WO2019008785A1 - Rotary tool and joining method - Google Patents

Rotary tool and joining method Download PDF

Info

Publication number
WO2019008785A1
WO2019008785A1 PCT/JP2017/032146 JP2017032146W WO2019008785A1 WO 2019008785 A1 WO2019008785 A1 WO 2019008785A1 JP 2017032146 W JP2017032146 W JP 2017032146W WO 2019008785 A1 WO2019008785 A1 WO 2019008785A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
rotary tool
taper angle
proximal end
height
Prior art date
Application number
PCT/JP2017/032146
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
宏介 山中
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201780085197.5A priority Critical patent/CN110234459A/en
Publication of WO2019008785A1 publication Critical patent/WO2019008785A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a rotating tool and a joining method for friction stirring.
  • a rotating tool used for friction stir welding one having a shoulder and a stirring pin hanging down from the shoulder is known.
  • the said rotation tool performs friction stir welding in the state which pressed in the lower end surface of the shoulder part in the metal member.
  • the plastic fluid material can be pressed to suppress the generation of burrs.
  • the height position of the junction changes, a defect is likely to occur, and there is a problem that the concave groove becomes large and a lot of burrs occur.
  • a friction stir welding method which is characterized by including a main welding step of performing friction stir welding in a set state (Patent Document 1).
  • Patent Document 1 a spiral groove is formed on the outer peripheral surface of the stirring pin, and friction stir welding is performed in a state where the proximal end is exposed while only the stirring pin is in contact with the workpiece. While the occurrence of defects can be suppressed even if the height position of the bonding changes, the load on the friction stir device can be reduced.
  • Patent Document 2 describes a rotary tool provided with a shoulder and a stirring pin hanging from the shoulder. Tapered surfaces are formed on the outer peripheral surface of the shoulder portion and the stirring pin, respectively. A spiral groove in plan view is formed on the tapered surface of the shoulder portion. The cross-sectional shape of the groove is semicircular. By providing the tapered surface, stable bonding can be performed even if the thickness of the metal member or the height position of bonding changes. In addition, when the plastic flow material enters the groove, the flow of the plastic flow material can be controlled to form a suitable plasticization region.
  • the present invention is a rotary tool for friction stirring provided with a proximal end pin and a distal end side pin, wherein the taper angle of the proximal end pin is the taper angle of the distal side pin It is characterized in that a step-like stepped portion is formed on the outer peripheral surface of the proximal end pin.
  • the present invention is a joining method of friction stir welding a butt portion formed by butting end faces of a pair of metal members using a rotary tool, wherein the rotary tool includes a proximal end pin, a distal end pin and The taper angle of the proximal pin is greater than the taper angle of the distal pin, and a stepped portion is formed on the outer peripheral surface of the proximal pin, It is characterized in that friction stirring is performed while holding the plastic fluid material at the bottom of the step of the part.
  • the concave groove on the joint surface can be made smaller and the bulge formed on the side of the concave groove
  • the output can be eliminated or reduced. Since the step-like stepped portion is shallow and the outlet is wide, the plastic flow material does not easily adhere to the outer peripheral surface of the proximal end pin even if the proximal end pin presses the metal member. As a result, the bonding surface roughness can be reduced, and the bonding quality can be suitably stabilized. In addition, the distal end side pin can be easily inserted to a deep position.
  • the taper angle of the proximal end pin be 135 to 160 °.
  • the height of the side surface of the stepped portion is preferably 0.1 to 0.4 mm.
  • an angle formed by the bottom surface of the stepped portion and the side surface of the stepped portion be 85 to 120 °. According to this bonding method, the concave grooves on the surface of the metal member can be made smaller, and the bonding surface roughness can be made smaller.
  • the concave grooves on the surface of the metal member can be reduced, and the bonding surface roughness can be reduced.
  • FIG. 1 A side view showing a rotation tool concerning an embodiment of the present invention. It is an expanded sectional view of rotation tool. It is a perspective view showing the bonding method concerning the embodiment of the present invention. It is sectional drawing which shows the bonding method which concerns on embodiment of this invention. It is a conceptual diagram which shows the conventional shoulderless rotation tool. It is a conceptual diagram which shows the conventional rotation tool. It is sectional drawing which shows the 1st modification of a rotation tool. It is sectional drawing which shows the 2nd modification of a rotation tool. It is sectional drawing which shows the 3rd modification of a rotation tool.
  • Example 5 is a table showing conditions of Example 1; 5 is a graph showing the results of Example 1; 7 is a table showing conditions of Example 2; It is a side view which shows the rotation tool of the comparative example of Example 2.
  • FIG. 7 is a graph showing the results of Example 2; 7 is a table showing conditions of Example 3; 21 is a graph showing the results of Example 3-1. 21 is a graph showing the results of Example 3-2. It is a graph which shows the result of Example 3-3.
  • the rotary tool 1 is a tool used for friction stir welding.
  • the rotary tool 1 is formed of, for example, a tool steel.
  • the rotary tool 1 mainly includes a base shaft portion 2, a proximal end pin 3 and a distal end pin 4.
  • the base shaft portion 2 has a cylindrical shape and is a portion connected to the main shaft of the friction stir device.
  • the rotation axis of the rotation tool 1 may be inclined with respect to the vertical direction, but in the present embodiment, it coincides with the vertical direction. Also, a plane perpendicular to the vertical direction is defined as a horizontal plane.
  • the proximal end pin 3 is continuous with the basic shaft 2 and is tapered toward the tip.
  • the proximal pin 3 has a truncated cone shape.
  • the taper angle A of the proximal end pin 3 may be set as appropriate, but is, for example, 135 to 160 °. When the taper angle A is less than 135 ° or more than 160 °, the bonding surface roughness after friction stirring becomes large.
  • the taper angle A is larger than the taper angle B of the tip side pin 4 described later.
  • a step-like stepped portion 10 is formed over the entire height direction.
  • the stepped portion 10 is formed in a spiral shape clockwise or counterclockwise. That is, the step portion 10 has a spiral shape in plan view and a step shape in side view. In the present embodiment, in order to rotate the rotation tool to the right, the step portion 10 is set counterclockwise from the base end side toward the tip end side.
  • the stepped portion 10 is configured of a stepped bottom surface 10 a and a stepped side surface 10 b.
  • the distance X1 (horizontal distance) between the apexes 10c and 10c of the adjacent step portions 10 is appropriately set in accordance with the step angle C described later and the height Y1 of the step side surface 10b.
  • the height Y1 of the stepped side surface 10b may be set as appropriate, but is set to, for example, 0.1 to 0.4 mm. Bonding surface roughness will become large as height Y1 is less than 0.1 mm. On the other hand, when the height Y1 exceeds 0.4 mm, the bonding surface roughness tends to increase, and the number of effective stepped portions (the number of stepped portions 10 in contact with the metal members to be joined) also decreases.
  • the step angle C formed between the step bottom surface 10 a and the step side surface 10 b may be set as appropriate, but is set, for example, at 85 to 120 °.
  • the stepped bottom surface 10a is parallel to the horizontal surface in the present embodiment.
  • the bottom surface 10a of the step may be inclined within a range of -5 ° to 15 ° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus downward with respect to horizontal plane, plus with respect to horizontal plane Above).
  • the distance X1, the height Y1 of the side surface 10b of the step, the step angle C, and the angle of the bottom surface 10a of the step with respect to the horizontal surface do not stay and adhere to the plastic fluid material inside the step 10 It sets suitably so that it may be able to press down a plastic fluid material with the level difference bottom face 10a, and it may make joining surface roughness small, while it comes off.
  • the distal side pin 4 is formed continuously to the proximal side pin 3.
  • the distal pin 4 has a truncated cone shape.
  • the tip of the tip side pin 4 is flat.
  • the taper angle B of the distal end side pin 4 is smaller than the taper angle of the proximal end side pin 3.
  • a spiral groove 11 is engraved on the outer peripheral surface of the distal end side pin 4.
  • the spiral groove 11 may be either clockwise or counterclockwise, but in the present embodiment, in order to rotate the rotary tool 1 clockwise, the spiral groove 11 is engraved counterclockwise from the proximal end toward the distal end.
  • the spiral groove 11 is composed of a spiral bottom surface 11 a and a spiral side surface 11 b.
  • the distance (horizontal distance) between the apexes 11 c and 11 c of the adjacent spiral grooves 11 is taken as a length X2.
  • the height of the spiral side surface 11b is taken as a height Y2.
  • the spiral angle D formed by the spiral bottom surface 11a and the spiral side surface 11b is, for example, 45 to 90 degrees.
  • the spiral groove 11 has a role of raising the frictional heat by coming into contact with the joined metal member and guiding the plastic flow material to the tip side.
  • a butt step and a friction and stirring step are performed.
  • the butting step is, as shown in FIG. 3, a step of butting the end faces 20a and 20a of the metal members 20 and 20 together.
  • the front and back surfaces of the metal members 20, 20 are flush.
  • the friction stirring step is a step of friction stir welding the butt portion J1 using the rotary tool 1.
  • the rotary tool 1 rotated to the right is inserted into the butt joint portion J1, and the joint portion J1 is moved relative to each other so as to trace it.
  • a plasticizing region W is formed on the movement trajectory of the rotary tool 1.
  • friction stir welding is performed while pressing the surfaces 20 b and 20 b of the metal members 20 and 20 on the outer peripheral surface of the proximal end pin 3 of the rotary tool 1.
  • the insertion depth of the rotary tool 1 is set such that at least a portion of the proximal pin 3 contacts the surface 20 b of the metal member 20. In the present embodiment, the insertion depth is set such that the central portion in the height direction of the outer peripheral surface of the proximal end pin 3 contacts the surface 20 b of the metal member 20.
  • the shoulder portion does not press the surface of the metal member 110 to be joined (the surface of the metal member to be joined and the surface of the plasticized region)
  • the surface roughness of the bonding surface becomes large as the concave groove formed by
  • a bulging portion (a portion where the surface of the metal member to be joined expands compared to before bonding) is formed on the side of the recessed groove.
  • the taper angle ⁇ of the rotation tool 101 is larger than the taper angle ⁇ of the shoulderless rotation tool 100 as in the rotation tool 101 of FIG. 6, the surface of the joined metal member 110 is compared with the shoulderless rotation tool 100. Since it can be pressed down, the recessed groove becomes smaller and the bulging portion also becomes smaller. However, since the downward plastic flow is strong, a kissing bond is likely to be formed in the lower part of the plasticization region.
  • the rotary tool 1 of the present embodiment is configured to include the proximal end pin 3 and the distal end side pin 4 whose taper angle is smaller than the taper angle A of the proximal end pin 3.
  • the rotary tool 1 can be easily inserted into the metal members 20, 20.
  • the taper angle B of the distal end side pin 4 is small, the rotary tool 1 can be easily inserted to the deep position of the metal members 20, 20.
  • the taper angle B of the tip end side pin 4 is small, it is possible to suppress the downward plastic flow as compared with the rotary tool 101. For this reason, it can prevent that a kissing bond is formed in the lower part of the plasticization area
  • region W region W.
  • the plastic fluid material can be pressed by the outer peripheral surface of the proximal end pin 3, it is possible to reduce the size of the recessed groove formed on the joining surface and eliminate the bulging portion formed on the side of the recessed groove. It can be made smaller or smaller.
  • the step-like stepped portion 10 is shallow and the outlet is wide, the plastic fluid material is easily released to the outside of the stepped portion 10 while the plastic flow material is held by the stepped bottom surface 10 a. Therefore, even if the plastic flow material is pressed by the proximal end pin 3, the plastic flow material does not easily adhere to the outer peripheral surface of the proximal end pin 3. Therefore, while being able to make joint surface roughness small, joint quality can be stabilized suitably.
  • FIG. 7 is a side view showing a first modified example of the rotary tool of the present invention.
  • the step angle C between the step bottom surface 10a of the step portion 10 and the step side surface 10b is 85 °.
  • the step bottom surface 10a is parallel to the horizontal plane.
  • the bottom surface 10a of the step is parallel to the horizontal plane, and the step angle C may be an acute angle in a range in which the plastic flow material stays in the step portion 10 and does not adhere during friction stirring.
  • FIG. 8 is a side view showing a second modification of the rotary tool of the present invention.
  • the step angle C of the step portion 10 is 115 °.
  • the bottom surface 10a of the step is parallel to the horizontal plane.
  • the step bottom surface 10a may be parallel to the horizontal plane, and the step angle C may be an obtuse angle in the range in which the step portion 10 functions.
  • FIG. 9 is a side view showing a third modification of the rotary tool of the present invention.
  • the bottom surface 10a of the step is inclined at an angle of 10.degree. Upward with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction.
  • the stepped side surface 10b is parallel to the vertical surface.
  • the step bottom surface 10a may be formed to be inclined upward from the horizontal surface in the outer peripheral direction from the rotation axis of the tool within a range where the plastic fluid material can be held down during the friction stirring. According to the first to third modified examples of the rotating tool described above, the same effects as those of the present embodiment can be obtained.
  • Examples 1, 2 and 3 were performed to measure the joint surface roughness after the friction stir process.
  • Example 1 the rotary tool 1 is inserted from the surface of a single metal member (aluminum alloy: A5052-H34), and is moved relative to a predetermined distance to cause surface roughness along a plasticized area generated after frictional stirring.
  • Rz ( ⁇ m) was measured with a surface roughness meter (body: Surfcom 1400D, controller: KA9801CF).
  • the width of the metal member was 100 mm, the length was 300 mm, and the plate thickness was 2 mm.
  • the rotation speed of the rotary tool 1 was 5000 rpm, and the bonding speed was 500 mm / min.
  • the insertion depth of the rotary tool 1 (the distance from the tip of the rotary tool 1 to the surface of the metal member) was 1.8 mm.
  • the step angle C of the step portion 10 was 90 °.
  • the taper angle B of the tip side pin 4 was 75 °.
  • the distance X2 of the spiral groove 11 (see FIG. 2) of the tip end pin 4 is 0.18 mm, and the height Y2 is 0.22 mm.
  • the length of the tip side pin 4 is 1 mm, and the diameter of the tip is 2 mm (the above is the basic condition).
  • the taper angle A of the proximal end pin 3 of the rotary tool 1 is 105 °, 120 °, 135 °, 142.5 °, 150 °, 157.5 °, 165 °
  • the distance X1 is set to be substantially constant, and the height Y1 of the stepped side surface 10b of the stepped portion 10 at this time is as shown in FIG. That is, as the taper angle A increases, the height Y1 of the stepped side surface 10b decreases.
  • the surface bonding roughness becomes smaller when the taper angle A of the proximal end pin 3 is 135 ° to 160 °. It was found that when the taper angle A was less than 135 °, the bonding surface roughness tended to increase. If the taper angle A is less than 135 °, the form close to a shoulderless tool is obtained, so the action to hold down the plastic flow material is lost, and it is considered that the joint surface roughness becomes large. On the other hand, when the taper angle A exceeds 160 °, the height Y1 decreases and the step of the step portion 10 decreases. That is, it is considered that the function of the step portion 10 is reduced and the bonding surface roughness is increased.
  • Example 2 In the second embodiment, as shown in FIG. 12, the taper angle A is fixed at 150 °, and the height Y1 of the step side surface 10b is 0.05 mm, 0.10 mm, 0.18 mm, 0.25 mm, 0.33 mm, The correlation between the height Y1 of the stepped side surface 10b and the junction surface roughness was examined while changing the height to 0.40 mm.
  • the conditions other than the taper angle A and the height Y1 are the same as the basic conditions of the first embodiment.
  • FIG. 13 friction stirring was performed using the rotating tool 200 of the comparative example shown to patent document 2.
  • FIG. The rotation tool 200 of the comparative example includes a proximal end pin 203 and a distal end side pin 204.
  • the taper angle of the proximal end pin 203 is larger than the taper angle of the distal end pin 204.
  • a spiral groove 13 is formed on the outer peripheral surface of the proximal end pin 203.
  • the cross-sectional shape of the groove 13 is substantially semicircular.
  • the radius of curvature of the groove 13 was 0.5 mm.
  • the depth of the grooves 13 was 0.3 mm, and the distance between the adjacent grooves 13 and 13 was 1.2 mm.
  • the spiral groove 11 is formed on the outer peripheral surface of the distal end side pin 204.
  • the bonding surface roughness decreases.
  • the bonding surface roughness was 55 ⁇ m. It was found that when the height Y1 was 0.05 mm, the bonding surface roughness was significantly increased.
  • the height Y1 is less than 0.10 mm, it is considered that the plastic flow amount based on the stepped portion 10 is reduced and the joint surface roughness is increased since the state approaches no step.
  • the bonding surface roughness tends to increase.
  • the distance X1 of the step bottom surface 10a inevitably increases.
  • the taper angle A exceeds 150 °
  • the increase of the distance X1 becomes significant.
  • Step bottom surface 10a When the distance X1 increases, the number of effective steps (the number of steps in contact with the joined metal member) at the same insertion depth decreases, so the plastic flow amount based on the step 10 decreases and the junction surface roughness Is considered to be larger.
  • the pressing force of the rotary tool 1 with respect to a to-be-joined metal member was changed with 2600N, 2800N, and 3000N and implemented, the difference in pressing force was hardly seen.
  • Example 3 In Example 3, as shown in FIG. 15, the step angle C was changed, and the correlation between the step angle C and the junction surface roughness was examined.
  • the taper angle A was 150 °.
  • the step angle C was changed to 60 °, 75 °, 85 °, 90 °, 105 °, 120 °, and 135 °.
  • Example 3-1 The case where the height Y1 of the stepped side surface 10b is 0.1 mm is referred to as Example 3-1, and the case where the height Y1 is 0.18 mm is referred to as Example 3-2, and the height Y1 is 0.25 mm.
  • Example 3-3 Other conditions are the same as the basic conditions of the first embodiment.
  • the step angle C was set to 85 ° to 120 °, the bonding surface roughness decreased.
  • the step angle C is less than 85 °, the plastic flow material easily accumulates inside the step portion 10, the plastic flow material adheres inside the step portion 10, and the step portion 10 does not function.
  • the plastic fluid material adheres to the step portion 10 the plastic fluid material and the metal member to be joined may be damaged.
  • the step angle C exceeds 120 °, the plastic fluid material can not be held down, so the joint surface roughness is considered to be large.
  • the bonding surface roughness of Example 3-3 was the smallest. That is, it has been found that the junction surface roughness tends to decrease as the height Y1 increases as the height Y1 of the stepped side surface 10b is at least in the range of 0.1 to 0.25 mm.
  • Reference Signs List 1 rotation tool 2 basic shaft portion 3 proximal end pin 4 distal end pin 10 stepped portion 10a stepped bottom surface 10b stepped side surface 11 spiral groove A taper angle (of proximal end pin) B Taper angle C Step angle D Spiral groove angle J1 Abutment point X1 distance (for proximal pin) X2 distance Y1 height (at the side of the step) Y2 height

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention addresses the problem of providing a rotary tool (1) and a joining method which are capable of reducing the size of a recess groove in the surface of a metal member (20) and decreasing the surface roughness of a joint surface. This rotary tool (1) for friction stirring provided with a base end-side pin (3) and a tip-side pin (4) is characterized in that: the taper angle of the base end-side pin (3) is greater than the taper angle of the tip-side pin (4); and a stair-like stepped part (10) is formed on the outer peripheral surface of the base end-side pin (3). The friction stirring is performed while pressing the surfaces of the metal members (20, 20) by means of the base end-side pin (3).

Description

回転ツール及び接合方法Rotating tool and joining method
 本発明は、摩擦攪拌用の回転ツール及び接合方法に関する。 The present invention relates to a rotating tool and a joining method for friction stirring.
 摩擦攪拌接合に用いられる回転ツールとして、ショルダ部と、ショルダ部から垂下する攪拌ピンとを備えたものが知られている。当該回転ツールは、ショルダ部の下端面を金属部材に押し込んだ状態で摩擦攪拌接合を行うというものである。ショルダ部を金属部材に押し込むことにより塑性流動材を押えてバリの発生を抑制することができる。しかし、接合の高さ位置が変化すると欠陥が発生しやすく、凹溝が大きくなるとともにバリが多く発生するという問題がある。 As a rotating tool used for friction stir welding, one having a shoulder and a stirring pin hanging down from the shoulder is known. The said rotation tool performs friction stir welding in the state which pressed in the lower end surface of the shoulder part in the metal member. By pressing the shoulder portion into the metal member, the plastic fluid material can be pressed to suppress the generation of burrs. However, if the height position of the junction changes, a defect is likely to occur, and there is a problem that the concave groove becomes large and a lot of burrs occur.
 一方、攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、金属部材同士の突合部に回転した攪拌ピンを挿入し、攪拌ピンのみを金属部材に接触させた状態で摩擦攪拌接合を行う本接合工程を含むことを特徴とする摩擦攪拌接合方法が知られている(特許文献1)。当該従来技術によれば、攪拌ピンの外周面には螺旋溝が刻設されており、攪拌ピンのみを被接合部材に接触させつつ基端部を露出させた状態で摩擦攪拌接合を行うため、接合の高さ位置が変化しても欠陥の発生を抑制することができるとともに、摩擦攪拌装置への負荷も軽減することができる。しかし、ショルダ部で塑性流動材を押えないため、金属部材の表面の凹溝が大きくなるとともに、接合表面粗さが大きくなるという問題がある。また、凹溝の脇に膨出部(接合前に比べて金属部材の表面が膨らむ部位)が形成されるという問題がある。 On the other hand, in a friction stir welding method in which two metal members are joined using a rotary tool equipped with a stirring pin, the rotated stirring pin is inserted into the abutment portion of the metal members and only the stirring pin is in contact with the metal member A friction stir welding method is known which is characterized by including a main welding step of performing friction stir welding in a set state (Patent Document 1). According to the related art, a spiral groove is formed on the outer peripheral surface of the stirring pin, and friction stir welding is performed in a state where the proximal end is exposed while only the stirring pin is in contact with the workpiece. While the occurrence of defects can be suppressed even if the height position of the bonding changes, the load on the friction stir device can be reduced. However, since the plastic flow material is not pressed at the shoulder portion, there is a problem that the concave groove on the surface of the metal member becomes large and the joint surface roughness becomes large. In addition, there is a problem that a bulging portion (a portion where the surface of the metal member is bulging compared to that before bonding) is formed on the side of the concave groove.
 他方、特許文献2には、ショルダ部と、ショルダ部から垂下する攪拌ピンとを備えた回転ツールが記載されている。ショルダ部及び攪拌ピンの外周面にはそれぞれテーパー面が形成されている。ショルダ部のテーパー面には、平面視渦巻き状の溝が形成されている。当該溝の断面形状は半円状になっている。テーパー面を設けることにより、金属部材の厚さや接合の高さ位置が変化しても安定して接合することができる。また、当該溝に塑性流動材が入り込むことにより、塑性流動材の流れを制御して好適な塑性化領域を形成できるというものである。 On the other hand, Patent Document 2 describes a rotary tool provided with a shoulder and a stirring pin hanging from the shoulder. Tapered surfaces are formed on the outer peripheral surface of the shoulder portion and the stirring pin, respectively. A spiral groove in plan view is formed on the tapered surface of the shoulder portion. The cross-sectional shape of the groove is semicircular. By providing the tapered surface, stable bonding can be performed even if the thickness of the metal member or the height position of bonding changes. In addition, when the plastic flow material enters the groove, the flow of the plastic flow material can be controlled to form a suitable plasticization region.
特開2013-39613号公報JP, 2013-39613, A 特許第4210148号公報Patent No. 4210148
 しかし、特許文献2の従来技術であると、塑性流動材がテーパー面の溝の内部に入り込んでしまうため、溝が機能しなくなるという問題がある。また、当該溝に塑性流動材が入り込むと、塑性流動材が溝に付着した状態で摩擦攪拌されるため、被接合金属部材と付着物とが擦れ合って接合品質が低下するという問題がある。さらに、被接合金属部材の表面が粗くなり、バリが多くなるとともに、金属部材の表面の凹溝も大きくなるという問題がある。 However, in the prior art of Patent Document 2, since the plastic fluid material intrudes into the inside of the groove of the tapered surface, there is a problem that the groove does not function. In addition, when the plastic flow material enters the groove, the plastic flow material adheres to the groove and is frictionally stirred, so there is a problem that the joined metal member and the deposit rub against each other to deteriorate the bonding quality. Furthermore, there is a problem that the surface of the metal member to be joined becomes rough and burrs increase, and the concave groove on the surface of the metal member also increases.
 このような観点から、本発明は、金属部材の表面の凹溝を小さくすることができるとともに、接合表面粗さを小さくすることができる回転ツール及び接合方法を提供することを課題とする。 From such a point of view, it is an object of the present invention to provide a rotary tool and a bonding method capable of reducing the concave groove on the surface of the metal member and reducing the bonding surface roughness.
 このような課題を解決するために本発明は、基端側ピンと、先端側ピンとを備える摩擦攪拌用の回転ツールであって、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されていることを特徴とする。 In order to solve such problems, the present invention is a rotary tool for friction stirring provided with a proximal end pin and a distal end side pin, wherein the taper angle of the proximal end pin is the taper angle of the distal side pin It is characterized in that a step-like stepped portion is formed on the outer peripheral surface of the proximal end pin.
 また、本発明は、一対の金属部材の端面同士を突き合わせて形成された突合せ部を回転ツールを用いて摩擦攪拌接合する接合方法であって、前記回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、前記段差部の段差底面で塑性流動材を押えながら摩擦攪拌を行うことを特徴とする。 Further, the present invention is a joining method of friction stir welding a butt portion formed by butting end faces of a pair of metal members using a rotary tool, wherein the rotary tool includes a proximal end pin, a distal end pin and The taper angle of the proximal pin is greater than the taper angle of the distal pin, and a stepped portion is formed on the outer peripheral surface of the proximal pin, It is characterized in that friction stirring is performed while holding the plastic fluid material at the bottom of the step of the part.
 かかる接合方法によれば、テーパー角度の大きい基端側ピンの外周面で金属部材を押えることができるため、接合表面の凹溝を小さくすることができるとともに、凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。階段状の段差部は浅く、かつ、出口が広いため、基端側ピンで金属部材を押えても基端側ピンの外周面に塑性流動材が付着し難い。このため、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。また、先端側ピンを備えることにより深い位置まで容易に挿入することができる。 According to this joining method, since the metal member can be pressed by the outer peripheral surface of the proximal end side pin with a large taper angle, the concave groove on the joint surface can be made smaller and the bulge formed on the side of the concave groove The output can be eliminated or reduced. Since the step-like stepped portion is shallow and the outlet is wide, the plastic flow material does not easily adhere to the outer peripheral surface of the proximal end pin even if the proximal end pin presses the metal member. As a result, the bonding surface roughness can be reduced, and the bonding quality can be suitably stabilized. In addition, the distal end side pin can be easily inserted to a deep position.
 また、前記基端側ピンのテーパー角度は135~160°になっていることが好ましい。また、前記段差部の段差側面の高さは0.1~0.4mmになっていることが好ましい。また、前記段差部の段差底面と段差側面とでなす角度は85~120°になっていることが好ましい。かかる接合方法によれば、金属部材の表面の凹溝をより小さくすることができるとともに、接合表面粗さをより小さくすることができる。 In addition, it is preferable that the taper angle of the proximal end pin be 135 to 160 °. Further, the height of the side surface of the stepped portion is preferably 0.1 to 0.4 mm. Further, it is preferable that an angle formed by the bottom surface of the stepped portion and the side surface of the stepped portion be 85 to 120 °. According to this bonding method, the concave grooves on the surface of the metal member can be made smaller, and the bonding surface roughness can be made smaller.
 本発明に係る接合方法によれば、金属部材の表面の凹溝を小さくすることができるとともに、接合表面粗さを小さくすることができる。 According to the bonding method of the present invention, the concave grooves on the surface of the metal member can be reduced, and the bonding surface roughness can be reduced.
本発明の実施形態に係る回転ツールを示す側面図である。It is a side view showing a rotation tool concerning an embodiment of the present invention. 回転ツールの拡大断面図である。It is an expanded sectional view of rotation tool. 本発明の実施形態に係る接合方法を示す斜視図である。It is a perspective view showing the bonding method concerning the embodiment of the present invention. 本発明の実施形態に係る接合方法を示す断面図である。It is sectional drawing which shows the bonding method which concerns on embodiment of this invention. 従来のショルダレス回転ツールを示す概念図である。It is a conceptual diagram which shows the conventional shoulderless rotation tool. 従来の回転ツールを示す概念図である。It is a conceptual diagram which shows the conventional rotation tool. 回転ツールの第一変形例を示す断面図である。It is sectional drawing which shows the 1st modification of a rotation tool. 回転ツールの第二変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of a rotation tool. 回転ツールの第三変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of a rotation tool. 実施例1の条件を示す表である。5 is a table showing conditions of Example 1; 実施例1の結果を示すグラフである。5 is a graph showing the results of Example 1; 実施例2の条件を示す表である。7 is a table showing conditions of Example 2; 実施例2の比較例の回転ツールを示す側面図である。It is a side view which shows the rotation tool of the comparative example of Example 2. FIG. 実施例2の結果を示すグラフである。7 is a graph showing the results of Example 2; 実施例3の条件を示す表である。7 is a table showing conditions of Example 3; 実施例3-1の結果を示すグラフである。21 is a graph showing the results of Example 3-1. 実施例3-2の結果を示すグラフである。21 is a graph showing the results of Example 3-2. 実施例3-3の結果を示すグラフである。It is a graph which shows the result of Example 3-3.
 本発明の実施形態について、適宜図面を参照しながら説明する。図1に示すように、回転ツール1は、摩擦攪拌接合に用いられるツールである。回転ツール1は、例えば工具鋼で形成されている。回転ツール1は、基軸部2と、基端側ピン3と、先端側ピン4とで主に構成されている。基軸部2は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。回転ツール1の回転軸は、鉛直方向に対して傾けてもよいが、本実施形態では鉛直方向と一致している。また、鉛直方向に垂直な面を水平面と定義する。 Embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 1, the rotary tool 1 is a tool used for friction stir welding. The rotary tool 1 is formed of, for example, a tool steel. The rotary tool 1 mainly includes a base shaft portion 2, a proximal end pin 3 and a distal end pin 4. The base shaft portion 2 has a cylindrical shape and is a portion connected to the main shaft of the friction stir device. The rotation axis of the rotation tool 1 may be inclined with respect to the vertical direction, but in the present embodiment, it coincides with the vertical direction. Also, a plane perpendicular to the vertical direction is defined as a horizontal plane.
 基端側ピン3は、基軸部2に連続し、先端に向けて先細りになっている。基端側ピン3は、円錐台形状を呈する。基端側ピン3のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピン4のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピン3の外周面には、階段状の段差部10が高さ方向の全体に亘って形成されている。段差部10は、右回り又は左回りで螺旋状に形成されている。つまり、段差部10は、平面視して螺旋状であり、側面視すると階段状になっている。本実施形態では、回転ツールを右回転させるため、段差部10は基端側から先端側に向けて左回りに設定している。 The proximal end pin 3 is continuous with the basic shaft 2 and is tapered toward the tip. The proximal pin 3 has a truncated cone shape. The taper angle A of the proximal end pin 3 may be set as appropriate, but is, for example, 135 to 160 °. When the taper angle A is less than 135 ° or more than 160 °, the bonding surface roughness after friction stirring becomes large. The taper angle A is larger than the taper angle B of the tip side pin 4 described later. As shown in FIG. 2, on the outer peripheral surface of the proximal end pin 3, a step-like stepped portion 10 is formed over the entire height direction. The stepped portion 10 is formed in a spiral shape clockwise or counterclockwise. That is, the step portion 10 has a spiral shape in plan view and a step shape in side view. In the present embodiment, in order to rotate the rotation tool to the right, the step portion 10 is set counterclockwise from the base end side toward the tip end side.
 なお、回転ツールを左回転させる場合は、段差部10を基端側から先端側に向けて右回りに設定することが好ましい。これにより、段差部10によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。段差部10は、段差底面10aと、段差側面10bとで構成されている。隣り合う段差部10の各頂点10c,10cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面10bの高さY1に応じて適宜設定される。 In addition, when rotating the rotation tool counterclockwise, it is preferable to set the step portion 10 clockwise from the base end side toward the tip end side. As a result, the plastic flow material is guided to the front end side by the step portion 10, so that the metal overflowing to the outside of the joined metal member can be reduced. The stepped portion 10 is configured of a stepped bottom surface 10 a and a stepped side surface 10 b. The distance X1 (horizontal distance) between the apexes 10c and 10c of the adjacent step portions 10 is appropriately set in accordance with the step angle C described later and the height Y1 of the step side surface 10b.
 段差側面10bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触している段差部10の数)も減少する。 The height Y1 of the stepped side surface 10b may be set as appropriate, but is set to, for example, 0.1 to 0.4 mm. Bonding surface roughness will become large as height Y1 is less than 0.1 mm. On the other hand, when the height Y1 exceeds 0.4 mm, the bonding surface roughness tends to increase, and the number of effective stepped portions (the number of stepped portions 10 in contact with the metal members to be joined) also decreases.
 段差底面10aと段差側面10bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面10aは、本実施形態では水平面と平行になっている。段差底面10aは、ツールの回転軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面10bの高さY1、段差角度C及び水平面に対する段差底面10aの角度は、摩擦攪拌を行う際に、塑性流動材が段差部10の内部に滞留して付着することなく外部に抜けるとともに、段差底面10aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。 The step angle C formed between the step bottom surface 10 a and the step side surface 10 b may be set as appropriate, but is set, for example, at 85 to 120 °. The stepped bottom surface 10a is parallel to the horizontal surface in the present embodiment. The bottom surface 10a of the step may be inclined within a range of -5 ° to 15 ° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction (minus downward with respect to horizontal plane, plus with respect to horizontal plane Above). The distance X1, the height Y1 of the side surface 10b of the step, the step angle C, and the angle of the bottom surface 10a of the step with respect to the horizontal surface do not stay and adhere to the plastic fluid material inside the step 10 It sets suitably so that it may be able to press down a plastic fluid material with the level difference bottom face 10a, and it may make joining surface roughness small, while it comes off.
 先端側ピン4は、基端側ピン3に連続して形成されている。先端側ピン4は円錐台形状を呈する。先端側ピン4の先端は平坦面になっている。先端側ピン4のテーパー角度Bは、基端側ピン3のテーパー角度よりも小さくなっている。先端側ピン4の外周面には、螺旋溝11が刻設されている。螺旋溝11は、右回り、左回りのどちらでもよいが、本実施形態では回転ツール1を右回転させるため、基端側から先端側に向けて左回りに刻設されている。 The distal side pin 4 is formed continuously to the proximal side pin 3. The distal pin 4 has a truncated cone shape. The tip of the tip side pin 4 is flat. The taper angle B of the distal end side pin 4 is smaller than the taper angle of the proximal end side pin 3. A spiral groove 11 is engraved on the outer peripheral surface of the distal end side pin 4. The spiral groove 11 may be either clockwise or counterclockwise, but in the present embodiment, in order to rotate the rotary tool 1 clockwise, the spiral groove 11 is engraved counterclockwise from the proximal end toward the distal end.
 なお、回転ツールを左回転させる場合は、螺旋溝11を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝11によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝11は、螺旋底面11aと、螺旋側面11bとで構成されている。隣り合う螺旋溝11の頂点11c,11cの距離(水平方向距離)を長さX2とする。螺旋側面11bの高さを高さY2とする。螺旋底面11aと、螺旋側面11bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝11は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。 When the rotary tool is to be rotated left, it is preferable to set the spiral groove 11 clockwise from the proximal side toward the distal side. As a result, the plastic flow material is guided to the tip side by the spiral groove 11, so that the metal overflowing to the outside of the joined metal member can be reduced. The spiral groove 11 is composed of a spiral bottom surface 11 a and a spiral side surface 11 b. The distance (horizontal distance) between the apexes 11 c and 11 c of the adjacent spiral grooves 11 is taken as a length X2. The height of the spiral side surface 11b is taken as a height Y2. The spiral angle D formed by the spiral bottom surface 11a and the spiral side surface 11b is, for example, 45 to 90 degrees. The spiral groove 11 has a role of raising the frictional heat by coming into contact with the joined metal member and guiding the plastic flow material to the tip side.
 次に、本発明に係る接合方法について説明する。本実施形態に係る接合方法では、突合せ工程と、摩擦攪拌工程とを行う。突合せ工程は、図3に示すように、金属部材20,20の各端面20a,20a同士を突き合わせる工程である。金属部材20,20の各表面及び各裏面は面一になる。 Next, the bonding method according to the present invention will be described. In the bonding method according to the present embodiment, a butt step and a friction and stirring step are performed. The butting step is, as shown in FIG. 3, a step of butting the end faces 20a and 20a of the metal members 20 and 20 together. The front and back surfaces of the metal members 20, 20 are flush.
 摩擦攪拌工程では、回転ツール1を用いて突合せ部J1を摩擦攪拌接合する工程である。摩擦攪拌工程では、右回転させた回転ツール1を突合せ部J1に挿入し、突合せ部J1をなぞるようにして相対移動させる。回転ツール1の移動軌跡には塑性化領域Wが形成される。図4に示すように、摩擦攪拌工程では、回転ツール1の基端側ピン3の外周面で金属部材20,20の表面20b,20bを押えながら摩擦攪拌接合を行う。回転ツール1の挿入深さは、少なくとも基端側ピン3の一部が金属部材20の表面20bと接触するように設定する。本実施形態では、基端側ピン3の外周面の高さ方向の中央部あたりが金属部材20の表面20bと接触するように挿入深さを設定している。 The friction stirring step is a step of friction stir welding the butt portion J1 using the rotary tool 1. In the friction stirring process, the rotary tool 1 rotated to the right is inserted into the butt joint portion J1, and the joint portion J1 is moved relative to each other so as to trace it. A plasticizing region W is formed on the movement trajectory of the rotary tool 1. As shown in FIG. 4, in the friction stir process, friction stir welding is performed while pressing the surfaces 20 b and 20 b of the metal members 20 and 20 on the outer peripheral surface of the proximal end pin 3 of the rotary tool 1. The insertion depth of the rotary tool 1 is set such that at least a portion of the proximal pin 3 contacts the surface 20 b of the metal member 20. In the present embodiment, the insertion depth is set such that the central portion in the height direction of the outer peripheral surface of the proximal end pin 3 contacts the surface 20 b of the metal member 20.
 ここで、図5に示すように、従来のショルダレス回転ツール100であると、ショルダ部で被接合金属部材110の表面を押えないため凹溝(被接合金属部材の表面と塑性化領域の表面とで構成される凹溝)が大きくなるとともに、接合表面粗さが大きくなるという問題がある。また、凹溝の脇に膨出部(接合前に比べて被接合金属部材の表面が膨らむ部位)が形成されるという問題がある。一方、図6の回転ツール101のように、回転ツール101のテーパー角度βをショルダレス回転ツール100のテーパー角度αよりも大きくすると、ショルダレス回転ツール100に比べて被接合金属部材110の表面を押えることはできるため、凹溝は小さくなり、膨出部も小さくなる。しかし、下向きの塑性流動が強くなるため、塑性化領域の下部にキッシングボンドが形成されやすくなる。 Here, as shown in FIG. 5, in the case of the conventional shoulderless rotary tool 100, the shoulder portion does not press the surface of the metal member 110 to be joined (the surface of the metal member to be joined and the surface of the plasticized region) There is a problem that the surface roughness of the bonding surface becomes large as the concave groove formed by In addition, there is a problem that a bulging portion (a portion where the surface of the metal member to be joined expands compared to before bonding) is formed on the side of the recessed groove. On the other hand, when the taper angle β of the rotation tool 101 is larger than the taper angle α of the shoulderless rotation tool 100 as in the rotation tool 101 of FIG. 6, the surface of the joined metal member 110 is compared with the shoulderless rotation tool 100. Since it can be pressed down, the recessed groove becomes smaller and the bulging portion also becomes smaller. However, since the downward plastic flow is strong, a kissing bond is likely to be formed in the lower part of the plasticization region.
 これに対し、本実施形態の回転ツール1は、基端側ピン3と、基端側ピン3のテーパー角度Aよりもテーパー角度が小さい先端側ピン4を備えた構成になっている。これにより、金属部材20,20に回転ツール1を挿入しやすくなる。また、先端側ピン4のテーパー角度Bが小さいため、金属部材20,20の深い位置まで回転ツール1を容易に挿入することができる。また、先端側ピン4のテーパー角度Bが小さいため、回転ツール101に比べて下向きの塑性流動を抑えることができる。このため、塑性化領域Wの下部にキッシングボンドが形成されるのを防ぐことができる。一方、基端側ピン3のテーパー角度Aは大きいため、従来の回転ツールに比べ、被接合金属部材の厚さや接合の高さ位置が変化しても安定して接合することができる。 On the other hand, the rotary tool 1 of the present embodiment is configured to include the proximal end pin 3 and the distal end side pin 4 whose taper angle is smaller than the taper angle A of the proximal end pin 3. Thus, the rotary tool 1 can be easily inserted into the metal members 20, 20. Further, since the taper angle B of the distal end side pin 4 is small, the rotary tool 1 can be easily inserted to the deep position of the metal members 20, 20. Further, since the taper angle B of the tip end side pin 4 is small, it is possible to suppress the downward plastic flow as compared with the rotary tool 101. For this reason, it can prevent that a kissing bond is formed in the lower part of the plasticization area | region W. FIG. On the other hand, since the taper angle A of the proximal end pin 3 is large, stable bonding can be performed even if the thickness of the metal member to be bonded and the height position of bonding change, as compared with the conventional rotary tool.
 また、基端側ピン3の外周面で塑性流動材を押えることができるため、接合表面に形成される凹溝を小さくすることができるとともに、凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、階段状の段差部10は浅く、かつ、出口が広いため、塑性流動材を段差底面10aで押さえつつ塑性流動材が段差部10の外部に抜けやすくなっている。そのため、基端側ピン3で塑性流動材を押えても基端側ピン3の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 In addition, since the plastic fluid material can be pressed by the outer peripheral surface of the proximal end pin 3, it is possible to reduce the size of the recessed groove formed on the joining surface and eliminate the bulging portion formed on the side of the recessed groove. It can be made smaller or smaller. Further, since the step-like stepped portion 10 is shallow and the outlet is wide, the plastic fluid material is easily released to the outside of the stepped portion 10 while the plastic flow material is held by the stepped bottom surface 10 a. Therefore, even if the plastic flow material is pressed by the proximal end pin 3, the plastic flow material does not easily adhere to the outer peripheral surface of the proximal end pin 3. Therefore, while being able to make joint surface roughness small, joint quality can be stabilized suitably.
 本発明の回転ツール1は、適宜設計変更が可能である。図7は、本発明の回転ツールの第一変形例を示す側面図である。図7に示すように、第一変形例に係る回転ツール1Aでは、段差部10の段差底面10aと段差側面10bとのなす段差角度Cが85°になっている。段差底面10aは、水平面と平行である。このように、段差底面10aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中に段差部10内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 Design change of the rotation tool 1 of the present invention is possible suitably. FIG. 7 is a side view showing a first modified example of the rotary tool of the present invention. As shown in FIG. 7, in the rotary tool 1A according to the first modification, the step angle C between the step bottom surface 10a of the step portion 10 and the step side surface 10b is 85 °. The step bottom surface 10a is parallel to the horizontal plane. As described above, the bottom surface 10a of the step is parallel to the horizontal plane, and the step angle C may be an acute angle in a range in which the plastic flow material stays in the step portion 10 and does not adhere during friction stirring.
 図8は、本発明の回転ツールの第二変形例を示す側面図である。図8に示すように、第二変形例に係る回転ツール1Bでは、段差部10の段差角度Cが115°になっている。段差底面10aは水平面と平行になっている。このように、段差底面10aは水平面と平行であるとともに、段差部10として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 8 is a side view showing a second modification of the rotary tool of the present invention. As shown in FIG. 8, in the rotary tool 1B according to the second modification, the step angle C of the step portion 10 is 115 °. The bottom surface 10a of the step is parallel to the horizontal plane. As described above, the step bottom surface 10a may be parallel to the horizontal plane, and the step angle C may be an obtuse angle in the range in which the step portion 10 functions.
 図9は、本発明の回転ツールの第三変形例を示す側面図である。図9に示すように、段差底面10aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面10bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面10aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の回転ツールの第一~第三変形例によっても、本実施形態と同等の効果を奏することができる。 FIG. 9 is a side view showing a third modification of the rotary tool of the present invention. As shown in FIG. 9, the bottom surface 10a of the step is inclined at an angle of 10.degree. Upward with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction. The stepped side surface 10b is parallel to the vertical surface. As described above, the step bottom surface 10a may be formed to be inclined upward from the horizontal surface in the outer peripheral direction from the rotation axis of the tool within a range where the plastic fluid material can be held down during the friction stirring. According to the first to third modified examples of the rotating tool described above, the same effects as those of the present embodiment can be obtained.
 次に、本発明の実施例について説明する。実施例では、実施例1,2,3と3種類の試験を行って、摩擦攪拌工程後の接合表面粗さを計測した。 Next, examples of the present invention will be described. In Examples, three types of tests, Examples 1, 2 and 3, were performed to measure the joint surface roughness after the friction stir process.
[実施例1]
 実施例1では、単一の金属部材(アルミニウム合金:A5052-H34)の表面から回転ツール1を挿入し、所定距離相対移動させて摩擦攪拌後に発生した塑性化領域に沿って、表面の粗さRz(μm)を表面粗さ計(本体:サーフコム1400D,制御器:KA9801CF)で計測した。計測条件は、JIS01に準じて測定長さ:5mm、測定速度:0.6mm/sとし、カットオフ種別:ガウシアン、カットオフ波長:λs=0.8mmとした。金属部材の幅は100mmとし、長さは300mmとし、板厚は2mmとした。回転ツール1の回転数は5000rpmとし、接合速度は500mm/minとした。回転ツール1の挿入深さ(回転ツール1の先端から金属部材の表面までの距離)は1.8mmとした。段差部10の段差角度Cは90°とした。先端側ピン4のテーパー角度Bは75°とした。先端側ピン4の螺旋溝11(図2参照)の距離X2は0.18mmとし、高さY2は0.22mmとした。先端側ピン4の長さは1mmとし、先端の直径は2mmとした(以上が基本条件)。
Example 1
In Example 1, the rotary tool 1 is inserted from the surface of a single metal member (aluminum alloy: A5052-H34), and is moved relative to a predetermined distance to cause surface roughness along a plasticized area generated after frictional stirring. Rz (μm) was measured with a surface roughness meter (body: Surfcom 1400D, controller: KA9801CF). The measurement conditions were: measurement length: 5 mm, measurement speed: 0.6 mm / s according to JIS 01, cut-off type: Gaussian, cut-off wavelength: λs = 0.8 mm. The width of the metal member was 100 mm, the length was 300 mm, and the plate thickness was 2 mm. The rotation speed of the rotary tool 1 was 5000 rpm, and the bonding speed was 500 mm / min. The insertion depth of the rotary tool 1 (the distance from the tip of the rotary tool 1 to the surface of the metal member) was 1.8 mm. The step angle C of the step portion 10 was 90 °. The taper angle B of the tip side pin 4 was 75 °. The distance X2 of the spiral groove 11 (see FIG. 2) of the tip end pin 4 is 0.18 mm, and the height Y2 is 0.22 mm. The length of the tip side pin 4 is 1 mm, and the diameter of the tip is 2 mm (the above is the basic condition).
 図10に示すように、実施例1では、回転ツール1の基端側ピン3のテーパー角度Aを105°、120°、135°、142.5°、150°、157.5°、165°と変化させて、テーパー角度と接合表面粗さとの相関関係を調べた。距離X1が概ね一定となるように設定し、このときの段差部10の段差側面10bの高さY1は図10に示すとおりである。つまり、テーパー角度Aが大きくなるにつれて段差側面10bの高さY1は小さくなる。 As shown in FIG. 10, in Example 1, the taper angle A of the proximal end pin 3 of the rotary tool 1 is 105 °, 120 °, 135 °, 142.5 °, 150 °, 157.5 °, 165 ° And the correlation between the taper angle and the junction surface roughness was examined. The distance X1 is set to be substantially constant, and the height Y1 of the stepped side surface 10b of the stepped portion 10 at this time is as shown in FIG. That is, as the taper angle A increases, the height Y1 of the stepped side surface 10b decreases.
 図11に示すように、基端側ピン3のテーパー角度Aが135°~160°であると、表面接合粗さが小さくなることがわかった。テーパー角度Aが135°未満であると、接合表面粗さが大きくなる傾向になることがわかった。テーパー角度Aが135°未満であると、ショルダレスツールに近い形態となるため、塑性流動材を押さえる作用がなくなり、接合表面粗さが大きくなると考えられる。一方、テーパー角度Aが160°を超えると、高さY1が小さくなり、段差部10の段差が小さくなる。つまり、段差部10の機能が低下して、接合表面粗さが大きくなると考えられる。 As shown in FIG. 11, it was found that the surface bonding roughness becomes smaller when the taper angle A of the proximal end pin 3 is 135 ° to 160 °. It was found that when the taper angle A was less than 135 °, the bonding surface roughness tended to increase. If the taper angle A is less than 135 °, the form close to a shoulderless tool is obtained, so the action to hold down the plastic flow material is lost, and it is considered that the joint surface roughness becomes large. On the other hand, when the taper angle A exceeds 160 °, the height Y1 decreases and the step of the step portion 10 decreases. That is, it is considered that the function of the step portion 10 is reduced and the bonding surface roughness is increased.
[実施例2]
 実施例2では、図12に示すように、テーパー角度Aを150°で固定し、段差側面10bの高さY1を0.05mm、0.10mm、0.18mm、0.25mm、0.33mm、0.40mmと変化させて、段差側面10bの高さY1と接合表面粗さとの相関関係を調べた。テーパー角度Aと高さY1を除く他の条件は、実施例1の基本条件と同じである。
Example 2
In the second embodiment, as shown in FIG. 12, the taper angle A is fixed at 150 °, and the height Y1 of the step side surface 10b is 0.05 mm, 0.10 mm, 0.18 mm, 0.25 mm, 0.33 mm, The correlation between the height Y1 of the stepped side surface 10b and the junction surface roughness was examined while changing the height to 0.40 mm. The conditions other than the taper angle A and the height Y1 are the same as the basic conditions of the first embodiment.
 また、実施例2では、図13に示すように、特許文献2に示す比較例の回転ツール200を用いて摩擦攪拌を行った。比較例の回転ツール200は、基端側ピン203と、先端側ピン204とを備えている。基端側ピン203のテーパー角度は、先端側ピン204のテーパー角度よりも大きくなっている。基端側ピン203の外周面には、螺旋状の溝13が形成されている。溝13の断面形状は略半円状になっている。溝13の曲率半径は0.5mmとした。溝13の深さは0.3mmとし、隣り合う溝13,13の距離は1.2mmとした。先端側ピン204の外周面には螺旋溝11が形成されている。 Moreover, in Example 2, as shown in FIG. 13, friction stirring was performed using the rotating tool 200 of the comparative example shown to patent document 2. FIG. The rotation tool 200 of the comparative example includes a proximal end pin 203 and a distal end side pin 204. The taper angle of the proximal end pin 203 is larger than the taper angle of the distal end pin 204. A spiral groove 13 is formed on the outer peripheral surface of the proximal end pin 203. The cross-sectional shape of the groove 13 is substantially semicircular. The radius of curvature of the groove 13 was 0.5 mm. The depth of the grooves 13 was 0.3 mm, and the distance between the adjacent grooves 13 and 13 was 1.2 mm. The spiral groove 11 is formed on the outer peripheral surface of the distal end side pin 204.
 図14に示すように、段差側面10bの高さY1が0.10~0.40mmであると、接合表面粗さが小さくなることがわかった。比較例の回転ツール200では、接合表面粗さが55μmであった。高さY1が0.05mmであると接合表面粗さが著しく大きくなることがわかった。高さY1が0.10mm未満であると、段差がない状態に近づくため、段差部10に基づく塑性流動量が減少し接合表面粗さが大きくなると考えられる。 As shown in FIG. 14, it was found that when the height Y1 of the stepped side surface 10b is 0.10 to 0.40 mm, the bonding surface roughness decreases. In the rotary tool 200 of the comparative example, the bonding surface roughness was 55 μm. It was found that when the height Y1 was 0.05 mm, the bonding surface roughness was significantly increased. When the height Y1 is less than 0.10 mm, it is considered that the plastic flow amount based on the stepped portion 10 is reduced and the joint surface roughness is increased since the state approaches no step.
 一方、高さY1が0.40mmを超えると接合表面粗さが大きくなる傾向になる。これは、高さY1が大きくなると、必然的に段差底面10aの距離X1も大きくなる。例えば、テーパー角度Aが150°を超えると距離X1の増加は顕著になる。段差底面10a
の距離X1が大きくなると、同じ挿入深さにおける有効段差部数(被接合金属部材と接触している段差部の数)が減少するため、段差部10に基づく塑性流動量が減少し接合表面粗さが大きくなると考えられる。なお、被接合金属部材に対する回転ツール1の押圧力を2600N,2800N,3000Nと変化させて施行したが、押圧力での差はほとんど見られなかった。
On the other hand, when the height Y1 exceeds 0.40 mm, the bonding surface roughness tends to increase. This means that as the height Y1 increases, the distance X1 of the step bottom surface 10a inevitably increases. For example, when the taper angle A exceeds 150 °, the increase of the distance X1 becomes significant. Step bottom surface 10a
When the distance X1 increases, the number of effective steps (the number of steps in contact with the joined metal member) at the same insertion depth decreases, so the plastic flow amount based on the step 10 decreases and the junction surface roughness Is considered to be larger. In addition, although the pressing force of the rotary tool 1 with respect to a to-be-joined metal member was changed with 2600N, 2800N, and 3000N and implemented, the difference in pressing force was hardly seen.
[実施例3]
 実施例3では、図15に示すように、段差角度Cを変化させて、段差角度Cと接合表面粗さとの相関関係を調べた。実施例3では、テーパー角度Aを150°とした。段差角度Cは、60°、75°、85°、90°、105°、120°、135°と変化させた。また、段差側面10bの高さY1を0.1mmとした場合を実施例3-1とし、高さY1を0.18mmとした場合を実施例3-2とし、高さY1を0.25mmとした場合を実施例3-3とした。その他の条件は、実施例1の基本条件と同じである。
[Example 3]
In Example 3, as shown in FIG. 15, the step angle C was changed, and the correlation between the step angle C and the junction surface roughness was examined. In Example 3, the taper angle A was 150 °. The step angle C was changed to 60 °, 75 °, 85 °, 90 °, 105 °, 120 °, and 135 °. The case where the height Y1 of the stepped side surface 10b is 0.1 mm is referred to as Example 3-1, and the case where the height Y1 is 0.18 mm is referred to as Example 3-2, and the height Y1 is 0.25 mm. The case where it carried out was set as Example 3-3. Other conditions are the same as the basic conditions of the first embodiment.
 図16~18に示すように、段差角度Cを85°~120°に設定すると接合表面粗さが小さくなることがわかった。段差角度Cが85°未満になると、段差部10の内部に塑性流動材が溜まりやすくなり、段差部10の内部に塑性流動材が付着し段差部10として機能しなくなる。また、段差部10に塑性流動材が付着すると、当該塑性流動材と被接合金属部材が損傷するおそれがある。一方、段差角度Cが120°を超えると塑性流動材を押さえることができなくなるため、接合表面粗さが大きくなると考えられる。また、実施例3-1,3-2,3-3では、実施例3-3の接合表面粗さが最も小さかった。つまり、段差側面10bの高さY1が少なくとも0.1~0.25mmの範囲で、高さY1が大きくなるにつれて、接合表面粗さが小さくなる傾向があることがわかった。 As shown in FIGS. 16 to 18, it was found that when the step angle C was set to 85 ° to 120 °, the bonding surface roughness decreased. When the step angle C is less than 85 °, the plastic flow material easily accumulates inside the step portion 10, the plastic flow material adheres inside the step portion 10, and the step portion 10 does not function. In addition, when the plastic fluid material adheres to the step portion 10, the plastic fluid material and the metal member to be joined may be damaged. On the other hand, when the step angle C exceeds 120 °, the plastic fluid material can not be held down, so the joint surface roughness is considered to be large. In Examples 3-1, 3-2 and 3-3, the bonding surface roughness of Example 3-3 was the smallest. That is, it has been found that the junction surface roughness tends to decrease as the height Y1 increases as the height Y1 of the stepped side surface 10b is at least in the range of 0.1 to 0.25 mm.
 1   回転ツール
 2   基軸部
 3   基端側ピン
 4   先端側ピン
 10  段差部
 10a 段差底面
 10b 段差側面
 11  螺旋溝
 A   テーパー角度(基端側ピンの)
 B   テーパー角度
 C   段差角度
 D   螺旋溝角度
 J1  突合せ部
 X1  距離(基端側ピンの)
 X2  距離
 Y1  高さ(段差側面の)
 Y2  高さ
Reference Signs List 1 rotation tool 2 basic shaft portion 3 proximal end pin 4 distal end pin 10 stepped portion 10a stepped bottom surface 10b stepped side surface 11 spiral groove A taper angle (of proximal end pin)
B Taper angle C Step angle D Spiral groove angle J1 Abutment point X1 distance (for proximal pin)
X2 distance Y1 height (at the side of the step)
Y2 height

Claims (5)

  1.  基端側ピンと、先端側ピンとを備える摩擦攪拌用の回転ツールであって、
     前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、
     前記基端側ピンの外周面には階段状の段差部が形成されていることを特徴とする回転ツール。
    A rotating tool for friction stirring comprising a proximal end pin and a distal end pin, comprising:
    The taper angle of the proximal pin is greater than the taper angle of the distal pin,
    A step-like stepped portion is formed on the outer peripheral surface of the proximal end pin.
  2.  前記基端側ピンのテーパー角度は135~160°になっていることを特徴とする請求項1に記載の回転ツール。 The rotary tool according to claim 1, wherein the taper angle of the proximal pin is 135 to 160 °.
  3.  前記段差部の段差側面の高さは0.1~0.4mmになっていることを特徴とする請求項1又は請求項2に記載の回転ツール。 The rotary tool according to claim 1 or 2, wherein the height of the stepped side surface of the stepped portion is 0.1 to 0.4 mm.
  4.  前記段差部の段差底面と段差側面とでなす角度は85~120°になっていることを特徴とする請求項1に記載の回転ツール。 The rotary tool according to claim 1, wherein an angle formed by the bottom surface of the stepped portion and the side surface of the stepped portion is 85 to 120 °.
  5.  一対の金属部材の端面同士を突き合わせて形成された突合せ部を回転ツールを用いて摩擦攪拌接合する接合方法であって、
     前記回転ツールは、
     基端側ピンと、先端側ピンとを備え、
     前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、
     前記基端側ピンの外周面には階段状の段差部が形成されており、
     前記段差部の段差底面で塑性流動材を押えながら摩擦攪拌を行うことを特徴とする接合方法。
    A joining method in which a butt joint formed by abutting end faces of a pair of metal members is friction stir welded using a rotary tool,
    The rotation tool is
    It has a proximal pin and a distal pin,
    The taper angle of the proximal pin is greater than the taper angle of the distal pin,
    A step-like stepped portion is formed on the outer peripheral surface of the proximal end pin,
    A friction stir is performed while holding a plastic fluid material at the bottom of the stepped portion of the stepped portion.
PCT/JP2017/032146 2017-07-03 2017-09-06 Rotary tool and joining method WO2019008785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780085197.5A CN110234459A (en) 2017-07-03 2017-09-06 Rotation tool and joint method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130104 2017-07-03
JP2017130104A JP7114863B2 (en) 2017-07-03 2017-07-03 Rotating tool and joining method

Publications (1)

Publication Number Publication Date
WO2019008785A1 true WO2019008785A1 (en) 2019-01-10

Family

ID=64949903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032146 WO2019008785A1 (en) 2017-07-03 2017-09-06 Rotary tool and joining method

Country Status (3)

Country Link
JP (2) JP7114863B2 (en)
CN (1) CN110234459A (en)
WO (1) WO2019008785A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158081A1 (en) * 2019-02-01 2020-08-06 日本軽金属株式会社 Joining method
WO2020170480A1 (en) * 2019-02-21 2020-08-27 日本軽金属株式会社 Joining method and method for manufacturing composite rolled material
WO2020213191A1 (en) * 2019-04-16 2020-10-22 日本軽金属株式会社 Joining method, and method for manufacturing composite rolled material
JP2021013933A (en) * 2019-07-10 2021-02-12 日本軽金属株式会社 Joint method and method for manufacturing composite rolled material
EP3903987A4 (en) * 2019-04-12 2022-11-02 Nippon Light Metal Company, Ltd. Joining method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964840B2 (en) * 2019-05-16 2021-11-10 三菱電機株式会社 Friction stir welding rotary tool and friction stir welding method
CN114206536B (en) * 2019-08-08 2024-02-02 日本轻金属株式会社 Automatic joining system
US11794272B2 (en) 2019-08-08 2023-10-24 Nippon Light Metal Company, Ltd. Automatic joining system
JP2021087961A (en) * 2019-12-02 2021-06-10 日本軽金属株式会社 Method of manufacturing heat exchanger plate
JP2023006931A (en) * 2021-07-01 2023-01-18 株式会社東芝 Friction stir welding tool and friction stir welding device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747480A (en) * 1993-05-20 1995-02-21 Welding Inst:The Device and method for friction bonding
JP2003136256A (en) * 2001-10-31 2003-05-14 Mazda Motor Corp Rotary tool for friction stir and processing method using the same
JP2006212651A (en) * 2005-02-02 2006-08-17 Sumitomo Light Metal Ind Ltd Friction stir spot welding method, and rotary tool for friction stir spot welding used for it
JP2007160370A (en) * 2005-12-15 2007-06-28 Hino Motors Ltd Friction stir welding tool
JP2012125822A (en) * 2010-12-16 2012-07-05 Mitsubishi Heavy Ind Ltd Tool for friction stir welding, and method for repairing crack
JP2013509301A (en) * 2009-11-02 2013-03-14 メガスター・テクノロジーズ・エルエルシー Misalignment friction stir welding of casing and small diameter pipes or small diameter pipes
JP2016215264A (en) * 2015-05-26 2016-12-22 株式会社東芝 Frictional stir welding tool, and frictional stir welding device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915939B2 (en) * 2000-09-21 2005-07-12 Showa Denko K.K. Friction agitation joining tool
JP6076004B2 (en) * 2012-09-06 2017-02-08 株式会社Uacj Rotating tool for friction stir spot welding and friction stir spot welding method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747480A (en) * 1993-05-20 1995-02-21 Welding Inst:The Device and method for friction bonding
JP2003136256A (en) * 2001-10-31 2003-05-14 Mazda Motor Corp Rotary tool for friction stir and processing method using the same
JP2006212651A (en) * 2005-02-02 2006-08-17 Sumitomo Light Metal Ind Ltd Friction stir spot welding method, and rotary tool for friction stir spot welding used for it
JP2007160370A (en) * 2005-12-15 2007-06-28 Hino Motors Ltd Friction stir welding tool
JP2013509301A (en) * 2009-11-02 2013-03-14 メガスター・テクノロジーズ・エルエルシー Misalignment friction stir welding of casing and small diameter pipes or small diameter pipes
JP2012125822A (en) * 2010-12-16 2012-07-05 Mitsubishi Heavy Ind Ltd Tool for friction stir welding, and method for repairing crack
JP2016215264A (en) * 2015-05-26 2016-12-22 株式会社東芝 Frictional stir welding tool, and frictional stir welding device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158081A1 (en) * 2019-02-01 2020-08-06 日本軽金属株式会社 Joining method
WO2020170480A1 (en) * 2019-02-21 2020-08-27 日本軽金属株式会社 Joining method and method for manufacturing composite rolled material
CN113286676A (en) * 2019-02-21 2021-08-20 日本轻金属株式会社 Joining method and method for manufacturing composite rolled material
CN113286676B (en) * 2019-02-21 2022-11-22 日本轻金属株式会社 Joining method and method for manufacturing composite rolled material
EP3903987A4 (en) * 2019-04-12 2022-11-02 Nippon Light Metal Company, Ltd. Joining method
US11806802B2 (en) 2019-04-12 2023-11-07 Nippon Light Metal Company, Ltd. Joining method
WO2020213191A1 (en) * 2019-04-16 2020-10-22 日本軽金属株式会社 Joining method, and method for manufacturing composite rolled material
JP2021013933A (en) * 2019-07-10 2021-02-12 日本軽金属株式会社 Joint method and method for manufacturing composite rolled material
JP7272153B2 (en) 2019-07-10 2023-05-12 日本軽金属株式会社 Joining method and manufacturing method of composite rolled material

Also Published As

Publication number Publication date
CN110234459A (en) 2019-09-13
JP2022079568A (en) 2022-05-26
JP7114863B2 (en) 2022-08-09
JP2019010674A (en) 2019-01-24
JP7359245B2 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2019008785A1 (en) Rotary tool and joining method
WO2019097734A1 (en) Joining method
JP6927067B2 (en) How to manufacture a liquid-cooled jacket
WO2020044663A1 (en) Method for manufacturing heat transfer plate
WO2020129281A1 (en) Joining method
JP2007301579A (en) Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same
CN111032268B (en) Method for manufacturing heat conductive plate and friction stir welding method
WO2019123679A1 (en) Method for manufacturing liquid cooling jacket
JP2020124715A (en) Joining method
WO2015133224A1 (en) Method for bending plate-shaped workpiece, mold, and bent article
JP2020097046A (en) Joining method
US20210220942A1 (en) Friction stir welding tool and friction stir welding method
JP6756215B2 (en) Joining method
WO2020170480A1 (en) Joining method and method for manufacturing composite rolled material
CN108472761B (en) Method for manufacturing cylindrical member
JP2009208121A (en) Friction stir welding method
JP2019188420A (en) Friction stir welding method
JP7272153B2 (en) Joining method and manufacturing method of composite rolled material
JP7322749B2 (en) Composite structure manufacturing method
JP7322748B2 (en) Composite structure manufacturing method
JP5802040B2 (en) Stud structure
JP7127614B2 (en) Joining method
JP2001170781A (en) Frictional agitation joining method for thick-walled member
WO2020213191A1 (en) Joining method, and method for manufacturing composite rolled material
JP6702130B2 (en) Method for manufacturing cylindrical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916571

Country of ref document: EP

Kind code of ref document: A1