WO2019013151A1 - 無人航空機の飛行高度設定方法および無人航空機システム - Google Patents
無人航空機の飛行高度設定方法および無人航空機システム Download PDFInfo
- Publication number
- WO2019013151A1 WO2019013151A1 PCT/JP2018/025826 JP2018025826W WO2019013151A1 WO 2019013151 A1 WO2019013151 A1 WO 2019013151A1 JP 2018025826 W JP2018025826 W JP 2018025826W WO 2019013151 A1 WO2019013151 A1 WO 2019013151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- height
- altitude
- flight
- unmanned aerial
- aerial vehicle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000005259 measurement Methods 0.000 claims description 24
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 8
- 235000013399 edible fruits Nutrition 0.000 description 65
- 230000005540 biological transmission Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 238000005507 spraying Methods 0.000 description 10
- 239000000575 pesticide Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 239000003905 agrochemical Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/04—Control of altitude or depth
- G05D1/06—Rate of change of altitude or depth
- G05D1/0607—Rate of change of altitude or depth specially adapted for aircraft
- G05D1/0646—Rate of change of altitude or depth specially adapted for aircraft to follow the profile of undulating ground
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/40—UAVs specially adapted for particular uses or applications for agriculture or forestry operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/45—UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/104—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
Definitions
- the present invention relates to unmanned aerial vehicle technology.
- Patent Document 1 discloses a model aircraft that automatically maintains the flight altitude at a set flight altitude.
- a small unmanned aerial vehicle represented by a multicopter is provided with a control device called a flight controller that controls the flight operation of the airframe.
- a flight controller that controls the flight operation of the airframe.
- Some flight controller products distributed in the market have an autopilot function.
- the autopilot function is a function of automatically maintaining the attitude and flight position of the unmanned aircraft, and autonomously flying the unmanned aircraft based on a flight plan created by the pilot.
- a typical autopilot flight plan can specify the take-off and landing points of the airframe, the latitude and longitude of the flight route, the altitude, the speed, the azimuth of the nose, etc.
- some flight controllers specialized for aerial photography may be able to specify start / end of shooting by a camera, PTZ, and the like.
- Such a flight controller includes an air pressure sensor, a distance sensor using laser and ultrasonic waves, or an image recognition means using a camera in order to control the flight altitude in flight.
- the altitude of the ground surface or the feature is not considered because the flight altitude is determined based on the barometric pressure altitude, not on the ground altitude. Therefore, for example, in order to cause the unmanned aircraft to fly along the slope of the mountain surface, it is necessary to investigate the undulations of the mountain surface beforehand and manually specify the flight height on the flight path one by one.
- the distance measurement sensor and the image recognition means it is possible to control the flight altitude based on the relative distance to the ground surface and features at the place and place.
- the flying height is not stable because the relative distance fluctuates in a narrow range.
- the problem to be solved by the present invention is to provide a flight altitude setting method and an unmanned aircraft system capable of efficiently setting the flight altitude of a flight plan according to the unevenness or inclination of the ground surface or a feature. It is in.
- the flight altitude setting method of an unmanned aerial vehicle comprises: an undulation survey step of flying the unmanned aerial vehicle and measuring the height of the ground or feature; and specifying a route for autonomously flying the unmanned aerial vehicle
- An altitude setting step of automatically setting a flight altitude on a route of the flight plan based on the height of the ground surface or the feature measured in the relief survey process when creating the flight plan which is setting data including It is characterized by including.
- the unmanned aerial vehicle By flying the unmanned aerial vehicle and measuring the height of the ground surface or feature in the relief survey process, it becomes possible to set the flight height based on the actual topography at that time. Then, in the altitude setting step of the present invention, the flight altitude of the flight plan is automatically set based on the measurement results of the relief survey step, so that the operator can save time and effort for calculating and inputting a suitable flight altitude. Also, in the present invention, it is assumed that the unmanned aerial vehicle is autonomously operated based on the flight plan created in the altitude setting process and the unmanned aerial vehicle is made to do some work. Or by using it also for measuring the height of features, it is not necessary to prepare a separate surveying instrument etc. for surveying.
- the altitude above sea level acquired using the altitude sensor mounted on the unmanned aerial vehicle or the relative altitude from the takeoff point of the unmanned aerial vehicle, and the distance measurement sensor directed downward from the unmanned aerial vehicle it is preferable to measure the height of the ground surface or the feature based on the ground height obtained using the photographing means.
- An unmanned aerial vehicle is equipped with an altitude sensor and a distance measurement sensor or imaging means, and it is possible to calculate the height of the surface or feature on the flight path by subtracting the ground altitude from the relative altitude from the takeoff point or the altitude above sea level. It is possible to easily identify the height of the ground surface or feature by being present. Furthermore, the control accuracy of flight altitude can be improved by controlling the flight altitude of the unmanned aircraft in flight using these two altitudes.
- a flight plan is specified in which a route for causing the unmanned aircraft to autonomously fly is specified by a flight altitude having a margin to the ground surface or feature height on the route.
- the method further includes a provisional route setting step of creating, in the relief research step, autonomous flight of the unmanned aircraft according to the flight plan created in the tentative route setting step, and the height of the surface or feature on the route of the flight plan. It is preferable to measure the height.
- the flight plan created in the temporary route setting process and the flight plan created in the altitude setting process have substantially the same routes on the latitude and longitude.
- the route of the flight plan created in the provisional route setting process that is, the latitude and longitude of the route for flying the unmanned aircraft in the relief survey process and the latitude and longitude of the route specified in the altitude setting process are substantially the same.
- the measurement range of the survey process can be narrowed down to only the actually required range. As a result, the process of investigating the unevenness can be made efficient, and the coverage of the automatically settable range in the advanced setting process can be increased.
- the method for setting flight altitude of an unmanned aerial vehicle further includes a target distance setting step of specifying a target distance which is a ground altitude to be maintained by the unmanned aircraft, and the altitude setting step measures in the relief survey step. It is preferable to automatically set a height obtained by adding the target distance to the height of the ground surface or feature obtained as the flight height on the path of the flight plan.
- the unmanned aerial vehicle is autonomously fly according to the flight plan created in the altitude setting step, and the height of the surface or feature on the route of the flight plan is measured.
- An elevation re-set process which automatically sets a height obtained by adding the target distance to the height of the surface or feature measured in the re-survey process and the re-survey process in the re-survey process as the flight height on the route of the flight plan It is preferable to further include and.
- the unmanned aerial vehicle system of the present invention includes an unmanned aerial vehicle and a management device for creating a flight plan which is setting data including designation of a route for autonomously flying the unmanned aerial vehicle;
- An unmanned aerial vehicle or the management device is an autonomous flight control means for autonomously flying the unmanned aerial vehicle based on the flight plan, and an undulation acquiring means for calculating the height of a surface or a feature of a path where the unmanned aerial vehicle is caused to fly.
- the management device automatically sets the flight altitude on the path of the flight plan based on the height of the ground surface or the feature calculated by the relief acquisition means at the time of creating the flight plan. It is characterized by having an altitude setting means.
- the unmanned aerial vehicle system of the present invention can set the flight altitude based on the actual topography on which the unmanned aerial vehicle is to fly by having the relief acquisition means for calculating the height of the ground surface or the feature. Then, the altitude setting means automatically sets the flight altitude of the flight plan based on the calculation result of the relief acquisition means, so that the time and effort for the pilot to calculate and input a suitable flight altitude can be saved. Further, in the present invention, it is assumed that the unmanned aerial vehicle is autonomously fly using the flight plan whose flight altitude is set by the altitude setting means, and the unmanned aerial vehicle is to perform some work. By using the unmanned aerial vehicle also for measuring the height of the ground surface or features, it is not necessary to prepare a separate survey instrument etc. to conduct surveys.
- the problem of the time and cost of the surveying operation and the problem of obsolescence of the survey data due to the passage of time do not occur. Further, small reliefs and inclinations of several meters, which can not be grasped by a map or the like, can be obtained on the spot, so that the flight altitude more accurately can be designated.
- the unmanned aerial vehicle includes an altitude sensor for acquiring an altitude above sea level or a relative altitude from a takeoff point, and distance information acquiring means for acquiring information capable of measuring a distance to the ground or a feature;
- the aircraft or the management apparatus has distance measuring means for calculating the ground altitude of the unmanned aircraft from the information acquired by the distance information acquiring means, and the relief acquiring means is the sea level altitude or the takeoff point acquired by the altitude sensor It is preferable to calculate the height of the ground surface or the feature on the basis of the relative height from the ground and the ground height acquired by the distance measuring means.
- a surface or feature by being provided with an altitude sensor and distance measuring means, and being able to calculate the height of the surface or feature on the flight path by subtracting the ground altitude from the relative altitude from the takeoff point or the altitude above sea level It is possible to easily identify the height of the
- the management device has a target distance holding unit that stores a target distance which is a ground altitude to be maintained by the unmanned aerial vehicle, and the height setting means adds the target distance to the height of the ground surface or the feature.
- the height is automatically set as the flight altitude on the flight plan route.
- the unmanned aerial vehicle system of the present invention can be flexibly applied to a wide range of applications.
- the flight altitude setting method and the unmanned aerial vehicle system of the present invention it is possible to efficiently set the flight altitude of the unmanned aerial vehicle with respect to the unevenness or inclination of the ground surface or the feature.
- This embodiment is an example of an operation of spraying pesticides on orchards formed on the slope of a mountain ridge using an unmanned aerial system S consisting of a multi-copter 10 which is a small unmanned rotary wing aircraft and a management device 60. .
- FIG. 1 is a schematic view showing a pesticide spraying operation using the unmanned aerial vehicle system S.
- the multicopter 10 is a mountain surface which is the ground surface or a fruit tree which is a feature (hereinafter, these are collectively referred to as “fruit trees g”) along a route r designated in advance. Autonomously fly at a predetermined flying height a and spray pesticides on the top.
- FIG. 2 is a block diagram showing the functional configuration of the multicopter 10.
- the multicopter 10 mainly receives a control signal from the flight controller 11, which is a control unit, the management device 60 carried by the operator, and transmits / receives data to / from the management device 60.
- the flight controller 11 which is a control unit
- the management device 60 carried by the operator
- ESC 131 Electric Speed Controller
- camera 40 is a photographing means for photographing fruit trees and the like under the machine, and electric power is supplied to these It is comprised by the battery 19 to supply.
- the flight controller 11 includes a control device 20 which is a microcontroller.
- the control device 20 controls the number of rotations of each rotor 13 via a CPU 21 which is a central processing unit, a memory 22 including a storage device such as a RAM and a ROM / flash memory, and PWM (Pulse Width Modulation: pulse width Modulation) controller 23 is provided.
- a CPU 21 which is a central processing unit
- a memory 22 including a storage device such as a RAM and a ROM / flash memory
- PWM Pulse Width Modulation: pulse width Modulation
- the flight controller 11 further includes a flight control sensor group 30 including an IMU 31 (Inertial Measurement Unit: inertial measurement device), a GPS antenna 32, an air pressure sensor 33, and an electronic compass 34, which are connected to the control device 20. ing.
- IMU 31 Inertial Measurement Unit: inertial measurement device
- GPS antenna 32 GPS antenna
- air pressure sensor 33 air pressure sensor
- electronic compass 34 electronic compass
- the IMU 31 mainly includes a 3-axis acceleration sensor and a 3-axis angular velocity sensor.
- the GPS antenna 32 is precisely a receiver of a navigation satellite system (NSS).
- the GPS antenna 32 acquires current longitude and latitude values and time information from a Global Navigation Satellite System (GNSS) or a Regional Navigational Satellite System (RNSS).
- GNSS Global Navigation Satellite System
- RNSS Regional Navigational Satellite System
- the atmospheric pressure sensor 33 is an aspect of the altitude sensor that measures the flight altitude.
- the barometric pressure sensor 33 specifies the flying height of the multicopter 10 by converting the detected barometric pressure value to a sea level altitude or a relative height from the takeoff point of the multicopter 10.
- the height sensor according to the present invention is not limited to the barometric pressure sensor 33.
- the electronic compass 34 is an aspect of an azimuth sensor that measures the azimuth angle of the nose.
- a three-axis geomagnetic sensor is used for the electronic compass 34 in this example.
- the control device 20 is capable of acquiring the position information of its own aircraft including the latitude and longitude in flight, altitude, and the azimuth angle of the nose as well as the tilt and rotation of the airframe by these flight control sensors 30. ing.
- the control device 20 has a flight control program 221 which is a program for controlling the attitude of the multicopter 10 during flight and basic flight operations.
- the flight control program 221 adjusts the number of revolutions of each rotor 13 based on the information acquired from the flight control sensor group 30, and causes the multicopter 10 to fly while correcting the attitude and position disorder of the airframe.
- the control device 20 of this example further includes an autonomous flight program 222 which is an autonomous flight control means of the multicopter 10.
- the autonomous flight program 222 is a program for autonomously flying the multicopter 10 based on a flight plan 223 which is setting data such as a route r for causing the multicopter 10 to fly, altitude a, and the like.
- path r means a flight path on a horizontal surface (longitudinal and longitudinal).
- the autonomous flight program 222 autonomously flies the multicopter 10 based on the flight plan 223, with an execution instruction from the pilot (management device 60) and a predetermined time as a start condition. In this example, such an autonomous flight is referred to as "autopilot".
- the multicopter 10 is made to fly by an autopilot, but it is also possible for the pilot to steer manually using the management device 60.
- the autonomous flight control means is mounted on the multicopter 10 in this example, the management apparatus 60 is provided with the autonomous flight control means, and the autopilot can be performed by operating the multicopter 10 remotely by wireless communication. It is possible.
- the camera 40 continuously captures (continuously captures) a still image below the airframe at constant distance intervals while the multicopter 10 is flying.
- information of the latitude and longitude of the multicopter 10 at that imaging position and the flying height is added.
- These pieces of additional information are information obtained by the GPS antenna 32 and the pressure sensor 33 of the multicopter 10.
- the respective images are taken at an interval at which a part of the image of a fruit tree or the like g contained within the angle of view of the camera 40 overlaps in the traveling direction of the multicopter 10.
- Each of these images is analyzed by an image recognition program 721 of the management device 60 described later, whereby the distance (ground height) between the multicopter 10 (camera 40) and the fruit tree etc.
- the camera 40 of this example is distance information acquisition means for acquiring information capable of measuring the distance between the multicopter 10 and the fruit tree or the like g.
- the camera 40 of this example is configured to record the captured image and its additional information in the memory 41 such as an SD memory card included in the camera 40, the management device manages this in real time through the communication device 12. It may be configured to transmit to 60.
- the camera 40 is employ
- the distance information acquisition means of this invention is a means to acquire the information which can measure the distance of an unmanned aerial vehicle and the ground surface or a terrestrial feature.
- an optical distance measuring sensor such as a laser distance measuring sensor or an ultrasonic sensor may be employed.
- FIG. 3 is a block diagram showing a functional configuration of the management device 60.
- the management device 60 is a terminal that performs various settings, status monitoring, and maneuvering of the multicopter 10, and is a device generally called a GCS (Ground Control Station) in the unmanned aerial vehicle field.
- GCS Gate Control Station
- the management device 60 mainly includes a CPU 61 which is a central processing unit, a memory 62 including a storage device such as a RAM and a ROM / flash memory, a communication device 63 which wirelessly communicates with the multicopter 10, and various information visually displayed to the operator. And an input device 65 for receiving input from the operator, and a battery 69 for supplying power thereto.
- a CPU 61 which is a central processing unit
- a memory 62 including a storage device such as a RAM and a ROM / flash memory
- a communication device 63 which wirelessly communicates with the multicopter 10, and various information visually displayed to the operator.
- an input device 65 for receiving input from the operator, and a battery 69 for supplying power thereto.
- any specific communication method and protocol may be used.
- uploading of the flight plan 223 to the multicopter 10 and reception of telemetry data from the multicopter 10 are bi-directionally performed by Wi-Fi (Wireless Fidelity), and the steering signal at the time of manual operation is PCM (pulse code modulation: A configuration may be considered in which pulse code modulation) signals are transmitted by the frequency hopping method in the 2.4 GHz band.
- the multicopter 10 and the management device 60 may be configured to include a connection module to a mobile communication network such as 3G, LTE (Long Term Evolution), or WiMAX (Worldwide Interoperability for Microwave Access) as the communication device 12 or 63. Good. This allows the pilot to control the multicopter 10 from anywhere within the service area of the mobile communication network. Further, the multicopter 10 and the management device 60 of this example do not necessarily need to communicate by wireless, and may be configured to perform communication by wired connection.
- a mobile communication network such as 3G, LTE (Long Term Evolution), or WiMAX (Worldwide Interoperability for Microwave Access)
- 3G Third Generation
- LTE Long Term Evolution
- WiMAX Worldwide Interoperability for Microwave Access
- a flight plan creation program 71 for creating a flight plan 223 of the multicopter 10 is installed.
- the pilot can create a flight plan 223 using the flight plan creation program 71 with reference to the map data 73 and upload it to the multicopter 10.
- the image recorded in the memory 41 of the camera 40 is further analyzed in the memory 62 of the management device 60, and the position at which the multicopter 10 (camera 40) photographed the image, and the fruit trees etc. present below it
- An image recognition program 721 for calculating the distance to the object (the ground height) is registered.
- the image recognition program 721 is an aspect of the distance measurement means of the present invention.
- the image recognition program 721 of this example is a subprogram of the height mapping program 72 which is an aspect of the relief acquisition means of the present invention.
- the altitude mapping program 72 calculates the height of a fruit tree or the like g at the position where the multicopter 10 photographed the image based on the flight altitude information added to each image and the ground altitude measured by the image recognition program 721 Do. Then, the altitude mapping program 72 maps the height of a fruit tree or the like g on the map data 73 based on the latitude and longitude information added to each image.
- the flight plan creation program 71 has, as a sub program thereof, an altitude setting program 711 for automatically setting the flight altitude of the flight plan 223.
- the advanced setting program 711 is an aspect of the advanced setting means of the present invention.
- the altitude setting program 711 automatically sets the flight altitude a of the route r designated by the pilot based on the height information of the fruit tree or the like g mapped to the map data 73.
- the “height” of the fruit tree or the like g in this example means a relative height difference from the take-off point of the multicopter 10.
- this method is based on the premise that the take-off point of the multicopter 10 is the same when measuring the height of the fruit tree g and when spraying the agrochemical.
- the height of fruit trees etc. g is measured and the take-off point of multicopter 10 when spraying pesticides is different, the height of measured fruit trees g etc is converted to altitude above sea level or converted to air pressure value You should do it.
- a target distance i which is a distance (height to ground) with respect to a fruit tree etc. to be maintained by the multicopter 10 at the time of spraying the agrochemical is registered.
- the target distance i is a distance specified by the operator. That is, the memory 62 of the management device 60 is an aspect of the target distance holding unit of the present invention.
- a general laptop computer or tablet computer can be suitably used as the management device 60. This is because the main configuration shown in FIG. 3 is integrated into one device and easy to carry.
- the management device 60 of the present invention is provided with an altitude setting means, and the physical form is not limited as long as a flight plan can be created.
- different apparatuses having the respective configurations shown in FIG. 3 may be combined to form the management apparatus 60.
- the multicopter 10 and the management device 60 are configured as separate devices, but the multicopter 10 itself may be configured to have the function of the management device 60. In that case, the pilot may access the management device 60 in the multicopter 10 using a laptop computer or a tablet computer.
- FIG. 4 is a flowchart showing the flow of creating the flight plan 223.
- the flight altitude setting method of this example mainly includes a provisional route setting step S10, a relief research step S20, a target distance setting step S30, and an altitude setting step S40, and, if necessary, the relief reinvestigation step S60. , And the advanced resetting step S70 are added.
- FIG. 5 is a side view cross-sectional view in which a part of the path r is extracted, and is a schematic view illustrating the temporary path setting step S10 and the unevenness investigation step S20.
- a flight plan 223 is created in which a flight height a specified with allowance for the height of the fruit tree or the like g on the route r is created.
- the relief survey step S20 the multicopter 10 is made to fly autonomously in the flight plan 223, and the height of the fruit tree g or the like on the route r is measured.
- “a flight altitude a which has a margin” may be roughly determined from the visual observation of the operator or the contour lines of the map.
- the relative height from the takeoff point may be set to a height over 15 m.
- the pilot first activates the flight plan creation program 71 of the management device 60 and designates the route r on the map data 73. Then, the highest part of the fruit tree or the like g in the path r is visually confirmed, and the flight height a of the entire path r is set to 20 m.
- the flight height a set in the flight plan 223 of the present example is obtained by converting the pressure height obtained by the pressure sensor 33 of the multicopter 10 into the relative height from the takeoff point of the multicopter 10.
- the height difference of 1 hPa is treated as 10 m.
- the multicopter 10 takes off from the lowest position of the fruit tree or the like g. As shown in FIG. 5, the pressure value at the lowest position of the fruit tree etc. is 1002.0 hPa.
- this atmospheric pressure value (1002.0 hPa) indicates an altitude of about 100 m above sea level, but the multicopter 10 of this example is a standard value (flight altitude a) of the atmospheric pressure value (1002.0 hPa) as the flying altitude a. : 0 m)
- the pilot uploads the flight plan 223 from the management device 60 to the multicopter 10 (S21), makes the multicopter 10 autonomously fly with the autopilot, and shoots the fruit trees etc. on the route r with the camera 40 (S22) ).
- the operator downloads the image in the memory 41 of the camera 40 and its additional information from the multicopter 10 to the management device 60 (S23). Then, these images and their additional information are analyzed by the advanced mapping program 72 of the management device 60, and the height of the fruit tree etc. is mapped on the map data 73 (S24).
- the part photographed by the camera 40 in the relief research step S20 and whose height is measured is the part shown by the thick line in FIG.
- the distance d1 taken from the position where the flight height a of the multicopter 10 is 20 m (1000.0 hPa) is 20 m. Therefore, the height h1 of the lowest position of the fruit tree or the like g is treated as 0 m.
- the highest position of the fruit tree etc. has a distance d2 of 5 m taken from the flying height 20 m. Therefore, the height h2 of the highest position of the fruit tree or the like g is treated as 15 m.
- the height of the fruit tree or the like g on the route r is measured.
- the straight line x1-x2 in FIG. 5 is a line obtained by linearly approximating the height of the fruit tree or the like g on the path r. From the straight line x1-x2, it can be seen that the height of the fruit tree or the like g tends to increase from x1 to x2, and tends to decrease from x2 to x1.
- the straight line x1-x2 is used when processing the height information of the fruit tree or the like g on the route r in the subsequent height setting step S40.
- the multicopter 10 is provided with the barometric sensor 33 and the camera 40, and subtracts the ground altitude from the flight altitude a of the multicopter 10 on the flight route r.
- the height of fruit trees etc can be calculated. This makes it possible to easily measure the height of fruit trees and the like g.
- the multicopter 10 prior to the spraying operation of the agrochemical, the multicopter 10 is also used to measure the height of fruit trees and the like g. Therefore, it is not necessary to prepare a surveying instrument etc. separately and survey the height of fruit trees etc. g. Therefore, according to the method of the present example, there is no problem of trouble of surveying work and cost, and a problem of obsolescence of survey data due to the passage of time. Furthermore, since small reliefs and inclinations of several meters, which can not be grasped by a map or the like, can be obtained on the spot, it is possible to set the flight altitude a more in line with the actual situation.
- route setting process S10 of this example is not an essential process, and can also be abbreviate
- the driver may steer the multicopter 10 manually to acquire the height of the fruit tree or the like g in the relief survey step S20.
- it is possible to operate while confirming the latitude and longitude value of the telemetry data by the management device 60 at hand it can not be said to be an efficient method.
- a flight plan 223 with a margin for the flight altitude a is created in the temporary route setting step S10, and the undulation survey step S20 itself is performed by the autopilot to follow the route r specified in the altitude setting step S40. It is possible to efficiently measure the height of fruit trees and the like g. In addition, an error occurs between the latitude and longitude information mapped to the map data 73 and the latitude and longitude value detected by the GPS antenna 32. By performing the relief survey step S20 with an autopilot, it is possible to grasp and adjust the degree of this error before performing the agrochemical spraying operation.
- a target distance i which is a distance to a fruit tree etc. to be maintained when the multicopter 10 disperses the pesticide is designated.
- the target distance i is 5 m.
- the altitude setting program 711 automatically sets the height obtained by adding the target distance i to the height of the fruit tree or the like g mapped to the map data 73 as the flight altitude a of the route r at that position. This saves the pilot the effort of calculating and inputting the preferred flight altitude a.
- the route r designated in the provisional route setting step S10 and the route r designated in the height setting step S40 are the same.
- the measurement range of the undulation investigation step S20 is narrowed down to only the range actually required for the pesticide application work.
- the undulation investigation step S20 is made efficient, and the coverage of the automatically settable range by the height setting step S40 is enhanced.
- the flying height a may be simply obtained by adding the target distance i to the height of the fruit tree etc. .
- the flying height of the multicopter 10 can be obtained simply by adding the target distance i to the height of the fruit tree etc.
- a becomes unstable For example, in a portion g1 surrounded by a broken line in FIG.
- the descent and the rise are performed in a substantially vertical and continuous manner.
- FIG. 6 and FIG. 7 are schematic diagrams showing a processing example of height information of a fruit tree or the like g mapped to the map data 73.
- FIG. 6 is a partially enlarged view of a part of FIG. 5 and processing of height information of a fruit tree etc. when the height of the fruit tree etc. tends to be higher in the traveling direction of the route r It is a figure explaining a method.
- FIG. 7 is a diagram showing how flight height a is automatically set after processing the height information of the fruit tree etc. of FIG.
- the route r from the waypoint wa to the waypoint wb is designated by the operator.
- the “way point” is a relay point of the route r.
- the flight plan creation program 71 sets a route r so as to connect the waypoints designated by the pilot on the map data 73 in the designated order.
- the height of a fruit tree or the like tends to be high.
- the operation to lower the flight height a of the multicopter 10 is considered to be more harmful than the effect. The reason is that if the flight height a of the multicopter 10 is lowered along the height of a fruit tree or the like g, it will have to jump immediately after that and there is also a risk of collision with the fruit tree or the like g.
- the altitude setting program 711 of this example processes height information of a fruit tree or the like g mapped to the map data 73. Specifically, the height setting program 711 first scans the height of a fruit tree or the like g from the waypoint wa to the waypoint wb. Then, when the height of the fruit tree g becomes lower than the height of the previous fruit tree g, the height of the portion is replaced with the maximum height of the previous portion (broken line g '). By this processing, height information of fruit trees and the like g from waypoint wa to waypoint wb is processed from the state shown by the thick line in FIG. 5 to the state shown by the thick line in FIG. 7.
- the altitude setting program 711 adds the target distance i to the height of the processed fruit tree etc. g to set the flight altitude a of the route r.
- the interval at which the altitude setting program 711 sets the relay point a1 of the flight altitude a can be appropriately adjusted in accordance with the accuracy required for the application.
- the altitude setting program 711 of this example linearly approximates the height of fruit trees etc. between waypoints designated by the operator, and the height of fruit trees etc. is lower between these waypoints.
- the processing shown in FIG. As a result, unnecessary height differences in the entire route r are eliminated, and the flight operation of the multicopter 10 is more stable.
- the flight plan 223 created through the altitude setting step S40 is appropriate from the viewpoint of the pilot (S50: Y)
- the flight plan 223 is uploaded to the multicopter 10 and preparation for pesticide dispersion is carried out. Take on.
- the image recognition program 721, the altitude mapping program 72, or the altitude setting program 711 may display an alert or a warning on the monitor 64.
- detour may be suggested for that place.
- the multicopter 10 is made to fly autonomously according to the flight plan 223 created in the altitude setting step S40, and the height of a fruit tree or the like g on the route r of the flight plan 223 is measured.
- the procedure conforms to the first undulation survey step S20.
- the operator uploads the flight plan 223 from the management device 60 to the multicopter 10 (S61), makes the multicopter 10 autonomously fly with the autopilot, and photographs a fruit tree etc. on the route r with the camera 40 (S62).
- the operator downloads the image in the memory 41 of the camera 40 and its additional information from the multicopter 10 to the management device 60 (S63). Then, these images and their additional information are analyzed by the advanced mapping program 72 of the management device 60, and the height of a fruit tree or the like g is mapped on the map data 73 (S64).
- the procedure of the advanced resetting step S70 conforms to the advanced setting step S40.
- the altitude setting program 711 automatically sets the flight altitude a of the route r based on the height information measured in the relief reinvestigation step S60 and mapped to the map data 73.
- the flight plan 223 created through the altitude resetting process S70 is appropriate from the viewpoint of the pilot (S50: Y)
- the flight plan 223 is uploaded to the multicopter 10, and preparation of pesticide dispersion is carried out. Get on with If the accuracy of the flying height a is not sufficient even at this time, the undulation reexamination step S60 and the altitude resetting step S70 may be repeated again.
- the unmanned aircraft system S and the flight altitude setting method of the present example it is possible to efficiently realize terrain undulation and autonomous flight along inclined planes, which are difficult for general flight controller products. it can.
- FIG. 8 is a schematic view showing an example in which the unmanned aircraft system S of this example is applied to another application.
- FIG. 8 is an operation example of photographing the power transmission line 91 from the side while flying the multicopter 10 along the slack of the power transmission line 91 installed on the steel tower 90 using the unmanned aerial vehicle system S.
- a predetermined slack (slack) is provided on the transmission lines and distribution lines of overhead lines for the purpose of protecting the electric lines, towers and poles. Therefore, for example, in order to check the damage of the electric wire, it is necessary to adjust the flight altitude of the unmanned air according to the slack of the electric wire when trying to shoot the electric wire from the side while flying the unmanned aerial vehicle along the electric wire. There is. When such a flight is performed manually, the pilot is required to have a high level of maneuvering skills, and it is a problem to secure personnel who can work.
- the imaging procedure of the power transmission line 91 using the unmanned aerial vehicle system S will be described.
- a flight plan 223 is generated, which causes the multicopter 10 to fly just above the power transmission line 91 along the power transmission line 91.
- the undulation inspection step S20 the power transmission line 91 is photographed by the camera 40 from directly above, and the height of each position of the power transmission line 91 is measured.
- the target distance setting step S30 the target distance i is set to 0 m.
- the flight altitude a is automatically set without processing the measured height of the transmission line 91 (if the measurement accuracy of the height of the transmission line 91 is insufficient, the undulation reexamination step S60 and the altitude) Repeat the resetting step S70). Then, the route r of the flight plan 223 created through the altitude setting step S40 is manually moved by a distance suitable for photographing the power transmission line 91. Then, the camera 40 is directed toward the power transmission line 91 to make the multicopter 10 fly autonomously. When the autonomous flight program 222 supports ON / OFF of the camera 40, PTZ operation, etc., the flight plan 223 may control the direction of the camera 40.
- the range of this invention is not limited to this, A various change can be added in the range which does not deviate from the summary of invention.
- the flight altitude setting method of the present invention and the unmanned aerial vehicle that can be used for the unmanned aerial vehicle system are not limited to the multicopter 10, provided that they are unmanned. Off and Landing can also be used.
- the application of the flight altitude setting method of the present invention and the unmanned aerial vehicle system is not limited to pesticide spraying and electric wire photography, and any application that requires control of flight altitude along the ground or the height of a feature is required. It is applicable.
- the "ground surface or feature" in the present invention is not limited to a natural product, and includes indoor and outdoor artifacts such as floor surfaces, stairs, or fixtures installed on the floor.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Game Theory and Decision Science (AREA)
- Medical Informatics (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
地表または地物の起伏や傾斜に応じて飛行計画の飛行高度を効率的に設定可能な飛行高度設定方法および無人航空機システムを提供する。 無人航空機を飛行させ、地表または地物の高さを測定する起伏調査工程と、前記無人航空機を自律飛行させる経路の指定を含む設定データである飛行計画の作成時に、前記起伏調査工程で測定した地表または地物の高さに基づいて該飛行計画の経路上の飛行高度を自動的に設定する高度設定工程と、を含むことを特徴とする無人航空機の飛行高度設定方法、および、この方法を実行可能な無人航空機システムにより解決する。
Description
本発明は、無人航空機技術に関する。
下記特許文献1には、飛行高度を設定飛行高度に自動的に保つ模型航空機が開示されている。
マルチコプターに代表される小型の無人航空機は、機体の飛行動作を制御するフライトコントローラとよばれる制御装置を備えている。市場に流通するフライトコントローラ製品の中には、オートパイロット機能を備えているものがある。オートパイロット機能とは、無人航空機の姿勢や飛行位置を自動的に維持したり、操縦者が作成した飛行計画に基づいて無人航空機を自律的に飛行させたりする機能である。一般的なオートパイロットの飛行計画には、機体の離着陸地点や飛行ルートの経緯度、高度、速度、機首の方位角などを指定することができる。その他、空撮に特化した一部のフライトコントローラでは、カメラによる撮影の開始・終了、PTZなどを指定可能なものもある。
このようなフライトコントローラは、飛行中の飛行高度を制御するため、気圧センサや、レーザ・超音波による測距センサ、または、カメラを使った画像認識手段を備えている。
気圧センサを使った制御では、対地高度ではなく気圧高度に基づいて飛行高度が決定されるため、地表や地物の標高は考慮されない。そのため、例えば山肌の傾斜に沿って無人航空機を飛行させるためには、事前に山肌の起伏を調査して、飛行経路上の飛行高度を逐次手動で指定しなければならない。ここで、地図の等高線を参照して飛行高度を指定しようとする場合、地図の等高線では大まかな標高しか知ることができないため、例えば無人航空機と山肌との距離を5mに維持しながら飛行させるような飛行計画を作成することはできない。一方、山肌の詳細な測量を事前に行う場合には、作業が大掛かりになり、コスト面での問題が生じることとなる。さらに、測量データは年月の経過とともに陳腐化するため、測量データに要求される精度によっては、短い期間で測量を繰り返す必要がある。
測距センサや画像認識手段によれば、その場その場における地表や地物との相対距離に基づいて飛行高度を制御することができる。一方、例えば樹木が林立した領域の上を飛行させる場合、相対距離が狭い範囲で乱高下するため、飛行高度が安定しないという問題がある。
また、上記いずれの高度制御手段を用いた場合でも、飛行経路の前方に障害物があったときにこれを迂回させるためには、他の方策を講じる必要がある。
上記問題に鑑み、本発明が解決しようとする課題は、地表または地物の起伏や傾斜に応じて飛行計画の飛行高度を効率的に設定可能な飛行高度設定方法および無人航空機システムを提供することにある。
上記課題を解決するため、本発明の無人航空機の飛行高度設定方法は、無人航空機を飛行させ、地表または地物の高さを測定する起伏調査工程と、前記無人航空機を自律飛行させる経路の指定を含む設定データである飛行計画の作成時に、前記起伏調査工程で測定した地表または地物の高さに基づいて該飛行計画の経路上の飛行高度を自動的に設定する高度設定工程と、を含むことを特徴とする。
起伏調査工程において、無人航空機を飛行させて地表または地物の高さを測定することにより、そのときの実際の地形に基づいて飛行高度を設定することが可能となる。そして、本発明の高度設定工程では、起伏調査工程の測定結果に基づいて飛行計画の飛行高度が自動設定されるため、好適な飛行高度を操縦者が計算して入力する手間が省かれる。また、本発明では、高度設定工程で作成した飛行計画に基づいて無人航空機を自律飛行させ、無人航空機に何らかの作業を行わせることを想定しているが、その作業に先立って、無人航空機を地表または地物の高さの測定にも利用することで、別途測量機器等を用意して測量を行う必要がない。そのため、本発明の方法では、測量作業の手間やコストの問題、年月の経過による測量データの陳腐化の問題は生じない。さらに、地図等では把握することができない数m単位の小さな起伏や傾斜を現場で取得することができるため、より実際に即した飛行高度を設定することができる。
また、前記起伏調査工程では、前記無人航空機に搭載された高度センサを使って取得した海抜高度または該無人航空機の離陸地点からの相対高度、および、前記無人航空機から下方に向けられた測距センサまたは撮影手段を使って取得した対地高度に基づいて、地表または地物の高さを測定することが好ましい。
無人航空機が高度センサと、測距センサまたは撮影手段と、を備え、離陸地点からの相対高度または海抜高度から対地高度を減算することで飛行経路上の地表または地物の高さを算出可能であることにより、地表または地物の高さを容易に特定することが可能となる。さらに、これら二つの高度を使って無人航空機の飛行中の飛行高度を制御することにより、飛行高度の制御精度を向上させることもできる。
また、本発明の無人航空機の飛行高度設定方法は、前記無人航空機を自律飛行させる経路を、その経路上の地表または地物の高さに対して余裕をもたせた飛行高度で指定した飛行計画を作成する仮経路設定工程をさらに含み、前記起伏調査工程では、前記仮経路設定工程で作成された前記飛行計画により前記無人航空機を自律飛行させ、該飛行計画の経路上の地表または地物の高さを測定することが好ましい。
起伏調査工程の測定結果を高度設定工程で利用するためには、高度設定工程で指定する経路の地表または地物の高さが測定されている必要がある。つまり、起伏調査工程では、高度設定工程で指定する予定の経路を通るように機体を飛行させる必要があり、これを手動操縦で行うためには熟練した操縦技能が必要である。また、テレメトリデータの経緯度値を手元の管理装置で確認しながら操縦する方法も考えられるが、効率のよい方法とはいえない。そこで、飛行高度に余裕をもたせた飛行計画を作成し、その飛行計画を使って自律飛行で起伏調査工程を行うことにより、より効率的に、高度設定工程で指定する経路上の地表または地物の高さを測定することが可能となる。
また、前記仮経路設定工程で作成される前記飛行計画、および、前記高度設定工程で作成される前記飛行計画は、経緯度上の経路が略同一であることが好ましい。
仮経路設定工程で作成される飛行計画の経路、すなわち起伏調査工程において無人航空機を飛行させる経路の経緯度と、高度設定工程で指定される経路の経緯度とが略同一であることにより、起伏調査工程の測定範囲を実際に必要となる範囲だけに絞り込むことができる。これにより起伏調査工程が効率化されるとともに、高度設定工程における自動設定可能範囲の網羅率を高めることができる。
また、本発明の無人航空機の飛行高度設定方法は、前記無人航空機が維持すべき対地高度である目標距離を指定する目標距離設定工程をさらに含み、前記高度設定工程では、前記起伏調査工程で測定した地表または地物の高さに前記目標距離を加えた高さを前記飛行計画の経路上の飛行高度として自動的に設定することが好ましい。
地表または地物と無人航空機との目標距離を無人航空機の作業目的に応じて適宜指定することにより、本発明の方法を広範な用途に適用することが可能となる。
また、本発明の無人航空機の飛行高度設定方法は、前記高度設定工程で作成した前記飛行計画により前記無人航空機を自律飛行させ、該飛行計画の経路上の地表または地物の高さを測定する起伏再調査工程と、前記起伏再調査工程で測定した地表または地物の高さに前記目標距離を加えた高さを前記飛行計画の経路上の飛行高度として自動的に設定する高度再設定工程と、をさらに含むことが好ましい。
起伏調査工程の測定精度によっては、一度の測定だけでは十分な精度の飛行高度を設定することができない場合もある。そこで、高度設定工程で作成された飛行計画を使って再度、地表または地物の高さを測定することにより、最初の測定結果よりも高精度な測定結果を得ることができる。そして、その測定結果に基づいて飛行計画を作成することにより、より理想的な飛行高度を設定することが可能となる。
また、前記高度設定工程で作成される前記飛行計画には、傾斜面に沿った経路が指定されることが好ましい。
本発明によれば、一般的なフライトコントローラ製品では困難な、傾斜面に沿った自律飛行を容易に実現することができる。
また、上記課題を解決するため、本発明の無人航空機システムは、無人航空機と、前記無人航空機を自律飛行させる経路の指定を含む設定データである飛行計画を作成する管理装置と、を備え、前記無人航空機または前記管理装置は、前記飛行計画に基づいて前記無人航空機を自律飛行させる自律飛行制御手段と、前記無人航空機を飛行させた経路の地表または地物の高さを算出する起伏取得手段と、を有し、前記管理装置は、前記飛行計画の作成時に、前記起伏取得手段で算出した地表または地物の高さに基づいて、前記飛行計画の経路上の飛行高度を自動的に設定する高度設定手段を有することを特徴とする。
本発明の無人航空機システムは、地表または地物の高さを算出する起伏取得手段を有することにより、無人航空機を飛行させる実際の地形に基づいて飛行高度を設定することができる。そして、起伏取得手段の算出結果に基づいて高度設定手段が飛行計画の飛行高度を自動的に設定することにより、好適な飛行高度を操縦者が計算して入力する手間が省かれる。また、本発明では、高度設定手段により飛行高度が設定された飛行計画を使って無人航空機を自律飛行させ、無人航空機に何らかの作業を行わせることを想定しているが、その作業に先立って、無人航空機を地表または地物の高さの測定にも利用することで、別途測量機器等を用意して測量を行う必要がない。そのため、本発明の無人航空機システムでは、測量作業の手間やコストの問題、年月の経過による測量データの陳腐化の問題は生じない。さらに、地図等では把握することができない数m単位の小さな起伏や傾斜を現場で取得することができるため、より実際に即した飛行高度を指定することができる。
また、前記無人航空機は、海抜高度または離陸地点からの相対高度を取得する高度センサと、地表または地物との距離を測定可能な情報を取得する距離情報取得手段と、を有し、前記無人航空機または前記管理装置は、前記距離情報取得手段で取得した情報から前記無人航空機の対地高度を算出する距離測定手段を有し、前記起伏取得手段は、前記高度センサで取得した海抜高度または離陸地点からの相対高度と、前記距離測定手段で取得した対地高度とに基づいて、地表または地物の高さを算出することが好ましい。
高度センサと距離測定手段とを備え、離陸地点からの相対高度または海抜高度から対地高度を減算することで飛行経路上の地表または地物の高さを算出可能であることにより、地表または地物の高さを容易に特定することが可能となる。
また、前記管理装置は、前記無人航空機が維持すべき対地高度である目標距離を記憶する目標距離保持部を有し、前記高度設定手段は、地表または地物の高さに前記目標距離を加えた高さを前記飛行計画の経路上の飛行高度として自動的に設定することが好ましい。
地表または地物と無人航空機との目標距離を無人航空機の作業目的に応じて適宜指定することにより、本発明の無人航空機システムを幅広い用途に柔軟に適用することが可能となる。
以上のように、本発明の飛行高度設定方法および無人航空機システムによれば、地表または地物の起伏や傾斜に対して無人航空機の飛行高度を効率的に設定することが可能となる。
[実施形態概要]
以下、本発明の実施形態(以下、「本例」ともいう。)について説明する。本実施形態は、小型の無人回転翼航空機であるマルチコプター10および管理装置60からなる無人航空機システムSを使って、山麓の傾斜面に造成された果樹園に農薬を散布する作業の例である。
以下、本発明の実施形態(以下、「本例」ともいう。)について説明する。本実施形態は、小型の無人回転翼航空機であるマルチコプター10および管理装置60からなる無人航空機システムSを使って、山麓の傾斜面に造成された果樹園に農薬を散布する作業の例である。
図1は、無人航空機システムSを使った農薬散布作業の様子を示す模式図である。本例の農薬散布作業では、マルチコプター10は、予め指定された経路rに沿って、地表である山肌や地物である果樹(以下、これらを総称して「果樹等g」という。)の上を所定の飛行高度aで自律飛行し、農薬を散布する。
[機能構成]
(マルチコプターの機能構成)
図2はマルチコプター10の機能構成を示すブロック図である。マルチコプター10は、主に、制御部であるフライトコントローラ11、操縦者が携行する管理装置60から制御信号を受信し、また、管理装置60とデータの送受信を行う通信装置12、固定ピッチのプロペラが装着されたブラシレスモータである複数のロータ13、これらロータ13の駆動回路であるESC131(Electric Speed Controller)、機体下方の果樹等gを撮影する撮影手段であるカメラ40、および、これらに電力を供給するバッテリー19により構成されている。
(マルチコプターの機能構成)
図2はマルチコプター10の機能構成を示すブロック図である。マルチコプター10は、主に、制御部であるフライトコントローラ11、操縦者が携行する管理装置60から制御信号を受信し、また、管理装置60とデータの送受信を行う通信装置12、固定ピッチのプロペラが装着されたブラシレスモータである複数のロータ13、これらロータ13の駆動回路であるESC131(Electric Speed Controller)、機体下方の果樹等gを撮影する撮影手段であるカメラ40、および、これらに電力を供給するバッテリー19により構成されている。
フライトコントローラ11はマイクロコントローラである制御装置20を備えている。制御装置20は、中央処理装置であるCPU21、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ22、および、ESC131を介して各ロータ13の回転数を制御するPWM(Pulse Width Modulation:パルス幅変調)コントローラ23を有している。
フライトコントローラ11はさらに、IMU31(Inertial Measurement Unit:慣性計測装置)、GPSアンテナ32、気圧センサ33、および電子コンパス34を含む飛行制御センサ群30を有しており、これらは制御装置20に接続されている。
IMU31は、主に3軸加速度センサおよび3軸角速度センサにより構成されている。GPSアンテナ32は、正確には航法衛星システム(NSS:Navigation Satellite System)の受信器である。GPSアンテナ32は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)または地域航法衛星システム(RNSS:Regional Navigational Satellite System)から現在の経緯度値および時刻情報を取得する。気圧センサ33は飛行高度を測定する高度センサの一態様である。気圧センサ33は、検出した気圧値を海抜高度またはマルチコプター10の離陸地点からの相対高度に変換することでマルチコプター10の飛行高度を特定する。なお、本発明の高度センサは気圧センサ33に限られず、例えばGPSアンテナ32でジオイドからの標高を取得することも可能である。電子コンパス34は機首の方位角を測定する方位センサの一態様である。本例の電子コンパス34には3軸地磁気センサが用いられている。制御装置20は、これら飛行制御センサ群30により、機体の傾きや回転のほか、飛行中の経緯度、高度、および機首の方位角を含む自機の位置情報を取得することが可能とされている。
制御装置20は、マルチコプター10の飛行時における姿勢や基本的な飛行動作を制御するプログラムである飛行制御プログラム221を有している。飛行制御プログラム221は、飛行制御センサ群30から取得した情報を基に個々のロータ13の回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター10を飛行させる。
本例の制御装置20はさらに、マルチコプター10の自律飛行制御手段である自律飛行プログラム222を有している。自律飛行プログラム222は、マルチコプター10を飛行させる経路rや高度a、速度などの設定データである飛行計画223に基づいてマルチコプター10を自律的に飛行させるプログラムである。なお、本発明でいう「経路r」とは、水平面上(経緯度上)の飛行経路を意味している。自律飛行プログラム222は、操縦者(管理装置60)からの実行指示や所定の時刻などを開始条件として、マルチコプター10を飛行計画223に基づいて自律的に飛行させる。本例ではこのような自律飛行を指して「オートパイロット」という。本例では基本的に、マルチコプター10をオートパイロットで飛行させることを想定しているが、操縦者が管理装置60を使って手動で操縦することも可能である。また、本例ではマルチコプター10に自律飛行制御手段が搭載されているが、管理装置60が自律飛行制御手段を備え、無線通信により遠隔からマルチコプター10を操縦することでオートパイロットを行うことも可能である。
カメラ40はマルチコプター10の飛行中に機体下方の静止画像を一定の距離間隔で連続撮影(連写)する。カメラ40で撮影された各画像には、その撮影位置におけるマルチコプター10の経緯度および飛行高度の情報が付加される。これらの付加情報は、マルチコプター10のGPSアンテナ32および気圧センサ33で得られた情報である。上記各画像は、マルチコプター10の進行方向において、カメラ40の画角内に収められる果樹等gの像の一部が重なる間隔で撮影されている。これら各画像は、後述する管理装置60の画像認識プログラム721で解析されることにより、その撮影位置におけるマルチコプター10(カメラ40)と果樹等gとの距離(対地高度)が算出される。すなわち、本例のカメラ40は、マルチコプター10と果樹等gとの距離を測定可能な情報を取得する距離情報取得手段である。なお、本例のカメラ40は、撮影した画像およびその付加情報をカメラ40が備えるSDメモリカードなどのメモリ41に記録する構成とされているが、通信装置12を介してこれをリアルタイムに管理装置60に送信する構成としてもよい。また、本例では距離情報取得手段としてカメラ40が採用されているが、本発明の距離情報取得手段は、無人航空機と地表または地物との距離を測定可能な情報を取得する手段であればよく、カメラ40のほか、レーザ測距センサなどの光学式測距センサ、または超音波センサなどを採用することもできる。
(管理装置の機能構成)
図3は管理装置60の機能構成を示すブロック図である。管理装置60は、マルチコプター10の各種設定、状態監視、および操縦を行う端末であり、無人航空機分野において一般にGCS(Ground Control Station)と呼ばれている装置である。
図3は管理装置60の機能構成を示すブロック図である。管理装置60は、マルチコプター10の各種設定、状態監視、および操縦を行う端末であり、無人航空機分野において一般にGCS(Ground Control Station)と呼ばれている装置である。
管理装置60は、主に、中央処理装置であるCPU61、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ62、マルチコプター10と無線通信を行う通信装置63、各種情報を操縦者に視覚的に表示するモニタ64、操縦者からの入力を受け付ける入力装置65、および、これらに電力を供給するバッテリー69を備えている。
通信装置63は、マルチコプター10と制御信号やデータの送受信を行うことが可能であれば、その具体的な通信方式やプロトコルは問わない。例えば、マルチコプター10への飛行計画223のアップロードやマルチコプター10からのテレメトリデータの受信はWi-Fi(Wireless Fidelity)により双方向通信で行い、手動操縦時の操縦信号はPCM(pulse code modulation:パルス符号変調)信号を2.4GHz帯の周波数ホッピング方式で送信する構成などが考えられる。その他、マルチコプター10および管理装置60がその通信装置12,63として、3GやLTE(Long Term Evolution)、WiMAX(Worldwide Interoperability for Microwave Access)などの移動体通信網への接続モジュールを備える構成としてもよい。こうすることにより操縦者は、移動体通信網のサービスエリア内であればどこからでもマルチコプター10を制御することが可能となる。また、本例のマルチコプター10および管理装置60は必ずしも無線で通信する必要はなく、有線接続で通信を行う構成としてもよい。
管理装置60には、マルチコプター10の飛行計画223を作成する飛行計画作成プログラム71がインストールされている。操縦者は、飛行計画作成プログラム71を使って地図データ73を参照しながら飛行計画223を作成し、これをマルチコプター10にアップロードすることができる。
管理装置60のメモリ62にはさらに、カメラ40のメモリ41に記録された画像を解析して、マルチコプター10(カメラ40)がその画像を撮影したの位置と、その下方に存在する果樹等gとの距離(対地高度)を算出する画像認識プログラム721が登録されている。画像認識プログラム721は、本発明の距離測定手段の一態様である。
本例の画像認識プログラム721は、本発明の起伏取得手段の一態様である高度マッピングプログラム72のサブプログラムである。高度マッピングプログラム72は、各画像に付加された飛行高度情報と、画像認識プログラム721で測定した対地高度とに基づいて、マルチコプター10がその画像を撮影した位置における果樹等gの高さを算出する。そして、高度マッピングプログラム72は、各画像に付加された経緯度情報に基づいて、地図データ73上に果樹等gの高さをマッピングする。
そして、飛行計画作成プログラム71は、そのサブプログラムとして、飛行計画223の飛行高度を自動設定する高度設定プログラム711を有している。高度設定プログラム711は、本発明の高度設定手段の一態様である。高度設定プログラム711は、地図データ73にマッピングされた果樹等gの高さ情報に基づいて、操縦者が指定した経路rの飛行高度aを自動的に設定する。なお、詳細は後述するが、本例における果樹等gの「高さ」とは、マルチコプター10の離陸地点からの相対的な高度差を意味している。ただしこれは、果樹等gの高さを測定するときと農薬を散布するときのマルチコプター10の離陸地点が同じであることを前提とした方法である。果樹等gの高さを測定するときと農薬を散布するときのマルチコプター10の離陸地点が異なる場合には、測定した果樹等gの高さを海抜高度に換算したり、気圧値に換算したりすればよい。
また、管理装置60のメモリ62には、農薬の散布時にマルチコプター10が維持すべき果樹等gとの距離(対地高度)である目標距離iが登録されている。目標距離iは操縦者により指定された距離である。すなわち、管理装置60のメモリ62は本発明の目標距離保持部の一態様である。
管理装置60には、一般的なノート型パソコンやタブレットコンピュータを好適に用いることができる。図3に示す主要構成が一装置に集約されており、また持ち運びも容易だからである。一方、本発明の管理装置60は、高度設定手段を備え、飛行計画を作成可能であれば、その物理的な形態は問わない。例えば図3に示す各構成を有する別々の装置を組み合わせて管理装置60としてもよい。また、本例ではマルチコプター10と管理装置60が別々の装置として構成されているが、マルチコプター10自体に管理装置60の機能を搭載した構成としてもよい。その場合、操縦者は、ノート型パソコンやタブレットコンピュータを使ってマルチコプター10内の管理装置60にアクセスすればよい。
[飛行高度設定方法]
(手順概要)
以下、本例の飛行高度設定方法について説明する。図4は、飛行計画223を作成する流れを示すフローチャートである。本例の飛行高度設定方法は、主に、仮経路設定工程S10、起伏調査工程S20、目標距離設定工程S30、および高度設定工程S40からなり、必要に応じて、これに、起伏再調査工程S60、および高度再設定工程S70が加えられる。
(手順概要)
以下、本例の飛行高度設定方法について説明する。図4は、飛行計画223を作成する流れを示すフローチャートである。本例の飛行高度設定方法は、主に、仮経路設定工程S10、起伏調査工程S20、目標距離設定工程S30、および高度設定工程S40からなり、必要に応じて、これに、起伏再調査工程S60、および高度再設定工程S70が加えられる。
(仮経路設定工程および起伏調査工程)
図5は、経路rの一部を抜き出した側面視断面図であり、仮経路設定工程S10および起伏調査工程S20を説明する模式図である。仮経路設定工程S10では、経路r上の果樹等gの高さに対して余裕をもたせた飛行高度aを指定した飛行計画223を作成する。そして、起伏調査工程S20では、この飛行計画223でマルチコプター10を自律飛行させ、経路r上の果樹等gの高さを測定する。ここで、「余裕をもたせた飛行高度a」は、操縦者の目視や地図の等高線などからおおまかに決定すればよい。本例の場合、離陸地点からの相対高度で15mを超える高さを指定すればよい。
図5は、経路rの一部を抜き出した側面視断面図であり、仮経路設定工程S10および起伏調査工程S20を説明する模式図である。仮経路設定工程S10では、経路r上の果樹等gの高さに対して余裕をもたせた飛行高度aを指定した飛行計画223を作成する。そして、起伏調査工程S20では、この飛行計画223でマルチコプター10を自律飛行させ、経路r上の果樹等gの高さを測定する。ここで、「余裕をもたせた飛行高度a」は、操縦者の目視や地図の等高線などからおおまかに決定すればよい。本例の場合、離陸地点からの相対高度で15mを超える高さを指定すればよい。
以下、上記各工程についてより具体的に説明する。操縦者はまず、管理装置60の飛行計画作成プログラム71を起動し、地図データ73上で経路rを指定する。そして、経路rにおいて果樹等gの一番高い部分を目視で確認し、経路r全体の飛行高度aを20mに設定する。
ここで、本例の飛行計画223で設定される飛行高度aは、マルチコプター10の気圧センサ33で得られる気圧高度をマルチコプター10の離陸地点からの相対高度に変換したものである。本例では説明の便宜上、1hPaの高度差を10mとして扱う。この後の起伏調査工程S20では、マルチコプター10は果樹等gの最も低い位置から離陸する。図5に示すように、果樹等gの最も低い位置の気圧値は1002.0hPaである。通常、この気圧値(1002.0hPa)は海抜100m前後の標高を示すものであるが、本例のマルチコプター10は、この気圧値(1002.0hPa)を飛行高度aの基準値(飛行高度a:0m)とする。
その後、操縦者は管理装置60から飛行計画223をマルチコプター10にアップロードし(S21)、マルチコプター10をオートパイロットで自律飛行させ、その経路r上の果樹等gをカメラ40で撮影する(S22)。
マルチコプター10が経路rの自律飛行を終えると、操縦者は、マルチコプター10からカメラ40のメモリ41内の画像およびその付加情報を管理装置60にダウンロードする(S23)。そして、管理装置60の高度マッピングプログラム72でこれらの画像およびその付加情報を解析し、地図データ73上に果樹等gの高さをマッピングする(S24)。
果樹等gのうち、起伏調査工程S20においてカメラ40で撮影され、その高さが測定される部分は、図5の太線で示した部分である。ここで、果樹等gの最も低い位置は、マルチコプター10の飛行高度aが20m(1000.0hPa)となる位置から撮影した距離d1が20mである。そのため、果樹等gの最も低い位置の高さh1は0mとして扱われる。そして、果樹等gの最も高い位置は、飛行高度20mから撮影した距離d2が5mである。そのため、果樹等gの最も高い位置の高さh2は15mとして扱われる。このようにして経路r上の果樹等gの高さが測定される。
なお、図5の直線x1-x2は、経路r上の果樹等gの高さを直線近似した線である。直線x1-x2から、果樹等gの高さはx1からx2に向かって高くなる傾向にあり、x2からx1に向かって低くなる傾向にあることが分かる。この直線x1-x2は、この後の高度設定工程S40において、経路r上の果樹等gの高さ情報を加工するときに使用される。
このように、本例の無人航空機システムSおよび飛行高度設定方法では、マルチコプター10が気圧センサ33およびカメラ40を備え、マルチコプター10の飛行高度aから対地高度を減算することで飛行経路r上の果樹等gの高さが算出できる。これにより、果樹等gの高さを容易に測定することが可能とされている。
本例では、農薬の散布作業に先立ち、マルチコプター10を果樹等gの高さの測定にも利用している。そのため、別途測量機器等を用意して果樹等gの高さを測量する必要がない。よって、本例の方法によれば、測量作業の手間やコストの問題、年月の経過による測量データの陳腐化の問題は生じない。さらに、地図等では把握することができない数m単位の小さな起伏や傾斜を現場で取得することができるため、より実際に即した飛行高度aを設定することが可能とされている。
なお、本例の仮経路設定工程S10は必須の工程ではなく、省略することもできる。その場合、起伏調査工程S20では、操縦者がマルチコプター10を手動で操縦して果樹等gの高さを取得すればよい。ただし、起伏調査工程S20の測定結果をこの後の高度設定工程S40で利用するためには、高度設定工程S40で指定する経路rの果樹等gの高さが測定されている必要がある。つまり、起伏調査工程S20では、高度設定工程S40で指定する経路rを通るように機体を飛行させる必要がある。これを手動操縦で行うためには熟練した操縦技能が求められる。また、テレメトリデータの経緯度値を手元の管理装置60で確認しながら操縦することも可能ではあるが、効率のよい方法とはいえない。
本例では、飛行高度aに余裕をもたせた飛行計画223を仮経路設定工程S10で作成し、起伏調査工程S20自体をオートパイロットで行うことにより、高度設定工程S40で指定する経路rに沿った果樹等gの高さを効率的に測定することが可能とされている。また、地図データ73にマッピングされている経緯度情報と、GPSアンテナ32が検出する経緯度値との間には誤差が生じる。起伏調査工程S20をオートパイロットで行うことにより、農薬散布作業を行う前にこの誤差の程度を把握し、調整することができる。
(目標距離設定工程)
目標距離設定工程S30では、マルチコプター10が農薬を散布するときに維持すべき果樹等gとの距離である目標距離iを指定する。本例では目標距離iを5mとする。マルチコプター10の作業目的に応じた目標距離iを操縦者が適宜指定可能であることにより、本例の無人航空機システムSおよび飛行高度設定方法を幅広い用途に柔軟に適用することが可能とされている。
目標距離設定工程S30では、マルチコプター10が農薬を散布するときに維持すべき果樹等gとの距離である目標距離iを指定する。本例では目標距離iを5mとする。マルチコプター10の作業目的に応じた目標距離iを操縦者が適宜指定可能であることにより、本例の無人航空機システムSおよび飛行高度設定方法を幅広い用途に柔軟に適用することが可能とされている。
(高度設定工程)
高度設定工程S40では、高度設定プログラム711が、地図データ73にマッピングされた果樹等gの高さに目標距離iを加えた高さを、その位置における経路rの飛行高度aとして自動設定する。これにより、好適な飛行高度aを操縦者が計算して入力する手間が省かれている。
高度設定工程S40では、高度設定プログラム711が、地図データ73にマッピングされた果樹等gの高さに目標距離iを加えた高さを、その位置における経路rの飛行高度aとして自動設定する。これにより、好適な飛行高度aを操縦者が計算して入力する手間が省かれている。
なお、本例では、仮経路設定工程S10で指定された経路rと、高度設定工程S40で指定される経路rは同一である。これら経路rが同一であることにより、起伏調査工程S20の測定範囲が、農薬散布作業において実際に必要となる範囲だけに絞り込まれている。これにより起伏調査工程S20が効率化されるとともに、高度設定工程S40による自動設定可能範囲の網羅率が高められている。
ここで、例えば地表や地物の高さが経路r上で連続的に滑らかに変化していれば、単に果樹等gの高さに目標距離iを加えたものを飛行高度aとすればよい。しかし、本例のように狭い範囲内で果樹等gの高さが大きく複雑に変化している場合、単に果樹等gの高さに目標距離iを加えただけでは、マルチコプター10の飛行高度aが不安定になるという問題がある。例えば、図5の破線で囲んだ部分g1では、果樹等gの高さが乱高下している。単に果樹等gの高さに目標距離iを加えた飛行高度aを飛行させる場合、この部分g1では下降と上昇をほぼ垂直に立て続けに行うことになる。
図6および図7は、地図データ73にマッピングされた果樹等gの高さ情報の加工例を示す模式図である。図6は、図5の一部を抜き出した部分拡大図であり、果樹等gの高さが経路rの進行方向に向かって高くなる傾向にあるときの、果樹等gの高さ情報の加工方法を説明する図である。図7は、図5の果樹等gの高さ情報を加工した後で飛行高度aを自動設定した様子を示す図である。
図6および図7の例では、ウェイポイントwaからウェイポイントwbに向かう経路rが操縦者により指定されている。なお、ここでいう「ウェイポイント」とは、経路rの中継点である。飛行計画作成プログラム71は、操縦者が地図データ73上で指定したウェイポイントをその指定順に結ぶように経路rを設定する。
図5を使って説明したように、ウェイポイントwaからウェイポイントwbに向かう方向、つまりx1からx2に向かう方向は、果樹等gの高さが高くなる傾向にある。この区間においては、マルチコプター10の飛行高度aを下げる操作は、その効果よりも弊害の方が大きいと考えられる。なぜならば、果樹等gの高さに沿ってマルチコプター10の飛行高度aを下げるとその直後に急上昇させなければならなくなり、また、果樹等gとの衝突のおそれもあるからである。
そこで、本例の高度設定プログラム711は、図6に示すように、地図データ73にマッピングされた果樹等gの高さ情報を加工する。具体的には、高度設定プログラム711は、まず、ウェイポイントwa側からウェイポイントwb側に向かって果樹等gの高さを走査する。そして、果樹等gの高さがそれ以前の果樹等gの高さよりも低くなったときには、その部分の高さを、それ以前の最大の高さに置き換える(破線g’)。この処理により、ウェイポイントwaからウェイポイントwbの果樹等gの高さ情報は、図5の太線で示される状態から、図7の太線で示される状態に加工される。そして、高度設定プログラム711は、加工後の果樹等gの高さに対して目標距離iを加算し、経路rの飛行高度aを設定する。なお、高度設定プログラム711が飛行高度aの中継点a1を設定する間隔はその用途において求められる精度に応じて適宜調節することができる。
また、図6および図7の進行方向とは逆方向、すなわち、ウェイポイントwbからウェイポイントwaに向かう経路は、図5の直線x1-x2で示されるように、果樹等gの高さが低くなる傾向にある。この区間においても、マルチコプター10の飛行高度aを下げた直後に急上昇させるという操作にはあまり意味がないと考えられる。よって、この場合も、果樹等gの高さ情報を、図7の状態にしてから目標距離iを加算することが望ましい。
以上のことから、本例の高度設定プログラム711は、操縦者が指定した各ウェイポイント間の果樹等gの高さを直線近似し、これらウェイポイント間において、果樹等gの高さが低い方から高い方に向かって図6に示す処理を行う。これにより、経路r全体における不要な高低差が省かれ、マルチコプター10の飛行動作がより安定する。
そして、高度設定工程S40を経て作成された飛行計画223の高度が操縦者からみて妥当なものであれば(S50:Y)、その飛行計画223をマルチコプター10にアップロードし、農薬散布の準備にとりかかる。
一方、起伏調査工程S20の測定精度が不十分な場合には、画像認識プログラム721、高度マッピングプログラム72、または高度設定プログラム711がアラートや警告をモニタ64に表示するようにしてもよい。同様に、急上昇や急降下の程度が所定の閾値を超える箇所がある場合には、その箇所について迂回を提案するようにしてもよい。
(起伏再調査工程および高度再設定工程)
上でも述べたように、起伏調査工程S20の測定精度によっては、一度の測定だけでは十分な精度の飛行高度aを設定することができない場合もある(S50:N)。その場合、高度設定工程S40で作成された飛行計画223を使って、果樹等gの高さを再度測定することにより、最初の測定結果よりも高精度な測定結果を得ることができる。
上でも述べたように、起伏調査工程S20の測定精度によっては、一度の測定だけでは十分な精度の飛行高度aを設定することができない場合もある(S50:N)。その場合、高度設定工程S40で作成された飛行計画223を使って、果樹等gの高さを再度測定することにより、最初の測定結果よりも高精度な測定結果を得ることができる。
起伏再調査工程S60では、高度設定工程S40で作成した飛行計画223によりマルチコプター10を自律飛行させ、飛行計画223の経路r上の果樹等gの高さを測定する。その手順は最初の起伏調査工程S20に準ずるものである。
操縦者は管理装置60から飛行計画223をマルチコプター10にアップロードし(S61)、マルチコプター10をオートパイロットで自律飛行させ、経路r上の果樹等gをカメラ40で撮影する(S62)。
マルチコプター10が経路rの自律飛行を終えると、操縦者は、マルチコプター10からカメラ40のメモリ41内の画像およびその付加情報を管理装置60にダウンロードする(S63)。そして、管理装置60の高度マッピングプログラム72でこれらの画像およびその付加情報を解析し、地図データ73上に果樹等gの高さをマッピングする(S64)。
高度再設定工程S70の手順は高度設定工程S40に準ずるものである。高度設定プログラム711は、起伏再調査工程S60で測定され、地図データ73にマッピングされた高さ情報に基づいて、経路rの飛行高度aを自動的に設定する。
そして、高度再設定工程S70を経て作成された飛行計画223の高度が操縦者からみて妥当なものであれば(S50:Y)、その飛行計画223をマルチコプター10にアップロードし、農薬散布の準備にとりかかる。この時点でも飛行高度aの精度が十分でない場合には、起伏再調査工程S60および高度再設定工程S70を再度繰り返せばよい。
このように、本例の無人航空機システムSおよび飛行高度設定方法によれば、一般的なフライトコントローラ製品では困難な、地形の起伏や傾斜面に沿った自律飛行を、効率的に実現することができる。
[他の用途への応用例]
図8は、本例の無人航空機システムSを他の用途に応用した例を示す模式図である。図8は、無人航空機システムSを使って鉄塔90に架設された送電線91のたるみに沿ってマルチコプター10を飛行させながら、送電線91を側方から撮影する作業例である。
図8は、本例の無人航空機システムSを他の用途に応用した例を示す模式図である。図8は、無人航空機システムSを使って鉄塔90に架設された送電線91のたるみに沿ってマルチコプター10を飛行させながら、送電線91を側方から撮影する作業例である。
架空電線路の送電線や配電線には、電線や鉄塔・電柱の保護を目的として、所定の弛度(たるみ)が設けられている。そのため、例えば電線の損傷を点検するために、無人航空機を電線に沿って飛行させながら、電線をその側方から撮影しようとする場合、電線のたるみに合わせて無人航空機の飛行高度を調整する必要がある。このような飛行を手動で行う場合、操縦者には高度な操縦技能が求められ、作業可能な人員の確保が問題となる。
以下、無人航空機システムSを使った送電線91の撮影手順を説明する。仮経路設定工程S10では、送電線91に沿って送電線91の真上をマルチコプター10に飛行させる飛行計画223を作成する。起伏調査工程S20では、送電線91を真上からカメラ40で撮影し、送電線91の各位置における高さを測定する。目標距離設定工程S30では目標距離iを0mに設定する。高度設定工程S40では、測定した送電線91の高さを加工せずに飛行高度aを自動設定する(送電線91の高さの測定精度が不十分なときは、起伏再調査工程S60および高度再設定工程S70を繰り返す)。そして、高度設定工程S40を経て作成された飛行計画223の経路rを、送電線91の撮影に好適な距離だけ手動で移動させる。そして、カメラ40を送電線91の方に向け、マルチコプター10を自律飛行させる。なお、自律飛行プログラム222がカメラ40のON/OFF、PTZ操作などに対応している場合には、飛行計画223でカメラ40の向きを制御してもよい。
以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更を加えることができる。例えば、本発明の飛行高度設定方法および無人航空機システムに使用可能な無人航空機はマルチコプター10には限られず、無人であることを条件として、ヘリコプターや固定翼機、さらにはVTOL機(Vertical Take-Off and Landing:垂直離着陸機)を使用することもできる。また、本発明の飛行高度設定方法および無人航空機システムの用途は農薬散布や電線撮影には限られず、地表や地物の高さに沿った飛行高度の制御が求められる用途であればあらゆる用途に適用可能である。また、本発明でいう「地表または地物」は天然物には限られず、床面、階段、または床に設置された什器など、屋内外の人工物も含まれる。
Claims (10)
- 無人航空機を飛行させ、地表または地物の高さを測定する起伏調査工程と、
前記無人航空機を自律飛行させる経路の指定を含む設定データである飛行計画の作成時に、前記起伏調査工程で測定した地表または地物の高さに基づいて該飛行計画の経路上の飛行高度を自動的に設定する高度設定工程と、
を含むことを特徴とする無人航空機の飛行高度設定方法。 - 前記起伏調査工程では、前記無人航空機に搭載された高度センサを使って取得した海抜高度または該無人航空機の離陸地点からの相対高度、および、前記無人航空機から下方に向けられた測距センサまたは撮影手段を使って取得した対地高度に基づいて、地表または地物の高さを測定することを特徴とする請求項1に記載の無人航空機の飛行高度設定方法。
- 前記無人航空機を自律飛行させる経路を、その経路上の地表または地物の高さに対して余裕をもたせた飛行高度で指定した飛行計画を作成する仮経路設定工程をさらに含み、
前記起伏調査工程では、前記仮経路設定工程で作成された前記飛行計画により前記無人航空機を自律飛行させ、該飛行計画の経路上の地表または地物の高さを測定することを特徴とする請求項1に記載の無人航空機の飛行高度設定方法。 - 前記仮経路設定工程で作成される前記飛行計画、および、前記高度設定工程で作成される前記飛行計画は、経緯度上の経路が略同一であることを特徴とする請求項3に記載の無人航空機の飛行高度設定方法。
- 前記無人航空機が維持すべき対地高度である目標距離を指定する目標距離設定工程をさらに含み、
前記高度設定工程では、前記起伏調査工程で測定した地表または地物の高さに前記目標距離を加えた高さを前記飛行計画の経路上の飛行高度として自動的に設定することを特徴とする請求項1に記載の無人航空機の飛行高度設定方法。 - 前記高度設定工程で作成した前記飛行計画により前記無人航空機を自律飛行させ、該飛行計画の経路上の地表または地物の高さを測定する起伏再調査工程と、
前記起伏再調査工程で測定した地表または地物の高さに前記目標距離を加えた高さを前記飛行計画の経路上の飛行高度として自動的に設定する高度再設定工程と、をさらに含むことを特徴とする請求項5に記載の無人航空機の飛行高度設定方法。 - 前記高度設定工程で作成される前記飛行計画には、傾斜面に沿った経路が指定されることを特徴とする請求項1に記載の無人航空機の飛行高度設定方法。
- 無人航空機と、
前記無人航空機を自律飛行させる経路の指定を含む設定データである飛行計画を作成する管理装置と、を備え、
前記無人航空機または前記管理装置は、
前記飛行計画に基づいて前記無人航空機を自律飛行させる自律飛行制御手段と、
前記無人航空機を飛行させた経路の地表または地物の高さを算出する起伏取得手段と、を有し、
前記管理装置は、前記飛行計画の作成時に、前記起伏取得手段で算出した地表または地物の高さに基づいて、前記飛行計画の経路上の飛行高度を自動的に設定する高度設定手段を有することを特徴とする無人航空機システム。 - 前記無人航空機は、
海抜高度または離陸地点からの相対高度を取得する高度センサと、
地表または地物との距離を測定可能な情報を取得する距離情報取得手段と、を有し、
前記無人航空機または前記管理装置は、前記距離情報取得手段で取得した情報から前記無人航空機の対地高度を算出する距離測定手段を有し、
前記起伏取得手段は、前記高度センサで取得した海抜高度または離陸地点からの相対高度と、前記距離測定手段で取得した対地高度とに基づいて、地表または地物の高さを算出することを特徴とする請求項8に記載の無人航空機システム。 - 前記管理装置は、前記無人航空機が維持すべき対地高度である目標距離を記憶する目標距離保持部を有し、
前記高度設定手段は、地表または地物の高さに前記目標距離を加えた高さを前記飛行計画の経路上の飛行高度として自動的に設定することを特徴とする請求項8に記載の無人航空機システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/499,787 US20200033890A1 (en) | 2017-07-10 | 2018-07-09 | Method for setting flight altitude of unmanned aerial vehicle and unmanned aerial vehicle system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017134686A JP6555786B2 (ja) | 2017-07-10 | 2017-07-10 | 無人航空機の飛行高度設定方法および無人航空機システム |
JP2017-134686 | 2017-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019013151A1 true WO2019013151A1 (ja) | 2019-01-17 |
Family
ID=65002011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/025826 WO2019013151A1 (ja) | 2017-07-10 | 2018-07-09 | 無人航空機の飛行高度設定方法および無人航空機システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200033890A1 (ja) |
JP (1) | JP6555786B2 (ja) |
WO (1) | WO2019013151A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111258333A (zh) * | 2020-02-12 | 2020-06-09 | 上海大学 | 大长径比掠海飞行器复杂海况下的定高路径跟踪方法 |
JP2022066942A (ja) * | 2020-10-19 | 2022-05-02 | ヤマハ発動機株式会社 | 計測システムおよび計測方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6965190B2 (ja) * | 2018-03-13 | 2021-11-10 | アルパイン株式会社 | 飛行プラン変更方法及び飛行プラン変更装置 |
CN108846325A (zh) * | 2018-05-28 | 2018-11-20 | 广州极飞科技有限公司 | 目标区域作业的规划方法、装置、存储介质及处理器 |
US11074447B1 (en) * | 2018-07-13 | 2021-07-27 | Hana Resources, Inc. | Land analysis system using drone-captured data |
US11493939B1 (en) | 2019-03-15 | 2022-11-08 | Alarm.Com Incorporated | Premise mapping with security camera drone |
US11127170B1 (en) * | 2019-03-15 | 2021-09-21 | Alarm.Com Incorporated | Multi-level premise mapping with security camera drone |
JP7411919B2 (ja) * | 2019-07-08 | 2024-01-12 | パナソニックIpマネジメント株式会社 | 情報処理装置及び情報処理方法 |
WO2021020570A1 (ja) * | 2019-07-31 | 2021-02-04 | ヤマハ発動機株式会社 | 森林計測を行う方法、森林計測システムおよびコンピュータプログラム |
JP7288632B2 (ja) * | 2019-08-06 | 2023-06-08 | ヤンマーパワーテクノロジー株式会社 | 生育値算出方法、および生育値算出システム |
US11904871B2 (en) * | 2019-10-30 | 2024-02-20 | Deere & Company | Predictive machine control |
WO2021181578A1 (ja) * | 2020-03-11 | 2021-09-16 | 日本電気株式会社 | 表示制御装置、表示制御方法、及びプログラム |
US20230093288A1 (en) * | 2020-03-11 | 2023-03-23 | Nec Corporation | Route setting apparatus, route setting method, and non-transitory computer-readable medium |
JP6902763B1 (ja) * | 2020-06-16 | 2021-07-14 | 九州電力株式会社 | ドローン飛行計画作成システム及びプログラム |
JP6940670B1 (ja) * | 2020-08-26 | 2021-09-29 | 株式会社エネルギア・コミュニケーションズ | 無人飛行体の飛行経路作成方法及びシステム |
CN112748740A (zh) * | 2020-12-25 | 2021-05-04 | 深圳供电局有限公司 | 多旋翼无人机自动航线规划方法及其系统、设备、介质 |
KR102662332B1 (ko) * | 2022-01-14 | 2024-05-08 | 한국전력공사 | 문제수목 확인드론 및 방법 |
CN115443845B (zh) * | 2022-09-29 | 2023-09-01 | 贵州师范学院 | 基于无人机的茶园茶树病变与长势监测方法 |
WO2024142250A1 (ja) * | 2022-12-27 | 2024-07-04 | 株式会社クボタ | センシングシステムおよび無人航空機 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012140101A (ja) * | 2011-01-04 | 2012-07-26 | Topcon Corp | 飛行体の飛行制御システム |
JP2014139538A (ja) * | 2013-01-21 | 2014-07-31 | Mitsubishi Heavy Ind Ltd | 地形情報取得装置、地形情報取得システム、地形情報取得方法及びプログラム |
JP2015207149A (ja) * | 2014-04-21 | 2015-11-19 | 薫 渡部 | 監視システム及び監視方法 |
-
2017
- 2017-07-10 JP JP2017134686A patent/JP6555786B2/ja active Active
-
2018
- 2018-07-09 WO PCT/JP2018/025826 patent/WO2019013151A1/ja active Application Filing
- 2018-07-09 US US16/499,787 patent/US20200033890A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012140101A (ja) * | 2011-01-04 | 2012-07-26 | Topcon Corp | 飛行体の飛行制御システム |
JP2014139538A (ja) * | 2013-01-21 | 2014-07-31 | Mitsubishi Heavy Ind Ltd | 地形情報取得装置、地形情報取得システム、地形情報取得方法及びプログラム |
JP2015207149A (ja) * | 2014-04-21 | 2015-11-19 | 薫 渡部 | 監視システム及び監視方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111258333A (zh) * | 2020-02-12 | 2020-06-09 | 上海大学 | 大长径比掠海飞行器复杂海况下的定高路径跟踪方法 |
CN111258333B (zh) * | 2020-02-12 | 2021-03-23 | 上海大学 | 大长径比掠海飞行器复杂海况下的定高路径跟踪方法 |
JP2022066942A (ja) * | 2020-10-19 | 2022-05-02 | ヤマハ発動機株式会社 | 計測システムおよび計測方法 |
JP7200191B2 (ja) | 2020-10-19 | 2023-01-06 | ヤマハ発動機株式会社 | 計測システムおよび計測方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6555786B2 (ja) | 2019-08-07 |
JP2019015670A (ja) | 2019-01-31 |
US20200033890A1 (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555786B2 (ja) | 無人航空機の飛行高度設定方法および無人航空機システム | |
US11687098B2 (en) | Vehicle altitude restrictions and control | |
US11810465B2 (en) | Flight control for flight-restricted regions | |
US10580230B2 (en) | System and method for data recording and analysis | |
KR101494654B1 (ko) | 무인항공기 착륙유도 방법 및 장치와 착륙제어 방법 및 장치 | |
JP6752481B2 (ja) | ドローン、その制御方法、および、プログラム | |
JP6390013B2 (ja) | 小型無人飛行機の制御方法 | |
US20170153122A1 (en) | System and method for automatic sensor calibration | |
US20180267561A1 (en) | Autonomous control of unmanned aircraft | |
JP7055324B2 (ja) | 表示装置 | |
WO2021237462A1 (zh) | 无人飞行器的限高方法、装置、无人飞行器及存储介质 | |
US10013611B2 (en) | System and method for preparing an aerial hydrological-assay for golf courses | |
US20220201922A1 (en) | Industrial machinery system, industrial machine, control apparatus, control method for industrial machinery system, and control program for industrial machinery system | |
JP7031997B2 (ja) | 飛行体システム、飛行体、位置測定方法、プログラム | |
KR101701905B1 (ko) | 무인 항공기를 이용한 작업 차량 운행 관리 시스템 | |
JP2024152222A (ja) | 無人航空機、飛行制御システム、飛行制御方法、プログラム、記録媒体、及び、飛行制御システムを生成する方法 | |
Sethuramasamyraja et al. | Development of Unmanned Aerial Vehicle Systems for Terrain Mapping and Geospatial Data Management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18831786 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18831786 Country of ref document: EP Kind code of ref document: A1 |