WO2019030841A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019030841A1
WO2019030841A1 PCT/JP2017/028883 JP2017028883W WO2019030841A1 WO 2019030841 A1 WO2019030841 A1 WO 2019030841A1 JP 2017028883 W JP2017028883 W JP 2017028883W WO 2019030841 A1 WO2019030841 A1 WO 2019030841A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
terminal
terminals
compressor
center
Prior art date
Application number
PCT/JP2017/028883
Other languages
French (fr)
Japanese (ja)
Inventor
聡経 新井
尚久 五前
佐々木 亮
敏充 飯田
久保 健一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CZ202011A priority Critical patent/CZ309325B6/en
Priority to PCT/JP2017/028883 priority patent/WO2019030841A1/en
Priority to KR1020207001824A priority patent/KR102320908B1/en
Priority to CN201780093649.4A priority patent/CN111033052B/en
Priority to JP2019535491A priority patent/JP6746000B2/en
Publication of WO2019030841A1 publication Critical patent/WO2019030841A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a compressor and a refrigeration cycle apparatus.
  • a hermetic rotary compressor which is an example of a rotary compressor
  • internal components such as a motor and a compression mechanism are accommodated in a welded integrated hermetic container.
  • a discharge pipe for discharging the refrigerant and an airtight terminal connected to the internal stator via a lead wire are provided on the upper part of the sealed container.
  • a hermetic container of a rotary compressor is provided with one airtight terminal.
  • two airtight terminals it is possible to reduce the current flowing to the airtight terminals and the lead wire, and to switch the wire connection method of the motor winding.
  • Patent Document 1 describes a technique in which a first lead wire is drawn in a counterclockwise direction and connected to a first terminal, and a second lead wire is drawn in a clockwise direction and connected to a second terminal. ing.
  • An object of the present invention is to shorten a length of a plurality of connection lines for electrically connecting a plurality of terminals attached to a container of a compressor and an electric motor stored in the container of the compressor.
  • a compressor is A compression mechanism for compressing a refrigerant; An electric motor for driving the compression mechanism; A container for containing the compression mechanism and the motor; A first straight line including a first terminal and a second terminal and attached to one axial end of the container, the first straight line having a center passing through a center of the container and a center of the first terminal in plan view; A plurality of terminals located within an angle range of 180 ° or less formed by a second straight line passing through the center of the second terminal and the center of the second terminal; The plurality of terminals and the motor are electrically connected in the container, and a plurality of connection lines extracted from the plurality of terminals in the angle range in plan view are provided.
  • each connecting wire electrically connecting each terminal and the motor is, in plan view, a first straight line passing through the center of the container and the center of the first terminal, the center of the container and the center of the second terminal It is taken out within an angle range of 180 ° or less formed by the passing second straight line. Therefore, the length of each connection line can be shortened.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1.
  • FIG. Fig. 2 is a cross-sectional view of a part of the compressor according to the first embodiment.
  • FIG. 2 is a plan view of a part of the compressor according to Embodiment 1.
  • FIG. 2 is a longitudinal sectional view of part of the compressor according to Embodiment 1;
  • FIG. 2 is a partial vertical cross-sectional view of a part of the compressor according to Embodiment 1.
  • FIG. 2 is a side view of part of the compressor according to Embodiment 1;
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional
  • FIG. 2 is a bottom view of a part of the compressor according to Embodiment 1.
  • FIG. 2 is a diagram showing a connection method of connection lines at the time of assembly of a compressor according to Embodiment 1. The figure which shows the connection method of the connecting wire at the time of the assembly of the compressor concerning a comparative example.
  • FIG. 2 is a plan view of a part of the compressor according to Embodiment 1. The top view of a part of compressor concerning a comparative example. The graph which shows the comparison result of the deformation with respect to the internal pressure of the container upper part of the compressor which concerns on Embodiment 1 and a comparative example.
  • FIG. 7 is a plan view of a portion of a compressor according to a second embodiment.
  • FIG. 9 is a longitudinal sectional view of a compressor according to a third embodiment.
  • FIG. 10 is a longitudinal sectional view of a compressor according to a fourth embodiment.
  • Embodiment 1 The present embodiment will be described with reference to FIGS. 1 to 14.
  • FIG. 1 shows the refrigerant circuit 11 in the cooling operation.
  • FIG. 2 shows the refrigerant circuit 11 in the heating operation.
  • the refrigeration cycle apparatus 10 is an air conditioner in the present embodiment, but may be an apparatus other than an air conditioner such as a refrigerator or a heat pump cycle apparatus.
  • the refrigeration cycle apparatus 10 includes a refrigerant circuit 11 in which a refrigerant circulates.
  • the refrigeration cycle apparatus 10 includes a compressor 12, a four-way valve 13, a first heat exchanger 14 which is an outdoor heat exchanger, an expansion mechanism 15 which is an expansion valve, and a second heat exchanger which is an indoor heat exchanger. And 16.
  • the compressor 12, the four-way valve 13, the first heat exchanger 14, the expansion mechanism 15, and the second heat exchanger 16 are connected to the refrigerant circuit 11.
  • the compressor 12 compresses the refrigerant.
  • the four-way valve 13 switches the flow direction of the refrigerant between the cooling operation and the heating operation.
  • the first heat exchanger 14 operates as a condenser during the cooling operation, and dissipates the refrigerant compressed by the compressor 12. That is, the first heat exchanger 14 performs heat exchange using the refrigerant compressed by the compressor 12.
  • the first heat exchanger 14 operates as an evaporator at the time of heating operation, performs heat exchange between outdoor air and the refrigerant expanded by the expansion mechanism 15, and heats the refrigerant.
  • the expansion mechanism 15 expands the refrigerant that has dissipated heat in the condenser.
  • the second heat exchanger 16 operates as a condenser during heating operation, and dissipates the refrigerant compressed by the compressor 12. That is, the second heat exchanger 16 performs heat exchange using the refrigerant compressed by the compressor 12.
  • the second heat exchanger 16 operates as an evaporator during the cooling operation, performs heat exchange between room air and the refrigerant expanded by the expansion mechanism 15, and heats the refrigerant.
  • the refrigeration cycle apparatus 10 further includes a controller 17.
  • the control device 17 is, for example, a microcomputer. Although only the connection between the control device 17 and the compressor 12 is shown in FIGS. 1 and 2, the control device 17 includes not only the compressor 12 but also components other than the compressor 12 connected to the refrigerant circuit 11. It may be connected. The controller 17 monitors and controls the state of each component connected to the controller 17.
  • an HFC refrigerant such as R32, R125, R134a, R407C or R410A is used.
  • HFO-based refrigerants such as R1123, R1132 (E), R1132 (Z), R1132 a, R1141, R1234yf, R1234ze (E) or R1234ze (Z) are used.
  • natural refrigerants such as R290 (propane), R600a (isobutane), R744 (carbon dioxide) or R717 (ammonia) are used.
  • other refrigerants are used.
  • a mixture of two or more of these refrigerants is used.
  • HFC is an abbreviation of Hydrofluorocarbon.
  • HFO is an abbreviation of Hydrofluoroolefin.
  • FIG. 3 shows a longitudinal cross section of the compressor 12.
  • the compressor 12 is a hermetic compressor in the present embodiment.
  • the compressor 12 is specifically a multi-cylinder rotary compressor, but may be a single-cylinder rotary compressor, a scroll compressor or a reciprocating compressor.
  • the compressor 12 includes a container 20, a compression mechanism 30, an electric motor 40, and a crankshaft 50.
  • the container 20 is a closed container. At the bottom of the container 20, refrigeration oil 25 is stored. A suction pipe 21 for suctioning the refrigerant into the container 20 and a discharge pipe 22 for discharging the refrigerant to the outside of the container 20 are attached to the container 20.
  • the motor 40 is housed in the container 20. Specifically, the motor 40 is installed at the upper inside of the container 20.
  • the motor 40 is a concentrated winding motor in the present embodiment, but may be a distributed winding motor.
  • the compression mechanism 30 is housed in the container 20. Specifically, the compression mechanism 30 is installed at the lower inside of the container 20. That is, the compression mechanism 30 is disposed below the motor 40 in the container 20.
  • the crankshaft 50 connects the motor 40 and the compression mechanism 30.
  • the crankshaft 50 forms an oil supply passage of the refrigerator oil 25 and a rotation shaft of the electric motor 40.
  • the refrigeration oil 25 is pumped up by the oil supply mechanism such as an oil pump provided at the lower part of the crankshaft 50 as the crankshaft 50 rotates.
  • the refrigeration oil 25 is supplied to the sliding parts of the compression mechanism 30 to lubricate the sliding parts of the compression mechanism 30.
  • POE is an abbreviation of Polyolester.
  • PVE is an abbreviation for Polyvinyl Ether.
  • AB is an abbreviation of Alkylbenzene.
  • the motor 40 rotates the crankshaft 50.
  • the compression mechanism 30 is driven by the rotation of the crankshaft 50 to compress the refrigerant. That is, the compression mechanism 30 compresses the refrigerant by being driven by the rotational force of the electric motor 40 transmitted through the crankshaft 50. Specifically, this refrigerant is a low-pressure gas refrigerant sucked into the suction pipe 21. The high temperature and high pressure gas refrigerant compressed by the compression mechanism 30 is discharged from the compression mechanism 30 into the space in the container 20.
  • the crankshaft 50 has an eccentric shaft 51, a main shaft 52, and a countershaft 53. These are provided in the order of the main shaft portion 52, the eccentric shaft portion 51, and the sub shaft portion 53 in the axial direction D0. That is, the main shaft portion 52 is provided on one end side in the axial direction of the eccentric shaft portion 51, and the sub shaft portion 53 is provided on the other end side in the axial direction of the eccentric shaft portion 51.
  • the eccentric shaft portion 51, the main shaft portion 52, and the sub shaft portion 53 each have a cylindrical shape.
  • the main shaft portion 52 and the sub shaft portion 53 are provided such that the central axes thereof coincide with each other, that is, coaxially.
  • the eccentric shaft portion 51 is provided such that the central axis thereof is offset from the central axes of the main shaft portion 52 and the auxiliary shaft portion 53.
  • the eccentric shaft portion 51 eccentrically rotates.
  • the container 20 has a body portion 20a, a container upper portion 20b, and a container lower portion 20c.
  • the body 20a is cylindrical.
  • the container upper part 20b is closing the upper opening of the trunk
  • the container upper portion 20 b corresponds to one axial end of the container 20.
  • the lower part 20c of the container is closing the lower opening of the body 20a.
  • the container lower portion 20 c corresponds to the other axial end of the container 20.
  • the body 20a and the container upper portion 20b are connected by welding, and the body 20a and the container lower portion 20c are connected by welding, whereby the container 20 is sealed.
  • the body 20 a is provided with a suction pipe 21 connected to the suction muffler 23.
  • a discharge pipe 22 is provided in the container upper portion 20b.
  • the motor 40 is a brushless DC motor in the present embodiment, but may be a motor other than a brushless DC motor such as an induction motor.
  • DC is an abbreviation of Direct Current.
  • the motor 40 has a stator 41 and a rotor 42.
  • the stator 41 is cylindrical and fixed so as to be in contact with the inner circumferential surface of the container 20.
  • the rotor 42 has a cylindrical shape, and is installed inside the stator 41 with an air gap.
  • the width of the air gap is, for example, 0.3 mm or more and 1.0 mm or less.
  • the stator 41 has a stator core 43 and windings 44.
  • the stator core 43 is manufactured by punching a plurality of magnetic steel sheets containing iron as a main component into a predetermined shape, laminating them in the axial direction D0, and fixing them by caulking.
  • the thickness of each electromagnetic steel sheet is, for example, 0.1 mm or more and 1.5 mm or less.
  • the stator core 43 has an outer diameter larger than the inner diameter of the body 20 a of the container 20, and is fixed to the inside of the body 20 a of the container 20 by shrink fitting.
  • the windings 44 are wound around a stator core 43. Specifically, the winding 44 is wound in a concentrated manner around the stator core 43 via an insulating member.
  • the winding 44 comprises a core wire and at least one layer of coating covering the core wire.
  • the material of the core wire is copper.
  • the material of the film is AI / EI.
  • AI is an abbreviation of Amide-Imide.
  • EI is an abbreviation of Ester-Imide.
  • the material of the insulating member is PET.
  • PET is an abbreviation for Polyethylene Terephthalate.
  • the method of fixing the electromagnetic steel plates of the stator core 43 is not limited to caulking, and other methods such as welding may be used.
  • the method of fixing the stator core 43 to the inside of the body portion 20a of the container 20 is not limited to shrink fitting, and may be another method such as press fitting or welding.
  • the material of the core wire of the winding 44 may be aluminum.
  • the material of the insulating member may be PBT, FEP, PFA, PTFE, LCP, PPS or a phenol resin.
  • PBT is an abbreviation for Polybutylene Terephthalate.
  • FEP is an abbreviation for Fluorinated Ethylene Propylene.
  • PFA is an abbreviation of Perfluoroalkoxy Alkane.
  • PTFE is an abbreviation of Polytetrafluoroethylene.
  • LCP is an abbreviation for Liquid Crystal Polymer.
  • PPS is an abbreviation of Polyphenylene Sulfide.
  • the rotor 42 has a rotor core 45 and permanent magnets 46. Similar to the stator core 43, the rotor core 45 is manufactured by punching a plurality of magnetic steel sheets containing iron as a main component into a predetermined shape, laminating them in the axial direction D0, and fixing them by caulking. The thickness of each electromagnetic steel sheet is, for example, 0.1 mm or more and 1.5 mm or less.
  • the permanent magnets 46 are inserted into a plurality of insertion holes formed in the rotor core 45.
  • the permanent magnet 46 forms a magnetic pole.
  • As the permanent magnet 46 a ferrite magnet or a rare earth magnet is used.
  • the method of fixing the electromagnetic steel plates of the rotor core 45 is not limited to caulking, and other methods such as welding may be used.
  • an axial hole is formed in which the main shaft portion 52 of the crankshaft 50 is shrink-fit or press-fitted. That is, the inner diameter of the rotor core 45 is smaller than the outer diameter of the main shaft portion 52.
  • a plurality of through holes penetrating in the axial direction D0 are formed around the shaft hole of the rotor core 45.
  • Each through hole is one of the passages of the gas refrigerant discharged from the discharge muffler 35 described later to the space in the container 20.
  • Each through hole also serves as one of the passages for dropping the refrigerator oil 25 led to the upper part of the container 20 to the lower part of the container 20.
  • the motor 40 when configured as an induction motor, a plurality of slots formed in the rotor core 45 are filled or inserted with a conductor formed of aluminum or copper or the like. Then, a cage winding in which both ends of the conductor are shorted by the end ring is formed.
  • the container upper portion 20b is provided with a terminal 24 connected to an external power supply such as an inverter device, and a rod 28 to which a cover for protecting the terminal 24 is attached.
  • the terminal 24 is an airtight terminal such as a glass terminal.
  • the terminal 24 is fixed to the container 20 by welding.
  • the terminal 24 is connected to a connecting wire 26 extended from the winding 44 of the motor 40.
  • the terminal 24 and the motor 40 are electrically connected.
  • the discharge pipe 22 which the axial direction both ends opened is provided in the container upper part 20b.
  • the gas refrigerant discharged from the compression mechanism 30 sequentially passes through the rotor 42 and the oil separation plate 29 above the rotor 42, and from the space in the container 20 to the external refrigerant circuit 11 through the discharge pipe 22. It is discharged.
  • the oil separating plate 29 separates the refrigerating machine oil 25 in the container 20 pumped up with the refrigerant.
  • the oil separation plate 29 is fixed to the crankshaft 50 by press-fitting, and rotates as the crankshaft 50 rotates.
  • the oil separation plate 29 is fixed to the rotor 42 using a fixing tool such as a rivet, and rotates at high speed as the rotor 42 rotates.
  • the refrigeration oil 25 has a specific gravity larger than that of the refrigerant. Therefore, the oil separation plate 29 can separate the refrigerator oil 25 by flying it in the outer peripheral direction by centrifugal force.
  • the discharge pipe 22 may be installed at the outer peripheral portion of the container upper portion 20b, but in the present embodiment, it is installed at the center of the container upper portion 20b just above the crankshaft 50. Assuming that the discharge pipe 22 is installed on the outer peripheral portion of the container upper portion 20b, the refrigerator oil 25 separated by the oil separating plate 29 enters the discharge pipe 22 and is discharged to the outside of the container 20. The amount of refrigeration oil 25 may be reduced, and the lubricity of the compression mechanism 30 may be reduced. In order to prevent such a decrease in lubricity, it is desirable that the discharge pipe 22 be installed at the center of the upper portion 20b of the container.
  • FIG. 4 shows a cross section of a portion of the compressor 12 as viewed along the axial direction D0.
  • hatching representing a cross section is omitted.
  • the compression mechanism 30 has a cylinder 31, a rolling piston 32, a main bearing 33, an auxiliary bearing 34, and a discharge muffler 35.
  • the inner periphery of the cylinder 31 is circular in plan view. Inside the cylinder 31, a cylinder chamber 61 which is a circular space in plan view is formed. A suction port for suctioning the gas refrigerant from the refrigerant circuit 11 is provided on the outer peripheral surface of the cylinder 31. The refrigerant drawn from the suction port is compressed in the cylinder chamber 61. Both ends in the axial direction of the cylinder 31 are open.
  • the rolling piston 32 is ring-shaped. Therefore, the inner circumference and the outer circumference of the rolling piston 32 are circular in plan view.
  • the rolling piston 32 rotates eccentrically in the cylinder chamber 61.
  • the rolling piston 32 is slidably fitted on an eccentric shaft portion 51 of a crankshaft 50 which is a rotation shaft of the rolling piston 32.
  • the cylinder 31 is provided with vane grooves 62 connected to the cylinder chamber 61 and extending in the radial direction.
  • a back pressure chamber 63 which is a circular space in plan view connected to the vane groove 62 is formed.
  • a vane 64 for separating the cylinder chamber 61 into a suction chamber, which is a low pressure operating chamber, and a compression chamber, which is a high pressure operating chamber is installed in the vane groove 62.
  • the vanes 64 are in the form of a plate whose tip is rounded.
  • the vanes 64 reciprocate while sliding in the vane grooves 62.
  • the vanes 64 are always pressed against the rolling piston 32 by vane springs provided in the back pressure chamber 63.
  • the vane spring is mainly used for the purpose of pressing the vane 64 against the rolling piston 32 when the compressor 12 starts with no difference in pressure in the container 20 and in the cylinder chamber 61.
  • the main bearing 33 is a reverse T-shaped bearing in a side view.
  • the main bearing 33 is slidably fitted on a main shaft portion 52 which is a portion above the eccentric shaft portion 51 of the crankshaft 50.
  • a through hole 54 serving as an oil supply passage is provided along the axial direction D0 inside the crankshaft 50, and is sucked through the through hole 54 between the main bearing 33 and the main shaft portion 52.
  • An oil film is formed by the supply of the refrigerating machine oil 25.
  • the main bearing 33 closes the upper side of the cylinder chamber 61 and the vane groove 62 of the cylinder 31. That is, the main bearing 33 closes the upper side of the two working chambers in the cylinder 31.
  • the auxiliary bearing 34 is a T-shaped bearing in a side view.
  • the sub bearing 34 is slidably fitted in a sub shaft portion 53 which is a portion below the eccentric shaft portion 51 of the crankshaft 50.
  • An oil film is formed between the sub bearing 34 and the sub shaft portion 53 by supplying the refrigerating machine oil 25 sucked up through the through hole 54 of the crankshaft 50.
  • the sub bearing 34 closes the lower side of the cylinder chamber 61 and the vane groove 62 of the cylinder 31. That is, the sub bearing 34 closes the lower side of the two working chambers in the cylinder 31.
  • the main bearing 33 and the sub bearing 34 are fixed to the cylinder 31 by fasteners 36 such as bolts, respectively, and support a crankshaft 50 which is a rotation shaft of the rolling piston 32.
  • the main bearing 33 supports the main shaft 52 without contacting the main shaft 52 by fluid lubrication of the oil film between the main bearing 33 and the main shaft 52.
  • the secondary bearing 34 supports the secondary shaft 53 without contacting the secondary shaft 53 by fluid lubrication of the oil film between the secondary bearing 34 and the secondary shaft 53 as the main bearing 33 does.
  • the main bearing 33 is provided with a discharge port for discharging the refrigerant compressed in the cylinder chamber 61 to the refrigerant circuit 11.
  • the discharge port is at a position where it is connected to the compression chamber when the cylinder chamber 61 is divided by the vane 64 into a suction chamber and a compression chamber.
  • the main bearing 33 is attached with a discharge valve that closes the discharge port so as to open and close. The discharge valve is closed until the gas refrigerant in the compression chamber reaches a desired pressure, and is opened when the gas refrigerant in the compression chamber reaches a desired pressure. Thereby, the discharge timing of the gas refrigerant from the cylinder 31 is controlled.
  • the discharge muffler 35 is attached to the outside of the main bearing 33.
  • the high-temperature, high-pressure gas refrigerant discharged when the discharge valve is opened enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the container 20.
  • the discharge port and the discharge valve may be provided in the sub bearing 34 or both the main bearing 33 and the sub bearing 34.
  • the discharge muffler 35 is attached to the outside of the bearing on which the discharge port and the discharge valve are provided.
  • An intake muffler 23 is provided beside the container 20.
  • the suction muffler 23 sucks the low-pressure gas refrigerant from the refrigerant circuit 11.
  • the suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber 61 of the cylinder 31 when the liquid refrigerant returns.
  • the suction muffler 23 is connected to a suction port provided on the outer peripheral surface of the cylinder 31 via a suction pipe 21.
  • the suction port is in a position to be connected to the suction chamber when the cylinder chamber 61 is divided by the vane 64 into the suction chamber and the compression chamber.
  • the main body of the suction muffler 23 is fixed to the side surface of the body 20 a of the container 20 by welding or the like.
  • the material of the eccentric shaft portion 51, the main shaft portion 52 and the countershaft portion 53 of the crankshaft 50 is a cast material or a forged material.
  • the material of the main bearing 33 and the auxiliary bearing 34 is a cast material or a sintered material, and specifically, sintered steel, gray cast iron or carbon steel.
  • the material of the cylinder 31 is also sintered steel, gray cast iron or carbon steel.
  • the material of the rolling piston 32 is a cast material, and specifically, an alloy steel containing molybdenum, nickel and chromium, or an iron-based cast material.
  • the material of the vanes 64 is high speed tool steel.
  • the vanes 64 are provided integrally with the rolling piston 32.
  • the vanes 64 reciprocate along the grooves of a support rotatably mounted on the rolling piston 32.
  • the vanes 64 radially advance and retract while oscillating as the rolling piston 32 rotates, thereby dividing the inside of the cylinder chamber 61 into a compression chamber and a suction chamber.
  • the support is constituted by two columnar members having a semicircular cross section. The support is rotatably fitted in a circular holding hole formed at an intermediate portion between the suction port and the discharge port of the cylinder 31.
  • Electric power is supplied from the terminal 24 to the stator 41 of the motor 40 via the connection line 26.
  • current flows through the windings 44 of the stator 41, and magnetic flux is generated from the windings 44.
  • the rotor 42 of the motor 40 is rotated by the action of the magnetic flux generated from the winding 44 and the magnetic flux generated from the permanent magnet 46 of the rotor 42.
  • the rotor 42 is rotated by the attraction and repulsion between the rotating magnetic field generated by the flow of current through the winding 44 of the stator 41 and the magnetic field of the permanent magnet 46 of the rotor 42.
  • the rotation of the rotor 42 causes the crankshaft 50 fixed to the rotor 42 to rotate.
  • the rolling piston 32 of the compression mechanism 30 eccentrically rotates in the cylinder chamber 61 of the cylinder 31 of the compression mechanism 30.
  • a cylinder chamber 61 which is a space between the cylinder 31 and the rolling piston 32 is divided by a vane 64 into a suction chamber and a compression chamber.
  • the volume of the suction chamber and the volume of the compression chamber change.
  • the low-pressure gas refrigerant is sucked from the suction muffler 23 through the suction pipe 21 by gradually expanding the volume.
  • the volume of the gas refrigerant is gradually reduced by gradually reducing the volume.
  • the compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 35 into the space in the container 20.
  • the discharged gas refrigerant further passes through the electric motor 40 and is discharged from the discharge pipe 22 in the container upper portion 20 b to the outside of the container 20.
  • the refrigerant discharged out of the container 20 returns to the suction muffler 23 again through the refrigerant circuit 11.
  • FIG. 5 shows a top view of a portion of the compressor 12 as viewed along the axial direction D0.
  • FIG. 6 shows a cross section of a portion of the compressor 12 as viewed along a first direction D1 orthogonal to the axial direction D0.
  • FIG. 7 shows a front view and a cross section of a portion of the compressor 12 as viewed along a second direction D2 orthogonal to the axial direction D0 and the first direction D1.
  • FIG. 8 shows a side view of a portion of the compressor 12 as viewed along the first direction D1. In FIG. 8, the terminal 24 is omitted.
  • drum 20a is circular shape in planar view.
  • a discharge pipe 22 is provided at the center of the container upper portion 20b.
  • a first flat surface portion 81, a second flat surface portion 82, and a curved surface portion 83 are formed on the surface of the container upper portion 20b.
  • the first flat portion 81 is provided with a plurality of terminals 24. Each terminal 24 is electrically connected to the motor 40 in the container 20. Each terminal 24 is fitted in a through hole provided in the first flat portion 81. The outermost shell of each terminal 24 is in contact with the inner peripheral edge of the through hole.
  • the second flat portion 82 is provided with a rod 28 perpendicular to the second flat portion 82.
  • the outer diameter of the discharge pipe 22 provided at the central portion of the container upper portion 20b is desirably 0.1 times or more the outer diameter of the container upper portion 20b.
  • the outer diameter of the discharge pipe 22 is preferably 0.2 or less times the outer diameter of the container upper portion 20b.
  • the surface of the curved surface portion 83 is composed of a plurality of curved surfaces.
  • the curved surface portion 83 has a shape similar to a partially missing hemisphere.
  • the edges of the first flat surface portion 81 and the second flat surface portion 82 are connected to the curved surface portion 83 by the concave portion 84 which is smoothly curved. That is, portions between the first flat surface portion 81 and the second flat surface portion 82 and the curved surface portion 83 are recessed.
  • the recess 84 is formed thick and has a function as a rib for improving the strength.
  • the first flat surface portion 81 is inclined at a first inclination angle ⁇ 1 in a direction away from the virtual vertical plane with respect to a virtual vertical surface formed in the upper end or upper opening of the cylindrical body portion 20a and orthogonal to the axial direction D0. ing.
  • the first inclination angle ⁇ 1 is desirably 5 ° or more and 30 ° or less, and is 5 ° in the present embodiment.
  • One end 81 a of the first flat surface 81 protrudes outward beyond the curved surface 83.
  • the distance from one end 81 a of the first flat surface 81 to the imaginary vertical plane is longer than the distance from the other end 81 b of the first flat surface 81 to the imaginary vertical plane.
  • the first plane portion 81 is inclined with respect to the virtual vertical plane.
  • the first flat surface portion 81 is smoothly connected to the curved surface portion 83 by the concave portion 84. Therefore, even when the distance between the terminal 24 and the discharge pipe 22 is maintained in plan view, the distance along the shape of the container upper portion 20b between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 And, the distance along the shape of the container upper portion 20b between the outermost shell of the terminal 24 and the inner peripheral wall of the container upper portion 20b is extended.
  • one end 81a of the first flat surface 81 is further separated from the curved surface 83, and one end 81a of the first flat surface 81 is It protrudes beyond the curved surface portion 83, and the distance to the virtual vertical surface is increased. Therefore, the distance along the surface of the container upper portion 20b from the terminal 24 to the discharge pipe 22 is further extended.
  • the container upper portion 20b has a diameter of 100 mm, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 is less than 3 mm, and the outermost shell of the terminal 24 between the inner peripheral wall of the container upper 20b Distance of less than 5 mm.
  • the first flat portion 81 is not inclined, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22, and the outermost shell of the terminal 24 and the inner peripheral wall of the container upper portion 20b The distance between the two can not be secured enough. That is, it is not possible to design according to the specification of the insulation distance.
  • the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 is 3 mm or more, and the outermost shell of the terminal 24 and the container upper portion 20b 5 mm or more can be secured between the inner circumferential wall of That is, the design according to the specification of the insulation distance is possible.
  • the first inclination angle ⁇ 1 of the first flat portion 81 is within the range of 5 ° to 30 ° with respect to the virtual vertical plane, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22; And, the distance between the outermost shell of the terminal 24 and the inner peripheral wall of the container upper portion 20b is secured.
  • the discharge pipe 22 is provided at a position overlapping the central axis of the container 20 at one end in the axial direction of the container 20.
  • the container 20 has a curved surface portion 83 in which the discharge pipe 22 is disposed, and a first flat portion 81 in which the plurality of terminals 24 are disposed at one axial end of the container 20.
  • the first flat portion 81 is virtually perpendicular to the central axis of the container 20 along at least one direction with respect to a virtual vertical plane perpendicular to the axial direction D0, which is located between the plurality of terminals 24 and the motor 40. Inclined at an inclination angle away from the surface.
  • the first flat portion 81 is inclined at an inclination angle away from the virtual vertical plane as approaching the central axis of the container 20 along the two directions with respect to the virtual vertical plane.
  • the first flat portion 81 including one end of the first direction D1 orthogonal to the axial direction D0 is the central axis of the container 20 along the first direction D1 with respect to the virtual vertical plane. As it approaches, it inclines at the 1st inclination angle (theta) 1 which leaves
  • the entire first flat surface portion 81 is inclined at the first inclination angle ⁇ 1 with respect to the virtual vertical plane along the first direction D1.
  • a part of the first flat portion 81 including one end in the first direction D1 is farther from the virtual vertical plane as it approaches the central axis of the container 20 along the first direction D1.
  • the remaining portion of the first flat portion 81 including the other end in the first direction D1 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the first direction D1.
  • the first inclination angle ⁇ 1 is desirably 5 ° or more and 30 ° or less, and is 5 ° in the present embodiment.
  • the first flat portion 81 including one end of the second direction D2 orthogonal to the axial direction D0 and the first direction D1 is the center of the container 20 along the second direction D2 with respect to the virtual vertical plane. As it approaches the axis, it inclines at a second inclination angle ⁇ 2 that is away from the virtual vertical plane. In the present embodiment, the entire first flat surface portion 81 is inclined at a second inclination angle ⁇ 2 with respect to the virtual vertical plane along the second direction D2. Thus, a part of the first flat portion 81 including one end in the second direction D2 is farther from the virtual vertical plane as it approaches the central axis of the container 20 along the second direction D2.
  • the remaining portion of the first flat portion 81 including the other end in the second direction D2 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the second direction D2.
  • the second tilt angle ⁇ 2 is different from the first tilt angle ⁇ 1. Is desirable. That is, if the distance from one end to the other end of first flat portion 81 in the second direction D2 is larger than the distance from one end to the other end in first direction D1 of first flat portion 81, the second inclination angle ⁇ 2 Is desirably smaller than the first inclination angle ⁇ 1.
  • the second inclination angle ⁇ 2 is It is desirable to be larger than the first inclination angle ⁇ 1. This is because the steeper the slope, the shorter the distance can be obtained. If the height can be obtained, it will be easier to secure the distance and the area.
  • the second inclination angle ⁇ 2 is desirably 5 ° or more and 30 ° or less, and is 10 ° in the present embodiment.
  • At least one of the first inclination angle ⁇ 1 and the second inclination angle ⁇ 2 of the first flat surface portion 81 may be different in each region where the terminal 24 is provided. That is, the inclination angle of the first flat portion 81 may be different for each of the terminals 24.
  • the container 20 When the refrigerant compressed in the compression mechanism 30 is discharged into the space in the container 20, the container 20 receives an outward force by the high temperature and high pressure gas refrigerant.
  • the cylindrical portion of the body portion 20a can reduce stress concentration due to the outward force.
  • the hemispherical or dome-shaped lower container portion 20c can reduce stress concentration due to an outward force.
  • the first flat portion 81 In the container upper portion 20b, the first flat portion 81 is inclined, and one end 81a of the first flat portion 81 protrudes outward beyond the curved surface portion 83 and extends to a position higher than the center of the container upper portion 20b There is.
  • first flat surface portion 81 and the curved surface portion 83 are connected by the concave portion 84 which is smoothly curved. Therefore, when the distance between the plurality of terminals 24 provided in the first flat portion 81 and the discharge pipe 22 provided in the center of the container upper portion 20b is that the surface of the container upper portion 20b is flat, and the container upper portion 20b This is more than if the surface of the is hemispherical.
  • the recess 84 is formed thick and has a function as a rib. Therefore, even if the pressure in the container 20 rises, the stress is not easily concentrated, and the deformation of the container upper portion 20b is suppressed.
  • the first flat surface portion 81 is flat, and the curved surface portion 83 approximates to a hemispherical shape partially missing, and the concave portion 84 connecting the first flat surface portion 81 and the curved surface portion 83. Is formed thick and smoothly curved, stress concentration due to outward force can be reduced.
  • one axial end of the container 20 is circular in plan view.
  • the outer diameter of the discharge pipe 22 is at least 0.1 times the outer diameter of one axial end of the container 20.
  • the first flat surface portion 81 is inclined, and the distance between the terminal 24 provided on the first flat surface portion 81 and the discharge pipe 22 provided on the curved surface portion 83 is extended. Therefore, even when the discharge pipe 22 having a large diameter of 0.1 times or more of the outer diameter of the container upper portion 20b is used, the terminal 24 and the discharge pipe 22 can be disposed sufficiently apart from each other.
  • the rod 28 to which the cover for covering the terminal 24 is attached may be disposed in the first flat portion 81, it is disposed in the second flat portion 82 in the present embodiment.
  • the rod 28 is extended to a position higher than the curved portion 83 of the container upper portion 20b. Therefore, the arrangement and mounting operation of the terminal 24 and the rod 28 are easy. The attachment of the cover to the rod 28 is also facilitated.
  • Accessories such as a temperature sensor may be attached to the second flat portion 82.
  • the second flat portion 82 is lower than the top of the first flat portion 81 by the distance H1. Therefore, when the temperature sensor is attached to the second flat portion 82, the temperature sensor can be disposed at a position near the compression mechanism 30. As the temperature sensor is closer to the compression mechanism 30, the temperature change of the refrigerant discharged from the compression mechanism 30 can be detected earlier, even when the circulation flow rate of the refrigerant is small.
  • the container 20 has the second flat portion 82 in which the rod 28 is disposed at one axial end of the container 20.
  • a cover for covering the plurality of terminals 24 is attached to the rod 28.
  • the second flat portion 82 may be inclined with respect to the virtual vertical plane, but in the present embodiment, is parallel to the virtual vertical plane.
  • the rod 28 is provided perpendicularly to the second flat portion 82. That is, the rod 28 is provided to extend along the axial direction D0.
  • accessories different from the plurality of terminals 24 and the rod 28 may be disposed.
  • an accessory such as a temperature sensor is disposed in the second flat portion 82, it is desirable that the maximum distance from the virtual vertical plane of the second flat portion 82 be closer than the first flat portion 81.
  • resistance welding is used as a method of attaching the discharge pipe 22 to the container upper portion 20b.
  • the discharge pipe 22 is joined to the curved surface portion 83 via the ring member 85.
  • the material of the ring member 85 is iron.
  • the method of attaching the discharge pipe 22 to the container upper portion 20b is not limited to resistance welding, and may be other methods such as gas welding using a brazing material or laser welding.
  • gas welding has a large heat input and a wide heat input range. Therefore, when the plurality of terminals 24 are attached by resistance welding after the discharge pipe 22 is attached by gas welding, distortion may occur on the surface of the portion of the container upper portion 20b to which the terminals 24 are attached. If distortion occurs, the surface of the container upper portion 20b and the surface of the terminal 24 do not come in contact with each other, which may cause welding defects during resistance welding. Therefore, also in the welding of the discharge pipe 22, it is desirable to reduce the heat input and the heat input range by using resistance welding or laser welding.
  • FIG. 9 shows the underside of a portion of the compressor 12 as viewed from inside the vessel 20 along the axial direction D0.
  • the plurality of terminals 24 includes a first terminal 24 a and a second terminal 24 b.
  • the plurality of terminals 24 may include terminals 24 different from the first terminals 24 a and the second terminals 24 b.
  • the plurality of terminals 24 have a first straight line L1 whose center passes through the center P0 of the container 20 and the center P1 of the first terminal 24a, and the center P0 of the container 20 and the center P2 of the second terminal 24b in plan view. It is attached to one axial direction end of the container 20 so as to be located within an angle range R1 of 180 ° or less formed by the second straight line L2 passing through.
  • the plurality of terminals 24 are collectively arranged on the first flat portion 81 of the container upper portion 20b.
  • the plurality of connection lines 26 electrically connect the plurality of terminals 24 and the motor 40 in the container 20.
  • the plurality of connection lines 26 include a first connection line 26 a electrically connecting the first terminal 24 a and the motor 40, and a second connection line 26 b electrically connecting the second terminal 24 b and the motor 40.
  • first connection line 26 a electrically connecting the first terminal 24 a and the motor 40
  • second connection line 26 b electrically connecting the second terminal 24 b and the motor 40.
  • another plurality of connecting wires 26 may be used to electrically connect the other terminal 24 to the motor 40.
  • Connecting lines 26 may be included.
  • the plurality of connection lines 26 are extracted from the plurality of terminals 24 into the angular range R1 in plan view. Specifically, the portion of each connecting wire 26 following the end connected to each terminal 24 is taken out of the existing range R2 of each terminal 24 at a position within the angular range R1 in plan view.
  • the existence range R2 of each terminal 24 is a region surrounded by an outline formed by the outermost shell of each terminal 24 in a plan view. Although the presence range R2 of each terminal 24 may be an area of any shape, it is a circular area in the present embodiment.
  • the connecting wire 26 extends from the end of the connecting wire 26 connected to the certain terminal 24 and the connecting wire 26 extends from the end of the connection range 26 of the terminal 24 in plan view. It is the position being taken out.
  • the plurality of connection lines 26 are routed such that this position falls within the angular range R1 for all the connection lines 26. Therefore, the lengths of the plurality of connection lines 26 can be shortened. Also, the wiring space can be reduced. In order to reduce the wiring space as much as possible, it is desirable that the plurality of connection lines 26 be disposed within the angular range R1 in plan view. That is, it is desirable that the plurality of connection lines 26 be routed so that the whole of all the connection lines 26 falls within the angle range R1.
  • each connecting wire 26 is taken out toward the center of the angle range R1. That is, the first connection line 26a and the second connection line 26b are on the third straight line L3 passing through the center P0 of the container 20 and the midpoint P3 of the center P1 of the first terminal 24a and the center P2 of the second terminal 24b. It is taken out in the approaching direction. Therefore, the wiring space can be made smaller.
  • the angular range R1 formed by a straight line passing the center of the container upper portion 20b and the centers of the plurality of terminals 24 is 180 ° or less.
  • the range of the extraction direction of each connection line 26 connected to each terminal 24 corresponds to the angle range R1.
  • the connection line 26 extended from the stator 41 is connected to the terminal 24 via the cluster 72 inside the container upper portion 20b.
  • the point P4 of the body 20a in the angle range R1 and the point P5 of the container upper portion 20b are aligned, and the point P6 of the body 20a and the point P7 of the container upper portion 20b on the opposite side are aligned.
  • the container upper portion 20b is fixed to the body 20a by welding so as to cover the opening of the body 20a.
  • each connecting line 26 is extended from the stator 41 The point is also on the point P4 side, that is, within the angle range R1. Therefore, each connection line 26 can be connected to each terminal 24 at the shortest.
  • the compressor 12 can be assembled without causing the connecting wire 26 to extend in the container 20 without extending the connecting wire 26 more than necessary.
  • the connecting line 26 is fixed when the take-out direction of the connecting line 26 connected to a certain terminal 24 is out of the angle range R1 and the body 20a and the container upper portion 20b are aligned.
  • the connecting wire 26 or the other connecting wire 26 is extended more than necessary, and a slack occurs in the container 20.
  • the second connection line 26b connected to the second terminal 24b is more than necessary because the extraction direction of the first connection line 26a connected to the first terminal 24a is outside the angle range R1.
  • connection line 26 passes near the discharge pipe 22, the refrigeration oil 25 pumped up in the upper space of the container 20 is trapped in the connection line 26, enters the discharge pipe 22, and is discharged to the outside of the container 20 It becomes easy to be done.
  • the refrigeration oil 25 is trapped in the band, and the refrigeration oil 25 is easily discharged out of the container 20.
  • the first terminal 24 a and the second terminal 24 b each have three pins 71. It is desirable that the three pins 71 of the first terminal 24a and the second terminal 24b be disposed symmetrically with respect to the third straight line L3.
  • At least one connection line 26 included in the plurality of connection lines 26 is connected to one terminal 24 included in the plurality of terminals 24 via the cluster 72.
  • the first connection line 26 a and the second connection line 26 b are connected to each of the first terminal 24 a and the second terminal 24 b via the cluster 72.
  • a cluster 72 configured by covering a metal connection terminal with a resin cover is used for connection between the connection wire 26 and the terminal 24 inside the container upper portion 20b. Since connection to the three pins 71 can be performed at one time, workability is improved. In order to prevent erroneous connection between the terminals 24, the cluster 72 may be used for some of the terminals 24 and only metal connection terminals may be used for the remaining terminals 24.
  • the three pins 71 of the two terminals 24 are arranged symmetrically with respect to a straight line passing through the center of the discharge pipe 22 and the middle point of the terminal 24.
  • the connection lines 26 connected to the three pins 71 of the terminal 24 are taken out in the direction approaching this straight line. Therefore, the connection line 26 can be taken out collectively in the vicinity of the point P4 of the trunk portion 20a and the point P5 of the container upper portion 20b. Therefore, the lengths of the connection lines 26 can be set to be uniform and minimum.
  • Some connection wires 26 do not sag in the container 20, and the wire connection workability is improved. Parts sharing of the connection line 26 can also be achieved, reducing the cost of parts and increasing the part management efficiency.
  • FIG. 12 shows the top of a portion of the compressor 12 as viewed in the axial direction D0, as in FIG.
  • the plurality of power supply lines 27 are connected to the plurality of terminals 24 outside the container 20.
  • the plurality of power supply lines 27 electrically connect the plurality of terminals 24 to the external power supply.
  • the plurality of power supply lines 27 include a first power supply line 27a connected to the first terminal 24a and a second power supply line 27b connected to the second terminal 24b.
  • a first power supply line 27a connected to the first terminal 24a
  • a second power supply line 27b connected to the second terminal 24b.
  • another power supply line 27 connected to the other terminal 24 is connected to the plurality of power supply lines 27. It may be included.
  • each power supply line 27 following the end connected to each terminal 24 is taken out of the existing range R2 of each terminal 24 in plan view.
  • the power supply line 27 extends from the end of a certain power supply line 27 connected to a certain terminal 24, and the power supply line 27 extends from the end of the existence range R2 of the terminal 24 in plan view. It is the position being taken out.
  • each power supply line 27 is taken out from each terminal 24 may be any direction, but in the present embodiment, the first power supply line 27a is taken out in the direction away from the third straight line L3 in plan view.
  • the line 27b is taken out in a direction approaching the third straight line L3. That is, the first power supply line 27a is taken out in the direction away from the third straight line L3 in plan view.
  • the second power supply line 27b is extracted in a direction away from the third straight line L3 in plan view.
  • the first power supply line 27a may be extracted in a direction approaching the third straight line L3 and the second power supply line 27b may be extracted in a direction away from the third straight line L3 in plan view.
  • the first power supply line 27a and the second power supply line 27b may be taken out in a direction away from the third straight line L3.
  • the power supply line 27 for supplying power is connected to the terminal 24 outside the container upper portion 20b.
  • a plurality of power supply lines 27 are integrated as in the comparative example shown in FIG. It is desirable that the power supply lines 27 be separated and clearly distinguished even after the cover is attached. As shown in FIG. 12, erroneous connection can be prevented by extracting one of the power supply lines 27 in a direction away from the straight line passing through the center of the discharge pipe 22 and the middle points of the plurality of terminals 24.
  • the angle range R1 is a second straight line passing through the center P0 of the container 20 and the center P1 of the first terminal 24a and the center P0 of the container 20 and the center P2 of the second terminal 24b in plan view. It is the range of 180 degrees or less which L2 makes.
  • the connection wires 26 electrically connecting the terminals 24 and the motor 40 are taken out of the existing range R2 of the terminals 24 at a position within the angle range R1 in plan view. Therefore, the length of each connection line 26 can be shortened.
  • the present embodiment even if there are more places where the terminal 24 provided in the container upper portion 20b and the discharge pipe 22 are close, when the inside of the container 20 becomes high in pressure, the space between the terminal 24 and the discharge pipe The stress is less likely to be concentrated in the region of (b), so deformation of the container 20 is less likely to occur. Leakage of refrigerant gas and breakage of the terminal 24 due to deformation of the container 20 can be prevented.
  • the risk of disconnection due to contact with a structure rotating at high speed with the rotor 42 in the container 20 is reduced.
  • the efficiency of the work of connecting the connecting wire 26 to the terminal 24 is increased.
  • the first flat portion 81 where the terminal 24 is disposed is inclined with respect to a virtual vertical plane orthogonal to the axial direction D0.
  • the distance between the discharge pipe 22 and the terminal 24 and the distance between the terminal 24 and the peripheral wall of the container 20 are extended. Therefore, even if the plurality of terminals 24 are provided while maintaining the outer diameter of the container 20, concentration of stress between the discharge pipe 22 and the terminals 24 is suppressed, and the container 20 is less likely to be deformed. That is, the strength of the container 20 can be secured.
  • angle range R1 which connected the center of the container 20 and the center of the some terminal 24 in planar view is 180 degrees or less.
  • the extraction direction of the connection line 26 is within the angle range R1.
  • FIG. 14 shows a comparison result of the amount of deformation relative to the internal pressure of the container upper portion 20b of the present embodiment and the container upper portion of the comparative example.
  • the load pressure was set to 5 MPa, the numerical analysis conditions were set, and the amount of deformation under load was calculated.
  • the black bar graph is the variation of the present embodiment, and the white bar graph is the comparison of the comparative example.
  • the amount of deformation of the upper portion of the container of the comparative example was 100%.
  • the amount of deformation between the discharge pipe 22 and the terminal 24 of the container upper portion 20b is reduced to about 50% of that of the comparative example.
  • the amount of deformation of the central portion of the terminal 24 is reduced to about 80% of that of the comparative example. It is considered that this is because the distance between the discharge pipe 22 and the terminal 24 is sufficiently maintained.
  • one of the factors is that the first flat portion 81 in which the terminal 24 is disposed and the curved surface portion 83 in which the discharge pipe 22 is disposed are connected by the smooth concave portion 84.
  • stress applied to the terminal 24 can be reduced, and refrigerant leakage due to a micro crack or the like of the glass portion of the terminal 24 can be suppressed. Even if a flammable refrigerant having a low global warming potential, including R290, is sealed in the container 20, the flammable refrigerant does not leak from the container 20, and safety is maintained.
  • the container 20 is sufficiently strong, so safety can be maintained.
  • the wedge-shaped hermetic container is press-fit into the release portion of the cylindrical hermetic container, and a discharge pipe is provided at the center It can be applied to cases.
  • FIG. 15 shows a top view of a portion of the compressor 12 as viewed along the axial direction D0.
  • the plurality of terminals 24 are collectively disposed in one first flat portion 81, but in the present embodiment, the plurality of terminals 24 are disposed in two or more first flat portions 81. It is divided and arranged.
  • each first flat portion 81 has an oval shape such as an oval or a rounded rectangle.
  • the edge of each first flat section 81 is connected to the curved section 83 by a smoothly curved recess 84. That is, the portion between the first flat surface portion 81 and the curved surface portion 83 is recessed.
  • the recess 84 is formed thick and has a function as a rib for improving the strength.
  • each first flat surface portion 81 is inclined at an inclination angle away from the virtual vertical plane as approaching the central axis of the container 20 along the two directions with respect to the virtual vertical plane.
  • the entire first flat surface portion 81 is inclined at a first inclination angle ⁇ 1 with respect to the virtual vertical plane.
  • a part including the end of the 1st direction D1 of each 1st plane part 81 is separated from an imaginary perpendicular plane as the central axis of container 20 is approached along with the 1st direction D1.
  • the remaining portion including the other end of the first flat portion 81 in the first direction D1 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the first direction D1.
  • the first inclination angle ⁇ 1 is desirably 5 ° or more and 30 ° or less, and is 5 ° in the present embodiment.
  • each first flat surface portion 81 including one end in the second direction D2 is farther from the virtual vertical plane as it approaches the central axis of the container 20 along the second direction D2.
  • the remaining portion of each first flat portion 81 including the other end in the second direction D2 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the second direction D2.
  • the second inclination angle ⁇ 2 is desirably 5 ° or more and 30 ° or less, and is 10 ° in the present embodiment.
  • At least one of the first inclination angle ⁇ 1 and the second inclination angle ⁇ 2 of the first flat surface portion 81 may be different for each first flat surface portion 81. That is, the inclination angle of the first flat portion 81 may be different for each of the terminals 24.
  • the rods 28 are disposed on the lower side of the respective first flat portions 81.
  • the rod 28 is provided to extend along the axial direction D0.
  • the connecting wire 26 is integrated with the winding 44 of the motor 40. However, as shown in FIG. 16, the connecting wire 26 is connected to the winding 44 of the motor 40 via the connection terminal 47. It may be
  • the body 20a and the container lower portion 20c of the container 20 are connected by welding, but as shown in FIG. 17, the body 20a and the container lower portion 20c of the container 20 are integrally formed. It is also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor, wherein a plurality of terminals (24) are attached to one axial-direction end of a container (20) in a manner such that when seen from a planar view, the centers of each of the terminals (24) are located within an angular range (R1) which is no greater than 180° and is formed by a first straight line (L1) passing through the center (P0) of the container (20) and the center (P1) of a first terminal (24a), and a second straight line (L2) passing through the center (P0) of the container (20) and the center (P2) of a second terminal (24b). A plurality of connecting wires (26) electrically connect an electric motor and the plurality of terminals (24) inside the container (20). When seen from the planar view, the plurality of connecting wires (26) are drawn from the plurality of terminals (24) to within the angular range (R1).

Description

圧縮機および冷凍サイクル装置Compressor and refrigeration cycle device
 本発明は、圧縮機および冷凍サイクル装置に関するものである。 The present invention relates to a compressor and a refrigeration cycle apparatus.
 回転圧縮機の一例である、密閉型回転圧縮機においては、溶接された一体型の密閉容器に電動機および圧縮機構等の内部部品が収容される。密閉容器の上部には、冷媒を吐出するための吐出管と、内部の固定子に口出し線を介して接続される気密端子とが設けられる。 In a hermetic rotary compressor, which is an example of a rotary compressor, internal components such as a motor and a compression mechanism are accommodated in a welded integrated hermetic container. A discharge pipe for discharging the refrigerant and an airtight terminal connected to the internal stator via a lead wire are provided on the upper part of the sealed container.
 一般的に回転圧縮機の密閉容器には、1つの気密端子が設けられる。しかし、2つの気密端子を設けることで、気密端子および口出し線に流れる電流を低減したり、電動機の巻線の結線方式を切り替えたりすることが可能となる。 Generally, a hermetic container of a rotary compressor is provided with one airtight terminal. However, by providing two airtight terminals, it is possible to reduce the current flowing to the airtight terminals and the lead wire, and to switch the wire connection method of the motor winding.
 特許文献1には、第1の口出し線を反時計回り方向に引き回して第1の端子に接続し、第2の口出し線を時計回り方向に引き回して第2の端子に接続する技術が記載されている。 Patent Document 1 describes a technique in which a first lead wire is drawn in a counterclockwise direction and connected to a first terminal, and a second lead wire is drawn in a clockwise direction and connected to a second terminal. ing.
特開2010-53786号公報JP, 2010-53786, A
 特許文献1に記載されている技術では、第1および第2の口出し線の電動機からの立上がり部が、吐出管に対して第1および第2の端子とは反対側に設けられている。そのため、吐出管およびその他の、密閉容器の中央部に設けられる部品の大きさに応じて、第1および第2の口出し線の長さを長くする必要がある。 In the technique described in Patent Document 1, the rising portions from the motor of the first and second lead wires are provided on the side opposite to the first and second terminals with respect to the discharge pipe. Therefore, it is necessary to increase the length of the first and second lead wires in accordance with the sizes of the discharge pipe and other parts provided in the central portion of the closed container.
 本発明は、圧縮機の容器に取り付けられている複数の端子と、圧縮機の容器に収容されている電動機とを電気接続する複数の接続線の長さを短くすることを目的とする。 An object of the present invention is to shorten a length of a plurality of connection lines for electrically connecting a plurality of terminals attached to a container of a compressor and an electric motor stored in the container of the compressor.
 本発明の一態様に係る圧縮機は、
 冷媒を圧縮する圧縮機構と、
 前記圧縮機構を駆動する電動機と、
 前記圧縮機構と前記電動機とを収容する容器と、
 第1端子および第2端子を含み、前記容器の軸方向一端に取り付けられ、平面視で、それぞれの中心が、前記容器の中心と前記第1端子の中心とを通る第1直線と、前記容器の中心と前記第2端子の中心とを通る第2直線とがなす180°以下の角度範囲内に位置する複数の端子と、
 前記容器の中で前記複数の端子と前記電動機とを電気接続し、平面視で、前記複数の端子から前記角度範囲内に取り出されている複数の接続線とを備える。
A compressor according to one aspect of the present invention is
A compression mechanism for compressing a refrigerant;
An electric motor for driving the compression mechanism;
A container for containing the compression mechanism and the motor;
A first straight line including a first terminal and a second terminal and attached to one axial end of the container, the first straight line having a center passing through a center of the container and a center of the first terminal in plan view; A plurality of terminals located within an angle range of 180 ° or less formed by a second straight line passing through the center of the second terminal and the center of the second terminal;
The plurality of terminals and the motor are electrically connected in the container, and a plurality of connection lines extracted from the plurality of terminals in the angle range in plan view are provided.
 本発明では、各端子と電動機とを電気接続する各接続線が、平面視で、容器の中心と第1端子の中心とを通る第1直線と、容器の中心と第2端子の中心とを通る第2直線とがなす180°以下の角度範囲内に取り出されている。そのため、各接続線の長さを短くすることができる。 In the present invention, each connecting wire electrically connecting each terminal and the motor is, in plan view, a first straight line passing through the center of the container and the center of the first terminal, the center of the container and the center of the second terminal It is taken out within an angle range of 180 ° or less formed by the passing second straight line. Therefore, the length of each connection line can be shortened.
実施の形態1に係る冷凍サイクル装置の回路図。1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の回路図。1 is a circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る圧縮機の縦断面図。1 is a longitudinal sectional view of a compressor according to Embodiment 1. FIG. 実施の形態1に係る圧縮機の一部の横断面図。Fig. 2 is a cross-sectional view of a part of the compressor according to the first embodiment. 実施の形態1に係る圧縮機の一部の平面図。FIG. 2 is a plan view of a part of the compressor according to Embodiment 1. 実施の形態1に係る圧縮機の一部の縦断面図。FIG. 2 is a longitudinal sectional view of part of the compressor according to Embodiment 1; 実施の形態1に係る圧縮機の一部の部分縦断面図。FIG. 2 is a partial vertical cross-sectional view of a part of the compressor according to Embodiment 1. 実施の形態1に係る圧縮機の一部の側面図。FIG. 2 is a side view of part of the compressor according to Embodiment 1; 実施の形態1に係る圧縮機の一部の底面図。FIG. 2 is a bottom view of a part of the compressor according to Embodiment 1. 実施の形態1に係る圧縮機の組立時における接続線の結線方法を示す図。FIG. 2 is a diagram showing a connection method of connection lines at the time of assembly of a compressor according to Embodiment 1. 比較例に係る圧縮機の組立時における接続線の結線方法を示す図。The figure which shows the connection method of the connecting wire at the time of the assembly of the compressor concerning a comparative example. 実施の形態1に係る圧縮機の一部の平面図。FIG. 2 is a plan view of a part of the compressor according to Embodiment 1. 比較例に係る圧縮機の一部の平面図。The top view of a part of compressor concerning a comparative example. 実施の形態1および比較例に係る圧縮機の容器上部の内圧に対する変形量の比較結果を示すグラフ。The graph which shows the comparison result of the deformation with respect to the internal pressure of the container upper part of the compressor which concerns on Embodiment 1 and a comparative example. 実施の形態2に係る圧縮機の一部の平面図。FIG. 7 is a plan view of a portion of a compressor according to a second embodiment. 実施の形態3に係る圧縮機の縦断面図。FIG. 9 is a longitudinal sectional view of a compressor according to a third embodiment. 実施の形態4に係る圧縮機の縦断面図。FIG. 10 is a longitudinal sectional view of a compressor according to a fourth embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。なお、本発明は、以下に説明する実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。例えば、以下に説明する実施の形態のうち、2つ以上の実施の形態が組み合わせられて実施されても構わない。あるいは、以下に説明する実施の形態のうち、1つの実施の形態または2つ以上の実施の形態の組み合わせが部分的に実施されても構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In the description of the embodiment, the description of the same or corresponding parts will be omitted or simplified as appropriate. The present invention is not limited to the embodiments described below, and various modifications can be made as needed. For example, two or more of the embodiments described below may be combined and implemented. Alternatively, among the embodiments described below, one embodiment or a combination of two or more embodiments may be partially implemented.
 実施の形態1.
 本実施の形態について、図1から図14を用いて説明する。
Embodiment 1
The present embodiment will be described with reference to FIGS. 1 to 14.
 ***構成の説明***
 図1および図2を参照して、本実施の形態に係る冷凍サイクル装置10の構成を説明する。
*** Description of the configuration ***
The configuration of a refrigeration cycle apparatus 10 according to the present embodiment will be described with reference to FIGS. 1 and 2.
 図1は、冷房運転時の冷媒回路11を示している。図2は、暖房運転時の冷媒回路11を示している。 FIG. 1 shows the refrigerant circuit 11 in the cooling operation. FIG. 2 shows the refrigerant circuit 11 in the heating operation.
 冷凍サイクル装置10は、本実施の形態では空気調和機であるが、冷蔵庫またはヒートポンプサイクル装置といった空気調和機以外の装置であってもよい。 The refrigeration cycle apparatus 10 is an air conditioner in the present embodiment, but may be an apparatus other than an air conditioner such as a refrigerator or a heat pump cycle apparatus.
 冷凍サイクル装置10は、冷媒が循環する冷媒回路11を備える。冷凍サイクル装置10は、圧縮機12と、四方弁13と、室外熱交換器である第1熱交換器14と、膨張弁である膨張機構15と、室内熱交換器である第2熱交換器16とをさらに備える。圧縮機12、四方弁13、第1熱交換器14、膨張機構15および第2熱交換器16は、冷媒回路11に接続されている。 The refrigeration cycle apparatus 10 includes a refrigerant circuit 11 in which a refrigerant circulates. The refrigeration cycle apparatus 10 includes a compressor 12, a four-way valve 13, a first heat exchanger 14 which is an outdoor heat exchanger, an expansion mechanism 15 which is an expansion valve, and a second heat exchanger which is an indoor heat exchanger. And 16. The compressor 12, the four-way valve 13, the first heat exchanger 14, the expansion mechanism 15, and the second heat exchanger 16 are connected to the refrigerant circuit 11.
 圧縮機12は、冷媒を圧縮する。四方弁13は、冷房運転時と暖房運転時とで冷媒の流れる方向を切り換える。第1熱交換器14は、冷房運転時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。すなわち、第1熱交換器14は、圧縮機12により圧縮された冷媒を用いて熱交換を行う。第1熱交換器14は、暖房運転時には蒸発器として動作し、室外空気と膨張機構15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。膨張機構15は、凝縮器で放熱した冷媒を膨張させる。第2熱交換器16は、暖房運転時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。すなわち、第2熱交換器16は、圧縮機12により圧縮された冷媒を用いて熱交換を行う。第2熱交換器16は、冷房運転時には蒸発器として動作し、室内空気と膨張機構15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。 The compressor 12 compresses the refrigerant. The four-way valve 13 switches the flow direction of the refrigerant between the cooling operation and the heating operation. The first heat exchanger 14 operates as a condenser during the cooling operation, and dissipates the refrigerant compressed by the compressor 12. That is, the first heat exchanger 14 performs heat exchange using the refrigerant compressed by the compressor 12. The first heat exchanger 14 operates as an evaporator at the time of heating operation, performs heat exchange between outdoor air and the refrigerant expanded by the expansion mechanism 15, and heats the refrigerant. The expansion mechanism 15 expands the refrigerant that has dissipated heat in the condenser. The second heat exchanger 16 operates as a condenser during heating operation, and dissipates the refrigerant compressed by the compressor 12. That is, the second heat exchanger 16 performs heat exchange using the refrigerant compressed by the compressor 12. The second heat exchanger 16 operates as an evaporator during the cooling operation, performs heat exchange between room air and the refrigerant expanded by the expansion mechanism 15, and heats the refrigerant.
 冷凍サイクル装置10は、制御装置17をさらに備える。 The refrigeration cycle apparatus 10 further includes a controller 17.
 制御装置17は、例えば、マイクロコンピュータである。図1および図2では、制御装置17と圧縮機12との接続しか示していないが、制御装置17は、圧縮機12だけでなく、冷媒回路11に接続された圧縮機12以外の構成要素に接続されてもよい。制御装置17は、制御装置17に接続されている各構成要素の状態を監視したり、制御したりする。 The control device 17 is, for example, a microcomputer. Although only the connection between the control device 17 and the compressor 12 is shown in FIGS. 1 and 2, the control device 17 includes not only the compressor 12 but also components other than the compressor 12 connected to the refrigerant circuit 11. It may be connected. The controller 17 monitors and controls the state of each component connected to the controller 17.
 冷媒回路11を循環する冷媒としては、R32、R125、R134a、R407CまたはR410AといったHFC系冷媒が使用される。あるいは、R1123、R1132(E)、R1132(Z)、R1132a、R1141、R1234yf、R1234ze(E)またはR1234ze(Z)といったHFO系冷媒が使用される。あるいは、R290(プロパン)、R600a(イソブタン)、R744(二酸化炭素)またはR717(アンモニア)といった自然冷媒が使用される。あるいは、その他の冷媒が使用される。あるいは、これらの冷媒のうち2種類以上の混合物が使用される。「HFC」は、Hydrofluorocarbonの略語である。「HFO」は、Hydrofluoroolefinの略語である。 As a refrigerant circulating through the refrigerant circuit 11, an HFC refrigerant such as R32, R125, R134a, R407C or R410A is used. Alternatively, HFO-based refrigerants such as R1123, R1132 (E), R1132 (Z), R1132 a, R1141, R1234yf, R1234ze (E) or R1234ze (Z) are used. Alternatively, natural refrigerants such as R290 (propane), R600a (isobutane), R744 (carbon dioxide) or R717 (ammonia) are used. Alternatively, other refrigerants are used. Alternatively, a mixture of two or more of these refrigerants is used. "HFC" is an abbreviation of Hydrofluorocarbon. "HFO" is an abbreviation of Hydrofluoroolefin.
 図3を参照して、本実施の形態に係る圧縮機12の構成を説明する。 The configuration of the compressor 12 according to the present embodiment will be described with reference to FIG.
 図3は、圧縮機12の縦断面を示している。 FIG. 3 shows a longitudinal cross section of the compressor 12.
 圧縮機12は、本実施の形態では密閉型圧縮機である。圧縮機12は、具体的には、多シリンダのロータリ圧縮機であるが、単シリンダのロータリ圧縮機、スクロール圧縮機またはレシプロ圧縮機であってもよい。 The compressor 12 is a hermetic compressor in the present embodiment. The compressor 12 is specifically a multi-cylinder rotary compressor, but may be a single-cylinder rotary compressor, a scroll compressor or a reciprocating compressor.
 圧縮機12は、容器20と、圧縮機構30と、電動機40と、クランク軸50とを備える。 The compressor 12 includes a container 20, a compression mechanism 30, an electric motor 40, and a crankshaft 50.
 容器20は、具体的には、密閉容器である。容器20の底部には、冷凍機油25が貯留されている。容器20には、冷媒を容器20の中に吸入するための吸入管21と、冷媒を容器20の外に吐出するための吐出管22とが取り付けられている。 Specifically, the container 20 is a closed container. At the bottom of the container 20, refrigeration oil 25 is stored. A suction pipe 21 for suctioning the refrigerant into the container 20 and a discharge pipe 22 for discharging the refrigerant to the outside of the container 20 are attached to the container 20.
 電動機40は、容器20に収容されている。具体的には、電動機40は、容器20の内側上部に設置されている。電動機40は、本実施の形態では集中巻のモータであるが、分布巻のモータであってもよい。 The motor 40 is housed in the container 20. Specifically, the motor 40 is installed at the upper inside of the container 20. The motor 40 is a concentrated winding motor in the present embodiment, but may be a distributed winding motor.
 圧縮機構30は、容器20に収容されている。具体的には、圧縮機構30は、容器20の内側下部に設置されている。すなわち、圧縮機構30は、容器20内で電動機40の下方に配置されている。 The compression mechanism 30 is housed in the container 20. Specifically, the compression mechanism 30 is installed at the lower inside of the container 20. That is, the compression mechanism 30 is disposed below the motor 40 in the container 20.
 クランク軸50は、電動機40と圧縮機構30とを連結している。クランク軸50は、冷凍機油25の給油路と電動機40の回転軸とを形成している。 The crankshaft 50 connects the motor 40 and the compression mechanism 30. The crankshaft 50 forms an oil supply passage of the refrigerator oil 25 and a rotation shaft of the electric motor 40.
 冷凍機油25は、クランク軸50の回転に伴い、クランク軸50の下部に設けられたオイルポンプ等の給油機構によって汲み上げられる。そして、冷凍機油25は、圧縮機構30の各摺動部へ供給され、圧縮機構30の各摺動部を潤滑する。冷凍機油25としては、合成油であるPOE、PVEまたはAB等が使用される。「POE」は、Polyolesterの略語である。「PVE」は、Polyvinyl Etherの略語である。「AB」は、Alkylbenzeneの略語である。 The refrigeration oil 25 is pumped up by the oil supply mechanism such as an oil pump provided at the lower part of the crankshaft 50 as the crankshaft 50 rotates. The refrigeration oil 25 is supplied to the sliding parts of the compression mechanism 30 to lubricate the sliding parts of the compression mechanism 30. As the refrigerator oil 25, POE, PVE or AB which is a synthetic oil is used. "POE" is an abbreviation of Polyolester. "PVE" is an abbreviation for Polyvinyl Ether. "AB" is an abbreviation of Alkylbenzene.
 電動機40は、クランク軸50を回転させる。圧縮機構30は、クランク軸50の回転によって駆動されることで冷媒を圧縮する。すなわち、圧縮機構30は、クランク軸50を介して伝達される電動機40の回転力によって駆動されることで冷媒を圧縮する。この冷媒は、具体的には、吸入管21に吸入された低圧のガス冷媒である。圧縮機構30で圧縮された高温かつ高圧のガス冷媒は、圧縮機構30から容器20内の空間に吐出される。 The motor 40 rotates the crankshaft 50. The compression mechanism 30 is driven by the rotation of the crankshaft 50 to compress the refrigerant. That is, the compression mechanism 30 compresses the refrigerant by being driven by the rotational force of the electric motor 40 transmitted through the crankshaft 50. Specifically, this refrigerant is a low-pressure gas refrigerant sucked into the suction pipe 21. The high temperature and high pressure gas refrigerant compressed by the compression mechanism 30 is discharged from the compression mechanism 30 into the space in the container 20.
 クランク軸50は、偏心軸部51と、主軸部52と、副軸部53とを有する。これらは、軸方向D0において主軸部52、偏心軸部51、副軸部53の順に設けられている。すなわち、偏心軸部51の軸方向一端側に主軸部52、偏心軸部51の軸方向他端側に副軸部53が設けられている。偏心軸部51、主軸部52および副軸部53は、それぞれ円柱状である。主軸部52および副軸部53は、互いの中心軸が一致するように、すなわち、同軸に設けられている。偏心軸部51は、中心軸が主軸部52および副軸部53の中心軸からずれるように設けられている。主軸部52および副軸部53が中心軸周りに回転すると、偏心軸部51は偏心回転する。 The crankshaft 50 has an eccentric shaft 51, a main shaft 52, and a countershaft 53. These are provided in the order of the main shaft portion 52, the eccentric shaft portion 51, and the sub shaft portion 53 in the axial direction D0. That is, the main shaft portion 52 is provided on one end side in the axial direction of the eccentric shaft portion 51, and the sub shaft portion 53 is provided on the other end side in the axial direction of the eccentric shaft portion 51. The eccentric shaft portion 51, the main shaft portion 52, and the sub shaft portion 53 each have a cylindrical shape. The main shaft portion 52 and the sub shaft portion 53 are provided such that the central axes thereof coincide with each other, that is, coaxially. The eccentric shaft portion 51 is provided such that the central axis thereof is offset from the central axes of the main shaft portion 52 and the auxiliary shaft portion 53. When the main shaft portion 52 and the sub shaft portion 53 rotate around the central axis, the eccentric shaft portion 51 eccentrically rotates.
 以下では、容器20の詳細を説明する。 Hereinafter, the details of the container 20 will be described.
 容器20は、胴部20aと、容器上部20bと、容器下部20cとを有する。 The container 20 has a body portion 20a, a container upper portion 20b, and a container lower portion 20c.
 胴部20aは、円筒状である。容器上部20bは、胴部20aの上側の開口を塞いでいる。容器上部20bは、容器20の軸方向一端に相当する。容器下部20cは、胴部20aの下側の開口を塞いでいる。容器下部20cは、容器20の軸方向他端に相当する。胴部20aと容器上部20bとが溶接により連結され、胴部20aと容器下部20cとが溶接により連結されることで、容器20は密閉されている。胴部20aには、吸入マフラ23に接続される吸入管21が設けられている。容器上部20bには、吐出管22が設けられている。 The body 20a is cylindrical. The container upper part 20b is closing the upper opening of the trunk | drum 20a. The container upper portion 20 b corresponds to one axial end of the container 20. The lower part 20c of the container is closing the lower opening of the body 20a. The container lower portion 20 c corresponds to the other axial end of the container 20. The body 20a and the container upper portion 20b are connected by welding, and the body 20a and the container lower portion 20c are connected by welding, whereby the container 20 is sealed. The body 20 a is provided with a suction pipe 21 connected to the suction muffler 23. A discharge pipe 22 is provided in the container upper portion 20b.
 以下では、電動機40の詳細を説明する。 The details of the motor 40 will be described below.
 電動機40は、本実施の形態ではブラシレスDCモータであるが、誘導電動機等、ブラシレスDCモータ以外のモータであってもよい。「DC」は、Direct Currentの略語である。 The motor 40 is a brushless DC motor in the present embodiment, but may be a motor other than a brushless DC motor such as an induction motor. "DC" is an abbreviation of Direct Current.
 電動機40は、固定子41と、回転子42とを有する。 The motor 40 has a stator 41 and a rotor 42.
 固定子41は、円筒状であり、容器20の内周面に接するように固定されている。回転子42は、円柱状であり、固定子41の内側に空隙を介して設置されている。空隙の幅は、例えば、0.3mm以上1.0mm以下である。 The stator 41 is cylindrical and fixed so as to be in contact with the inner circumferential surface of the container 20. The rotor 42 has a cylindrical shape, and is installed inside the stator 41 with an air gap. The width of the air gap is, for example, 0.3 mm or more and 1.0 mm or less.
 固定子41は、固定子鉄心43と、巻線44とを有する。固定子鉄心43は、鉄を主成分とする複数枚の電磁鋼板を一定の形状に打ち抜き、軸方向D0に積層し、カシメにより固定して製作される。各電磁鋼板の厚さは、例えば、0.1mm以上1.5mm以下である。固定子鉄心43は、外径が容器20の胴部20aの内径よりも大きく、容器20の胴部20aの内側に焼き嵌めにより固定されている。巻線44は、固定子鉄心43に巻かれている。具体的には、巻線44は、固定子鉄心43に絶縁部材を介して集中巻で巻かれている。巻線44は、芯線と、芯線を覆う少なくとも一層の被膜とからなる。本実施の形態において、芯線の材質は、銅である。被膜の材質は、AI/EIである。「AI」は、Amide-Imideの略語である。「EI」は、Ester-Imideの略語である。絶縁部材の材質は、PETである。「PET」は、Polyethylene Terephthalateの略語である。 The stator 41 has a stator core 43 and windings 44. The stator core 43 is manufactured by punching a plurality of magnetic steel sheets containing iron as a main component into a predetermined shape, laminating them in the axial direction D0, and fixing them by caulking. The thickness of each electromagnetic steel sheet is, for example, 0.1 mm or more and 1.5 mm or less. The stator core 43 has an outer diameter larger than the inner diameter of the body 20 a of the container 20, and is fixed to the inside of the body 20 a of the container 20 by shrink fitting. The windings 44 are wound around a stator core 43. Specifically, the winding 44 is wound in a concentrated manner around the stator core 43 via an insulating member. The winding 44 comprises a core wire and at least one layer of coating covering the core wire. In the present embodiment, the material of the core wire is copper. The material of the film is AI / EI. "AI" is an abbreviation of Amide-Imide. "EI" is an abbreviation of Ester-Imide. The material of the insulating member is PET. "PET" is an abbreviation for Polyethylene Terephthalate.
 なお、固定子鉄心43の電磁鋼板同士を固定する方法は、カシメに限らず、溶接等、他の方法であってもよい。固定子鉄心43を容器20の胴部20aの内側に固定する方法は、焼き嵌めに限らず、圧入または溶接等、他の方法であってもよい。巻線44の芯線の材質は、アルミニウムであってもよい。絶縁部材の材質は、PBT、FEP、PFA、PTFE、LCP、PPSまたはフェノール樹脂であってもよい。「PBT」は、Polybutylene Terephthalateの略語である。「FEP」は、Fluorinated Ethylene Propyleneの略語である。「PFA」は、Perfluoroalkoxy Alkaneの略語である。「PTFE」は、Polytetrafluoroethyleneの略語である。「LCP」は、Liquid Crystal Polymerの略語である。「PPS」は、Polyphenylene Sulfideの略語である。 In addition, the method of fixing the electromagnetic steel plates of the stator core 43 is not limited to caulking, and other methods such as welding may be used. The method of fixing the stator core 43 to the inside of the body portion 20a of the container 20 is not limited to shrink fitting, and may be another method such as press fitting or welding. The material of the core wire of the winding 44 may be aluminum. The material of the insulating member may be PBT, FEP, PFA, PTFE, LCP, PPS or a phenol resin. "PBT" is an abbreviation for Polybutylene Terephthalate. "FEP" is an abbreviation for Fluorinated Ethylene Propylene. "PFA" is an abbreviation of Perfluoroalkoxy Alkane. "PTFE" is an abbreviation of Polytetrafluoroethylene. "LCP" is an abbreviation for Liquid Crystal Polymer. "PPS" is an abbreviation of Polyphenylene Sulfide.
 回転子42は、回転子鉄心45と、永久磁石46とを有する。回転子鉄心45は、固定子鉄心43と同じように、鉄を主成分とする複数枚の電磁鋼板を一定の形状に打ち抜き、軸方向D0に積層し、カシメにより固定して製作される。各電磁鋼板の厚さは、例えば、0.1mm以上1.5mm以下である。永久磁石46は、回転子鉄心45に形成された複数個の挿入孔に挿入されている。永久磁石46は、磁極を形成する。永久磁石46としては、フェライト磁石または希土類磁石が使用される。 The rotor 42 has a rotor core 45 and permanent magnets 46. Similar to the stator core 43, the rotor core 45 is manufactured by punching a plurality of magnetic steel sheets containing iron as a main component into a predetermined shape, laminating them in the axial direction D0, and fixing them by caulking. The thickness of each electromagnetic steel sheet is, for example, 0.1 mm or more and 1.5 mm or less. The permanent magnets 46 are inserted into a plurality of insertion holes formed in the rotor core 45. The permanent magnet 46 forms a magnetic pole. As the permanent magnet 46, a ferrite magnet or a rare earth magnet is used.
 なお、回転子鉄心45の電磁鋼板同士を固定する方法は、カシメに限らず、溶接等、他の方法であってもよい。 In addition, the method of fixing the electromagnetic steel plates of the rotor core 45 is not limited to caulking, and other methods such as welding may be used.
 回転子鉄心45の平面視中心には、クランク軸50の主軸部52が焼き嵌めまたは圧入される軸孔が形成されている。すなわち、回転子鉄心45の内径は、主軸部52の外径よりも小さくなっている。図示していないが、回転子鉄心45の軸孔の周囲には、軸方向D0に貫通する複数個の貫通孔が形成されている。それぞれの貫通孔は、後述する吐出マフラ35から容器20内の空間へ放出されるガス冷媒の通路の1つになる。それぞれの貫通孔は、容器20の上部に導かれた冷凍機油25を容器20の下部に落とすための通路の1つにもなる。 At the center in plan view of the rotor core 45, an axial hole is formed in which the main shaft portion 52 of the crankshaft 50 is shrink-fit or press-fitted. That is, the inner diameter of the rotor core 45 is smaller than the outer diameter of the main shaft portion 52. Although not shown, around the shaft hole of the rotor core 45, a plurality of through holes penetrating in the axial direction D0 are formed. Each through hole is one of the passages of the gas refrigerant discharged from the discharge muffler 35 described later to the space in the container 20. Each through hole also serves as one of the passages for dropping the refrigerator oil 25 led to the upper part of the container 20 to the lower part of the container 20.
 図示していないが、電動機40が誘導電動機として構成される場合には、回転子鉄心45に形成された複数個のスロットにアルミニウムまたは銅等で形成される導体が充填または挿入される。そして、導体の両端をエンドリングで短絡したかご形巻線が形成される。 Although not shown, when the motor 40 is configured as an induction motor, a plurality of slots formed in the rotor core 45 are filled or inserted with a conductor formed of aluminum or copper or the like. Then, a cage winding in which both ends of the conductor are shorted by the end ring is formed.
 容器上部20bには、インバータ装置等の外部電源と接続する端子24と、端子24を保護するためのカバーが取り付けられるロッド28とが設けられている。端子24は、具体的には、ガラス端子等の気密端子である。本実施の形態において、端子24は、溶接により容器20に固定されている。端子24には、電動機40の巻線44から延長された接続線26が接続されている。これにより、端子24と電動機40とが電気的に接続されている。 The container upper portion 20b is provided with a terminal 24 connected to an external power supply such as an inverter device, and a rod 28 to which a cover for protecting the terminal 24 is attached. Specifically, the terminal 24 is an airtight terminal such as a glass terminal. In the present embodiment, the terminal 24 is fixed to the container 20 by welding. The terminal 24 is connected to a connecting wire 26 extended from the winding 44 of the motor 40. Thus, the terminal 24 and the motor 40 are electrically connected.
 容器上部20bには、さらに、軸方向両端が開口した吐出管22が設けられている。圧縮機構30から吐出されるガス冷媒は、回転子42と、回転子42の上方の油分離板29とを順番に通り、容器20内の空間から吐出管22を介して外部の冷媒回路11へ吐出される。 Furthermore, the discharge pipe 22 which the axial direction both ends opened is provided in the container upper part 20b. The gas refrigerant discharged from the compression mechanism 30 sequentially passes through the rotor 42 and the oil separation plate 29 above the rotor 42, and from the space in the container 20 to the external refrigerant circuit 11 through the discharge pipe 22. It is discharged.
 油分離板29は、冷媒とともに汲み上げられた容器20内の冷凍機油25を分離する。油分離板29は、クランク軸50に圧入により固定され、クランク軸50の回転に伴って回転する。あるいは、油分離板29は、回転子42にリベット等の固定具を用いて固定され、回転子42の回転に伴って高速に回転する。冷凍機油25は、冷媒よりも比重が大きい。そのため、油分離板29は、遠心力によって冷凍機油25を外周方向に飛ばして分離することができる。 The oil separating plate 29 separates the refrigerating machine oil 25 in the container 20 pumped up with the refrigerant. The oil separation plate 29 is fixed to the crankshaft 50 by press-fitting, and rotates as the crankshaft 50 rotates. Alternatively, the oil separation plate 29 is fixed to the rotor 42 using a fixing tool such as a rivet, and rotates at high speed as the rotor 42 rotates. The refrigeration oil 25 has a specific gravity larger than that of the refrigerant. Therefore, the oil separation plate 29 can separate the refrigerator oil 25 by flying it in the outer peripheral direction by centrifugal force.
 吐出管22は、容器上部20bの外周部に設置されてもよいが、本実施の形態では、クランク軸50の真上で、容器上部20bの中央部に設置されている。吐出管22が容器上部20bの外周部に設置されていたとすると、油分離板29により分離された冷凍機油25が吐出管22に進入し、容器20外へ吐出されることで、容器20内の冷凍機油25の量が減少し、圧縮機構30の潤滑性が低下するおそれがある。そのような潤滑性の低下を防ぐため、吐出管22は容器上部20bの中央部に設置されることが望ましい。 The discharge pipe 22 may be installed at the outer peripheral portion of the container upper portion 20b, but in the present embodiment, it is installed at the center of the container upper portion 20b just above the crankshaft 50. Assuming that the discharge pipe 22 is installed on the outer peripheral portion of the container upper portion 20b, the refrigerator oil 25 separated by the oil separating plate 29 enters the discharge pipe 22 and is discharged to the outside of the container 20. The amount of refrigeration oil 25 may be reduced, and the lubricity of the compression mechanism 30 may be reduced. In order to prevent such a decrease in lubricity, it is desirable that the discharge pipe 22 be installed at the center of the upper portion 20b of the container.
 以下では、図3だけでなく図4も参照して、圧縮機構30の詳細を説明する。 Hereinafter, the compression mechanism 30 will be described in detail with reference to FIG. 4 as well as FIG. 3.
 図4は、軸方向D0に沿って見た圧縮機12の一部の横断面を示している。なお、図4において、断面を表すハッチングは省略している。 FIG. 4 shows a cross section of a portion of the compressor 12 as viewed along the axial direction D0. In FIG. 4, hatching representing a cross section is omitted.
 圧縮機構30は、シリンダ31と、ローリングピストン32と、主軸受33と、副軸受34と、吐出マフラ35とを有する。 The compression mechanism 30 has a cylinder 31, a rolling piston 32, a main bearing 33, an auxiliary bearing 34, and a discharge muffler 35.
 シリンダ31の内周は、平面視円形である。シリンダ31の内部には、平面視円形の空間であるシリンダ室61が形成されている。シリンダ31の外周面には、冷媒回路11からガス冷媒を吸入するための吸入口が設けられている。吸入口から吸入された冷媒は、シリンダ室61で圧縮される。シリンダ31は、軸方向両端が開口している。 The inner periphery of the cylinder 31 is circular in plan view. Inside the cylinder 31, a cylinder chamber 61 which is a circular space in plan view is formed. A suction port for suctioning the gas refrigerant from the refrigerant circuit 11 is provided on the outer peripheral surface of the cylinder 31. The refrigerant drawn from the suction port is compressed in the cylinder chamber 61. Both ends in the axial direction of the cylinder 31 are open.
 ローリングピストン32は、リング状である。よって、ローリングピストン32の内周および外周は、平面視円形である。ローリングピストン32は、シリンダ室61内で偏心回転する。ローリングピストン32は、ローリングピストン32の回転軸となるクランク軸50の偏心軸部51に摺動自在に嵌められている。 The rolling piston 32 is ring-shaped. Therefore, the inner circumference and the outer circumference of the rolling piston 32 are circular in plan view. The rolling piston 32 rotates eccentrically in the cylinder chamber 61. The rolling piston 32 is slidably fitted on an eccentric shaft portion 51 of a crankshaft 50 which is a rotation shaft of the rolling piston 32.
 シリンダ31には、シリンダ室61につながり、半径方向に延びるベーン溝62が設けられている。ベーン溝62の外側には、ベーン溝62につながる平面視円形の空間である背圧室63が形成されている。ベーン溝62内には、シリンダ室61を低圧の作動室である吸入室と高圧の作動室である圧縮室とに仕切るためのベーン64が設置されている。ベーン64は、先端が丸まった板状である。ベーン64は、ベーン溝62内で摺動しながら往復運動する。ベーン64は、背圧室63に設けられたベーンスプリングによって常にローリングピストン32に押し付けられている。容器20内が高圧であるため、圧縮機12の運転が開始すると、ベーン64の背圧室63側の面であるベーン背面に容器20内の圧力とシリンダ室61内の圧力との差による力が作用する。このため、ベーンスプリングは、主に容器20内とシリンダ室61内の圧力に差がない圧縮機12の起動時に、ベーン64をローリングピストン32に押し付ける目的で使用される。 The cylinder 31 is provided with vane grooves 62 connected to the cylinder chamber 61 and extending in the radial direction. On the outside of the vane groove 62, a back pressure chamber 63 which is a circular space in plan view connected to the vane groove 62 is formed. In the vane groove 62, a vane 64 for separating the cylinder chamber 61 into a suction chamber, which is a low pressure operating chamber, and a compression chamber, which is a high pressure operating chamber, is installed. The vanes 64 are in the form of a plate whose tip is rounded. The vanes 64 reciprocate while sliding in the vane grooves 62. The vanes 64 are always pressed against the rolling piston 32 by vane springs provided in the back pressure chamber 63. Since the inside of the container 20 has a high pressure, when the operation of the compressor 12 is started, a force due to the difference between the pressure in the container 20 and the pressure in the cylinder chamber 61 on the back of the vane which is the surface on the back pressure chamber 63 side of the vane 64 Works. Therefore, the vane spring is mainly used for the purpose of pressing the vane 64 against the rolling piston 32 when the compressor 12 starts with no difference in pressure in the container 20 and in the cylinder chamber 61.
 主軸受33は、側面視逆T字状の軸受である。主軸受33は、クランク軸50の偏心軸部51よりも上の部分である主軸部52に摺動自在に嵌められている。クランク軸50の内部には、給油路となる貫通孔54が軸方向D0に沿って設けられており、主軸受33と主軸部52との間には、この貫通孔54を介して吸い上げられた冷凍機油25が供給されることで油膜が形成されている。主軸受33は、シリンダ31のシリンダ室61およびベーン溝62の上側を閉塞している。すなわち、主軸受33は、シリンダ31内の2つの作動室の上側を閉塞している。 The main bearing 33 is a reverse T-shaped bearing in a side view. The main bearing 33 is slidably fitted on a main shaft portion 52 which is a portion above the eccentric shaft portion 51 of the crankshaft 50. A through hole 54 serving as an oil supply passage is provided along the axial direction D0 inside the crankshaft 50, and is sucked through the through hole 54 between the main bearing 33 and the main shaft portion 52. An oil film is formed by the supply of the refrigerating machine oil 25. The main bearing 33 closes the upper side of the cylinder chamber 61 and the vane groove 62 of the cylinder 31. That is, the main bearing 33 closes the upper side of the two working chambers in the cylinder 31.
 副軸受34は、側面視T字状の軸受である。副軸受34は、クランク軸50の偏心軸部51よりも下の部分である副軸部53に摺動自在に嵌められている。副軸受34と副軸部53との間には、クランク軸50の貫通孔54を介して吸い上げられた冷凍機油25が供給されることで油膜が形成されている。副軸受34は、シリンダ31のシリンダ室61およびベーン溝62の下側を閉塞している。すなわち、副軸受34は、シリンダ31内の2つの作動室の下側を閉塞している。 The auxiliary bearing 34 is a T-shaped bearing in a side view. The sub bearing 34 is slidably fitted in a sub shaft portion 53 which is a portion below the eccentric shaft portion 51 of the crankshaft 50. An oil film is formed between the sub bearing 34 and the sub shaft portion 53 by supplying the refrigerating machine oil 25 sucked up through the through hole 54 of the crankshaft 50. The sub bearing 34 closes the lower side of the cylinder chamber 61 and the vane groove 62 of the cylinder 31. That is, the sub bearing 34 closes the lower side of the two working chambers in the cylinder 31.
 主軸受33と副軸受34は、それぞれボルト等の締結具36によってシリンダ31に固定され、ローリングピストン32の回転軸であるクランク軸50を支持している。主軸受33は、主軸受33と主軸部52との間の油膜の流体潤滑によって主軸部52に接触せずに主軸部52を支持している。副軸受34は、主軸受33と同様に、副軸受34と副軸部53との間の油膜の流体潤滑によって副軸部53に接触せずに副軸部53を支持している。 The main bearing 33 and the sub bearing 34 are fixed to the cylinder 31 by fasteners 36 such as bolts, respectively, and support a crankshaft 50 which is a rotation shaft of the rolling piston 32. The main bearing 33 supports the main shaft 52 without contacting the main shaft 52 by fluid lubrication of the oil film between the main bearing 33 and the main shaft 52. The secondary bearing 34 supports the secondary shaft 53 without contacting the secondary shaft 53 by fluid lubrication of the oil film between the secondary bearing 34 and the secondary shaft 53 as the main bearing 33 does.
 図示していないが、主軸受33には、シリンダ室61で圧縮された冷媒を冷媒回路11に吐出するための吐出口が設けられている。吐出口は、シリンダ室61がベーン64によって吸入室と圧縮室とに仕切られているときに圧縮室につながる位置にある。主軸受33には、吐出口を開閉自在に閉塞する吐出弁が取り付けられている。吐出弁は、圧縮室内のガス冷媒が所望の圧力になるまで閉じ、圧縮室内のガス冷媒が所望の圧力になると開く。これにより、シリンダ31からのガス冷媒の吐出タイミングが制御される。 Although not shown, the main bearing 33 is provided with a discharge port for discharging the refrigerant compressed in the cylinder chamber 61 to the refrigerant circuit 11. The discharge port is at a position where it is connected to the compression chamber when the cylinder chamber 61 is divided by the vane 64 into a suction chamber and a compression chamber. The main bearing 33 is attached with a discharge valve that closes the discharge port so as to open and close. The discharge valve is closed until the gas refrigerant in the compression chamber reaches a desired pressure, and is opened when the gas refrigerant in the compression chamber reaches a desired pressure. Thereby, the discharge timing of the gas refrigerant from the cylinder 31 is controlled.
 吐出マフラ35は、主軸受33の外側に取り付けられている。吐出弁が開いたときに吐出される高温かつ高圧のガス冷媒は、一旦吐出マフラ35に入り、その後吐出マフラ35から容器20内の空間に放出される。 The discharge muffler 35 is attached to the outside of the main bearing 33. The high-temperature, high-pressure gas refrigerant discharged when the discharge valve is opened enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the container 20.
 なお、吐出口および吐出弁は、副軸受34、あるいは、主軸受33と副軸受34との両方に設けられていてもよい。吐出マフラ35は、吐出口および吐出弁が設けられている軸受の外側に取り付けられる。 The discharge port and the discharge valve may be provided in the sub bearing 34 or both the main bearing 33 and the sub bearing 34. The discharge muffler 35 is attached to the outside of the bearing on which the discharge port and the discharge valve are provided.
 容器20の横には、吸入マフラ23が設けられている。吸入マフラ23は、冷媒回路11から低圧のガス冷媒を吸入する。吸入マフラ23は、液冷媒が戻る場合に液冷媒が直接シリンダ31のシリンダ室61に入り込むことを抑制する。吸入マフラ23は、シリンダ31の外周面に設けられた吸入口に吸入管21を介して接続されている。吸入口は、シリンダ室61がベーン64によって吸入室と圧縮室とに仕切られているときに吸入室につながる位置にある。吸入マフラ23の本体は、溶接等により容器20の胴部20aの側面に固定されている。 An intake muffler 23 is provided beside the container 20. The suction muffler 23 sucks the low-pressure gas refrigerant from the refrigerant circuit 11. The suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber 61 of the cylinder 31 when the liquid refrigerant returns. The suction muffler 23 is connected to a suction port provided on the outer peripheral surface of the cylinder 31 via a suction pipe 21. The suction port is in a position to be connected to the suction chamber when the cylinder chamber 61 is divided by the vane 64 into the suction chamber and the compression chamber. The main body of the suction muffler 23 is fixed to the side surface of the body 20 a of the container 20 by welding or the like.
 クランク軸50の偏心軸部51、主軸部52および副軸部53の材質は、鋳造材または鍛造材である。主軸受33および副軸受34の材質は、鋳造材または焼結材であり、具体的には、焼結鋼、ねずみ鋳鉄または炭素鋼である。シリンダ31の材質も、焼結鋼、ねずみ鋳鉄または炭素鋼である。ローリングピストン32の材質は、鋳造材であり、具体的には、モリブデン、ニッケルおよびクロムを含有する合金鋼、または、鉄系鋳造材である。ベーン64の材質は、高速度工具鋼である。 The material of the eccentric shaft portion 51, the main shaft portion 52 and the countershaft portion 53 of the crankshaft 50 is a cast material or a forged material. The material of the main bearing 33 and the auxiliary bearing 34 is a cast material or a sintered material, and specifically, sintered steel, gray cast iron or carbon steel. The material of the cylinder 31 is also sintered steel, gray cast iron or carbon steel. The material of the rolling piston 32 is a cast material, and specifically, an alloy steel containing molybdenum, nickel and chromium, or an iron-based cast material. The material of the vanes 64 is high speed tool steel.
 図示していないが、圧縮機12がスイング式のロータリ圧縮機として構成される場合には、ベーン64が、ローリングピストン32と一体に設けられる。クランク軸50が駆動されると、ベーン64は、ローリングピストン32に回転自在に取り付けられた支持体の溝に沿って往復運動する。ベーン64は、ローリングピストン32の回転に従って揺動しながら半径方向へ進退することによって、シリンダ室61の内部を圧縮室と吸入室とに区画する。支持体は、横断面が半円形状の2個の柱状部材で構成される。支持体は、シリンダ31の吸入口と吐出口との中間部に形成された円形状の保持孔に回転自在に嵌められる。 Although not shown, when the compressor 12 is configured as a swing type rotary compressor, the vanes 64 are provided integrally with the rolling piston 32. When the crankshaft 50 is driven, the vanes 64 reciprocate along the grooves of a support rotatably mounted on the rolling piston 32. The vanes 64 radially advance and retract while oscillating as the rolling piston 32 rotates, thereby dividing the inside of the cylinder chamber 61 into a compression chamber and a suction chamber. The support is constituted by two columnar members having a semicircular cross section. The support is rotatably fitted in a circular holding hole formed at an intermediate portion between the suction port and the discharge port of the cylinder 31.
 ***動作の説明***
 図3および図4を参照して、本実施の形態に係る圧縮機12の動作を説明する。圧縮機12の動作は、本実施の形態に係る冷媒圧縮方法に相当する。
*** Description of operation ***
The operation of the compressor 12 according to the present embodiment will be described with reference to FIGS. 3 and 4. The operation of the compressor 12 corresponds to the refrigerant compression method according to the present embodiment.
 端子24から接続線26を介して電動機40の固定子41に電力が供給される。これにより、固定子41の巻線44に電流が流れ、巻線44から磁束が発生する。電動機40の回転子42は、巻線44から発生する磁束と、回転子42の永久磁石46から発生する磁束との作用によって回転する。具体的には、回転子42は、固定子41の巻線44に電流が流れることで発生する回転磁界と回転子42の永久磁石46の磁界との吸引反発作用によって回転する。回転子42の回転によって、回転子42に固定されたクランク軸50が回転する。クランク軸50の回転に伴い、圧縮機構30のローリングピストン32が圧縮機構30のシリンダ31のシリンダ室61内で偏心回転する。シリンダ31とローリングピストン32との間の空間であるシリンダ室61は、ベーン64によって吸入室と圧縮室とに分割されている。クランク軸50の回転に伴い、吸入室の容積と圧縮室の容積とが変化する。吸入室では、徐々に容積が拡大することにより、吸入マフラ23から吸入管21を介して低圧のガス冷媒が吸入される。圧縮室では、徐々に容積が縮小することにより、中のガス冷媒が圧縮される。圧縮され、高圧かつ高温となったガス冷媒は、吐出マフラ35から容器20内の空間に吐出される。吐出されたガス冷媒は、さらに、電動機40を通過して容器上部20bにある吐出管22から容器20の外へ吐出される。容器20の外へ吐出された冷媒は、冷媒回路11を通って、再び吸入マフラ23に戻ってくる。 Electric power is supplied from the terminal 24 to the stator 41 of the motor 40 via the connection line 26. As a result, current flows through the windings 44 of the stator 41, and magnetic flux is generated from the windings 44. The rotor 42 of the motor 40 is rotated by the action of the magnetic flux generated from the winding 44 and the magnetic flux generated from the permanent magnet 46 of the rotor 42. Specifically, the rotor 42 is rotated by the attraction and repulsion between the rotating magnetic field generated by the flow of current through the winding 44 of the stator 41 and the magnetic field of the permanent magnet 46 of the rotor 42. The rotation of the rotor 42 causes the crankshaft 50 fixed to the rotor 42 to rotate. As the crankshaft 50 rotates, the rolling piston 32 of the compression mechanism 30 eccentrically rotates in the cylinder chamber 61 of the cylinder 31 of the compression mechanism 30. A cylinder chamber 61 which is a space between the cylinder 31 and the rolling piston 32 is divided by a vane 64 into a suction chamber and a compression chamber. As the crankshaft 50 rotates, the volume of the suction chamber and the volume of the compression chamber change. In the suction chamber, the low-pressure gas refrigerant is sucked from the suction muffler 23 through the suction pipe 21 by gradually expanding the volume. In the compression chamber, the volume of the gas refrigerant is gradually reduced by gradually reducing the volume. The compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 35 into the space in the container 20. The discharged gas refrigerant further passes through the electric motor 40 and is discharged from the discharge pipe 22 in the container upper portion 20 b to the outside of the container 20. The refrigerant discharged out of the container 20 returns to the suction muffler 23 again through the refrigerant circuit 11.
 ***構成の詳細の説明***
 図3のほかに、図5から図13を参照して、本実施の形態に係る圧縮機12の構成の詳細を説明する。
*** Description of configuration details ***
The details of the configuration of the compressor 12 according to the present embodiment will be described with reference to FIGS. 5 to 13 in addition to FIG. 3.
 図5は、軸方向D0に沿って見た圧縮機12の一部の上面を示している。図6は、軸方向D0と直交する第1方向D1に沿って見た圧縮機12の一部の断面を示している。図7は、軸方向D0および第1方向D1と直交する第2方向D2に沿って見た圧縮機12の一部の正面および断面を示している。図8は、第1方向D1に沿って見た圧縮機12の一部の側面を示している。なお、図8では、端子24を省略している。 FIG. 5 shows a top view of a portion of the compressor 12 as viewed along the axial direction D0. FIG. 6 shows a cross section of a portion of the compressor 12 as viewed along a first direction D1 orthogonal to the axial direction D0. FIG. 7 shows a front view and a cross section of a portion of the compressor 12 as viewed along a second direction D2 orthogonal to the axial direction D0 and the first direction D1. FIG. 8 shows a side view of a portion of the compressor 12 as viewed along the first direction D1. In FIG. 8, the terminal 24 is omitted.
 胴部20aに接続された容器上部20bは、平面視において円形状である。容器上部20bの中心部には、吐出管22が設けられている。容器上部20bの表面には、第1平面部81と、第2平面部82と、曲面部83とが形成されている。 The container upper part 20b connected to the trunk | drum 20a is circular shape in planar view. A discharge pipe 22 is provided at the center of the container upper portion 20b. A first flat surface portion 81, a second flat surface portion 82, and a curved surface portion 83 are formed on the surface of the container upper portion 20b.
 第1平面部81には、複数の端子24が設けられている。各端子24は、容器20内の電動機40と電気的に接続している。各端子24は、第1平面部81に設けられた貫通孔に嵌められている。各端子24の最外殻は、その貫通孔の内周縁に当接している。 The first flat portion 81 is provided with a plurality of terminals 24. Each terminal 24 is electrically connected to the motor 40 in the container 20. Each terminal 24 is fitted in a through hole provided in the first flat portion 81. The outermost shell of each terminal 24 is in contact with the inner peripheral edge of the through hole.
 第2平面部82には、第2平面部82に対して垂直なロッド28が設けられている。 The second flat portion 82 is provided with a rod 28 perpendicular to the second flat portion 82.
 容器上部20bの中心部に設けられた吐出管22の外径は、容器上部20bの外径の0.1倍以上であることが望ましい。吐出管22の外径は、容器上部20bの外径の0.2倍以下の外径であることが望ましい。 The outer diameter of the discharge pipe 22 provided at the central portion of the container upper portion 20b is desirably 0.1 times or more the outer diameter of the container upper portion 20b. The outer diameter of the discharge pipe 22 is preferably 0.2 or less times the outer diameter of the container upper portion 20b.
 曲面部83の表面は、複数の曲面により構成されている。曲面部83は、一部が欠けた半球に近似した形状を有している。 The surface of the curved surface portion 83 is composed of a plurality of curved surfaces. The curved surface portion 83 has a shape similar to a partially missing hemisphere.
 第1平面部81および第2平面部82の縁部は、滑らかに湾曲している凹部84により曲面部83に接続している。すなわち、第1平面部81および第2平面部82と曲面部83との間の部分は窪んでいる。凹部84は、厚く形成されており、強度を向上させるリブとしての機能を有する。 The edges of the first flat surface portion 81 and the second flat surface portion 82 are connected to the curved surface portion 83 by the concave portion 84 which is smoothly curved. That is, portions between the first flat surface portion 81 and the second flat surface portion 82 and the curved surface portion 83 are recessed. The recess 84 is formed thick and has a function as a rib for improving the strength.
 円筒状の胴部20aの上端または上側の開口に形成され、軸方向D0に直交する仮想垂直面に対し、第1平面部81は、仮想垂直面から離れる方向に第1傾斜角度θ1で傾斜している。第1傾斜角度θ1は、望ましくは5°以上30°以下であり、本実施の形態では5°である。第1平面部81の一方の端部81aは、曲面部83よりも外側に突出している。第1平面部81の一方の端部81aから仮想垂直面までの距離は、第1平面部81の他方の端部81bから仮想垂直面までの距離よりも遠い。第1傾斜角度θ1で傾斜する第1平面部81が凹部84により曲面部83と接続されることで、端子24の最外殻と吐出管22の外周壁との間の、容器上部20bの形状に沿った距離、および、端子24の最外殻と容器上部20bの内周壁との間の、容器上部20bの形状に沿った距離が増大する。 The first flat surface portion 81 is inclined at a first inclination angle θ1 in a direction away from the virtual vertical plane with respect to a virtual vertical surface formed in the upper end or upper opening of the cylindrical body portion 20a and orthogonal to the axial direction D0. ing. The first inclination angle θ1 is desirably 5 ° or more and 30 ° or less, and is 5 ° in the present embodiment. One end 81 a of the first flat surface 81 protrudes outward beyond the curved surface 83. The distance from one end 81 a of the first flat surface 81 to the imaginary vertical plane is longer than the distance from the other end 81 b of the first flat surface 81 to the imaginary vertical plane. The shape of the container upper portion 20b between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 by connecting the first flat surface portion 81 inclined at the first inclination angle θ1 with the curved surface portion 83 by the concave portion 84 And the distance along the shape of the container top 20b between the outermost shell of the terminals 24 and the inner circumferential wall of the container top 20b.
 このように、第1平面部81は、仮想垂直面に対して傾斜している。第1平面部81は、凹部84により曲面部83と滑らかに接続されている。そのため、平面視で端子24と吐出管22との間の距離が維持された場合でも、端子24の最外殻と吐出管22の外周壁との間の、容器上部20bの形状に沿った距離、および、端子24の最外殻と容器上部20bの内周壁との間の、容器上部20bの形状に沿った距離が延長される。第1平面部81の第1傾斜角度θ1を大きくすることで、第1平面部81の一方の端部81aが曲面部83からさらに離れ、かつ、第1平面部81の一方の端部81aが曲面部83よりも突出し、仮想垂直面までの距離が大きくなる。そのため、端子24から吐出管22までの間の、容器上部20bの表面に沿った距離がさらに延長される。 Thus, the first plane portion 81 is inclined with respect to the virtual vertical plane. The first flat surface portion 81 is smoothly connected to the curved surface portion 83 by the concave portion 84. Therefore, even when the distance between the terminal 24 and the discharge pipe 22 is maintained in plan view, the distance along the shape of the container upper portion 20b between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 And, the distance along the shape of the container upper portion 20b between the outermost shell of the terminal 24 and the inner peripheral wall of the container upper portion 20b is extended. By increasing the first inclination angle θ1 of the first flat surface 81, one end 81a of the first flat surface 81 is further separated from the curved surface 83, and one end 81a of the first flat surface 81 is It protrudes beyond the curved surface portion 83, and the distance to the virtual vertical surface is increased. Therefore, the distance along the surface of the container upper portion 20b from the terminal 24 to the discharge pipe 22 is further extended.
 平面視で、容器上部20bの直径を100mm、端子24の最外殻と吐出管22の外周壁との間の距離を3mm未満、端子24の最外殻と容器上部20bの内周壁との間の距離を5mm未満とする。この場合に、第1平面部81が傾斜していなければ、端子24の最外殻と吐出管22の外周壁との間の距離、および、端子24の最外殻と容器上部20bの内周壁との間の距離を十分確保することができない。すなわち、絶縁距離の規定に準ずる設計ができない。第1平面部81が第1傾斜角度θ1で傾斜していれば、端子24の最外殻と吐出管22の外周壁との間の距離を3mm以上、端子24の最外殻と容器上部20bの内周壁との間の距離を5mm以上確保することができる。すなわち、絶縁距離の規定に準ずる設計が可能となる。第1平面部81の第1傾斜角度θ1が仮想垂直面に対して5°以上30°以下の範囲内であれば、端子24の最外殻と吐出管22の外周壁との間の距離、および、端子24の最外殻と容器上部20bの内周壁との間の距離が確保される。 In plan view, the container upper portion 20b has a diameter of 100 mm, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 is less than 3 mm, and the outermost shell of the terminal 24 between the inner peripheral wall of the container upper 20b Distance of less than 5 mm. In this case, if the first flat portion 81 is not inclined, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22, and the outermost shell of the terminal 24 and the inner peripheral wall of the container upper portion 20b The distance between the two can not be secured enough. That is, it is not possible to design according to the specification of the insulation distance. If the first flat portion 81 is inclined at the first inclination angle θ1, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22 is 3 mm or more, and the outermost shell of the terminal 24 and the container upper portion 20b 5 mm or more can be secured between the inner circumferential wall of That is, the design according to the specification of the insulation distance is possible. If the first inclination angle θ1 of the first flat portion 81 is within the range of 5 ° to 30 ° with respect to the virtual vertical plane, the distance between the outermost shell of the terminal 24 and the outer peripheral wall of the discharge pipe 22; And, the distance between the outermost shell of the terminal 24 and the inner peripheral wall of the container upper portion 20b is secured.
 上記のように、吐出管22は、容器20の軸方向一端で容器20の中心軸と重なる位置に設けられている。容器20は、吐出管22が配置されている曲面部83と、複数の端子24が配置されている第1平面部81とを容器20の軸方向一端に有する。第1平面部81は、複数の端子24と電動機40との間に位置する、軸方向D0に垂直な仮想垂直面に対し、少なくとも1つの方向に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れる傾斜角度で傾斜している。 As described above, the discharge pipe 22 is provided at a position overlapping the central axis of the container 20 at one end in the axial direction of the container 20. The container 20 has a curved surface portion 83 in which the discharge pipe 22 is disposed, and a first flat portion 81 in which the plurality of terminals 24 are disposed at one axial end of the container 20. The first flat portion 81 is virtually perpendicular to the central axis of the container 20 along at least one direction with respect to a virtual vertical plane perpendicular to the axial direction D0, which is located between the plurality of terminals 24 and the motor 40. Inclined at an inclination angle away from the surface.
 本実施の形態では、第1平面部81は、仮想垂直面に対し、2つの方向に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れる傾斜角度で傾斜している。 In the present embodiment, the first flat portion 81 is inclined at an inclination angle away from the virtual vertical plane as approaching the central axis of the container 20 along the two directions with respect to the virtual vertical plane.
 具体的には、第1平面部81の、軸方向D0と直交する第1方向D1の一端を含む少なくとも一部は、仮想垂直面に対し、第1方向D1に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れる第1傾斜角度θ1で傾斜している。本実施の形態では、第1方向D1に沿って、第1平面部81の全体が仮想垂直面に対して第1傾斜角度θ1で傾斜している。これにより、第1平面部81の第1方向D1の一端を含む一部が、第1方向D1に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れている。第1平面部81の第1方向D1の他端を含む残りの部分が、第1方向D1に沿って容器20の中心軸から遠ざかるにつれて仮想垂直面から離れている。前述したように、第1傾斜角度θ1は、望ましくは5°以上30°以下であり、本実施の形態では5°である。 Specifically, at least a portion of the first flat portion 81 including one end of the first direction D1 orthogonal to the axial direction D0 is the central axis of the container 20 along the first direction D1 with respect to the virtual vertical plane. As it approaches, it inclines at the 1st inclination angle (theta) 1 which leaves | separates from a virtual vertical surface. In the present embodiment, the entire first flat surface portion 81 is inclined at the first inclination angle θ1 with respect to the virtual vertical plane along the first direction D1. Thus, a part of the first flat portion 81 including one end in the first direction D1 is farther from the virtual vertical plane as it approaches the central axis of the container 20 along the first direction D1. The remaining portion of the first flat portion 81 including the other end in the first direction D1 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the first direction D1. As described above, the first inclination angle θ1 is desirably 5 ° or more and 30 ° or less, and is 5 ° in the present embodiment.
 また、第1平面部81の、軸方向D0および第1方向D1と直交する第2方向D2の一端を含む少なくとも一部は、仮想垂直面に対し、第2方向D2に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れる第2傾斜角度θ2で傾斜している。本実施の形態では、第2方向D2に沿って、第1平面部81の全体が仮想垂直面に対して第2傾斜角度θ2で傾斜している。これにより、第1平面部81の第2方向D2の一端を含む一部が、第2方向D2に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れている。第1平面部81の第2方向D2の他端を含む残りの部分が、第2方向D2に沿って容器20の中心軸から遠ざかるにつれて仮想垂直面から離れている。第1平面部81の第1方向D1の長さ寸法と、第1平面部81の第2方向D2の長さ寸法とが異なる場合、第2傾斜角度θ2は、第1傾斜角度θ1とは異なることが望ましい。すなわち、第1平面部81の第2方向D2の一端から他端までの距離が、第1平面部81の第1方向D1の一端から他端までの距離よりも大きければ、第2傾斜角度θ2は、第1傾斜角度θ1よりも小さいことが望ましい。第1平面部81の第2方向D2の一端から他端までの距離が、第1平面部81の第1方向D1の一端から他端までの距離よりも小さければ、第2傾斜角度θ2は、第1傾斜角度θ1よりも大きいことが望ましい。これは、傾斜が急なほど、短い距離で高さを得ることができるからである。高さを得ることができれば、距離および面積を確保しやすくなる。第2傾斜角度θ2は、望ましくは5°以上30°以下であり、本実施の形態では10°である。 Further, at least a portion of the first flat portion 81 including one end of the second direction D2 orthogonal to the axial direction D0 and the first direction D1 is the center of the container 20 along the second direction D2 with respect to the virtual vertical plane. As it approaches the axis, it inclines at a second inclination angle θ2 that is away from the virtual vertical plane. In the present embodiment, the entire first flat surface portion 81 is inclined at a second inclination angle θ2 with respect to the virtual vertical plane along the second direction D2. Thus, a part of the first flat portion 81 including one end in the second direction D2 is farther from the virtual vertical plane as it approaches the central axis of the container 20 along the second direction D2. The remaining portion of the first flat portion 81 including the other end in the second direction D2 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the second direction D2. When the length dimension of the first flat portion 81 in the first direction D1 is different from the length dimension of the first flat portion 81 in the second direction D2, the second tilt angle θ2 is different from the first tilt angle θ1. Is desirable. That is, if the distance from one end to the other end of first flat portion 81 in the second direction D2 is larger than the distance from one end to the other end in first direction D1 of first flat portion 81, the second inclination angle θ2 Is desirably smaller than the first inclination angle θ1. If the distance from one end to the other end of the first flat portion 81 in the second direction D2 is smaller than the distance from one end to the other end in the first direction D1 of the first flat portion 81, the second inclination angle θ2 is It is desirable to be larger than the first inclination angle θ1. This is because the steeper the slope, the shorter the distance can be obtained. If the height can be obtained, it will be easier to secure the distance and the area. The second inclination angle θ2 is desirably 5 ° or more and 30 ° or less, and is 10 ° in the present embodiment.
 なお、第1平面部81の第1傾斜角度θ1および第2傾斜角度θ2の少なくともいずれかが端子24のある領域ごとに異なっていてもよい。すなわち、第1平面部81の傾斜角度が端子24ごとに異なっていてもよい。 Note that at least one of the first inclination angle θ1 and the second inclination angle θ2 of the first flat surface portion 81 may be different in each region where the terminal 24 is provided. That is, the inclination angle of the first flat portion 81 may be different for each of the terminals 24.
 圧縮機構30において圧縮された冷媒が容器20内の空間に吐出されると、容器20が高温かつ高圧のガス冷媒により外向きの力を受ける。胴部20aでは、胴部20aが円筒状であることで、外向きの力による応力集中を低減できる。容器下部20cでは、容器下部20cが半球状またはドーム状であることで、外向きの力による応力集中を低減できる。容器上部20bでは、第1平面部81が傾斜しており、第1平面部81の一方の端部81aが曲面部83よりも外側に突出し、容器上部20bの中心よりも高い位置まで延長されている。また、第1平面部81と曲面部83とが滑らかに湾曲した凹部84により接続されている。そのため、第1平面部81に設けられた複数の端子24と、容器上部20bの中心に設けられた吐出管22との距離が、容器上部20bの表面が平坦である場合、および、容器上部20bの表面が半球面である場合よりも増大される。凹部84は、厚く形成され、リブとしての機能を有する。よって、容器20内の圧力が上昇しても、応力が集中しにくくなり、容器上部20bの変形が抑制される。すなわち、容器上部20bでは、第1平面部81が平坦であり、曲面部83が、一部が欠けた半球形に近似しており、第1平面部81と曲面部83とを接続する凹部84が厚く形成され、滑らかに湾曲していることで、外向きの力による応力集中を低減できる。 When the refrigerant compressed in the compression mechanism 30 is discharged into the space in the container 20, the container 20 receives an outward force by the high temperature and high pressure gas refrigerant. In the body portion 20a, the cylindrical portion of the body portion 20a can reduce stress concentration due to the outward force. In the lower container portion 20c, the hemispherical or dome-shaped lower container portion 20c can reduce stress concentration due to an outward force. In the container upper portion 20b, the first flat portion 81 is inclined, and one end 81a of the first flat portion 81 protrudes outward beyond the curved surface portion 83 and extends to a position higher than the center of the container upper portion 20b There is. Further, the first flat surface portion 81 and the curved surface portion 83 are connected by the concave portion 84 which is smoothly curved. Therefore, when the distance between the plurality of terminals 24 provided in the first flat portion 81 and the discharge pipe 22 provided in the center of the container upper portion 20b is that the surface of the container upper portion 20b is flat, and the container upper portion 20b This is more than if the surface of the is hemispherical. The recess 84 is formed thick and has a function as a rib. Therefore, even if the pressure in the container 20 rises, the stress is not easily concentrated, and the deformation of the container upper portion 20b is suppressed. That is, in the container upper portion 20b, the first flat surface portion 81 is flat, and the curved surface portion 83 approximates to a hemispherical shape partially missing, and the concave portion 84 connecting the first flat surface portion 81 and the curved surface portion 83. Is formed thick and smoothly curved, stress concentration due to outward force can be reduced.
 本実施の形態では、容器20の軸方向一端が平面視円形状である。吐出管22の外径は、容器20の軸方向一端の外径の0.1倍以上である。第1平面部81が傾斜しており、第1平面部81に設けられた端子24と、曲面部83に設けられた吐出管22との間の距離が延長されている。そのため、容器上部20bの外径の0.1倍以上の大径な吐出管22を用いた場合であっても、端子24と吐出管22とを十分離して配置することが可能となる。 In the present embodiment, one axial end of the container 20 is circular in plan view. The outer diameter of the discharge pipe 22 is at least 0.1 times the outer diameter of one axial end of the container 20. The first flat surface portion 81 is inclined, and the distance between the terminal 24 provided on the first flat surface portion 81 and the discharge pipe 22 provided on the curved surface portion 83 is extended. Therefore, even when the discharge pipe 22 having a large diameter of 0.1 times or more of the outer diameter of the container upper portion 20b is used, the terminal 24 and the discharge pipe 22 can be disposed sufficiently apart from each other.
 端子24を覆うためのカバーが取り付けられるロッド28は、第1平面部81に配置されてもよいが、本実施の形態では第2平面部82に配置されている。ロッド28は、容器上部20bの曲面部83よりも高い位置まで延長されている。そのため、端子24およびロッド28の配置および取付作業が容易である。ロッド28へのカバーの取付作業も容易となる。第2平面部82には、温度センサ等の付属品が取り付けられてもよい。本実施の形態では、第2平面部82が、第1平面部81の頂部よりも距離H1だけ低くなっている。そのため、第2平面部82に温度センサを取り付ける場合、温度センサを圧縮機構30に近い位置に配置できる。温度センサが圧縮機構30に近いほど、冷媒の循環流量が少ない場合においても、圧縮機構30から吐出された冷媒の温度変化をより早く検知できる。 Although the rod 28 to which the cover for covering the terminal 24 is attached may be disposed in the first flat portion 81, it is disposed in the second flat portion 82 in the present embodiment. The rod 28 is extended to a position higher than the curved portion 83 of the container upper portion 20b. Therefore, the arrangement and mounting operation of the terminal 24 and the rod 28 are easy. The attachment of the cover to the rod 28 is also facilitated. Accessories such as a temperature sensor may be attached to the second flat portion 82. In the present embodiment, the second flat portion 82 is lower than the top of the first flat portion 81 by the distance H1. Therefore, when the temperature sensor is attached to the second flat portion 82, the temperature sensor can be disposed at a position near the compression mechanism 30. As the temperature sensor is closer to the compression mechanism 30, the temperature change of the refrigerant discharged from the compression mechanism 30 can be detected earlier, even when the circulation flow rate of the refrigerant is small.
 上記のように、容器20は、ロッド28が配置されている第2平面部82を容器20の軸方向一端に有する。ロッド28には、複数の端子24を覆うためのカバーが取り付けられる。第2平面部82は、仮想垂直面に対し、傾斜していてもよいが、本実施の形態では仮想垂直面と平行である。ロッド28は、第2平面部82に対して垂直に設けられている。すなわち、ロッド28は、軸方向D0に沿って延びるように設けられている。第2平面部82には、複数の端子24およびロッド28とは別の付属品が配置されてもよい。第2平面部82に温度センサ等の付属品が配置される場合、第2平面部82の仮想垂直面からの最大距離が第1平面部81よりも近いことが望ましい。 As described above, the container 20 has the second flat portion 82 in which the rod 28 is disposed at one axial end of the container 20. A cover for covering the plurality of terminals 24 is attached to the rod 28. The second flat portion 82 may be inclined with respect to the virtual vertical plane, but in the present embodiment, is parallel to the virtual vertical plane. The rod 28 is provided perpendicularly to the second flat portion 82. That is, the rod 28 is provided to extend along the axial direction D0. In the second flat portion 82, accessories different from the plurality of terminals 24 and the rod 28 may be disposed. When an accessory such as a temperature sensor is disposed in the second flat portion 82, it is desirable that the maximum distance from the virtual vertical plane of the second flat portion 82 be closer than the first flat portion 81.
 本実施の形態では、吐出管22を容器上部20bに取り付ける方法として、抵抗溶接が用いられている。図3に示したように、吐出管22は、リング材85を介して曲面部83に接合されている。リング材85の材質は、鉄である。吐出管22にリング材85を取り付け、リング材85の傾斜部を容器上部20bに押し当てることで、リング材85の全周に容器上部20bが隙間なく接触し、溶接性が向上する。吐出管22は、容器20の中でリング材85よりも圧縮機構30に近い位置まで延びている。このように、リング材85よりも吐出管22を圧縮機構30に向けて突出させることでリング材85の傾斜部にトラップされる冷凍機油25が吐出管22に進入することを抑制できる。 In the present embodiment, resistance welding is used as a method of attaching the discharge pipe 22 to the container upper portion 20b. As shown in FIG. 3, the discharge pipe 22 is joined to the curved surface portion 83 via the ring member 85. The material of the ring member 85 is iron. By attaching the ring member 85 to the discharge pipe 22 and pressing the inclined portion of the ring member 85 against the container upper portion 20b, the container upper portion 20b contacts the entire periphery of the ring member 85 without a gap, and the weldability is improved. The discharge pipe 22 extends to a position closer to the compression mechanism 30 than the ring member 85 in the container 20. As described above, by causing the discharge pipe 22 to protrude toward the compression mechanism 30 more than the ring material 85, it is possible to suppress the refrigerator oil 25 trapped in the inclined portion of the ring material 85 from entering the discharge pipe 22.
 なお、吐出管22を容器上部20bに取り付ける方法は、抵抗溶接に限らず、ロウ材を用いたガス溶接、または、レーザ溶接等、他の方法であってもよい。ただし、ガス溶接では入熱量が多く、入熱範囲が広い。そのため、吐出管22をガス溶接により取り付けた後に、複数の端子24を抵抗溶接により取り付ける場合、容器上部20bの端子24を取り付ける部分の表面に歪が生じるおそれがある。歪が生じていると、容器上部20bの表面と端子24の表面とが接触せず、抵抗溶接時に溶接不良が発生するおそれがある。よって、吐出管22の溶接においても、抵抗溶接またはレーザ溶接を用いて、入熱量の低減、および、入熱範囲の縮小を図ることが望ましい。 The method of attaching the discharge pipe 22 to the container upper portion 20b is not limited to resistance welding, and may be other methods such as gas welding using a brazing material or laser welding. However, gas welding has a large heat input and a wide heat input range. Therefore, when the plurality of terminals 24 are attached by resistance welding after the discharge pipe 22 is attached by gas welding, distortion may occur on the surface of the portion of the container upper portion 20b to which the terminals 24 are attached. If distortion occurs, the surface of the container upper portion 20b and the surface of the terminal 24 do not come in contact with each other, which may cause welding defects during resistance welding. Therefore, also in the welding of the discharge pipe 22, it is desirable to reduce the heat input and the heat input range by using resistance welding or laser welding.
 図9は、容器20の内側から軸方向D0に沿って見た圧縮機12の一部の下面を示している。 FIG. 9 shows the underside of a portion of the compressor 12 as viewed from inside the vessel 20 along the axial direction D0.
 複数の端子24には、第1端子24aおよび第2端子24bが含まれる。なお、複数の端子24には、第1端子24aおよび第2端子24bとは別の端子24が含まれていてもよい。 The plurality of terminals 24 includes a first terminal 24 a and a second terminal 24 b. The plurality of terminals 24 may include terminals 24 different from the first terminals 24 a and the second terminals 24 b.
 複数の端子24は、平面視で、それぞれの中心が、容器20の中心P0と第1端子24aの中心P1とを通る第1直線L1と、容器20の中心P0と第2端子24bの中心P2とを通る第2直線L2とがなす180°以下の角度範囲R1内に位置するように、容器20の軸方向一端に取り付けられている。本実施の形態では、複数の端子24は、容器上部20bの第1平面部81に纏めて配置されている。 The plurality of terminals 24 have a first straight line L1 whose center passes through the center P0 of the container 20 and the center P1 of the first terminal 24a, and the center P0 of the container 20 and the center P2 of the second terminal 24b in plan view. It is attached to one axial direction end of the container 20 so as to be located within an angle range R1 of 180 ° or less formed by the second straight line L2 passing through. In the present embodiment, the plurality of terminals 24 are collectively arranged on the first flat portion 81 of the container upper portion 20b.
 複数の接続線26は、容器20の中で複数の端子24と電動機40とを電気接続する。 The plurality of connection lines 26 electrically connect the plurality of terminals 24 and the motor 40 in the container 20.
 複数の接続線26には、第1端子24aと電動機40とを電気接続する第1接続線26aと、第2端子24bと電動機40とを電気接続する第2接続線26bとが含まれる。なお、複数の端子24に第1端子24aおよび第2端子24bとは別の端子24が含まれる場合、複数の接続線26には、当該別の端子24と電動機40とを電気接続する別の接続線26が含まれていてもよい。 The plurality of connection lines 26 include a first connection line 26 a electrically connecting the first terminal 24 a and the motor 40, and a second connection line 26 b electrically connecting the second terminal 24 b and the motor 40. In the case where the plurality of terminals 24 include another terminal 24 different from the first terminal 24a and the second terminal 24b, another plurality of connecting wires 26 may be used to electrically connect the other terminal 24 to the motor 40. Connecting lines 26 may be included.
 複数の接続線26は、平面視で、複数の端子24から角度範囲R1内に取り出されている。具体的には、各接続線26の、各端子24と接続されている端に続く部分は、平面視で、角度範囲R1内の位置で各端子24の存在範囲R2外に取り出されている。各端子24の存在範囲R2とは、平面視で各端子24の最外殻によって形成される輪郭線で囲まれた領域のことである。各端子24の存在範囲R2は、任意の形状の領域でよいが、本実施の形態では円形の領域である。ある接続線26の、ある端子24と接続されている端から、その接続線26が延びて、平面視で、その端子24の存在範囲R2の境界を跨いでいる位置が、その接続線26が取り出されている位置である。本実施の形態では、この位置が、すべての接続線26について角度範囲R1内に収まるように、複数の接続線26が引き回されている。そのため、複数の接続線26の長さを短くすることができる。また、配線スペースを小さくすることができる。配線スペースをなるべく小さくするために、複数の接続線26は、平面視で、角度範囲R1内に配置されていることが望ましい。すなわち、すべての接続線26の全体が角度範囲R1内に収まるように、複数の接続線26が引き回されていることが望ましい。 The plurality of connection lines 26 are extracted from the plurality of terminals 24 into the angular range R1 in plan view. Specifically, the portion of each connecting wire 26 following the end connected to each terminal 24 is taken out of the existing range R2 of each terminal 24 at a position within the angular range R1 in plan view. The existence range R2 of each terminal 24 is a region surrounded by an outline formed by the outermost shell of each terminal 24 in a plan view. Although the presence range R2 of each terminal 24 may be an area of any shape, it is a circular area in the present embodiment. The connecting wire 26 extends from the end of the connecting wire 26 connected to the certain terminal 24 and the connecting wire 26 extends from the end of the connection range 26 of the terminal 24 in plan view. It is the position being taken out. In the present embodiment, the plurality of connection lines 26 are routed such that this position falls within the angular range R1 for all the connection lines 26. Therefore, the lengths of the plurality of connection lines 26 can be shortened. Also, the wiring space can be reduced. In order to reduce the wiring space as much as possible, it is desirable that the plurality of connection lines 26 be disposed within the angular range R1 in plan view. That is, it is desirable that the plurality of connection lines 26 be routed so that the whole of all the connection lines 26 falls within the angle range R1.
 各接続線26が各端子24から取り出される位置が角度範囲R1内であれば、各接続線26が各端子24から取り出される方向は任意の方向でよいが、本実施の形態では、各接続線26が角度範囲R1の中央に向かって取り出されている。すなわち、第1接続線26aおよび第2接続線26bは、容器20の中心P0と、第1端子24aの中心P1と第2端子24bの中心P2との中点P3とを通る第3直線L3に近づく方向に取り出されている。そのため、配線スペースをより小さくすることができる。 If the position at which each connecting wire 26 is taken out from each terminal 24 is within the angular range R1, the direction in which each connecting wire 26 is taken out from each terminal 24 may be any direction, but in the present embodiment, each connecting wire 26 is taken out toward the center of the angle range R1. That is, the first connection line 26a and the second connection line 26b are on the third straight line L3 passing through the center P0 of the container 20 and the midpoint P3 of the center P1 of the first terminal 24a and the center P2 of the second terminal 24b. It is taken out in the approaching direction. Therefore, the wiring space can be made smaller.
 上記のように、本実施の形態では、容器上部20bの中心と複数の端子24の中心とを通る直線で形成される角度範囲R1が180°以下である。各端子24に接続される各接続線26の取出方向の範囲が角度範囲R1に一致する。図10において、胴部20aと容器上部20bとが接続される前に、固定子41より引き延ばされた接続線26が、容器上部20bの内側で端子24にクラスタ72を介して接続される。その後、角度範囲R1内にある胴部20aの点P4と容器上部20bの点P5とが合わせられ、その反対側にある胴部20aの点P6と容器上部20bの点P7とが合わせられて、胴部20aの開口に蓋をするように容器上部20bが溶接により胴部20aに固定される。胴部20aの点P4と容器上部20bの点P5とが合わせられ、胴部20aの点P6と容器上部20bの点P7とが合わせられたとき、各接続線26が固定子41より引き延ばされる箇所も点P4側、すなわち、角度範囲R1内にある。そのため、各接続線26を、最短で、各端子24に接続できる。 As described above, in the present embodiment, the angular range R1 formed by a straight line passing the center of the container upper portion 20b and the centers of the plurality of terminals 24 is 180 ° or less. The range of the extraction direction of each connection line 26 connected to each terminal 24 corresponds to the angle range R1. In FIG. 10, before the body portion 20a and the container upper portion 20b are connected, the connection line 26 extended from the stator 41 is connected to the terminal 24 via the cluster 72 inside the container upper portion 20b. . Thereafter, the point P4 of the body 20a in the angle range R1 and the point P5 of the container upper portion 20b are aligned, and the point P6 of the body 20a and the point P7 of the container upper portion 20b on the opposite side are aligned. The container upper portion 20b is fixed to the body 20a by welding so as to cover the opening of the body 20a. When the point P4 of the barrel 20a and the point P5 of the container upper portion 20b are aligned and the point P6 of the barrel 20a and the point P7 of the container upper portion 20b are aligned, each connecting line 26 is extended from the stator 41 The point is also on the point P4 side, that is, within the angle range R1. Therefore, each connection line 26 can be connected to each terminal 24 at the shortest.
 上記のような結線方法により、接続線26を必要以上に延長せず、接続線26を容器20内でたるませることなく圧縮機12を組み立てることができる。 According to the above-described wire connection method, the compressor 12 can be assembled without causing the connecting wire 26 to extend in the container 20 without extending the connecting wire 26 more than necessary.
 図11に示す比較例のように、ある端子24に接続される接続線26の取出方向が角度範囲R1外で、胴部20aと容器上部20bとが合わせられたときの当該接続線26が固定子41より引き延ばされる箇所も角度範囲R1外の場合、当該接続線26または他の接続線26が必要以上に延長され、容器20内でたるみが発生する。この比較例では、第1端子24aに接続される第1接続線26aの取出方向が角度範囲R1外であることに起因して、第2端子24bに接続される第2接続線26bが必要以上に延長されている。接続線26が延長されると、接続線26と油分離板29との距離が縮まり、接続線26が油分離板29に接触し、断線するおそれがある。また、接続線26が吐出管22の近くを通ることになるため、容器20の上部空間に汲み上げられた冷凍機油25が接続線26にトラップされ、吐出管22に進入し、容器20外へ吐出されやすくなる。たるみを防止する方法として、接続線26同士をバンドで結束することも可能だが、部品コストおよび作業コストがかかる。また、バンドに冷凍機油25がトラップされ、冷凍機油25が容器20外へ吐出されやすくなる。 As in the comparative example shown in FIG. 11, the connecting line 26 is fixed when the take-out direction of the connecting line 26 connected to a certain terminal 24 is out of the angle range R1 and the body 20a and the container upper portion 20b are aligned. In the case where the portion extended from the child 41 is also out of the angle range R1, the connecting wire 26 or the other connecting wire 26 is extended more than necessary, and a slack occurs in the container 20. In this comparative example, the second connection line 26b connected to the second terminal 24b is more than necessary because the extraction direction of the first connection line 26a connected to the first terminal 24a is outside the angle range R1. Is extended to When the connecting wire 26 is extended, the distance between the connecting wire 26 and the oil separating plate 29 is reduced, and the connecting wire 26 may come in contact with the oil separating plate 29, which may cause disconnection. Further, since the connection line 26 passes near the discharge pipe 22, the refrigeration oil 25 pumped up in the upper space of the container 20 is trapped in the connection line 26, enters the discharge pipe 22, and is discharged to the outside of the container 20 It becomes easy to be done. As a method of preventing the slack, it is possible to bind the connecting wires 26 with each other with a band, but the parts cost and the operation cost are incurred. In addition, the refrigeration oil 25 is trapped in the band, and the refrigeration oil 25 is easily discharged out of the container 20.
 第1端子24aおよび第2端子24bは、3本のピン71をそれぞれ有する。第1端子24aおよび第2端子24bの3本のピン71は、第3直線L3に対して対称に配置されることが望ましい。 The first terminal 24 a and the second terminal 24 b each have three pins 71. It is desirable that the three pins 71 of the first terminal 24a and the second terminal 24b be disposed symmetrically with respect to the third straight line L3.
 複数の接続線26に含まれる少なくとも1つの接続線26は、クラスタ72を介して複数の端子24に含まれる1つの端子24と接続されている。本実施の形態では、第1接続線26aおよび第2接続線26bが、クラスタ72を介して第1端子24aおよび第2端子24bのそれぞれと接続されている。 At least one connection line 26 included in the plurality of connection lines 26 is connected to one terminal 24 included in the plurality of terminals 24 via the cluster 72. In the present embodiment, the first connection line 26 a and the second connection line 26 b are connected to each of the first terminal 24 a and the second terminal 24 b via the cluster 72.
 容器上部20bの内側での接続線26と端子24との接続には、金属製の接続端子を樹脂製のカバーで覆って構成されるクラスタ72が使用されている。3本のピン71への接続を一度に行えるため、作業性が向上する。なお、端子24間の誤結線を防止するため、一部の端子24にクラスタ72を使用し、残りの端子24に金属製の接続端子のみを使用してもよい。 A cluster 72 configured by covering a metal connection terminal with a resin cover is used for connection between the connection wire 26 and the terminal 24 inside the container upper portion 20b. Since connection to the three pins 71 can be performed at one time, workability is improved. In order to prevent erroneous connection between the terminals 24, the cluster 72 may be used for some of the terminals 24 and only metal connection terminals may be used for the remaining terminals 24.
 本実施の形態では、2つの端子24の3本のピン71が、吐出管22の中心と端子24の中点とを通る直線に対して対称に配置されている。端子24の3本のピン71に接続される接続線26は、この直線に近づく方向に取り出されている。そのため、胴部20aの点P4と、容器上部20bの点P5と近傍に纏めて接続線26を取り出すことができる。よって、接続線26の長さを均等かつ最小に設定することができる。一部の接続線26が容器20内でたるむことがなく、結線作業性が向上する。接続線26の部品共通化も図ることができ、部品コストが下がり、部品管理効率が上がる。 In the present embodiment, the three pins 71 of the two terminals 24 are arranged symmetrically with respect to a straight line passing through the center of the discharge pipe 22 and the middle point of the terminal 24. The connection lines 26 connected to the three pins 71 of the terminal 24 are taken out in the direction approaching this straight line. Therefore, the connection line 26 can be taken out collectively in the vicinity of the point P4 of the trunk portion 20a and the point P5 of the container upper portion 20b. Therefore, the lengths of the connection lines 26 can be set to be uniform and minimum. Some connection wires 26 do not sag in the container 20, and the wire connection workability is improved. Parts sharing of the connection line 26 can also be achieved, reducing the cost of parts and increasing the part management efficiency.
 図12は、図5と同じように、軸方向D0に沿って見た圧縮機12の一部の上面を示している。図12では、複数の電源線27が、容器20の外で複数の端子24と接続されている。複数の電源線27は、複数の端子24と外部電源とを電気的に接続している。 FIG. 12 shows the top of a portion of the compressor 12 as viewed in the axial direction D0, as in FIG. In FIG. 12, the plurality of power supply lines 27 are connected to the plurality of terminals 24 outside the container 20. The plurality of power supply lines 27 electrically connect the plurality of terminals 24 to the external power supply.
 複数の電源線27には、第1端子24aと接続されている第1電源線27aと、第2端子24bと接続されている第2電源線27bとが含まれる。なお、複数の端子24に第1端子24aおよび第2端子24bとは別の端子24が含まれる場合、複数の電源線27には、当該別の端子24と接続される別の電源線27が含まれていてもよい。 The plurality of power supply lines 27 include a first power supply line 27a connected to the first terminal 24a and a second power supply line 27b connected to the second terminal 24b. In the case where the plurality of terminals 24 includes another terminal 24 different from the first terminal 24a and the second terminal 24b, another power supply line 27 connected to the other terminal 24 is connected to the plurality of power supply lines 27. It may be included.
 各電源線27の、各端子24と接続されている端に続く部分は、平面視で、各端子24の存在範囲R2外に取り出されている。ある電源線27の、ある端子24と接続されている端から、その電源線27が延びて、平面視で、その端子24の存在範囲R2の境界を跨いでいる位置が、その電源線27が取り出されている位置である。 The portion of each power supply line 27 following the end connected to each terminal 24 is taken out of the existing range R2 of each terminal 24 in plan view. The power supply line 27 extends from the end of a certain power supply line 27 connected to a certain terminal 24, and the power supply line 27 extends from the end of the existence range R2 of the terminal 24 in plan view. It is the position being taken out.
 各電源線27が各端子24から取り出される方向は任意の方向でよいが、本実施の形態では、平面視で、第1電源線27aが第3直線L3から離れる方向に取り出され、第2電源線27bが第3直線L3に近づく方向に取り出されている。すなわち、第1電源線27aは、平面視で、第3直線L3から離れる方向に取り出されている。第2電源線27bは、平面視で、第3直線L3から離れる方向に取り出されている。なお、平面視で、第1電源線27aが第3直線L3に近づく方向に取り出され、第2電源線27bが第3直線L3から離れる方向に取り出されていてもよい。あるいは、平面視で、第1電源線27aおよび第2電源線27bが第3直線L3から離れる方向に取り出されていてもよい。 The direction in which each power supply line 27 is taken out from each terminal 24 may be any direction, but in the present embodiment, the first power supply line 27a is taken out in the direction away from the third straight line L3 in plan view. The line 27b is taken out in a direction approaching the third straight line L3. That is, the first power supply line 27a is taken out in the direction away from the third straight line L3 in plan view. The second power supply line 27b is extracted in a direction away from the third straight line L3 in plan view. The first power supply line 27a may be extracted in a direction approaching the third straight line L3 and the second power supply line 27b may be extracted in a direction away from the third straight line L3 in plan view. Alternatively, in a plan view, the first power supply line 27a and the second power supply line 27b may be taken out in a direction away from the third straight line L3.
 上記のように、本実施の形態では、容器上部20bの外側で端子24に、電力を供給するための電源線27が接続される。圧縮機12を冷凍サイクル装置10に搭載する際、または、圧縮機12を交換する際に、誤結線を防止するためには、図13に示す比較例のように複数の電源線27を集約するのではなく、カバーを取り付けた後も電源線27同士を離して明確に区別できるようにすることが望ましい。図12のように、いずれかの電源線27を、吐出管22の中心と複数の端子24の中点とを通る直線から離れる方向に取り出すことで誤結線を防止できる。 As described above, in the present embodiment, the power supply line 27 for supplying power is connected to the terminal 24 outside the container upper portion 20b. When mounting the compressor 12 on the refrigeration cycle apparatus 10 or replacing the compressor 12, in order to prevent erroneous wiring, a plurality of power supply lines 27 are integrated as in the comparative example shown in FIG. It is desirable that the power supply lines 27 be separated and clearly distinguished even after the cover is attached. As shown in FIG. 12, erroneous connection can be prevented by extracting one of the power supply lines 27 in a direction away from the straight line passing through the center of the discharge pipe 22 and the middle points of the plurality of terminals 24.
 ***実施の形態の効果の説明***
 角度範囲R1は、平面視で、容器20の中心P0と第1端子24aの中心P1とを通る第1直線L1と、容器20の中心P0と第2端子24bの中心P2とを通る第2直線L2とがなす180°以下の範囲である。本実施の形態では、各端子24と電動機40とを電気接続する各接続線26が、平面視で、角度範囲R1内の位置で各端子24の存在範囲R2外に取り出されている。そのため、各接続線26の長さを短くすることができる。
*** Description of the effects of the embodiment ***
The angle range R1 is a second straight line passing through the center P0 of the container 20 and the center P1 of the first terminal 24a and the center P0 of the container 20 and the center P2 of the second terminal 24b in plan view. It is the range of 180 degrees or less which L2 makes. In the present embodiment, the connection wires 26 electrically connecting the terminals 24 and the motor 40 are taken out of the existing range R2 of the terminals 24 at a position within the angle range R1 in plan view. Therefore, the length of each connection line 26 can be shortened.
 本実施の形態によれば、容器20の外径を大きくすることなく、複数の端子24を設けることで、高効率かつ高速の運転が可能で、かつ、小型の圧縮機12を得ることが可能である。 According to the present embodiment, by providing the plurality of terminals 24 without increasing the outer diameter of the container 20, highly efficient and high-speed operation is possible, and the small-sized compressor 12 can be obtained. It is.
 本実施の形態によれば、容器上部20bに設けられた端子24と吐出管22とが近接する箇所が増えても、容器20の内部が高圧になったときに端子24と吐出管との間の領域に応力が集中しにくいため、容器20の変形が生じにくい。容器20の変形に起因する冷媒ガスの漏出および端子24の破損を防止できる。 According to the present embodiment, even if there are more places where the terminal 24 provided in the container upper portion 20b and the discharge pipe 22 are close, when the inside of the container 20 becomes high in pressure, the space between the terminal 24 and the discharge pipe The stress is less likely to be concentrated in the region of (b), so deformation of the container 20 is less likely to occur. Leakage of refrigerant gas and breakage of the terminal 24 due to deformation of the container 20 can be prevented.
 本実施の形態によれば、電動機40と端子24とを接続する接続線26が複数組必要であるが、容器20内で回転子42とともに高速回転する構造物との接触による断線リスクを減らすことができる。接続線26を端子24に接続する作業の効率が高まる。 According to the present embodiment, although a plurality of sets of connecting wires 26 connecting the motor 40 and the terminals 24 are required, the risk of disconnection due to contact with a structure rotating at high speed with the rotor 42 in the container 20 is reduced. Can. The efficiency of the work of connecting the connecting wire 26 to the terminal 24 is increased.
 本実施の形態では、端子24が配置される第1平面部81が軸方向D0に直交する仮想垂直面に対して傾斜している。これにより、吐出管22と端子24との間の距離および端子24と容器20の周壁との間の距離が延長される。よって、容器20の外径を維持しながら、複数の端子24を設けても、吐出管22と端子24との間で応力が集中することが抑制され、容器20に変形が生じにくくなる。すなわち、容器20の強度を確保できる。 In the present embodiment, the first flat portion 81 where the terminal 24 is disposed is inclined with respect to a virtual vertical plane orthogonal to the axial direction D0. Thereby, the distance between the discharge pipe 22 and the terminal 24 and the distance between the terminal 24 and the peripheral wall of the container 20 are extended. Therefore, even if the plurality of terminals 24 are provided while maintaining the outer diameter of the container 20, concentration of stress between the discharge pipe 22 and the terminals 24 is suppressed, and the container 20 is less likely to be deformed. That is, the strength of the container 20 can be secured.
 また、平面視で、容器20の中心と複数の端子24の中心とを結んだ角度範囲R1が180°以下である。接続線26の取出方向が角度範囲R1内である。これにより、複数組の接続線26を回転子42とともに高速回転する構造物を避けて配置することができ、かつ、複数の端子24を集約して配置することができる。よって、接続線26の断線が起こらない。組立作業性が良くなる。端子24の配置を容易に行える。 Moreover, angle range R1 which connected the center of the container 20 and the center of the some terminal 24 in planar view is 180 degrees or less. The extraction direction of the connection line 26 is within the angle range R1. As a result, it is possible to arrange the plurality of sets of connection lines 26 avoiding the structure rotating at high speed with the rotor 42, and to arrange the plurality of terminals 24 collectively. Therefore, the disconnection of the connection wire 26 does not occur. Assembly workability improves. The arrangement of the terminals 24 can be easily performed.
 図14は、本実施の形態の容器上部20b、および、比較例の容器上部の内圧に対する変形量の比較結果を示している。 FIG. 14 shows a comparison result of the amount of deformation relative to the internal pressure of the container upper portion 20b of the present embodiment and the container upper portion of the comparative example.
 図14の結果を得るために、容器上部20bについて、負荷圧力を5MPaとして数値解析条件を設定し、負荷時の変形量を算出した。黒塗りの棒グラフは、本実施の形態の変化量であり、白抜きの棒グラフは、比較例の変化量である。比較例の容器上部の変形量を100%とした。 In order to obtain the results shown in FIG. 14, with respect to the upper portion 20 b of the container, the load pressure was set to 5 MPa, the numerical analysis conditions were set, and the amount of deformation under load was calculated. The black bar graph is the variation of the present embodiment, and the white bar graph is the comparison of the comparative example. The amount of deformation of the upper portion of the container of the comparative example was 100%.
 容器上部20bの吐出管22と端子24との間の変形量は、比較例のものの50%程度にまで減少している。端子24の中心部分の変形量は、比較例のものの80%程度に減少している。これは、吐出管22と端子24との間の距離が十分維持されたためであると考えられる。また、端子24が配置された第1平面部81と、吐出管22が配置された曲面部83とが滑らかな凹部84により接続されていることも要因の1つであると考えられる。このように、本実施の形態の容器上部20bの構造を採用することで、応力集中が緩和され、容器上部20bの変形を大幅に低減できることがわかった。 The amount of deformation between the discharge pipe 22 and the terminal 24 of the container upper portion 20b is reduced to about 50% of that of the comparative example. The amount of deformation of the central portion of the terminal 24 is reduced to about 80% of that of the comparative example. It is considered that this is because the distance between the discharge pipe 22 and the terminal 24 is sufficiently maintained. In addition, it is considered that one of the factors is that the first flat portion 81 in which the terminal 24 is disposed and the curved surface portion 83 in which the discharge pipe 22 is disposed are connected by the smooth concave portion 84. As described above, it was found that, by adopting the structure of the container upper portion 20b of the present embodiment, the stress concentration is alleviated and the deformation of the container upper portion 20b can be significantly reduced.
 本実施の形態によれば、端子24にかかる応力を低減でき、端子24のガラス部の微小クラック等による冷媒リークを抑制できる。R290を含む、可燃性はあるが温暖化係数が低い冷媒を容器20に封入しても、容器20から可燃性冷媒がリークすることなく、安全が保たれる。 According to the present embodiment, stress applied to the terminal 24 can be reduced, and refrigerant leakage due to a micro crack or the like of the glass portion of the terminal 24 can be suppressed. Even if a flammable refrigerant having a low global warming potential, including R290, is sealed in the container 20, the flammable refrigerant does not leak from the container 20, and safety is maintained.
 本実施の形態によれば、R22冷媒よりも高い飽和圧力を有する冷媒を圧縮しても、容器20の強度が十分であるため、安全が保たれる。 According to the present embodiment, even if a refrigerant having a saturation pressure higher than that of the R22 refrigerant is compressed, the container 20 is sufficiently strong, so safety can be maintained.
 ***他の構成***
 本実施の形態は、縦置き型の圧縮機12だけでなく、横置き型の圧縮機において、椀形密閉容器が円筒型密閉容器の解放部に圧入され、中心に吐出管が設けられている場合に適用することができる。
*** Other configuration ***
In the present embodiment, not only the vertical-type compressor 12 but also the horizontal-type compressor, the wedge-shaped hermetic container is press-fit into the release portion of the cylindrical hermetic container, and a discharge pipe is provided at the center It can be applied to cases.
 実施の形態2.
 本実施の形態について、主に実施の形態1との差異を、図15を用いて説明する。
Second Embodiment
The difference between this embodiment and the first embodiment will be mainly described with reference to FIG.
 図15は、軸方向D0に沿って見た圧縮機12の一部の上面を示している。 FIG. 15 shows a top view of a portion of the compressor 12 as viewed along the axial direction D0.
 実施の形態1では、複数の端子24が、1つの第1平面部81に纏めて配置されているが、本実施の形態では、複数の端子24が、2つ以上の第1平面部81に分けて配置されている。 In the first embodiment, the plurality of terminals 24 are collectively disposed in one first flat portion 81, but in the present embodiment, the plurality of terminals 24 are disposed in two or more first flat portions 81. It is divided and arranged.
 それぞれの第1平面部81の表面は、楕円形または角丸長方形といったオーバル状である。それぞれの第1平面部81の縁部は、滑らかに湾曲している凹部84により曲面部83に接続している。すなわち、第1平面部81と曲面部83との間の部分は窪んでいる。凹部84は、厚く形成されており、強度を向上させるリブとしての機能を有する。 The surface of each first flat portion 81 has an oval shape such as an oval or a rounded rectangle. The edge of each first flat section 81 is connected to the curved section 83 by a smoothly curved recess 84. That is, the portion between the first flat surface portion 81 and the curved surface portion 83 is recessed. The recess 84 is formed thick and has a function as a rib for improving the strength.
 本実施の形態では、それぞれの第1平面部81は、仮想垂直面に対し、2つの方向に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れる傾斜角度で傾斜している。 In the present embodiment, each first flat surface portion 81 is inclined at an inclination angle away from the virtual vertical plane as approaching the central axis of the container 20 along the two directions with respect to the virtual vertical plane.
 具体的には、第1方向D1に沿って、それぞれの第1平面部81の全体が仮想垂直面に対して第1傾斜角度θ1で傾斜している。これにより、それぞれの第1平面部81の第1方向D1の一端を含む一部が、第1方向D1に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れている。それぞれの第1平面部81の第1方向D1の他端を含む残りの部分が、第1方向D1に沿って容器20の中心軸から遠ざかるにつれて仮想垂直面から離れている。第1傾斜角度θ1は、望ましくは5°以上30°以下であり、本実施の形態では5°である。 Specifically, along the first direction D1, the entire first flat surface portion 81 is inclined at a first inclination angle θ1 with respect to the virtual vertical plane. Thereby, a part including the end of the 1st direction D1 of each 1st plane part 81 is separated from an imaginary perpendicular plane as the central axis of container 20 is approached along with the 1st direction D1. The remaining portion including the other end of the first flat portion 81 in the first direction D1 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the first direction D1. The first inclination angle θ1 is desirably 5 ° or more and 30 ° or less, and is 5 ° in the present embodiment.
 また、第2方向D2に沿って、それぞれの第1平面部81の全体が仮想垂直面に対して第2傾斜角度θ2で傾斜している。これにより、それぞれの第1平面部81の第2方向D2の一端を含む一部が、第2方向D2に沿って容器20の中心軸に近づくにつれて仮想垂直面から離れている。それぞれの第1平面部81の第2方向D2の他端を含む残りの部分が、第2方向D2に沿って容器20の中心軸から遠ざかるにつれて仮想垂直面から離れている。第2傾斜角度θ2は、望ましくは5°以上30°以下であり、本実施の形態では10°である。 In addition, along the second direction D2, the entire first flat surface portion 81 is inclined at a second inclination angle θ2 with respect to the virtual vertical plane. As a result, a portion of each first flat surface portion 81 including one end in the second direction D2 is farther from the virtual vertical plane as it approaches the central axis of the container 20 along the second direction D2. The remaining portion of each first flat portion 81 including the other end in the second direction D2 is farther from the virtual vertical plane as it goes away from the central axis of the container 20 along the second direction D2. The second inclination angle θ2 is desirably 5 ° or more and 30 ° or less, and is 10 ° in the present embodiment.
 なお、第1平面部81の第1傾斜角度θ1および第2傾斜角度θ2の少なくともいずれかが第1平面部81ごとに異なっていてもよい。すなわち、第1平面部81の傾斜角度が端子24ごとに異なっていてもよい。 Note that at least one of the first inclination angle θ1 and the second inclination angle θ2 of the first flat surface portion 81 may be different for each first flat surface portion 81. That is, the inclination angle of the first flat portion 81 may be different for each of the terminals 24.
 本実施の形態では、それぞれの第1平面部81の低い側にロッド28が配置されている。ロッド28は、軸方向D0に沿って延びるように設けられている。 In the present embodiment, the rods 28 are disposed on the lower side of the respective first flat portions 81. The rod 28 is provided to extend along the axial direction D0.
 実施の形態3.
 実施の形態1では、接続線26が電動機40の巻線44と一体になっているが、図16に示すように、接続線26が電動機40の巻線44に接続端子47を介して接続されていてもよい。
Third Embodiment
In the first embodiment, the connecting wire 26 is integrated with the winding 44 of the motor 40. However, as shown in FIG. 16, the connecting wire 26 is connected to the winding 44 of the motor 40 via the connection terminal 47. It may be
 実施の形態4.
 実施の形態1では、容器20の胴部20aと容器下部20cとが溶接により連結されているが、図17に示すように、容器20の胴部20aと容器下部20cとが一体成形されていてもよい。
Fourth Embodiment
In the first embodiment, the body 20a and the container lower portion 20c of the container 20 are connected by welding, but as shown in FIG. 17, the body 20a and the container lower portion 20c of the container 20 are integrally formed. It is also good.
 10 冷凍サイクル装置、11 冷媒回路、12 圧縮機、13 四方弁、14 第1熱交換器、15 膨張機構、16 第2熱交換器、17 制御装置、20 容器、20a 胴部、20b 容器上部、20c 容器下部、21 吸入管、22 吐出管、23 吸入マフラ、24 端子、24a 第1端子、24b 第2端子、25 冷凍機油、26 接続線、26a 第1接続線、26b 第2接続線、27 電源線、27a 第1電源線、27b 第2電源線、28 ロッド、29 油分離板、30 圧縮機構、31 シリンダ、32 ローリングピストン、33 主軸受、34 副軸受、35 吐出マフラ、36 締結具、40 電動機、41 固定子、42 回転子、43 固定子鉄心、44 巻線、45 回転子鉄心、46 永久磁石、47 接続端子、50 クランク軸、51 偏心軸部、52 主軸部、53 副軸部、54 貫通孔、61 シリンダ室、62 ベーン溝、63 背圧室、64 ベーン、71 ピン、72 クラスタ、81 第1平面部、81a 端部、81b 端部、82 第2平面部、83 曲面部、84 凹部、85 リング材、D0 軸方向、D1 第1方向、D2 第2方向、H1 距離、L1 第1直線、L2 第2直線、L3 第3直線、P0 中心、P1 中心、P2 中心、P3 中点、P4 点、P5 点、P6 点、P7 点、R1 角度範囲、R2 存在範囲、θ1 第1傾斜角度、θ2 第2傾斜角度。 Reference Signs List 10 refrigeration cycle device, 11 refrigerant circuit, 12 compressor, 13 four-way valve, 14 first heat exchanger, 15 expansion mechanism, 16 second heat exchanger, 17 control device, 20 container, 20a body portion, 20b container upper portion, 20c Lower part of container, 21 suction pipe, 22 discharge pipe, 23 suction muffler, 24 terminal, 24a first terminal, 24b second terminal, 25 refrigerator oil, 26 connecting wire, 26a first connecting wire, 26b second connecting wire, 27 Power supply wire, 27a 1st power supply wire, 27b 2nd power supply wire, 28 rod, 29 oil separation plate, 30 compression mechanism, 31 cylinder, 32 rolling piston, 33 main bearing, 34 sub bearing, 35 discharge muffler, 36 fasteners, 40 motor, 41 stator, 42 rotor, 43 stator core, 44 windings, 45 rotor core, 46 Permanent magnet, 47 connection terminal, 50 crankshaft, 51 eccentric shaft, 52 main shaft, 53 sub shaft, 54 through hole, 61 cylinder chamber, 62 vane groove, 63 back pressure chamber, 64 vane, 71 pin, 72 cluster , 81 first flat portion, 81 a end, 81 b end, 82 second flat portion, 83 curved portion, 84 concave portion, 85 ring material, D0 axial direction, D1 first direction, D2 second direction, H1 distance, L1 1st straight line, L2 second straight line, L3 third straight line, P0 center, P1 center, P2 center, P3 middle point, P4 point, P5 point, P6 point, P7 point, R1 angle range, R2 existence range, θ1 first range Tilt angle, θ 2 Second tilt angle.

Claims (18)

  1.  冷媒を圧縮する圧縮機構と、
     前記圧縮機構を駆動する電動機と、
     前記圧縮機構と前記電動機とを収容する容器と、
     第1端子および第2端子を含み、前記容器の軸方向一端に取り付けられ、平面視で、それぞれの中心が、前記容器の中心と前記第1端子の中心とを通る第1直線と、前記容器の中心と前記第2端子の中心とを通る第2直線とがなす180°以下の角度範囲内に位置する複数の端子と、
     前記容器の中で前記複数の端子と前記電動機とを電気接続し、平面視で、前記複数の端子から前記角度範囲内に取り出されている複数の接続線とを備える圧縮機。
    A compression mechanism for compressing a refrigerant;
    An electric motor for driving the compression mechanism;
    A container for containing the compression mechanism and the motor;
    A first straight line including a first terminal and a second terminal and attached to one axial end of the container, the first straight line having a center passing through a center of the container and a center of the first terminal in plan view; A plurality of terminals located within an angle range of 180 ° or less formed by a second straight line passing through the center of the second terminal and the center of the second terminal;
    The compressor electrically connects the plurality of terminals and the electric motor in the container, and includes a plurality of connection lines extracted from the plurality of terminals into the angular range in a plan view.
  2.  前記複数の接続線は、平面視で、前記角度範囲内に配置されている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the plurality of connection lines are disposed within the angular range in a plan view.
  3.  前記複数の接続線には、前記第1端子と前記電動機とを電気接続する第1接続線と、前記第2端子と前記電動機とを電気接続する第2接続線とが含まれ、
     前記第1接続線および前記第2接続線は、平面視で、前記容器の中心と、前記第1端子の中心と前記第2端子の中心との中点とを通る第3直線に近づく方向に取り出されている請求項1または2に記載の圧縮機。
    The plurality of connection lines include a first connection line electrically connecting the first terminal and the motor, and a second connection line electrically connecting the second terminal and the motor.
    The first connection line and the second connection line approach a third straight line passing through the center of the container, and the midpoint between the center of the first terminal and the center of the second terminal in plan view The compressor according to claim 1 or 2, which has been taken out.
  4.  前記容器の外で前記複数の端子と接続されている複数の電源線をさらに備え、
     前記複数の電源線には、前記第1端子と接続されている第1電源線と、前記第2端子と接続されている第2電源線とが含まれ、
     前記第1電源線および前記第2電源線の少なくともいずれかは、平面視で、前記容器の中心と、前記第1端子の中心と前記第2端子の中心との中点とを通る第3直線から離れる方向に取り出されている請求項1または2に記載の圧縮機。
    It further comprises a plurality of power supply lines connected to the plurality of terminals outside the container,
    The plurality of power supply lines include a first power supply line connected to the first terminal and a second power supply line connected to the second terminal,
    At least one of the first power supply line and the second power supply line is a third straight line passing through a center of the container, and a midpoint between the center of the first terminal and the center of the second terminal in plan view The compressor according to claim 1, wherein the compressor is taken out in the direction away from.
  5.  前記第1端子および前記第2端子は、3本のピンをそれぞれ有し、
     前記第1端子および前記第2端子の3本のピンは、前記第3直線に対して対称に配置されている請求項3または4に記載の圧縮機。
    The first terminal and the second terminal each have three pins,
    The compressor according to claim 3 or 4, wherein three pins of the first terminal and the second terminal are arranged symmetrically with respect to the third straight line.
  6.  前記複数の接続線に含まれる少なくとも1つの接続線は、クラスタを介して前記複数の端子に含まれる1つの端子と接続されている請求項1から5のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein at least one connection line included in the plurality of connection lines is connected to one terminal included in the plurality of terminals via a cluster.
  7.  前記冷媒を前記容器の外に吐出するために、前記容器の軸方向一端で前記容器の中心軸と重なる位置に設けられている吐出管をさらに備え、
     前記容器は、前記吐出管が配置されている曲面部と、前記複数の端子と前記電動機との間に位置する、前記容器の軸方向に垂直な仮想垂直面に対し、少なくとも1つの方向に沿って前記容器の中心軸に近づくにつれて前記仮想垂直面から離れる傾斜角度で傾斜し、前記複数の端子が配置されている1つ以上の平面部とを前記容器の軸方向一端に有する請求項1から6のいずれか1項に記載の圧縮機。
    In order to discharge the refrigerant to the outside of the container, the container further includes a discharge pipe provided at a position overlapping with the central axis of the container at one axial end of the container,
    The container extends in at least one direction with respect to a virtual vertical plane perpendicular to the axial direction of the container, which is located between the curved surface portion in which the discharge pipe is disposed, and the plurality of terminals and the motor. From one end in the axial direction of the container, with one or more flat portions inclined at an inclination angle away from the virtual vertical plane as the central axis of the container is approached, and one or more flat portions on which the plurality of terminals are disposed The compressor according to any one of 6.
  8.  前記傾斜角度は、前記仮想垂直面に対して5°以上30°以下である請求項7に記載の圧縮機。 The compressor according to claim 7, wherein the inclination angle is 5 ° or more and 30 ° or less with respect to the virtual vertical plane.
  9.  前記1つ以上の平面部の、軸方向と直交する第1方向の一端を含む少なくとも一部は、前記仮想垂直面に対し、前記第1方向に沿って前記容器の中心軸に近づくにつれて前記仮想垂直面から離れる第1傾斜角度で傾斜し、
     前記1つ以上の平面部の、軸方向および前記第1方向と直交する第2方向の一端を含む少なくとも一部は、前記仮想垂直面に対し、前記第2方向に沿って前記容器の中心軸に近づくにつれて前記仮想垂直面から離れる第2傾斜角度で傾斜している請求項7または8に記載の圧縮機。
    At least a portion of the one or more flat portions including one end in a first direction orthogonal to the axial direction with respect to the virtual vertical plane, as the virtual axis approaches the central axis of the container along the first direction Tilt at a first tilt angle away from the vertical plane,
    At least a portion of the one or more flat portions, including one end in the second direction orthogonal to the first direction and the axial direction, is a central axis of the container along the second direction with respect to the virtual vertical plane. The compressor according to claim 7 or 8, wherein the compressor is inclined at a second inclination angle away from the virtual vertical plane as it approaches.
  10.  前記第2傾斜角度は、前記第1傾斜角度とは異なる請求項9に記載の圧縮機。 The compressor according to claim 9, wherein the second tilt angle is different from the first tilt angle.
  11.  前記複数の端子は、1つの平面部に纏めて配置されている請求項7から10のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 7 to 10, wherein the plurality of terminals are arranged in one flat portion.
  12.  前記複数の端子は、2つ以上の平面部に分けて配置されている請求項7から10のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 7 to 10, wherein the plurality of terminals are divided into two or more flat portions.
  13.  前記容器は、前記仮想垂直面からの最大距離が前記1つ以上の平面部よりも近く、前記複数の端子とは別の付属品が配置されている別の平面部を前記容器の軸方向一端に有する請求項7から12のいずれか1項に記載の圧縮機。 The container may have another flat surface located at the maximum distance from the virtual vertical plane closer to the one or more flat surface portions and an accessory different from the plurality of terminals disposed, the one axial direction end of the container The compressor according to any one of claims 7 to 12, wherein
  14.  前記複数の端子を覆うためのカバーが取り付けられるロッドをさらに備え、
     前記容器は、前記ロッドが配置されている別の平面部を前記容器の軸方向一端に有する請求項7から12のいずれか1項に記載の圧縮機。
    It further comprises a rod to which a cover for covering the plurality of terminals is attached,
    The compressor according to any one of claims 7 to 12, wherein the container has another flat portion in which the rod is disposed at one axial end of the container.
  15.  前記吐出管は、リング材を介して前記曲面部に接合され、前記容器の中で前記リング材よりも前記圧縮機構に近い位置まで延びている請求項7から14のいずれか1項に記載の圧縮機。 The discharge pipe according to any one of claims 7 to 14, wherein the discharge pipe is joined to the curved surface portion via a ring member and extends to a position closer to the compression mechanism than the ring member in the container. Compressor.
  16.  前記容器の軸方向一端は、平面視円形状であり、
     前記吐出管の外径は、前記容器の軸方向一端の外径の0.1倍以上である請求項7から15のいずれか1項に記載の圧縮機。
    One axial end of the container is circular in plan view,
    The compressor according to any one of claims 7 to 15, wherein an outer diameter of the discharge pipe is equal to or greater than 0.1 times an outer diameter of one axial end of the container.
  17.  各接続線の、各端子と接続されている端に続く部分は、平面視で、前記角度範囲内の位置で各端子の存在範囲外に取り出されている請求項1から16のいずれか1項に記載の圧縮機。 The part following each end of each connecting wire connected to each terminal is taken out of the existing range of each terminal at a position within the angle range in a plan view. The compressor as described in.
  18.  請求項1から17のいずれか1項に記載の圧縮機を備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the compressor according to any one of claims 1 to 17.
PCT/JP2017/028883 2017-08-09 2017-08-09 Compressor and refrigeration cycle device WO2019030841A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CZ202011A CZ309325B6 (en) 2017-08-09 2017-08-09 Compressor and refrigeration cycle equipment
PCT/JP2017/028883 WO2019030841A1 (en) 2017-08-09 2017-08-09 Compressor and refrigeration cycle device
KR1020207001824A KR102320908B1 (en) 2017-08-09 2017-08-09 Compressors and refrigeration cycle units
CN201780093649.4A CN111033052B (en) 2017-08-09 2017-08-09 Compressor and refrigeration cycle device
JP2019535491A JP6746000B2 (en) 2017-08-09 2017-08-09 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028883 WO2019030841A1 (en) 2017-08-09 2017-08-09 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019030841A1 true WO2019030841A1 (en) 2019-02-14

Family

ID=65272144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028883 WO2019030841A1 (en) 2017-08-09 2017-08-09 Compressor and refrigeration cycle device

Country Status (5)

Country Link
JP (1) JP6746000B2 (en)
KR (1) KR102320908B1 (en)
CN (1) CN111033052B (en)
CZ (1) CZ309325B6 (en)
WO (1) WO2019030841A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021181463A1 (en) * 2020-03-09 2021-09-16
US20220127507A1 (en) * 2019-02-11 2022-04-28 Mexichem Fluor S.A. De C.V. Compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075665A1 (en) * 2000-12-07 2002-06-20 Kwang-Woo Jang Shielding cover for terminal device of electric appliance and compressor assembly having the same
JP2009108837A (en) * 2007-11-01 2009-05-21 Mitsubishi Electric Corp Compressor
JP2012082776A (en) * 2010-10-13 2012-04-26 Toshiba Carrier Corp Hermetic compressor and refrigeration cycle device
JP2012237266A (en) * 2011-05-13 2012-12-06 Hitachi Appliances Inc Hermetic electric compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117218B2 (en) * 2008-02-18 2013-01-16 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
JP2010053786A (en) 2008-08-28 2010-03-11 Toshiba Carrier Corp Hermetic compressor and refrigerating cycle device
JP4964288B2 (en) * 2009-11-18 2012-06-27 三菱電機株式会社 Compressor
CN201621038U (en) * 2010-02-25 2010-11-03 东芝开利株式会社 Compressor and refrigeration circulation apparatus employing the same
JP2011229221A (en) * 2010-04-16 2011-11-10 Hitachi Appliances Inc Hermetic type electric compressor and refrigeration cycle device
CN102352830B (en) * 2011-10-28 2014-06-18 黄石东贝电器股份有限公司 Sealed compressor shell
JP6109063B2 (en) * 2013-12-26 2017-04-05 三菱電機株式会社 Hermetic compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075665A1 (en) * 2000-12-07 2002-06-20 Kwang-Woo Jang Shielding cover for terminal device of electric appliance and compressor assembly having the same
JP2009108837A (en) * 2007-11-01 2009-05-21 Mitsubishi Electric Corp Compressor
JP2012082776A (en) * 2010-10-13 2012-04-26 Toshiba Carrier Corp Hermetic compressor and refrigeration cycle device
JP2012237266A (en) * 2011-05-13 2012-12-06 Hitachi Appliances Inc Hermetic electric compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220127507A1 (en) * 2019-02-11 2022-04-28 Mexichem Fluor S.A. De C.V. Compositions
US12018203B2 (en) * 2019-02-11 2024-06-25 Mexichem Fluor S.A. De C.V. Heat transfer compositions
JPWO2021181463A1 (en) * 2020-03-09 2021-09-16
WO2021181463A1 (en) * 2020-03-09 2021-09-16 東芝キヤリア株式会社 Compressor and refrigeration cycle device
CN115103962A (en) * 2020-03-09 2022-09-23 东芝开利株式会社 Compressor and refrigeration cycle device
EP4119796A4 (en) * 2020-03-09 2023-10-11 Toshiba Carrier Corporation Compressor and refrigeration cycle device
JP7405946B2 (en) 2020-03-09 2023-12-26 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment
CN115103962B (en) * 2020-03-09 2024-07-02 东芝开利株式会社 Compressor and refrigeration cycle device

Also Published As

Publication number Publication date
KR102320908B1 (en) 2021-11-03
CZ309325B6 (en) 2022-08-24
CN111033052A (en) 2020-04-17
CZ202011A3 (en) 2020-06-17
JP6746000B2 (en) 2020-08-26
JPWO2019030841A1 (en) 2019-11-07
KR20200020860A (en) 2020-02-26
CN111033052B (en) 2021-12-10

Similar Documents

Publication Publication Date Title
EP2199615B1 (en) Motor for compressor, compressor, and refrigerating cycle apparatus
WO2019102574A1 (en) Electric motor, compressor, and refrigeration cycle device
CN105545746A (en) Compressor manufacturing device and compression manufacturing method
JP6746000B2 (en) Compressor and refrigeration cycle device
JP6752376B2 (en) Compressor and refrigeration cycle equipment
JP6407432B2 (en) Compressor and refrigeration cycle apparatus
CN108475955B (en) Motor, compressor, refrigeration cycle device, and method for manufacturing motor
CN207039313U (en) Stator, motor, compressor and refrigerating circulatory device
CN106981935B (en) Stator core, compressor, and refrigeration cycle device
WO2017098567A1 (en) Compressor and refrigeration cycle device
WO2021229742A1 (en) Electric motor, compressor, and refrigeration cycle device
US11378080B2 (en) Compressor
WO2022137492A1 (en) Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device
JP6878443B2 (en) Rotary compressor and refrigeration cycle equipment
JP2016021837A (en) Motor and compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535491

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207001824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920875

Country of ref document: EP

Kind code of ref document: A1