629A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207477A1 (en) * 2020-04-08 2021-10-14 Qualcomm Incorporated Out-of-order handling without flow control feedback
CN115380489A (zh) * 2020-04-08 2022-11-22 高通股份有限公司 不使用流控制反馈的乱序处置
US11877190B2 (en) 2020-04-08 2024-01-16 Qualcomm Incorporated Indicating original data communications
US11937129B2 (en) 2020-04-08 2024-03-19 Qualcomm Incorporated Out-of-order handling without flow control feedback
WO2022082408A1 (en) * 2020-10-20 2022-04-28 Zte Corporation Architecture for transmission indication
EP4228347A4 (en) * 2020-11-06 2023-12-13 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND COMMUNICATION APPARATUS

Also Published As

Publication number Publication date
EP3745629B1 (en) 2024-09-04
EP3745629A1 (en) 2020-12-02
EP3745629A4 (en) 2021-01-20
US20210007126A1 (en) 2021-01-07
CN111699645A (zh) 2020-09-22
CN111699645B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
EP3657721B1 (en) Harq-ack feedback codebook sending method, apparatus and device
CN111727649B (zh) 用于无线通信系统中数据和控制信息的通信的方法和装置
WO2019157669A1 (zh) 通信方法及装置
EP2962408B1 (en) Scheduling over multiple transmission time intervals
KR20190095326A (ko) 데이터 전송을 위한 방법 및 장치
AU2017366070A1 (en) Method and apparatus for partial retransmission in wireless cellular communication system
CN110583082B (zh) 识别无线通信系统中的上行链路信号传送时机的方法和装置
WO2018082661A1 (zh) 一种数据传输方法和装置
JP2018515004A (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
CN110635870B (zh) 生成混合自动重传请求harq信息的方法和装置
CN110447271B (zh) 用于无线蜂窝通信系统中上行链路功率控制的方法和装置
WO2021197270A1 (zh) 信息传输方法、装置及系统
US20180367259A1 (en) Device and Method of Handling Code Block Group-Based Communication Operation
EP3595220B1 (en) Method and apparatus for sending and receiving feedback information
KR20180081421A (ko) 무선 셀룰라 통신 시스템에서 제어정보 전송 방법 및 장치
WO2021134717A1 (zh) 数据传输方法及装置
US10524248B2 (en) Method and apparatus for detecting downlink control signal in wireless communication system
CN115918011B (zh) 生成混合自动重复请求harq码本的方法和装置
US20240196410A1 (en) Base station, terminal, and communication method
CN110752905B (zh) 通信方法及装置
CN110547021B (zh) 用于确定无线通信系统中的上行链路发送定时的方法和设备
CN110050430B (zh) 用于在无线蜂窝通信系统中解码下行链路控制信号的方法和装置
WO2020125535A1 (zh) 数据传输方法和通信装置
JP6789348B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906130

Country of ref document: EP

Effective date: 20200824