WO2019116642A1 - Ultra-fine bubble generation device - Google Patents

Ultra-fine bubble generation device Download PDF

Info

Publication number
WO2019116642A1
WO2019116642A1 PCT/JP2018/032188 JP2018032188W WO2019116642A1 WO 2019116642 A1 WO2019116642 A1 WO 2019116642A1 JP 2018032188 W JP2018032188 W JP 2018032188W WO 2019116642 A1 WO2019116642 A1 WO 2019116642A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
blade body
blade
ultra
shaft portion
Prior art date
Application number
PCT/JP2018/032188
Other languages
French (fr)
Japanese (ja)
Inventor
泰平 山田
Original Assignee
泰平 山田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰平 山田 filed Critical 泰平 山田
Priority to JP2018546053A priority Critical patent/JP6490317B1/en
Publication of WO2019116642A1 publication Critical patent/WO2019116642A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/92Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings

Definitions

  • the present invention relates to an ultrafine bubble generator for generating ultrafine bubbles in a liquid.
  • ultrafine bubbles also called nanobubbles
  • ultrafine bubbles have a bubble diameter of 1 ⁇ m (1 It is said to refer to ultra-fine bubbles of the order of nanometers or less or less.
  • ultra fine bubble nano bubble
  • ultra fine bubbles is a gas supplied from the outside to the liquid or a gas dissolved in the liquid, It may be in the form of fine particles, or it may be one in which a plurality of liquid molecules gather to form, for example, hollow-shaped clusters. It may also be a mixture of these. Due to the existence of such extremely fine structures, it is considered that some properties of the liquid molecules and their clusters are mutated to bring about the above-mentioned effects.
  • Patent Document 1 discloses an ultra-fine bubble generator that can be used easily and with a small size.
  • the ultra-fine bubble generator of Patent Document 1 includes a shaft, a cylindrical member attached to the shaft, and a plurality of triangular prismatic projections provided on the outer peripheral surface of the cylindrical member, and the inner side of a tube for feeding liquid. Will be placed.
  • the triangular prismatic projections of the ultrafine bubble generating device are arranged in a spiral on the cylindrical member so that the liquid flows in a spiral around the cylindrical member, and each helical prism has a spiral shape of the liquid.
  • the angle located at the tip of the flow is arranged to be substantially perpendicular to the spiral flow.
  • the liquid flowing inside the tube for delivering the liquid collides with the plurality of triangular prismatic projections, whereby the air contained in the liquid is supplied without supplying air from the outside of the tube for delivering the liquid. It is possible to miniaturize and generate ultra-fine bubbles.
  • the ultrafine bubbles are generated by thus generating turbulent flow in the liquid, but the two ends on the downstream side of the triangular prism-like projection as viewed from the liquid flowing in a spiral shape.
  • the edges one close to the liquid supply side mainly contributes to the generation of turbulent flow, and the other may have a larger disadvantage of narrowing the flow path.
  • Patent No. 6077627 gazette
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrafine bubble generating device capable of efficiently generating ultrafine bubbles in a liquid.
  • One aspect of the present invention for solving the above problems is that a plurality of rectangular shaft portions and a plurality of rectangular shape extending in the radial direction of the shaft portions with a predetermined gap between the cylindrical shaft portion and the outer peripheral surface of the shaft portion
  • a blade body including a blade, a housing space for housing the blade body, an inlet formed opposite to one end of the blade body and capable of flowing a liquid into the housing space, and the other end of the blade body And a discharge pipe capable of discharging the liquid in the storage space, and each of the blades is formed to have a predetermined inclination angle with respect to the central axis of the shaft portion.
  • An ultrafine bubble generating device comprising: a main surface portion having a predetermined thickness; and a bent portion having a shape in which an edge on the outlet side of the main surface portion is bent.
  • an ultrafine bubble generator capable of efficiently generating ultrafine bubbles in a liquid.
  • FIG. 1 is a side view of the ultrafine bubble generator according to the first embodiment.
  • FIG. 2 is a diagram for explaining the shape of the blade.
  • FIG. 3 is a diagram for explaining the generation of ultrafine bubbles.
  • FIG. 4 is a view for explaining an ultrafine bubble generating device according to a second embodiment.
  • FIG. 5 is a view for explaining a modification of the ultrafine bubble generation device according to the second embodiment.
  • FIG. 6 is a view for explaining an ultrafine bubble generating device according to a third embodiment.
  • FIG. 7 is a view for explaining an ultra-fine bubble generating device according to a fourth embodiment.
  • FIG. 8 is a view for explaining an ultra-fine bubble generating device according to the first modification.
  • FIG. 9 is a view for explaining an ultra-fine bubble generating device according to a second modification.
  • FIG. 10 is a view for explaining a circulation device using the ultrafine bubble generation device.
  • FIG. 1 shows a side view of an ultra-fine bubble generation device 100 according to a first embodiment of the present invention.
  • the ultrafine bubble generator 100 generates ultrafine bubbles in the liquid supplied to the inside of the storage tube 200 from the outside of the ultrafine bubble generator 100, and then generates the ultrafine bubbles. The liquid is discharged to the outside of the ultra-fine bubble generator 100.
  • a plurality of rectangular blades 302 extending in the radial direction of the shaft portion 301 are formed with a predetermined gap on the outer peripheral surface of the cylindrical shaft portion 301.
  • the blade 302 has a main surface 302a formed at a predetermined inclination angle with respect to the central axis of the shaft 301 at an end on the inlet 202 side, and an edge of the main surface 302a on the outlet 203 side. Is configured to include a bent portion 302 b having a shape bent with respect to the main surface portion 302 a. Each component will be described below.
  • the storage tube 200 is a tubular member through which liquid can flow, and can accommodate the blade 300 therein.
  • the storage tube 200 includes a storage space 201 for storing the blade 300, an inlet 202 communicating with the storage space 201 and supplied with a liquid, and an outlet 203 for discharging the liquid.
  • the inlet 202 and the outlet 203 can be formed at both ends of the storage tube 200, for example.
  • the housing space 201 can be formed, for example, in a substantially cylindrical shape so as to be able to house the blade body 300.
  • the inlet 202 side of the storage tube 200 is referred to as the upstream side
  • the outlet 203 side is referred to as the downstream side.
  • the diameter of the inner circumference of the inlet 202 and the outlet 203 can be about 8 mm.
  • (Blade body) A member that generates ultrafine bubbles in a liquid by guiding the flow of the liquid in a predetermined direction so that the blade 300 swirls inside the storage tube 200 and generating turbulence in at least a part of the liquid. It is. As shown in FIG. 1, the blade 300 is a substantially plate-like member disposed on the outer peripheral surface of the cylindrical shaft portion 301 with a predetermined gap in each of the circumferential direction and the axial direction of the shaft portion 301. A plurality of blades 302 are provided. The blade body 300 may be formed such that circumferential rotation and axial movement within the housing space 201 are restricted.
  • the blade body 300 can be fixed, for example, by forming the tip end of the blade 302 in contact with the inner peripheral surface of the storage tube 200 in the storage space 201.
  • a projection or the like protruding from the storage tube 200 toward the storage space 201 may be provided to restrict the movement of the blade 300.
  • a ring-shaped member which can abut on the inner circumferential surface of the housing tube 200 and the tip of the blade 302 to reinforce the blade 302 and restrict the movement of the blade body 300 is the housing tube 200 and the blade body 300. May be inserted between
  • the blades 302 of the blade 300 are preferably arranged to pivot as much liquid as possible. Then, for example, as shown in FIG. 3, when the liquid passing through the gap of the blade 302 flows parallel to the axial direction of the shaft portion 301, the blade 302 is disposed so as to hit the blade 302 on the downstream side. It may be possible to prevent the flow parallel to the direction and bypassing between the blades 302.
  • FIG. 2 shows a perspective view of the plurality of blades 302 ((a) in FIG. 2), and a front view, a plan view, and a side view ((b) in FIG. 2) of the blades 302.
  • the blade 302 has a main surface 302 a which is a plate-like member formed to be inclined with respect to the central axis of the shaft 301, and a downstream end edge of the main surface 302 a is bent. And a bent portion 302b having a square shape.
  • the main surface portion 302 a can be, for example, a rectangular shape having a constant thickness.
  • the shape of the bending portion 302b is not limited as long as the downstream end edge of the main surface portion 302a is bent, for example, as shown in FIG. 2B, the opposite side to the main surface portion 302a of the bending portion 302b It may be formed to have an inclined surface that extends between the end of the and the main surface portion 302a.
  • the outer diameter D1 of the blade body 300 can be, for example, about 15 mm to 20 mm.
  • the outer diameter D2 of the shaft portion 301 is about 10 mm to 15 mm
  • the height H1 from the connection portion of the blade 302 with the shaft portion 301 to the tip is about 2.5 mm
  • the distance from the main surface 302a of the bent portion 302b to the tip The height H2 which is preferably about 1 mm to 1.5 mm.
  • the acute angle ⁇ between the normal vector of the main surface portion 302 a of the blade 302 and the central axis of the blade 300 is not particularly limited, but may be, for example, about 45 °.
  • the length of the blade 300 in the central axis direction can be about 60 mm to 80 mm.
  • the number of the blades 302 aligned in the central axis direction of the blade body 300 can be about 15 to 20.
  • the bending direction with respect to the main surface part 302a of the bending part 302b is not limited.
  • the upstream rectification member 303 a and the downstream rectification member 303 b may be provided at each of the upstream and downstream ends of the blade body 300.
  • the upstream rectifying member 303 a rectifies the liquid flowing into the accommodation space 201 so that the liquid flows smoothly toward the blade 300.
  • the downstream side rectification member 303 b is a member that rectifies the liquid flowing out from the downstream end of the shaft portion 301 so as to smoothly flow toward the discharge port 203.
  • the upstream rectifying member 303 a is a conical member provided at the upstream end of the shaft portion 301 and protruding toward the upstream.
  • the downstream side flow adjustment member 303 b is a conical member provided at the downstream end of the shaft portion 301 and protruding toward the downstream side.
  • FIG. 3 is a view schematically showing the plurality of blades 302 viewed from the radial direction of the shaft portion 301 and the state of liquid flowing therebetween.
  • the arrows in the figure indicate the flow of liquid.
  • the liquid supplied to the ultrafine bubble generator 100 and flowing into the storage space 201 of the storage pipe 200 from the inflow port 202 and passing through the surface of the upstream rectifying member 303a is first of all shown in the shaft portion 301 as shown by the white arrow.
  • main surface portions 302 a of a plurality of blades 302 referred to as a first blade group 302-1
  • the liquid that has collided with the main surface portion 302a flows along the surface of the main surface portion 302a, as shown by a straight black arrow in FIG.
  • the liquid that has passed through the end portion of the main surface portion 302 a of the first blade group 302-1 flows helically as a whole with respect to the central axis of the shaft portion 301 while generating turbulent flow. It flows along the major surface portions 302a of the plurality of blades 302 (referred to as a second blade group 302-2) arranged in the circumferential direction of the shaft portion 301, adjacent to the downstream side of -1. Then, in the liquid flowing along the surface of the main surface portion 302a of the second blade group 302-2, turbulent flow is generated in part of the liquid around the bending portion 302b.
  • the liquid having flowed into the accommodation space 201 finally reaches the downstream end of the shaft portion 301 while repeatedly passing through the gaps between the plurality of blades 302 as described above.
  • the liquid that has reached the downstream end of the shaft portion 301 flows along the surface of the downstream flow straightening member 303 b and then passes through the discharge port 203 and is discharged from the ultrafine bubble generator 100.
  • the liquid that has flowed into the storage tube 200 flows while spirally swirling around the outer periphery of the shaft portion 301. Then, it is considered that ultrafine bubbles are generated inside the liquid by the liquid becoming a turbulent flow at the bending portion 302 b of each blade 302. As a result, the ultrafine bubble generator 100 discharges the liquid containing the ultrafine bubble.
  • the ultra-fine bubbles can be generated in the liquid by circulating the liquid.
  • the plurality of blades 302 be arranged to pass the liquid in a spiral while smoothly swirling around the shaft portion 301. Therefore, the plurality of blades 302 are arranged such that the end edge of the main surface portion 302 a on the shaft portion 301 side follows a virtual spiral line on the outer peripheral surface of the shaft portion 301. Also, as shown in FIG. 3, along the imaginary spiral line, between the downstream end of the upstream circumferentially adjacent two blades 302, another downstream blade adjacent to the downstream side. A plurality of blades 302 may be arranged so that the tip of 302 is located. By arranging the plurality of blades 302 in this manner, the turbulent flow caused by the upstream blade 302 is divided by the tip of the downstream blade 302 to generate more complicated turbulent flow, and the more efficient ultra There is a high possibility that a fine bubble will occur.
  • a desired amount of ultrafine bubbles can be obtained by appropriately setting the inclination angle, the number, the size, and the like of the blades 302 in accordance with the viscosity, flow rate, flow rate, fluid pressure, etc. of the fluid flowing into the ultrafine bubble generator 100. It is possible.
  • the downstream end of the plate-like blade 302 is folded back, so that the turbulent flow is generated sufficiently, and the blade has a flow rather than the triangular prism shape. Since a sufficient path can be secured, ultra fine bubbles can be generated efficiently.
  • the ultrafine bubble generating device 100 by disposing the tip of the other blade 302 adjacent on the downstream side between the downstream ends of the two blades 302 adjacent in the circumferential direction as described above, while the liquid moves in a spiral manner along the blades 302 of the blade 300 in the storage tube 200, turbulence is generated at the downstream end of each blade 302 and this is caused to flow to the blade 302 adjacent to the downstream. Collisions can generate more complex turbulence. Therefore, there is a high possibility that the air or the like in the liquid can be miniaturized and ultrafine bubbles can be generated more efficiently, without supplying the gas from the outside.
  • the entity of the ultrafine bubble may be a hollow liquid molecule cluster.
  • FIG. 4 shows an exploded view of the blade 310 (FIG. 4A) and a front view and a side view of the blade element 311 and the spacer 312 constituting the blade 310 (FIG. 4B).
  • the blade body 310 has a plurality of blade body elements 311 in which twelve blades 302 having a bending portion 302 b are formed on the outer peripheral surface of a cylindrical member, and a cylindrical shape. It is comprised by the spacer 312.
  • the blade body 310 is formed by alternately stacking the blade body elements 311 and the spacers 312.
  • the number of blades 302 in each blade element 311 is preferably 12 to 16 but is not limited to this and can be set as appropriate.
  • the thickness of the cylindrical member can be, for example, 4 mm or less.
  • the length of the blade 310 is adjusted by appropriately adjusting the number of the plurality of blade body elements 311 constituting the blade 310, the shape, the number of the spacers 312, and the size thereof.
  • the flow generation efficiency can be optimized to adjust the number of ultra fine bubbles generated.
  • FIG. 4B is a view showing the blade body element 311 and the spacer 312 from three directions.
  • the blade body element 311 and the spacer 312 are, for example, on the surface where the blade body element 311 and the spacer 312 are in contact when laminating the blade body element 311 and the spacer 312. Fitting holes 311a and 312a and fitting projections 311b and 312b for coupling are formed.
  • the blade body element 311 and the spacer 312 can be integrally manufactured by plastic molding, press molding or the like. Moreover, a blade body can be easily manufactured by laminating
  • a known method can be used to connect the blade body element 311 and the spacer 312, for example, it may be bonded with an adhesive, may be ultrasonically welded, or may be simply fitted.
  • the blade body 310 is configured by the blade body element 311 and the spacer 312 has been described, but the blade body 310 may be configured by only the blade body element 311.
  • the blade body may be provided with a member for reinforcing the blade 302.
  • FIG. 5 shows a cross-sectional view and a front view of a blade body 330 according to a modification.
  • the difference between the blade body 310 and the blade body 330 is the presence or absence of a reinforcing member 331 for reinforcing the blade 302.
  • the reinforcing member 331 is a cylindrical member, and is provided so as to connect the tips of the plurality of blades 302 in the radial direction of the blade body 330.
  • the reinforcing member 331 can reinforce the blade 302. Therefore, it is easy to suppress the deformation of the blade 302 when the liquid passes.
  • FIG. 6 shows an exploded view of the blade body 320 (FIG. 6A) and front and side views of the blade body element 321 and the spacer 322 that constitute the blade body 320 (FIG. 6B).
  • the blade body 320 includes a plurality of blade body elements 321 in each of which eight blades 302 having bent portions 302 b are formed on the outer peripheral surface of the disk-like member. , And a truncated cone spacer 322.
  • the blade body 320 is formed by alternately stacking the blade body elements 321 and the spacers 322.
  • the number of blades 302 is not limited to eight and can be set as appropriate.
  • the plurality of blade body elements 321 and the spacer 322 respectively have through holes 321 a and 322 a at the center.
  • an axial member extending from the bottom surface of the upstream rectification member 323a or the downstream rectification member 323b (not shown) is provided in the ultra fine bubble generating device 120.
  • the shaft-like member is inserted into the through holes 321 a and 322 a of the spacer 322 to laminate the blade body element 321 and the spacer 322.
  • the number of the plurality of blade body elements 321, the shape, the number of the spacers 322, and the size can be appropriately adjusted to adjust the number of generated ultrafine bubbles.
  • the blade element 321 is formed of a disk-shaped member and the blade 302, and can be manufactured by press molding using a metal plate such as iron or aluminum. Specifically, a blade body element 321 is punched out of a metal plate and provided with a plurality of blades 302 in a flat state, and then the blade 302 is bent to form a blade angle 321 and a bent portion 302b to form the blade body element 321. be able to. Therefore, the blade body 320 can also manufacture the ultrafine bubble generator 120 at low cost.
  • the bent portion 302b may be formed by not taking burrs at the time of punching instead of bending and forming.
  • FIG. 7 shows a partial side view (FIG. 7 (a)) of the ultrafine bubble generator 130 and a plan view and a front view of the rectifying member 333 (FIG. 7 (b)).
  • the rectifying member 333 is provided to efficiently guide the liquid flowing in from the inlet 202 to the blade 300.
  • a plurality of spiral blades 333 a are formed at equal intervals from the upstream side toward the downstream side on the outer periphery.
  • the straightening member 333 includes four blades 333a as an example, but the number of the blades 333a is not particularly limited.
  • the ultrafine bubble generator 130 gradually changes the direction while passing the liquid flowing from the inflow port 202 between the blades 333a, as shown by the white arrows in FIG. Flow along the As a result, the flow of the liquid inside the ultrafine bubble generator 130 can be promoted.
  • the flow straightening member 333 is provided on the upstream side of the blade 300 as an example, the flow straightening member 333 is provided on the downstream side of the blade 300 similarly to the downstream flow straightening member 303b. You may use. Thereby, it is also possible to promote the flow of the liquid flowing to the discharge port 203.
  • the blade body 300 was used as an example and demonstrated in this embodiment, if the ultrafine bubble generation apparatus 130 is provided with the rectification
  • the difference between the ultra fine bubble generating device 100 and the ultra fine bubble generating devices 140 a to 140 d is the presence or absence of the outside air supply means 141.
  • the outside air supply means 141 is a means for taking in the outside air into the liquid flowing inside the ultra fine bubble generator 101.
  • the outside air supply means 141 is a tube provided with a flow passage through which a gas can flow, for example, made of plastic A tube or the like can be used.
  • one end of the outside air supply means 141 on the side to which outside air is discharged is a predetermined gap with the tip of the downstream side rectification member 303b.
  • the other end on the side where gas is sucked is disposed at a position where the outside air can be sucked in, such as the outside of the ultra-fine bubble generating devices 140a and 140b.
  • a through hole is opened in the axial direction of the blade 300, and the outside air supply means 141 is passed from the inflow port 202 side through the through hole. Further, in the ultra fine bubble generating device 140 b, the outside air supply means 141 is passed from the side of the discharge port 203.
  • one end of the outside air supply means 141 on the side to which outside air is discharged is the upstream end portion of the blade 300 and the shaft portion inside the blade 300. It is disposed in a through hole formed to communicate with the outer peripheral surface of 301, and the other end on the side where gas is sucked is disposed at a position where it can suck in external air such as the outside of ultrafine bubble generator 140c. Ru.
  • the external air is sucked from the external air supply means 141 by the force of the liquid flowing inside the ultrafine bubble generating devices 140a to 140c, and is caught in the turbulent flow.
  • the sucked outside air is discharged from the discharge port 203 as a microbubble of 1 to 100 ⁇ m in diameter or a bubble of a larger size, for example, inside the liquid.
  • the outside air supply means 141 is composed of a tube having a flow hole through which gas can flow, and a pump capable of supplying outside air to the tube.
  • the outside air supply means 141 is disposed such that one end of the tube on the side where the outside air is discharged has a predetermined gap with the tip of the upstream side rectification member 303a.
  • the pump discharges the outside air into the liquid through the tube.
  • the discharged outside air is discharged as microbubbles into the liquid, and is discharged from the discharge port 203 together with the ultrafine bubbles generated by the blade 300.
  • the ultrafine bubble generating devices 140a to 140d according to the modification, it is possible to generate a liquid containing microbubbles together with the ultrafine bubbles.
  • the position of the discharge side end of the tube of the outside air supply means 141 is moved in the axial direction, and the discharge side end and the upstream side straightening member 303a or the downstream side straightening member 303b
  • the predetermined gap with the tip of the tip it is possible to adjust the degree to which the outside air is caught in the turbulent flow and to change the size and / or amount of the microbubbles.
  • extra fine bubbles derived from ambient air can also be generated.
  • the blade body 310 or the blade body 320 may be used for the ultrafine bubble generating devices 140a to 140d, or the flow control member 333 may be used.
  • FIGS. 9A and 9B show ultra fine bubble generating devices 150a and 150b according to the second modification, respectively.
  • the difference between the ultra fine bubble generating device 100 and the ultra fine bubble generating devices 150 a and 150 b is the presence or absence of the rotating means 151 capable of rotating the blade 300.
  • the rotation means 151 of the ultrafine bubble generator 150a has a tip on the upstream side of the upstream rectification member 303a so as to rotate the blade 300 in the circumferential direction. It is connected with the blade body 300 via the shaft member extended from this.
  • a motor can typically be used for the rotation means 151.
  • the blade 300 can be rotated in the circumferential direction while supplying liquid from the inflow port 202 to the inside of the storage tube 200.
  • the liquid flowing on the surface of the blade 302 of the blade 300 is more likely to pass through the end of the blade 302 compared to when the blade 300 is at rest, so that the occurrence of turbulent flow is increased.
  • the rotation means 151 may be connected to the downstream end of the downstream side rectification member 303b.
  • the ultra-fine bubble generating device 150b shown in (b) of FIG. 9 is an example using a food mixer as the rotating means 151.
  • the blade 300 is attached to the rotating shaft of the food mixer to enable supply and discharge of the liquid to the food container 152, and the container tube 200 is provided inside the food container 152. .
  • the liquid supplied to the food containing portion 152 flows into the containing tube 200 from the lower side of the food containing portion 152. Thereafter, the liquid flows inside the storage tube 200 toward the upper side of the food storage portion 152, and the blade body 300 generates ultrafine bubbles, which are discharged from the food storage portion 152.
  • the flow direction of the liquid may be opposite to this.
  • the ultrafine bubble generator 150 b may be provided with valves for stopping the flow of the liquid at the supply port and the discharge port of the liquid to the food container 152.
  • valves for stopping the flow of the liquid at the supply port and the discharge port of the liquid to the food container 152.
  • the ultra-fine bubble generator 150b it is possible to easily generate ultra-fine bubbles using a food mixer.
  • the blade body 310 or the blade body 320 may be used for ultra-fine bubble generation apparatus 150a, 150b, and the flow adjustment member 333 may be used.
  • FIG. 10 is a schematic view of a circulation device 400 capable of increasing the concentration of ultrafine bubbles to be generated using the ultrafine bubble generation device 100 as an example.
  • the circulation device 400 includes the ultrafine bubble generation device 100, a storage tank 401 for storing the liquid discharged from the ultrafine bubble generation device 100, and suction of the liquid in the storage tank to generate the ultrafine bubble. It includes a pump 402 that supplies the inlet 202 of the device 100 and a pipe that connects these.
  • the circulation device 400 the liquid including the ultrafine bubbles discharged from the ultrafine bubble generation device 100 is temporarily stored in the storage tank 401, and the liquid in the storage tank 401 is suctioned up by the pump 402 to make the ultrafine bubble generation device 100. Can be supplied again. Therefore, in the circulation device 400, it is possible to increase the concentration of the ultra fine bubbles contained in the liquid in the storage tank 401 by repeating this circulation.
  • the present invention is applicable to an ultrafine bubble generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Provided is an ultra-fine bubble generation device capable of generating ultra-fine bubbles in liquid by causing the liquid to flow through the ultra-fine bubble generation device. This ultra-fine bubble generation device is provided with: a blade body including a solid cylindrical shaft section and a plurality of rectangular blades, the plurality of rectangular blades being provided on the outer peripheral surface of the shaft section with predetermined gaps between the rectangular blades and extending in the radial direction of the shaft section; and a containing tube provided with a containing space which contains the blade bodies, an inflow opening which is formed so as to face one end of the blade body and through which liquid can flow into the containing space, and a discharge opening which is formed so as to face the other end of the blade body and through which the liquid in the containing space can be discharged. Each of the blades is provided with: a main surface section having a certain thickness and formed so as to have a predetermined acute angle relative to the center axis of the shaft section; and a bend section shaped so that the discharge opening-side end of the main surface section is bent.

Description

ウルトラファインバブル発生装置Ultra Fine Bubble Generator
 本発明は、液体中にウルトラファインバブルを発生させるウルトラファインバブル発生装置に関するものである。 The present invention relates to an ultrafine bubble generator for generating ultrafine bubbles in a liquid.
 近年、液体中の微細な気泡を利用する技術が注目されている。これらの液体中の微細な気泡は、その大きさによりマイクロバブル、ウルトラファインバブル(ナノバブルとも呼ばれる)などに区別されており、ISO基準において、ウルトラファインバブルは、液体中における気泡径が1μm(1/1000mm)以下あるいは未満のナノメートル単位の極微細な気泡を指すとされている。本明細書においてウルトラファインバブル(ナノバブル)の語はこの意味合いで用いる。 In recent years, a technology that uses fine bubbles in a liquid has attracted attention. The fine bubbles in these liquids are distinguished as microbubbles, ultrafine bubbles (also called nanobubbles), etc. according to their size, and in the ISO standard, ultrafine bubbles have a bubble diameter of 1 μm (1 It is said to refer to ultra-fine bubbles of the order of nanometers or less or less. The term ultra fine bubble (nano bubble) is used herein in this context.
 近時では特にウルトラファインバブルを種々の分野で利用するための技術が研究され、また現に利用されつつある。例えば、家庭用や工業用の水に適用して、殺菌、洗浄効果を得たり、燃料に適用して燃焼効率を上昇させたりすること等が挙げられる。さらに、農作物の育成促進、ペンキ等の混合の均一性向上、ペイントの塗装面へのノリの向上など、様々な分野への応用が模索されている。 In recent years, in particular, techniques for using ultra-fine bubbles in various fields have been studied and are currently being used. For example, it may be applied to water for household use or industrial use to obtain a sterilizing or cleaning effect, or may be applied to fuel to increase combustion efficiency. Furthermore, applications in various fields are being explored, such as promotion of cultivation of agricultural products, improvement in uniformity of mixing of paints and the like, and improvement of nori to the painted surface of paints.
 ウルトラファインバブルの発生原理の解明および上述のような効果の検証は、いまだ途上であるが、ウルトラファインバブルの正体は液体に外部から供給される気体、あるいは、液体に溶存している気体が、微細な粒となったものである可能性もあるし、液体分子が複数個集まって例えば中空形状のクラスターを形成したものである可能性もある。また、これらの混合物である可能性もある。このようなきわめて微細な構造の存在によって、液体分子やそのクラスターの何らかの特性が変異して上述のような効果をもたらすものと考えられる。 Elucidation of the principle of generation of ultra fine bubbles and verification of the above effects are still under way, but the true nature of ultra fine bubbles is a gas supplied from the outside to the liquid or a gas dissolved in the liquid, It may be in the form of fine particles, or it may be one in which a plurality of liquid molecules gather to form, for example, hollow-shaped clusters. It may also be a mixture of these. Due to the existence of such extremely fine structures, it is considered that some properties of the liquid molecules and their clusters are mutated to bring about the above-mentioned effects.
 小型で簡便に使用できるウルトラファインバブルの発生装置として特許文献1が開示するものがある。特許文献1のウルトラファインバブル発生装置は、シャフトと、シャフトに取付けられた円柱形状部材と、円柱形状部材の外周面に複数設けられた三角柱状突起とを備え、液体を送るための管の内側に配置される。このウルトラファインバブル発生装置の三角柱状突起は、円柱形状部材に螺旋状に配置され液体が円柱形状部材の周りを螺旋状に流れるように構成されると共に、各三角柱状突起において液体の螺旋状の流れに対し先端に位置する角がこの螺旋状の流れに対しほぼ垂直となるように配置されている。これにより、液体を送るための管の内側を流れる液体が複数の三角柱状突起に衝突することにより、液体を送るための管の外部から空気を供給することなく液体中に含まれている空気が微細化されウルトラファインバブルを発生させることができる。 Patent Document 1 discloses an ultra-fine bubble generator that can be used easily and with a small size. The ultra-fine bubble generator of Patent Document 1 includes a shaft, a cylindrical member attached to the shaft, and a plurality of triangular prismatic projections provided on the outer peripheral surface of the cylindrical member, and the inner side of a tube for feeding liquid. Will be placed. The triangular prismatic projections of the ultrafine bubble generating device are arranged in a spiral on the cylindrical member so that the liquid flows in a spiral around the cylindrical member, and each helical prism has a spiral shape of the liquid. The angle located at the tip of the flow is arranged to be substantially perpendicular to the spiral flow. Thus, the liquid flowing inside the tube for delivering the liquid collides with the plurality of triangular prismatic projections, whereby the air contained in the liquid is supplied without supplying air from the outside of the tube for delivering the liquid. It is possible to miniaturize and generate ultra-fine bubbles.
 特許文献1のウルトラファインバブル発生装置では、このように液体に乱流を発生させることでウルトラファインバブルを発生させるが、らせん状に流れる液体から見て、三角柱状突起の下流側の2つの端縁のうち、乱流発生には液体供給側に近い一方が主に寄与しており、他方は流路を狭隘にするデメリットのほうが大きいおそれがある。 In the ultrafine bubble generating device of Patent Document 1, the ultrafine bubbles are generated by thus generating turbulent flow in the liquid, but the two ends on the downstream side of the triangular prism-like projection as viewed from the liquid flowing in a spiral shape. Among the edges, one close to the liquid supply side mainly contributes to the generation of turbulent flow, and the other may have a larger disadvantage of narrowing the flow path.
特許第6077627号公報Patent No. 6077627 gazette
 本発明は上記問題に鑑みてなされたものであり、効率的に液体中にウルトラファインバブルを生成することができるウルトラファインバブル発生装置を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrafine bubble generating device capable of efficiently generating ultrafine bubbles in a liquid.
 上記課題を解決するための本発明の一局面は、円柱状のシャフト部と、シャフト部の外周面に所定の隙間を隔てて、シャフト部の半径方向に向かって延在する矩形状の複数のブレードとを含むブレード体と、ブレード体を収容する収容空間と、ブレード体の一端に対向するように形成され収容空間へ液体を流入させることが可能な流入口と、ブレード体の他端に対向するように形成され収容空間の液体を排出することが可能な排出口とを備える収容管とを備え、ブレードの各々は、シャフト部の中心軸に対して所定の傾斜角をなすように形成された一定の厚さの主面部と、主面部の排出口側の端縁が折れ曲がった形状の、屈曲部とを備える、ウルトラファインバブル発生装置である。 One aspect of the present invention for solving the above problems is that a plurality of rectangular shaft portions and a plurality of rectangular shape extending in the radial direction of the shaft portions with a predetermined gap between the cylindrical shaft portion and the outer peripheral surface of the shaft portion A blade body including a blade, a housing space for housing the blade body, an inlet formed opposite to one end of the blade body and capable of flowing a liquid into the housing space, and the other end of the blade body And a discharge pipe capable of discharging the liquid in the storage space, and each of the blades is formed to have a predetermined inclination angle with respect to the central axis of the shaft portion. An ultrafine bubble generating device comprising: a main surface portion having a predetermined thickness; and a bent portion having a shape in which an edge on the outlet side of the main surface portion is bent.
 本発明によれば、効率的に液体中にウルトラファインバブルを発生させることができるウルトラファインバブル発生装置を提供することができる。 According to the present invention, it is possible to provide an ultrafine bubble generator capable of efficiently generating ultrafine bubbles in a liquid.
図1は、第1の実施形態にかかるウルトラファインバブル発生装置の側面図である。FIG. 1 is a side view of the ultrafine bubble generator according to the first embodiment. 図2は、ブレードの形状を説明するための図である。FIG. 2 is a diagram for explaining the shape of the blade. 図3は、ウルトラファインバブルの生成を説明する図である。FIG. 3 is a diagram for explaining the generation of ultrafine bubbles. 図4は、第2の実施形態に係るウルトラファインバブル発生装置を説明する図である。FIG. 4 is a view for explaining an ultrafine bubble generating device according to a second embodiment. 図5は、第2の実施形態に係るウルトラファインバブル発生装置の変形例を説明する図である。FIG. 5 is a view for explaining a modification of the ultrafine bubble generation device according to the second embodiment. 図6は、第3の実施形態に係るウルトラファインバブル発生装置を説明する図である。FIG. 6 is a view for explaining an ultrafine bubble generating device according to a third embodiment. 図7は、第4の実施形態に係るウルトラファインバブル発生装置を説明する図である。FIG. 7 is a view for explaining an ultra-fine bubble generating device according to a fourth embodiment. 図8は、変形例1に係るウルトラファインバブル発生装置を説明する図である。FIG. 8 is a view for explaining an ultra-fine bubble generating device according to the first modification. 図9は、変形例2に係るウルトラファインバブル発生装置を説明する図である。FIG. 9 is a view for explaining an ultra-fine bubble generating device according to a second modification. 図10は、ウルトラファインバブル発生装置を用いた循環装置を説明する図である。FIG. 10 is a view for explaining a circulation device using the ultrafine bubble generation device.
 本発明の実施形態に係るウルトラファインバブル発生装置について、図を参照して説明する。なお、各実施形態および変形例において、同一または対応する構成には、同一の参照符号を付して適宜説明を省略する。 An ultra fine bubble generating device according to an embodiment of the present invention will be described with reference to the drawings. In each embodiment and modification, the same or corresponding components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
<第1の実施形態>
 図1に、本発明の第1の実施形態に係るウルトラファインバブル発生装置100の側面図を示す。図1に示すように、ウルトラファインバブル発生装置100は、ウルトラファインバブル発生装置100の外部から収容管200の内部に供給された液体中にウルトラファインバブルを生成した後、ウルトラファインバブルが生成された当該液体をウルトラファインバブル発生装置100の外部へ排出するように構成される。
First Embodiment
FIG. 1 shows a side view of an ultra-fine bubble generation device 100 according to a first embodiment of the present invention. As shown in FIG. 1, the ultrafine bubble generator 100 generates ultrafine bubbles in the liquid supplied to the inside of the storage tube 200 from the outside of the ultrafine bubble generator 100, and then generates the ultrafine bubbles. The liquid is discharged to the outside of the ultra-fine bubble generator 100.
 具体的には、ウルトラファインバブル発生装置100は、円柱状のシャフト部301の外周面に所定の隙間を隔てて、シャフト部301の半径方向に向かって延在する矩形状のブレード302が複数形成されたブレード体300と、ブレード体300を収容する収容空間201と、ブレード体300の一端に対向するように形成され収容空間201へ液体を流入させることが可能な流入口202と、ブレード体300の他端に対向するように形成され収容空間201から液体を排出することが可能な排出口203とを備える収容管200とを含む。そして、ブレード302は、流入口202側の端部においてシャフト部301の中心軸に対して所定の傾斜角をなすように形成された主面部302aと、主面部302aの排出口203側の端縁が主面部302aに対して折れ曲がった形状の屈曲部302bとを備えるように構成される。以下、各構成について説明する。 Specifically, in the ultrafine bubble generating device 100, a plurality of rectangular blades 302 extending in the radial direction of the shaft portion 301 are formed with a predetermined gap on the outer peripheral surface of the cylindrical shaft portion 301. A blade body 300, a housing space 201 for housing the blade body 300, an inlet 202 which is formed to face one end of the blade body 300 and which allows liquid to flow into the housing space 201; And a discharge pipe 203 formed opposite to the other end of the discharge space and capable of discharging the liquid from the storage space 201. The blade 302 has a main surface 302a formed at a predetermined inclination angle with respect to the central axis of the shaft 301 at an end on the inlet 202 side, and an edge of the main surface 302a on the outlet 203 side. Is configured to include a bent portion 302 b having a shape bent with respect to the main surface portion 302 a. Each component will be described below.
(収容管)
 収容管200は液体が流通可能な管状の部材であり、内部にブレード体300を収容することができる。図1に示すように、収容管200はブレード体300を収容する収容空間201と、収容空間201と連通し液体が供給される流入口202および液体が排出される排出口203とを備える。流入口202および排出口203は、例えば収容管200の両端に形成することができる。また、収容空間201はブレード体300を収容することが可能なように、例えば、略円筒形状に形成することができる。なお、以下の説明では便宜上、図1に示すように、収容管200の流入口202側を上流側、排出口203側を下流側と呼ぶ。流入口202および排出口203の内周の直径は8mm程度とすることができる。
(Containing pipe)
The storage tube 200 is a tubular member through which liquid can flow, and can accommodate the blade 300 therein. As shown in FIG. 1, the storage tube 200 includes a storage space 201 for storing the blade 300, an inlet 202 communicating with the storage space 201 and supplied with a liquid, and an outlet 203 for discharging the liquid. The inlet 202 and the outlet 203 can be formed at both ends of the storage tube 200, for example. Further, the housing space 201 can be formed, for example, in a substantially cylindrical shape so as to be able to house the blade body 300. In the following description, for convenience, as shown in FIG. 1, the inlet 202 side of the storage tube 200 is referred to as the upstream side, and the outlet 203 side is referred to as the downstream side. The diameter of the inner circumference of the inlet 202 and the outlet 203 can be about 8 mm.
(ブレード体)
 ブレード体300は、収容管200の内部において旋回するように液体の流れを所定の方向に誘導するとともに液体の少なくとも一部に乱流を発生させることにより、液体中にウルトラファインバブルを生成する部材である。図1に示すように、ブレード体300は円筒状のシャフト部301の外周面に、円周方向およびシャフト部301の軸方向のそれぞれにおいて所定の隙間を空けて配置された略板状の部材であるブレード302を複数備える。ブレード体300は収容空間201内での、円周方向の回転および軸方向への動きが規制されるように形成されていてもよい。具体的には、例えば収容空間201において、ブレード302の先端が収容管200の内周面に当接するように形成することにより、ブレード体300を固定することができる。また、図示しないが収容管200から収容空間201に向かって突出する突起等を設けてブレード体300の動きを規制するようにしてもよい。また、収容管200の内周面とブレード302の先端とに当接して、ブレード302の補強およびブレード体300の動きの規制をすることができるリング状の部材を収容管200とブレード体300との間に嵌入してもよい。
(Blade body)
A member that generates ultrafine bubbles in a liquid by guiding the flow of the liquid in a predetermined direction so that the blade 300 swirls inside the storage tube 200 and generating turbulence in at least a part of the liquid. It is. As shown in FIG. 1, the blade 300 is a substantially plate-like member disposed on the outer peripheral surface of the cylindrical shaft portion 301 with a predetermined gap in each of the circumferential direction and the axial direction of the shaft portion 301. A plurality of blades 302 are provided. The blade body 300 may be formed such that circumferential rotation and axial movement within the housing space 201 are restricted. Specifically, the blade body 300 can be fixed, for example, by forming the tip end of the blade 302 in contact with the inner peripheral surface of the storage tube 200 in the storage space 201. Further, although not shown, a projection or the like protruding from the storage tube 200 toward the storage space 201 may be provided to restrict the movement of the blade 300. Further, a ring-shaped member which can abut on the inner circumferential surface of the housing tube 200 and the tip of the blade 302 to reinforce the blade 302 and restrict the movement of the blade body 300 is the housing tube 200 and the blade body 300. May be inserted between
 ブレード体300のブレード302は、なるべく多くの液体を旋回させるように配置されることが好ましい。そこで例えば、図3に示すように、ブレード302の隙間を通過した液体が、シャフト部301の軸方向に平行に流れると、下流側のブレード302に当たるように、ブレード302を配置し、液体が軸方向に平行に流れて各ブレード302間を素通りすることを抑制できるようにしてもよい。 The blades 302 of the blade 300 are preferably arranged to pivot as much liquid as possible. Then, for example, as shown in FIG. 3, when the liquid passing through the gap of the blade 302 flows parallel to the axial direction of the shaft portion 301, the blade 302 is disposed so as to hit the blade 302 on the downstream side. It may be possible to prevent the flow parallel to the direction and bypassing between the blades 302.
 図2に、複数のブレード302の斜視図(図2の(a))と、ブレード302の正面図、平面図、および側面図(図2の(b))とを示す。図2に示すように、ブレード302は、シャフト部301の中心軸に対して傾斜を有するように形成された板状の部材である主面部302aと、主面部302aの下流側の端縁が折れ曲がった形状の屈曲部302bとを含む。図2に示すように、主面部302aは、例えば一定の厚さの矩形状とすることができる。屈曲部302bの形状は、主面部302aの下流側の端縁が折れ曲がっていれば形状は限定されず、例えば図2の(b)に示すように、屈曲部302bの主面部302aとは反対側の端部と主面部302aとの間にわたる傾斜面を有するように形成してもよい。 FIG. 2 shows a perspective view of the plurality of blades 302 ((a) in FIG. 2), and a front view, a plan view, and a side view ((b) in FIG. 2) of the blades 302. As shown in FIG. 2, the blade 302 has a main surface 302 a which is a plate-like member formed to be inclined with respect to the central axis of the shaft 301, and a downstream end edge of the main surface 302 a is bent. And a bent portion 302b having a square shape. As shown in FIG. 2, the main surface portion 302 a can be, for example, a rectangular shape having a constant thickness. The shape of the bending portion 302b is not limited as long as the downstream end edge of the main surface portion 302a is bent, for example, as shown in FIG. 2B, the opposite side to the main surface portion 302a of the bending portion 302b It may be formed to have an inclined surface that extends between the end of the and the main surface portion 302a.
 ブレード体300の外径D1は、一例として15mm~20mm程度とすることができる。この場合、シャフト部301の外径D2は10mm~15mm程度、ブレード302のシャフト部301との接続部から先端までの高さH1は2.5mm程度、屈曲部302bの主面部302aから先端まで距離である高さH2は1mm~1.5mm程度が好適である。また、ブレード302の主面部302aの法線ベクトルとブレード体300の中心軸とがとなす鋭角αは、特に限定されないが、例えば45°程度とすることができる。ブレード体300の中心軸方向における長さは60mm~80mm程度とすることができる。ブレード体300の中心軸方向に並ぶブレード302の数は、15枚~20枚程度とすることができる。なお、屈曲部302bの主面部302aに対する屈曲方向は限定されない。 The outer diameter D1 of the blade body 300 can be, for example, about 15 mm to 20 mm. In this case, the outer diameter D2 of the shaft portion 301 is about 10 mm to 15 mm, the height H1 from the connection portion of the blade 302 with the shaft portion 301 to the tip is about 2.5 mm, and the distance from the main surface 302a of the bent portion 302b to the tip The height H2 which is preferably about 1 mm to 1.5 mm. The acute angle α between the normal vector of the main surface portion 302 a of the blade 302 and the central axis of the blade 300 is not particularly limited, but may be, for example, about 45 °. The length of the blade 300 in the central axis direction can be about 60 mm to 80 mm. The number of the blades 302 aligned in the central axis direction of the blade body 300 can be about 15 to 20. In addition, the bending direction with respect to the main surface part 302a of the bending part 302b is not limited.
(整流部材)
 図1に示すように、ブレード体300の上流側および下流側の端部のそれぞれに、上流側整流部材303aおよび下流側整流部材303bを設けてもよい。上流側整流部材303aは収容空間201に流入する液体がブレード体300に向かって滑らかに流れるように整流する部材である。また、下流側整流部材303bはシャフト部301の下流側の端部から流出する液体が排出口203に向かって滑らかに流れるように整流する部材である。
(Rectifying member)
As shown in FIG. 1, the upstream rectification member 303 a and the downstream rectification member 303 b may be provided at each of the upstream and downstream ends of the blade body 300. The upstream rectifying member 303 a rectifies the liquid flowing into the accommodation space 201 so that the liquid flows smoothly toward the blade 300. Further, the downstream side rectification member 303 b is a member that rectifies the liquid flowing out from the downstream end of the shaft portion 301 so as to smoothly flow toward the discharge port 203.
 図1に示すように、上流側整流部材303aはシャフト部301の上流側の端部に設けられ上流側に向かって突出する円錐状の部材である。また、下流側整流部材303bはシャフト部301の下流側の端部に設けられ下流側に向かって突出する円錐状の部材である。 As shown in FIG. 1, the upstream rectifying member 303 a is a conical member provided at the upstream end of the shaft portion 301 and protruding toward the upstream. The downstream side flow adjustment member 303 b is a conical member provided at the downstream end of the shaft portion 301 and protruding toward the downstream side.
(ウルトラファインバブルの生成について)
 次に、図1~図3を用いてウルトラファインバブル発生装置100によるウルトラファインバブルの生成について説明する。図3は、シャフト部301の半径方向から見た複数のブレード302およびその間を流れる液体の様子を模式的に示した図である。なお、図中の矢印は液体の流れを示す。
(About the generation of ultra fine bubble)
Next, the generation of ultrafine bubbles by the ultrafine bubble generator 100 will be described with reference to FIGS. 1 to 3. FIG. 3 is a view schematically showing the plurality of blades 302 viewed from the radial direction of the shaft portion 301 and the state of liquid flowing therebetween. The arrows in the figure indicate the flow of liquid.
 ウルトラファインバブル発生装置100に供給され流入口202から収容管200の収容空間201に流入し上流側整流部材303aの表面を通過した液体は、白色の矢印で示すように、初めにシャフト部301の最も上流側において、シャフト部301の円周方向に並んで配置された複数のブレード302(第1のブレード群302-1という)の主面部302aに衝突する。主面部302aに衝突した液体は、図3に直線状の黒色の矢印で示すように、主面部302aの表面に沿って流れる。 The liquid supplied to the ultrafine bubble generator 100 and flowing into the storage space 201 of the storage pipe 200 from the inflow port 202 and passing through the surface of the upstream rectifying member 303a is first of all shown in the shaft portion 301 as shown by the white arrow. At the most upstream side, it collides with main surface portions 302 a of a plurality of blades 302 (referred to as a first blade group 302-1) arranged in line in the circumferential direction of the shaft portion 301. The liquid that has collided with the main surface portion 302a flows along the surface of the main surface portion 302a, as shown by a straight black arrow in FIG.
 主面部302aの表面に沿って流れる液体の一部は、ブレード302が主面部302aの端部において途切れるため、屈曲部302bの周辺において、図3に渦巻き状の黒色の矢印で示すように、屈曲部302bの方向に向けた流れ(乱流という)が生じる。そして、ブレード302の端部で乱流となった液体の内部には、ウルトラファインバブルが生成されると考えられる。この過程で液体の分子構造が不安定になり、更なる衝突と分断で発生した微細な泡がマイナスの電荷を帯び、急激に縮小し、超微細気泡、すなわちウルトラファインバブルに変化している可能性がある。 Since a part of the liquid flowing along the surface of the main surface portion 302a is broken at the end of the main surface portion 302a, the blade 302 bends around the bending portion 302b, as shown by a spiral black arrow in FIG. A flow (referred to as turbulent flow) is generated in the direction of the portion 302b. Then, it is considered that an ultrafine bubble is generated inside the turbulent liquid at the end of the blade 302. During this process, the molecular structure of the liquid becomes unstable, and the fine bubbles generated by further collisions and divisions are negatively charged and can be rapidly shrunk to become ultrafine bubbles, ie, ultrafine bubbles. There is sex.
 第1のブレード群302-1の主面部302aの端部を通過した液体は、乱流を生じつつ、シャフト部301の中心軸に対して全体として螺旋状に流れながら、第1のブレード群302-1の下流側に隣接して、シャフト部301の円周方向に並んで配置された複数のブレード302(第2のブレード群302-2という)の主面部302aに沿って流れる。そして、第2のブレード群302-2の主面部302aの表面に沿って流れる液体においても、屈曲部302bの周辺において液体の一部に乱流が発生する。 The liquid that has passed through the end portion of the main surface portion 302 a of the first blade group 302-1 flows helically as a whole with respect to the central axis of the shaft portion 301 while generating turbulent flow. It flows along the major surface portions 302a of the plurality of blades 302 (referred to as a second blade group 302-2) arranged in the circumferential direction of the shaft portion 301, adjacent to the downstream side of -1. Then, in the liquid flowing along the surface of the main surface portion 302a of the second blade group 302-2, turbulent flow is generated in part of the liquid around the bending portion 302b.
 収容空間201に流入した液体は、上述のように、複数のブレード302間の隙間を通過することを繰り返しながら、最終的にシャフト部301の下流側の端部に到達する。シャフト部301の下流側の端部に到達した液体は、下流側整流部材303bの表面に沿って流れた後、排出口203を通過してウルトラファインバブル発生装置100から排出される。 The liquid having flowed into the accommodation space 201 finally reaches the downstream end of the shaft portion 301 while repeatedly passing through the gaps between the plurality of blades 302 as described above. The liquid that has reached the downstream end of the shaft portion 301 flows along the surface of the downstream flow straightening member 303 b and then passes through the discharge port 203 and is discharged from the ultrafine bubble generator 100.
 このように、収容管200に流入した液体は、シャフト部301の外周を螺旋状に旋回しながら流れる。そして、液体が各ブレード302の屈曲部302bで乱流となることで、液体の内部にウルトラファインバブルが生成されると考えられる。この結果、ウルトラファインバブル発生装置100からはウルトラファインバブルを含んだ液体が排出される。 As described above, the liquid that has flowed into the storage tube 200 flows while spirally swirling around the outer periphery of the shaft portion 301. Then, it is considered that ultrafine bubbles are generated inside the liquid by the liquid becoming a turbulent flow at the bending portion 302 b of each blade 302. As a result, the ultrafine bubble generator 100 discharges the liquid containing the ultrafine bubble.
 したがって、本発明に係るウルトラファインバブル発生装置100によれば、液体を流通させることにより液体中にウルトラファインバブルを発生させることができる。 Therefore, according to the ultra-fine bubble generating device 100 according to the present invention, the ultra-fine bubbles can be generated in the liquid by circulating the liquid.
(ブレードの配置)
 乱流の発生を促進するために、複数のブレード302は液体がシャフト部301の周りを滑らかに旋回しながら螺旋状に通過するように配置されるのが好適である。そのため、複数のブレード302は、主面部302aのシャフト部301側の端縁が、シャフト部301の外周面における仮想的な螺旋状の線に沿うように配置されている。また、図3に示すように、仮想的な螺旋状の線に沿って、上流側の円周方向に隣接する2つのブレード302の下流側端部の間に、下流側に隣接する他のブレード302の先端が位置するように複数のブレード302を配置してもよい。複数のブレード302をこのように配置することにより、上流側のブレード302によっておこされた乱流が、下流側のブレード302の先端によって分割されさらに複雑な乱流が発生し、より効率的にウルトラファインバブルが発生する可能性が高い。
(Blade placement)
In order to promote the occurrence of turbulent flow, it is preferable that the plurality of blades 302 be arranged to pass the liquid in a spiral while smoothly swirling around the shaft portion 301. Therefore, the plurality of blades 302 are arranged such that the end edge of the main surface portion 302 a on the shaft portion 301 side follows a virtual spiral line on the outer peripheral surface of the shaft portion 301. Also, as shown in FIG. 3, along the imaginary spiral line, between the downstream end of the upstream circumferentially adjacent two blades 302, another downstream blade adjacent to the downstream side. A plurality of blades 302 may be arranged so that the tip of 302 is located. By arranging the plurality of blades 302 in this manner, the turbulent flow caused by the upstream blade 302 is divided by the tip of the downstream blade 302 to generate more complicated turbulent flow, and the more efficient ultra There is a high possibility that a fine bubble will occur.
 ウルトラファインバブル発生装置100に流入する液体の粘性、流量、流速、液圧などに応じ、ブレード302の傾斜角、個数、大きさなどを適宜設定することで、所望の量のウルトラファインバブルを得ることが可能である。 A desired amount of ultrafine bubbles can be obtained by appropriately setting the inclination angle, the number, the size, and the like of the blades 302 in accordance with the viscosity, flow rate, flow rate, fluid pressure, etc. of the fluid flowing into the ultrafine bubble generator 100. It is possible.
 このように、ウルトラファインバブル発生装置100では、板状のブレード302の下流側端部を折り返した形状とすることで、乱流を十分に発生させながら、ブレードを三角柱形状とするよりも、流路を十分に確保できるため、効率的にウルトラファインバブルを発生させることができる。 As described above, in the ultrafine bubble generating apparatus 100, the downstream end of the plate-like blade 302 is folded back, so that the turbulent flow is generated sufficiently, and the blade has a flow rather than the triangular prism shape. Since a sufficient path can be secured, ultra fine bubbles can be generated efficiently.
 また、ウルトラファインバブル発生装置100では、上述のように円周方向に隣接する2つのブレード302の下流側端部の間に、下流側に隣接する他のブレード302の先端を配置することで、収容管200の中でブレード体300のブレード302に沿って螺旋状に液体が移動しながら、各ブレード302の下流側の端部において乱流を発生させ、これを下流側に隣接するブレード302に衝突することによりさらに複雑な乱流を発生させ得る。したがって、ウルトラファインバブル発生装置100は外部から気体を供給しなくても、液体中の空気等が微細化されウルトラファインバブルをより効率的に発生させることができる可能性が高い。なお、ウルトラファインバブルの実体は、中空の液体分子クラスターである可能性もある。 Further, in the ultrafine bubble generating device 100, by disposing the tip of the other blade 302 adjacent on the downstream side between the downstream ends of the two blades 302 adjacent in the circumferential direction as described above, While the liquid moves in a spiral manner along the blades 302 of the blade 300 in the storage tube 200, turbulence is generated at the downstream end of each blade 302 and this is caused to flow to the blade 302 adjacent to the downstream. Collisions can generate more complex turbulence. Therefore, there is a high possibility that the air or the like in the liquid can be miniaturized and ultrafine bubbles can be generated more efficiently, without supplying the gas from the outside. In addition, the entity of the ultrafine bubble may be a hollow liquid molecule cluster.
<第2の実施形態>
 次に、第2の実施形態に係るウルトラファインバブル発生装置110について説明する。ウルトラファインバブル発生装置100とウルトラファインバブル発生装置110との相違は、ブレード体の構造であるため、以下ではウルトラファインバブル発生装置110に用いられるブレード体310を中心に説明する。図4に、ブレード体310の分解図(図4の(a))およびブレード体310を構成するブレード体エレメント311およびスペーサー312の正面図および側面図を示す(図4の(b))。
Second Embodiment
Next, the ultra fine bubble generation device 110 according to the second embodiment will be described. The difference between the ultra-fine bubble generator 100 and the ultra-fine bubble generator 110 is the structure of the blade, and therefore, the blade 310 used in the ultra-fine bubble generator 110 will be mainly described below. FIG. 4 shows an exploded view of the blade 310 (FIG. 4A) and a front view and a side view of the blade element 311 and the spacer 312 constituting the blade 310 (FIG. 4B).
 図4の(a)に示すように、ブレード体310は、円柱状の部材の外周面に、屈曲部302bを有する12枚のブレード302が形成された複数のブレード体エレメント311と、円柱状のスペーサー312とにより構成される。ブレード体310は、ブレード体エレメント311とスペーサー312とを交互に積層することにより形成される。なお、各ブレード体エレメント311におけるブレード302の枚数は12枚~16枚が好適であるが、これに限定されず適宜設定可能である。また、円柱状の部材の厚みは、例えば4mm以下とすることができる。 As shown in (a) of FIG. 4, the blade body 310 has a plurality of blade body elements 311 in which twelve blades 302 having a bending portion 302 b are formed on the outer peripheral surface of a cylindrical member, and a cylindrical shape. It is comprised by the spacer 312. The blade body 310 is formed by alternately stacking the blade body elements 311 and the spacers 312. The number of blades 302 in each blade element 311 is preferably 12 to 16 but is not limited to this and can be set as appropriate. The thickness of the cylindrical member can be, for example, 4 mm or less.
 ウルトラファインバブル発生装置110では、ブレード体310を構成する複数のブレード体エレメント311の数、形状とスペーサー312の数、サイズとを適宜調節してブレード体310の長さを調節することで、乱流の発生効率を好適化してウルトラファインバブルの発生数を調整することができる。 In the ultra fine bubble generator 110, the length of the blade 310 is adjusted by appropriately adjusting the number of the plurality of blade body elements 311 constituting the blade 310, the shape, the number of the spacers 312, and the size thereof. The flow generation efficiency can be optimized to adjust the number of ultra fine bubbles generated.
 図4の(b)は、ブレード体エレメント311およびスペーサー312を3つの方向から示した図である。図4の(b)に示すように、ブレード体エレメント311およびスペーサー312は、一例としてブレード体エレメント311とスペーサー312とを積層する際にブレード体エレメント311とスペーサー312とが接する面に、これらを結合するための嵌合孔311a、312a及び嵌合凸部311b、312bが形成されている。 FIG. 4B is a view showing the blade body element 311 and the spacer 312 from three directions. As shown in (b) of FIG. 4, the blade body element 311 and the spacer 312 are, for example, on the surface where the blade body element 311 and the spacer 312 are in contact when laminating the blade body element 311 and the spacer 312. Fitting holes 311a and 312a and fitting projections 311b and 312b for coupling are formed.
 ブレード体エレメント311およびスペーサー312はプラスチック成型やプレス成形などにより一体的に製造することができる。また、これらを積層することでブレード体を容易に製造することができる。したがって、本実施形態では、非常に低コストでウルトラファインバブル発生装置110を製造することができる。 The blade body element 311 and the spacer 312 can be integrally manufactured by plastic molding, press molding or the like. Moreover, a blade body can be easily manufactured by laminating | stacking these. Therefore, in the present embodiment, the ultra fine bubble generator 110 can be manufactured at very low cost.
 ブレード体エレメント311およびスペーサー312の連接には周知の方法を用いることができ、例えば接着剤で接着してもよく、超音波溶着してもよく、単に嵌合させるのみでもよい。 A known method can be used to connect the blade body element 311 and the spacer 312, for example, it may be bonded with an adhesive, may be ultrasonically welded, or may be simply fitted.
 なお、以上の説明では、ブレード体310をブレード体エレメント311およびスペーサー312により構成する例を説明したが、ブレード体310はブレード体エレメント311のみによって構成してもよい。 In the above description, an example in which the blade body 310 is configured by the blade body element 311 and the spacer 312 has been described, but the blade body 310 may be configured by only the blade body element 311.
 ブレード体には、ブレード302を補強するための部材を設けてもよい。図5に、変形例に係るブレード体330の断面図および正面図を示す。ブレード体310とブレード体330との相違は、ブレード302を補強するための補強部材331の有無である。図5に示すように、補強部材331は、円筒状の部材であって、複数のブレード302の、ブレード体330の外径方向の先端部をつなぐ様にして設けられている。ブレード体330によれば、補強部材331によりブレード302を補強できる。このため、液体が通過する際のブレード302の変形を抑制しやすい。 The blade body may be provided with a member for reinforcing the blade 302. FIG. 5 shows a cross-sectional view and a front view of a blade body 330 according to a modification. The difference between the blade body 310 and the blade body 330 is the presence or absence of a reinforcing member 331 for reinforcing the blade 302. As shown in FIG. 5, the reinforcing member 331 is a cylindrical member, and is provided so as to connect the tips of the plurality of blades 302 in the radial direction of the blade body 330. According to the blade body 330, the reinforcing member 331 can reinforce the blade 302. Therefore, it is easy to suppress the deformation of the blade 302 when the liquid passes.
<第3の実施形態>
 次に、第3の実施形態に係るウルトラファインバブル発生装置120ついて説明する。ウルトラファインバブル発生装置100とウルトラファインバブル発生装置120との相違は、ブレード体の構造であるため、以下ではウルトラファインバブル発生装置120に用いるブレード体320を中心に説明する。図6に、ブレード体320の分解図(図6の(a))およびブレード体320を構成するブレード体エレメント321およびスペーサー322の正面図および側面図を示す(図6の(b))。
Third Embodiment
Next, an ultra-fine bubble generation device 120 according to a third embodiment will be described. The difference between the ultra-fine bubble generator 100 and the ultra-fine bubble generator 120 is the structure of the blade, and therefore, the blade 320 used in the ultra-fine bubble generator 120 will be mainly described below. FIG. 6 shows an exploded view of the blade body 320 (FIG. 6A) and front and side views of the blade body element 321 and the spacer 322 that constitute the blade body 320 (FIG. 6B).
 図6の(a)、(b)に示すように、ブレード体320は、円盤状の部材の外周面に、屈曲部302bを有する8枚のブレード302が形成された複数のブレード体エレメント321と、円錐台状のスペーサー322とにより構成される。ブレード体320は、ブレード体エレメント321とスペーサー322とを交互に積層することにより形成される。なお、ブレード302の枚数は、8枚に限定されず適宜設定可能である。 As shown in (a) and (b) of FIG. 6, the blade body 320 includes a plurality of blade body elements 321 in each of which eight blades 302 having bent portions 302 b are formed on the outer peripheral surface of the disk-like member. , And a truncated cone spacer 322. The blade body 320 is formed by alternately stacking the blade body elements 321 and the spacers 322. The number of blades 302 is not limited to eight and can be set as appropriate.
 また、図6の(b)に示すように、複数のブレード体エレメント321およびスペーサー322は、中央に貫通孔321a、322aをそれぞれ備える。ウルトラファインバブル発生装置120では、図6の(a)に示すように、上流側整流部材323aまたは下流側整流部材323b(不図示)の底面から延伸する軸状部材を設けて、ブレード体エレメント321およびスペーサー322の貫通孔321a、322aにこの軸状部材を挿通して、ブレード体エレメント321とスペーサー322とを積層するように構成される。 Further, as shown in (b) of FIG. 6, the plurality of blade body elements 321 and the spacer 322 respectively have through holes 321 a and 322 a at the center. In the ultra fine bubble generating device 120, as shown in (a) of FIG. 6, an axial member extending from the bottom surface of the upstream rectification member 323a or the downstream rectification member 323b (not shown) is provided. The shaft-like member is inserted into the through holes 321 a and 322 a of the spacer 322 to laminate the blade body element 321 and the spacer 322.
 ブレード体320においても、ブレード体310と同様に、複数のブレード体エレメント321の数、形状とスペーサー322の数、サイズとを適宜調節して、ウルトラファインバブルの発生数を調整することができる。 Also in the blade body 320, similarly to the blade body 310, the number of the plurality of blade body elements 321, the shape, the number of the spacers 322, and the size can be appropriately adjusted to adjust the number of generated ultrafine bubbles.
 ブレード体エレメント321は円盤状の部材とブレード302とにより構成されているため、鉄、アルミニウムなどの金属板を用いたプレス成形などにより製造することができる。具体的には、金属板から、平坦な状態の複数のブレード302を備えるブレード体エレメント321を打ち抜き、その後ブレード302を折り曲げて傾斜角および屈曲部302bを設けることにより、ブレード体エレメント321を形成することができる。このため、ブレード体320によっても、低コストでウルトラファインバブル発生装置120を製造することができる。屈曲部302bは、折り曲げて形成する代わりに、打ち抜き時のバリをとらないことによって形成してもよい。 The blade element 321 is formed of a disk-shaped member and the blade 302, and can be manufactured by press molding using a metal plate such as iron or aluminum. Specifically, a blade body element 321 is punched out of a metal plate and provided with a plurality of blades 302 in a flat state, and then the blade 302 is bent to form a blade angle 321 and a bent portion 302b to form the blade body element 321. be able to. Therefore, the blade body 320 can also manufacture the ultrafine bubble generator 120 at low cost. The bent portion 302b may be formed by not taking burrs at the time of punching instead of bending and forming.
<第4の実施形態>
 次に、第4の実施形態に係るウルトラファインバブル発生装置130について説明する。ウルトラファインバブル発生装置100とウルトラファインバブル発生装置130との相違は、整流部材の構造であるため、以下ではウルトラファインバブル発生装置130に用いる整流部材333を中心に説明する。図7に、ウルトラファインバブル発生装置130の部分的な側面図(図7の(a))および整流部材333の平面図および正面図を示す(図7の(b))。
Fourth Embodiment
Next, an ultra fine bubble generation device 130 according to a fourth embodiment will be described. The difference between the ultra fine bubble generating device 100 and the ultra fine bubble generating device 130 is the structure of the flow straightening member, and therefore, the flow straightening member 333 used in the ultra fine bubble generating device 130 will be mainly described below. FIG. 7 shows a partial side view (FIG. 7 (a)) of the ultrafine bubble generator 130 and a plan view and a front view of the rectifying member 333 (FIG. 7 (b)).
 整流部材333は流入口202から流入する液体を効率的にブレード体300に誘導するために設けられる。図7の(b)に示すように、整流部材333は、外周に上流側から下流側に向かって、複数の螺旋状のブレード333aが等間隔に形成されている。整流部材333は、一例として4枚のブレード333aを備えるが、ブレード333aの数は特に限定されない。 The rectifying member 333 is provided to efficiently guide the liquid flowing in from the inlet 202 to the blade 300. As shown in (b) of FIG. 7, in the straightening member 333, a plurality of spiral blades 333 a are formed at equal intervals from the upstream side toward the downstream side on the outer periphery. The straightening member 333 includes four blades 333a as an example, but the number of the blades 333a is not particularly limited.
 ウルトラファインバブル発生装置130は、図7の(a)に白色の矢印で示すように、流入口202から流入する液体をブレード333aの間を通過させる間に方向を徐々に変化させ、主面部302aに速やかに沿わせて流すことができる。この結果、ウルトラファインバブル発生装置130内部における液体の流通を促進することができる。 As indicated by the white arrows in FIG. 7A, the ultrafine bubble generator 130 gradually changes the direction while passing the liquid flowing from the inflow port 202 between the blades 333a, as shown by the white arrows in FIG. Flow along the As a result, the flow of the liquid inside the ultrafine bubble generator 130 can be promoted.
 なお、以上の説明では、整流部材333をブレード体300上流側に設けた形態を例にして説明したが、整流部材333は下流側整流部材303bと同様に、ブレード体300の下流側に設けて用いてもよい。これにより、排出口203に流れる液体の流通を促進することも可能である。 In the above description, although the flow straightening member 333 is provided on the upstream side of the blade 300 as an example, the flow straightening member 333 is provided on the downstream side of the blade 300 similarly to the downstream flow straightening member 303b. You may use. Thereby, it is also possible to promote the flow of the liquid flowing to the discharge port 203.
 また、本実施形態では、ブレード体300を用いる場合を例に挙げて説明したが、ウルトラファインバブル発生装置130は整流部材333を備えれば、ブレード体にはブレード体310またはブレード体320を用いることも可能である。 Moreover, although the case where the blade body 300 was used was mentioned as an example and demonstrated in this embodiment, if the ultrafine bubble generation apparatus 130 is provided with the rectification | straightening member 333, the blade body 310 or the blade body 320 is used for a blade body. It is also possible.
<変形例1>
 以上の説明では、ブレード体を固定して、液体の供給のみによってウルトラファインバブルを生成する方法を説明したが、次に、ウルトラファインバブル発生装置に外部から気体を供給する変形例1について説明する。図8の(a)~図8の(d)には、それぞれ変形例1に係るウルトラファインバブル発生装置140a~140dの側面図を示す。
<Modification 1>
In the above description, the method of fixing the blade and generating the ultrafine bubble by only supplying the liquid has been described. Next, the first modification of supplying the gas from the outside to the ultrafine bubble generator will be described. . (A) to (d) of FIG. 8 show side views of ultrafine bubble generating devices 140a to 140d according to the first modification, respectively.
 ウルトラファインバブル発生装置100とウルトラファインバブル発生装置140a~140dとの相違点は外気供給手段141の有無である。外気供給手段141は、外気をウルトラファインバブル発生装置101の内部を流れる液体に取り入れるための手段である。 The difference between the ultra fine bubble generating device 100 and the ultra fine bubble generating devices 140 a to 140 d is the presence or absence of the outside air supply means 141. The outside air supply means 141 is a means for taking in the outside air into the liquid flowing inside the ultra fine bubble generator 101.
 図8の(a)~図8の(c)に示すウルトラファインバブル発生装置140a~140cにおいて、外気供給手段141は内部に気体が流通可能な流通孔を備えたチューブであり、例えばプラスチック製のチューブ等を用いることができる。 In the ultrafine bubble generating devices 140a to 140c shown in (a) to (c) of FIG. 8, the outside air supply means 141 is a tube provided with a flow passage through which a gas can flow, for example, made of plastic A tube or the like can be used.
 図8の(a)、図8の(b)に示すウルトラファインバブル発生装置140a、140bでは、外気供給手段141は外気が吐出される側の一端が下流側整流部材303bの先端と所定の隙間を有するようにして配置され、気体が吸入される側の他端が、ウルトラファインバブル発生装置140a、140bの外部等の外気を吸い込むことができる位置に配置される。 In the ultra fine bubble generating devices 140a and 140b shown in (a) of FIG. 8 and (b) of FIG. 8, one end of the outside air supply means 141 on the side to which outside air is discharged is a predetermined gap with the tip of the downstream side rectification member 303b. The other end on the side where gas is sucked is disposed at a position where the outside air can be sucked in, such as the outside of the ultra-fine bubble generating devices 140a and 140b.
 より詳細には、ウルトラファインバブル発生装置140aでは、ブレード体300の軸方向に貫通孔があけられて、流入口202側から外気供給手段141がこの貫通孔を介して通されている。また、ウルトラファインバブル発生装置140bでは、排出口203側から外気供給手段141が通されている。 More specifically, in the ultrafine bubble generator 140a, a through hole is opened in the axial direction of the blade 300, and the outside air supply means 141 is passed from the inflow port 202 side through the through hole. Further, in the ultra fine bubble generating device 140 b, the outside air supply means 141 is passed from the side of the discharge port 203.
 また、図8の(c)に示すウルトラファインバブル発生装置140cでは、外気供給手段141は外気が吐出される側の一端が、ブレード体300の内部にブレード体300の上流側端部とシャフト部301の外周面とを連通するように形成された貫通孔に配置され、気体が吸入される側の他端が、ウルトラファインバブル発生装置140cの外部等の外気を吸い込むことができる位置に配置される。 Further, in the ultrafine bubble generator 140c shown in FIG. 8C, one end of the outside air supply means 141 on the side to which outside air is discharged is the upstream end portion of the blade 300 and the shaft portion inside the blade 300. It is disposed in a through hole formed to communicate with the outer peripheral surface of 301, and the other end on the side where gas is sucked is disposed at a position where it can suck in external air such as the outside of ultrafine bubble generator 140c. Ru.
 このように構成されたウルトラファインバブル発生装置140a~140cは、ウルトラファインバブル発生装置140a~140cの内部を液体が流れる勢いによって外気供給手段141から外気が吸入され、乱流に巻き込まれる。吸入された外気は液体の内部に例えば直径1~100μmの範囲のマイクロバブルあるいはこれ以上の大きさのバブルとなって排出口203から排出される。 In the ultrafine bubble generating devices 140a to 140c configured as described above, the external air is sucked from the external air supply means 141 by the force of the liquid flowing inside the ultrafine bubble generating devices 140a to 140c, and is caught in the turbulent flow. The sucked outside air is discharged from the discharge port 203 as a microbubble of 1 to 100 μm in diameter or a bubble of a larger size, for example, inside the liquid.
 図8の(d)に示すウルトラファインバブル発生装置140dにおいて、外気供給手段141は内部に気体が流通可能な流通孔を備えたチューブと、このチューブに外気を供給できるポンプとにより構成される。 In the ultra-fine bubble generator 140d shown in (d) of FIG. 8, the outside air supply means 141 is composed of a tube having a flow hole through which gas can flow, and a pump capable of supplying outside air to the tube.
 ウルトラファインバブル発生装置140dでは、外気供給手段141はチューブの外気が吐出される側の一端が上流側整流部材303aの先端と所定の隙間を有するようにして配置される。 In the ultra fine bubble generating device 140d, the outside air supply means 141 is disposed such that one end of the tube on the side where the outside air is discharged has a predetermined gap with the tip of the upstream side rectification member 303a.
 このように構成されたウルトラファインバブル発生装置140dは、ポンプがチューブを介して外気を液体中に吐出する。吐出された外気は液体の内部にマイクロバブルとなって吐出され、ブレード体300により生成されるウルトラファインバブルとともに排出口203から排出される。 In the ultra fine bubble generator 140 d configured as described above, the pump discharges the outside air into the liquid through the tube. The discharged outside air is discharged as microbubbles into the liquid, and is discharged from the discharge port 203 together with the ultrafine bubbles generated by the blade 300.
 したがって、変形例に係るウルトラファインバブル発生装置140a~140dによれば、ウルトラファインバブルとともにマイクロバブルを含んだ液体を生成することが可能となる。 Therefore, according to the ultrafine bubble generating devices 140a to 140d according to the modification, it is possible to generate a liquid containing microbubbles together with the ultrafine bubbles.
 ウルトラファインバブル発生装置140a、140b、および140dでは、外気供給手段141のチューブの吐出側端部の位置を軸方向に移動して、吐出側端部と上流側整流部材303aまたは下流側整流部材303bの先端との所定の隙間を適宜変更することにより、外気が乱流に巻き込まれる程度を調整し、マイクロバブルの大きさおよび/または生成量を変更することができる。また、外気由来のウルトラファインバブルも生成できる。 In the ultra fine bubble generating devices 140a, 140b, and 140d, the position of the discharge side end of the tube of the outside air supply means 141 is moved in the axial direction, and the discharge side end and the upstream side straightening member 303a or the downstream side straightening member 303b By appropriately changing the predetermined gap with the tip of the tip, it is possible to adjust the degree to which the outside air is caught in the turbulent flow and to change the size and / or amount of the microbubbles. In addition, extra fine bubbles derived from ambient air can also be generated.
 なお、ウルトラファインバブル発生装置140a~140dには、ブレード体310またはブレード体320を用いてもよいし、整流部材333を用いてもよい。 In addition, the blade body 310 or the blade body 320 may be used for the ultrafine bubble generating devices 140a to 140d, or the flow control member 333 may be used.
<変形例2>
 次に、ウルトラファインバブル発生装置の外部から、ブレード体300を回転させる変形例2について説明する。図9の(a)、図9の(b)には、それぞれ変形例2に係るウルトラファインバブル発生装置150a、150bを示す。
<Modification 2>
Next, Modification 2 in which the blade 300 is rotated from the outside of the ultrafine bubble generator will be described. FIGS. 9A and 9B show ultra fine bubble generating devices 150a and 150b according to the second modification, respectively.
 ウルトラファインバブル発生装置100とウルトラファインバブル発生装置150a、150bとの相違点はブレード体300を回転させることができる回転手段151の有無である。 The difference between the ultra fine bubble generating device 100 and the ultra fine bubble generating devices 150 a and 150 b is the presence or absence of the rotating means 151 capable of rotating the blade 300.
 図9の(a)に示すように、ウルトラファインバブル発生装置150aの回転手段151は、ブレード体300を円周方向に回転させることが可能なように、上流側整流部材303aの上流側の先端から延出する軸部材を介してブレード体300と連接されている。回転手段151には、典型的にはモーターを用いることができる。 As shown in (a) of FIG. 9, the rotation means 151 of the ultrafine bubble generator 150a has a tip on the upstream side of the upstream rectification member 303a so as to rotate the blade 300 in the circumferential direction. It is connected with the blade body 300 via the shaft member extended from this. For the rotation means 151, a motor can typically be used.
 ウルトラファインバブル発生装置150aをこのように構成することにより、流入口202から収容管200の内部に液体を供給しながらブレード体300を円周方向に回転させることができる。これにより、ブレード体300のブレード302の表面を流れる液体は、ブレード体300が停止している場合と比較して、ブレード302の端部を通過する頻度が多くなるため、乱流の発生が増えてウルトラファインバブルの生成を促進することができる。なお、回転手段151は下流側整流部材303bの下流側の先端に連接してもよい。 By thus configuring the ultrafine bubble generator 150 a, the blade 300 can be rotated in the circumferential direction while supplying liquid from the inflow port 202 to the inside of the storage tube 200. As a result, the liquid flowing on the surface of the blade 302 of the blade 300 is more likely to pass through the end of the blade 302 compared to when the blade 300 is at rest, so that the occurrence of turbulent flow is increased. Promote the generation of ultrafine bubbles. The rotation means 151 may be connected to the downstream end of the downstream side rectification member 303b.
 図9の(b)に示すウルトラファインバブル発生装置150bは、回転手段151としてフードミキサーを用いた例である。ウルトラファインバブル発生装置150bでは、フードミキサーの回転軸にブレード体300を取り付けて、食品収容部152への液体の供給、排出を可能にし、食品収容部152の内部に収容管200を設けている。図9の(b)に示すように、食品収容部152へ供給された液体は、食品収容部152の下方から収容管200に流入する。その後、液体は収容管200の内部を食品収容部152の上方に向かって流れて、ブレード体300によりウルトラファインバブルが生成され、食品収容部152から排出される。液体の流通する方向はこれとは反対であってもよい。また、ウルトラファインバブル発生装置150bは、図9の(b)に示すように、食品収容部152への液体の供給口および排出口に液体の流れを止めるバルブをそれぞれ設けてもよい。ウルトラファインバブル発生装置150bにバルブを設けることにより、ウルトラファインバブルの生成中にバルブを閉じて液体の流れを止めることにより、液体に含まれるウルトラファインバブルの濃度を高めることが可能になる。 The ultra-fine bubble generating device 150b shown in (b) of FIG. 9 is an example using a food mixer as the rotating means 151. In the ultra-fine bubble generator 150b, the blade 300 is attached to the rotating shaft of the food mixer to enable supply and discharge of the liquid to the food container 152, and the container tube 200 is provided inside the food container 152. . As shown in (b) of FIG. 9, the liquid supplied to the food containing portion 152 flows into the containing tube 200 from the lower side of the food containing portion 152. Thereafter, the liquid flows inside the storage tube 200 toward the upper side of the food storage portion 152, and the blade body 300 generates ultrafine bubbles, which are discharged from the food storage portion 152. The flow direction of the liquid may be opposite to this. Further, as shown in (b) of FIG. 9, the ultrafine bubble generator 150 b may be provided with valves for stopping the flow of the liquid at the supply port and the discharge port of the liquid to the food container 152. By providing a valve in the ultrafine bubble generator 150b, it is possible to increase the concentration of the ultrafine bubble contained in the liquid by closing the valve and stopping the flow of the liquid during the generation of the ultrafine bubble.
 ウルトラファインバブル発生装置150bによれば、フードミキサーを用いて容易にウルトラファインバブルを生成することが可能である。 According to the ultra-fine bubble generator 150b, it is possible to easily generate ultra-fine bubbles using a food mixer.
 なお、ウルトラファインバブル発生装置150a、150bには、ブレード体310またはブレード体320を用いてもよいし、整流部材333を用いてもよい。 In addition, the blade body 310 or the blade body 320 may be used for ultra-fine bubble generation apparatus 150a, 150b, and the flow adjustment member 333 may be used.
<循環装置>
 次に、ウルトラファインバブル発生装置の生成するウルトラファインバブルの濃度を高める循環装置について説明する。図10には、一例としてウルトラファインバブル発生装置100を用いて、生成するウルトラファインバブルの濃度を高めることができる循環装置400の模式図を示す。
<Circulation device>
Next, a circulating device for increasing the concentration of ultrafine bubbles generated by the ultrafine bubble generator will be described. FIG. 10 is a schematic view of a circulation device 400 capable of increasing the concentration of ultrafine bubbles to be generated using the ultrafine bubble generation device 100 as an example.
 図10に示すように、循環装置400は、ウルトラファインバブル発生装置100と、ウルトラファインバブル発生装置100から排出された液体を溜める貯留槽401と、貯留槽の液体を吸上げてウルトラファインバブル発生装置100の流入口202に供給するポンプ402と、これらを結ぶ配管とを含む。 As shown in FIG. 10, the circulation device 400 includes the ultrafine bubble generation device 100, a storage tank 401 for storing the liquid discharged from the ultrafine bubble generation device 100, and suction of the liquid in the storage tank to generate the ultrafine bubble. It includes a pump 402 that supplies the inlet 202 of the device 100 and a pipe that connects these.
 循環装置400によれば、ウルトラファインバブル発生装置100から排出されるウルトラファインバブルを含んだ液体を一旦貯留槽401に溜め、貯留槽401の液体をポンプ402により吸上げてウルトラファインバブル発生装置100に再び供給することができる。したがって、循環装置400では、この循環を繰り返すことにより、貯留槽401中の液体に含まれるウルトラファインバブルの濃度を高めることが可能になる。 According to the circulation device 400, the liquid including the ultrafine bubbles discharged from the ultrafine bubble generation device 100 is temporarily stored in the storage tank 401, and the liquid in the storage tank 401 is suctioned up by the pump 402 to make the ultrafine bubble generation device 100. Can be supplied again. Therefore, in the circulation device 400, it is possible to increase the concentration of the ultra fine bubbles contained in the liquid in the storage tank 401 by repeating this circulation.
 本発明は、ウルトラファインバブル発生装置に利用できる。 The present invention is applicable to an ultrafine bubble generator.
 100、110、120、130、140a~140d、150a、150b  ウルトラファインバブル発生装置
 141  外気供給手段
 200  収容管
 201  収容空間
 202  流入口
 203  排出口
 300、310、320  ブレード体
 301  シャフト部
 302  ブレード
 302a  主面部
 302b  屈曲部
 303a  上流側整流部材
 303b  下流側整流部材
 311、321  ブレード体エレメント
 312、322  スペーサー
 333  整流部材
 333a  整流部材のブレード
 400  循環装置
100, 110, 120, 130, 140a to 140d, 150a, 150b Ultra Fine Bubble Generator 141 Outside Air Supply Means 200 Housing Pipe 201 Housing Space 202 Inlet 203 Exhaust Port 300, 310, 320 Blade Body 301 Shaft Part 302 Blade 302a Main Face portion 302b Bending portion 303a Upstream-side rectification member 303b Downstream- side rectification member 311, 321 Blade body element 312, 322 Spacer 333 Rectification member 333a Rectification member blade 400 Circulation device

Claims (5)

  1.  円柱状のシャフト部と、前記シャフト部の外周面に所定の隙間を隔てて、前記シャフト部の半径方向に向かって延在する矩形状の複数のブレードとを含むブレード体と、
     前記ブレード体を収容する収容空間と、前記ブレード体の一端に対向するように形成され前記収容空間へ液体を流入させることが可能な流入口と、前記ブレード体の他端に対向するように形成され前記収容空間の液体を排出することが可能な排出口とを備える収容管とを備え、
     前記ブレードの各々は、
     前記シャフト部の中心軸に対して所定の傾斜角をなすように形成された一定の厚さの主面部と、
     前記主面部の前記排出口側の端縁が折れ曲がった形状の、屈曲部とを備える、ウルトラファインバブル発生装置。
    A blade body including a cylindrical shaft portion, and a plurality of rectangular blades extending in the radial direction of the shaft portion with a predetermined gap between the outer peripheral surface of the shaft portion;
    A housing space for housing the blade body, an inlet formed opposite to one end of the blade body and capable of flowing a liquid into the housing space, formed opposite to the other end of the blade body And a discharge pipe capable of discharging the liquid in the storage space.
    Each of the blades is
    A main surface portion of a fixed thickness formed to have a predetermined inclination angle with respect to a central axis of the shaft portion;
    An ultrafine bubble generating device, comprising: a bent portion having a shape in which an end edge on the discharge port side of the main surface portion is bent.
  2.  複数の前記ブレードは、
     前記主面部の前記シャフト部側の端縁が、前記シャフト部の外周面における螺旋状の線に沿うように配置されている、
    請求項1に記載のウルトラファインバブル発生装置。
    A plurality of said blades are
    An edge of the main surface portion on the shaft portion side is disposed along a spiral line on an outer peripheral surface of the shaft portion.
    The ultra fine bubble generator according to claim 1.
  3.  前記シャフト部は複数の円柱状部材、または円盤状部材を積層し形成された請求項1又は2に記載のウルトラファインバブル発生装置。 The ultra fine bubble generating device according to claim 1, wherein the shaft portion is formed by laminating a plurality of cylindrical members or disk members.
  4.  前記ブレード体と前記収容管との隙間に、外気を供給できる外気供給手段をさらに備える請求項1~請求項3のいずれかに記載のウルトラファインバブル発生装置。 The ultra fine bubble generating device according to any one of claims 1 to 3, further comprising an outside air supply unit capable of supplying outside air to a gap between the blade body and the storage tube.
  5.  前記ブレード体を、前記シャフト部の中心軸の周りに回転させることができる回転手段をさらに備える請求項1~請求項4のいずれかに記載のウルトラファインバブル発生装置。 The ultra fine bubble generating device according to any one of claims 1 to 4, further comprising a rotating means capable of rotating the blade body around a central axis of the shaft portion.
PCT/JP2018/032188 2017-12-14 2018-08-30 Ultra-fine bubble generation device WO2019116642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546053A JP6490317B1 (en) 2017-12-14 2018-08-30 Ultra Fine Bubble Generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-239595 2017-12-14
JP2017239595 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019116642A1 true WO2019116642A1 (en) 2019-06-20

Family

ID=66819638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032188 WO2019116642A1 (en) 2017-12-14 2018-08-30 Ultra-fine bubble generation device

Country Status (1)

Country Link
WO (1) WO2019116642A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193559A1 (en) 2020-03-27 2021-09-30 シンバイオシス株式会社 Rotating mixer, bubble shear filter, ultra-fine-bubble generation device, and ultra-fine-bubble fluid production method
JP6984919B1 (en) * 2020-12-17 2021-12-22 株式会社アルベール・インターナショナル Micro bubble generator
JP6990471B1 (en) 2021-01-12 2022-01-12 泰平 山田 Ultra fine bubble generator
JP7338926B1 (en) * 2023-03-24 2023-09-05 株式会社アルベール・インターナショナル microbubble generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033962A (en) * 2002-07-05 2004-02-05 Bic Kogyo Kk Fluid discharge pipe structure
JP3184786U (en) * 2013-04-24 2013-07-18 毛利 昭義 Nanobubble generator formed by connecting multiple blades
JP2015112558A (en) * 2013-12-12 2015-06-22 株式会社モノベエンジニアリング Rotor, agitator and microbubble generator comprising the same, and filtration system using microbubble generator
US20160339399A1 (en) * 2013-06-19 2016-11-24 Lai Huat GOI Apparatus for generating nanobubbles
JP6077627B1 (en) * 2015-10-30 2017-02-08 昭義 毛利 Ultra fine bubble generation tool
JP6205099B1 (en) * 2016-09-01 2017-09-27 株式会社アルベールインターナショナル Microbubble generator, and microbubble-containing water generator using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033962A (en) * 2002-07-05 2004-02-05 Bic Kogyo Kk Fluid discharge pipe structure
JP3184786U (en) * 2013-04-24 2013-07-18 毛利 昭義 Nanobubble generator formed by connecting multiple blades
US20160339399A1 (en) * 2013-06-19 2016-11-24 Lai Huat GOI Apparatus for generating nanobubbles
JP2015112558A (en) * 2013-12-12 2015-06-22 株式会社モノベエンジニアリング Rotor, agitator and microbubble generator comprising the same, and filtration system using microbubble generator
JP6077627B1 (en) * 2015-10-30 2017-02-08 昭義 毛利 Ultra fine bubble generation tool
JP6205099B1 (en) * 2016-09-01 2017-09-27 株式会社アルベールインターナショナル Microbubble generator, and microbubble-containing water generator using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193559A1 (en) 2020-03-27 2021-09-30 シンバイオシス株式会社 Rotating mixer, bubble shear filter, ultra-fine-bubble generation device, and ultra-fine-bubble fluid production method
KR20220003006A (en) 2020-03-27 2022-01-07 신바이오시스 가부시키가이샤 Rotary mixer, bubble shear filter, ultra-fine bubble generator and method for producing ultra-fine bubble fluid
CN114126749A (en) * 2020-03-27 2022-03-01 真共生株式会社 Rotary mixer, bubble shear filter, ultrafine bubble generation device, and method for producing ultrafine bubble fluid
US11951448B2 (en) 2020-03-27 2024-04-09 Shinbiosis Corporation Rotary mixer, bubble shear filter, ultrafine bubble generation device and ultrafine bubble fluid manufacturing method
JP6984919B1 (en) * 2020-12-17 2021-12-22 株式会社アルベール・インターナショナル Micro bubble generator
JP2022096114A (en) * 2020-12-17 2022-06-29 株式会社アルベール・インターナショナル Fine air bubble generator
JP6990471B1 (en) 2021-01-12 2022-01-12 泰平 山田 Ultra fine bubble generator
WO2022153813A1 (en) * 2021-01-12 2022-07-21 泰平 山田 Fluid activating device
JP2022108153A (en) * 2021-01-12 2022-07-25 泰平 山田 Ultrafine bubble generator
JP7338926B1 (en) * 2023-03-24 2023-09-05 株式会社アルベール・インターナショナル microbubble generator
JP7378752B1 (en) * 2023-03-24 2023-11-14 株式会社アルベール・インターナショナル Micro bubble generator

Similar Documents

Publication Publication Date Title
JP6490317B1 (en) Ultra Fine Bubble Generator
WO2019116642A1 (en) Ultra-fine bubble generation device
JP6048841B2 (en) Fine bubble generator
JP7050304B2 (en) Equipment and systems for producing gas and liquid containing fine bubbles
US8622715B1 (en) Twin turbine asymmetrical nozzle and jet pump incorporating such nozzle
CN109475829B (en) Bubble generating device
JP2017189733A (en) Fine bubble generator
JP5801210B2 (en) Microbubble generator
JP2019042700A (en) Fine bubble liquid generator
JP2011056436A (en) Fine air bubble generator
US20200238231A1 (en) Stirring element device
KR101864116B1 (en) Nano-bubble generator
US20240299888A1 (en) Fluid activating device
JP6925020B2 (en) Mixing device and mixing method
CN111512427B (en) Swirl flow forming body
WO2018131714A1 (en) Fluid mixing device, and method for producing mixed fluid using this mixing device
KR101864497B1 (en) Nano-bubble generator
JP2012239953A (en) Revolving type fine air bubble generator
KR101864117B1 (en) Nano-bubble generator
JP7251748B1 (en) Microbubble generation system and microbubble generation kit
JP7235364B1 (en) gas dissolver
AU2021240320B2 (en) Bubble generating device
JP3241345U (en) gas dissolver
KR101874698B1 (en) A methode of nano-bubble generator
KR102195918B1 (en) Nano bubble generator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546053

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888156

Country of ref document: EP

Kind code of ref document: A1