WO2018236183A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO2018236183A1 WO2018236183A1 PCT/KR2018/007099 KR2018007099W WO2018236183A1 WO 2018236183 A1 WO2018236183 A1 WO 2018236183A1 KR 2018007099 W KR2018007099 W KR 2018007099W WO 2018236183 A1 WO2018236183 A1 WO 2018236183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- layer
- type semiconductor
- conductivity type
- conductive
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 548
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 186
- 239000000203 mixture Substances 0.000 claims abstract description 183
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 181
- 239000002019 doping agent Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 558
- 238000002347 injection Methods 0.000 description 37
- 239000007924 injection Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 35
- 230000000903 blocking effect Effects 0.000 description 19
- 229910002704 AlGaN Inorganic materials 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 17
- 238000000605 extraction Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 8
- 230000031700 light absorption Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000005641 tunneling Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- -1 AlInN Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910019897 RuOx Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910020286 SiOxNy Inorganic materials 0.000 description 1
- 229910020776 SixNy Inorganic materials 0.000 description 1
- 229910020781 SixOy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Definitions
- Embodiments relate to semiconductor devices.
- Semiconductor devices including compounds such as GaN and AlGaN have many merits such as wide and easy bandgap energy, and can be used variously as light emitting devices, light receiving devices, and various diodes.
- a light emitting device such as a light emitting diode or a laser diode using a semiconductor material of Group 3-5 or 2-6 group semiconductors can be applied to various devices such as a red, Blue, and ultraviolet rays.
- fluorescent materials or combining colors it is possible to realize a white light beam with high efficiency.
- conventional light sources such as fluorescent lamps and incandescent lamps, low power consumption, , Safety, and environmental friendliness.
- a light-receiving element such as a photodetector or a solar cell
- a semiconductor material of Group 3-5 or Group 2-6 compound semiconductor development of a device material absorbs light of various wavelength regions to generate a photocurrent , It is possible to use light in various wavelength ranges from the gamma ray to the radio wave region. It also has advantages of fast response speed, safety, environmental friendliness and easy control of device materials, so it can be easily used for power control or microwave circuit or communication module.
- the semiconductor device can be replaced with a transmission module of an optical communication means, a light emitting diode backlight replacing a cold cathode fluorescent lamp (CCFL) constituting a backlight of an LCD (Liquid Crystal Display) display device, White light emitting diodes (LEDs), automotive headlights, traffic lights, and gas and fire sensors.
- CCFL cold cathode fluorescent lamp
- LEDs White light emitting diodes
- semiconductor devices can be applied to high frequency application circuits, other power control devices, and communication modules.
- a light emitting device that emits light in the ultraviolet wavelength range can be used for curing, medical use, and sterilization by curing or sterilizing action.
- the embodiment provides a semiconductor device with improved ohmic characteristics.
- a vertical ultraviolet light emitting device is provided.
- a semiconductor device includes a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer Semiconductor structure; A first electrode electrically connected to the first conductive semiconductor layer; And a second electrode electrically connected to the second conductive type semiconductor layer, wherein the semiconductor structure includes a third conductive type semiconductor layer disposed between the second conductive type semiconductor layer and the second electrode,
- the third conductivity type semiconductor layer and the first conductivity type semiconductor layer may include an n-type dopant
- the second conductivity type semiconductor layer may include a p-type dopant, 1 conductivity type semiconductor layer
- the dopant concentration of the third conductivity type semiconductor layer is higher than the dopant concentration of the first conductivity type semiconductor layer
- the aluminum composition of the third conductivity type semiconductor layer and the first conductivity type semiconductor layer The ratio of the aluminum composition of the semiconductor layer satisfies 1: 0.71 to 1: 3.5.
- the first conductive semiconductor layer, the active layer, the second conductive semiconductor layer, and the third conductive semiconductor layer may include aluminum.
- the aluminum composition of the third conductivity type semiconductor layer may be higher than the aluminum composition of the active layer and the first conductivity type semiconductor layer.
- the aluminum composition of the third conductivity type semiconductor layer may be lower than the aluminum composition of the active layer and the first conductivity type semiconductor layer.
- the second conductivity type semiconductor layer may include a first region where the aluminum composition decreases in the thickness direction, and the third conductivity type semiconductor layer may be disposed between the first region and the second electrode.
- the second conductivity type semiconductor layer may include a second region disposed between the first region and the active layer, and the second region may have a constant aluminum composition in the thickness direction.
- the change in aluminum composition between the second conductivity type semiconductor layer and the third conductivity type semiconductor layer may be discontinuous.
- the aluminum composition of the second conductivity type semiconductor layer and the third conductivity type semiconductor layer may be the same.
- the doping concentration of the first conductivity type semiconductor layer is 1 ⁇ 10 18 / cm 3 to 2 ⁇ 10 20 / cm 3
- the doping concentration of the third conductivity type semiconductor layer is 2 ⁇ 10 19 / cm 3 to 3 ⁇ 10 20 / cm < 3 >.
- the semiconductor structure includes the third conductive type semiconductor layer, the second conductive type semiconductor layer, and a plurality of recesses penetrating the active layer to a partial region of the first conductive type semiconductor layer, May be disposed inside the recess, and the second electrode may contact the third conductive type semiconductor layer.
- the active layer can generate light in an ultraviolet wavelength range.
- the area ratio of the lower surface of the semiconductor structure to the plurality of recesses may be greater than 1: 0.16 and less than 1: 0.246.
- the ohmic characteristics can be improved and the operating voltage can be lowered.
- light absorption can be suppressed in the semiconductor device, and the light output can be improved.
- FIG. 1 is a conceptual view of a semiconductor structure according to a first embodiment of the present invention
- FIG. 3 is a graph showing an aluminum composition ratio of a semiconductor structure according to a second embodiment of the present invention.
- FIG. 5 is a graph showing an aluminum composition ratio of a semiconductor structure according to a fourth embodiment of the present invention.
- FIG. 7 is a conceptual view of a semiconductor device according to the first embodiment of the present invention.
- Fig. 8A is an enlarged view of a portion A in Fig. 7,
- FIG. 8B is a partial enlarged view of FIG. 8A
- 9A and 9B are diagrams for explaining a configuration in which light output is improved in accordance with the number of recesses
- FIG. 10 is a plan view of a semiconductor device according to the first embodiment of the present invention.
- FIG. 11 is a plan view of a semiconductor device according to a second embodiment of the present invention.
- FIG. 12 is a plan view of a semiconductor device according to a third embodiment of the present invention.
- FIG. 13 is a plan view of a semiconductor device according to a fourth embodiment of the present invention.
- FIG. 14 is a graph showing optical output and power conversion efficiency (Wall-Plug Efficiency) of the semiconductor device according to the first to fourth embodiments.
- FIG. 15 is a conceptual view of a semiconductor device according to a fifth embodiment of the present invention.
- Fig. 16 is a plan view of Fig. 15,
- FIG. 17 is a conceptual view of a semiconductor device package according to an embodiment of the present invention.
- FIG. 18 is a plan view of a semiconductor device package according to an embodiment of the present invention.
- the upper (upper) or lower (lower) or under are all such that two elements are in direct contact with each other or one or more other elements are indirectly formed between the two elements. Also, when expressed as “on or under”, it may include not only an upward direction but also a downward direction with respect to one element.
- FIG. 1 is a conceptual view of a semiconductor structure according to an embodiment of the present invention
- FIG. 2 is a graph illustrating an aluminum composition ratio of a semiconductor structure according to an embodiment of the present invention.
- a semiconductor device includes a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124, Type semiconductor layer 127.
- the semiconductor structure 120 includes an active layer 126,
- the semiconductor structure 120 can output light in the ultraviolet wavelength range.
- the semiconductor structure 120 may output UV-A at near-ultraviolet wavelength band, UV-B at the far ultraviolet wavelength band, UV-B at deep ultraviolet wavelength band, C can be output.
- the wavelength range can be determined by the composition ratio of Al of the semiconductor structure 120.
- the near-ultraviolet light (UV-A) may have a peak wavelength in the range of 320 nm to 420 nm
- the far ultraviolet light (UV-B) may have a peak wavelength in the range of 280 nm to 320 nm
- the light (UV-C) at deep ultraviolet wavelength band may have a peak wavelength in the range of 100 nm to 280 nm.
- the respective semiconductor layers of the semiconductor structure 120 In x1 Al y1 Ga 1 -x1- containing aluminum y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 1, 0? X1 + y1? 1).
- the composition of Al can be represented by the ratio of the total atomic weight including the In atomic weight, the Ga atomic weight, and the Al atomic weight to the Al atomic weight.
- the Al composition is 40%, the composition of Ga may be Al 40 Ga 60 N of 60%.
- the meaning of the composition is low or high can be understood as a difference (percentage point) of the composition percentage of each semiconductor layer.
- the aluminum composition of the first semiconductor layer is 30% and the aluminum composition of the second semiconductor layer is 60%, the aluminum composition of the second semiconductor layer is 30% higher than the aluminum composition of the first semiconductor layer .
- the first conductive semiconductor layer 124 may be formed of a compound semiconductor such as Group III-V or Group II-VI, and the first dopant may be doped.
- the first conductive semiconductor layer 124 may be a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0? X1? 1 , 0 ⁇ y1? 1 , 0? X1 + y1? For example, AlGaN, AlN, InAlGaN, and the like.
- the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te.
- the first conductivity type semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
- the first conductivity type semiconductor layer 124 is disposed between the first and second semiconductor layers 124a and 124b and between the first and second semiconductor layers 124a and 124b. And an intermediate layer 124c.
- the second sub semiconductor layer 124b may be disposed closer to the active layer 126 than the first sub semiconductor layer 124a.
- the aluminum composition of the second sub-semiconductor layer 124b may be lower than that of the first sub-semiconductor layer 124a.
- the aluminum composition of the second sub semiconductor layer 124b is 40% to 70% when the semiconductor structure 120 emits light UV-C at the deep ultraviolet wavelength band,
- the composition may be from 50% to 80%. It is possible to improve the light extraction efficiency by lowering the absorption rate of light (UV-C) emitted from the deep ultraviolet wavelength band emitted from the active layer 126 when the aluminum composition of the second sub semiconductor layer 124b is 40% or more, The current injection characteristics into the active layer 126 and the current diffusion characteristics in the second sub semiconductor layer 124b can be ensured.
- the aluminum composition of the first sub-semiconductor layer 124a is 50% or more, the absorption efficiency of light (UV-C) emitted from the deep ultraviolet wavelength band emitted from the active layer 126 can be lowered, The current injection characteristics into the active layer 126 and the current diffusion characteristics in the first sub semiconductor layer 124a can be ensured.
- UV-C absorption efficiency of light
- the aluminum composition of the first sub semiconductor layer 124a is higher than the aluminum composition of the second sub semiconductor layer 124b, light is extracted from the active layer 126 to the outside of the semiconductor structure 120 due to the difference in refractive index The light extraction efficiency of the semiconductor structure 120 can be improved.
- the thickness of the second sub-semiconductor layer 124b may be thinner than the thickness of the first sub-semiconductor layer 124a.
- the first sub-semiconductor layer 124a may be 130% or more of the thickness of the second sub-semiconductor layer 124b. According to this structure, since the intermediate layer 124c is disposed after the thickness of the first sub semiconductor layer 124a having a high aluminum composition is sufficiently secured, the crystallinity of the entire semiconductor structure 120 can be improved.
- the aluminum composition of the intermediate layer 124c may be lower than the aluminum composition of the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 124.
- the intermediate layer 124c may be a region in contact with the first electrode.
- the intermediate layer 124c may serve to absorb the laser beam irradiated to the semiconductor structure 120 during the LLO (Laser Lift-off) process for removing the growth substrate, thereby preventing the active layer 126 from being damaged. Accordingly, the semiconductor device according to the embodiment can prevent the active layer 126 from being damaged during the LLO (Laser Lift-off) process, and thus the optical output and electrical characteristics can be improved.
- the thickness of the intermediate layer 124c and the aluminum composition can be appropriately adjusted to absorb the laser irradiated to the semiconductor structure 120 during the LLO process. Therefore, the aluminum composition of the intermediate layer 124c may correspond to the wavelength of the laser light used in the LLO process, and the aluminum composition of the intermediate layer 124c may be 30% to 60% when the laser for the LLO is 200 nm to 300 nm, Lt; / RTI >
- the aluminum composition of the intermediate layer 124c may be increased to 50% to 70%. If the aluminum composition of the intermediate layer 124c is higher than the aluminum composition of the well layer 126a, the intermediate layer 124c may not absorb light emitted from the active layer 126. [ Therefore, the light extraction efficiency can be improved.
- the intermediate layer 124c has a first intermediate layer (not shown) having a lower aluminum composition than the first conductivity type semiconductor layer 124 and a second intermediate layer (not shown) having a higher aluminum composition than the first conductivity type semiconductor layer 124 .
- a plurality of the first intermediate layer and the second intermediate layer may be alternately arranged.
- the active layer 126 may be disposed between the first semiconductor layer and the second semiconductor layer.
- the first semiconductor layer may be a first conductive semiconductor layer 124 and the second semiconductor layer may include a second conductive semiconductor layer 127 and an electron blocking layer 129.
- the active layer 126 is a layer where electrons (or holes) injected through the first conductive type semiconductor layer 124 and holes (or electrons) injected through the second conductive type semiconductor layer 127 meet.
- the active layer 126 transitions to a low energy level as electrons and holes recombine, and can generate light having ultraviolet wavelengths.
- the active layer 126 may have any one of a single well structure, a multiple well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, Is not limited thereto.
- a single well structure a multiple well structure
- a single quantum well structure a single quantum well structure
- a multi quantum well (MQW) structure a quantum dot structure
- the active layer 126 may include a plurality of well layers 126a and a barrier layer 126b.
- the well layer 126a and the barrier layer 126b may have a composition formula of In x 2 Al y 2 Ga 1 -x 2 -y 2 N (0? X 2 ? 1 , 0 ⁇ y 2 ? 1 , 0? X 2 + y 2? 1) .
- the composition of the aluminum layer in the well layer 126a may vary depending on the wavelength of light emitted.
- the second conductive semiconductor layer 127 may be disposed on the active layer 126 and may be formed of a compound semiconductor such as a group III-V or II-VI group. In the second conductive semiconductor layer 127, The dopant can be doped.
- a second conductive semiconductor layer 127 is a semiconductor material having a compositional formula of In x5 Al y2 Ga 1 -x5- y2 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1) or AlGaN , AlInN, AlN, AlGaAs, AlGaInP.
- the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
- the second conductivity type semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
- the third conductive semiconductor layer 128 may be disposed on the second conductive semiconductor layer 127.
- the third conductive semiconductor layer 128 may be disposed on the surface region So of the semiconductor structure 120 in contact with the second electrode.
- the resistance between the third conductivity type semiconductor layer 128 and the second electrode may be one or more of an ohmic contact, a Schottky contact, or a tunneling effect, but the present invention is not limited thereto.
- a current may be injected into the third conductive type semiconductor layer 128 through the second electrode and a current injection efficiency may be controlled by a resistance between the third conductive type semiconductor layer 128 and the second electrode .
- the third conductive semiconductor layer 128 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and the first dopant may be doped.
- the first conductive semiconductor layer 124 may be a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0? X1? 1 , 0 ⁇ y1? 1 , 0? X1 + y1? For example, AlGaN, InAlGaN, AlN, and the like.
- the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. That is, the third conductive semiconductor layer 128 may be the same n-type semiconductor layer as the first conductive semiconductor layer 124.
- the electron blocking layer 129 may be disposed between the active layer 126 and the second conductive semiconductor layer 127.
- the electron blocking layer 129 blocks the flow of the carriers supplied from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 and causes electrons and holes to recombine within the active layer 126 The probability can be increased.
- the energy band gap of the electron blocking layer 129 may be greater than the energy band gap of the active layer 126 and / or the second conductivity type semiconductor layer 127.
- the electron blocking layer 129 may be defined as a part of the second conductive type semiconductor layer 127 because the second dopant is doped.
- the electron blocking layer 129 is a semiconductor material having a composition formula of In x 1 Al y 1 Ga 1 -x 1 -y 1 N (0? X 1 ? 1 , 0? Y 1 ? 1 , 0? X 1 + y 1 ? 1 ) , AlN, InAlGaN, and the like, but is not limited thereto.
- the first conductivity type semiconductor layer 124, the active layer 126, the second conductivity type semiconductor layer 127, and the electron blocking layer 129 may all comprise aluminum. Therefore, the first conductivity type semiconductor layer 124, the active layer 126, the second conductivity type semiconductor layer 127, and the electron blocking layer 129 may have an AlGaN, InAlGaN, or AlN composition.
- the electron blocking layer 129 may have an aluminum composition of 50% to 100%. If the aluminum composition of the electron blocking layer 129 is less than 50%, it may have a sufficient energy barrier for blocking electrons and may not absorb the light emitted from the active layer 126.
- the electron blocking layer 129 may include a first section 129a and a second section 129b.
- the first section 129a may have a higher aluminum composition in the direction from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127.
- the aluminum composition of the first section 129a may be 80% to 100%. Accordingly, the first section 129a of the electron blocking layer 129 may be a portion having the highest Al composition in the semiconductor structure 120.
- the first section 129a may be AlGaN or AlN. Or the first section 129a may be a superlattice layer in which AlGaN and AlN are alternately arranged.
- the thickness of the first section 129a may be about 0.1 nm to 4 nm. In order to effectively block the movement of the electrons, the thickness of the first section 129a can be set to 0.1 nm or more. In order to secure injection efficiency of holes from the second conductivity type semiconductor layer 127 to the active layer 126, the thickness of the first section 129a may be 4 nm or less.
- the thickness of the first section 129-a is set to 0.1 nm or more and 4 nm or less. However, when it is necessary to selectively secure any one of the electron blocking function and the hole injection function, It may be out of range.
- the third section 129c disposed between the first section 129a and the second section 129b may include an undoped section that does not include a dopant. Therefore, the third section 129c can prevent the dopant from diffusing from the second conductivity type semiconductor layer 127 to the active layer 126.
- the second conductivity type semiconductor layer 127 may include a third sub-semiconductor layer 127a and a fourth sub-semiconductor layer 127b.
- the thickness of the third sub-semiconductor layer 127a may be greater than 10 nm and less than 50 nm. Illustratively, the thickness of the third sub-semiconductor layer 127a may be 25 nm. When the thickness of the third sub-semiconductor layer 127a is larger than 10 nm, the resistance decreases in the horizontal direction and the current diffusion efficiency can be improved. When the thickness of the third sub semiconductor layer 127a is smaller than 50 nm, the path through which the light incident on the third sub semiconductor layer 127a from the active layer 126 is absorbed can be shortened, The efficiency can be improved.
- the aluminum composition of the third sub semiconductor layer 127a may be higher than the aluminum composition of the well layer 126a.
- the aluminum composition of the well layer 126a for producing deep ultraviolet or far ultraviolet light may be about 20% to 60%. Therefore, the aluminum composition of the third sub semiconductor layer 127a may be greater than 40% and less than 80%. Illustratively, if the aluminum composition of the well layer 126a is 30%, the aluminum composition of the third sub-semiconductor layer 127a may be 40%.
- the probability that the third sub semiconductor layer 127a absorbs ultraviolet light is very high, have.
- the fourth sub semiconductor layer 127b may have a relatively uniform aluminum composition to improve hole injection efficiency or improve crystallinity of the semiconductor structure.
- the thickness of the fourth sub-semiconductor layer 127b may be 20 nm to 60 nm.
- the aluminum composition of the fourth sub-semiconductor layer 127b may be 40% to 80%.
- the third conductive semiconductor layer 128 may be a surface layer (So) of the semiconductor structure in contact with the second electrode.
- the third conductive semiconductor layer 128 may have a high doping concentration and a small thickness. Therefore, the ohmic resistance of the third conductivity type semiconductor layer 128 with respect to the second electrode 146 may be lowered due to the tunneling effect.
- the third conductive semiconductor layer 128 may be doped with an n-type dopant. Accordingly, the third conductivity type semiconductor layer 128 and the first conductivity type semiconductor layer 124 may all be n-AlGaN. However, the doping concentration, the aluminum composition, and the thickness of the third conductivity type semiconductor layer 128 and the first conductivity type semiconductor layer 124 may be different.
- the doping concentration of the third conductivity type semiconductor layer 128 may be higher than the doping concentration of the first conductivity type semiconductor layer 124 to have a turling effect.
- the doping concentration of the first conductivity type semiconductor layer 124 is 1 ⁇ 10 18 / cm 3 to 2 ⁇ 10 20 / cm 3
- the doping concentration of the third conductivity type semiconductor layer 128 is 2 ⁇ 10 19 / cm 3 to 3 ⁇ 10 20 / cm 3 may be.
- the thickness of the third conductivity type semiconductor layer 128 may be 1 nm to 10 nm, or 1 nm to 5 nm. When the thickness of the third conductivity type semiconductor layer 128 is larger than 10 nm, there is a problem that the injection efficiency of holes becomes weak. Therefore, the thickness of the third conductivity type semiconductor layer 128 may be smaller than that of the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 127.
- the thickness of the third conductivity type semiconductor layer 128 may be smaller than the thickness of the third sub semiconductor layer 127a.
- the thickness ratio of the third sub semiconductor layer 127a and the third conductivity type semiconductor layer 128 may be 1.5: 1 to 20: 1. If the thickness ratio is smaller than 1.5: 1, the thickness of the third sub semiconductor layer 127a becomes too thin, and the current injection efficiency can be reduced. In addition, when the thickness ratio is larger than 20: 1, the thickness of the third conductivity type semiconductor layer 128 becomes too thin, and the ohmic reliability may be deteriorated.
- the aluminum composition may be controlled to be relatively higher than that of the well layer 126a.
- the third conductivity type semiconductor layer 128 may have an aluminum composition of 1% to 80%.
- Table 1 below is a table in which the second electrode is connected to a surface layer containing aluminum to measure the operation voltage and luminous intensity of the light emitting device.
- the aluminum composition of the second conductivity type semiconductor layer 127 was lowered to 5% to form a surface layer, and the second electrode was connected to the second electrode.
- the third conductivity type semiconductor layer 128 of n-AlGaN (Al: 25%) was formed on the second conductivity type semiconductor layer 127 and the second electrode was connected.
- the third conductivity type semiconductor layer 128 of n-AlGaN (Al: 40%) was formed on the second conductivity type semiconductor layer 127 and the second electrode was connected.
- the light emitting devices of the first through third experimental examples were fabricated in the same manner except for the ohmic structure, and 350 mA current was applied to each light emitting device.
- the operating voltage is low even though the aluminum composition is increased from 5% to 25% . This is because the hole injection efficiency is improved by the tunneling effect or the improvement of the ohmic characteristic. Further, since the aluminum composition is high, the problem that the third conductivity type semiconductor layer 128 absorbs ultraviolet light can be also improved.
- the operating voltage can be lowered and the light output can be improved.
- the composition of the aluminum of the third conductivity type semiconductor layer 128 is increased to 40%, the operating voltage rises to about 0.34V. However, it can be seen that the operating voltage is lower than that of the first experimental example.
- the aluminum composition of the third conductive type semiconductor layer 128 may be 20% to 70%.
- the composition of aluminum is 20% or more, the difference in aluminum composition with the well layer 126a is reduced, and the light absorption can be improved.
- the composition of aluminum is 70% or less, the operating voltage is excessively increased and the decrease of the light output can be improved.
- the average aluminum composition of the first conductivity type semiconductor layer 124 may be larger than that of the active layer.
- the average aluminum composition of the first conductivity type semiconductor layer 124 may be 50% to 70%.
- the ratio of the aluminum composition of the third conductivity type semiconductor layer 128 to the aluminum composition of the first conductivity type semiconductor layer 124 may be 1: 0.71 to 1: 3.5.
- the composition ratio is 1: 0.71 or more (for example, 1: 0.8)
- the aluminum composition of the first conductivity type semiconductor layer 124 increases and crystallinity can be improved. Further, the probability of absorbing the light emitted from the well layer is reduced, and the light output can be improved.
- the composition ratio is 1: 3.5 or less, the probability that the third conductivity type semiconductor layer 128 absorbs light emitted from the well layer can be reduced while maintaining an appropriate operating voltage. Therefore, the light output can be lowered.
- the second conductivity type semiconductor layer 127 has a uniform aluminum composition in the fourth sub semiconductor layer 127b in the direction away from the active layer 126 and gradually increases in the aluminum composition in the third sub semiconductor layer 127a Can be reduced.
- the aluminum composition in the thickness direction of the third conductivity type semiconductor layer 129 may also decrease.
- the reduction width of the aluminum composition of the third sub semiconductor layer 127a may be different from or the same as the reduction width of the third conductivity type semiconductor layer 128. [ However, the present invention is not limited thereto, and the aluminum composition of the third conductive type semiconductor layer 128 may be constant.
- the aluminum composition (P3) of the third conductivity type semiconductor layer may be lower than the aluminum composition (P1) of the well layer and the aluminum composition (P4) of the intermediate layer. In this case, the ohmic resistance with the second electrode can be effectively lowered.
- the present invention is not limited thereto, and the aluminum composition of the third conductivity type semiconductor layer may be variously modified as described later.
- FIG. 3 is a graph showing the aluminum composition ratio of the semiconductor structure according to the second embodiment of the present invention.
- FIG. 4 is a graph showing the aluminum composition ratio of the semiconductor structure according to the third embodiment of the present invention.
- 5 is a graph showing the aluminum composition ratio of the semiconductor structure according to the fourth embodiment.
- the aluminum composition P3 of the third conductive semiconductor layer 128 may be higher than the aluminum composition P1 of the well layer 126a and lower than the aluminum composition P4 of the intermediate layer 124c.
- the aluminum composition of the well layer 126a can be controlled according to the wavelength of the generated light.
- the aluminum composition may be between 20% and 30% to produce the UVB wavelength, and the aluminum composition may be between 30% and 50% to produce the UVC wavelength.
- the aluminum composition P3 of the third conductive type semiconductor layer 128 is controlled to be higher than the aluminum composition P1 of the well layer 126a, the light absorption of the third conductive type semiconductor layer 128 may be improved .
- the aluminum composition of the intermediate layer 124c may be 50% to 70%. Therefore, when the aluminum composition P3 of the third conductivity type semiconductor layer 128 is set lower than the aluminum composition P4 of the intermediate layer 124c, it is possible to prevent an excessive increase in the operating voltage.
- the hole injection efficiency can be improved even if the composition of aluminum is increased by the tunneling effect. Therefore, the light absorption rate can be improved by controlling the aluminum composition P3 of the third conductivity type semiconductor layer 128 to be higher than the aluminum composition P1 of the well layer 126a.
- the aluminum composition P3 of the third conductivity type semiconductor layer can be controlled to be higher than the aluminum composition P1 of the well layer and lower than the aluminum composition of the second conductivity type semiconductor layer 127 or the intermediate layer 124c.
- the third sub semiconductor layer 127a may have a slope so that the aluminum composition continuously changes.
- the aluminum composition P3 of the third conductivity type semiconductor layer 128 and the aluminum composition change of the second conductivity type semiconductor layer 127 may be discontinuous.
- the third conductive type semiconductor layer 128 can be formed without reducing the composition of the aluminum if the difference in the aluminum composition P3 between the second conductive type semiconductor layer 127 and the third conductive type semiconductor layer is not large.
- the second conductivity type semiconductor layer 127 and the third conductivity type semiconductor layer 128 may have the same aluminum composition.
- the hole injection efficiency of the third conductive type semiconductor layer 128 can be improved by the tunneling effect even if the aluminum composition is high. Therefore, it may be advantageous to control the aluminum composition of the second conductivity type semiconductor layer 127 and the third conductivity type semiconductor layer 128 in the light extraction viewpoint.
- the doping concentration of the dopant is maximized and the thickness of the third conductivity type semiconductor layer 128 is minimized in order to obtain an appropriate ohmic resistance.
- FIG. 6 is a graph showing the aluminum composition ratio of the semiconductor structure according to the fifth embodiment of the present invention.
- the second conductive semiconductor layer 127 of the semiconductor device according to the embodiment is the same as the configuration of FIG. 2 except that the surface layer 127a in contact with the second electrode is P-AlGaN containing P-type dopant .
- the GaN thin film absorbs most of the light with the ultraviolet wavelength, and thus the optical characteristic is deteriorated. Therefore, in the embodiment, it is necessary to adjust the aluminum composition of the second conductivity type semiconductor layer 127 so that ohmic contact with the second electrode is possible without using the GaN thin film.
- the second conductivity type semiconductor layer 127 may include a second-first semiconductor layer 127-1 and a second-second semiconductor layer 127-2.
- the second-first semiconductor layer 127-1 may be a surface region So in direct contact with the second electrode 146.
- the second-second semiconductor layer 127-2 may be disposed between the electron blocking layer 129 and the second-1 semiconductor layer 127-1.
- the aluminum composition of the second-first semiconductor layer 127-1 may be lower than the aluminum composition of the well layer 126a.
- the well layer 126a may be a well layer having the lowest Al composition among a plurality of well layers. If the aluminum composition of the second-first semiconductor layer 127-1 is higher than the aluminum composition of the well layer 126a, the resistance between the second-first semiconductor layer 127-1 and the second electrode 146 becomes high There is a problem that sufficient ohmic is not achieved and the current injection efficiency is low.
- the average aluminum composition of the second-first semiconductor layer 127-1 may be 1% to 35%, or 1% to 10%. If it is larger than 35%, the second electrode may not be sufficiently amorphous. If the composition is less than 1%, the GaN composition is close to the GaN composition, and light is absorbed.
- the thickness of the (2-1) th semiconductor layer 127-1 may be 1 nm to 10 nm. As described above, since the composition of aluminum is low for the ohmic operation, the second-first semiconductor layer 127-1 can absorb ultraviolet light. Therefore, it is advantageous from the viewpoint of light output to control the thickness of the (2-1) th semiconductor layer 127-1 as thin as possible.
- the thickness of the (2-1) th semiconductor layer 127-1 is controlled to 1 nm or less, it is difficult to lower the aluminum composition considerably because it is too thin.
- the thickness is thicker than 10 nm, the amount of light absorbed becomes too large, and the light output efficiency may decrease.
- the thickness of the second-second semiconductor layer 127-2 may be larger than 10 nm and smaller than 100 nm. Illustratively, the thickness of the second-second semiconductor layer 127-2 may be 25 nm. If the thickness of the second-second semiconductor layer 127-2 is less than 10 nm, the resistance increases in the horizontal direction, and the current injection efficiency may be lowered. In addition, when the thickness of the second-second semiconductor layer 127-2 is larger than 100 nm, the resistance increases in the vertical direction and the current injection efficiency may be lowered.
- the thickness of the second-first semiconductor layer 127-1 may be smaller than the thickness of the second-second semiconductor layer 127-2.
- the thickness ratio of the second-first semiconductor layer 127-1 and the second-second semiconductor layer 127-2 may be 1: 5 to 1:50. If the thickness ratio is smaller than 1: 5, the thickness of the (2-1) th semiconductor layer 127-1 becomes too thick, and the light output efficiency may be lowered. In addition, when the thickness ratio is larger than 1:50, the thickness of the second-first semiconductor layer 127-1 may become too thin. Therefore, it may be difficult to lower the aluminum composition to a desired aluminum composition within a thin thickness range. Therefore, ohmic reliability may be degraded.
- the aluminum composition of the second-second semiconductor layer 127-2 may be higher than that of the well layer 126a. Illustratively, the aluminum composition of the well layer 126a may be about 30% to 50% to produce ultraviolet light. If the aluminum composition of the second-second semiconductor layer 127-2 is lower than the aluminum composition of the well layer 126a, the second-second semiconductor layer 127-2 absorbs light, .
- the average aluminum composition of the second-second semiconductor layer 127-2 may be greater than 40% and less than 80%.
- the aluminum composition of the second-second semiconductor layer 127-2 is less than 40%, there is a problem of absorbing light.
- the aluminum composition is more than 80%, the current injection efficiency is deteriorated.
- the average aluminum composition of the second-second semiconductor layer 127-2 may be 50%.
- the second-second semiconductor layer 127-2 may become smaller as the aluminum composition is further away from the active layer 126 in the section 127-4.
- the aluminum reduction width of the second-first semiconductor layer 127-1 may be larger than the aluminum reduction width of the section 127-4 of the second-second semiconductor layer 127-2. That is, the Al compositional change rate of the second-first semiconductor layer 127-1 in the thickness direction may be larger than the Al composition change rate of the second-second semiconductor layer 127-2.
- the thickness of the second-second semiconductor layer 127-2 is thicker than that of the second-first semiconductor layer 127-1, while the aluminum composition must be higher than that of the well layer 126a.
- the second-first semiconductor layer 127-1 has a small thickness and a large variation range of the aluminum composition, the decrease in the aluminum composition may be relatively large.
- the lowest point of aluminum in the second conductivity type semiconductor layer 127 may be the point where the second-1 semiconductor layer 127-1 contacts the second electrode.
- the aluminum composition may be 1% to 10%. When the aluminum composition is less than 1%, the light absorption amount may be high, and when the aluminum composition is more than 10%, the ohmic characteristic may be deteriorated.
- the point where aluminum is highest in the second conductivity type semiconductor layer 127 may be the closest point to the electron blocking layer 129.
- the aluminum composition of the electron blocking layer 129 may be 50% to 90%. Therefore, the aluminum maximum composition of the second conductivity type semiconductor layer 127 may be 50% to 90%.
- the aluminum composition change in the thickness direction of the second conductivity type semiconductor layer 127 may be 1% to 90%, or 10% to 90%.
- the lowest aluminum composition and the highest aluminum composition ratio of the second conductivity type semiconductor layer 127 may be 1: 5 to 1: 90.
- FIG. 7 is a conceptual diagram of a semiconductor device according to the first embodiment of the present invention, wherein FIG. 8A is an enlarged view of a portion A in FIG. 7, and FIG. 8B is a partially enlarged view of FIG. 8A.
- a semiconductor device includes a semiconductor structure 120 including a first conductivity type semiconductor layer 124, a second conductivity type semiconductor layer 127, and an active layer 126, And a second electrode 146 electrically connected to the second conductivity type semiconductor layer 127.
- the first electrode 142 is electrically connected to the first conductivity type semiconductor layer 124 and the second electrode 146 is electrically connected to the second conductivity type semiconductor layer 127.
- the first conductive semiconductor layer 124, the active layer 126, and the second conductive semiconductor layer 127 may be disposed in a first direction (Y direction).
- a first direction (Y direction) which is the thickness direction of each layer, is defined as a vertical direction
- a second direction (X direction) perpendicular to the first direction (Y direction) is defined as a horizontal direction.
- the structure of the semiconductor structure may include all of the structures described in Figs. 1 to 6.
- the semiconductor structure 120 may include a plurality of recesses 128 disposed through a portion of the first conductivity type semiconductor layer 124 through the second conductivity type semiconductor layer 127 and the active layer 126 .
- the first electrode 142 may be disposed on the upper surface of the recess 128 and may be electrically connected to the first conductive semiconductor layer 124.
- the second electrode 146 may be disposed under the second conductive semiconductor layer 127.
- the first electrode 142 and the second electrode 146 may be ohmic electrodes.
- the first electrode 142 and the second electrode 146 may be formed of one selected from the group consisting of ITO (indium tin oxide), IZO (indium zinc oxide), IZTO (indium zinc tin oxide), IAZO (indium aluminum zinc oxide), IGZO ), IGTO (indium gallium tin oxide), AZO (aluminum zinc oxide), ATO (antimony tin oxide), GZO (gallium zinc oxide), IZON (IZO Nitride), AGZO ZnO, ZnO, IrOx, RuOx, NiO, RuOx / ITO, Ni / IrOx / Au or Ni / IrOx / Au / ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ru, Mg, Zn, Pt, Au, and Hf.
- the present invention is not limited to these materials.
- the first electrode may have
- the Al composition of the semiconductor structure 120 increases, current diffusion characteristics within the semiconductor structure 120 may be degraded.
- the amount of light emitted in the lateral direction of the semiconductor device increases in the active layer 126 (TM mode) as compared with the GaN-based blue light emitting device. This TM mode can mainly occur in an ultraviolet semiconductor device.
- the current diffusion characteristics may be degraded in the semiconductor structure, and a uniform current density characteristic in the semiconductor structure is secured, so that a smooth current injection is required to secure the electrical and optical characteristics and reliability of the semiconductor device. Accordingly, a relatively large number of recesses 128 can be formed in order to inject the current into the first electrode 142 in comparison with a conventional GaN-based semiconductor structure.
- components for improving current diffusion characteristics and current injection characteristics that are degraded when a GaN-based semiconductor structure includes Al will be described.
- the first insulating layer 131 may electrically isolate the first electrode 142 from the active layer 126 and the second conductive type semiconductor layer 127.
- the first insulating layer 131 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
- the first insulating layer 131 may function to prevent the side surface of the active layer 126 from being oxidized during the process of the semiconductor device.
- the first insulating layer 131 is SiO 2, SixOy, Si 3 N 4, SixNy, SiOxNy, Al 2 O 3, TiO 2, but may be at least one is selected and formed from the group consisting of AlN, etc., is not limited to, .
- the first insulating layer 131 may be formed as a single layer or a multilayer.
- the first insulating layer 131 may be a DBR (distributed Bragg reflector) having a multi-layer structure including silver oxide or Ti compound.
- the first insulating layer 131 may include various reflective structures without being limited thereto.
- the light extracting efficiency can be improved by upwardly reflecting the light L1 emitted toward the side surface of the active layer 126. [ In this case, as the number of recesses 128 increases, the light extraction efficiency may be more effective.
- the diameter W3 of the first electrode 142 may be 24 ⁇ ⁇ or more and 50 ⁇ ⁇ or less. When this range is satisfied, it is advantageous for current dispersion and a large number of first electrodes 142 can be disposed.
- the current injected into the first conductivity type semiconductor layer 124 can be sufficiently secured when the diameter W3 of the first electrode 142 is greater than 24 mu m and when the diameter W3 is 50 mu m or less, The number of the first electrodes 142 disposed in the area of the first electrode 124 can be sufficiently secured and the current dispersion characteristics can be ensured.
- the diameter W1 of the recess 128 may be 38 ⁇ or more and 60 ⁇ or less.
- the diameter W1 of the recess 128 may be defined as the widest area in the recess disposed below the second conductive type semiconductor layer 127.
- the diameter W1 of the recess 128 may be the diameter of the recess 128 disposed on the bottom surface of the second conductive type semiconductor layer 127.
- the first electrode 142 When forming the first electrode 142 disposed inside the recess 128 when the diameter W1 of the recess 128 is 38 ⁇ ⁇ or more, the first electrode 142 is a first conductive type It is possible to secure a process margin for securing an area for electrically connecting to the semiconductor layer 124 and to prevent the volume of the active layer 124 decreasing for disposing the first electrode 142 And therefore the luminous efficiency can be deteriorated.
- the inclination angle [theta] 5 of the recess 128 may be 70 degrees to 90 degrees. If such an area range is satisfied, it may be advantageous to form the first electrode 142 on the upper surface, and a large number of recesses 128 may be formed.
- the inclination angle [theta] 5 is less than 70 degrees, the area of the active layer 124 to be removed can be increased, but the area in which the first electrode 142 is disposed can be reduced. Therefore, the current injection characteristic may be lowered, and the luminous efficiency may be lowered. Therefore, the area ratio between the first electrode 142 and the second electrode 146 can be adjusted by using the inclination angle [theta] 5 of the recess 128.
- the thickness d2 of the first electrode 142 may be smaller than the thickness d3 of the first insulating layer 131 and the distance d4 between the first insulating layer 131 and the first electrode 142 may be 0 ⁇ ⁇ to 4 ⁇ ⁇ . .
- the peeling and cracks And the like can be solved.
- the gap-fill characteristic of the second insulating layer 132 can be improved by providing the first insulating layer 131 and the spacing d4.
- the distance d4 between the first electrode 142 and the first insulating layer 131 may be 0 ⁇ or more and 4 ⁇ or less.
- the width of the first insulating layer 131 disposed on the upper surface of the recess 128 can be secured when the distance d4 between the first electrode 142 and the first insulating layer 131 is less than 4 mu m,
- the obtained width of the first insulating layer 131 can provide the function of the current blocking layer, thereby ensuring the reliability of the semiconductor device.
- the upper surface 143 of the recess 128 is electrically connected to the first region d5 where the first insulating layer 131 and the first conductive type semiconductor layer 124 are in contact with each other, A second region d4 in contact with the layer 124 and a third region d6 in which the first electrode layer 142 and the first conductivity type semiconductor layer 124 are in contact with each other.
- the third region d6 may be equal to the width W3 of the first electrode 142.
- the first insulating layer 142 and the second insulating layer 132 are formed of the same material, the first insulating layer 142 and the second insulating layer 132 are not separated from each other by physical and / It is possible.
- the sum of the width of the first region d5 and the width of the second region d4 may be defined as the width of the first region d5 or the width of the second region d4.
- the third region d6 becomes narrow and the width of the first region d5 becomes narrow
- the third region d6 can be widened.
- the width of the first region d5 may be 5 mu m to 14 mu m.
- the process margin for securing the first region d5 can be ensured and the reliability of the semiconductor device can be improved because the first region d5 can be secured.
- the width W3 of the first electrode layer 142 may be reduced when the recess 128 has the diameter W1 and the inclination angle? 5 of the recess, so that the electrical characteristics may be deteriorated.
- the width of the third region d6 can be determined by adjusting the width of the first region d5 and the width of the second region d4 in order to make the current distribution of the semiconductor device uniform and secure the current injection characteristic .
- the area in which the second electrode 146 can be disposed can be reduced.
- the ratio of the total area of the first electrode 142 to the total area of the second electrode 246 can be determined through the inverse relationship and the density of the electrons and the holes is matched to optimize the current density. 128 and / or the total area of the recess 128 can be freely designed within the above range.
- the thickness of the second electrode 146 may be thinner than the thickness of the first insulating layer 131. Therefore, the step coverage characteristics of the second conductive layer 150 and the second insulating layer 132 that surround the second electrode 146 can be ensured and the reliability of the semiconductor device can be improved.
- the second electrode 146 may have a first separation distance S1 of 1 mu m to 4 mu m with the first insulation layer 131. [ It is possible to secure a process margin in the process of disposing the second electrode 146 between the first insulating layers 131 and thus to improve the electrical characteristics, optical characteristics and reliability of the semiconductor device . When the spacing distance is 4 ⁇ ⁇ or less, the entire area in which the second electrode 146 can be arranged can be secured and the operating voltage characteristics of the semiconductor device can be improved.
- the second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 can form one electrical channel.
- the second conductive layer 150 completely surrounds the second electrode 146 and may contact the side surface and the upper surface of the first insulating layer 131.
- the second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131 and includes at least one material selected from the group consisting of Cr, Al, Ti, Ni, and Au, Alloy, and may be a single layer or a plurality of layers.
- the thermal and electrical reliability of the second electrode 146 can be improved.
- it may have a reflection function for reflecting upward the light emitted between the first insulating layer 131 and the second electrode 146.
- the second conductive layer 150 may be disposed at a first separation distance S1 between the first insulation layer 131 and the second electrode 146.
- the second conductive layer 150 may be in contact with the side surface and the upper surface of the second electrode 146 and the side surfaces and the upper surface of the first insulating layer 131 at the first spacing distance S1.
- a region where the second conductive layer 150 and the second conductive semiconductor layer 126 are in contact with each other to form a Schottky junction can be disposed within the first separation distance S1, and by forming a Schottky junction, Dispersion can be facilitated.
- the resistance between the second conductive layer 150 and the second conductive type semiconductor layer 126 is greater than the resistance between the second electrode 146 and the second conductive type semiconductor layer 126. [ Can be freely placed within a larger configuration.
- the second insulating layer 132 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
- the first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132.
- the second insulating layer 132 and the first insulating layer 131 may be formed of the same material or different materials.
- the second conductive layer 150 may electrically connect the second electrode 146 and the second electrode pad 166.
- the second electrode 146 may be disposed directly on the second conductive semiconductor layer 127. At this time, since the surface layer of the second conductivity type semiconductor layer 127 may be composed of n-AlGaN or p-AlGaN as described above, the ohmic resistance may be reduced and the light absorption amount may be small.
- the second conductive layer 150 may be formed of at least one material selected from the group consisting of Cr, Al, Ti, Ni, and Au, and alloys thereof, and may be a single layer or a plurality of layers .
- the first conductive layer 165 and the bonding layer 160 may be disposed along the bottom surface of the semiconductor structure 120 and the shape of the recess 128.
- the first conductive layer 165 may be made of a material having a high reflectivity.
- the first conductive layer 165 may comprise aluminum.
- the electrode layer 165 includes aluminum, it functions to reflect light emitted from the active layer 126 toward the substrate 170 in an upper direction, thereby improving light extraction efficiency.
- the present invention is not limited thereto, and the first conductive layer 165 may provide a function of being electrically connected to the first electrode 142.
- the first conductive layer 165 may be disposed without a high reflectivity material, such as aluminum and / or silver, in which case the first electrode 142, disposed in the recess 128,
- a reflective metal layer (not shown) may be disposed between the first conductive layer 165 and the second conductive semiconductor layer 127 and between the first conductive layer 165 and the first conductive layer 165.
- the bonding layer 160 may include a conductive material.
- the bonding layer 160 may comprise a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or alloys thereof.
- the substrate 170 may be made of a conductive material.
- substrate 170 may comprise a metal or semiconductor material.
- the substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, the heat generated during semiconductor device operation can be quickly dissipated to the outside.
- the first electrode 142 may be supplied with an electric current from the outside through the substrate 170.
- the substrate 170 may comprise a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or alloys thereof.
- a second electrode pad 166 may be disposed at one corner of the semiconductor device.
- the central portion of the second electrode pad 166 is recessed so that the upper surface of the second electrode pad 166 may have a concave portion and a convex portion.
- a wire (not shown) may be bonded to the concave portion of the upper surface. Accordingly, the bonding area can be widened and the second electrode pad 166 and the wire can be bonded more firmly.
- the second electrode pad 166 may be electrically connected to the second conductive layer 150 through the passivation layer 180 and the first insulating layer 131.
- a passivation layer 180 may be disposed on the top and sides of the semiconductor structure 120.
- the thickness of the passivation layer 180 may be greater than or equal to 200 nm and less than or equal to 500 nm. When the thickness is not more than 500 nm, the stress applied to the semiconductor device can be reduced, and the optical and electrical reliability of the semiconductor device can be reduced. Or the process time of the semiconductor device is increased, the problem that the unit price of the semiconductor device is increased can be solved.
- Unevenness may be formed on the upper surface of the semiconductor structure 120. Such unevenness can improve the extraction efficiency of light emitted from the semiconductor structure 120.
- the average height of the unevenness may be different depending on the wavelength of ultraviolet light. In the case of UV-C, the height of the unevenness is about 300 nm to 800 nm and the light extraction efficiency can be improved when the average height is 500 nm to 600 nm.
- FIG. 10 is a plan view of a semiconductor device according to the first embodiment of the present invention
- FIG. 11 is a plan view of the semiconductor device according to the present invention
- FIG. 12 is a plan view of a semiconductor device according to a third embodiment of the present invention
- FIG. 13 is a plan view of a semiconductor device according to a fourth embodiment of the present invention
- FIG. 14 Is a graph of light output and WPE of a semiconductor device according to the first to fourth embodiments.
- the GaN-based semiconductor structure 120 may include aluminum, and if the aluminum composition of the semiconductor structure 120 is increased, the current dispersion characteristics may deteriorate in the semiconductor structure 120 .
- the active layer 126 emits ultraviolet rays including Al, the amount of light emitted to the side of the active layer 126 increases (TM mode) as compared with a GaN-based blue light emitting device. This TM mode can mainly occur in an ultraviolet semiconductor device.
- the ultraviolet semiconductor device has a lower current dispersion characteristic than the blue GaN based semiconductor device. Therefore, the ultraviolet semiconductor device needs to arrange the first electrode 142 relatively larger than the blue GaN-based semiconductor device.
- the current is dispersed only at a point near each of the first electrodes 142, and the current density may be drastically lowered at distant points. Therefore, the effective light-emitting region P2 can be narrowed.
- the effective light emitting region P2 can be defined as a region up to the boundary point where the current density is 40% or less based on the current density at the center of the first electrode 142 having the highest current density.
- the effective light emitting region P2 can be adjusted according to the level of the injection current and the composition of Al within a range of 40 ⁇ ⁇ from the center of the recess 128.
- the current density in the low current density region P3 is low and the amount of emitted light may be smaller than that in the effective light emitting region P2. Therefore, the first electrode 142 can be further disposed in the low current density region P3 having a low current density, or the light output can be improved by using the reflective structure.
- the area of the recess 128 and the first electrode 142 because the current dispersion property is relatively good.
- the composition of aluminum is high and the current dispersion characteristics are relatively low, the area and / or number of the first electrode 142 is increased even if the area of the active layer 126 is sacrificed, Or it may be desirable to arrange the reflective structure in the low current density region P3.
- the recesses 128 when the number of the recesses 128 increases to 48, the recesses 128 may be arranged in a zigzag manner instead of being arranged straight in the transverse direction. In this case, since the area of the low current density region P3 can be narrowed, most of the active layer 126 can participate in light emission.
- Table 2 shows the total area (ISO area) of the semiconductor structures of Examples 1 to 4, the area of the p-ohmic electrode (second area), the area of the n-ohmic electrode (first area), the area ratio, Were measured.
- the semiconductor structure area may be the maximum horizontal cross-sectional area including the recess area.
- the area of the first electrode may be the area of the n-ohmic electrode, which increases as the number of recesses 128 increases, based on the area 100% of the semiconductor structure.
- the area of the second electrode may be the area of the p-Ohmic electrode, which decreases as the number of recesses 128 increases, based on 100% area of the semiconductor structure.
- Table 3 the semiconductor structure area (ISO area), the recess area, the area of the second conductivity type semiconductor layer, the area of the first conductive layer, and the area of the second electrode pad in Examples 1 to 4 were measured.
- the recess area is the total area of the recess, which increases with the number of recesses based on the area of 100% of the semiconductor structure.
- the area of each recess may be the largest in the thickness direction.
- the area of the second conductivity type semiconductor layer is the total area of the second conductivity type semiconductor layer which decreases as the number of recesses increases, based on the area of 100% of the semiconductor structure.
- the area of the first conductive layer is the total area of the first conductive layer which decreases with increasing number of recesses based on 100% of the semiconductor structure.
- the second electrode pad is designed to have a constant area regardless of the number of recesses based on 100% of the semiconductor structure.
- Example 1 100 4.9 62.6 1: 12.7 79
- Example 2 100 6.0 56.5 1: 9.41
- Example 3 100 7.3 49.4 1: 6.76 116
- Example 4 100 8.6 41.9 1: 4.87 137
- Examples 1 to 4 it can be seen that as the number of recesses 128 increases, the area of the active layer and the second electrode decreases, and the total area of the recess 128 and the total area of the first electrode gradually increase
- the sizes of the semiconductor elements, the recesses, and the sizes of the first electrodes were the same.
- the diameter of the recess 128 was made equal to 56 ⁇ m
- the diameter of the first electrode was made equal to 42 ⁇ m.
- the first area where the plurality of first electrodes 142 are in contact with the first conductivity type semiconductor layer 124 may be 4.9% or more and 8.6% or less of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120.
- the first area of the plurality of first electrodes 142 is 4.9% or more, a sufficient current injection characteristic can be ensured, so that the light output can be ensured.
- the area is 8.6% or less, the area of the active layer and the second electrode The operating voltage characteristics and the light output can be improved.
- the total area of the plurality of recesses 128 may be at least 16% and at most 24.6% of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120. If the total area of the recess 128 does not satisfy the above condition, it may be difficult to control the total area of the first electrode 142 to 4.9% or more and 8.6% or less.
- the semiconductor structure 120 is made of AlGaN based material
- the current injection characteristic to be injected from the outside into the semiconductor structure 120 and the current diffusion characteristic in the semiconductor structure 120 due to the high resistance of the semiconductor structure 120 May be lower than the GaN-based semiconductor structure 120. Therefore, when the total area of the recesses is 16% or more of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120, electrical characteristics due to current injection and current diffusion characteristics can be secured. It is possible to ensure the optical characteristics such as light output.
- the second area where the second electrode 246 contacts the second conductive type semiconductor layer 127 may be not less than 41.9% and not more than 62.6% of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120.
- the second area may be the total area at which the second electrode 246 contacts the second conductive semiconductor layer 127.
- the second area for ensuring the operating voltage characteristics of the semiconductor device and securing the injection efficiency of the holes injected into the semiconductor structure 120 may be 42% or more of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120.
- the maximum cross-sectional area in the horizontal direction of the optical fiber 120 is 42% or more of the maximum cross-sectional area in the horizontal direction of the optical fiber 120.
- the surface of the second conductivity type semiconductor layer in contact with the second electrode contains aluminum, the current dispersion efficiency may be relatively lowered. Therefore, it is necessary to improve the current dispersion efficiency by widening the contact area of the second electrode.
- the light output was improved by 4% as compared with the first embodiment.
- the third embodiment (# 3) in which the number of recesses was increased to 116 the light output was improved by 3% as compared with the first embodiment.
- the fourth embodiment (# 4) in which the number of recesses is increased to 137 the light output is rather lower than that of the third embodiment.
- the power conversion efficiency also shows the same tendency as the optical output power.
- the power conversion efficiency may be output power / input power.
- the horizontal dotted line may be a desired WPE reference, but is not necessarily limited thereto.
- the first area and the second area have an inverse relationship. That is, when the number of recesses is increased in order to increase the number of first electrodes, the area of the second electrode decreases. It can be seen that the first area or the second area is excessively reduced in the first and fourth embodiments, resulting in a decrease in light output.
- the ratio of the first area where the first electrodes are in contact with the first conductivity type semiconductor layer and the second area where the second electrode is in contact with the second conductivity type semiconductor layer is 1 : Greater than 4.87 and less than 1: 12.7.
- the area ratio is larger than 1: 4.87, the second area with respect to the first area can be sufficiently secured. Therefore, the current injection characteristic by the second electrode is improved, so that the balance of electrons and holes injected into the active layer 126 can be secured. Further, the current injection characteristics of the semiconductor element can be improved.
- the second area is only about 41.9%, so that the balance of electrons and holes injected into the active layer 126 can not be ensured and current injection characteristics of the semiconductor device may be deteriorated. As a result, the light output of the semiconductor element can be reduced.
- the area ratio can be adjusted to be less than 1: 12.7 to secure the first area for the second area. If the area ratio is adjusted to be smaller than 1: 12.7, the current injection characteristic by the first electrode can be improved and the balance of electrons and holes injected into the active layer 126 can be ensured, thereby improving current injection characteristics of the semiconductor device.
- the first area is only about 4.9%, and the current injection efficiency may be lowered.
- the maximum area (lower surface) in the horizontal direction of the semiconductor structure and the area ratio of recesses may be larger than 1: 0.16 and smaller than 1: 0.246. If the area ratio is larger than 1: 0.16, a sufficient first area can be ensured and current injection characteristics by the first electrode can be improved. Further, when the area ratio is smaller than 1: 0.246, the second area can be secured and the current injection characteristic can be improved.
- FIG. 15 is a conceptual view of a semiconductor device according to a fifth embodiment of the present invention
- FIG. 16 is a plan view of FIG.
- the plurality of recesses 128 may extend to a portion of the first conductivity type semiconductor layer 124 through the second conductivity type semiconductor layer 127 and the active layer 126.
- the first electrode 142 may be disposed on the upper surface of the recess 128 and may be electrically connected to the first conductive semiconductor layer 124.
- the second electrode 146 may be disposed under the second conductive semiconductor layer 127 and electrically connected thereto.
- the surface layer of the second conductivity type semiconductor layer 127 may be composed of n-AlGaN or p-AlGaN as described above, the ohmic resistance may be reduced and the light absorption amount may be small.
- the first insulating layer 131 may electrically isolate the first electrode 142 from the active layer 126 and the second conductive type semiconductor layer 127.
- the first insulating layer 131 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
- the first insulating layer 131 When the first insulating layer 131 performs the insulating function, light emitted toward the side surface of the active layer 126 may be reflected upward to improve light extraction efficiency. As described later, in the ultraviolet semiconductor device, the larger the number of the recesses 128, the more effective the light extraction efficiency.
- the second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 can form one electrical channel.
- the second conductive layer 150 completely surrounds the second electrode 146 and may contact the side surface and the upper surface of the first insulating layer 131.
- the second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131 and includes at least one material selected from the group consisting of Cr, Al, Ti, Ni, Au, And may be a single layer or a plurality of layers.
- the thermal and electrical reliability of the second electrode 146 can be improved.
- it may have a reflection function for reflecting upward the light emitted between the first insulating layer 131 and the second electrode 146.
- the second insulating layer 132 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
- the first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132.
- the first conductive layer 165 and the bonding layer 160 may be disposed along the bottom surface of the light emitting structure 120 and the shape of the recess 128.
- the first conductive layer 165 may be made of a material having a high reflectivity.
- the first conductive layer 165 may comprise aluminum. When the first conductive layer 165 includes aluminum, it functions to reflect the light emitted from the active layer 126 to the upper portion, thereby improving the light extraction efficiency.
- the bonding layer 160 may include a conductive material.
- the bonding layer 160 may comprise a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or alloys thereof.
- the substrate 170 may be made of a conductive material.
- substrate 170 may comprise a metal or semiconductor material.
- the substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, the heat generated during semiconductor device operation can be quickly dissipated to the outside.
- the substrate 170 may comprise a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or alloys thereof.
- Irregularities may be formed on the upper surface of the light emitting structure 120. This unevenness can improve the extraction efficiency of light emitted from the light emitting structure 120.
- the average height may vary depending on the wavelength of ultraviolet light. In the case of UV-C, the height of the unevenness is about 300 nm to 800 nm, and the light extraction efficiency can be improved when the average height is 500 nm to 600 nm.
- the semiconductor device may include a side reflector Z1 disposed at the edge.
- the side reflective portion Z1 may be formed by protruding the second conductive layer 150, the first conductive layer 165, and the substrate 170 in the thickness direction (Y axis direction).
- the side reflector Z1 may be disposed along the edge of the semiconductor device, and may surround the light emitting structure.
- the second conductive layer 150 of the side reflecting portion Z1 protrudes higher than the active layer 126 and can upward reflect the light emitted from the active layer 126. [ Accordingly, even if a separate reflection layer is not formed, the light emitted in the horizontal direction (X-axis direction) due to the TM mode at the outermost periphery can be upwardly reflected.
- the angle of inclination of the side reflector Z1 may be greater than 90 degrees and less than 145 degrees.
- the inclination angle may be an angle formed by the second conductive layer 150 and the horizontal plane (XZ plane). If the angle is less than 90 degrees or greater than 145 degrees, the efficiency of reflecting the light traveling toward the side toward the image side may decrease.
- FIG. 17 is a conceptual view of a semiconductor device package according to an embodiment of the present invention
- FIG. 18 is a plan view of a semiconductor device package according to an embodiment of the present invention
- FIG. 19 is a modification of FIG.
- the semiconductor device package comprises a body 2 formed with a groove 3, a semiconductor element 1 disposed on the body 2, and a semiconductor element 1 disposed on the body 2 and electrically connected to the semiconductor element 1 And may include a pair of lead frames 5a and 5b connected thereto.
- the semiconductor element 1 may include all of the structures described above.
- the body 2 may include a material or a coating layer that reflects ultraviolet light.
- the body 2 can be formed by laminating a plurality of layers 2a, 2b, 2c, 2d and 2e.
- the plurality of layers 2a, 2b, 2c, 2d and 2e may be the same material or may comprise different materials.
- the groove 3 may be formed so as to be wider as it is away from the semiconductor element, and a step 3a may be formed on the inclined surface.
- the light-transmitting layer 4 may cover the groove 3.
- the light-transmitting layer 4 may be made of a glass material, but is not limited thereto.
- the light-transmitting layer 4 is not particularly limited as long as it is a material capable of effectively transmitting ultraviolet light.
- the inside of the groove 3 may be an empty space.
- the semiconductor element 10 is disposed on the first lead frame 5a and can be connected to the second lead frame 5b by a wire.
- the second lead frame 5b may be arranged to surround the side surface of the first lead frame.
- a plurality of semiconductor elements 10a, 10b, 10c, and 10d may be disposed in the semiconductor device package.
- the lead frame may include the first to fifth lead frames 5a, 5b, 5c, 5d and 5e.
- the first semiconductor element 10a may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire.
- the second semiconductor element 10b may be disposed on the second lead frame 5b and connected to the third lead frame 5c by a wire.
- the third semiconductor element 10c may be disposed on the third lead frame 5c and connected to the fourth lead frame 5d by a wire.
- the fourth semiconductor element 10d may be disposed on the fourth lead frame 5d and connected to the fifth lead frame 5e by a wire.
- the light source device may be a concept comprising a lighting device, and a display device, a vehicle lamp, and the like. That is, semiconductor devices can be applied to various electronic devices arranged in a case to provide light.
- the illumination device may include a light source module including a substrate and semiconductor elements of the embodiment, a heat dissipation unit that dissipates heat of the light source module, and a power supply unit that processes or converts an electrical signal provided from the outside and provides the light source module. Further, the lighting device may include a lamp, a head lamp, or a street lamp or the like.
- the display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter.
- the bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet can constitute a backlight unit.
- the reflector is disposed on the bottom cover, and the light emitting module can emit light.
- the light guide plate is disposed in front of the reflection plate to guide the light emitted from the light emitting module forward, and the optical sheet may include a prism sheet or the like and be disposed in front of the light guide plate.
- the display panel is disposed in front of the optical sheet, and the image signal output circuit supplies an image signal to the display panel, and the color filter can be disposed in front of the display panel.
- the semiconductor device can be used as a backlight unit of an edge type when used as a backlight unit of a display device or as a backlight unit of a direct-bottom type.
- the semiconductor device may be a laser diode other than the light emitting diode described above.
- the laser diode may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure, like the light emitting element. Then, an electro-luminescence (electroluminescence) phenomenon in which light is emitted when an electric current is applied after bonding the p-type first conductivity type semiconductor and the n-type second conductivity type semiconductor is used, There are differences in the directionality and phase of light. That is, the laser diode can emit light having one specific wavelength (monochromatic beam) with the same phase and in the same direction by using a phenomenon called stimulated emission and a constructive interference phenomenon. It can be used for optical communication, medical equipment and semiconductor processing equipment.
- a photodetector which is a kind of transducer that detects light and converts the intensity of the light into an electric signal
- photodetectors silicon, selenium
- photodetectors cadmium sulfide, cadmium selenide
- photodiodes for example, visible blind spectral regions or PDs with peak wavelengths in the true blind spectral region
- a transistor, a photomultiplier tube, a phototube (vacuum, gas-filled), and an IR (Infra-Red) detector but the embodiment is not limited thereto.
- a semiconductor device such as a photodetector may be fabricated using a direct bandgap semiconductor, which is generally excellent in photo-conversion efficiency.
- the photodetector has a variety of structures, and the most general structure includes a pinned photodetector using a pn junction, a Schottky photodetector using a Schottky junction, and a metal-semiconductor metal (MSM) photodetector have.
- MSM metal-semiconductor metal
- the photodiode may include the first conductivity type semiconductor layer having the structure described above, the active layer, and the second conductivity type semiconductor layer, and may have a pn junction or a pin structure.
- the photodiode operates by applying reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and a current flows. At this time, the magnitude of the current may be approximately proportional to the intensity of the light incident on the photodiode.
- a photovoltaic cell or a solar cell is a type of photodiode that can convert light into current.
- the solar cell like the light emitting device, may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure.
- it can be used as a rectifier of an electronic circuit through a rectifying characteristic of a general diode using a p-n junction, and can be applied to an oscillation circuit or the like by being applied to a microwave circuit.
- the above-described semiconductor element is not necessarily implemented as a semiconductor, and may further include a metal material as the case may be.
- a semiconductor device such as a light receiving element may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, Or may be implemented using a doped semiconductor material or an intrinsic semiconductor material.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Disclosed is a semiconductor device according to an embodiment, comprising: a semiconductor structure comprising a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer arranged between the first conductive semiconductor layer and the second conductive semiconductor layer; a first electrode electrically connected to the first conductive semiconductor layer; and a second electrode electrically connected to the second conductive semiconductor layer, wherein the semiconductor structure comprises a third conductive semiconductor layer arranged between the second conductive semiconductor layer and the second electrode; the third conductive semiconductor layer and the first conductive semiconductor layer comprise an n-type dopant; the second conductive semiconductor layer comprises a p-type dopant; the thickness of the third conductive semiconductor layer is smaller than the thickness of the first conductive semiconductor layer; the dopant concentration of the third conductive semiconductor layer is higher than the dopant concentration of the first conductive semiconductor layer; and the ratio between the aluminum composition of the third conductive semiconductor layer and the aluminum composition of the first conductive semiconductor layer is 1:0.71 to 1:3.5.
Description
실시 예는 반도체 소자에 관한 것이다.Embodiments relate to semiconductor devices.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.Semiconductor devices including compounds such as GaN and AlGaN have many merits such as wide and easy bandgap energy, and can be used variously as light emitting devices, light receiving devices, and various diodes.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다. Particularly, a light emitting device such as a light emitting diode or a laser diode using a semiconductor material of Group 3-5 or 2-6 group semiconductors can be applied to various devices such as a red, Blue, and ultraviolet rays. By using fluorescent materials or combining colors, it is possible to realize a white light beam with high efficiency. Also, compared to conventional light sources such as fluorescent lamps and incandescent lamps, low power consumption, , Safety, and environmental friendliness.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.In addition, when a light-receiving element such as a photodetector or a solar cell is manufactured using a semiconductor material of Group 3-5 or Group 2-6 compound semiconductor, development of a device material absorbs light of various wavelength regions to generate a photocurrent , It is possible to use light in various wavelength ranges from the gamma ray to the radio wave region. It also has advantages of fast response speed, safety, environmental friendliness and easy control of device materials, so it can be easily used for power control or microwave circuit or communication module.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.Accordingly, the semiconductor device can be replaced with a transmission module of an optical communication means, a light emitting diode backlight replacing a cold cathode fluorescent lamp (CCFL) constituting a backlight of an LCD (Liquid Crystal Display) display device, White light emitting diodes (LEDs), automotive headlights, traffic lights, and gas and fire sensors. In addition, semiconductor devices can be applied to high frequency application circuits, other power control devices, and communication modules.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다.In particular, a light emitting device that emits light in the ultraviolet wavelength range can be used for curing, medical use, and sterilization by curing or sterilizing action.
최근 자외선 발광소자에 대한 연구가 활발하나, 아직까지 자외선 발광소자는 수직형으로 구현하기 어려운 문제가 있으며, 오믹 특성을 위해 GaN 박막을 사용되는 경우 광 출력이 저하되는 문제가 있다.Recently, research on ultraviolet light emitting devices has been actively conducted. However, there is a problem that it is difficult to realize a vertical type ultraviolet light emitting device, and there is a problem that a light output is lowered when a GaN thin film is used for an ohmic characteristic.
실시 예는 오믹 특성이 개선된 반도체 소자를 제공한다.The embodiment provides a semiconductor device with improved ohmic characteristics.
또한, 광 출력이 향상된 반도체 소자를 제공한다.Further, a semiconductor device with improved light output is provided.
또한, 동작 전압을 낮아진 반도체 소자를 제공한다.In addition, a semiconductor device with reduced operating voltage is provided.
또한, 수직형 자외선 발광소자를 제공한다.Further, a vertical ultraviolet light emitting device is provided.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.The problems to be solved in the embodiments are not limited to these, and the objects and effects that can be grasped from the solution means and the embodiments of the problems described below are also included.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 반도체 구조물; 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및 상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고, 상기 반도체 구조물은 상기 제2 도전형 반도체층과 상기 제2 전극 사이에 배치되는 제3 도전형 반도체층을 포함하고, 상기 제3 도전형 반도체층과 상기 제1 도전형 반도체층은 n형 도펀트를 포함하고, 상기 제2 도전형 반도체층은 p형 도펀트를 포함하고, 상기 제3 도전형 반도체층의 두께는 상기 제1 도전형 반도체층의 두께보다 얇고, 상기 제3 도전형 반도체층의 도펀트 농도는 상기 제1 도전형 반도체층의 도펀트 농도보다 높고, 상기 제3 도전형 반도체층의 알루미늄 조성과 상기 제1 도전형 반도체층의 알루미늄 조성의 비는 1:0.71 내지 1:3.5를 만족한다.A semiconductor device according to an embodiment of the present invention includes a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer Semiconductor structure; A first electrode electrically connected to the first conductive semiconductor layer; And a second electrode electrically connected to the second conductive type semiconductor layer, wherein the semiconductor structure includes a third conductive type semiconductor layer disposed between the second conductive type semiconductor layer and the second electrode, The third conductivity type semiconductor layer and the first conductivity type semiconductor layer may include an n-type dopant, the second conductivity type semiconductor layer may include a p-type dopant, 1 conductivity type semiconductor layer, the dopant concentration of the third conductivity type semiconductor layer is higher than the dopant concentration of the first conductivity type semiconductor layer, and the aluminum composition of the third conductivity type semiconductor layer and the first conductivity type semiconductor layer The ratio of the aluminum composition of the semiconductor layer satisfies 1: 0.71 to 1: 3.5.
상기 제1 도전형 반도체층, 활성층, 제2 도전형 반도체층, 및 제3 도전형 반도체층은 알루미늄을 포함할 수 있다.The first conductive semiconductor layer, the active layer, the second conductive semiconductor layer, and the third conductive semiconductor layer may include aluminum.
상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 높을 수 있다.The aluminum composition of the third conductivity type semiconductor layer may be higher than the aluminum composition of the active layer and the first conductivity type semiconductor layer.
상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 낮을 수 있다.The aluminum composition of the third conductivity type semiconductor layer may be lower than the aluminum composition of the active layer and the first conductivity type semiconductor layer.
상기 제2 도전형 반도체층은 두께 방향으로 알루미늄 조성이 감소하는 제1영역을 포함하고, 상기 제3 도전형 반도체층은 상기 제1 영역과 상기 제2 전극 사이에 배치될 수 있다.The second conductivity type semiconductor layer may include a first region where the aluminum composition decreases in the thickness direction, and the third conductivity type semiconductor layer may be disposed between the first region and the second electrode.
상기 제2 도전형 반도체층은 상기 제1 영역과 상기 활성층 사이에 배치되는 제2 영역을 포함하고, 상기 제2 영역은 두께 방향으로 알루미늄 조성이 일정할 수 있다.The second conductivity type semiconductor layer may include a second region disposed between the first region and the active layer, and the second region may have a constant aluminum composition in the thickness direction.
상기 제2 도전형 반도체층과 제3 도전형 반도체층 사이의 알루미늄 조성 변화는 불연속적일 수 있다.The change in aluminum composition between the second conductivity type semiconductor layer and the third conductivity type semiconductor layer may be discontinuous.
상기 제2 도전형 반도체층과 상기 제3 도전형 반도체층의 알루미늄 조성은 동일할 수 있다.The aluminum composition of the second conductivity type semiconductor layer and the third conductivity type semiconductor layer may be the same.
상기 제1 도전형 반도체층의 도핑 농도는 1×1018/cm3 내지 2×1020/cm3이고, 상기 제3 도전형 반도체층의 도핑 농도는 2×1019/cm3 내지 3×1020/cm3일 수 있다.The doping concentration of the first conductivity type semiconductor layer is 1 × 10 18 / cm 3 to 2 × 10 20 / cm 3 , and the doping concentration of the third conductivity type semiconductor layer is 2 × 10 19 / cm 3 to 3 × 10 20 / cm < 3 >.
상기 반도체 구조물은 상기 제3 도전형 반도체층, 제2 도전형 반도체층, 및 상기 활성층을 관통하여 상기 제1 도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하고, 상기 제1 전극은 상기 리세스의 내부에 배치되고, 상기 제2 전극은 상기 제3 도전형 반도체층에 접촉할 수 있다.Wherein the semiconductor structure includes the third conductive type semiconductor layer, the second conductive type semiconductor layer, and a plurality of recesses penetrating the active layer to a partial region of the first conductive type semiconductor layer, May be disposed inside the recess, and the second electrode may contact the third conductive type semiconductor layer.
상기 제1 전극과 전기적으로 연결되는 제1 도전층, 상기 제2 전극과 전기적으로 연결되는 제2 도전층, 상기 제1도전층과 제2도전층 사이에 배치되는 제2 절연층, 및 상기 제2도전층의 하부에 배치되는 도전성 기판을 포함할 수 있다.A first conductive layer electrically connected to the first electrode, a second conductive layer electrically connected to the second electrode, a second insulating layer disposed between the first conductive layer and the second conductive layer, 2 < / RTI > conductive layer.
상기 제2 도전층과 상기 도전성 기판 사이에 배치되는 접합층을 포함할 수 있다.And a bonding layer disposed between the second conductive layer and the conductive substrate.
상기 활성층은 자외선 파장대의 광을 생성할 수 있다.The active layer can generate light in an ultraviolet wavelength range.
상기 반도체 구조물의 하부면과 상기 복수 개의 리세스의 면적비는 1:0.16보다 크고 1:0.246보다 작을 수 있다.The area ratio of the lower surface of the semiconductor structure to the plurality of recesses may be greater than 1: 0.16 and less than 1: 0.246.
실시 예에 따르면, 오믹 특성이 개선되어 동작 전압을 낮출 수 있다.According to the embodiment, the ohmic characteristics can be improved and the operating voltage can be lowered.
또한, 반도체 소자 내에서 광 흡수를 억제하여 광 출력을 향상시킬 수 있다.Further, light absorption can be suppressed in the semiconductor device, and the light output can be improved.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and advantageous advantages and effects of the present invention are not limited to the above description, and can be more easily understood in the course of describing a specific embodiment of the present invention.
도 1은 본 발명의 제1 실시 예에 따른 반도체 구조물의 개념도이고,1 is a conceptual view of a semiconductor structure according to a first embodiment of the present invention,
도 2는 본 발명의 제1 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,2 is a graph showing the aluminum composition ratio of the semiconductor structure according to the first embodiment of the present invention,
도 3은 본 발명의 제2 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,3 is a graph showing an aluminum composition ratio of a semiconductor structure according to a second embodiment of the present invention,
도 4는 본 발명의 제3 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,4 is a graph showing the aluminum composition ratio of the semiconductor structure according to the third embodiment of the present invention,
도 5는 본 발명의 제4 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,5 is a graph showing an aluminum composition ratio of a semiconductor structure according to a fourth embodiment of the present invention,
도 6은 본 발명의 제5 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고,6 is a graph showing the aluminum composition ratio of the semiconductor structure according to the fifth embodiment of the present invention,
도 7은 본 발명의 제1 실시 예에 따른 반도체 소자의 개념도이고,7 is a conceptual view of a semiconductor device according to the first embodiment of the present invention,
도 8a는 도 7의 A부분 확대도이고,Fig. 8A is an enlarged view of a portion A in Fig. 7,
도 8b는 도 8a의 일부 확대도이고,FIG. 8B is a partial enlarged view of FIG. 8A,
도 9a 및 도 9b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고,9A and 9B are diagrams for explaining a configuration in which light output is improved in accordance with the number of recesses,
도 10은 본 발명의 제1 실시 예에 따른 반도체 소자의 평면도이고,10 is a plan view of a semiconductor device according to the first embodiment of the present invention,
도 11은 본 발명의 제2 실시 예에 따른 반도체 소자의 평면도이고,11 is a plan view of a semiconductor device according to a second embodiment of the present invention,
도 12는 본 발명의 제3 실시 예에 따른 반도체 소자의 평면도이고,12 is a plan view of a semiconductor device according to a third embodiment of the present invention,
도 13은 본 발명의 제4 실시 예에 따른 반도체 소자의 평면도이고,13 is a plan view of a semiconductor device according to a fourth embodiment of the present invention,
도 14는 제1 내지 제4 실시 예에 따른 반도체 소자의 광 출력 및 전력 변환 효율(Wall-Plug Efficiency)를 측정한 그래프이고,FIG. 14 is a graph showing optical output and power conversion efficiency (Wall-Plug Efficiency) of the semiconductor device according to the first to fourth embodiments,
도 15는 본 발명의 제5 실시 예에 따른 반도체 소자의 개념도이고,15 is a conceptual view of a semiconductor device according to a fifth embodiment of the present invention,
도 16은 도 15의 평면도이고,Fig. 16 is a plan view of Fig. 15,
도 17은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고,17 is a conceptual view of a semiconductor device package according to an embodiment of the present invention,
도 18은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고,18 is a plan view of a semiconductor device package according to an embodiment of the present invention,
도 19는 도 18의 변형예이다.19 is a modification of Fig.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다. The embodiments may be modified in other forms or various embodiments may be combined with each other, and the scope of the present invention is not limited to each embodiment described below.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다. Although not described in the context of another embodiment, unless otherwise described or contradicted by the description in another embodiment, the description in relation to another embodiment may be understood.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.For example, if the features of configuration A are described in a particular embodiment, and the features of configuration B are described in another embodiment, even if the embodiment in which configuration A and configuration B are combined is not explicitly described, It is to be understood that they fall within the scope of the present invention.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiments, in the case where one element is described as being formed "on or under" another element, the upper (upper) or lower (lower) or under are all such that two elements are in direct contact with each other or one or more other elements are indirectly formed between the two elements. Also, when expressed as "on or under", it may include not only an upward direction but also a downward direction with respect to one element.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.
도 1은 본 발명의 일 실시 예에 따른 반도체 구조물의 개념도이고, 도 2는 본 발명의 일 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이다.FIG. 1 is a conceptual view of a semiconductor structure according to an embodiment of the present invention, and FIG. 2 is a graph illustrating an aluminum composition ratio of a semiconductor structure according to an embodiment of the present invention.
도 1 및 도 2를 참고하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(124), 제2 도전형 반도체층(127), 및 제1 도전형 반도체층(124)과 제2 도전형 반도체층(127) 사이에 배치되는 활성층(126)을 포함하는 반도체 구조물(120)을 포함한다.1 and 2, a semiconductor device according to an embodiment includes a first conductive semiconductor layer 124, a second conductive semiconductor layer 127, and a first conductive semiconductor layer 124, Type semiconductor layer 127. The semiconductor structure 120 includes an active layer 126,
본 발명의 실시 예에 따른 반도체 구조물(120)은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 반도체 구조물(120)은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 반도체 구조물(120)의 Al의 조성비에 의해 결정될 수 있다.The semiconductor structure 120 according to the embodiment of the present invention can output light in the ultraviolet wavelength range. For example, the semiconductor structure 120 may output UV-A at near-ultraviolet wavelength band, UV-B at the far ultraviolet wavelength band, UV-B at deep ultraviolet wavelength band, C can be output. The wavelength range can be determined by the composition ratio of Al of the semiconductor structure 120. [
예시적으로, 근자외선 파장대의 광(UV-A)는 320nm 내지 420nm 범위에서 피크 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위에서 피크 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위에서 피크 파장을 가질 수 있다.Illustratively, the near-ultraviolet light (UV-A) may have a peak wavelength in the range of 320 nm to 420 nm, the far ultraviolet light (UV-B) may have a peak wavelength in the range of 280 nm to 320 nm, The light (UV-C) at deep ultraviolet wavelength band may have a peak wavelength in the range of 100 nm to 280 nm.
반도체 구조물(120)이 자외선 파장대의 광을 발광할 때, 반도체 구조물(120)의 각 반도체층은 알루미늄을 포함하는 Inx1Aly1Ga1
-x1-
y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1) 물질을 포함할 수 있다. 여기서, Al의 조성은 In 원자량과 Ga 원자량 및 Al 원자량을 포함하는 전체 원자량과 Al 원자량의 비율로 나타낼 수 있다. 예를 들어, Al 조성이 40%인 경우 Ga 의 조성은 60%인 Al40Ga60N일 수 있다. When the semiconductor structure 120 is for emitting light in the ultraviolet wavelength range, the respective semiconductor layers of the semiconductor structure 120 In x1 Al y1 Ga 1 -x1- containing aluminum y1 N (0≤x1≤1, 0 <y1 1, 0? X1 + y1? 1). Here, the composition of Al can be represented by the ratio of the total atomic weight including the In atomic weight, the Ga atomic weight, and the Al atomic weight to the Al atomic weight. For example, when the Al composition is 40%, the composition of Ga may be Al 40 Ga 60 N of 60%.
또한 실시 예의 설명에 있어서 조성이 낮거나 높다라는 의미는 각 반도체층의 조성 %의 차이(% 포인트)로 이해될 수 있다. 예를 들면, 제1 반도체층의 알루미늄 조성이 30%이고 제2 반도체층의 알루미늄 조성이 60%인 경우, 제2 반도체층의 알루미늄 조성은 제1 반도체층의 알루미늄 조성보다 30% 더 높다라고 표현할 수 있다.Further, in the description of the embodiment, the meaning of the composition is low or high can be understood as a difference (percentage point) of the composition percentage of each semiconductor layer. For example, when the aluminum composition of the first semiconductor layer is 30% and the aluminum composition of the second semiconductor layer is 60%, the aluminum composition of the second semiconductor layer is 30% higher than the aluminum composition of the first semiconductor layer .
제1 도전형 반도체층(124)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1 도전형 반도체층(124)은 Inx1Aly1Ga1
-x1-y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, AlN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1 도전형 반도체층(124)은 n형 반도체층일 수 있다.The first conductive semiconductor layer 124 may be formed of a compound semiconductor such as Group III-V or Group II-VI, and the first dopant may be doped. The first conductive semiconductor layer 124 may be a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0? X1? 1 , 0 < y1? 1 , 0? X1 + y1? For example, AlGaN, AlN, InAlGaN, and the like. The first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductivity type semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
제1 도전형 반도체층(124)은 제1 서브 반도체층(124a), 제2 서브 반도체층(124b), 및 제1 서브 반도체층(124a)과 제2 서브 반도체층(124b) 사이에 배치된 중간층(124c)을 포함할 수 있다.The first conductivity type semiconductor layer 124 is disposed between the first and second semiconductor layers 124a and 124b and between the first and second semiconductor layers 124a and 124b. And an intermediate layer 124c.
제2 서브 반도체층(124b)은 제1 서브 반도체층(124a)보다 활성층(126)에 가까이 배치될 수 있다. 제2 서브 반도체층(124b)의 알루미늄 조성은 제1 서브 반도체층(124a) 보다 낮을 수 있다. The second sub semiconductor layer 124b may be disposed closer to the active layer 126 than the first sub semiconductor layer 124a. The aluminum composition of the second sub-semiconductor layer 124b may be lower than that of the first sub-semiconductor layer 124a.
반도체 구조물(120)이 심자외선 파장대의 광(UV-C)을 방출하는 경우, 제2 서브 반도체층(124b)의 알루미늄 조성은 40% 내지 70%이고, 제1 서브 반도체층(124a)의 알루미늄 조성은 50% 내지 80%일 수 있다. 제2 서브 반도체층(124b)의 알루미늄 조성이 40% 이상일 때 활성층(126)에서 방출되는 심자외선 파장대의 광(UV-C)의 흡수율을 낮추어 광추출효율을 개선할 수 있고, 70% 이하일 때 활성층(126)으로의 전류 주입 특성 및 제2 서브 반도체층(124b) 내에서의 전류 확산 특성을 확보할 수 있다. The aluminum composition of the second sub semiconductor layer 124b is 40% to 70% when the semiconductor structure 120 emits light UV-C at the deep ultraviolet wavelength band, The composition may be from 50% to 80%. It is possible to improve the light extraction efficiency by lowering the absorption rate of light (UV-C) emitted from the deep ultraviolet wavelength band emitted from the active layer 126 when the aluminum composition of the second sub semiconductor layer 124b is 40% or more, The current injection characteristics into the active layer 126 and the current diffusion characteristics in the second sub semiconductor layer 124b can be ensured.
또한, 제1 서브 반도체층(124a)의 알루미늄 조성이 50% 이상일 때 활성층(126)에서 방출되는 심자외선 파장대의 광(UV-C)의 흡수율을 낮추어 광추출효율을 개선할 수 있고, 80% 이하일 때 활성층(126)으로의 전류 주입 특성 및 제1 서브 반도체층(124a) 내에서의 전류 확산 특성을 확보할 수 있다.Further, when the aluminum composition of the first sub-semiconductor layer 124a is 50% or more, the absorption efficiency of light (UV-C) emitted from the deep ultraviolet wavelength band emitted from the active layer 126 can be lowered, The current injection characteristics into the active layer 126 and the current diffusion characteristics in the first sub semiconductor layer 124a can be ensured.
또한, 제2 서브 반도체층(124b)의 알루미늄 조성보다 제1 서브 반도체층(124a)의 알루미늄 조성이 높을 경우 굴절률의 차이에 의해서, 활성층(126)에서 반도체 구조물(120) 외부로 광이 추출되기 더 유리할 수 있어 반도체 구조물(120)의 광추출효율이 개선될 수 있다.When the aluminum composition of the first sub semiconductor layer 124a is higher than the aluminum composition of the second sub semiconductor layer 124b, light is extracted from the active layer 126 to the outside of the semiconductor structure 120 due to the difference in refractive index The light extraction efficiency of the semiconductor structure 120 can be improved.
제2 서브 반도체층(124b)의 두께는 제1 서브 반도체층(124a)의 두께보다 얇을 수 있다. 제1 서브 반도체층(124a)은 제2 서브 반도체층(124b)의 두께의 130%이상일 수 있다. 이러한 구성에 의하면 알루미늄 조성이 높은 제1 서브 반도체층(124a)의 두께를 충분히 확보한 후에 중간층(124c)이 배치되므로 전체 반도체 구조물(120)의 결정성이 향상될 수 있다.The thickness of the second sub-semiconductor layer 124b may be thinner than the thickness of the first sub-semiconductor layer 124a. The first sub-semiconductor layer 124a may be 130% or more of the thickness of the second sub-semiconductor layer 124b. According to this structure, since the intermediate layer 124c is disposed after the thickness of the first sub semiconductor layer 124a having a high aluminum composition is sufficiently secured, the crystallinity of the entire semiconductor structure 120 can be improved.
중간층(124c)의 알루미늄 조성은 제1 도전형 반도체층(124) 및 제2 도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 중간층(124c)은 제1전극과 접촉하는 영역일 수 있다. 또한, 중간층(124c)은 성장 기판을 제거하는 LLO(Laser Lift-off) 공정시 반도체 구조물(120)에 조사되는 레이저를 흡수하여 활성층(126)이 손상되는 것을 방지하는 역할을 수행할 수 있다. 따라서, 실시 예에 따른 반도체 소자는 LLO(Laser Lift-off) 공정시 활성층(126)의 손상을 방지할 수 있어 광 출력 및 전기적 특성이 향상될 수 있다.The aluminum composition of the intermediate layer 124c may be lower than the aluminum composition of the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 124. The intermediate layer 124c may be a region in contact with the first electrode. In addition, the intermediate layer 124c may serve to absorb the laser beam irradiated to the semiconductor structure 120 during the LLO (Laser Lift-off) process for removing the growth substrate, thereby preventing the active layer 126 from being damaged. Accordingly, the semiconductor device according to the embodiment can prevent the active layer 126 from being damaged during the LLO (Laser Lift-off) process, and thus the optical output and electrical characteristics can be improved.
중간층(124c)의 두께와 알루미늄 조성은 LLO 공정 시 반도체 구조물(120)에 조사되는 레이저를 흡수하기 위해 적절히 조절될 수 있다. 따라서 중간층(124c)의 알루미늄 조성은 LLO 공정 시 사용하는 Laser 광의 파장에 대응될 수 있으며 LLO용 레이저가 200nm 내지 300nm인 경우 중간층(124c)의 알루미늄 조성은 30% 내지 60%이고, 두께는 1nm 내지 10nm일 수 있다. The thickness of the intermediate layer 124c and the aluminum composition can be appropriately adjusted to absorb the laser irradiated to the semiconductor structure 120 during the LLO process. Therefore, the aluminum composition of the intermediate layer 124c may correspond to the wavelength of the laser light used in the LLO process, and the aluminum composition of the intermediate layer 124c may be 30% to 60% when the laser for the LLO is 200 nm to 300 nm, Lt; / RTI >
예시적으로 LLO용 레이저의 파장이 270nm보다 낮아지는 경우 중간층(124c)의 알루미늄 조성은 50% 내지 70%로 높아질 수 있다. 중간층(124c)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높아지면, 중간층(124c)은 활성층(126)에서 출사된 광을 흡수하지 않을 수 있다. 따라서, 광 추출 효율이 향상될 수 있다.Illustratively, when the wavelength of the LLO laser is lower than 270 nm, the aluminum composition of the intermediate layer 124c may be increased to 50% to 70%. If the aluminum composition of the intermediate layer 124c is higher than the aluminum composition of the well layer 126a, the intermediate layer 124c may not absorb light emitted from the active layer 126. [ Therefore, the light extraction efficiency can be improved.
중간층(124c)은 제1 도전형 반도체층(124)보다 알루미늄 조성이 낮은 제1중간층(미도시), 및 제1 도전형 반도체층(124)보다 알루미늄 조성이 높은 제2중간층(미도시)을 포함할 수도 있다. 제1중간층과 제2중간층은 교대로 복수 개가 배치될 수도 있다.The intermediate layer 124c has a first intermediate layer (not shown) having a lower aluminum composition than the first conductivity type semiconductor layer 124 and a second intermediate layer (not shown) having a higher aluminum composition than the first conductivity type semiconductor layer 124 . A plurality of the first intermediate layer and the second intermediate layer may be alternately arranged.
활성층(126)은 제1 반도체층과 제2 반도체층 사이에 배치될 수 있다. 제1 반도체층은 제1 도전형 반도체층(124)일 수 있고, 제2 반도체층은 제2 도전형 반도체층(127)과 전자 차단층(129)을 포함할 수 있다. The active layer 126 may be disposed between the first semiconductor layer and the second semiconductor layer. The first semiconductor layer may be a first conductive semiconductor layer 124 and the second semiconductor layer may include a second conductive semiconductor layer 127 and an electron blocking layer 129.
활성층(126)은 제1 도전형 반도체층(124)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(127)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(126)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 자외선 파장을 가지는 빛을 생성할 수 있다.The active layer 126 is a layer where electrons (or holes) injected through the first conductive type semiconductor layer 124 and holes (or electrons) injected through the second conductive type semiconductor layer 127 meet. The active layer 126 transitions to a low energy level as electrons and holes recombine, and can generate light having ultraviolet wavelengths.
활성층(126)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(126)의 구조는 이에 한정하지 않는다.The active layer 126 may have any one of a single well structure, a multiple well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, Is not limited thereto.
활성층(126)은 복수 개의 우물층(126a)과 장벽층(126b)을 포함할 수 있다. 우물층(126a)과 장벽층(126b)은 Inx2Aly2Ga1
-x2-
y2N(0≤x2≤1, 0<y2≤1, 0≤x2+y2≤1)의 조성식을 가질 수 있다. 우물층(126a)은 발광하는 파장에 따라 알루미늄 조성이 달라질 수 있다.The active layer 126 may include a plurality of well layers 126a and a barrier layer 126b. The well layer 126a and the barrier layer 126b may have a composition formula of In x 2 Al y 2 Ga 1 -x 2 -y 2 N (0? X 2 ? 1 , 0 < y 2 ? 1 , 0? X 2 + y 2? 1) . The composition of the aluminum layer in the well layer 126a may vary depending on the wavelength of light emitted.
제2 도전형 반도체층(127)은 활성층(126) 상에 배치되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(127)에 제2도펀트가 도핑될 수 있다. 제2 도전형 반도체층(127)은 Inx5Aly2Ga1
-x5-
y2N (0≤x5≤1, 0<y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlGaN, AlInN, AlN, AlGaAs, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2 도전형 반도체층(127)은 p형 반도체층일 수 있다.The second conductive semiconductor layer 127 may be disposed on the active layer 126 and may be formed of a compound semiconductor such as a group III-V or II-VI group. In the second conductive semiconductor layer 127, The dopant can be doped. A second conductive semiconductor layer 127 is a semiconductor material having a compositional formula of In x5 Al y2 Ga 1 -x5- y2 N (0≤x5≤1, 0 <y2≤1, 0≤x5 + y2≤1) or AlGaN , AlInN, AlN, AlGaAs, AlGaInP. When the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba, the second conductivity type semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
제2 도전형 반도체층(127)상에는 제3 도전형 반도체층(128)이 배치될 수 있다. 제3 도전형 반도체층(128)은 제2 전극과 접하는 반도체 구조물(120)의 표면 영역(So)에 배치될 수 있다. 제3 도전형 반도체층(128)과 제2 전극 사이의 저항은 오믹 컨택, 쇼트키 컨택, 또는 터널링 효과 등 하나 이상의 작용에 의할 수 있으나, 반드시 이에 한정하는 것은 아니다. 상기 제2 전극을 통해 상기 제3 도전형 반도체층(128)으로 전류를 주입할 수 있고, 전류 주입 효율은 상기 제3 도전형 반도체층(128)과 상기 제2 전극 사이의 저항에 의해 제어될 수 있다.The third conductive semiconductor layer 128 may be disposed on the second conductive semiconductor layer 127. The third conductive semiconductor layer 128 may be disposed on the surface region So of the semiconductor structure 120 in contact with the second electrode. The resistance between the third conductivity type semiconductor layer 128 and the second electrode may be one or more of an ohmic contact, a Schottky contact, or a tunneling effect, but the present invention is not limited thereto. A current may be injected into the third conductive type semiconductor layer 128 through the second electrode and a current injection efficiency may be controlled by a resistance between the third conductive type semiconductor layer 128 and the second electrode .
제3 도전형 반도체층(128)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도펀트가 도핑될 수 있다. 제1 도전형 반도체층(124)은 Inx1Aly1Ga1
-x1-y1N(0≤x1≤1, 0<y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InAlGaN, AlN 등에서 선택될 수 있다. 그리고, 제1 도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 즉, 제3 도전형 반도체층(128)은 제1 도전형 반도체층(124)과 동일한 n형 반도체층일 수 있다.The third conductive semiconductor layer 128 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and the first dopant may be doped. The first conductive semiconductor layer 124 may be a semiconductor material having a composition formula of In x1 Al y1 Ga 1 -x1 -y1 N (0? X1? 1 , 0 < y1? 1 , 0? X1 + y1? For example, AlGaN, InAlGaN, AlN, and the like. The first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. That is, the third conductive semiconductor layer 128 may be the same n-type semiconductor layer as the first conductive semiconductor layer 124.
전자 차단층(129)은 활성층(126)과 제2 도전형 반도체층(127) 사이에 배치될 수 있다. 전자 차단층(129)은 제1 도전형 반도체층(124)에서 공급된 캐리어가 제2 도전형 반도체층(127)으로 빠져나가는 흐름을 차단하여, 활성층(126) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 전자 차단층(129)의 에너지 밴드갭은 활성층(126) 및/또는 제2 도전형 반도체층(127)의 에너지 밴드갭보다 클 수 있다. 전자 차단층(129)은 제2 도펀트가 도핑되므로 제2 도전형 반도체층(127)의 일부 영역으로 정의될 수도 있다.The electron blocking layer 129 may be disposed between the active layer 126 and the second conductive semiconductor layer 127. The electron blocking layer 129 blocks the flow of the carriers supplied from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 and causes electrons and holes to recombine within the active layer 126 The probability can be increased. The energy band gap of the electron blocking layer 129 may be greater than the energy band gap of the active layer 126 and / or the second conductivity type semiconductor layer 127. The electron blocking layer 129 may be defined as a part of the second conductive type semiconductor layer 127 because the second dopant is doped.
전자 차단층(129)은 Inx1Aly1Ga1
-x1-
y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, AlN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.The electron blocking layer 129 is a semiconductor material having a composition formula of In x 1 Al y 1 Ga 1 -x 1 -y 1 N (0? X 1 ? 1 , 0? Y 1 ? 1 , 0? X 1 + y 1 ? 1 ) , AlN, InAlGaN, and the like, but is not limited thereto.
실시 예에 따르면, 제1 도전형 반도체층(124), 활성층(126), 제2 도전형 반도체층(127), 및 전자 차단층(129)은 모두 알루미늄을 포함할 수 있다. 따라서, 제1 도전형 반도체층(124), 활성층(126), 제2 도전형 반도체층(127), 및 전자 차단층(129)은 AlGaN, InAlGaN 또는 AlN 조성을 가질 수 있다.The first conductivity type semiconductor layer 124, the active layer 126, the second conductivity type semiconductor layer 127, and the electron blocking layer 129 may all comprise aluminum. Therefore, the first conductivity type semiconductor layer 124, the active layer 126, the second conductivity type semiconductor layer 127, and the electron blocking layer 129 may have an AlGaN, InAlGaN, or AlN composition.
전자 차단층(129)은 알루미늄 조성이 50% 내지 100%일 수 있다. 전자 차단층(129)의 알루미늄 조성이 50% 미만일 경우 전자를 차단하기 위한 충분한 에너지 장벽을 가질 수 있고, 활성층(126)에서 방출하는 광을 흡수하지 않을 수 있다. The electron blocking layer 129 may have an aluminum composition of 50% to 100%. If the aluminum composition of the electron blocking layer 129 is less than 50%, it may have a sufficient energy barrier for blocking electrons and may not absorb the light emitted from the active layer 126.
전자 차단층(129)은 제1구간(129a)과 제2구간(129b)을 포함할 수 있다. 제1구간(129a)은 제1 도전형 반도체층(124)에서 제2 도전형 반도체층(127)으로 향하는 방향으로 알루미늄 조성이 높아질 수 있다. 제1구간(129a)의 알루미늄 조성은 80% 내지 100%일 수 있다. 따라서, 전자 차단층(129)의 제1구간(129a)은 반도체 구조물(120) 내에서 Al 조성이 가장 높은 부분일 수 있다. 제1구간(129a)은 AlGaN일 수도 있고 AlN일 수도 있다. 또는 제1구간(129a)은 AlGaN과 AlN이 교대로 배치되는 초격자층일 수도 있다.The electron blocking layer 129 may include a first section 129a and a second section 129b. The first section 129a may have a higher aluminum composition in the direction from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127. [ The aluminum composition of the first section 129a may be 80% to 100%. Accordingly, the first section 129a of the electron blocking layer 129 may be a portion having the highest Al composition in the semiconductor structure 120. [ The first section 129a may be AlGaN or AlN. Or the first section 129a may be a superlattice layer in which AlGaN and AlN are alternately arranged.
제1구간(129a)의 두께는 약 0.1nm 내지 4nm일 수 있다. 전자의 이동을 효율적으로 차단하기 위해서는 제1구간(129a)의 두께는 0.1nm이상으로 배치할 수 있다. 또한, 제2 도전형 반도체층(127)에서 활성층(126)으로 정공의 주입 효율을 확보하기 위해 제1구간(129a)의 두께는 4nm이하로 배치할 수 있다. The thickness of the first section 129a may be about 0.1 nm to 4 nm. In order to effectively block the movement of the electrons, the thickness of the first section 129a can be set to 0.1 nm or more. In order to secure injection efficiency of holes from the second conductivity type semiconductor layer 127 to the active layer 126, the thickness of the first section 129a may be 4 nm or less.
본 발명의 실시 예에서는 제2 도전형 반도체층(127)에서 활성층(126)으로의 정공 주입 효율과 제1 도전형 반도체층(124)에서 제2 도전형 반도체층(127)으로 이동하는 전자의 차단 효율을 확보하기 위해 제1구간(129-a)의 두께를 0.1nm 이상 내지 4nm 이하로 배치하였으나, 전자 차단기능과 정공 주입 기능 중 어느 하나를 선택적으로 더 크게 확보해야 할 경우 상기 언급한 수치 범위를 벗어날 수도 있다. The efficiency of hole injection from the second conductivity type semiconductor layer 127 to the active layer 126 and the efficiency of electron transfer from the first conductivity type semiconductor layer 124 to the second conductivity type semiconductor layer 127 In order to secure the blocking efficiency, the thickness of the first section 129-a is set to 0.1 nm or more and 4 nm or less. However, when it is necessary to selectively secure any one of the electron blocking function and the hole injection function, It may be out of range.
제1구간(129a)과 제2구간(129b) 사이에 배치된 제3구간(129c)은 도펀트를 포함하지 않는 언도프(undoped)된 구간을 포함할 수 있다. 따라서, 제3구간(129c)은 도펀트가 제2 도전형 반도체층(127)로부터 활성층(126)으로 확산되는 것을 방지하는 역할을 수행할 수 있다.The third section 129c disposed between the first section 129a and the second section 129b may include an undoped section that does not include a dopant. Therefore, the third section 129c can prevent the dopant from diffusing from the second conductivity type semiconductor layer 127 to the active layer 126. [
제2 도전형 반도체층(127)은 제3 서브 반도체층(127a) 및 제4 서브 반도체층(127b)을 포함할 수 있다.The second conductivity type semiconductor layer 127 may include a third sub-semiconductor layer 127a and a fourth sub-semiconductor layer 127b.
제3 서브 반도체층(127a)의 두께는 10nm 보다 크고 50nm보다 작을 수 있다. 예시적으로 제3 서브 반도체층(127a)의 두께는 25nm일 수 있다. 제3 서브 반도체층(127a)의 두께가 10nm보다 큰 경우 수평 방향으로 저항이 감소하여 전류 확산 효율이 향상될 수 있다. 또한, 제3 서브 반도체층(127a)의 두께가 50nm보다 작은 경우에는 활성층(126)에서 제3 서브 반도체층(127a)으로 입사된 광이 흡수되는 경로가 단축될 수 있고, 반도체 소자의 광 추출 효율이 향상될 수 있다.The thickness of the third sub-semiconductor layer 127a may be greater than 10 nm and less than 50 nm. Illustratively, the thickness of the third sub-semiconductor layer 127a may be 25 nm. When the thickness of the third sub-semiconductor layer 127a is larger than 10 nm, the resistance decreases in the horizontal direction and the current diffusion efficiency can be improved. When the thickness of the third sub semiconductor layer 127a is smaller than 50 nm, the path through which the light incident on the third sub semiconductor layer 127a from the active layer 126 is absorbed can be shortened, The efficiency can be improved.
제3 서브 반도체층(127a)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 심자외선 또는 원자외선 광을 생성하기 위한 우물층(126a)의 알루미늄 조성은 약 20% 내지 60%일 수 있다. 따라서, 제3 서브 반도체층(127a)의 알루미늄 조성은 40%보다 크고 80%보다 작을 수 있다. 예시적으로, 우물층(126a)의 알루미늄 조성이 30%인 경우 제3 서브 반도체층(127a)의 알루미늄 조성은 40%일 수 있다.The aluminum composition of the third sub semiconductor layer 127a may be higher than the aluminum composition of the well layer 126a. The aluminum composition of the well layer 126a for producing deep ultraviolet or far ultraviolet light may be about 20% to 60%. Therefore, the aluminum composition of the third sub semiconductor layer 127a may be greater than 40% and less than 80%. Illustratively, if the aluminum composition of the well layer 126a is 30%, the aluminum composition of the third sub-semiconductor layer 127a may be 40%.
만약, 제3 서브 반도체층(127a)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 낮은 경우 제3 서브 반도체층(127a)이 자외선 광을 흡수하는 확률이 매우 높기 때문에 광 추출 효율이 떨어질 수 있다. If the aluminum composition of the third sub semiconductor layer 127a is lower than the aluminum composition of the well layer 126a, the probability that the third sub semiconductor layer 127a absorbs ultraviolet light is very high, have.
제4 서브 반도체층(127b)은 상대적으로 균일한 알루미늄 조성을 가져 반도체 구조물의 정공 주입 효율을 향상시키거나 결정성을 개선할 수 있다. 제4 서브 반도체층(127b)의 두께는 20nm 내지 60nm일 수 있다. 제4 서브 반도체층(127b)의 알루미늄 조성은 40% 내지 80%일 수 있다. The fourth sub semiconductor layer 127b may have a relatively uniform aluminum composition to improve hole injection efficiency or improve crystallinity of the semiconductor structure. The thickness of the fourth sub-semiconductor layer 127b may be 20 nm to 60 nm. The aluminum composition of the fourth sub-semiconductor layer 127b may be 40% to 80%.
제3 도전형 반도체층(128)은 제2 전극과 접촉하는 반도체 구조물의 표면층(So)일 수 있다. 제3 도전형 반도체층(128)은 도핑 농도가 높고 두께가 얇을 수 있다. 따라서, 제3 도전형 반도체층(128)은 터널링 효과(Tunnel Effect)에 의해 제2 전극(146)과 오믹 저항이 낮아질 수 있다.The third conductive semiconductor layer 128 may be a surface layer (So) of the semiconductor structure in contact with the second electrode. The third conductive semiconductor layer 128 may have a high doping concentration and a small thickness. Therefore, the ohmic resistance of the third conductivity type semiconductor layer 128 with respect to the second electrode 146 may be lowered due to the tunneling effect.
제3 도전형 반도체층(128)은 n형 도펀트가 도핑될 수 있다. 따라서, 제3 도전형 반도체층(128)과 제1 도전형 반도체층(124)은 모두 n-AlGaN일 수 있다. 그러나, 제3 도전형 반도체층(128)과 제1 도전형 반도체층(124)은 도핑 농도, 알루미늄 조성, 및 두께가 상이할 수 있다.The third conductive semiconductor layer 128 may be doped with an n-type dopant. Accordingly, the third conductivity type semiconductor layer 128 and the first conductivity type semiconductor layer 124 may all be n-AlGaN. However, the doping concentration, the aluminum composition, and the thickness of the third conductivity type semiconductor layer 128 and the first conductivity type semiconductor layer 124 may be different.
제3 도전형 반도체층(128)은 터닐링 효과를 갖기 위해 도핑 농도가 제1 도전형 반도체층(124)의 도핑 농도보다 높을 수 있다. 예시적으로, 제1 도전형 반도체층(124)의 도핑 농도는 1×1018/cm3 내지 2×1020/cm3이고, 제3 도전형 반도체층(128)의 도핑 농도는 2×1019/cm3 내지 3×1020/cm3일 수 있다.The doping concentration of the third conductivity type semiconductor layer 128 may be higher than the doping concentration of the first conductivity type semiconductor layer 124 to have a turling effect. Illustratively, the doping concentration of the first conductivity type semiconductor layer 124 is 1 × 10 18 / cm 3 to 2 × 10 20 / cm 3 , and the doping concentration of the third conductivity type semiconductor layer 128 is 2 × 10 19 / cm 3 to 3 × 10 20 / cm 3 may be.
제3 도전형 반도체층(128)의 두께는 1nm 내지 10nm, 또는 1nm 내지 5nm일 수 있다. 제3 도전형 반도체층(128)의 두께가 10nm보다 큰 경우에는 정공의 주입 효율이 약해지는 문제가 있다. 따라서, 제3 도전형 반도체층(128)의 두께는 제1 도전형 반도체층(124) 및 제2 도전형 반도체층(127)보다 작을 수 있다.The thickness of the third conductivity type semiconductor layer 128 may be 1 nm to 10 nm, or 1 nm to 5 nm. When the thickness of the third conductivity type semiconductor layer 128 is larger than 10 nm, there is a problem that the injection efficiency of holes becomes weak. Therefore, the thickness of the third conductivity type semiconductor layer 128 may be smaller than that of the first conductivity type semiconductor layer 124 and the second conductivity type semiconductor layer 127.
제3 도전형 반도체층(128)의 두께는 제3 서브 반도체층(127a)의 두께보다 작을 수 있다. 제3 서브 반도체층(127a)과 제3 도전형 반도체층(128)의 두께비는 1.5:1 내지 20:1일 수 있다. 두께비가 1.5:1보다 작은 경우 제3 서브 반도체층(127a)의 두께가 너무 얇아져 전류 주입 효율이 감소할 수 있다. 또한, 두께비가 20:1보다 큰 경우 제3 도전형 반도체층(128)의 두께가 너무 얇아져 오믹 신뢰성이 저하될 수 있다.The thickness of the third conductivity type semiconductor layer 128 may be smaller than the thickness of the third sub semiconductor layer 127a. The thickness ratio of the third sub semiconductor layer 127a and the third conductivity type semiconductor layer 128 may be 1.5: 1 to 20: 1. If the thickness ratio is smaller than 1.5: 1, the thickness of the third sub semiconductor layer 127a becomes too thin, and the current injection efficiency can be reduced. In addition, when the thickness ratio is larger than 20: 1, the thickness of the third conductivity type semiconductor layer 128 becomes too thin, and the ohmic reliability may be deteriorated.
제3 도전형 반도체층(128)은 터널링 효과에 의해 정공의 주입 효율이 개선되므로 알루미늄 조성을 우물층(126a)보다 상대적으로 높게 제어할 수도 있다. 제3 도전형 반도체층(128)은 알루미늄 조성이 1% 내지 80%일 수 있다.Since the injection efficiency of holes is improved by the tunneling effect of the third conductive type semiconductor layer 128, the aluminum composition may be controlled to be relatively higher than that of the well layer 126a. The third conductivity type semiconductor layer 128 may have an aluminum composition of 1% to 80%.
하기 표 1은 알루미늄을 포함하는 표면층에 제2 전극을 연결하여 발광소자의 동작 전압과 광도를 측정한 표이다.Table 1 below is a table in which the second electrode is connected to a surface layer containing aluminum to measure the operation voltage and luminous intensity of the light emitting device.
제1 실험에는 제2 도전형 반도체층(127)의 알루미늄 조성을 5%까지 낮추어 표면층을 형성하고 제2 전극과 연결하여 실험하였다.In the first experiment, the aluminum composition of the second conductivity type semiconductor layer 127 was lowered to 5% to form a surface layer, and the second electrode was connected to the second electrode.
제2 실험예는 제2 도전형 반도체층(127)상에 n-AlGaN(Al:25%)의 제3 도전형 반도체층(128)을 형성하고 제2 전극을 연결하여 실험하였다. In the second experimental example, the third conductivity type semiconductor layer 128 of n-AlGaN (Al: 25%) was formed on the second conductivity type semiconductor layer 127 and the second electrode was connected.
제3 실험예는 제2 도전형 반도체층(127)상에 n-AlGaN(Al:40%)의 제3 도전형 반도체층(128)을 형성하고 제2 전극을 연결하여 실험하였다. In the third experimental example, the third conductivity type semiconductor layer 128 of n-AlGaN (Al: 40%) was formed on the second conductivity type semiconductor layer 127 and the second electrode was connected.
제1 내지 제3실험예의 발광소자는 상기 오믹 구조를 제외한 나머지 구성은 동일하게 제작하였고, 각 발광소자에 350mA 전류를 인가하여 실험하였다.The light emitting devices of the first through third experimental examples were fabricated in the same manner except for the ohmic structure, and 350 mA current was applied to each light emitting device.
동작 전압(V)Operating voltage (V) | 광도(mW)Brightness (mW) | |
제1실험예Example 1 | 7.107.10 | 80.180.1 |
제2실험예Example 2 | 6.166.16 | 85.285.2 |
제3실험예Example 3 | 6.406.40 | 84.584.5 |
상기 표 1을 참조하면, 제1실험예와 같이 제2 도전형 반도체층(127)의 알루미늄 조성을 낮추어 제2 전극과 전기적으로 연결된 경우 7.10V의 동작 전압과 80.1mW의 광도가 측정되었다.만약, 오믹 특성을 개선하기 위해 제2 도전형 반도체층(127)에 GaN 박막을 형성하는 경우 동작 전압을 낮출 수 있으나, GaN 박막이 대부분의 자외선 광을 흡수하여 광 출력이 약해질 수 있다.Referring to Table 1, when the aluminum composition of the second conductivity type semiconductor layer 127 is lowered and the second electrode is electrically connected to the second electrode, an operation voltage of 7.10 V and a luminous intensity of 80.1 mW are measured as in the first experimental example. When the GaN thin film is formed on the second conductivity type semiconductor layer 127 to improve the ohmic characteristics, the operating voltage can be lowered. However, the GaN thin film absorbs most of the ultraviolet light and the light output may be weak.
그러나, 제2실험예와 같이 n-AlGaN인 제3 도전형 반도체층(128)을 형성하여 제2 전극과 전기적으로 연결하는 경우에는 알루미늄 조성이 5%에서 25%로 높아졌음에도 동작 전압이 낮아졌음을 알 수 있다. 이는 터널링 효과 또는 오믹 특성 개선에 의해 정공 주입 효율이 향상되었기 때문으로 판단된다. 또한, 알루미늄 조성이 높으므로 제3 도전형 반도체층(128)이 자외선 광을 흡수하는 문제도 개선할 수 있다.However, when the third conductive semiconductor layer 128 of n-AlGaN is formed and electrically connected to the second electrode as in the second experimental example, the operating voltage is low even though the aluminum composition is increased from 5% to 25% . This is because the hole injection efficiency is improved by the tunneling effect or the improvement of the ohmic characteristic. Further, since the aluminum composition is high, the problem that the third conductivity type semiconductor layer 128 absorbs ultraviolet light can be also improved.
실시 예에 따르면, 제2 도전형 반도체층(127)과 제2 전극 사이에 제3 도전형 반도체층(128)을 배치함으로써 동작 전압을 낮추고 광 출력을 향상시킬 수 있다.According to the embodiment, by disposing the third conductive type semiconductor layer 128 between the second conductive type semiconductor layer 127 and the second electrode, the operating voltage can be lowered and the light output can be improved.
제3실험예를 참조하면, 제3 도전형 반도체층(128)의 알루미늄의 조성을 40%로 높이는 경우 동작 전압이 약 0.34V로 상승하였음을 알 수 있다. 그러나, 제1실험예에 비해서는 동작 전압이 낮음을 알 수 있다.Referring to the third experimental example, it can be seen that when the composition of the aluminum of the third conductivity type semiconductor layer 128 is increased to 40%, the operating voltage rises to about 0.34V. However, it can be seen that the operating voltage is lower than that of the first experimental example.
실시 예에 따르면, 제3 도전형 반도체층(128)의 알루미늄 조성은 20% 내지 70%일 수 있다. 알루미늄의 조성이 20% 이상인 경우 우물층(126a)과의 알루미늄 조성 차이가 줄어들어 광 흡수가 개선될 수 있다. 또한, 알루미늄의 조성이 70% 이하인 경우 동작 전압이 과도하게 높아져 광 출력이 감소하는 것을 개선할 수 있다.According to the embodiment, the aluminum composition of the third conductive type semiconductor layer 128 may be 20% to 70%. When the composition of aluminum is 20% or more, the difference in aluminum composition with the well layer 126a is reduced, and the light absorption can be improved. In addition, when the composition of aluminum is 70% or less, the operating voltage is excessively increased and the decrease of the light output can be improved.
제1 도전형 반도체층(124)의 평균 알루미늄 조성은 활성층의 알루미늄 조성보다 클 수 있다. 제1 도전형 반도체층(124)의 평균 알루미늄 조성은 50% 내지 70%일 수 있다. The average aluminum composition of the first conductivity type semiconductor layer 124 may be larger than that of the active layer. The average aluminum composition of the first conductivity type semiconductor layer 124 may be 50% to 70%.
따라서, 제3 도전형 반도체층(128)의 알루미늄 조성과 제1 도전형 반도체층(124)의 알루미늄 조성의 비는 1:0.71 내지 1:3.5일 수 있다.Therefore, the ratio of the aluminum composition of the third conductivity type semiconductor layer 128 to the aluminum composition of the first conductivity type semiconductor layer 124 may be 1: 0.71 to 1: 3.5.
조성비가 1:0.71 이상(예, 1:0.8)인 경우에는 제1 도전형 반도체층(124)의 알루미늄 조성이 증가하여 결정성이 향상될 수 있다. 또한, 우물층에서 출사되는 광을 흡수하는 확률이 작아져 광 출력이 향상될 수 있다.When the composition ratio is 1: 0.71 or more (for example, 1: 0.8), the aluminum composition of the first conductivity type semiconductor layer 124 increases and crystallinity can be improved. Further, the probability of absorbing the light emitted from the well layer is reduced, and the light output can be improved.
조성비가 1:3.5 이하인 경우에는 적정한 동작 전압을 유지하면서 제3 도전형 반도체층(128)이 우물층에서 출사되는 광을 흡수하는 확률이 감소할 수 있다. 따라서, 광 출력이 저하될 수 있다.When the composition ratio is 1: 3.5 or less, the probability that the third conductivity type semiconductor layer 128 absorbs light emitted from the well layer can be reduced while maintaining an appropriate operating voltage. Therefore, the light output can be lowered.
실시 예에 따르면, 제2 도전형 반도체층(127)은 활성층(126)에서 멀어지는 방향으로 제4 서브 반도체층(127b)에서는 균일한 알루미늄 조성을 갖다가 제3 서브 반도체층(127a)에서 점차 알루미늄 조성이 감소할 수 있다. 또한, 제3 도전형 반도체층(129)도 두께 방향으로 알루미늄 조성이 감소할 수 있다. 제3 서브 반도체층(127a)의 알루미늄 조성의 감소폭은 제3 도전형 반도체층(128)의 감소폭과 상이할 수도 있고 동일할 수도 있다. 그러나, 이에 한정되는 것은 아니고 제3 도전형 반도체층(128)은 알루미늄 조성이 일정할 수도 있다.The second conductivity type semiconductor layer 127 has a uniform aluminum composition in the fourth sub semiconductor layer 127b in the direction away from the active layer 126 and gradually increases in the aluminum composition in the third sub semiconductor layer 127a Can be reduced. In addition, the aluminum composition in the thickness direction of the third conductivity type semiconductor layer 129 may also decrease. The reduction width of the aluminum composition of the third sub semiconductor layer 127a may be different from or the same as the reduction width of the third conductivity type semiconductor layer 128. [ However, the present invention is not limited thereto, and the aluminum composition of the third conductive type semiconductor layer 128 may be constant.
실시 예에 따르면, 제3 도전형 반도체층의 알루미늄 조성(P3)은 우물층의 알루미늄 조성(P1) 및 중간층의 알루미늄 조성(P4) 보다 낮을 수 있다. 이 경우 제2 전극과의 오믹 저항을 효과적으로 낮출 수 있다. 그러나, 반드시 이에 한정하는 것은 아니고 후술하는 바와 같이 제3 도전형 반도체층의 알루미늄 조성은 다양하게 변형될 수 있다.According to the embodiment, the aluminum composition (P3) of the third conductivity type semiconductor layer may be lower than the aluminum composition (P1) of the well layer and the aluminum composition (P4) of the intermediate layer. In this case, the ohmic resistance with the second electrode can be effectively lowered. However, the present invention is not limited thereto, and the aluminum composition of the third conductivity type semiconductor layer may be variously modified as described later.
도 3은 본 발명의 제2 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고, 도 4는 본 발명의 제3 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이고, 도 5는 본 발명의 제4 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이다.FIG. 3 is a graph showing the aluminum composition ratio of the semiconductor structure according to the second embodiment of the present invention. FIG. 4 is a graph showing the aluminum composition ratio of the semiconductor structure according to the third embodiment of the present invention. 5 is a graph showing the aluminum composition ratio of the semiconductor structure according to the fourth embodiment.
도 3을 참조하면, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)은 우물층(126a)의 알루미늄 조성(P1)보다는 높고 중간층(124c)의 알루미늄 조성(P4)보다는 낮을 수 있다. 우물층(126a)의 알루미늄 조성은 생성하는 광의 파장에 따라 제어될 수 있다. 예시적으로 UVB 파장을 생성하기 위해 알루미늄 조성은 20% 내지 30%일 수 있고, UVC 파장을 생성하기 위해 알루미늄 조성은 30% 내지 50%일 수 있다. 이때, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)이 우물층(126a)의 알루미늄 조성(P1)보다 높도록 제어하는 경우 제3 도전형 반도체층(128)의 광 흡수를 개선할 수 있다. Referring to FIG. 3, the aluminum composition P3 of the third conductive semiconductor layer 128 may be higher than the aluminum composition P1 of the well layer 126a and lower than the aluminum composition P4 of the intermediate layer 124c. The aluminum composition of the well layer 126a can be controlled according to the wavelength of the generated light. Illustratively, the aluminum composition may be between 20% and 30% to produce the UVB wavelength, and the aluminum composition may be between 30% and 50% to produce the UVC wavelength. At this time, if the aluminum composition P3 of the third conductive type semiconductor layer 128 is controlled to be higher than the aluminum composition P1 of the well layer 126a, the light absorption of the third conductive type semiconductor layer 128 may be improved .
중간층(124c)의 알루미늄 조성은 50% 내지 70%일 수 있다. 따라서, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)이 중간층(124c)의 알루미늄 조성(P4)보다는 낮게 설정되는 경우 과도한 동작 전압 상승을 방지할 수 있다.The aluminum composition of the intermediate layer 124c may be 50% to 70%. Therefore, when the aluminum composition P3 of the third conductivity type semiconductor layer 128 is set lower than the aluminum composition P4 of the intermediate layer 124c, it is possible to prevent an excessive increase in the operating voltage.
실시 예에 따르면 터널링 효과에 의해 알루미늄의 조성이 증가하여도 정공 주입 효율이 개선될 수 있다. 따라서, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)을 우물층(126a)의 알루미늄 조성(P1)보다 높게 제어하여 광 흡수율을 개선할 수 있다.According to the embodiment, the hole injection efficiency can be improved even if the composition of aluminum is increased by the tunneling effect. Therefore, the light absorption rate can be improved by controlling the aluminum composition P3 of the third conductivity type semiconductor layer 128 to be higher than the aluminum composition P1 of the well layer 126a.
오믹 특성 관점에서 제3 도전형 반도체층(128)의 알루미늄의 조성은 낮을수록 유리하고 광 흡수 관점에서 알루미늄 조성이 높은 것이 유리할 수 있다. 따라서, 제3 도전형 반도체층의 알루미늄 조성(P3)은 우물층의 알루미늄 조성(P1)보다 높고 제2 도전형 반도체층(127) 또는 중간층(124c)의 알루미늄 조성보다는 낮아지도록 제어할 수 있다. 이때, 제3 서브 반도체층(127a)은 알루미늄 조성이 연속적으로 변화하도록 기울기를 가질 수 있다. From the viewpoint of the ohmic characteristic, it is advantageous that the lower the aluminum composition of the third conductivity type semiconductor layer 128 is, and the higher the aluminum composition from the viewpoint of light absorption. Therefore, the aluminum composition P3 of the third conductivity type semiconductor layer can be controlled to be higher than the aluminum composition P1 of the well layer and lower than the aluminum composition of the second conductivity type semiconductor layer 127 or the intermediate layer 124c. At this time, the third sub semiconductor layer 127a may have a slope so that the aluminum composition continuously changes.
도 4를 참조하면, 제3 도전형 반도체층(128)의 알루미늄 조성(P3)과 제2 도전형 반도체층(127)의 알루미늄 조성 변화는 불연속적일 수 있다. 제2 도전형 반도체층(127)과 제3 도전형 반도체층의 알루미늄 조성(P3)의 차이가 크지 않은 경우 알루미늄의 조성을 줄이는 과정 없이 제3 도전형 반도체층(128)을 형성할 수 있다. Referring to FIG. 4, the aluminum composition P3 of the third conductivity type semiconductor layer 128 and the aluminum composition change of the second conductivity type semiconductor layer 127 may be discontinuous. The third conductive type semiconductor layer 128 can be formed without reducing the composition of the aluminum if the difference in the aluminum composition P3 between the second conductive type semiconductor layer 127 and the third conductive type semiconductor layer is not large.
또한, 도 5를 참조하면, 제2 도전형 반도체층(127)과 제3 도전형 반도체층(128)은 알루미늄 조성이 동일할 수도 있다. 전술한 바와 같이 높은 경우 제3 도전형 반도체층(128)은 알루미늄 조성이 높아져도 터널링 효과에 의해 정공 주입 효율이 개선될 수 있다. 따라서, 광 추출 관점에서 제2 도전형 반도체층(127)과 제3 도전형 반도체층(128)은 알루미늄 조성을 동일하게 제어하는 것이 유리할 수 있다.5, the second conductivity type semiconductor layer 127 and the third conductivity type semiconductor layer 128 may have the same aluminum composition. As described above, the hole injection efficiency of the third conductive type semiconductor layer 128 can be improved by the tunneling effect even if the aluminum composition is high. Therefore, it may be advantageous to control the aluminum composition of the second conductivity type semiconductor layer 127 and the third conductivity type semiconductor layer 128 in the light extraction viewpoint.
이 경우 적정한 오믹 저항을 갖기 위해 도펀트의 도핑 농도는 최대로 하고 제3 도전형 반도체층(128)의 두께는 최소로 제작할 수 있다. In this case, the doping concentration of the dopant is maximized and the thickness of the third conductivity type semiconductor layer 128 is minimized in order to obtain an appropriate ohmic resistance.
도 6은 본 발명의 제5 실시 예에 따른 반도체 구조물의 알루미늄 조성비를 나타낸 그래프이다.6 is a graph showing the aluminum composition ratio of the semiconductor structure according to the fifth embodiment of the present invention.
실시 예에 따른 반도체 소자의 제2 도전형 반도체층(127)은 제2 전극과 접촉하는 표면층(127a)이 P형 도펀트를 포함하는 P-AlGaN인 점을 제외하고는 도 2의 구성과 동일할 수 있다. 오믹 접촉을 위해 제2 도전형 반도체층(127)과 제2 전극(246) 사이에 GaN 박막을 배치하는 경우, GaN 박막이 자외선 파장의 광을 대부분 흡수하므로 광 특성이 저하되는 문제가 있다. 따라서, 실시 예에서는 GaN 박막 없이도 제2 전극과 오믹 접촉이 가능해지도록 제2 도전형 반도체층(127)의 알루미늄 조성을 조절할 필요가 있다.The second conductive semiconductor layer 127 of the semiconductor device according to the embodiment is the same as the configuration of FIG. 2 except that the surface layer 127a in contact with the second electrode is P-AlGaN containing P-type dopant . When the GaN thin film is disposed between the second conductive type semiconductor layer 127 and the second electrode 246 for ohmic contact, the GaN thin film absorbs most of the light with the ultraviolet wavelength, and thus the optical characteristic is deteriorated. Therefore, in the embodiment, it is necessary to adjust the aluminum composition of the second conductivity type semiconductor layer 127 so that ohmic contact with the second electrode is possible without using the GaN thin film.
제2 도전형 반도체층(127)은 제2-1 반도체층(127-1)과 제2-2 반도체층(127-2)을 포함할 수 있다. 제2-1 반도체층(127-1)은 제2전극(146)과 직접 접촉하는 표면 영역(So)일 수 있다. 제2-2 반도체층(127-2)는 전자 차단층(129)과 제2-1 반도체층(127-1) 사이에 배치될 수 있다.The second conductivity type semiconductor layer 127 may include a second-first semiconductor layer 127-1 and a second-second semiconductor layer 127-2. The second-first semiconductor layer 127-1 may be a surface region So in direct contact with the second electrode 146. [ The second-second semiconductor layer 127-2 may be disposed between the electron blocking layer 129 and the second-1 semiconductor layer 127-1.
제2-1 반도체층(127-1)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 낮을 수 있다. 여기서 우물층(126a)은 복수 개의 우물층 중에서 Al 조성이 가장 낮은 우물층일 수 있다. 제2-1 반도체층(127-1)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 높다면, 제2-1 반도체층(127-1)과 제2전극(146) 사이의 저항이 높아져 충분한 오믹이 이루어지지 않고, 전류 주입 효율이 떨어지는 문제가 있다.The aluminum composition of the second-first semiconductor layer 127-1 may be lower than the aluminum composition of the well layer 126a. Here, the well layer 126a may be a well layer having the lowest Al composition among a plurality of well layers. If the aluminum composition of the second-first semiconductor layer 127-1 is higher than the aluminum composition of the well layer 126a, the resistance between the second-first semiconductor layer 127-1 and the second electrode 146 becomes high There is a problem that sufficient ohmic is not achieved and the current injection efficiency is low.
제2-1 반도체층(127-1)의 평균 알루미늄 조성은 1% 내지 35%, 또는 1% 내지 10%일 수 있다. 35%보다 큰 경우 제2전극과 충분한 오믹이 이루어지지 않을 수 있고, 조성이 1%보다 작은 경우 거의 GaN 조성과 가까워져 광을 흡수하는 문제가 있다.The average aluminum composition of the second-first semiconductor layer 127-1 may be 1% to 35%, or 1% to 10%. If it is larger than 35%, the second electrode may not be sufficiently amorphous. If the composition is less than 1%, the GaN composition is close to the GaN composition, and light is absorbed.
제2-1 반도체층(127-1)의 두께는 1nm 내지 10nm일 수 있다. 전술한 바와 같이 제2-1 반도체층(127-1)은 오믹을 위해 알루미늄의 조성이 낮으므로 자외선 광을 흡수할 수 있다. 따라서, 최대한 제2-1 반도체층(127-1)의 두께를 얇게 제어하는 것이 광 출력 관점에서 유리할 수 있다. The thickness of the (2-1) th semiconductor layer 127-1 may be 1 nm to 10 nm. As described above, since the composition of aluminum is low for the ohmic operation, the second-first semiconductor layer 127-1 can absorb ultraviolet light. Therefore, it is advantageous from the viewpoint of light output to control the thickness of the (2-1) th semiconductor layer 127-1 as thin as possible.
그러나 제2-1 반도체층(127-1)의 두께가 1nm이하로 제어되는 경우 너무 얇으므로 알루미늄 조성을 큰 폭으로 낮추기 어렵다. 또한, 두께가 10nm보다 두꺼운 경우 흡수하는 광량이 너무 커져 광 출력 효율이 감소할 수 있다.However, when the thickness of the (2-1) th semiconductor layer 127-1 is controlled to 1 nm or less, it is difficult to lower the aluminum composition considerably because it is too thin. In addition, when the thickness is thicker than 10 nm, the amount of light absorbed becomes too large, and the light output efficiency may decrease.
제2-2 반도체층(127-2)의 두께는 10nm보다 크고 100nm보다 작을 수 있다. 예시적으로 제2-2 반도체층(127-2)의 두께는 25nm일 수 있다. 제2-2 반도체층(127-2)의 두께가 10nm보다 작은 경우 수평 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다. 또한, 제2-2 반도체층(127-2)의 두께가 100nm보다 큰 경우 수직 방향으로 저항이 증가하여 전류 주입 효율이 저하될 수 있다.The thickness of the second-second semiconductor layer 127-2 may be larger than 10 nm and smaller than 100 nm. Illustratively, the thickness of the second-second semiconductor layer 127-2 may be 25 nm. If the thickness of the second-second semiconductor layer 127-2 is less than 10 nm, the resistance increases in the horizontal direction, and the current injection efficiency may be lowered. In addition, when the thickness of the second-second semiconductor layer 127-2 is larger than 100 nm, the resistance increases in the vertical direction and the current injection efficiency may be lowered.
제2-1 반도체층(127-1)의 두께는 제2-2 반도체층(127-2)의 두께보다 작을 수 있다. 제2-1 반도체층(127-1)과 제2-2 반도체층(127-2)의 두께비는 1:5 내지 1:50일 수 있다. 두께비가 1:5 보다 작은 경우 제2-1 반도체층(127-1)의 두께가 너무 두꺼워져 광 출력 효율이 낮아질 수 있다. 또한, 두께비가 1:50보다 큰 경우, 제2-1 반도체층(127-1)의 두께가 너무 얇아질 수 있다. 따라서, 얇은 두께 범위 내에서 원하는 알루미늄 조성 범위까지 낮추기 어려울 수 있다. 따라서, 오믹 신뢰성이 저하될 수 있다.The thickness of the second-first semiconductor layer 127-1 may be smaller than the thickness of the second-second semiconductor layer 127-2. The thickness ratio of the second-first semiconductor layer 127-1 and the second-second semiconductor layer 127-2 may be 1: 5 to 1:50. If the thickness ratio is smaller than 1: 5, the thickness of the (2-1) th semiconductor layer 127-1 becomes too thick, and the light output efficiency may be lowered. In addition, when the thickness ratio is larger than 1:50, the thickness of the second-first semiconductor layer 127-1 may become too thin. Therefore, it may be difficult to lower the aluminum composition to a desired aluminum composition within a thin thickness range. Therefore, ohmic reliability may be degraded.
제2-2 반도체층(127-2)의 알루미늄 조성은 우물층(126a)의 알루미늄 조성보다 높을 수 있다. 예시적으로 자외선 광을 생성하기 위해 우물층(126a)의 알루미늄 조성은 약 30% 내지 50%일 수 있다. 만약, 제2-2 반도체층(127-2)의 알루미늄 조성이 우물층(126a)의 알루미늄 조성보다 낮은 경우 제2-2 반도체층(127-2)이 광을 흡수하기 때문에 광 추출 효율이 떨어질 수 있다.The aluminum composition of the second-second semiconductor layer 127-2 may be higher than that of the well layer 126a. Illustratively, the aluminum composition of the well layer 126a may be about 30% to 50% to produce ultraviolet light. If the aluminum composition of the second-second semiconductor layer 127-2 is lower than the aluminum composition of the well layer 126a, the second-second semiconductor layer 127-2 absorbs light, .
제2-2 반도체층(127-2)의 평균 알루미늄 조성은 40%보다 크고 80%보다 작을 수 있다. 제2-2 반도체층(127-2)의 알루미늄 조성이 40%보다 작은 경우 광을 흡수하는 문제가 있으며, 80%보다 큰 경우에는 전류 주입 효율이 악화되는 문제가 있다. 예시적으로, 제2-2 반도체층(127-2)의 평균 알루미늄 조성은 50%일 수 있다.The average aluminum composition of the second-second semiconductor layer 127-2 may be greater than 40% and less than 80%. When the aluminum composition of the second-second semiconductor layer 127-2 is less than 40%, there is a problem of absorbing light. When the aluminum composition is more than 80%, the current injection efficiency is deteriorated. Illustratively, the average aluminum composition of the second-second semiconductor layer 127-2 may be 50%.
제2-2 반도체층(127-2)은 일부 구간(127-4)에서 알루미늄 조성이 활성층(126)에서 멀어질수록 작아질 수 있다. 이때, 제2-1 반도체층(127-1)의 알루미늄 감소폭은 제2-2 반도체층(127-2)의 일부 구간(127-4)의 알루미늄 감소폭보다 클 수 있다. 즉, 두께 방향으로 제2-1 반도체층(127-1)의 Al 조성 변화율은 제2-2 반도체층(127-2)의 Al 조성 변화율보다 클 수 있다.The second-second semiconductor layer 127-2 may become smaller as the aluminum composition is further away from the active layer 126 in the section 127-4. At this time, the aluminum reduction width of the second-first semiconductor layer 127-1 may be larger than the aluminum reduction width of the section 127-4 of the second-second semiconductor layer 127-2. That is, the Al compositional change rate of the second-first semiconductor layer 127-1 in the thickness direction may be larger than the Al composition change rate of the second-second semiconductor layer 127-2.
제2-2 반도체층(127-2)은 두께는 제2-1 반도체층(127-1)보다 두꺼운 반면, 알루미늄 조성은 우물층(126a)보다 높아야 하므로 감소폭이 상대적으로 완만할 수 있다. 그러나, 제2-1 반도체층(127-1)은 두께가 얇고 알루미늄 조성의 변화폭이 크므로 알루미늄 조성의 감소폭이 상대적으로 클 수 있다.The thickness of the second-second semiconductor layer 127-2 is thicker than that of the second-first semiconductor layer 127-1, while the aluminum composition must be higher than that of the well layer 126a. However, since the second-first semiconductor layer 127-1 has a small thickness and a large variation range of the aluminum composition, the decrease in the aluminum composition may be relatively large.
제2 도전형 반도체층(127) 내에서 알루미늄이 가장 낮은 지점은 제2-1 반도체층(127-1)이 제2전극과 접촉하는 지점일 수 있다. 이때, 알루미늄 조성은 1% 내지 10%일 수 있다. 알루미늄 조성이 1%보다 작은 경우 광 흡수량이 높아질 수 있으며, 알루미늄 조성이 10%보다 커지는 경우 오믹 특성이 저하될 수 있다.The lowest point of aluminum in the second conductivity type semiconductor layer 127 may be the point where the second-1 semiconductor layer 127-1 contacts the second electrode. At this time, the aluminum composition may be 1% to 10%. When the aluminum composition is less than 1%, the light absorption amount may be high, and when the aluminum composition is more than 10%, the ohmic characteristic may be deteriorated.
제2 도전형 반도체층(127) 내에서 알루미늄이 가장 높은 지점은 전자 차단층(129)과 가장 인접한 지점일 수 있다. 이때, 전술한 바와 같이 전자 차단층(129)의 알루미늄 조성은 50% 내지 90%일 수 있다. 따라서, 제2 도전형 반도체층(127)의 알루미늄 최대 조성은 50% 내지 90%일 수 있다.The point where aluminum is highest in the second conductivity type semiconductor layer 127 may be the closest point to the electron blocking layer 129. At this time, as described above, the aluminum composition of the electron blocking layer 129 may be 50% to 90%. Therefore, the aluminum maximum composition of the second conductivity type semiconductor layer 127 may be 50% to 90%.
따라서, 제2 도전형 반도체층(127)의 두께 방향으로 알루미늄 조성 변화는 1% 내지 90%, 또는 10% 내지 90%일 수 있다. 또한, 제2 도전형 반도체층(127)의 가장 낮은 알루미늄 조성과 가장 높은 알루미늄 조성비는 1:5 내지 1:90일 수 있다.Therefore, the aluminum composition change in the thickness direction of the second conductivity type semiconductor layer 127 may be 1% to 90%, or 10% to 90%. In addition, the lowest aluminum composition and the highest aluminum composition ratio of the second conductivity type semiconductor layer 127 may be 1: 5 to 1: 90.
도 7은 본 발명의 제1 실시 예에 따른 반도체 소자의 개념도이고, 도 8a는 도 7의 A부분 확대도이고, 도 8b는 도 8a의 일부 확대도이다.FIG. 7 is a conceptual diagram of a semiconductor device according to the first embodiment of the present invention, wherein FIG. 8A is an enlarged view of a portion A in FIG. 7, and FIG. 8B is a partially enlarged view of FIG. 8A.
도 7을 참고하면, 실시 예에 따른 반도체 소자는 제1 도전형 반도체층(124), 제2 도전형 반도체층(127), 활성층(126)을 포함하는 반도체 구조물(120)과, 제1 도전형 반도체층(124)과 전기적으로 연결되는 제1전극(142)과, 제2 도전형 반도체층(127)과 전기적으로 연결되는 제2전극(146)을 포함한다.7, a semiconductor device according to an embodiment includes a semiconductor structure 120 including a first conductivity type semiconductor layer 124, a second conductivity type semiconductor layer 127, and an active layer 126, And a second electrode 146 electrically connected to the second conductivity type semiconductor layer 127. The first electrode 142 is electrically connected to the first conductivity type semiconductor layer 124 and the second electrode 146 is electrically connected to the second conductivity type semiconductor layer 127. [
제1 도전형 반도체층(124), 활성층(126), 및 제2 도전형 반도체층(127)은 제1방향(Y방향)으로 배치될 수 있다. 이하에서는 각 층의 두께 방향인 제1방향(Y방향)을 수직방향으로 정의하고, 제1방향(Y방향)과 수직한 제2방향(X방향)을 수평방향으로 정의한다. 반도체 구조물의 구성은 도 1 내지 도 6에서 설명한 구조가 모두 포함될 수 있다.The first conductive semiconductor layer 124, the active layer 126, and the second conductive semiconductor layer 127 may be disposed in a first direction (Y direction). Hereinafter, a first direction (Y direction), which is the thickness direction of each layer, is defined as a vertical direction, and a second direction (X direction) perpendicular to the first direction (Y direction) is defined as a horizontal direction. The structure of the semiconductor structure may include all of the structures described in Figs. 1 to 6.
반도체 구조물(120)은 제2 도전형 반도체층(127) 및 활성층(126)을 관통하여 제1 도전형 반도체층(124)의 일부 영역까지 배치되는 복수 개의 리세스(128)를 포함할 수 있다.The semiconductor structure 120 may include a plurality of recesses 128 disposed through a portion of the first conductivity type semiconductor layer 124 through the second conductivity type semiconductor layer 127 and the active layer 126 .
제1전극(142)은 리세스(128)의 상면에 배치되어 제1 도전형 반도체층(124)과 전기적으로 연결될 수 있다. 제2전극(146)은 제2 도전형 반도체층(127)의 하부에 배치될 수 있다.The first electrode 142 may be disposed on the upper surface of the recess 128 and may be electrically connected to the first conductive semiconductor layer 124. The second electrode 146 may be disposed under the second conductive semiconductor layer 127.
제1전극(142)과 제2전극(146)은 오믹전극일 수 있다. 제1전극(142)과 제2전극(146)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다. 예시적으로, 제1전극은 복수의 금속층(예: Cr/Al/Ni)을 갖고, 제2 전극은 ITO일 수 있다.The first electrode 142 and the second electrode 146 may be ohmic electrodes. The first electrode 142 and the second electrode 146 may be formed of one selected from the group consisting of ITO (indium tin oxide), IZO (indium zinc oxide), IZTO (indium zinc tin oxide), IAZO (indium aluminum zinc oxide), IGZO ), IGTO (indium gallium tin oxide), AZO (aluminum zinc oxide), ATO (antimony tin oxide), GZO (gallium zinc oxide), IZON (IZO Nitride), AGZO ZnO, ZnO, IrOx, RuOx, NiO, RuOx / ITO, Ni / IrOx / Au or Ni / IrOx / Au / ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ru, Mg, Zn, Pt, Au, and Hf. However, the present invention is not limited to these materials. Illustratively, the first electrode may have a plurality of metal layers (e.g. Cr / Al / Ni) and the second electrode may be ITO.
도 8a와 도 8b를 참고하면, 반도체 구조물(120)의 Al 조성이 높아지면, 반도체 구조물(120) 내에서 전류 확산 특성이 저하될 수 있다. 또한, 활성층(126)은 GaN 기반의 청색 발광 소자에 비하여 반도체 소자의 측면 방향으로 방출되는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 주로 발생할 수 있다.8A and 8B, as the Al composition of the semiconductor structure 120 increases, current diffusion characteristics within the semiconductor structure 120 may be degraded. In addition, the amount of light emitted in the lateral direction of the semiconductor device increases in the active layer 126 (TM mode) as compared with the GaN-based blue light emitting device. This TM mode can mainly occur in an ultraviolet semiconductor device.
자외선 발광소자에서는 반도체 구조물 내에서 전류 확산 특성이 저하될 수 있고, 반도체 구조물 내에서 균일한 전류 밀도 특성을 확보하여 반도체 소자의 전기적, 광학적 특성 및 신뢰성을 확보하기 위해 원활한 전류 주입이 필요하다. 따라서, 원활한 전류 주입을 위해 일반적인 GaN 기반의 반도체 구조물에 비해 상대적으로 많은 개수의 리세스(128)를 형성하여 제1전극(142)을 배치할 수 있다. 이하에서는 GaN 기반의 반도체 구조물이 Al 을 포함하는 경우 저하되는 전류 확산 특성 및 전류 주입 특성을 개선하기 위한 구성 요소에 대해 설명한다.In the ultraviolet light emitting device, the current diffusion characteristics may be degraded in the semiconductor structure, and a uniform current density characteristic in the semiconductor structure is secured, so that a smooth current injection is required to secure the electrical and optical characteristics and reliability of the semiconductor device. Accordingly, a relatively large number of recesses 128 can be formed in order to inject the current into the first electrode 142 in comparison with a conventional GaN-based semiconductor structure. Hereinafter, components for improving current diffusion characteristics and current injection characteristics that are degraded when a GaN-based semiconductor structure includes Al will be described.
제1절연층(131)은 제1전극(142)을 활성층(126) 및 제2 도전형 반도체층(127)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 제2전극(146) 및 제2 도전층(150)을 제1 도전층(165)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 상기 반도체 소자의 공정 중에 상기 활성층(126)의 측면이 산화되는 것을 방지하는 기능을 할 수 있다.The first insulating layer 131 may electrically isolate the first electrode 142 from the active layer 126 and the second conductive type semiconductor layer 127. The first insulating layer 131 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165. The first insulating layer 131 may function to prevent the side surface of the active layer 126 from being oxidized during the process of the semiconductor device.
제1절연층(131)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다. 제1절연층(131)은 단층 또는 다층으로 형성될 수 있다. 예시적으로 제1절연층(131)은 은 Si 산화물이나 Ti 화합물을 포함하는 다층 구조의 DBR(distributed Bragg reflector) 일 수도 있다. 그러나, 반드시 이에 한정하지 않고 제1절연층(131)은 다양한 반사 구조를 포함할 수 있다.The first insulating layer 131 is SiO 2, SixOy, Si 3 N 4, SixNy, SiOxNy, Al 2 O 3, TiO 2, but may be at least one is selected and formed from the group consisting of AlN, etc., is not limited to, . The first insulating layer 131 may be formed as a single layer or a multilayer. Illustratively, the first insulating layer 131 may be a DBR (distributed Bragg reflector) having a multi-layer structure including silver oxide or Ti compound. However, the first insulating layer 131 may include various reflective structures without being limited thereto.
제1절연층(131)이 반사기능을 수행하는 경우, 활성층(126)에서 측면을 향해 방출되는 광(L1)을 상향 반사시켜 광 추출 효율을 향상시킬 수 있다. 이 경우 리세스(128)의 개수가 많아질수록 광 추출 효율은 더 효과적일 수 있다.When the first insulating layer 131 performs a reflection function, the light extracting efficiency can be improved by upwardly reflecting the light L1 emitted toward the side surface of the active layer 126. [ In this case, as the number of recesses 128 increases, the light extraction efficiency may be more effective.
제1전극(142)의 직경(W3)은 24㎛ 이상 50㎛ 이하일 수 있다. 이러한 범위를 만족하는 경우 전류 분산에 유리할 수 있고, 많은 개수의 제1전극(142)을 배치할 수 있다. 제1전극(142)의 직경(W3)이 24㎛보다 이상일 때, 제1 도전형 반도체층(124)에 주입되는 전류가 충분하게 확보할 수 있고, 50㎛이하일 때, 제1 도전형 반도체층(124)의 면적에 배치되는 복수 개의 제1전극(142)의 수를 충분히 확보할 수 있고 전류 분산 특성을 확보할 수 있다. The diameter W3 of the first electrode 142 may be 24 占 퐉 or more and 50 占 퐉 or less. When this range is satisfied, it is advantageous for current dispersion and a large number of first electrodes 142 can be disposed. The current injected into the first conductivity type semiconductor layer 124 can be sufficiently secured when the diameter W3 of the first electrode 142 is greater than 24 mu m and when the diameter W3 is 50 mu m or less, The number of the first electrodes 142 disposed in the area of the first electrode 124 can be sufficiently secured and the current dispersion characteristics can be ensured.
리세스(128)의 직경(W1)은 38㎛ 이상 60㎛ 이하일 수 있다. 리세스(128)의 직경(W1)은 제2 도전형 반도체층(127)의 하부에 배치되어 리세스에서 가장 넓은 면적으로 정의할 수 있다. 상기 리세스(128)의 직경(W1)은 상기 제2 도전형 반도체층(127)의 저면에 배치된 리세스(128)의 직경일 수 있다.The diameter W1 of the recess 128 may be 38 탆 or more and 60 탆 or less. The diameter W1 of the recess 128 may be defined as the widest area in the recess disposed below the second conductive type semiconductor layer 127. [ The diameter W1 of the recess 128 may be the diameter of the recess 128 disposed on the bottom surface of the second conductive type semiconductor layer 127. [
리세스(128)의 직경(W1)이 38㎛이상일 때, 리세스(128) 내부에 배치되는 제1전극(142)을 형성하는 데에 있어서, 상기 제1 전극(142)이 제1 도전형 반도체층(124)과 전기적으로 연결되기 위한 면적을확보하기 위한 공정 마진을 확보할 수 있고, 60㎛이하일 때, 제1전극(142)을 배치하기 위해 감소하는 활성층(124)의 볼륨을 방지할 수 있고, 따라서 발광 효율이 악화될 수 있다.When forming the first electrode 142 disposed inside the recess 128 when the diameter W1 of the recess 128 is 38 占 퐉 or more, the first electrode 142 is a first conductive type It is possible to secure a process margin for securing an area for electrically connecting to the semiconductor layer 124 and to prevent the volume of the active layer 124 decreasing for disposing the first electrode 142 And therefore the luminous efficiency can be deteriorated.
리세스(128)의 경사각도(θ5)는 70도 내지 90도일 수 있다. 이러한 면적 범위를 만족하는 경우 상면에 제1전극(142)을 형성하는데 유리할 수 있고, 많은 개수의 리세스(128)를 형성할 수 있다. The inclination angle [theta] 5 of the recess 128 may be 70 degrees to 90 degrees. If such an area range is satisfied, it may be advantageous to form the first electrode 142 on the upper surface, and a large number of recesses 128 may be formed.
경사각도(θ5)가 70도보다 작으면 제거되는 활성층(124)의 면적이 증가할 수 있지만, 상기 제1 전극(142)이 배치될 면적이 작아질 수 있다. 따라서 전류 주입 특성이 저하될 수 있고, 발광 효율이의 저하될 수 있다. 따라서, 상기 리세스(128)의 경사각도(θ5)를 이용하여 제1전극(142)과 제2전극(146)의 면적비를 조절할 수도 있다.If the inclination angle [theta] 5 is less than 70 degrees, the area of the active layer 124 to be removed can be increased, but the area in which the first electrode 142 is disposed can be reduced. Therefore, the current injection characteristic may be lowered, and the luminous efficiency may be lowered. Therefore, the area ratio between the first electrode 142 and the second electrode 146 can be adjusted by using the inclination angle [theta] 5 of the recess 128.
제1전극(142)의 두께(d2)는 제1절연층(131)의 두께(d3)보다 얇을 수 있으며, 제1절연층(131)과 0㎛ 내지 4㎛의 이격 거리(d4)를 가질 수 있다. The thickness d2 of the first electrode 142 may be smaller than the thickness d3 of the first insulating layer 131 and the distance d4 between the first insulating layer 131 and the first electrode 142 may be 0 占 퐉 to 4 占 퐉. .
제1전극(142)의 두께(d2)가 제1절연층(131)의 두께(d3)보다 얇은 경우, 제1 도전층(165)을 배치할 때 발생하는 스텝 커버리지 특성 저하에 의한 박리 및 크랙 등의 문제점을 해결할 수 있다. 또한, 제1절연층(131)과 이격 거리(d4)를 가짐으로써 제2절연층(132)의 갭필(Gap-fil)특성이 향상될 수 있다.When the thickness d2 of the first electrode 142 is thinner than the thickness d3 of the first insulating layer 131, the peeling and cracks And the like can be solved. In addition, the gap-fill characteristic of the second insulating layer 132 can be improved by providing the first insulating layer 131 and the spacing d4.
제1전극(142)과 제1절연층(131)의 이격 거리(d4)는 0㎛ 이상 내지 4㎛ 이하일 수 있다. 제1전극(142)과 제1절연층(131)의 이격 거리(d4)가 4 ㎛를이하일 때 리세스(128) 상면에 배치되는 제1절연층(131)의 폭을 확보할 수 있고, 확보된 상기 제1절연층(131)의 폭은 전류차단층 기능을 제공할 수 있어, 상기 반도체 소자의 신뢰성을 확보할 수 있다. The distance d4 between the first electrode 142 and the first insulating layer 131 may be 0 탆 or more and 4 탆 or less. The width of the first insulating layer 131 disposed on the upper surface of the recess 128 can be secured when the distance d4 between the first electrode 142 and the first insulating layer 131 is less than 4 mu m, The obtained width of the first insulating layer 131 can provide the function of the current blocking layer, thereby ensuring the reliability of the semiconductor device.
리세스(128)의 상면(143)은 제1절연층(131)과 제1 도전형 반도체층(124)이 접하는 제1영역(d5), 제2절연층(132)과 제1 도전형 반도체층(124)가 접하는 제2영역(d4), 및 제1전극층(142)과 제1 도전형 반도체층(124)가 접하는 제3영역(d6)을 포함할 수 있다. 제3영역(d6)은 제1전극(142)의 폭(W3)과 동일할 수 있다.The upper surface 143 of the recess 128 is electrically connected to the first region d5 where the first insulating layer 131 and the first conductive type semiconductor layer 124 are in contact with each other, A second region d4 in contact with the layer 124 and a third region d6 in which the first electrode layer 142 and the first conductivity type semiconductor layer 124 are in contact with each other. The third region d6 may be equal to the width W3 of the first electrode 142. [
제1절연층(142)과 제2절연층(132)이 동일한 물질로 구성되는 경우 제1절연층(142)과 제2절연층(132)은 물리적 및/또는 화학적 결합에 의해 서로 구분되지 않을 수도 있다. 이 경우, 제1영역(d5)의 폭과 제2영역(d4)의 폭의 합을 제1영역(d5)의 폭이나 제2영역(d4)의 폭으로 정의할 수도 있다.When the first insulating layer 142 and the second insulating layer 132 are formed of the same material, the first insulating layer 142 and the second insulating layer 132 are not separated from each other by physical and / It is possible. In this case, the sum of the width of the first region d5 and the width of the second region d4 may be defined as the width of the first region d5 or the width of the second region d4.
리세스(128)가 상기 직경(W1)과 경사각(θ5)을 가질 때, 제1영역(d5)의 폭이 넓어지면 제3영역(d6)이 좁아지고, 제1영역(d5)의 폭이 넓어지면 제3영역(d6)이 넓어질 수 있다.When the width of the first region d5 is widened when the recess 128 has the diameter W1 and the inclination angle 5, the third region d6 becomes narrow and the width of the first region d5 becomes narrow The third region d6 can be widened.
제1영역(d5)의 폭은 5㎛~14㎛일 수 있다. 5㎛이상일 때, 상기 제1영역(d5)을 확보하기 위한 공정 마진을 확보할 수 있고, 상기 제1영역(d5)을 확보할 수 있기 때문에 반도체 소자의 신뢰성이 개선될 수 있고, 14㎛보다 크면 상기 리세스(128)가 상기 리세스의 직경(W1)과 경사각(θ5)을 가질 때 제1전극층(142)의 폭(W3)이 줄어들어 전기적 특성이 악화될 수 있다.The width of the first region d5 may be 5 mu m to 14 mu m. The process margin for securing the first region d5 can be ensured and the reliability of the semiconductor device can be improved because the first region d5 can be secured. The width W3 of the first electrode layer 142 may be reduced when the recess 128 has the diameter W1 and the inclination angle? 5 of the recess, so that the electrical characteristics may be deteriorated.
따라서 반도체 소자의 전류 분포를 균일하게 하고, 전류 주입 특성을 확보하기 위해 제3영역(d6)의 폭은 제1영역(d5)의 폭과 제2영역(d4)의 폭을 조절하여 결정할 수 있다.Therefore, the width of the third region d6 can be determined by adjusting the width of the first region d5 and the width of the second region d4 in order to make the current distribution of the semiconductor device uniform and secure the current injection characteristic .
또한, 리세스(128)의 전체 면적이 커질 경우, 제2전극(146)이 배치될 수 있는 면적이 줄어들 수 있다. 이러한 반비례 관계를 통해 제1전극(142)의 전체 면적과 제2전극 (246) 전체 면적의 비율을 결정할 수 있고, 전자와 정공의 밀도(density)를 정합시켜 전류 밀도를 최적화하기 위해 리세스(128)의 폭 및/또는 상기 리세스(128)의 전체 면적을 상기 범위 내에서 자유롭게 설계할 수 있다. In addition, when the total area of the recess 128 is large, the area in which the second electrode 146 can be disposed can be reduced. The ratio of the total area of the first electrode 142 to the total area of the second electrode 246 can be determined through the inverse relationship and the density of the electrons and the holes is matched to optimize the current density. 128 and / or the total area of the recess 128 can be freely designed within the above range.
제2전극(146)의 두께는 제1절연층(131)의 두께보다 얇을 수 있다. 따라서, 상기 제2전극(146)을 감싸는 제2도전층(150)과 제2 절연층(132)의 스텝 커버리지 특성을 확보할 수 있고, 상기 반도체 소자의 신뢰성을 개선할 수 있다. 제2전극(146)은 제1절연층(131)와 1㎛ ~ 4㎛의 제1 이격 거리(S1)를 가질 수 있다. 1㎛ 이상의 이격 거리를 가질 경우, 제1 절연층(131) 사이에 제2 전극(146)을 배치하는 공정의 공정 마진을 확보할 수 있고, 따라서 반도체 소자의 전기적 특성, 광학적 특성 및 신뢰성이 개선될 수 있다. 이격 거리가 4㎛ 이하일 경우, 제2전극(146)이 배치될 수 있는 전체 면적을 확보할 수 있고 반도체 소자의 동작 전압 특성을 개선할 수 있다. The thickness of the second electrode 146 may be thinner than the thickness of the first insulating layer 131. Therefore, the step coverage characteristics of the second conductive layer 150 and the second insulating layer 132 that surround the second electrode 146 can be ensured and the reliability of the semiconductor device can be improved. The second electrode 146 may have a first separation distance S1 of 1 mu m to 4 mu m with the first insulation layer 131. [ It is possible to secure a process margin in the process of disposing the second electrode 146 between the first insulating layers 131 and thus to improve the electrical characteristics, optical characteristics and reliability of the semiconductor device . When the spacing distance is 4 占 퐉 or less, the entire area in which the second electrode 146 can be arranged can be secured and the operating voltage characteristics of the semiconductor device can be improved.
제2 도전층(150)은 제2전극(146)을 덮을 수 있다. 따라서, 제2전극패드(166)와, 제2 도전층(150), 및 제2전극(146)은 하나의 전기적 채널을 형성할 수 있다.The second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 can form one electrical channel.
제2 도전층(150)은 제2전극(146)을 완전히 감싸며 제1절연층(131)의 측면과 상면에 접할 수 있다. 제2 도전층(150)은 제1절연층(131)과 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다. The second conductive layer 150 completely surrounds the second electrode 146 and may contact the side surface and the upper surface of the first insulating layer 131. The second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131 and includes at least one material selected from the group consisting of Cr, Al, Ti, Ni, and Au, Alloy, and may be a single layer or a plurality of layers.
제2 도전층(150)이 제1절연층(131)의 측면과 상면에 접하는 경우, 제2전극(146)의 열적, 전기적 신뢰성을 향상할 수 있다. 또한, 제1절연층(131)과 제2전극(146) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.When the second conductive layer 150 is in contact with the side surface and the upper surface of the first insulating layer 131, the thermal and electrical reliability of the second electrode 146 can be improved. In addition, it may have a reflection function for reflecting upward the light emitted between the first insulating layer 131 and the second electrode 146.
제2 도전층(150)은 제1절연층(131)과 제2전극(146) 사이의 제1 이격 거리(S1)에 배치될 수 있다. 제2 도전층(150)은 제1이격 거리(S1)에서 제2전극(146)의 측면과 상면 및 제1절연층(131)의 측면과 상면에 접할 수 있다. 또한, 제1 이격 거리(S1) 내에서 제2 도전층(150)과 제2도전성 반도체층(126)이 접촉하여 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다. 다만 이에 한정하지 않고, 상기 제2 전극(146)과 상기 제2 도전형 반도체층(126) 사이의 저항보다 상기 제2 도전층(150)과 상기 제2 도전형 반도체층(126) 사이의 저항이 더 큰 구성 내에서 자유롭게 배치될 수 있다.The second conductive layer 150 may be disposed at a first separation distance S1 between the first insulation layer 131 and the second electrode 146. [ The second conductive layer 150 may be in contact with the side surface and the upper surface of the second electrode 146 and the side surfaces and the upper surface of the first insulating layer 131 at the first spacing distance S1. In addition, a region where the second conductive layer 150 and the second conductive semiconductor layer 126 are in contact with each other to form a Schottky junction can be disposed within the first separation distance S1, and by forming a Schottky junction, Dispersion can be facilitated. The resistance between the second conductive layer 150 and the second conductive type semiconductor layer 126 is greater than the resistance between the second electrode 146 and the second conductive type semiconductor layer 126. [ Can be freely placed within a larger configuration.
제2절연층(132)은 제2전극(146), 제2 도전층(150)을 제1 도전층(165)과 전기적으로 절연시킬 수 있다. 제1 도전층(165)은 제2절연층(132)을 관통하여 제1전극(142)과 전기적으로 연결될 수 있다. 상기 제2절연층(132)과 상기 제1절연층(131)은 서로 동일한 물질로 배치될 수 있고, 서로 다른 물질로 배치될 수 있다. The second insulating layer 132 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165. The first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132. The second insulating layer 132 and the first insulating layer 131 may be formed of the same material or different materials.
제2 도전층(150)은 제2전극(146)과 제2전극패드(166)를 전기적으로 연결할 수 있다. The second conductive layer 150 may electrically connect the second electrode 146 and the second electrode pad 166.
제2전극(146)은 제2 도전형 반도체층(127)에 직접 배치될 수 있다. 이때 전술한 바와 같이 제2 도전형 반도체층(127)의 표면층은 n-AlGaN 또는 p-AlGaN으로 구성될 수 있으므로 오믹 저항을 낮추는 동시에 광 흡수량이 적을 수 있다.The second electrode 146 may be disposed directly on the second conductive semiconductor layer 127. At this time, since the surface layer of the second conductivity type semiconductor layer 127 may be composed of n-AlGaN or p-AlGaN as described above, the ohmic resistance may be reduced and the light absorption amount may be small.
제2 도전층(150)은 Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다.The second conductive layer 150 may be formed of at least one material selected from the group consisting of Cr, Al, Ti, Ni, and Au, and alloys thereof, and may be a single layer or a plurality of layers .
반도체 구조물(120)의 하부면과 리세스(128)의 형상을 따라 제1 도전층(165)과 접합층(160)이 배치될 수 있다. 제1 도전층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 제1 도전층(165)은 알루미늄을 포함할 수 있다. 전극층(165)이 알루미늄을 포함하는 경우, 활성층(126)에서 기판(170) 방향으로 방출되는 광을 상부 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다. 다만 이에 한정하지 않고, 제1 도전층(165)은 상기 제1 전극(142)과 전기적으로 연결되기 위한 기능을 제공할 수 있다. 제1 도전층(165)이 반사율이 높은 물질, 예를 들어 알루미늄 및/또는 은(Ag)을 포함하지 않고 배치될 수 있고, 이러한 경우 상기 리세스(128) 내에 배치되는 제1 전극(142)과 상기 제1 도전층(165) 사이, 제2 도전형 반도체층(127)과 상기 제1 도전층(165) 사이에는 반사율이 높은 물질로 구성되는 반사금속층(미도시)이 배치될 수 있다.The first conductive layer 165 and the bonding layer 160 may be disposed along the bottom surface of the semiconductor structure 120 and the shape of the recess 128. [ The first conductive layer 165 may be made of a material having a high reflectivity. Illustratively, the first conductive layer 165 may comprise aluminum. When the electrode layer 165 includes aluminum, it functions to reflect light emitted from the active layer 126 toward the substrate 170 in an upper direction, thereby improving light extraction efficiency. However, the present invention is not limited thereto, and the first conductive layer 165 may provide a function of being electrically connected to the first electrode 142. The first conductive layer 165 may be disposed without a high reflectivity material, such as aluminum and / or silver, in which case the first electrode 142, disposed in the recess 128, A reflective metal layer (not shown) may be disposed between the first conductive layer 165 and the second conductive semiconductor layer 127 and between the first conductive layer 165 and the first conductive layer 165.
접합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 접합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The bonding layer 160 may include a conductive material. Illustratively, the bonding layer 160 may comprise a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or alloys thereof.
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다. 또한 기판(170)이 도전성 물질로 구성되는 경우 제1 전극(142)은 기판(170)을 통해 외부에서 전류를 공급받을 수 있다.The substrate 170 may be made of a conductive material. Illustratively, substrate 170 may comprise a metal or semiconductor material. The substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, the heat generated during semiconductor device operation can be quickly dissipated to the outside. Also, when the substrate 170 is made of a conductive material, the first electrode 142 may be supplied with an electric current from the outside through the substrate 170.
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The substrate 170 may comprise a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or alloys thereof.
반도체 소자의 일측 모서리 영역에는 제2전극패드(166)가 배치될 수 있다. 제2전극패드(166)는 중앙 부분이 함몰되어 상면이 오목부와 볼록부를 가질 수 있다. 상면의 오목부에는 와이어(미도시)가 본딩될 수 있다. 따라서, 접착 면적이 넓어져 제2전극패드(166)와 와이어가 더 견고히 본딩될 수 있다. 제2전극패드(166)는 패시베이션층(180)과 제1절연층(131)을 관통하여 제2도전층(150)과 전기적으로 연결될 수 있다.A second electrode pad 166 may be disposed at one corner of the semiconductor device. The central portion of the second electrode pad 166 is recessed so that the upper surface of the second electrode pad 166 may have a concave portion and a convex portion. A wire (not shown) may be bonded to the concave portion of the upper surface. Accordingly, the bonding area can be widened and the second electrode pad 166 and the wire can be bonded more firmly. The second electrode pad 166 may be electrically connected to the second conductive layer 150 through the passivation layer 180 and the first insulating layer 131.
반도체 구조물(120)의 상면과 측면에는 패시베이션층(180)이 배치될 수 있다. 패시베이션층(180)의 두께는 200nm 이상 내지 500nm 이하일 수 있다. 200nm이상일 경우, 소자를 외부의 수분이나 이물질로부터 보호하여 소자의 전기적, 광학적 신뢰성을 개선할 수 있고, 500nm 이하일 경우 반도체 소자에 인가되는 스트레스를 줄일 수 있고, 상기 반도체 소자의 광학적, 전기적 신뢰성이 저하되거나 반도체 소자의 공정 시간이 길어짐에 따라 반도체 소자의 단가가 높아지는 문제점을 개선할 수 있다.A passivation layer 180 may be disposed on the top and sides of the semiconductor structure 120. The thickness of the passivation layer 180 may be greater than or equal to 200 nm and less than or equal to 500 nm. When the thickness is not more than 500 nm, the stress applied to the semiconductor device can be reduced, and the optical and electrical reliability of the semiconductor device can be reduced. Or the process time of the semiconductor device is increased, the problem that the unit price of the semiconductor device is increased can be solved.
반도체 구조물(120)의 상면에는 요철이 형성될 수 있다. 이러한 요철은 반도체 구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500 nm 내지 600 nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.Unevenness may be formed on the upper surface of the semiconductor structure 120. Such unevenness can improve the extraction efficiency of light emitted from the semiconductor structure 120. The average height of the unevenness may be different depending on the wavelength of ultraviolet light. In the case of UV-C, the height of the unevenness is about 300 nm to 800 nm and the light extraction efficiency can be improved when the average height is 500 nm to 600 nm.
도 9a 및 도 9b는 리세스의 개수 변화에 따라 광 출력이 향상되는 구성을 설명하기 위한 도면이고, 도 10은 본 발명의 제1 실시 예에 따른 반도체 소자의 평면도이고, 도 11은 본 발명의 제2 실시 예에 따른 반도체 소자의 평면도이고, 도 12는 본 발명의 제3 실시 예에 따른 반도체 소자의 평면도이고, 도 13은 본 발명의 제4 실시 예에 따른 반도체 소자의 평면도이고, 도 14는 제1 내지 제4 실시 예에 따른 반도체 소자의 광 출력 및 WPE를 측정한 그래프이다.FIG. 10 is a plan view of a semiconductor device according to the first embodiment of the present invention, and FIG. 11 is a plan view of the semiconductor device according to the present invention. FIG. 12 is a plan view of a semiconductor device according to a third embodiment of the present invention, FIG. 13 is a plan view of a semiconductor device according to a fourth embodiment of the present invention, and FIG. 14 Is a graph of light output and WPE of a semiconductor device according to the first to fourth embodiments.
도 9a를 참조하면, GaN 기반의 반도체구조물(120)이 자외선을 발광하는 경우 알루미늄을 포함할 수 있고, 반도체 구조물(120)의 알루미늄 조성이 높아지면 반도체구조물(120) 내에서 전류 분산 특성이 저하될 수 있다. 또한, 활성층(126)이 Al을 포함하여 자외선을 발광하는 경우, 활성층(126)은 GaN 기반의 청색 발광 소자에 비하여 측면으로 방출하는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 주로 발생할 수 있다.9A, if the GaN-based semiconductor structure 120 emits ultraviolet light, it may include aluminum, and if the aluminum composition of the semiconductor structure 120 is increased, the current dispersion characteristics may deteriorate in the semiconductor structure 120 . In addition, when the active layer 126 emits ultraviolet rays including Al, the amount of light emitted to the side of the active layer 126 increases (TM mode) as compared with a GaN-based blue light emitting device. This TM mode can mainly occur in an ultraviolet semiconductor device.
자외선 반도체 소자는 청색 GaN 기반의 반도체 소자에 비해 전류 분산 특성이 떨어진다. 따라서, 자외선 반도체 소자는 청색 GaN 기반의 반도체 소자에 비해 상대적으로 많은 제1 전극(142)을 배치할 필요가 있다.The ultraviolet semiconductor device has a lower current dispersion characteristic than the blue GaN based semiconductor device. Therefore, the ultraviolet semiconductor device needs to arrange the first electrode 142 relatively larger than the blue GaN-based semiconductor device.
알루미늄의 조성이 높아지면 전류 분산 특성이 악화될 수 있다. 도 9a를 참고하면, 각각의 제1 전극(142)의 인근지점에만 전류가 분산되며, 거리가 먼 지점에서는 전류밀도가 급격히 낮아질 수 있다. 따라서, 유효 발광 영역(P2)이 좁아질 수 있다. The higher the composition of aluminum, the worse the current dispersion characteristics may be. Referring to FIG. 9A, the current is dispersed only at a point near each of the first electrodes 142, and the current density may be drastically lowered at distant points. Therefore, the effective light-emitting region P2 can be narrowed.
유효 발광 영역(P2)은 전류 밀도가 가장 높은 제1 전극(142)의 중심에서의 전류 밀도를 기준으로 전류 밀도가 40% 이하인 경계지점까지의 영역으로 정의할 수 있다. 예를 들어, 유효 발광 영역(P2)은 리세스(128)의 중심으로부터 40㎛이내의 범위에서 주입 전류의 레벨, Al의 조성에 따라 조절될 수 있다.The effective light emitting region P2 can be defined as a region up to the boundary point where the current density is 40% or less based on the current density at the center of the first electrode 142 having the highest current density. For example, the effective light emitting region P2 can be adjusted according to the level of the injection current and the composition of Al within a range of 40 占 퐉 from the center of the recess 128. [
저전류밀도영역(P3)은 전류밀도가 낮아서 방출되는 광량이 유효 발광 영역(P2)에 비해 적을 수 있다. 따라서, 전류밀도가 낮은 저전류밀도영역(P3)에 제1 전극(142)을 더 배치하거나 반사구조를 이용하여 광 출력을 향상시킬 수 있다.The current density in the low current density region P3 is low and the amount of emitted light may be smaller than that in the effective light emitting region P2. Therefore, the first electrode 142 can be further disposed in the low current density region P3 having a low current density, or the light output can be improved by using the reflective structure.
일반적으로 청색광을 방출하는 GaN 기반의 반도체 소자의 경우 상대적으로 전류 분산 특성이 우수하므로 리세스(128) 및 제1 전극(142)의 면적을 최소화하는 것이 바람직하다. 리세스(128)와 제1 전극(142)의 면적이 커질수록 활성층(126)의 면적이 작아지기 때문이다. 그러나, 실시 예의 경우 알루미늄의 조성이 높아서 전류 분산 특성이 상대적으로 떨어지므로, 활성층(126)의 면적을 희생하더라도 제1 전극(142)의 면적 및/또는 개수를 증가시켜 저전류밀도영역(P3)을 줄이거나, 또는 저전류밀도영역(P3)에 반사구조를 배치하는 것이 바람직할 수 있다.Generally, in the case of a GaN-based semiconductor device emitting blue light, it is preferable to minimize the area of the recess 128 and the first electrode 142 because the current dispersion property is relatively good. The larger the area of the recess 128 and the first electrode 142 is, the smaller the area of the active layer 126 is. However, in the embodiment, since the composition of aluminum is high and the current dispersion characteristics are relatively low, the area and / or number of the first electrode 142 is increased even if the area of the active layer 126 is sacrificed, Or it may be desirable to arrange the reflective structure in the low current density region P3.
도 9b를 참고하면, 리세스(128)의 개수가 48개로 증가하는 경우 리세스(128)는 가로 세로 방향으로 일직선으로 배치하지 않고, 지그재그로 배치될 수 있다. 이 경우 저전류밀도영역(P3)의 면적을 좁힐 수 있기 때문에 대부분의 활성층(126)이 발광에 참여할 수 있다. 9B, when the number of the recesses 128 increases to 48, the recesses 128 may be arranged in a zigzag manner instead of being arranged straight in the transverse direction. In this case, since the area of the low current density region P3 can be narrowed, most of the active layer 126 can participate in light emission.
도 10 내지 도 13을 참조하면, 리세스의 개수를 도 10과 같이 79개, 도 11과 같이 96개, 도 12와 같이 116개, 도 13과 같이 137개로 증가시킨 경우 저전류밀도 영역(점선 원 영역)은 더욱 줄어들 수 있다.10 to 13, when the number of recesses is increased to 79 in FIG. 10, 96 in FIG. 11, 116 in FIG. 12, and 137 in FIG. 13, a low current density region Circle area) can be further reduced.
하기 표 2는 실시 예 1 내지 4의 반도체 구조물 전체 면적(ISO 면적), p-오믹전극의 면적(제2면적), n-오믹전극의 면적(제1면적), 면적비, 및 리세스의 개수를 측정하였다.Table 2 shows the total area (ISO area) of the semiconductor structures of Examples 1 to 4, the area of the p-ohmic electrode (second area), the area of the n-ohmic electrode (first area), the area ratio, Were measured.
반도체 구조물 면적(ISO 면적)은 리세스 면적을 포함하는 수평 방향 최대 단면적일 수 있다. The semiconductor structure area (ISO area) may be the maximum horizontal cross-sectional area including the recess area.
제1전극의 면적은 반도체 구조물의 면적 100%를 기준으로 리세스(128)의 개수가 많아질수록 증가하는 n-오믹전극의 면적일 수 있다.The area of the first electrode may be the area of the n-ohmic electrode, which increases as the number of recesses 128 increases, based on the area 100% of the semiconductor structure.
제2전극의 면적은 반도체 구조물의 면적 100%를 기준으로 리세스(128)의 개수가 많아질수록 감소하는 p-오믹전극의 면적일 수 있다.The area of the second electrode may be the area of the p-Ohmic electrode, which decreases as the number of recesses 128 increases, based on 100% area of the semiconductor structure.
하기 표 3은 실시 예 1 내지 4의 반도체 구조물 면적(ISO 면적), 리세스 면적, 제2 도전형 반도체층의 면적, 제1 도전층 면적, 및 제2전극패드의 면적을 측정하였다.In Table 3, the semiconductor structure area (ISO area), the recess area, the area of the second conductivity type semiconductor layer, the area of the first conductive layer, and the area of the second electrode pad in Examples 1 to 4 were measured.
리세스 면적은 반도체 구조물의 면적 100%를 기준으로 리세스 개수가 많아질수록 증가하는 리세스의 총 면적이다. 여기서 각 리세스의 면적은 두께 방향으로 최대 면적일 수 있다. The recess area is the total area of the recess, which increases with the number of recesses based on the area of 100% of the semiconductor structure. Here, the area of each recess may be the largest in the thickness direction.
제2 도전형 반도체층의 면적은 반도체 구조물의 면적 100%를 기준으로 리세스 개수가 많아질수록 감소하는 제2 도전형 반도체층의 총 면적이다.The area of the second conductivity type semiconductor layer is the total area of the second conductivity type semiconductor layer which decreases as the number of recesses increases, based on the area of 100% of the semiconductor structure.
제1 도전층 면적은 반도체 구조물 100%를 기준으로 리세스 개수가 많아질 수록 감소하는 제1도전층의 총면적이다.The area of the first conductive layer is the total area of the first conductive layer which decreases with increasing number of recesses based on 100% of the semiconductor structure.
제2전극패드는 반도체 구조물 100%를 기준으로 리세스 개수와 관계없이 일정한 면적을 갖도록 설계하였다.The second electrode pad is designed to have a constant area regardless of the number of recesses based on 100% of the semiconductor structure.
반도체구조물 전체 면적[%]Total area of semiconductor structure [%] | 제1전극 면적[%]First electrode area [%] | 제2전극 면적[%]Second electrode area [%] | 제1전극:제2전극면적비First electrode: second electrode area ratio | 리세스개수Number of recesses | |
실시예 1Example 1 | 100100 | 4.94.9 | 62.662.6 | 1:12.71: 12.7 | 7979 |
실시예 2Example 2 | 100100 | 6.06.0 | 56.556.5 | 1:9.411: 9.41 | 9696 |
실시예 3Example 3 | 100100 | 7.37.3 | 49.449.4 | 1:6.761: 6.76 | 116116 |
실시예 4Example 4 | 100100 | 8.68.6 | 41.941.9 | 1:4.871: 4.87 | 137137 |
반도체구조물 전체 면적[%]Total area of semiconductor structure [%] | 리세스 면적[%]The recess area [%] | 제2도전형 반도체층 면적[%]Area of the second conductive type semiconductor layer [%] | 제1도전층 면적[%]Area of first conductive layer [%] | 제2전극패드 면적[%]Second electrode pad area [%] | |
실시예 1Example 1 | 100100 | 1616 | 84.084.0 | 72.472.4 | 4.44.4 |
실시예 2Example 2 | 100100 | 18.518.5 | 81.581.5 | 67.167.1 | 4.44.4 |
실시예 3Example 3 | 100100 | 21.521.5 | 78.578.5 | 60.960.9 | 4.44.4 |
실시예 4Example 4 | 100100 | 24.624.6 | 75.475.4 | 54.354.3 | 4.44.4 |
실시 예 1 내지 4를 참조하면, 리세스(128)의 개수가 많아질수록 활성층과 제2전극의 면적은 줄어들고, 리세스(128)의 총면적 및 제1전극의 총면적은 점차 증가함을 확인할 수 있다.실시 예 1 내지 4는 반도체 소자의 크기, 리세스 및 제1전극의 크기는 동일하게 제작하였다. 예시적으로 리세스(128)의 직경은 56㎛로 동일하게 제작하였고, 제1전극의 직경은 42㎛로 동일하게 제작하였다.Referring to Examples 1 to 4, it can be seen that as the number of recesses 128 increases, the area of the active layer and the second electrode decreases, and the total area of the recess 128 and the total area of the first electrode gradually increase In Examples 1 to 4, the sizes of the semiconductor elements, the recesses, and the sizes of the first electrodes were the same. Illustratively, the diameter of the recess 128 was made equal to 56 μm, and the diameter of the first electrode was made equal to 42 μm.
복수 개의 제1전극(142)이 제1 도전형 반도체층(124)과 접촉하는 제1면적은 반도체 구조물(120)의 수평방향 최대 단면적의 4.9% 이상 8.6% 이하일 수 있다. The first area where the plurality of first electrodes 142 are in contact with the first conductivity type semiconductor layer 124 may be 4.9% or more and 8.6% or less of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120.
복수 개의 제1전극(142)의 제1면적이 4.9% 이상인 경우 충분한 전류 주입 특성을 확보할 수 있기 때문에 광 출력을 확보할 수 있고, 8.6%를 이하인 경우 활성층 및 제2전극의 면적을 확보하여 동작 전압특성 및 광 출력을 개선할 수 있다.When the first area of the plurality of first electrodes 142 is 4.9% or more, a sufficient current injection characteristic can be ensured, so that the light output can be ensured. When the area is 8.6% or less, the area of the active layer and the second electrode The operating voltage characteristics and the light output can be improved.
또한, 복수 개의 리세스(128)의 총면적은 반도체 구조물(120)의 수평방향 최대 단면적의 16% 이상 24.6% 이하일 수 있다. 리세스(128)의 총면적이 상기 조건을 만족하기 못하면 제1전극(142)의 총면적을 4.9% 이상 8.6% 이하로 제어하기 어려울 수 있다. 반도체 구조물(120)이 AlGaN 기반으로 구성되는 경우, 반도체 구조물(120)의 저항이 높기 때문에 외부에서 상기 반도체 구조물(120)로 주입되는 전류 주입 특성, 반도체 구조물(120) 내에서의 전류 확산 특성이 GaN 기반의 반도체 구조물(120)에 비해 낮을 수 있다. 따라서 상기 리세스의 총 면적이 반도체 구조물(120)의 수평방향 최대 단면적의 16% 이상일 때 전류 주입 및 전류 확산 특성에 의한 전기적 특성을 확보할 수 있고, 24.6% 이하일 때 광을 방출하는 활성층(126)의 부피를 확보하여 광 출력 등의 광학적 특성을 확보할 수 있다.In addition, the total area of the plurality of recesses 128 may be at least 16% and at most 24.6% of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120. If the total area of the recess 128 does not satisfy the above condition, it may be difficult to control the total area of the first electrode 142 to 4.9% or more and 8.6% or less. In the case where the semiconductor structure 120 is made of AlGaN based material, the current injection characteristic to be injected from the outside into the semiconductor structure 120 and the current diffusion characteristic in the semiconductor structure 120 due to the high resistance of the semiconductor structure 120 May be lower than the GaN-based semiconductor structure 120. Therefore, when the total area of the recesses is 16% or more of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120, electrical characteristics due to current injection and current diffusion characteristics can be secured. It is possible to ensure the optical characteristics such as light output.
제2전극(246)이 제2 도전형 반도체층(127)과 접촉하는 제2면적은 반도체 구조물(120)의 수평방향 최대 단면적의 41.9% 이상 62.6% 이하일 수 있다. 제2면적은 제2전극(246)이 제2 도전형 반도체층(127)과 접촉하는 총면적일 수 있다.The second area where the second electrode 246 contacts the second conductive type semiconductor layer 127 may be not less than 41.9% and not more than 62.6% of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120. The second area may be the total area at which the second electrode 246 contacts the second conductive semiconductor layer 127.
반도체 소자의 동작 전압 특성을 확보하고 반도체 구조물(120)로 정공 주입하는 정공의 주입 효율을 확보하기 위한 제2면적은 상기 반도체 구조물(120)의 수평방향 최대 단면적의 42% 이상일 수 있다. 또한, 반도체 구조물(120)로 주입하는 전자의 주입 효율 및 정공의 주입 효율과 전자의 주입 효율의 균형을 확보하고, 상기 반도체 소자의 광학적, 전기적 특성을 확보하기 위해 상기 제2면적은 상기 반도체 구조물(120)의 수평방향 최대 단면적의 62.6% 이하일 수 있다. The second area for ensuring the operating voltage characteristics of the semiconductor device and securing the injection efficiency of the holes injected into the semiconductor structure 120 may be 42% or more of the maximum cross-sectional area in the horizontal direction of the semiconductor structure 120. In order to ensure a balance between the injection efficiency of electrons injected into the semiconductor structure 120 and the injection efficiency of holes and the injection efficiency of electrons and to ensure the optical and electrical characteristics of the semiconductor elements, Of the maximum cross-sectional area in the horizontal direction of the optical fiber 120.
실시 예에 따르면, 제2전극과 접촉하는 제2 도전형 반도체층의 표면이 알루미늄을 포함하므로 상대적으로 전류 분산 효율이 저하될 수 있다. 따라서, 제2전극의 접촉면적을 넓혀 전류 분산 효율을 개선할 필요가 있다.According to the embodiment, since the surface of the second conductivity type semiconductor layer in contact with the second electrode contains aluminum, the current dispersion efficiency may be relatively lowered. Therefore, it is necessary to improve the current dispersion efficiency by widening the contact area of the second electrode.
도 14를 참고하면, 리세스(128)의 개수가 79개인 제1실시 예(#1)의 광 출력 100%를 기준으로, 리세스(128)의 개수가 96개인 제2 실시 예(#2)는 제1실시예보다 광 출력이 4% 향상되었다. 또한, 리세스의 개수가 116개로 증가한 제3 실시 예(#3)는 제1실시예보다 광 출력이 3% 향상되었다. 그러나, 리세스의 개수가 137개로 증가한 제4 실시 예(#4)의 경우에는 제3실시예보다 광 출력이 오히려 감소하였음을 알 수 있다. 14, the second embodiment (# 2) in which the number of recesses 128 is 96, based on the optical output 100% of the first embodiment (# 1) in which the number of recesses 128 is 79, ), The light output was improved by 4% as compared with the first embodiment. In the third embodiment (# 3) in which the number of recesses was increased to 116, the light output was improved by 3% as compared with the first embodiment. However, in the case of the fourth embodiment (# 4) in which the number of recesses is increased to 137, the light output is rather lower than that of the third embodiment.
또한, 전력 변환 효율(Wall-Plug Efficiency) 역시 광 출력과 동일한 경향을 나타내고 있음을 알 수 있다. 전력 변환 효율은 출력 전력/입력전력일 수 있다. 예시적으로 수평 방향 점선이 원하는 WPE 기준일 수 있으나 반드시 이에 한정하지 않는다.Also, it can be seen that the power conversion efficiency (Wall-Plug Efficiency) also shows the same tendency as the optical output power. The power conversion efficiency may be output power / input power. Illustratively, the horizontal dotted line may be a desired WPE reference, but is not necessarily limited thereto.
제1면적과 제2면적은 반비례 관계를 갖는다. 즉, 제1전극의 개수를 늘리기 위해서 리세스의 개수를 늘리는 경우 제2전극의 면적이 감소하게 된다. 제1 실시 예와 제4 실시 예의 경우 제1면적 또는 제2면적이 과도하게 줄어들어 결과적으로 광 출력이 저하되었음을 알 수 있다.The first area and the second area have an inverse relationship. That is, when the number of recesses is increased in order to increase the number of first electrodes, the area of the second electrode decreases. It can be seen that the first area or the second area is excessively reduced in the first and fourth embodiments, resulting in a decrease in light output.
도 14를 참조하면, 리세스의 개수를 79개보다 크고 137개보다 작게 형성하는 경우 상대적으로 높은 광 출력과 전력 변환 효율을 가질 수 있음을 알 수 있다.Referring to FIG. 14, it can be seen that when the number of recesses is larger than 79 and smaller than 137, the optical output power and power conversion efficiency can be relatively high.
따라서, 복수 개의 제1전극이 제1 도전형 반도체층에 접촉하는 제1면적과 제2전극이 제2 도전형 반도체층에 접촉하는 제2면적의 비(제1면적: 제2면적)는 1:4.87 보다 크고 1:12.7 보다 작게 제어할 수 있다.Therefore, the ratio of the first area where the first electrodes are in contact with the first conductivity type semiconductor layer and the second area where the second electrode is in contact with the second conductivity type semiconductor layer (first area: second area) is 1 : Greater than 4.87 and less than 1: 12.7.
면적비가 1:4.87보다 큰 경우, 제1 면적에 대한 제2면적을 충분히 확보할 수 있다. 따라서 제2 전극에 의한 전류 주입 특성이 개선되어 활성층(126)으로 주입되는 전자와 정공의 균형을 확보할 수 있다. 또한, 반도체 소자의 전류 주입 특성을 개선할 수 있다.When the area ratio is larger than 1: 4.87, the second area with respect to the first area can be sufficiently secured. Therefore, the current injection characteristic by the second electrode is improved, so that the balance of electrons and holes injected into the active layer 126 can be secured. Further, the current injection characteristics of the semiconductor element can be improved.
예시적으로 실시 예 4의 경우 제2면적이 약 41.9%밖에 되지 않아 활성층(126)으로 주입되는 전자와 정공의 균형을 확보하지 못하고, 반도체 소자의 전류 주입 특성이 떨어질 수 있다. 그 결과, 반도체 소자의 광 출력이 감소할 수 있다.Illustratively, in the case of Example 4, the second area is only about 41.9%, so that the balance of electrons and holes injected into the active layer 126 can not be ensured and current injection characteristics of the semiconductor device may be deteriorated. As a result, the light output of the semiconductor element can be reduced.
제2 면적에 대한 제1 면적을 확보하기 위해 면적비는 1:12.7 보다 작게 조절될 수 있다. 면적비가 1:12.7 보다 작게 조절되면 제1 전극에 의한 전류 주입 특성을 개선하고 활성층(126)으로 주입되는 전자와 정공의 균형을 확보할 수 있어 반도체 소자의 전류 주입 특성을 개선할 수 있다. 예시적으로 실시 예 1의 경우 제1면적이 약 4.9%밖에 되지 않아 전류 주입 효율이 떨어질 수 있다.The area ratio can be adjusted to be less than 1: 12.7 to secure the first area for the second area. If the area ratio is adjusted to be smaller than 1: 12.7, the current injection characteristic by the first electrode can be improved and the balance of electrons and holes injected into the active layer 126 can be ensured, thereby improving current injection characteristics of the semiconductor device. Illustratively, in the case of the first embodiment, the first area is only about 4.9%, and the current injection efficiency may be lowered.
또한, 반도체 구조물의 수평 방향 최대면적(하부면)과 리세스의 면적비는 1:0.16보다 크고 1:0.246보다 작을 수 있다. 면적비가 1:0.16보다 큰 경우 충분한 제1 면적을 확보하여 제1 전극에 의한 전류 주입 특성을 개선할 수 있다. 또한, 면적비가 1:0.246 보다 작은 경우 제2 면적을 확보하여 전류 주입 특성을 개선할 수 있다.Further, the maximum area (lower surface) in the horizontal direction of the semiconductor structure and the area ratio of recesses may be larger than 1: 0.16 and smaller than 1: 0.246. If the area ratio is larger than 1: 0.16, a sufficient first area can be ensured and current injection characteristics by the first electrode can be improved. Further, when the area ratio is smaller than 1: 0.246, the second area can be secured and the current injection characteristic can be improved.
도 15는 본 발명의 제5 실시 예에 따른 반도체 소자의 개념도이고, 도 16은 도 15의 평면도이다.FIG. 15 is a conceptual view of a semiconductor device according to a fifth embodiment of the present invention, and FIG. 16 is a plan view of FIG.
도 15를 참조하면, 발광 구조물(120)은 전술한 구성이 그대로 적용될 수 있다. 복수 개의 리세스(128)는 제2 도전형 반도체층(127)과 활성층(126)을 관통하여 제1 도전형 반도체층(124)의 일부 영역까지 배치될 수 있다.Referring to FIG. 15, the above-described structure of the light emitting structure 120 may be applied as it is. The plurality of recesses 128 may extend to a portion of the first conductivity type semiconductor layer 124 through the second conductivity type semiconductor layer 127 and the active layer 126.
제1전극(142)은 리세스(128)의 상면에 배치되어 제1 도전형 반도체층(124)과 전기적으로 연결될 수 있다. 제2전극(146)은 제2 도전형 반도체층(127)의 하부에 배치되어 전기적으로 연결될 수 있다. 이때 전술한 바와 같이 제2 도전형 반도체층(127)의 표면층은 n-AlGaN 또는 p-AlGaN으로 구성될 수 있으므로 오믹 저항을 낮추는 동시에 광 흡수량이 적을 수 있다.The first electrode 142 may be disposed on the upper surface of the recess 128 and may be electrically connected to the first conductive semiconductor layer 124. The second electrode 146 may be disposed under the second conductive semiconductor layer 127 and electrically connected thereto. At this time, since the surface layer of the second conductivity type semiconductor layer 127 may be composed of n-AlGaN or p-AlGaN as described above, the ohmic resistance may be reduced and the light absorption amount may be small.
제1절연층(131)은 제1전극(142)을 활성층(126) 및 제2 도전형 반도체층(127)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 제2전극(146)과 제2도전층(150)을 제1도전층(165)과 전기적으로 절연시킬 수 있다.The first insulating layer 131 may electrically isolate the first electrode 142 from the active layer 126 and the second conductive type semiconductor layer 127. The first insulating layer 131 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165.
제1절연층(131)이 절연기능을 수행하는 경우, 활성층(126)에서 측면을 향해 방출되는 광을 상향 반사시켜 광 추출 효율을 향상시킬 수 있다. 후술하는 바와 같이 자외선 반도체 소자에서는 리세스(128)의 개수가 많아질수록 광 추출 효율은 더 효과적일 수 있다.When the first insulating layer 131 performs the insulating function, light emitted toward the side surface of the active layer 126 may be reflected upward to improve light extraction efficiency. As described later, in the ultraviolet semiconductor device, the larger the number of the recesses 128, the more effective the light extraction efficiency.
제2도전층(150)은 제2전극(146)을 덮을 수 있다. 따라서, 제2전극패드(166)와, 제2도전층(150), 및 제2전극(146)은 하나의 전기적 채널을 형성할 수 있다.The second conductive layer 150 may cover the second electrode 146. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 146 can form one electrical channel.
제2도전층(150)은 제2전극(146)을 완전히 감싸며 제1절연층(131)의 측면과 상면에 접할 수 있다. 제2도전층(150)은 제1절연층(131)과의 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다. The second conductive layer 150 completely surrounds the second electrode 146 and may contact the side surface and the upper surface of the first insulating layer 131. The second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131 and includes at least one material selected from the group consisting of Cr, Al, Ti, Ni, Au, And may be a single layer or a plurality of layers.
제2도전층(150)이 제1절연층(131)의 측면과 상면에 접하는 경우, 제2전극(146)의 열적, 전기적 신뢰성이 향상될 수 있다. 또한, 제1절연층(131)과 제2전극(146) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.When the second conductive layer 150 is in contact with the side surface and the upper surface of the first insulating layer 131, the thermal and electrical reliability of the second electrode 146 can be improved. In addition, it may have a reflection function for reflecting upward the light emitted between the first insulating layer 131 and the second electrode 146.
제2절연층(132)은 제2전극(146), 제2도전층(150)을 제1도전층(165)과 전기적으로 절연시킬 수 있다. 제1도전층(165)은 제2절연층(132)을 관통하여 제1전극(142)과 전기적으로 연결될 수 있다.The second insulating layer 132 may electrically isolate the second electrode 146 and the second conductive layer 150 from the first conductive layer 165. The first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132.
발광 구조물(120)의 하부면과 리세스(128)의 형상을 따라 제1도전층(165)과 접합층(160)이 배치될 수 있다. 제1도전층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 제1도전층(165)은 알루미늄을 포함할 수 있다. 제1도전층(165)이 알루미늄을 포함하는 경우, 활성층(126)에서 방출되는 광을 상부로 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다.The first conductive layer 165 and the bonding layer 160 may be disposed along the bottom surface of the light emitting structure 120 and the shape of the recess 128. The first conductive layer 165 may be made of a material having a high reflectivity. Illustratively, the first conductive layer 165 may comprise aluminum. When the first conductive layer 165 includes aluminum, it functions to reflect the light emitted from the active layer 126 to the upper portion, thereby improving the light extraction efficiency.
접합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 접합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The bonding layer 160 may include a conductive material. Illustratively, the bonding layer 160 may comprise a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or alloys thereof.
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다. The substrate 170 may be made of a conductive material. Illustratively, substrate 170 may comprise a metal or semiconductor material. The substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, the heat generated during semiconductor device operation can be quickly dissipated to the outside.
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.The substrate 170 may comprise a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or alloys thereof.
발광 구조물(120)의 상면에는 요철이 형성될 수 있다. 이러한 요철은 발광 구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500nm 내지 600nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.Irregularities may be formed on the upper surface of the light emitting structure 120. This unevenness can improve the extraction efficiency of light emitted from the light emitting structure 120. The average height may vary depending on the wavelength of ultraviolet light. In the case of UV-C, the height of the unevenness is about 300 nm to 800 nm, and the light extraction efficiency can be improved when the average height is 500 nm to 600 nm.
반도체 소자는 가장자리에 배치된 측면 반사부(Z1)를 포함할 수 있다. 측면 반사부(Z1)는 제2도전층(150), 제1도전층(165), 및 기판(170)이 두께 방향(Y축 방향)으로 돌출되어 형성될 수 있다. 도 16을 참조하면 측면 반사부(Z1)은 반도체 소자의 가장자리를 따라 배치되어, 발광 구조물을 감싸면서 배치될 수 있다.The semiconductor device may include a side reflector Z1 disposed at the edge. The side reflective portion Z1 may be formed by protruding the second conductive layer 150, the first conductive layer 165, and the substrate 170 in the thickness direction (Y axis direction). Referring to FIG. 16, the side reflector Z1 may be disposed along the edge of the semiconductor device, and may surround the light emitting structure.
측면 반사부(Z1)의 제2도전층(150)은 활성층(126)보다 높게 돌출되어 활성층(126)에서 방출된 광을 상향 반사할 수 있다. 따라서, 별도의 반사층을 형성하지 않더라고 최외각에서 TM모드로 인해 수평 방향(X축 방향)으로 방출되는 광을 상향 반사할 수 있다.The second conductive layer 150 of the side reflecting portion Z1 protrudes higher than the active layer 126 and can upward reflect the light emitted from the active layer 126. [ Accordingly, even if a separate reflection layer is not formed, the light emitted in the horizontal direction (X-axis direction) due to the TM mode at the outermost periphery can be upwardly reflected.
측면 반사부(Z1)의 경사 각도는 90도 보다 크고 145도보다 작을 수 있다. 경사 각도는 제2도전층(150)이 수평면(XZ 평면)과 이루는 각도일 수 있다. 각도가 90도 보다 작거나 145도 보다 큰 경우에는 측면을 향해 이동하는 광을 상측으로 반사하는 효율이 떨어질 수 있다.The angle of inclination of the side reflector Z1 may be greater than 90 degrees and less than 145 degrees. The inclination angle may be an angle formed by the second conductive layer 150 and the horizontal plane (XZ plane). If the angle is less than 90 degrees or greater than 145 degrees, the efficiency of reflecting the light traveling toward the side toward the image side may decrease.
도 17은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고, 도 18은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 평면도이고, 도 19는 도 18의 변형예이다.FIG. 17 is a conceptual view of a semiconductor device package according to an embodiment of the present invention, FIG. 18 is a plan view of a semiconductor device package according to an embodiment of the present invention, and FIG. 19 is a modification of FIG.
도 17을 참고하면, 반도체 소자 패키지는 홈(3)이 형성된 몸체(2), 몸체(2)에 배치되는 반도체 소자(1), 및 몸체(2)에 배치되어 반도체 소자(1)와 전기적으로 연결되는 한 쌍의 리드 프레임(5a, 5b)을 포함할 수 있다. 반도체 소자(1)는 전술한 구성을 모두 포함할 수 있다.17, the semiconductor device package comprises a body 2 formed with a groove 3, a semiconductor element 1 disposed on the body 2, and a semiconductor element 1 disposed on the body 2 and electrically connected to the semiconductor element 1 And may include a pair of lead frames 5a and 5b connected thereto. The semiconductor element 1 may include all of the structures described above.
몸체(2)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 몸체(2)는 복수의 층(2a, 2b, 2c, 2d, 2e)을 적층하여 형성할 수 있다. 복수의 층(2a, 2b, 2c, 2d, 2e)은 동일한 재질일 수도 있고 상이한 재질을 포함할 수도 있다.The body 2 may include a material or a coating layer that reflects ultraviolet light. The body 2 can be formed by laminating a plurality of layers 2a, 2b, 2c, 2d and 2e. The plurality of layers 2a, 2b, 2c, 2d and 2e may be the same material or may comprise different materials.
홈(3)은 반도체 소자에서 멀어질수록 넓어지게 형성되고, 경사면에는 단차(3a)가 형성될 수 있다.The groove 3 may be formed so as to be wider as it is away from the semiconductor element, and a step 3a may be formed on the inclined surface.
투광층(4)은 홈(3)을 덮을 수 있다. 투광층(4)은 글라스 재질일 있으나, 반드시 이에 한정하지 않는다. 투광층(4)은 자외선 광을 유효하게 투과할 수 있는 재질이면 특별히 제한하지 않는다. 홈(3)의 내부는 빈 공간일 수 있다.The light-transmitting layer 4 may cover the groove 3. [ The light-transmitting layer 4 may be made of a glass material, but is not limited thereto. The light-transmitting layer 4 is not particularly limited as long as it is a material capable of effectively transmitting ultraviolet light. The inside of the groove 3 may be an empty space.
도 18을 참조하면, 반도체 소자(10)는 제1 리드프레임(5a)상에 배치되고, 제2 리드프레임(5b)과 와이어에 의해 연결될 수 있다. 이때, 제2 리드프레임(5b)은 제1 리드프레임의 측면을 둘러싸도록 배치될 수 있다.18, the semiconductor element 10 is disposed on the first lead frame 5a and can be connected to the second lead frame 5b by a wire. At this time, the second lead frame 5b may be arranged to surround the side surface of the first lead frame.
도 19를 참조하면, 반도체 소자 패키지는 복수 개의 반도체 소자(10a, 10b, 10c, 10d)가 배치될 수도 있다. 이때, 리드프레임은 제1 내지 제5 리드프레임(5a, 5b, 5c, 5d, 5e)을 포함할 수 있다.Referring to FIG. 19, a plurality of semiconductor elements 10a, 10b, 10c, and 10d may be disposed in the semiconductor device package. At this time, the lead frame may include the first to fifth lead frames 5a, 5b, 5c, 5d and 5e.
제1 반도체 소자(10a)는 제1 리드프레임(5a)상에 배치되고 제2 리드프레임(5b)과 와이어로 연결될 수 있다. 제2 반도체 소자(10b)는 제2 리드프레임(5b)상에 배치되고 제3 리드프레임(5c)과 와이어로 연결될 수 있다. 제3 반도체 소자(10c)는 제3 리드프레임(5c)상에 배치되고 제4 리드프레임(5d)과 와이어로 연결될 수 있다. 제4 반도체 소자(10d)는 제4 리드프레임(5d)상에 배치되고 제5 리드프레임(5e)과 와이어로 연결될 수 있다.The first semiconductor element 10a may be disposed on the first lead frame 5a and connected to the second lead frame 5b by a wire. The second semiconductor element 10b may be disposed on the second lead frame 5b and connected to the third lead frame 5c by a wire. The third semiconductor element 10c may be disposed on the third lead frame 5c and connected to the fourth lead frame 5d by a wire. The fourth semiconductor element 10d may be disposed on the fourth lead frame 5d and connected to the fifth lead frame 5e by a wire.
반도체 소자는 다양한 종류의 광원 장치에 적용될 수 있다. 예시적으로 광원장치는 조명 장치, 및 표시 장치 및 차량용 램프 등을 포함하는 개념일 수 있다. 즉, 반도체 소자는 케이스에 배치되어 광을 제공하는 다양한 전자 디바이스에 적용될 수 있다.Semiconductor devices can be applied to various types of light source devices. Illustratively, the light source device may be a concept comprising a lighting device, and a display device, a vehicle lamp, and the like. That is, semiconductor devices can be applied to various electronic devices arranged in a case to provide light.
조명 장치는 기판과 실시 예의 반도체 소자를 포함하는 광원 모듈, 광원 모듈의 열을 발산시키는 방열부 및 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 광원 모듈로 제공하는 전원 제공부를 포함할 수 있다. 또한, 조명 장치는, 램프, 해드 램프, 또는 가로등 등을 포함할 수 있다. The illumination device may include a light source module including a substrate and semiconductor elements of the embodiment, a heat dissipation unit that dissipates heat of the light source module, and a power supply unit that processes or converts an electrical signal provided from the outside and provides the light source module. Further, the lighting device may include a lamp, a head lamp, or a street lamp or the like.
표시 장치는 바텀 커버, 반사판, 발광 모듈, 도광판, 광학 시트, 디스플레이 패널, 화상 신호 출력 회로 및 컬러 필터를 포함할 수 있다. 바텀 커버, 반사판, 발광 모듈, 도광판 및 광학 시트는 백라이트 유닛(Backlight Unit)을 구성할 수 있다.The display device may include a bottom cover, a reflector, a light emitting module, a light guide plate, an optical sheet, a display panel, an image signal output circuit, and a color filter. The bottom cover, the reflector, the light emitting module, the light guide plate, and the optical sheet can constitute a backlight unit.
반사판은 바텀 커버 상에 배치되고, 발광 모듈은 광을 방출할 수 있다. 도광판은 반사판의 전방에 배치되어 발광 모듈에서 발산되는 빛을 전방으로 안내하고, 광학 시트는 프리즘 시트 등을 포함하여 이루어져 도광판의 전방에 배치될 수 있다. 디스플레이 패널은 광학 시트 전방에 배치되고, 화상 신호 출력 회로는 디스플레이 패널에 화상 신호를 공급하며, 컬러 필터는 디스플레이 패널의 전방에 배치될 수 있다.The reflector is disposed on the bottom cover, and the light emitting module can emit light. The light guide plate is disposed in front of the reflection plate to guide the light emitted from the light emitting module forward, and the optical sheet may include a prism sheet or the like and be disposed in front of the light guide plate. The display panel is disposed in front of the optical sheet, and the image signal output circuit supplies an image signal to the display panel, and the color filter can be disposed in front of the display panel.
반도체 소자는 표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있다.The semiconductor device can be used as a backlight unit of an edge type when used as a backlight unit of a display device or as a backlight unit of a direct-bottom type.
반도체 소자는 상술한 발광 다이오드 외에 레이저 다이오드일 수도 있다.The semiconductor device may be a laser diode other than the light emitting diode described above.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-l㎛inescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.The laser diode may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure, like the light emitting element. Then, an electro-luminescence (electroluminescence) phenomenon in which light is emitted when an electric current is applied after bonding the p-type first conductivity type semiconductor and the n-type second conductivity type semiconductor is used, There are differences in the directionality and phase of light. That is, the laser diode can emit light having one specific wavelength (monochromatic beam) with the same phase and in the same direction by using a phenomenon called stimulated emission and a constructive interference phenomenon. It can be used for optical communication, medical equipment and semiconductor processing equipment.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광 출력전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.As the light receiving element, a photodetector, which is a kind of transducer that detects light and converts the intensity of the light into an electric signal, is exemplified. As photodetectors, photodetectors (silicon, selenium), photodetectors (cadmium sulfide, cadmium selenide), photodiodes (for example, visible blind spectral regions or PDs with peak wavelengths in the true blind spectral region) A transistor, a photomultiplier tube, a phototube (vacuum, gas-filled), and an IR (Infra-Red) detector, but the embodiment is not limited thereto.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다. In addition, a semiconductor device such as a photodetector may be fabricated using a direct bandgap semiconductor, which is generally excellent in photo-conversion efficiency. Alternatively, the photodetector has a variety of structures, and the most general structure includes a pinned photodetector using a pn junction, a Schottky photodetector using a Schottky junction, and a metal-semiconductor metal (MSM) photodetector have.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.The photodiode, like the light emitting device, may include the first conductivity type semiconductor layer having the structure described above, the active layer, and the second conductivity type semiconductor layer, and may have a pn junction or a pin structure. The photodiode operates by applying reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and a current flows. At this time, the magnitude of the current may be approximately proportional to the intensity of the light incident on the photodiode.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. A photovoltaic cell or a solar cell is a type of photodiode that can convert light into current. The solar cell, like the light emitting device, may include the first conductivity type semiconductor layer, the active layer and the second conductivity type semiconductor layer having the above-described structure.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.In addition, it can be used as a rectifier of an electronic circuit through a rectifying characteristic of a general diode using a p-n junction, and can be applied to an oscillation circuit or the like by being applied to a microwave circuit.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.In addition, the above-described semiconductor element is not necessarily implemented as a semiconductor, and may further include a metal material as the case may be. For example, a semiconductor device such as a light receiving element may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, Or may be implemented using a doped semiconductor material or an intrinsic semiconductor material.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims (15)
- 제1 도전형 반도체층, 제2 도전형 반도체층, 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이에 배치되는 활성층을 포함하는 반도체 구조물;A semiconductor structure including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer;상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극; 및A first electrode electrically connected to the first conductive semiconductor layer; And상기 제2 도전형 반도체층과 전기적으로 연결되는 제2 전극을 포함하고,And a second electrode electrically connected to the second conductive semiconductor layer,상기 반도체 구조물은 상기 제2 도전형 반도체층과 상기 제2 전극 사이에 배치되는 제3 도전형 반도체층을 포함하고,Wherein the semiconductor structure includes a third conductivity type semiconductor layer disposed between the second conductivity type semiconductor layer and the second electrode,상기 제3 도전형 반도체층과 상기 제1 도전형 반도체층은 n형 도펀트를 포함하고,Wherein the third conductivity type semiconductor layer and the first conductivity type semiconductor layer include an n-type dopant,상기 제2 도전형 반도체층은 p형 도펀트를 포함하고,Wherein the second conductivity type semiconductor layer includes a p-type dopant,상기 제3 도전형 반도체층의 두께는 상기 제1 도전형 반도체층의 두께보다 얇고,The thickness of the third conductivity type semiconductor layer is thinner than the thickness of the first conductivity type semiconductor layer,상기 제3 도전형 반도체층의 도펀트 농도는 상기 제1 도전형 반도체층의 도펀트 농도보다 높고,Wherein the dopant concentration of the third conductivity type semiconductor layer is higher than the dopant concentration of the first conductivity type semiconductor layer,상기 제3 도전형 반도체층의 알루미늄 조성과 상기 제1 도전형 반도체층의 알루미늄 조성의 비는 1:0.71 내지 1:3.5인 반도체 소자.Wherein a ratio of an aluminum composition of the third conductivity type semiconductor layer to an aluminum composition of the first conductivity type semiconductor layer is 1: 0.71 to 1: 3.5.
- 제1항에 있어서,The method according to claim 1,상기 제1 도전형 반도체층, 활성층, 제2 도전형 반도체층, 및 제3 도전형 반도체층은 알루미늄을 포함하는 반도체 소자.Wherein the first conductivity type semiconductor layer, the active layer, the second conductivity type semiconductor layer, and the third conductivity type semiconductor layer comprise aluminum.
- 제2항에 있어서,3. The method of claim 2,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 높은 반도체 소자.Wherein an aluminum composition of the third conductivity type semiconductor layer is higher than an aluminum composition of the active layer and the first conductivity type semiconductor layer.
- 제2항에 있어서,3. The method of claim 2,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 활성층, 및 제1 도전형 반도체층의 알루미늄 조성보다 낮은 반도체 소자.And the aluminum composition of the third conductivity type semiconductor layer is lower than the aluminum composition of the active layer and the first conductivity type semiconductor layer.
- 제1항에 있어서,The method according to claim 1,상기 제1 도전형 반도체층은 제1 서브 반도체층, 제2 서브 반도체층, 및 상기 제1 서브 반도체층과 상기 제2 서브 반도체층 사이에 배치되는 중간층을 포함하고,Wherein the first conductive semiconductor layer includes a first sub-semiconductor layer, a second sub-semiconductor layer, and an intermediate layer disposed between the first sub-semiconductor layer and the second sub-상기 중간층의 알루미늄 조성은 상기 제1 서브 반도체층과 상기 제2 서브 반도체층의 알루미늄 조성보다 낮은 반도체 소자.Wherein an aluminum composition of the intermediate layer is lower than an aluminum composition of the first sub semiconductor layer and the second sub semiconductor layer.
- 제5항에 있어서,6. The method of claim 5,상기 중간층의 알루미늄 조성은 상기 활성층의 우물층의 알루미늄 조성보다 높은 반도체 소자.Wherein the aluminum composition of the intermediate layer is higher than the aluminum composition of the well layer of the active layer.
- 제6항에 있어서,The method according to claim 6,상기 제3 도전형 반도체층의 알루미늄 조성은 상기 우물층의 알루미늄 조성보다 높고 상기 중간층의 알루미늄 조성보다 낮은 반도체 소자.Wherein an aluminum composition of the third conductivity type semiconductor layer is higher than an aluminum composition of the well layer and lower than an aluminum composition of the intermediate layer.
- 제1항에 있어서,The method according to claim 1,상기 제2 도전형 반도체층은 두께 방향으로 알루미늄 조성이 감소하는 제3 서브 반도체층을 포함하고,Wherein the second conductivity type semiconductor layer includes a third sub-semiconductor layer whose aluminum composition decreases in a thickness direction,상기 제3 도전형 반도체층은 상기 제3 서브 반도체층과 상기 제2 전극 사이에 배치되는 반도체 소자.And the third conductivity type semiconductor layer is disposed between the third sub-semiconductor layer and the second electrode.
- 제8항에 있어서,9. The method of claim 8,상기 제2 도전형 반도체층은 상기 제3 서브 반도체층과 상기 활성층 사이에 배치되는 제4 서브 반도체층을 포함하고, 상기 제4 서브 반도체층은 두께 방향으로 알루미늄 조성이 일정한 반도체 소자.Wherein the second conductivity type semiconductor layer includes a fourth sub-semiconductor layer disposed between the third sub-semiconductor layer and the active layer, and the fourth sub-semiconductor layer has a constant aluminum composition in the thickness direction.
- 제1항에 있어서,The method according to claim 1,상기 제2 도전형 반도체층과 제3 도전형 반도체층 사이의 알루미늄 조성 변화는 불연속적인 반도체 소자.And the change in aluminum composition between the second conductivity type semiconductor layer and the third conductivity type semiconductor layer is discontinuous.
- 제1항에 있어서,The method according to claim 1,상기 제2 도전형 반도체층과 상기 제3 도전형 반도체층의 알루미늄 조성은 동일한 반도체 소자.Wherein the second conductivity type semiconductor layer and the third conductivity type semiconductor layer have the same aluminum composition.
- 제1항에 있어서,The method according to claim 1,상기 제1 도전형 반도체층의 도핑 농도는 1×1018/cm3 내지 2×1020/cm3이고, The doping concentration of the first conductivity type semiconductor layer is 1 × 10 18 / cm 3 to 2 × 10 20 / cm 3 ,상기 제3 도전형 반도체층의 도핑 농도는 2×1019/cm3 내지 3×1020/cm3인 반도체 소자.And the doping concentration of the third conductivity type semiconductor layer is 2 x 10 19 / cm 3 to 3 x 10 20 / cm 3 .
- 제1항에 있어서,The method according to claim 1,상기 반도체 구조물은 상기 제3 도전형 반도체층, 제2 도전형 반도체층, 및 상기 활성층을 관통하여 상기 제1 도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하고,Wherein the semiconductor structure includes the third conductive type semiconductor layer, the second conductive type semiconductor layer, and a plurality of recesses penetrating the active layer to a partial region of the first conductive type semiconductor layer,상기 제1 전극은 상기 리세스의 내부에 배치되고,Wherein the first electrode is disposed inside the recess,상기 제2 전극은 상기 제3 도전형 반도체층에 접촉하는 반도체 소자.And the second electrode contacts the third conductive type semiconductor layer.
- 제13항에 있어서,14. The method of claim 13,상기 제1 전극과 전기적으로 연결되는 제1 도전층,A first conductive layer electrically connected to the first electrode,상기 제2 전극과 전기적으로 연결되는 제2 도전층,A second conductive layer electrically connected to the second electrode,상기 제1 도전층과 제2도전층 사이에 배치되는 제2 절연층, 및A second insulating layer disposed between the first conductive layer and the second conductive layer, and상기 제2 도전층의 하부에 배치되는 도전성 기판을 포함하는 반도체 소자.And a conductive substrate disposed under the second conductive layer.
- 제13항에 있어서,14. The method of claim 13,상기 반도체 구조물의 하부면과 상기 복수 개의 리세스의 면적비는 1:0.16보다 크고 1:0.246보다 작은 반도체 소자.Wherein an area ratio of the lower surface of the semiconductor structure to the plurality of recesses is greater than 1: 0.16 and less than 1: 0.246.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170078844A KR102299745B1 (en) | 2017-06-22 | 2017-06-22 | Semiconductor device |
KR10-2017-0078844 | 2017-06-22 | ||
KR1020170086670A KR102430086B1 (en) | 2017-07-07 | 2017-07-07 | Semiconductor device |
KR10-2017-0086670 | 2017-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018236183A1 true WO2018236183A1 (en) | 2018-12-27 |
Family
ID=64737311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/007099 WO2018236183A1 (en) | 2017-06-22 | 2018-06-22 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018236183A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111668697A (en) * | 2019-03-07 | 2020-09-15 | 旭化成株式会社 | Nitride semiconductor element |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090090932A1 (en) * | 2006-09-06 | 2009-04-09 | Palo Alto Research Incorporated | Nitride semiconductor ultraviolet leds with tunnel junctions and reflective contact |
KR20140102422A (en) * | 2013-02-14 | 2014-08-22 | 엘지전자 주식회사 | Nitride-based semiconductor light emitting device |
KR20160019622A (en) * | 2014-08-11 | 2016-02-22 | 삼성전자주식회사 | Semiconductor light emitting device and semiconductor light emitting device package |
US20160225950A1 (en) * | 2012-03-29 | 2016-08-04 | Seoul Viosys Co., Ltd. | Near uv light emitting device |
KR20160103687A (en) * | 2015-02-25 | 2016-09-02 | 엘지이노텍 주식회사 | Light emitting device and light unit having thereof |
-
2018
- 2018-06-22 WO PCT/KR2018/007099 patent/WO2018236183A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090090932A1 (en) * | 2006-09-06 | 2009-04-09 | Palo Alto Research Incorporated | Nitride semiconductor ultraviolet leds with tunnel junctions and reflective contact |
US20160225950A1 (en) * | 2012-03-29 | 2016-08-04 | Seoul Viosys Co., Ltd. | Near uv light emitting device |
KR20140102422A (en) * | 2013-02-14 | 2014-08-22 | 엘지전자 주식회사 | Nitride-based semiconductor light emitting device |
KR20160019622A (en) * | 2014-08-11 | 2016-02-22 | 삼성전자주식회사 | Semiconductor light emitting device and semiconductor light emitting device package |
KR20160103687A (en) * | 2015-02-25 | 2016-09-02 | 엘지이노텍 주식회사 | Light emitting device and light unit having thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111668697A (en) * | 2019-03-07 | 2020-09-15 | 旭化成株式会社 | Nitride semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017191966A1 (en) | Semiconductor element package | |
WO2017222341A1 (en) | Semiconductor device and semiconductor device package comprising same | |
WO2017030396A1 (en) | Light-emitting element, light-emitting element package comprising light-emitting element, and light-emitting device comprising light-emitting element package | |
WO2015156588A1 (en) | Light-emitting element and lighting system | |
WO2016032167A1 (en) | Light-emitting element package | |
WO2017034356A1 (en) | Light-emitting device and light-emitting device package comprising same | |
WO2017179944A1 (en) | Light-emitting device, light-emitting device package, and light-emitting module | |
WO2018117699A1 (en) | Semiconductor device | |
WO2013183888A1 (en) | Light-emitting element | |
WO2018106030A9 (en) | Light emitting device | |
WO2017213455A1 (en) | Semiconductor device | |
WO2016117905A1 (en) | Light source module and lighting device | |
WO2017078441A1 (en) | Semiconductor device | |
WO2018097649A1 (en) | Semiconductor element and semiconductor element package comprising same | |
WO2018088851A1 (en) | Semiconductor element | |
WO2018128419A1 (en) | Semiconductor device and light emitting device package comprising same | |
WO2018139803A1 (en) | Semiconductor device package | |
WO2020040449A1 (en) | Semiconductor device | |
WO2018052252A1 (en) | Semiconductor device and semiconductor device package including same | |
WO2019027192A1 (en) | Semiconductor device package and light source device | |
WO2019103556A1 (en) | Semiconductor device | |
WO2018084631A1 (en) | Semiconductor device and semiconductor device package including same | |
WO2017217764A1 (en) | Semiconductor device | |
WO2018226049A1 (en) | Semiconductor device | |
WO2019054750A1 (en) | Light-emitting device package and light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18821306 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18821306 Country of ref document: EP Kind code of ref document: A1 |