WO2018200093A1 - Vertical takeoff and landing airframe - Google Patents
Vertical takeoff and landing airframe Download PDFInfo
- Publication number
- WO2018200093A1 WO2018200093A1 PCT/US2018/022814 US2018022814W WO2018200093A1 WO 2018200093 A1 WO2018200093 A1 WO 2018200093A1 US 2018022814 W US2018022814 W US 2018022814W WO 2018200093 A1 WO2018200093 A1 WO 2018200093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wing
- aircraft
- fuselage
- wings
- axis
- Prior art date
Links
- 230000007704 transition Effects 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 239000011295 pitch Substances 0.000 description 12
- 230000005484 gravity Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- NAGRVUXEKKZNHT-UHFFFAOYSA-N Imazosulfuron Chemical compound COC1=CC(OC)=NC(NC(=O)NS(=O)(=O)C=2N3C=CC=CC3=NC=2Cl)=N1 NAGRVUXEKKZNHT-UHFFFAOYSA-N 0.000 description 1
- 241000596926 Sparaxis Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0033—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/32—Alighting gear characterised by elements which contact the ground or similar surface
- B64C25/34—Alighting gear characterised by elements which contact the ground or similar surface wheeled type, e.g. multi-wheeled bogies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/32—Alighting gear characterised by elements which contact the ground or similar surface
- B64C25/54—Floats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/26—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/28—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/42—Adjusting about chordwise axes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/56—Folding or collapsing to reduce overall dimensions of aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C37/00—Convertible aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/10—Aircraft characterised by the type or position of power plants of gas-turbine type
- B64D27/12—Aircraft characterised by the type or position of power plants of gas-turbine type within, or attached to, wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/10—Wings
- B64U30/12—Variable or detachable wings, e.g. wings with adjustable sweep
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- This disclosure relates to the fields of aircraft and aerial vehicles. More particularly, this disclosure relates to an airframe capable of vertical takeoff and landing with engines mounted on rotatable wings.
- Airframes with high aspect ratio fixed wings e.g., wings rigidly attached to a fuselage wherein a laterally extending length, or span, of the wing is much greater than a distance between its leading and trailing edges, or chord, can be reliable and efficient in forward flight.
- These airframes can have several disadvantages as well, including difficulty maneuvering at slow speeds and the need for runway or other runout for takeoff and landing.
- Prior attempts to address these issues have included airframes with tilting nacelles that house motors, engines, or other thrust producing components to better control an aircraft at slow speeds and allow for short takeoff and landing (STOL) or vertical takeoff and landing (VTOL) operation. In such configurations, however, high aspect ratio fixed wings can be detrimental.
- long fixed wings can be difficult to maneuver during STOL or VTOL operation due to a large moment of inertia created by their mass being extended away from a center of gravity of the aircraft. Further, there can be significant aerodynamic drag from moving a wing in a manner that presents its largest surface area as a leading edge. Vertically-oriented wind gusts, such as downdrafts, etc., can also have significant impacts on long, fixed wings.
- Prior configurations of both tilt-engine and tilt- wing airframes that can achieve STOL or VTOL operation also suffer from instability during transition from takeoff or landing configurations to forward flight configurations. Accordingly, such aircraft often exhibit bimodal operation envelopes and cannot stably or indefinitely operate at any speed between the takeoff or landing realm and the high-speed forward flight realm.
- a further disadvantage of high aspect ratio fixed wing airframes is the need for substantial storage space at rest and substantial clearance during ground transport.
- Prior attempts to address these issues have included a variety of wing folding and tilting mechanisms. These mechanisms, however, are often tailored to ground storage or transport and are not operable during flight to enable, for example, vertical takeoff and landing, etc.
- the present disclosure generally provides airframes that address the shortcomings of prior attempts and enable efficient forward flight along with vertical takeoff and landing. Generally speaking, the embodiments described herein can achieve such versatile
- the airframes described herein can perform repeated in-flight transformations between a compact and maneuverable hovering or slow speed configuration (e.g., similar to a multirotor drone, helicopter, or other hovering aircraft) and a lifting wing configuration capable of efficient horizontal flight (e.g., similar to a fixed wing aircraft).
- a compact and maneuverable hovering or slow speed configuration e.g., similar to a multirotor drone, helicopter, or other hovering aircraft
- a lifting wing configuration capable of efficient horizontal flight
- the weight of an aircraft can be substantially supported by the thrust of its propulsion units, which can be coupled to the tilting wings such that they are also tilted to direct their thrust more vertically.
- the weight of the aircraft In the forward flight configuration, the weight of the aircraft can be substantially supported by the lift generated from the wings and the propulsion thrust can be directed more horizontally.
- a continuous range of intermediate tilting positions can also be employed to provide varying levels of thrust- or wing-developed lifting force.
- the airframes disclosed herein provide a unique ability to smoothly and stably transition between these two operating modes in-flight and/or operate indefinitely in an intermediate mode.
- These performance characteristics can, in some embodiments, be achieved by utilizing a folding wing structure that pivots on a slanted axis, i.e., an axis that is oblique to a longitudinal or lateral axis of the aircraft.
- a folding motion can orient a leading edge of each wing in an upward or forward direction, depending on the tilt of the wing.
- the wings in a tilted configuration can extend along the fuselage of the aircraft to reduce the moment of inertia created by their mass, their aerodynamic impact during hover, as well as space required for storage or ground transport.
- a portion of the wings folded in this manner can include propulsion units coupled thereto such that thrust can be redirected between a horizontal and a vertical direction as the wings are tilted or folded.
- the airframe designs described herein can be embodied at any of a variety of scales.
- the designs can be suitable for application in a small aircraft, such as a drone or remote-control aircraft, as well as full scale aircraft capable of transporting persons and cargo.
- a variety of propulsion technologies can be employed, including electric motors, internal combustion engines, turbines, etc.
- an aircraft can include a fuselage, opposed wings extending from opposed sides of the fuselage, and a plurality of engines. At least one engine can be mounted to each of the opposed wings. Further, at least a portion of each opposed wing including at least one of the plurality of engines can rotate relative to the fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage.
- a first angle between the rotation axis and the longitudinal axis of the fuselage projected in a plane containing the longitudinal axis of the fuselage and an axis extending between ends of the opposed wings can be between about 35° and about 55°. In some embodiments, the first angle can be about 45°. Further, in some embodiments a second angle between the rotation axis and the axis extending between ends of the opposed wings projected in a plane containing the axis extending between ends of the opposed wings and perpendicular to the longitudinal axis of the fuselage is between about 35° and about 55°. In some embodiments, the second angle can be about 45°.
- the plurality of engines can include at least 4 engines and each portion of the opposed wings that rotates relative to the fuselage can include at least two engines mounted thereto. Any of a variety of engine types can be utilized.
- each of the plurality of engines can be an electric engine.
- the aircraft can further include a plurality of batteries and each battery can be mounted to one of the opposed wings adjacent to one of the plurality of engines.
- each of the plurality of engines can be any of a turbine and an internal combustion engine.
- each of the opposed wings can include a fixed portion extending from the fuselage and a rotating portion outboard of the fixed portion. Further, in some embodiments an outboard end of each fixed portion can be oblique to the longitudinal axis of the fuselage. In some embodiments, each rotating portion of the opposed wings can rotate between a first configuration, in which an axis between a leading edge and a trailing edge of the wing is parallel to the longitudinal axis of the fuselage, and a second
- each rotating portion of the opposed wings can face upward when the wings are in the second configuration.
- each rotating portion of the opposed wings can rotate between a first configuration, in which an axis extending between an inboard end to an outboard end of the rotating portion is perpendicular to the longitudinal axis of the fuselage, and a second configuration, in which the axis extending between the inboard end and the outboard end of the rotating portion is parallel to the longitudinal axis of the fuselage.
- the leading edge of each rotating portion of the opposed wings can face upward when the wings are in the second configuration.
- each of the plurality of engines can be offset from the wing it is mounted to such that, when each wing is in the first configuration, the at least one engine mounted thereto can be disposed between the wing and the fuselage.
- the aircraft can further include at least one landing support coupled to a trailing portion of each rotating portion of the opposed wings.
- the landing support can have any of a variety of forms.
- the landing support can be any of a wheel, a float, and a leg.
- the landing support can be a wheel coupled to one of the engines such that the engine can rotate the wheel.
- each of the opposed wings can further include an actuator to control rotation of the rotating portion relative to the fixed portion.
- the actuator can include a lead screw coupled to the rotating portion by a linkage.
- the actuator can include any of a variety of gears, hydraulic actuators, electric actuators, etc.
- the opposed wings of the aircraft can have a variety of shapes and sizes.
- the opposed wings can have an airfoil shape.
- Such wings can produce lift during forward flight of the aircraft.
- the wings can have alternative shapes.
- the wings can be spars that do not produce lift. Examples can include cylindrical spars, beam spars, etc.
- a vertical take-off or landing method can include rotating at least a portion of a wing having an engine mounted thereto relative to a fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage to orient the engine and a leading edge of the wing vertically for hovering.
- the method can further include actuating the engine to produce vertical lift, and rotating the at least portion of the wing having the engine mounted thereto to orient the engine and a leading edge of the wing horizontally for forward flight.
- a leading edge of the wing can face upward when the wing is oriented vertically.
- rotating the at least portion of the wing to orient the engine and the leading edge of the wing vertically can include pivoting the at least portion of the wing about a pivot joint disposed in a leading portion of the wing.
- Rotation of the at least portion of the wing can be accomplished in a variety of manners.
- rotating the at least portion of the wing to orient the engine and the leading edge of the wing vertically can include any of hydraulically and electrically actuating such rotation.
- the method can further include pausing rotation of the at least portion of the wing such that the wing and the engine are between a vertical and a horizontal orientation to transition between hovering and forward flight.
- FIG. 1 shows a schematic of different wing configurations of an airframe according to the teachings provided herein;
- FIG. 2 shows a perspective view of one embodiment of an airframe in a forward flight configuration
- FIG. 3 shows a perspective view of the airframe of FIG. 2 in a vertical takeoff and landing configuration
- FIG. 4 shows a perspective view of the airframe of FIG. 2 in a first transition configuration
- FIG. 5 shows a perspective view of the airframe of FIG. 2 in a second transition configuration
- FIG. 6 shows a top view of the airframe of FIG. 1;
- FIG. 7 shows a perspective view of the airframe of FIG. 1 in a vertical takeoff and landing configuration
- FIG. 8 shows a detail view of one embodiment of a propulsion unit according to the teachings provided herein;
- FIG. 9 shows a perspective view of one embodiment of a vertical takeoff and landing airframe equipped with landing wheels
- FIG. 10 shows a side view of the airframe of FIG. 9
- FIG. 11 shows a perspective view of another embodiment of a vertical takeoff and landing airframe equipped with landing wheels
- FIG. 12 shows a side view of the airframe of FIG. 11;
- FIG. 13 shows a perspective view of another embodiment of a vertical takeoff and landing airframe equipped for water landings
- FIG. 14 shows a top view of an alternative embodiment of a vertical takeoff and landing airframe
- FIG. 15 shows a top view of another embodiment of a vertical takeoff and landing airframe
- FIG. 16 shows one embodiment of a relationship between flight feedback control strength and wing transition angle
- FIG. 17A shows a side view of one embodiment of a vertical takeoff and landing airframe highlighting a pivot axis A projected in a longitudinally-extending vertical plane;
- FIG. 17B shows a front view of the airframe of FIG. 17A highlighting the pivot axis A projected in a laterally-extending vertical plane
- FIG. 17C shows a top view of the airframe of FIG. 17A highlighting the pivot axis A projected in a horizontal plane
- FIG. 18 shows a cross-sectional view in the direction of line B-B of FIG. 17A of one embodiment of a pivot joint
- FIG. 19 shows a cross-sectional view in the direction of line B-B of FIG. 17A of another embodiment of a pivot joint
- FIG. 20 shows a cross-sectional view in the direction of line B-B of FIG. 17A of another embodiment of a pivot joint
- FIG. 21 shows a cross-sectional view in the direction of line B-B of FIG. 17A of still another embodiment of a pivot joint
- FIG. 22A shows a top perspective view of the pivot joint of FIG. 21 in a straight configuration
- FIG. 22B shows the pivot joint of FIG. 21 in a straight configuration along the pivot axis A of FIG. 21;
- FIG. 23A shows a top perspective view of the pivot joint of FIG. 21 in an
- FIG. 23B shows the pivot joint of FIG. 21 in an intermediate configuration along the pivot axis A of FIG. 21;
- FIG. 24A shows a top perspective view of the pivot joint of FIG. 21 in a fully articulated configuration
- FIG. 24B shows the pivot joint of FIG. 21 in a fully articulated configuration along the pivot axis A of FIG. 21;
- FIG. 25 shows a partially-transparent top view of one embodiment of a wing actuator assembly of an airframe
- FIG. 26A shows a partially-transparent top view of another embodiment of a wing actuator assembly of an airframe;
- FIG. 26B shows a partially-transparent view of the wing actuator assembly of FIG. 26A taken along the line C-C of FIG. 26A;
- FIG. 27A shows a partially-transparent top view of another embodiment of a wing and actuator assembly of an airframe
- FIG. 27B shows a front view of the wing of FIG. 27A;
- FIG. 27C shows a side view of the wing of FIG. 27A;
- FIG. 28 A shows a partially-transparent view of the wing of FIG. 27 A taken along the line D-D of FIGS. 27 A and 27B;
- FIG. 28B shows a cross- sectional view of the wing of FIG. 27A taken along the line E-E of FIGS. 27A and 27C;
- FIG. 29 shows a partially-transparent top view of one embodiment of a dual-spar airframe wing.
- linear, circular, or other dimensions are used in the description of the disclosed embodiments, such dimensions are not intended to limit the types of shapes that can be utilized. A person skilled in the art will recognize that an equivalent to such linear, circular, or other dimensions can easily be determined for any geometric shape.
- like-numbered components of the embodiments generally have similar features. Still further, sizes and shapes of overall structures, and the components thereof, can vary greatly and depend at least on the intended application, the size and shape of various other interacting components, etc.
- the airframes described herein are expressly contemplated for use at a variety of size scales, e.g., in small-scale unmanned drones or remote-control aircraft and in large-scale aircraft capable of transporting persons and/or cargo.
- terms of direction e.g., vertical, horizontal, etc. are utilized, they are meant to convey relative relationships among components or nominal operating directions. It is possible that in certain configurations and/or maneuvers, the airframes described herein can be oriented such that, e.g., a referenced "vertical" surface might actually be at a different angle relative to gravity, etc.
- the present disclosure includes various embodiments of airframes capable of efficient forward flight, as well as slow speed maneuvering and hovering to achieve vertical takeoff and landing (VTOL).
- the airframes described herein can include a fuselage, such as a single elongate fuselage that can extend substantially horizontally during cruising flight.
- the fuselage can include opposed wings extending therefrom, and each wing can include an inner fixed portion and an outer folding or tilting portion.
- each wing can be configured to pivot, fold, or tilt relative to the inner portion about an axis that is slanted or oblique to a longitudinal and/or lateral axis of the aircraft, such as a longitudinal axis of the elongate fuselage or a laterally extending axis perpendicular thereto.
- the wing area of each inner wing portion can be relatively small to allow vertically-directed airflow without significant drag force during hovering flight.
- each wing can have larger wing areas, but can be configured to be tilted such that a leading edge thereof faces vertically upward during hovering flight and faces horizontally forward during forward flight.
- the outer portion of each wing can carry one or more propulsion units or thrust producing components such that these can also be moved between a vertical orientation during hovering flight and a horizontal orientation during forward flight.
- the outer portions of each wing can represent a significant portion of the wing assembly and/or aircraft weight and, when in a forward flight
- the outer wing portion can merge with the inner wing portion to create an uninterrupted wing surface.
- FIG. 1 illustrates a schematic representation of one embodiment of an airframe according to the teachings of the present disclosure in its various modes of operation.
- Airframe 100A for example, is illustrated in a hovering, slow speed maneuvering, and VTOL-capable configuration.
- the wings 102 have been tilted relative to the fuselage 104 such that they extend parallel to a length of the fuselage and such that a leading edge thereof faces vertically upward or toward an upper surface of the airframe.
- the various thrust producing components 106 coupled to the wings 102 are also oriented vertically and can function similarly to the four motors of a quadcopter drone to allow stable hovering flight and relatively slow speed maneuvering in any direction.
- the wings 102 can be tilted as shown by the airframe 100B to begin a transition to the forward flight configuration shown by the airframe lOOC.
- the novel tilting design of the wings 102 and thrust producing components 106 can allow a seamless, aerodynamically benign transition from the hovering configuration 100A to the typical forward flight configuration lOOC wherein the wings 102 are fully deployed with a leading edge thereof facing horizontally forward.
- the wings In the forward flight configuration, the wings generate lift to support the weight of the airframe and extended flight range can be achieved through fast and aerodynamically efficient flight.
- transition between configurations can proceed in any direction and can be indefinitely paused at any intermediate step between the hover configuration 100A and the forward flight configuration lOOC to enable varying degrees of maneuverability and flight speed.
- the airframe 10 can include a fuselage 12 and a pair of elongate wings 14A and 14B attached to the fuselage 12, as well as any of a variety of pitch and yaw stabilizers 17 in some embodiments.
- One or more engines 16 A, 16B, 16C, 16D can be mounted on the pair of elongate wings 14A and 14B.
- the elongate wings 14A and 14B can be rotatable about an axis that is slanted or oblique relative to cardinal axes of the airframe, i.e., a longitudinal axis L R of the fuselage about which the airframe can roll, a lateral axis Lp about which the airframe can pitch, and a vertical axis Y about which the airframe can yaw.
- the airframe 10 can be propelled in a forward direction by the engines 16A, 16B, 16C, 16D while the elongate wings 14A and 14B generate lift in a forward flight configuration (FIG. 2), and in a VTOL configuration (FIG.
- FIG. 3 shows the airframe 10 in a vertical takeoff and landing configuration, wherein an outer wing section 20 of each elongate wing 14A, 14B is rotated with respect to an inner wing section 18.
- the engines 16 A, 16B, 16C, 16D can be oriented in an upward direction, and the outer wing section 20 can also be oriented vertically such that a vertically-facing surface area of the outer wing section 20 is minimized. Put another way, the intended leading edge 26 of the outer wing section 20 is pointed upward.
- the vertically oriented engines 16A, 16B, 16C, 16D can lift the airframe 10 vertically and allow the airframe to hover. Precise control of an aircraft during hover or at slow speed can require sufficient lateral and vertical thrust amplitude and variability to overcome adverse influences from turbulent air currents.
- Helicopters achieve the required performance envelope by utilizing cyclic and collective control of the rotor disk (i.e., varying pitch and corresponding lift of each rotor blade as the blade completes a revolution to create thrust asymmetry in a desired manner).
- quad rotor aircraft e.g., quadcopters
- electric motors can achieve hover controllability by means of electronic throttling of the motor power.
- VTOL or low speed flight configuration shown in FIG. 3
- either control scheme can be employed.
- the four motors 16A, 16B, 16C, 16D can form a quadcopter-like propulsion system.
- the thrusters 16A, 16B, 16C, 16D can be arranged in a square pattern during hover when the wings 14A, 14B are folded. Accordingly, thrust produced by each motor 16A, 16B, 16C, 16D can be modulated to control flight and create any desired thrust asymmetry that results in desired movement through the air. Conversely, in forward flight throttle of the motors 16 A, 16B, 16C, 16D can be aligned and generating thrust parallel to the direction of airspeed, as shown in FIG. 2.
- FIGS. 4 and 5 illustrate various intermediate configurations wherein the second or outer wing section 20 of each wing 14 A, 14B can be at least partially rotated, tilted, or folded toward a forward flight configuration to allow the airframe 10 to hover while also moving in a forward direction.
- the outer section 20 of each wing 14A, 14B, along with the engines 16A, 16B, 16C, 16D coupled thereto has begun rotating away from the VTOL configuration of FIG. 3 toward the forward flight configuration of FIG. 2.
- FIG. 5 illustrates the airframe 10 in a second intermediate wing configuration that can be utilized, for example, to achieve higher speed and/or more efficient forward flight performance than may be possible in the configurations of FIGS. 3 and 4.
- the manner in which the wings and propulsion units pivot relative to the fuselage can enable a stable in-flight transition and allow the airframe 10 to advantageously maintain any intermediate wing configuration indefinitely to achieve desired performance characteristics, such as necessary horizontal speed to avoid wing stall.
- each wing 14A, 14B can bring the outer wing sections 20 into alignment with the inner wing sections 18 to form an uninterrupted wing surface, as shown in FIG. 2.
- This can represent a complete transition to a forward flight configuration suited to high speed forward flight wherein the engines 16 A, 16B, 16C, 16D produce forward thrust and the wings 14A and 14B create lift on the airframe 10.
- FIG. 6 illustrates a top view of the embodiment of FIGS. 2-5 with opposed wings at each extreme of pivoting motion, e.g., the left wing 14B in a hovering or VTOL
- each of the pair of elongate wings 14A, 14B can include a first inner wing section 18 that can be fixed adjacent to the fuselage 12 and a second outer wing section 20 that can be rotatably attached to the first wing section 18.
- the first wing section 18 can include a pivot 22 located at a distal end 24 of the first wing section 18.
- the second wing section 20 can be rotatably attached to the pivot 22 adjacent a leading edge 26 of the second wing section 20.
- the second wing section 20 can include an angled inner or proximal edge 28 that conforms to a shape of an angled outer or distal edge 30 of the first wing section 18.
- An axis of rotation A of the second wing section 20 relative to the first wing section 18 can be oblique relative to the above-noted cardinal axes of the airframe 10 (e.g., the longitudinal axis L R about which the airframe rolls and the lateral axis Lp about which the airframe pitches).
- the axis of rotation A of the second wing section 20 relative to the first wing section 18 can be between about 35° and 55° relative to the lateral axis Lp such that, as the second wing section 20 rotates with respect to the first wing section 18, the second wing section 20 sweeps inward towards the fuselage 12. That is, the wing can move from the position of the wing section 14A in FIG.
- the geometry of the wing joint can permit unobstructed airflow to the propellers during a transition between forward flight and hovering configurations. This can also enable indefinite pausing of wing tilting or folding at any intermediate position between the hover and forward flight positions shown in FIGS. 2 and 3 (see, e.g., intermediate positions of FIGS. 4 and 5).
- each wing 14A, 14B can carry one or more thrusters or other propulsion units, as well as fuel cells (e.g., batteries, jet fuel, etc.).
- fuel cells e.g., batteries, jet fuel, etc.
- the one or more engines 16 A, 16B, 16C, 16D can be mounted on each of the pair of elongate wings 14A, 14B. In one embodiment, four engines can be mounted to the pair of elongate wings 14A, 14B.
- each of the pair of elongate wings 14A, 14B can include only one engine mounted thereon (e.g., near a midpoint of each of the pair of elongate wings 14A, 14B).
- the thrusters, engines, or other propulsion units can be formed of one or more turboprops, turbines, electric motors, or other various suitable engines in use and known for manned aircraft and unmanned aerial vehicles.
- an output of each of the engines can be independently adjustable, such as by utilizing cyclic or collective controls, or by varying a speed of each of the motors.
- a weight of each outer wing section 20 can be around 1/3 of the total aircraft weight. Such a distribution can allow the center of gravity of the aircraft to be close to the center of wing air pressure during forward flight while also being close to the thrust vector while hovering.
- one or more batteries for powering the motor can be positioned on the wing as well. As shown in FIG. 8, for example, a battery 80 can be housed in a nacelle 82 or other housing that also encloses an electric motor 16 mounted on an wing section 20.
- Arranging the battery 80 relative to the motor 16 in this manner can have a number of advantages, including, for example, improving weight distribution by moving airframe center of gravity backwards during transition to a hovering configuration, reducing stress on the pivot joint of the wing (e.g., by moving the load away from fuselage toward a center of pressure of each wing), reducing propeller vibrations (e.g., co-locating the battery and propeller can create a stiffer motor support structure with an increased resonance frequency), reducing length and weight of electrical wiring, and increasing ease of access for maintenance and/or
- the motor 16 can include a rotor 84 that can produce thrust when rotated through the air by the motor.
- one or more landing supports can be formed on a trailing edge 90 of each elongate wing 14 A, 14B such that, when the airframe 10 is in the vertical takeoff and landing configuration, the landing supports are located towards a surface below the airframe 10 to support the airframe 10 during landing.
- the landing supports can be formed of one or more of landing wheels, floats, or other various supports.
- the folded wing configuration of FIGS. 9-12 can allow for road transportation of the aircraft because the width of the aircraft with wings folded can be a small portion of the fully extended wing span.
- one or more wheels 92 can be retractably mounted in a motor cowling 94 of each wing 14A, 14B. In some embodiments, such as the
- a wheel 92 can be mounted in each motor cowling 94 to provide, for example, support at four corners of the aircraft 10.
- a subset or all of the wheels can be configured to rotate in a direction perpendicular to the axis of wheel rotation to allow steering, or steering can be achieved by mismatching the speeds of wheels on one side of the aircraft with the speeds of wheels on the other side of the aircraft.
- At least one wheel 110 can be included in the fuselage 12. Wheels or other landing supports included in the fuselage 12 can be utilized in place of, or in combination with, landing supports on the wings 14 A, 14B, depending on the embodiment.
- a forward wheel 110 is used in conjunction with wheels 92 mounted in the motor cowlings 94 of the engines 16B, 16D. This can provide effectively support for the aircraft on the ground and, in some embodiments, the forward wheel 110 can be rotatable to permit steering in ground transport. In other embodiments, however, steering can be achieved in other manners, such as asymmetrically controlling speeds of the wheels 92 on each side of the aircraft.
- the folded wing configuration can also be configured for water landing and transportation.
- the wings 14A, 14B of the airframe 10 can be buoyant and water-tight to balance the airframe on water, as shown in FIG. 13. Because each motor 16A, 16B, 16C, 16D faces up, only the aileron joints/linkages near the trailing edge 90 of each wing 14 A, 14B need to be waterproofed in such an embodiment.
- Horizontal propulsion in a water-borne embodiment can be created by partially unfolding both wings to create both horizontally and vertically directed thrust.
- landing supports, including wheels, floats, pontoons, etc. can be incorporated into the fuselage 12 to replace, or act in conjunction with, structures incorporated into the wings.
- various water propulsion mechanisms such as submerged propellers, etc., can be
- Such components can be coupled to any of the fuselage, the wings, or any pontoon, etc. that is coupled to the airframe.
- an airframe 10 includes four propulsion units 16A, 16B, 16C, and 16D, but in other embodiments a different number of propulsion units can be employed. For example, in some embodiments a larger number of propulsion units can be employed, e.g., six, eight, ten, etc. In other embodiments, a smaller number of propulsion units can be employed.
- propellers associated with one or more of the motors 16A, 16B, 16C, 16D can be configured for cyclic and/or collective rotor control, as in a helicopter. Providing for this type of control can, in some embodiments, allow the number of motors to be reduced. As shown in FIG.
- an airframe 10' can include two motors 16A' and 16B' mounted to wings 14A' and 14B', respectively, that extend from a fuselage 12'.
- Each of the motors 16A', 16B' can include a propeller with blades configured for cyclic and collective pitch variation to enable hovering and low speed flight with the wings and rotors tilted as shown by wing 14B'.
- the pitch of propeller blades can be left constant (but could also be varied if desirable in other embodiments).
- the motors, thrusters, or propulsion units 16' can be any of internal combustion engines, turboprops, turbines, or other various suitable engines in use and known for manned aircraft and unmanned aerial vehicles.
- FIG. 15 illustrates another embodiment of an airframe 1500 that utilizes a canard wing configuration in which horizontal stabilizers 1502A, 1502B are disposed forward of the main lifting wings 1504A, 1504B.
- the wings 1504A, 1504B can be coupled to a fuselage 1506 by struts 1508 A, 1508B that extend from the fuselage.
- An outer end of each strut 1508A, 1508B can include a pivot joint 1510A, 1510B that couples to the wings 1504A, 1504B and defines pivot axes A, A'.
- the pivot axes A, A' can be formed at oblique angles to any of a longitudinal or roll axis L R , a lateral or spar or pitch axis Lp, and a vertical or yaw axis Y (which extends from the plane of FIG. 15), as described above. Movement of the wings 1504 A, 1504B about the pivot axes A, A' relative to the struts 1508 A, 1508B and fuselage 1506 can be controlled in any of the manners described herein, e.g., by a wing actuator assembly.
- each engine or propulsion unit 1512 is housed in a nacelle 1514 mounted to one of the wings 1504A, 1504B via a pylon 1516.
- a flight control system can be utilized to achieve stability during hovering and slow speed flight.
- Exemplary flight control systems are known in the art with regard to quadcopters and other aerial vehicles employing multiple engines and tilting engines. Often these systems employ a proportional-integral-derivative (PID) control feedback loop to modulate throttle of each engine or other propulsion unit in response to aircraft speed, attitude, altitude, and other flight parameters detected using a variety of sensors, such as gyroscopes, altimeters, GPS and other position data, etc.
- PID proportional-integral-derivative
- airframes can modulate the strength of such flight feedback control 1602 based on the configuration of the airframe, e.g., a transition angle 1604 of the wings relative to the fuselage.
- a flight control system can impart significant feedback control when the airframe is in a hover configuration 1606 (as shown in FIG. 3) and a strength of such control can be decreased as the wings transition to a forward flight configuration 1608 (as shown in FIG. 2).
- the change in feedback control strength can be made in a variety of manners. In the illustrated embodiment, for example, feedback control strength is decreased in a linear manner as the wings pivot or tilt between the various configurations.
- FIGS. 17-29 illustrate various embodiments of wing pivot joints and actuator assemblies in greater detail.
- the pivot mechanism can allow for transition between hovering and forward flight while an aircraft is in the air.
- the configuration of the pivot joint along a slanted or oblique axis relative to cardinal axes of the aircraft can provide a smooth and stable transition between flight modes and allow pausing the wings at any of a variety of intermediate positions while maintaining stable flight indefinitely.
- the pivot joint can be positioned on the spar line of the wing at an outer tip of the inner wing portion.
- the wing spar is a main structural member of the wing that extends laterally or span-wise from the fuselage to the wingtip. By placing the joint on the spar line, it can carry stress and torque between the inner and outer wing sections.
- the pivoting joint can also utilize a hollow shaft to carry electrical and/or hydraulic lines between the fuselage/inner wing and the outer wing.
- FIGS. 17A-17C illustrate various perspectives of one embodiment of a pivot axis relative to the airframe 10 and its cardinal axes of roll LR, pitch Lp, and yaw Y.
- the pivot axis A when projected into the plane of the figure, forms an oblique angle with both the longitudinal or roll axis LR and the vertical or yaw axis Y.
- the angle ⁇ between the pivot axis A and the vertical or yaw axis Y can be between about 35 degrees and about 55 degrees in some embodiments.
- the angle ⁇ 2 between the pivot axis A and the longitudinal or roll axis LR can similarly be between about 35 degrees and about 55 degrees in certain embodiments. In some embodiments, the angles ⁇ , ⁇ 2 can each be about 45 degrees.
- FIG. 17B shows a front view of the airframe 10 with projections of these axes. As shown in the figure, the pivot axes A, A' can each form an oblique angle ⁇ 3 with respect to the lateral or pitch axis Lp of the airframe (which can also correspond with a spar axis of the wing). In some embodiments, the angle ⁇ 3 can be between about 35 and about 55 degrees. More particularly, in some embodiments the angle ⁇ 3 can be about 45 degrees.
- FIG. 17C shows a top view of the airframe 10 with projections of these axes.
- the pivot axes A, A' can each form an oblique angle ⁇ 4 with respect to the longitudinal or roll axis LR of the airframe.
- the angle ⁇ 4 can be between about 35 and about 55 degrees. More particularly, in some embodiments the angle ⁇ 4 can be about 45 degrees.
- FIG. 18 illustrates one embodiment of a pivot joint 1800 that can be utilized to permit tilting or folding of an outer wing relative to an inner wing and fuselage of an airframe.
- the joint defines an interface between the inner wing portion 18 and the outer wing portion 20 and can be positioned along a spar, lateral, or pitch axis Lp that extends along an inner wing spar 1802 and an outer wing spar 1804.
- a first spar insert 1806 can be coupled to an outer or distal end of the spar 1802 of the inner wing 18 and a second spar insert 1808 can be coupled to an inner or proximal end of the spar 1804 of the outer wing 20.
- the first spar insert 1806 can include a bore 1810 formed therein that can receive a hollow bolt 1812 that can define the pivot axis A about which the outer wing 20 can move relative to the inner wing 18 and fuselage 12.
- the second spar insert 1808 can include a bore 1814 formed therein that can receive one or more bearing assemblies 1816 that can ensure alignment and reduced friction movement of the inner and outer wing portions 18, 20 relative to one another.
- the hollow bore 1818 of the bolt 1812 can be utilized to pass components through the rotating joint, such as electrical wiring, fuel hoses, hydraulic hoses, etc.
- the various components can be formed from a variety of materials.
- the hollow bolt can be formed from steel, titanium, or other material of sufficient strength.
- Other components, such as the spars, spar inserts, etc. can be formed from any of a variety of materials, including steel, titanium, carbon fiber, or other known materials.
- FIG. 19 illustrates an alternative embodiment of a pivot joint 1900 that is similar to joint 1800 shown in FIG. 18 but utilizes low friction washers in place of bearing assemblies.
- a similar first spar insert 1902 can be coupled to the inner wing spar 1802 and a second spar insert 1904 can be coupled to the outer wing spar 1804.
- a bore 1906 formed in the first spar insert 1902 can receive a hollow bolt 1908 formed of steel, titanium, etc. around which the second spar insert 1904 can be disposed.
- Low friction washers 1910 can be disposed around the bolt 1908 on either side of the second spar insert 1904 to aid in reducing friction as the outer wing 20 pivots relative to the inner wing 18 about the pivot axis A.
- the low friction washers can be formed from any of a variety of known materials, including, for example, sintered bronze impregnated with oil.
- FIG. 20 illustrates still another embodiment of a pivot joint 2000 that employs a clevis pin and ball bearings to facilitate low friction movement with an ability to absorb high stresses along the wing spar.
- the joint 2000 of FIG. 20 is reversed from the joints shown in FIGS. 18 and 19. Such an inversion can illustrate, for example, a difference between a joint used in an aircraft's left wing in comparison to its right wing.
- the joint 2000 can also be drawn in the manner of FIGS. 18 and 19, and both such configurations are within the scope of the invention.
- a first spar insert 2002 is coupled to an inner wing spar 1802 and a second spar insert 2004 is coupled to an outer wing spar 1804, similarly to the pivot joints described above.
- Protruding arms 2006, 2008 of the first spar insert 2002 receive an inner or proximal end 2010 of the second spar insert 2004 and a clevis pin 2012 can be inserted through aligned bores formed in each of the arms 2006, 2008 and end 2010 along the pivot axis A.
- Bearings 2014, 2016 can be disposed about the pin 2012 and anchored relative to the arms 2006, 2008 of the first spar insert 2002 to ensure alignment of the pin and reduce friction during relative movement of the inner and outer wing portions.
- the pivot axis A can form an angle ⁇ 5 with a vertical axis 2018 that can be parallel to the yaw axis Y.
- the angle ⁇ 5 can be between about 25° and about 45°. In the illustrated embodiment, for example, the angle can be about 35 degrees.
- FIG. 20 is illustrated in a plane normal to the pivot axis A, as shown in FIG. 17A. Accordingly, the angles shown in FIG. 20 can produce the above-described angles of FIGS. 17A-17C when projected into the various planes of those figures.
- FIG. 21 illustrates another embodiment of a pivot joint 2100 similar to the clevis joint 2000.
- the joint 2100 can include a first spar insert 2102 coupled to a first spar 1802 and a second spar insert 2104 coupled to a second spar 1804.
- the first and second spar inserts 2102, 2104 can have arms 2106, 2108, respectively, configured to interface with one another such that a clevis pin, bolt, or other securing member 2110 can be disposed through aligned bored formed in the arms 2106, 2108.
- the aligned bores and clevis pin 2110 can define a pivot axis A that can be offset from a lateral or pitch axis Lp by about 55° in some embodiments.
- FIGS. 22A-24B illustrate exemplary motion of the pivot joint 2100 in straight (e.g., FIGS. 22A and 22B), intermediate (FIGS. 23 A and 23B), and fully articulated (FIGS. 24A, 24B) configurations.
- the views of FIGS. 22A, 23A, and 24A are top views looking down along a yaw axis Y.
- the views of FIGS. 22B, 23B, and 24B are taken along the pivot axis A of FIG. 21.
- motion of a wing about the pivot joint 2100 can be visualized by taking the arrow 2200 as a leading edge indicator.
- the leading edge points upward in the plane of the page, as in a top view of an airframe in a forward flight configuration (e.g., FIG. 2).
- a forward flight configuration e.g., FIG. 2
- leading edge indicator 2200 moves up out of the plan of the page and pivots outward/backward, as in FIG. 23A. Finally, when the wing is fully pivoted to a hovering configuration (e.g., FIG. 3), the leading edge indicator 2200 points directly out of the page in a top view, as in FIG. 24A.
- FIGS. 25-28 illustrate various mechanisms for actuating the motion of an outer wing portion 20 relative to an inner wing portion 18 and fuselage 12.
- a wing actuator assembly 36 for rotating the second or outer wing section 20 relative to the first or inner wing section 18 is shown from above an airframe 10.
- the actuator assembly 36 includes a lead screw 38 and a linkage 40 mounted between a lead screw traveler 39 and a linkage mount 42 on the outer wing portion 20.
- a motor 44 or other actuator can rotate the lead screw 38, thereby causing the traveler 39 to move along a length of the lead screw 38, as indicated by arrows 41.
- the linkage 40 coupled thereto can cause the second outer wing section 20 to rotate between a forward flight configuration (e.g., FIG. 2) and a vertical takeoff and landing configuration (e.g., FIG. 3).
- FIG. 25 The mechanical linkage and lead screw drive of FIG. 25 is just one example of a wing actuator assembly according to the teachings provided herein.
- rotary gears are utilized to control movement of an outer wing portion 20 relative to an inner wing portion 18.
- a motor 2602 can be disposed within the outer wing portion 20 can rotate a drive gear 2604 that can be meshed with a stationary gear rack 2606 formed on the inner wing portion 18. This can result in the drive gear 2604 traveling around a circumference of the rack 2606 in the direction of arrows 2608, as shown in the view of FIG. 26 taken along the line C-C in FIG. 26A.
- the motor 2602 and drive gear 2604 can be coupled to the outer wing portion 20
- movement of the drive gear 2604 around the rack 2606 can cause the outer wing portion 20 to rotate relative to the inner wing portion 18 about the pivot axis A.
- the illustrated embodiment shows the motor 2602 and drive gear 2604 coupled to the outer wing portion 20
- the arrangement can be reversed such that these components are coupled to the inner wing portion 18 and the gear rack 2606 is formed on or coupled to the outer wing portion 20.
- any of a variety of different gear trains including gears of various sizes can be employed to achieve the wing movement described herein.
- FIGS. 27A-28B illustrate another embodiment of a wing actuator assembly 2700 that utilizes opposed hydraulic, pneumatic, electric, or other linear actuators to effect pivoting or folding movement of an outer wing portion 20 relative to an inner wing portion 18 about a pivot axis A.
- a pivot joint between the inner wing 18 and the outer wing 20 can be formed on a spar or lateral axis Lp and the joint can be configured such that it is at an oblique angle 06 thereto when projected into the plane of the figure.
- the angle 06 can be about 45 degrees, but other angles are also possible, as noted above.
- the pivot joint can also be formed at oblique angles to the axis Lp, as well as other axes, such as a vertical or yaw axis Y and a longitudinal or roll axis L R .
- the pivot axis A can be disposed at an angle 07 relative to the spar, lateral, or pitch axis Lp, and in some embodiments this angle can be about 45 degrees when projected into the plane of the figure as well.
- FIG. 27C further shows the pivot axis A formed at an angle 0 8 relative to the yaw or vertical axis Y when projected into the side view vertical plane. In such a view, the angle 0 8 can also be about 45 degrees in some embodiments.
- the wing actuator assembly 2700 can include a first linear actuator 2702 coupled at a first end 2802 thereof to the inner wing 18 and a second linear actuator 2704 coupled at a first end 2804 thereof to the outer wing 20.
- a second end 2806 of the first linear actuator 2702 and a second end 2808 of the second linear actuator 2704 can be coupled to a ring 2810 disposed between the inner and outer wings 18, 20 and configured to rotate about the pivot axis A.
- the couplings 2806, 2808 to the first and second linear actuators 2702, 2704 can be disposed on opposing sides of the ring 2810. In some embodiments, the couplings can be disposed on opposing sides in both a radial direction (e.g., the plane of FIG. 28A) and an axial direction (e.g., along the pivot axis A).
- FIG. 28B which shows a cross-sectional view along the line E-E shown in FIGS. 27A and 27C, illustrates the wing actuator assembly 2700 and pivot joint in more detail.
- the pivot joint disposed between the inner wing spar 1802 and outer wing spar 1804 can include an inner spar insert 2812 and an outer spar insert 2814 that are coupled to the inner and outer spars 1802, 1804, respectively, and include bores formed therein that can receive a bolt, pin, or other connecting member 2816 that extends along the pivot axis A.
- the ring 2810 can be disposed between the inner spar insert 2812 and outer spar insert 2814 around the connecting pin or member 2816.
- first and second linear actuators 2702, 2704 can be coupled to the first and second linear actuators 2702, 2704 (not visible in FIG. 28B).
- thrust bearings 2818 can be disposed between the various components to permit reduced friction movement of the components relative to one another about the pivot axis A.
- actuation of both the first and second linear actuators 2702, 2704 can exert forces on the inner and outer wings 18, 20 through the couplings 2802, 2804 and cause the outer wing 20 to move about the pivot axis A relative to the inner wing 18.
- angle ⁇ 5 formed between the pivot axis A and a lateral axis Lp in the plane of the figure.
- This angle can be between about 25° and about 45° in some embodiments to create the above-described angles in FIGS. 17A-17C.
- the angle ⁇ 5 can be about 35° (e.g., 35.2°) to result in the angles ⁇ 1- ⁇ 4 of FIGS. 17A-17C being about 45° each.
- FIG. 29 illustrates one embodiment of a wing 2900 that includes two spars that can be employed, for example, for high stress applications.
- high stress applications can include those where a low profile airfoil wing design is employed (e.g., a small wing thickness or dimension in a direction perpendicular to the wing chord line), as the reduced thickness of the wing can make it more susceptible to stress.
- a high stress application can be an airframe configured to experience high G forces (e.g., up to 5 Gs and beyond).
- the wing 2900 can be divided into an inner wing 18 fixed to a fuselage and an outer wing 20 pivotally coupled thereto, as described above.
- a pivot joint 2902 can be disposed between a first inner spar 2904 and a first outer spar 2906.
- the pivot joint 2902 can provide for movement of the outer wing 20 relative to the inner wing 18 about a pivot axis A and can utilize any of the embodiments described herein and illustrated, for example, in FIGS. 18-24B.
- the wing 2900 can also include a second spar offset from the first spar, e.g., disposed between the first spar and a trailing edge 90 of the wing.
- the second spar can be divided into second inner spar 2906 and a second outer spar 2908.
- the second inner and outer spars 2906, 2908 can be configured to rigidly couple to one another such that stresses can be carried without interruption.
- a translating locking pin 2910 can be disposed in a recess formed in the spars 2906, 2908.
- the recesses formed in the spars 2906, 2908 can be aligned and the locking pin translated along arrows 2912 in FIG.
- the second inner and outer spars 2906, 2908 can be effectively joined as a single spar spanning an entire length of the inner and outer wings 18, 20.
- the locking pin 2910 can be translated to one side of the interface 2914, thereby separating the second inner and outer spars 2906, 2908 to allow the components to separate as the outer wing 20 pivots about the joint 2902 and pivot axis A relative to the inner wing 18.
- the various airframes of the present disclosure advantageously allow for transition from a vertical takeoff and landing configuration to a forward flight configuration.
- weight of the various components mounted to the wings pivoting wing portions can be located close to the fuselage, thereby reducing any moment of inertia created by mass disposed remote from a center of gravity of the airframe.
- the pivoting wing portions can be oriented in a substantially vertical direction with a leading edge thereof facing upward, thereby allowing unobstructed and maximally-efficient airflow over the wings during vertical flight.
- propulsion units coupled to the wings can be oriented in a vertical direction so as to support a weight of the craft with their thrust force.
- the engines coupled to the wings can be rotated and moved further away from a center of gravity of the airframe, thereby creating greater stability during forward flight and vectoring propulsion unit thrust in a horizontal direction to maximize efficiency while the wings create aerodynamic lift force to support the weight of the craft.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Toys (AREA)
Abstract
Airframes configured for stable in-flight transition between forward flight and vertical takeoff and landing are described herein. In one embodiment, an aircraft can include a fuselage, opposed wings extending from opposed sides of the fuselage, and a plurality of engines. At least one engine can be mounted to each of the opposed wings and at least a portion of each opposed wing including at least one of the plurality of engines can rotate relative to the fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage. Rotating portions of the wings including at least one of the plurality of engines in the described manner can provide a stable and smooth transition between vertical and forward flight.
Description
VERTICAL TAKEOFF AND LANDING AIRFRAME
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 62/490,814, filed April 27, 2017, which is hereby incorporated by reference in its entirety.
FIELD OF INVENTION
[0002] This disclosure relates to the fields of aircraft and aerial vehicles. More particularly, this disclosure relates to an airframe capable of vertical takeoff and landing with engines mounted on rotatable wings.
BACKGROUND
[0003] Airframes with high aspect ratio fixed wings, e.g., wings rigidly attached to a fuselage wherein a laterally extending length, or span, of the wing is much greater than a distance between its leading and trailing edges, or chord, can be reliable and efficient in forward flight. These airframes can have several disadvantages as well, including difficulty maneuvering at slow speeds and the need for runway or other runout for takeoff and landing. Prior attempts to address these issues have included airframes with tilting nacelles that house motors, engines, or other thrust producing components to better control an aircraft at slow speeds and allow for short takeoff and landing (STOL) or vertical takeoff and landing (VTOL) operation. In such configurations, however, high aspect ratio fixed wings can be detrimental. For example, long fixed wings can be difficult to maneuver during STOL or VTOL operation due to a large moment of inertia created by their mass being extended away from a center of gravity of the aircraft. Further, there can be significant aerodynamic drag from moving a wing in a manner that presents its largest surface area as a leading edge. Vertically-oriented wind gusts, such as downdrafts, etc., can also have significant impacts on long, fixed wings.
[0004] Other prior attempts to address issues with high aspect ratio fixed wing airframes have included tilting an entire wing assembly including engines or other thrust producing components about a span axis extending between wingtips. While such designs can aid in alleviating the above-described aerodynamic losses from moving a wing in a direction substantially normal to its intended angle of attack, they can still be difficult to maneuver due
to the large moment of inertia of the extended wings. Further, the tilted wings can be impacted by horizontally-oriented wind gusts against the tilted surface area of the wings.
[0005] Prior configurations of both tilt-engine and tilt- wing airframes that can achieve STOL or VTOL operation also suffer from instability during transition from takeoff or landing configurations to forward flight configurations. Accordingly, such aircraft often exhibit bimodal operation envelopes and cannot stably or indefinitely operate at any speed between the takeoff or landing realm and the high-speed forward flight realm.
[0006] A further disadvantage of high aspect ratio fixed wing airframes is the need for substantial storage space at rest and substantial clearance during ground transport. Prior attempts to address these issues have included a variety of wing folding and tilting mechanisms. These mechanisms, however, are often tailored to ground storage or transport and are not operable during flight to enable, for example, vertical takeoff and landing, etc.
[0007] Accordingly, there is a need for improved airframes that provide efficient forward flight as well as vertical takeoff and landing. There is also a need for improved airframes that can smoothly and stably transition between such modes of operation.
SUMMARY OF THE INVENTION
[0008] The present disclosure generally provides airframes that address the shortcomings of prior attempts and enable efficient forward flight along with vertical takeoff and landing. Generally speaking, the embodiments described herein can achieve such versatile
performance by employing a unique configuration of tilting wings and propulsion units that enable a large flight envelope encompassing both hovering and forward flight at a range of speeds.
[0009] The airframes described herein can perform repeated in-flight transformations between a compact and maneuverable hovering or slow speed configuration (e.g., similar to a multirotor drone, helicopter, or other hovering aircraft) and a lifting wing configuration capable of efficient horizontal flight (e.g., similar to a fixed wing aircraft). In the hovering or slow speed configuration, the weight of an aircraft can be substantially supported by the thrust of its propulsion units, which can be coupled to the tilting wings such that they are also tilted to direct their thrust more vertically. In the forward flight configuration, the weight of the aircraft can be substantially supported by the lift generated from the wings and the
propulsion thrust can be directed more horizontally. Further, a continuous range of intermediate tilting positions can also be employed to provide varying levels of thrust- or wing-developed lifting force. The airframes disclosed herein provide a unique ability to smoothly and stably transition between these two operating modes in-flight and/or operate indefinitely in an intermediate mode.
[0010] These performance characteristics can, in some embodiments, be achieved by utilizing a folding wing structure that pivots on a slanted axis, i.e., an axis that is oblique to a longitudinal or lateral axis of the aircraft. Such a folding motion can orient a leading edge of each wing in an upward or forward direction, depending on the tilt of the wing. Further, in a tilted configuration the wings can extend along the fuselage of the aircraft to reduce the moment of inertia created by their mass, their aerodynamic impact during hover, as well as space required for storage or ground transport. Further, in some embodiments a portion of the wings folded in this manner can include propulsion units coupled thereto such that thrust can be redirected between a horizontal and a vertical direction as the wings are tilted or folded.
[0011] The airframe designs described herein can be embodied at any of a variety of scales. For example, the designs can be suitable for application in a small aircraft, such as a drone or remote-control aircraft, as well as full scale aircraft capable of transporting persons and cargo. And a variety of propulsion technologies can be employed, including electric motors, internal combustion engines, turbines, etc.
[0012] In one aspect, an aircraft is provided that can include a fuselage, opposed wings extending from opposed sides of the fuselage, and a plurality of engines. At least one engine can be mounted to each of the opposed wings. Further, at least a portion of each opposed wing including at least one of the plurality of engines can rotate relative to the fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage.
[0013] Each of the embodiments described herein can have a number of additional features and/or variations, all of which are within the scope of the present disclosure. In some embodiments, for example, a first angle between the rotation axis and the longitudinal axis of the fuselage projected in a plane containing the longitudinal axis of the fuselage and an axis extending between ends of the opposed wings can be between about 35° and about 55°. In
some embodiments, the first angle can be about 45°. Further, in some embodiments a second angle between the rotation axis and the axis extending between ends of the opposed wings projected in a plane containing the axis extending between ends of the opposed wings and perpendicular to the longitudinal axis of the fuselage is between about 35° and about 55°. In some embodiments, the second angle can be about 45°.
[0014] In certain embodiments, the plurality of engines can include at least 4 engines and each portion of the opposed wings that rotates relative to the fuselage can include at least two engines mounted thereto. Any of a variety of engine types can be utilized. For example, in some embodiments each of the plurality of engines can be an electric engine. Moreover, in such embodiments the aircraft can further include a plurality of batteries and each battery can be mounted to one of the opposed wings adjacent to one of the plurality of engines. In other embodiments, each of the plurality of engines can be any of a turbine and an internal combustion engine.
[0015] In some embodiments, each of the opposed wings can include a fixed portion extending from the fuselage and a rotating portion outboard of the fixed portion. Further, in some embodiments an outboard end of each fixed portion can be oblique to the longitudinal axis of the fuselage. In some embodiments, each rotating portion of the opposed wings can rotate between a first configuration, in which an axis between a leading edge and a trailing edge of the wing is parallel to the longitudinal axis of the fuselage, and a second
configuration, in which the axis between the leading edge and the trailing edge of the wing is perpendicular to the longitudinal axis of the fuselage. Further, in some embodiments the leading edge of each rotating portion of the opposed wings can face upward when the wings are in the second configuration.
[0016] Still further, in certain embodiments each rotating portion of the opposed wings can rotate between a first configuration, in which an axis extending between an inboard end to an outboard end of the rotating portion is perpendicular to the longitudinal axis of the fuselage, and a second configuration, in which the axis extending between the inboard end and the outboard end of the rotating portion is parallel to the longitudinal axis of the fuselage. As noted similarly above, in some embodiments the leading edge of each rotating portion of the opposed wings can face upward when the wings are in the second configuration. Still further, in some embodiments each of the plurality of engines can be offset from the wing it is
mounted to such that, when each wing is in the first configuration, the at least one engine mounted thereto can be disposed between the wing and the fuselage.
[0017] In certain embodiments, the aircraft can further include at least one landing support coupled to a trailing portion of each rotating portion of the opposed wings. The landing support can have any of a variety of forms. For example, in some embodiments the landing support can be any of a wheel, a float, and a leg. In certain embodiments, the landing support can be a wheel coupled to one of the engines such that the engine can rotate the wheel.
[0018] A variety of mechanisms can be employed to provide for movement of the rotating portion relative to the fixed portion of each of the opposed wings. For example, in some embodiments the fixed portion and the rotating portion of each of the opposed wings can be coupled by a pivot joint. Further, in some embodiments the pivot joint can be disposed in a leading portion of each opposed wing. In certain embodiments, each of the opposed wings can further include an actuator to control rotation of the rotating portion relative to the fixed portion. In some embodiments, the actuator can include a lead screw coupled to the rotating portion by a linkage. In other embodiments, the actuator can include any of a variety of gears, hydraulic actuators, electric actuators, etc.
[0019] The opposed wings of the aircraft can have a variety of shapes and sizes. In some embodiments, for example, the opposed wings can have an airfoil shape. Such wings can produce lift during forward flight of the aircraft. In other embodiments, however, the wings can have alternative shapes. For example, in some embodiments the wings can be spars that do not produce lift. Examples can include cylindrical spars, beam spars, etc.
[0020] In another aspect, a vertical take-off or landing method is provided that can include rotating at least a portion of a wing having an engine mounted thereto relative to a fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage to orient the engine and a leading edge of the wing vertically for hovering. The method can further include actuating the engine to produce vertical lift, and rotating the at least portion of the wing having the engine mounted thereto to orient the engine and a leading edge of the wing horizontally for forward flight.
[0021] As with the aircraft described above, a number of variations and additional features are possible. For example, in some embodiments a leading edge of the wing can face upward when the wing is oriented vertically.
[0022] In certain embodiments, rotating the at least portion of the wing to orient the engine and the leading edge of the wing vertically can include pivoting the at least portion of the wing about a pivot joint disposed in a leading portion of the wing. Rotation of the at least portion of the wing can be accomplished in a variety of manners. For example, in some embodiments rotating the at least portion of the wing to orient the engine and the leading edge of the wing vertically can include any of hydraulically and electrically actuating such rotation.
[0023] In certain embodiments, the method can further include pausing rotation of the at least portion of the wing such that the wing and the engine are between a vertical and a horizontal orientation to transition between hovering and forward flight.
[0024] Any of the features or variations described above can be applied to any particular aspect or embodiment of the invention in a number of different combinations. The absence of explicit recitation of any particular combination is due solely to the avoidance of repetition in this summary.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] Further features, aspects, and advantages of the present disclosure will become better understood by reference to the following detailed description, appended claims, and accompanying figures, wherein elements are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:
[0026] FIG. 1 shows a schematic of different wing configurations of an airframe according to the teachings provided herein;
[0027] FIG. 2 shows a perspective view of one embodiment of an airframe in a forward flight configuration;
[0028] FIG. 3 shows a perspective view of the airframe of FIG. 2 in a vertical takeoff and landing configuration;
[0029] FIG. 4 shows a perspective view of the airframe of FIG. 2 in a first transition configuration;
[0030] FIG. 5 shows a perspective view of the airframe of FIG. 2 in a second transition configuration;
[0031] FIG. 6 shows a top view of the airframe of FIG. 1;
[0032] FIG. 7 shows a perspective view of the airframe of FIG. 1 in a vertical takeoff and landing configuration;
[0033] FIG. 8 shows a detail view of one embodiment of a propulsion unit according to the teachings provided herein;
[0034] FIG. 9 shows a perspective view of one embodiment of a vertical takeoff and landing airframe equipped with landing wheels;
[0035] FIG. 10 shows a side view of the airframe of FIG. 9;
[0036] FIG. 11 shows a perspective view of another embodiment of a vertical takeoff and landing airframe equipped with landing wheels;
[0037] FIG. 12 shows a side view of the airframe of FIG. 11;
[0038] FIG. 13 shows a perspective view of another embodiment of a vertical takeoff and landing airframe equipped for water landings;
[0039] FIG. 14 shows a top view of an alternative embodiment of a vertical takeoff and landing airframe;
[0040] FIG. 15 shows a top view of another embodiment of a vertical takeoff and landing airframe;
[0041] FIG. 16 shows one embodiment of a relationship between flight feedback control strength and wing transition angle;
[0042] FIG. 17A shows a side view of one embodiment of a vertical takeoff and landing airframe highlighting a pivot axis A projected in a longitudinally-extending vertical plane;
[0043] FIG. 17B shows a front view of the airframe of FIG. 17A highlighting the pivot axis A projected in a laterally-extending vertical plane;
[0044] FIG. 17C shows a top view of the airframe of FIG. 17A highlighting the pivot axis A projected in a horizontal plane;
[0045] FIG. 18 shows a cross-sectional view in the direction of line B-B of FIG. 17A of one embodiment of a pivot joint;
[0046] FIG. 19 shows a cross-sectional view in the direction of line B-B of FIG. 17A of another embodiment of a pivot joint;
[0047] FIG. 20 shows a cross-sectional view in the direction of line B-B of FIG. 17A of another embodiment of a pivot joint;
[0048] FIG. 21 shows a cross-sectional view in the direction of line B-B of FIG. 17A of still another embodiment of a pivot joint;
[0049] FIG. 22A shows a top perspective view of the pivot joint of FIG. 21 in a straight configuration;
[0050] FIG. 22B shows the pivot joint of FIG. 21 in a straight configuration along the pivot axis A of FIG. 21;
[0051] FIG. 23A shows a top perspective view of the pivot joint of FIG. 21 in an
intermediate configuration;
[0052] FIG. 23B shows the pivot joint of FIG. 21 in an intermediate configuration along the pivot axis A of FIG. 21;
[0053] FIG. 24A shows a top perspective view of the pivot joint of FIG. 21 in a fully articulated configuration;
[0054] FIG. 24B shows the pivot joint of FIG. 21 in a fully articulated configuration along the pivot axis A of FIG. 21;
[0055] FIG. 25 shows a partially-transparent top view of one embodiment of a wing actuator assembly of an airframe;
[0056] FIG. 26A shows a partially-transparent top view of another embodiment of a wing actuator assembly of an airframe;
[0057] FIG. 26B shows a partially-transparent view of the wing actuator assembly of FIG. 26A taken along the line C-C of FIG. 26A;
[0058] FIG. 27A shows a partially-transparent top view of another embodiment of a wing and actuator assembly of an airframe;
[0059] FIG. 27B shows a front view of the wing of FIG. 27A; [0060] FIG. 27C shows a side view of the wing of FIG. 27A;
[0061] FIG. 28 A shows a partially-transparent view of the wing of FIG. 27 A taken along the line D-D of FIGS. 27 A and 27B;
[0062] FIG. 28B shows a cross- sectional view of the wing of FIG. 27A taken along the line E-E of FIGS. 27A and 27C; and
[0063] FIG. 29 shows a partially-transparent top view of one embodiment of a dual-spar airframe wing.
DETAILED DESCRIPTION OF THE INVENTION
[0064] Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the airframes disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the embodiments specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
[0065] Additionally, to the extent that linear, circular, or other dimensions are used in the description of the disclosed embodiments, such dimensions are not intended to limit the types of shapes that can be utilized. A person skilled in the art will recognize that an equivalent to such linear, circular, or other dimensions can easily be determined for any geometric shape. Further, in the present disclosure, like-numbered components of the embodiments generally have similar features. Still further, sizes and shapes of overall structures, and the components thereof, can vary greatly and depend at least on the intended application, the size and shape of
various other interacting components, etc. As noted above, the airframes described herein are expressly contemplated for use at a variety of size scales, e.g., in small-scale unmanned drones or remote-control aircraft and in large-scale aircraft capable of transporting persons and/or cargo. Finally, to the extent that terms of direction, e.g., vertical, horizontal, etc. are utilized, they are meant to convey relative relationships among components or nominal operating directions. It is possible that in certain configurations and/or maneuvers, the airframes described herein can be oriented such that, e.g., a referenced "vertical" surface might actually be at a different angle relative to gravity, etc.
[0066] As noted above, the present disclosure includes various embodiments of airframes capable of efficient forward flight, as well as slow speed maneuvering and hovering to achieve vertical takeoff and landing (VTOL). In some embodiments, the airframes described herein can include a fuselage, such as a single elongate fuselage that can extend substantially horizontally during cruising flight. The fuselage can include opposed wings extending therefrom, and each wing can include an inner fixed portion and an outer folding or tilting portion. The outer portion of each wing can be configured to pivot, fold, or tilt relative to the inner portion about an axis that is slanted or oblique to a longitudinal and/or lateral axis of the aircraft, such as a longitudinal axis of the elongate fuselage or a laterally extending axis perpendicular thereto. The wing area of each inner wing portion can be relatively small to allow vertically-directed airflow without significant drag force during hovering flight.
Conversely, the outer portions of each wing can have larger wing areas, but can be configured to be tilted such that a leading edge thereof faces vertically upward during hovering flight and faces horizontally forward during forward flight. The outer portion of each wing can carry one or more propulsion units or thrust producing components such that these can also be moved between a vertical orientation during hovering flight and a horizontal orientation during forward flight. The outer portions of each wing can represent a significant portion of the wing assembly and/or aircraft weight and, when in a forward flight
configuration, the outer wing portion can merge with the inner wing portion to create an uninterrupted wing surface.
[0067] FIG. 1 illustrates a schematic representation of one embodiment of an airframe according to the teachings of the present disclosure in its various modes of operation.
Airframe 100A, for example, is illustrated in a hovering, slow speed maneuvering, and VTOL-capable configuration. In such a configuration, the wings 102 have been tilted
relative to the fuselage 104 such that they extend parallel to a length of the fuselage and such that a leading edge thereof faces vertically upward or toward an upper surface of the airframe. In this configuration, the various thrust producing components 106 coupled to the wings 102 are also oriented vertically and can function similarly to the four motors of a quadcopter drone to allow stable hovering flight and relatively slow speed maneuvering in any direction.
[0068] From the hovering configuration shown by airframe 100A, the wings 102 can be tilted as shown by the airframe 100B to begin a transition to the forward flight configuration shown by the airframe lOOC. The novel tilting design of the wings 102 and thrust producing components 106 can allow a seamless, aerodynamically benign transition from the hovering configuration 100A to the typical forward flight configuration lOOC wherein the wings 102 are fully deployed with a leading edge thereof facing horizontally forward. In the forward flight configuration, the wings generate lift to support the weight of the airframe and extended flight range can be achieved through fast and aerodynamically efficient flight.
Further, the transition between configurations can proceed in any direction and can be indefinitely paused at any intermediate step between the hover configuration 100A and the forward flight configuration lOOC to enable varying degrees of maneuverability and flight speed.
[0069] Referring now to FIG. 2, one embodiment of an airframe 10 is provided that allows forward flight and vertical takeoffs and landings. The airframe 10 can include a fuselage 12 and a pair of elongate wings 14A and 14B attached to the fuselage 12, as well as any of a variety of pitch and yaw stabilizers 17 in some embodiments. One or more engines 16 A, 16B, 16C, 16D can be mounted on the pair of elongate wings 14A and 14B. As described in greater detail below, the elongate wings 14A and 14B can be rotatable about an axis that is slanted or oblique relative to cardinal axes of the airframe, i.e., a longitudinal axis LR of the fuselage about which the airframe can roll, a lateral axis Lp about which the airframe can pitch, and a vertical axis Y about which the airframe can yaw. As a result of this wing pivoting configuration, the airframe 10 can be propelled in a forward direction by the engines 16A, 16B, 16C, 16D while the elongate wings 14A and 14B generate lift in a forward flight configuration (FIG. 2), and in a VTOL configuration (FIG. 3) the engines 16A, 16B, 16C, 16D can lift the airframe 10 to allow it to hover, perform vertical takeoffs and landings, or maneuver at slow speeds.
[0070] FIG. 3 shows the airframe 10 in a vertical takeoff and landing configuration, wherein an outer wing section 20 of each elongate wing 14A, 14B is rotated with respect to an inner wing section 18. In such a vertical takeoff and landing configuration, the engines 16 A, 16B, 16C, 16D can be oriented in an upward direction, and the outer wing section 20 can also be oriented vertically such that a vertically-facing surface area of the outer wing section 20 is minimized. Put another way, the intended leading edge 26 of the outer wing section 20 is pointed upward. In such a configuration, the vertically oriented engines 16A, 16B, 16C, 16D can lift the airframe 10 vertically and allow the airframe to hover. Precise control of an aircraft during hover or at slow speed can require sufficient lateral and vertical thrust amplitude and variability to overcome adverse influences from turbulent air currents.
Helicopters achieve the required performance envelope by utilizing cyclic and collective control of the rotor disk (i.e., varying pitch and corresponding lift of each rotor blade as the blade completes a revolution to create thrust asymmetry in a desired manner). As another example, quad rotor aircraft (e.g., quadcopters) driven by electric motors can achieve hover controllability by means of electronic throttling of the motor power. In the hovering, VTOL, or low speed flight configuration shown in FIG. 3, either control scheme can be employed. For example, in the illustrated embodiment the four motors 16A, 16B, 16C, 16D can form a quadcopter-like propulsion system. As shown in the figure, the thrusters 16A, 16B, 16C, 16D can be arranged in a square pattern during hover when the wings 14A, 14B are folded. Accordingly, thrust produced by each motor 16A, 16B, 16C, 16D can be modulated to control flight and create any desired thrust asymmetry that results in desired movement through the air. Conversely, in forward flight throttle of the motors 16 A, 16B, 16C, 16D can be aligned and generating thrust parallel to the direction of airspeed, as shown in FIG. 2.
[0071] FIGS. 4 and 5 illustrate various intermediate configurations wherein the second or outer wing section 20 of each wing 14 A, 14B can be at least partially rotated, tilted, or folded toward a forward flight configuration to allow the airframe 10 to hover while also moving in a forward direction. In the configuration of FIG. 4, for example, the outer section 20 of each wing 14A, 14B, along with the engines 16A, 16B, 16C, 16D coupled thereto, has begun rotating away from the VTOL configuration of FIG. 3 toward the forward flight configuration of FIG. 2.
[0072] To continue a transition to a forward flight configuration, the outer wing section 20 of each elongate wing 14 A, 14B can further rotate towards a full forward flight configuration in
which the outer and inner wing sections 18, 20 form an uninterrupted wing surface. FIG. 5 illustrates the airframe 10 in a second intermediate wing configuration that can be utilized, for example, to achieve higher speed and/or more efficient forward flight performance than may be possible in the configurations of FIGS. 3 and 4. As noted above, the manner in which the wings and propulsion units pivot relative to the fuselage can enable a stable in-flight transition and allow the airframe 10 to advantageously maintain any intermediate wing configuration indefinitely to achieve desired performance characteristics, such as necessary horizontal speed to avoid wing stall.
[0073] Continued advancement of the outer wing section 20 of each wing 14A, 14B can bring the outer wing sections 20 into alignment with the inner wing sections 18 to form an uninterrupted wing surface, as shown in FIG. 2. This can represent a complete transition to a forward flight configuration suited to high speed forward flight wherein the engines 16 A, 16B, 16C, 16D produce forward thrust and the wings 14A and 14B create lift on the airframe 10.
[0074] FIG. 6 illustrates a top view of the embodiment of FIGS. 2-5 with opposed wings at each extreme of pivoting motion, e.g., the left wing 14B in a hovering or VTOL
configuration and the right wing 14A in a forward flight configuration. As noted above, each of the pair of elongate wings 14A, 14B can include a first inner wing section 18 that can be fixed adjacent to the fuselage 12 and a second outer wing section 20 that can be rotatably attached to the first wing section 18. The first wing section 18 can include a pivot 22 located at a distal end 24 of the first wing section 18. The second wing section 20 can be rotatably attached to the pivot 22 adjacent a leading edge 26 of the second wing section 20. The second wing section 20 can include an angled inner or proximal edge 28 that conforms to a shape of an angled outer or distal edge 30 of the first wing section 18. An axis of rotation A of the second wing section 20 relative to the first wing section 18 can be oblique relative to the above-noted cardinal axes of the airframe 10 (e.g., the longitudinal axis LR about which the airframe rolls and the lateral axis Lp about which the airframe pitches). For example, in some embodiments the axis of rotation A of the second wing section 20 relative to the first wing section 18 can be between about 35° and 55° relative to the lateral axis Lp such that, as the second wing section 20 rotates with respect to the first wing section 18, the second wing section 20 sweeps inward towards the fuselage 12. That is, the wing can move from the position of the wing section 14A in FIG. 6 to the position of the wing section 14B in FIG. 6.
The geometry of the wing joint can permit unobstructed airflow to the propellers during a transition between forward flight and hovering configurations. This can also enable indefinite pausing of wing tilting or folding at any intermediate position between the hover and forward flight positions shown in FIGS. 2 and 3 (see, e.g., intermediate positions of FIGS. 4 and 5).
[0075] The outer wing section 20 of each wing 14A, 14B can carry one or more thrusters or other propulsion units, as well as fuel cells (e.g., batteries, jet fuel, etc.). Referring to FIGS. 6 and 7, the one or more engines 16 A, 16B, 16C, 16D can be mounted on each of the pair of elongate wings 14A, 14B. In one embodiment, four engines can be mounted to the pair of elongate wings 14A, 14B. On each of the elongate wings 14A, 14B, one engine (e.g., engines 16A, 16C) can be mounted towards the pivot 22 between the first wing section 18 and second wing section 20, while a second engine (e.g., engines 16B, 16D) can be mounted between the first engine and a wing tip 32 of each of the pair of elongate wings 14A, 14B. In another embodiment, as described below in connection with FIG. 14, each of the pair of elongate wings 14A, 14B can include only one engine mounted thereon (e.g., near a midpoint of each of the pair of elongate wings 14A, 14B). The thrusters, engines, or other propulsion units can be formed of one or more turboprops, turbines, electric motors, or other various suitable engines in use and known for manned aircraft and unmanned aerial vehicles.
Further, an output of each of the engines can be independently adjustable, such as by utilizing cyclic or collective controls, or by varying a speed of each of the motors.
[0076] In some embodiments, a weight of each outer wing section 20 can be around 1/3 of the total aircraft weight. Such a distribution can allow the center of gravity of the aircraft to be close to the center of wing air pressure during forward flight while also being close to the thrust vector while hovering. In certain embodiments where electric motors are utilized as propulsion units, one or more batteries for powering the motor can be positioned on the wing as well. As shown in FIG. 8, for example, a battery 80 can be housed in a nacelle 82 or other housing that also encloses an electric motor 16 mounted on an wing section 20. Arranging the battery 80 relative to the motor 16 in this manner can have a number of advantages, including, for example, improving weight distribution by moving airframe center of gravity backwards during transition to a hovering configuration, reducing stress on the pivot joint of the wing (e.g., by moving the load away from fuselage toward a center of pressure of each wing), reducing propeller vibrations (e.g., co-locating the battery and propeller can create a
stiffer motor support structure with an increased resonance frequency), reducing length and weight of electrical wiring, and increasing ease of access for maintenance and/or
replacement. The motor 16 can include a rotor 84 that can produce thrust when rotated through the air by the motor.
[0077] As shown in FIGS. 9-12, one or more landing supports can be formed on a trailing edge 90 of each elongate wing 14 A, 14B such that, when the airframe 10 is in the vertical takeoff and landing configuration, the landing supports are located towards a surface below the airframe 10 to support the airframe 10 during landing. The landing supports can be formed of one or more of landing wheels, floats, or other various supports. The folded wing configuration of FIGS. 9-12 can allow for road transportation of the aircraft because the width of the aircraft with wings folded can be a small portion of the fully extended wing span. In the embodiment of FIGS. 9-12, one or more wheels 92 can be retractably mounted in a motor cowling 94 of each wing 14A, 14B. In some embodiments, such as the
embodiment of FIGS. 9 and 10, a wheel 92 can be mounted in each motor cowling 94 to provide, for example, support at four corners of the aircraft 10. In such embodiments, a subset or all of the wheels can be configured to rotate in a direction perpendicular to the axis of wheel rotation to allow steering, or steering can be achieved by mismatching the speeds of wheels on one side of the aircraft with the speeds of wheels on the other side of the aircraft.
[0078] In other embodiments, such as the embodiment of FIGS. 11 and 12, at least one wheel 110 can be included in the fuselage 12. Wheels or other landing supports included in the fuselage 12 can be utilized in place of, or in combination with, landing supports on the wings 14 A, 14B, depending on the embodiment. In the embodiment of FIGS. 11 and 12, for example, a forward wheel 110 is used in conjunction with wheels 92 mounted in the motor cowlings 94 of the engines 16B, 16D. This can provide effectively support for the aircraft on the ground and, in some embodiments, the forward wheel 110 can be rotatable to permit steering in ground transport. In other embodiments, however, steering can be achieved in other manners, such as asymmetrically controlling speeds of the wheels 92 on each side of the aircraft.
[0079] The folded wing configuration can also be configured for water landing and transportation. For example, the wings 14A, 14B of the airframe 10 can be buoyant and water-tight to balance the airframe on water, as shown in FIG. 13. Because each motor 16A, 16B, 16C, 16D faces up, only the aileron joints/linkages near the trailing edge 90 of each
wing 14 A, 14B need to be waterproofed in such an embodiment. Horizontal propulsion in a water-borne embodiment can be created by partially unfolding both wings to create both horizontally and vertically directed thrust. Further, in certain embodiments landing supports, including wheels, floats, pontoons, etc. can be incorporated into the fuselage 12 to replace, or act in conjunction with, structures incorporated into the wings. In some embodiments, various water propulsion mechanisms, such as submerged propellers, etc., can be
incorporated into the airframe. Such components can be coupled to any of the fuselage, the wings, or any pontoon, etc. that is coupled to the airframe.
[0080] The above-described embodiments of an airframe 10 include four propulsion units 16A, 16B, 16C, and 16D, but in other embodiments a different number of propulsion units can be employed. For example, in some embodiments a larger number of propulsion units can be employed, e.g., six, eight, ten, etc. In other embodiments, a smaller number of propulsion units can be employed. For example, and as noted above, in some embodiments propellers associated with one or more of the motors 16A, 16B, 16C, 16D can be configured for cyclic and/or collective rotor control, as in a helicopter. Providing for this type of control can, in some embodiments, allow the number of motors to be reduced. As shown in FIG. 14, for example, an airframe 10' can include two motors 16A' and 16B' mounted to wings 14A' and 14B', respectively, that extend from a fuselage 12'. Each of the motors 16A', 16B' can include a propeller with blades configured for cyclic and collective pitch variation to enable hovering and low speed flight with the wings and rotors tilted as shown by wing 14B'. In a forward flight configuration, as shown by wing 14A' in FIG. 14, the pitch of propeller blades can be left constant (but could also be varied if desirable in other embodiments). Note that in any of the embodiments described herein, a variety of different propulsion technologies can be employed. For example, instead of utilizing electric motors 16 described above, the motors, thrusters, or propulsion units 16' can be any of internal combustion engines, turboprops, turbines, or other various suitable engines in use and known for manned aircraft and unmanned aerial vehicles.
[0081] Still other embodiments of airframes according to the teachings provided herein can utilize alternative engine and/or wing configurations. FIG. 15, for example, illustrates another embodiment of an airframe 1500 that utilizes a canard wing configuration in which horizontal stabilizers 1502A, 1502B are disposed forward of the main lifting wings 1504A, 1504B. In the illustrated embodiment, the wings 1504A, 1504B can be coupled to a fuselage
1506 by struts 1508 A, 1508B that extend from the fuselage. An outer end of each strut 1508A, 1508B can include a pivot joint 1510A, 1510B that couples to the wings 1504A, 1504B and defines pivot axes A, A'. The pivot axes A, A' can be formed at oblique angles to any of a longitudinal or roll axis LR, a lateral or spar or pitch axis Lp, and a vertical or yaw axis Y (which extends from the plane of FIG. 15), as described above. Movement of the wings 1504 A, 1504B about the pivot axes A, A' relative to the struts 1508 A, 1508B and fuselage 1506 can be controlled in any of the manners described herein, e.g., by a wing actuator assembly.
[0082] Of note in the airframe 1500 is that the wings 1504 A, 1504B are configured to pivot out and down relative to the fuselage 1506 when moving from the VTOL configuration of wing 1504A in FIG. 15 to the forward flight configuration of wing 1504B. This is opposite the wing movement shown in FIGS. 2-5 of the airframe 10 wherein the outer section 20 of each wing 14A, 14B moves outward and upward relative to the fuselage 12 during transition from a VTOL configuration to a forward flight configuration. Also of note is that each engine or propulsion unit 1512 is housed in a nacelle 1514 mounted to one of the wings 1504A, 1504B via a pylon 1516. This offsets the engine from the wing and positions the engine such that, in the VTOL or hover configuration of wing 1504 A in FIG. 15, the engine 1512 is disposed between the wing and the fuselage 1506. In some embodiments, this can mean the propeller diameter 1518 is also disposed between the wing and the fuselage, thereby protecting the propeller blades from striking outside objects. It should be appreciated that this configuration of offset engines, wherein the engines are disposed between the wing and the fuselage in the vertical flight configuration, can also be utilized with the other
embodiments of airframes described herein.
[0083] While the airframes described herein are capable of achieving stable flight throughout the transition between forward flight and hovering configurations, in some embodiments a flight control system can be utilized to achieve stability during hovering and slow speed flight. Exemplary flight control systems are known in the art with regard to quadcopters and other aerial vehicles employing multiple engines and tilting engines. Often these systems employ a proportional-integral-derivative (PID) control feedback loop to modulate throttle of each engine or other propulsion unit in response to aircraft speed, attitude, altitude, and other flight parameters detected using a variety of sensors, such as gyroscopes, altimeters, GPS and other position data, etc. As illustrated in FIG. 16, airframes according to the teachings
provided herein can modulate the strength of such flight feedback control 1602 based on the configuration of the airframe, e.g., a transition angle 1604 of the wings relative to the fuselage. For example, a flight control system can impart significant feedback control when the airframe is in a hover configuration 1606 (as shown in FIG. 3) and a strength of such control can be decreased as the wings transition to a forward flight configuration 1608 (as shown in FIG. 2). The change in feedback control strength can be made in a variety of manners. In the illustrated embodiment, for example, feedback control strength is decreased in a linear manner as the wings pivot or tilt between the various configurations.
[0084] FIGS. 17-29 illustrate various embodiments of wing pivot joints and actuator assemblies in greater detail. As noted above, the pivot mechanism can allow for transition between hovering and forward flight while an aircraft is in the air. Further, the configuration of the pivot joint along a slanted or oblique axis relative to cardinal axes of the aircraft can provide a smooth and stable transition between flight modes and allow pausing the wings at any of a variety of intermediate positions while maintaining stable flight indefinitely. There are a number of different embodiments for forming the pivot joint and actuating movement of the wing components thereabout, but in general the pivot joint can be positioned on the spar line of the wing at an outer tip of the inner wing portion. The wing spar is a main structural member of the wing that extends laterally or span-wise from the fuselage to the wingtip. By placing the joint on the spar line, it can carry stress and torque between the inner and outer wing sections. The pivoting joint can also utilize a hollow shaft to carry electrical and/or hydraulic lines between the fuselage/inner wing and the outer wing.
[0085] As noted above, the pivot axis can form an oblique angle relative to one or more cardinal axes of the airframe 10. FIGS. 17A-17C illustrate various perspectives of one embodiment of a pivot axis relative to the airframe 10 and its cardinal axes of roll LR, pitch Lp, and yaw Y. In the side view of FIG. 17A, it can be seen that the pivot axis A, when projected into the plane of the figure, forms an oblique angle with both the longitudinal or roll axis LR and the vertical or yaw axis Y. The angle θι between the pivot axis A and the vertical or yaw axis Y can be between about 35 degrees and about 55 degrees in some embodiments. The angle θ2 between the pivot axis A and the longitudinal or roll axis LR can similarly be between about 35 degrees and about 55 degrees in certain embodiments. In some embodiments, the angles θι, θ2 can each be about 45 degrees.
[0086] FIG. 17B shows a front view of the airframe 10 with projections of these axes. As shown in the figure, the pivot axes A, A' can each form an oblique angle θ3 with respect to the lateral or pitch axis Lp of the airframe (which can also correspond with a spar axis of the wing). In some embodiments, the angle θ3 can be between about 35 and about 55 degrees. More particularly, in some embodiments the angle θ3 can be about 45 degrees.
[0087] FIG. 17C shows a top view of the airframe 10 with projections of these axes. As shown in the figure, the pivot axes A, A' can each form an oblique angle θ4 with respect to the longitudinal or roll axis LR of the airframe. In some embodiments, the angle θ4 can be between about 35 and about 55 degrees. More particularly, in some embodiments the angle θ4 can be about 45 degrees.
[0088] FIG. 18 illustrates one embodiment of a pivot joint 1800 that can be utilized to permit tilting or folding of an outer wing relative to an inner wing and fuselage of an airframe. The joint defines an interface between the inner wing portion 18 and the outer wing portion 20 and can be positioned along a spar, lateral, or pitch axis Lp that extends along an inner wing spar 1802 and an outer wing spar 1804. A first spar insert 1806 can be coupled to an outer or distal end of the spar 1802 of the inner wing 18 and a second spar insert 1808 can be coupled to an inner or proximal end of the spar 1804 of the outer wing 20. The first spar insert 1806 can include a bore 1810 formed therein that can receive a hollow bolt 1812 that can define the pivot axis A about which the outer wing 20 can move relative to the inner wing 18 and fuselage 12. The second spar insert 1808 can include a bore 1814 formed therein that can receive one or more bearing assemblies 1816 that can ensure alignment and reduced friction movement of the inner and outer wing portions 18, 20 relative to one another. As noted above, the hollow bore 1818 of the bolt 1812 can be utilized to pass components through the rotating joint, such as electrical wiring, fuel hoses, hydraulic hoses, etc. The various components can be formed from a variety of materials. For example, the hollow bolt can be formed from steel, titanium, or other material of sufficient strength. Other components, such as the spars, spar inserts, etc. can be formed from any of a variety of materials, including steel, titanium, carbon fiber, or other known materials.
[0089] FIG. 19 illustrates an alternative embodiment of a pivot joint 1900 that is similar to joint 1800 shown in FIG. 18 but utilizes low friction washers in place of bearing assemblies. For example, a similar first spar insert 1902 can be coupled to the inner wing spar 1802 and a
second spar insert 1904 can be coupled to the outer wing spar 1804. A bore 1906 formed in the first spar insert 1902 can receive a hollow bolt 1908 formed of steel, titanium, etc. around which the second spar insert 1904 can be disposed. Low friction washers 1910 can be disposed around the bolt 1908 on either side of the second spar insert 1904 to aid in reducing friction as the outer wing 20 pivots relative to the inner wing 18 about the pivot axis A. The low friction washers can be formed from any of a variety of known materials, including, for example, sintered bronze impregnated with oil.
[0090] FIG. 20 illustrates still another embodiment of a pivot joint 2000 that employs a clevis pin and ball bearings to facilitate low friction movement with an ability to absorb high stresses along the wing spar. Note that the joint 2000 of FIG. 20 is reversed from the joints shown in FIGS. 18 and 19. Such an inversion can illustrate, for example, a difference between a joint used in an aircraft's left wing in comparison to its right wing. The joint 2000 can also be drawn in the manner of FIGS. 18 and 19, and both such configurations are within the scope of the invention. Returning to FIG. 20, a first spar insert 2002 is coupled to an inner wing spar 1802 and a second spar insert 2004 is coupled to an outer wing spar 1804, similarly to the pivot joints described above. Protruding arms 2006, 2008 of the first spar insert 2002 receive an inner or proximal end 2010 of the second spar insert 2004 and a clevis pin 2012 can be inserted through aligned bores formed in each of the arms 2006, 2008 and end 2010 along the pivot axis A. Bearings 2014, 2016 can be disposed about the pin 2012 and anchored relative to the arms 2006, 2008 of the first spar insert 2002 to ensure alignment of the pin and reduce friction during relative movement of the inner and outer wing portions.
[0091] As shown in the figure, the pivot axis A can form an angle Θ5 with a vertical axis 2018 that can be parallel to the yaw axis Y. In some embodiments, the angle Θ5 can be between about 25° and about 45°. In the illustrated embodiment, for example, the angle can be about 35 degrees. Recall that FIG. 20 is illustrated in a plane normal to the pivot axis A, as shown in FIG. 17A. Accordingly, the angles shown in FIG. 20 can produce the above-described angles of FIGS. 17A-17C when projected into the various planes of those figures.
[0092] FIG. 21 illustrates another embodiment of a pivot joint 2100 similar to the clevis joint 2000. The joint 2100 can include a first spar insert 2102 coupled to a first spar 1802 and a second spar insert 2104 coupled to a second spar 1804. The first and second spar inserts 2102, 2104, can have arms 2106, 2108, respectively, configured to interface with one another such that a clevis pin, bolt, or other securing member 2110 can be disposed through aligned
bored formed in the arms 2106, 2108. The aligned bores and clevis pin 2110 can define a pivot axis A that can be offset from a lateral or pitch axis Lp by about 55° in some embodiments.
[0093] FIGS. 22A-24B illustrate exemplary motion of the pivot joint 2100 in straight (e.g., FIGS. 22A and 22B), intermediate (FIGS. 23 A and 23B), and fully articulated (FIGS. 24A, 24B) configurations. The views of FIGS. 22A, 23A, and 24A are top views looking down along a yaw axis Y. The views of FIGS. 22B, 23B, and 24B are taken along the pivot axis A of FIG. 21. In one embodiment, motion of a wing about the pivot joint 2100 can be visualized by taking the arrow 2200 as a leading edge indicator. In FIG. 22A, the leading edge points upward in the plane of the page, as in a top view of an airframe in a forward flight configuration (e.g., FIG. 2). As the wing is tilted in a transition to a VTOL
configuration .e.g., FIG. 4), the leading edge indicator 2200 moves up out of the plan of the page and pivots outward/backward, as in FIG. 23A. Finally, when the wing is fully pivoted to a hovering configuration (e.g., FIG. 3), the leading edge indicator 2200 points directly out of the page in a top view, as in FIG. 24A.
[0094] FIGS. 25-28 illustrate various mechanisms for actuating the motion of an outer wing portion 20 relative to an inner wing portion 18 and fuselage 12. Turning to FIG. 25, one embodiment of a wing actuator assembly 36 for rotating the second or outer wing section 20 relative to the first or inner wing section 18 is shown from above an airframe 10. In the illustrated embodiment, the actuator assembly 36 includes a lead screw 38 and a linkage 40 mounted between a lead screw traveler 39 and a linkage mount 42 on the outer wing portion 20. A motor 44 or other actuator can rotate the lead screw 38, thereby causing the traveler 39 to move along a length of the lead screw 38, as indicated by arrows 41. As the traveler 39 moves along the length of the lead screw 38, the linkage 40 coupled thereto can cause the second outer wing section 20 to rotate between a forward flight configuration (e.g., FIG. 2) and a vertical takeoff and landing configuration (e.g., FIG. 3).
[0095] The mechanical linkage and lead screw drive of FIG. 25 is just one example of a wing actuator assembly according to the teachings provided herein. In another embodiment of a wing actuator assembly 2600 illustrated in FIGS. 26A and 26B, rotary gears are utilized to control movement of an outer wing portion 20 relative to an inner wing portion 18. As shown in the figures, a motor 2602 can be disposed within the outer wing portion 20 can rotate a drive gear 2604 that can be meshed with a stationary gear rack 2606 formed on the
inner wing portion 18. This can result in the drive gear 2604 traveling around a circumference of the rack 2606 in the direction of arrows 2608, as shown in the view of FIG. 26 taken along the line C-C in FIG. 26A. Because the motor 2602 and drive gear 2604 can be coupled to the outer wing portion 20, movement of the drive gear 2604 around the rack 2606 can cause the outer wing portion 20 to rotate relative to the inner wing portion 18 about the pivot axis A. While the illustrated embodiment shows the motor 2602 and drive gear 2604 coupled to the outer wing portion 20, in other embodiments the arrangement can be reversed such that these components are coupled to the inner wing portion 18 and the gear rack 2606 is formed on or coupled to the outer wing portion 20. Further, any of a variety of different gear trains including gears of various sizes can be employed to achieve the wing movement described herein.
[0096] FIGS. 27A-28B illustrate another embodiment of a wing actuator assembly 2700 that utilizes opposed hydraulic, pneumatic, electric, or other linear actuators to effect pivoting or folding movement of an outer wing portion 20 relative to an inner wing portion 18 about a pivot axis A. As shown in the figures, a pivot joint between the inner wing 18 and the outer wing 20 can be formed on a spar or lateral axis Lp and the joint can be configured such that it is at an oblique angle 06 thereto when projected into the plane of the figure. In the illustrated embodiment, the angle 06 can be about 45 degrees, but other angles are also possible, as noted above. The pivot joint can also be formed at oblique angles to the axis Lp, as well as other axes, such as a vertical or yaw axis Y and a longitudinal or roll axis LR. AS shown in the front view of FIG. 27B, for example, the pivot axis A can be disposed at an angle 07 relative to the spar, lateral, or pitch axis Lp, and in some embodiments this angle can be about 45 degrees when projected into the plane of the figure as well. FIG. 27C further shows the pivot axis A formed at an angle 08 relative to the yaw or vertical axis Y when projected into the side view vertical plane. In such a view, the angle 08 can also be about 45 degrees in some embodiments.
[0097] Referring to FIGS. 27A-28A, the wing actuator assembly 2700 can include a first linear actuator 2702 coupled at a first end 2802 thereof to the inner wing 18 and a second linear actuator 2704 coupled at a first end 2804 thereof to the outer wing 20. A second end 2806 of the first linear actuator 2702 and a second end 2808 of the second linear actuator 2704 can be coupled to a ring 2810 disposed between the inner and outer wings 18, 20 and configured to rotate about the pivot axis A. The couplings 2806, 2808 to the first and second
linear actuators 2702, 2704 can be disposed on opposing sides of the ring 2810. In some embodiments, the couplings can be disposed on opposing sides in both a radial direction (e.g., the plane of FIG. 28A) and an axial direction (e.g., along the pivot axis A).
[0098] FIG. 28B, which shows a cross-sectional view along the line E-E shown in FIGS. 27A and 27C, illustrates the wing actuator assembly 2700 and pivot joint in more detail. As shown in the figure, the pivot joint disposed between the inner wing spar 1802 and outer wing spar 1804 can include an inner spar insert 2812 and an outer spar insert 2814 that are coupled to the inner and outer spars 1802, 1804, respectively, and include bores formed therein that can receive a bolt, pin, or other connecting member 2816 that extends along the pivot axis A. The ring 2810 can be disposed between the inner spar insert 2812 and outer spar insert 2814 around the connecting pin or member 2816. Also visible in the figure are the couplings 2806, 2808 to the first and second linear actuators 2702, 2704 (not visible in FIG. 28B). Further, thrust bearings 2818 can be disposed between the various components to permit reduced friction movement of the components relative to one another about the pivot axis A. In operation, actuation of both the first and second linear actuators 2702, 2704 can exert forces on the inner and outer wings 18, 20 through the couplings 2802, 2804 and cause the outer wing 20 to move about the pivot axis A relative to the inner wing 18. Also shown in FIG. 28B is the angle Θ5 formed between the pivot axis A and a lateral axis Lp in the plane of the figure. This angle can be between about 25° and about 45° in some embodiments to create the above-described angles in FIGS. 17A-17C. For example, in some embodiments the angle Θ5 can be about 35° (e.g., 35.2°) to result in the angles Θ1-Θ4 of FIGS. 17A-17C being about 45° each.
[0099] FIG. 29 illustrates one embodiment of a wing 2900 that includes two spars that can be employed, for example, for high stress applications. Examples of high stress applications can include those where a low profile airfoil wing design is employed (e.g., a small wing thickness or dimension in a direction perpendicular to the wing chord line), as the reduced thickness of the wing can make it more susceptible to stress. Another example of a high stress application can be an airframe configured to experience high G forces (e.g., up to 5 Gs and beyond). The wing 2900 can be divided into an inner wing 18 fixed to a fuselage and an outer wing 20 pivotally coupled thereto, as described above. For example, a pivot joint 2902 can be disposed between a first inner spar 2904 and a first outer spar 2906. The pivot joint 2902 can provide for movement of the outer wing 20 relative to the inner wing 18 about a
pivot axis A and can utilize any of the embodiments described herein and illustrated, for example, in FIGS. 18-24B.
[0100] The wing 2900 can also include a second spar offset from the first spar, e.g., disposed between the first spar and a trailing edge 90 of the wing. The second spar can be divided into second inner spar 2906 and a second outer spar 2908. The second inner and outer spars 2906, 2908 can be configured to rigidly couple to one another such that stresses can be carried without interruption. In the illustrated embodiment, for example, a translating locking pin 2910 can be disposed in a recess formed in the spars 2906, 2908. When in a forward flight configuration, the recesses formed in the spars 2906, 2908 can be aligned and the locking pin translated along arrows 2912 in FIG. 29 to be disposed across an interface 2914 between the inner wing 18 and the outer wing 20. As a result, the second inner and outer spars 2906, 2908 can be effectively joined as a single spar spanning an entire length of the inner and outer wings 18, 20. To pivot the wings into a VTOL or other intermediate configuration, the locking pin 2910 can be translated to one side of the interface 2914, thereby separating the second inner and outer spars 2906, 2908 to allow the components to separate as the outer wing 20 pivots about the joint 2902 and pivot axis A relative to the inner wing 18.
[0101] The various airframes of the present disclosure advantageously allow for transition from a vertical takeoff and landing configuration to a forward flight configuration. In the vertical takeoff and landing configuration, weight of the various components mounted to the wings pivoting wing portions can be located close to the fuselage, thereby reducing any moment of inertia created by mass disposed remote from a center of gravity of the airframe. Further, the pivoting wing portions can be oriented in a substantially vertical direction with a leading edge thereof facing upward, thereby allowing unobstructed and maximally-efficient airflow over the wings during vertical flight. In addition, propulsion units coupled to the wings can be oriented in a vertical direction so as to support a weight of the craft with their thrust force. Conversely, in a forward flight configuration, the engines coupled to the wings can be rotated and moved further away from a center of gravity of the airframe, thereby creating greater stability during forward flight and vectoring propulsion unit thrust in a horizontal direction to maximize efficiency while the wings create aerodynamic lift force to support the weight of the craft.
[0102] The foregoing description of preferred embodiments of the present disclosure has been presented for purposes of illustration and description. The described preferred
embodiments are not intended to be exhaustive or to limit the scope of the disclosure to the precise forms disclosed. Additional modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the disclosure and its practical application, and to thereby enable one of ordinary skill in the art to utilize the concepts revealed in the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the disclosure as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Claims
1. An aircraft, comprising:
a fuselage;
opposed wings extending from opposed sides of the fuselage;
a plurality of engines, wherein at least one engine is mounted to each of the opposed wings;
wherein at least a portion of each opposed wing including at least one of the plurality of engines rotates relative to the fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage.
2. The aircraft of claim 1, wherein a first angle between the rotation axis and the longitudinal axis of the fuselage projected in a plane containing the longitudinal axis of the fuselage and an axis extending between ends of the opposed wings is between about 35° and about 55°.
3. The aircraft of claim 2, wherein the first angle is about 45°.
4. The aircraft of claim 2, wherein a second angle between the rotation axis and the axis extending between ends of the opposed wings projected in a plane containing the axis extending between ends of the opposed wings and perpendicular to the longitudinal axis of the fuselage is between about 35° and about 55°.
5. The aircraft of claim 4, wherein the second angle is about 45°.
6. The aircraft of claim 1, wherein the plurality of engines includes at least 4 engines and each portion of the opposed wings that rotates relative to the fuselage includes at least two engines mounted thereto.
7. The aircraft of claim 1, wherein each of the plurality of engines is an electric engine.
8. The aircraft of claim 7, further comprising a plurality of batteries, wherein each battery is mounted to one of the opposed wings adjacent to one of the plurality of engines.
9. The aircraft of claim 1, wherein each of the plurality of engines is any of a turbine and an internal combustion engine.
10. The aircraft of claim 1, wherein each of the opposed wings includes a fixed portion extending from the fuselage and a rotating portion outboard of the fixed portion.
11. The aircraft of claim 10, wherein an outboard end of each fixed portion is oblique to the longitudinal axis of the fuselage.
12. The aircraft of claim 10, wherein each rotating portion of the opposed wings rotates between a first configuration, in which an axis between a leading edge and a trailing edge of the wing is parallel to the longitudinal axis of the fuselage, and a second configuration, in which the axis between the leading edge and the trailing edge of the wing is perpendicular to the longitudinal axis of the fuselage.
13. The aircraft of claim 12, wherein the leading edge of each rotating portion of the opposed wings faces upward when the wings are in the second configuration.
14. The aircraft of claim 12, wherein each of the plurality of engines is offset from the wing it is mounted to such that, when each wing is in the first configuration, the at least one engine mounted thereto is disposed between the wing and the fuselage.
15. The aircraft of claim 10, wherein each rotating portion of the opposed wings rotates between a first configuration, in which an axis extending between an inboard end to an outboard end of the rotating portion is perpendicular to the longitudinal axis of the fuselage, and a second configuration, in which the axis extending between the inboard end and the outboard end of the rotating portion is parallel to the longitudinal axis of the fuselage.
16. The aircraft of claim 15, wherein the leading edge of each rotating portion of the opposed wings faces upward when the wings are in the second configuration.
17. The aircraft of claim 10, further comprising at least one landing support coupled to a trailing portion of each rotating portion of the opposed wings.
18. The aircraft of claim 17, wherein the landing support is any of a wheel, a float, and a leg.
19. The aircraft of claim 17, wherein the landing support is a wheel coupled to one of the engines such that the engine can rotate the wheel.
20. The aircraft of claim 10, wherein the fixed portion and the rotating portion of each of the opposed wings are coupled by a pivot joint.
21. The aircraft of claim 20, wherein the pivot joint is disposed in a leading portion of each opposed wing.
22. The aircraft of claim 10, wherein each of the opposed wings further comprises an actuator to control rotation of the rotating portion relative to the fixed portion.
23. The aircraft of claim 22, wherein the actuator includes a lead screw coupled to the rotating portion by a linkage.
24. The aircraft of claim 1, wherein the opposed wings have an airfoil shape.
25. The aircraft of claim 1, wherein the wings are spars that do not produce lift.
26. A vertical take-off or landing method, comprising:
rotating at least a portion of a wing having an engine mounted thereto relative to a fuselage around a rotation axis that is non-perpendicular and transverse to a longitudinal axis of the fuselage to orient the engine and a leading edge of the wing vertically for hovering; actuating the engine to produce vertical lift; and
rotating the at least portion of the wing having the engine mounted thereto to orient the engine and a leading edge of the wing horizontally for forward flight.
27. The method of claim 26, wherein a leading edge of the wing faces upward when the wing is oriented vertically.
28. The method of claim 26, wherein rotating the at least portion of the wing to orient the engine and the leading edge of the wing vertically includes pivoting the at least portion of the wing about a pivot joint disposed in a leading portion of the wing.
29. The method of claim 26, wherein rotating the at least portion of the wing to orient the engine and the leading edge of the wing vertically includes any of hydraulically and electrically actuating such rotation.
30. The method of claim 26, further comprising pausing rotation of the at least portion of the wing such that the wing and the engine are between a vertical and a horizontal orientation to transition between hovering and forward flight.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18791174.8A EP3615420A4 (en) | 2017-04-27 | 2018-03-16 | Vertical takeoff and landing airframe |
JP2019559092A JP7080500B2 (en) | 2017-04-27 | 2018-03-16 | Vertical takeoff and landing aircraft |
CN201880037402.5A CN110869276B (en) | 2017-04-27 | 2018-03-16 | Vertical take-off and landing fuselage |
CN202410535531.4A CN118323439A (en) | 2017-04-27 | 2018-03-16 | Vertical take-off and landing fuselage |
JP2022081615A JP7414310B2 (en) | 2017-04-27 | 2022-05-18 | Aircraft and methods of flying them |
JP2023215907A JP2024019668A (en) | 2017-04-27 | 2023-12-21 | Airplane assembly, airplane wing assembly and method for manufacturing airplane |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762490814P | 2017-04-27 | 2017-04-27 | |
US62/490,814 | 2017-04-27 | ||
US15/848,705 | 2017-12-20 | ||
US15/848,705 US10252798B2 (en) | 2017-04-27 | 2017-12-20 | Vertical takeoff and landing airframe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018200093A1 true WO2018200093A1 (en) | 2018-11-01 |
Family
ID=63915910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/022814 WO2018200093A1 (en) | 2017-04-27 | 2018-03-16 | Vertical takeoff and landing airframe |
Country Status (5)
Country | Link |
---|---|
US (3) | US10252798B2 (en) |
EP (1) | EP3615420A4 (en) |
JP (3) | JP7080500B2 (en) |
CN (2) | CN118323439A (en) |
WO (1) | WO2018200093A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113232852A (en) * | 2021-05-11 | 2021-08-10 | 重庆大学 | Transmission mechanism for wings of tilt rotor aircraft |
CN114162299A (en) * | 2021-11-30 | 2022-03-11 | 大连理工大学 | Trans-medium aircraft based on cycloid propeller |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10099770B2 (en) * | 2013-07-26 | 2018-10-16 | Icon Aircraft, Inc. | Manuel wing-fold mechanism |
US9550567B1 (en) * | 2014-10-27 | 2017-01-24 | Amazon Technologies, Inc. | In-flight reconfigurable hybrid unmanned aerial vehicle |
RU2018130978A (en) * | 2016-01-29 | 2020-03-02 | ДжейДжи ЭНТРЕПРЕНЬЮРИЭЛ ЭНТЕРПРАЙСЕЗ ЛЛС | AIRCRAFT AND RELATED SIGNS |
GB2568349B (en) * | 2016-02-01 | 2021-07-21 | Tudor Crossfelt Llp | Folding beam for swinging wing |
IL247772B (en) * | 2016-09-12 | 2022-05-01 | Israel Aerospace Ind Ltd | Modular vehicle system |
US10676187B2 (en) * | 2017-03-07 | 2020-06-09 | The Boeing Company | Robust amphibious aircraft |
US10252798B2 (en) * | 2017-04-27 | 2019-04-09 | Pterodynamics | Vertical takeoff and landing airframe |
SK500352017A3 (en) * | 2017-05-11 | 2018-12-03 | Štefan Klein | Method for transformation of motor transportation vehicle for ground and air transport, motor transportation vehicle |
WO2019079930A1 (en) * | 2017-10-23 | 2019-05-02 | 大连理工大学 | Sea-air-land-dive four-environment tilting three-rotor unmanned aerial vehicle capable of vertical take-off and landing |
GB2568737A (en) * | 2017-11-27 | 2019-05-29 | Airbus Operations Ltd | A curved interface between an outer end of a wing and a moveable wing tip device |
JP6731604B2 (en) * | 2018-03-31 | 2020-07-29 | 中松 義郎 | High-speed drones and other aircraft |
US11174016B2 (en) * | 2018-05-03 | 2021-11-16 | Jaunt Air Mobility, Llc | Compound rotorcraft with propeller |
US11148798B2 (en) * | 2018-06-22 | 2021-10-19 | Textron Innovations Inc. | Engine and rotatable proprotor configurations for a tiltrotor aircraft |
DE102018116146B4 (en) * | 2018-07-04 | 2022-06-09 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | aircraft |
DE102018116147A1 (en) * | 2018-07-04 | 2020-01-09 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | aircraft |
US10913542B2 (en) * | 2018-07-27 | 2021-02-09 | Textron Innovations Inc. | Conversion actuator and downstop striker fitting for a tiltrotor aircraft |
US10994839B2 (en) | 2018-07-31 | 2021-05-04 | Textron Innovations Inc. | System and method for rotating a rotor of a tiltrotor aircraft |
US11685510B2 (en) * | 2018-11-01 | 2023-06-27 | Viettel Group | Wing deployment mechanism and design method using pneumatic technique |
US11691713B2 (en) * | 2019-03-17 | 2023-07-04 | Behrang Mehrgan | VTOL having retractable wings |
IL265840A (en) * | 2019-04-03 | 2020-10-28 | Colugo Systems Ltd | Asymmetric multirotor |
US20220315216A1 (en) * | 2019-05-07 | 2022-10-06 | Nft Inc. | Drive and fly electric and hybrid vtol vehicle |
US11459084B2 (en) * | 2019-06-21 | 2022-10-04 | Airbus Operations Gmbh | Wing for an aircraft |
JP7426204B2 (en) * | 2019-08-28 | 2024-02-01 | 株式会社Subaru | air and land vehicle |
WO2021053829A1 (en) * | 2019-09-20 | 2021-03-25 | 株式会社エアロネクスト | Flying body |
JP7417244B2 (en) * | 2019-10-16 | 2024-01-18 | 株式会社エアロネクスト | flying object |
DE112020005430T5 (en) * | 2019-11-06 | 2022-08-25 | Subaru Corporation | ROAD-READY AIRCRAFT |
EP3838752B1 (en) | 2019-12-17 | 2022-04-27 | LEONARDO S.p.A. | Convertiplane and associated folding method |
US20210214067A1 (en) * | 2020-01-13 | 2021-07-15 | Skydio, Inc. | Autonomous Unmanned Aerial Vehicle With Folding Collapsible Arms |
CN111216874A (en) * | 2020-03-04 | 2020-06-02 | 尚良仲毅(沈阳)高新科技有限公司 | Aircraft, flight system and control method of wing assembly |
EP4132816A4 (en) * | 2020-04-07 | 2024-05-15 | Mightyfly Inc. | System and method for package transportation |
CA3178662A1 (en) | 2020-05-14 | 2021-12-02 | Val PETROV | Control of aircraft with vertical take-off and landing capabilities |
FR3111325B1 (en) * | 2020-06-16 | 2022-12-09 | Safran Helicopter Engines | PROPULSION ASSEMBLY WITH FOLDING BLADE PROPELLER AND METHOD FOR FOLDING THE BLADE |
JP6952380B1 (en) * | 2020-08-11 | 2021-10-20 | 株式会社エアロネクスト | Mobile |
JP2023551306A (en) * | 2020-12-01 | 2023-12-07 | レイセオン カンパニー | Articulated inlet for air-breathing long-range projectiles and missiles |
WO2022125765A1 (en) | 2020-12-09 | 2022-06-16 | Urbineer Inc. | Compact aerial mission modular material handling system |
FR3117451B1 (en) | 2020-12-14 | 2022-12-02 | Tavin Gerard | Aerodyne with vertical take-off and landing optimized for horizontal flight |
US11661172B2 (en) * | 2020-12-31 | 2023-05-30 | Textron Innovations Inc. | Wing design for removable battery |
JP7012227B1 (en) * | 2021-02-15 | 2022-01-28 | 株式会社松山ドローンサービス | Flying object |
WO2022180754A1 (en) * | 2021-02-25 | 2022-09-01 | テトラ・アビエーション株式会社 | Aircraft and rotor blade module |
US20240208643A1 (en) * | 2021-03-17 | 2024-06-27 | Aeronext Inc. | Flight vehicle |
CN112977879A (en) * | 2021-04-01 | 2021-06-18 | 中国航天空气动力技术研究院 | Aeroelastic test platform |
US20230182886A1 (en) * | 2021-12-10 | 2023-06-15 | Lang Aerospace Llc | Land and air vehicle |
US11485491B1 (en) * | 2021-12-16 | 2022-11-01 | Nam Kim | Tethered aircraft mass transportation |
US12077286B2 (en) * | 2022-02-28 | 2024-09-03 | Matthew W. TOWNSEND | Winged drone with adjustable center of gravity for carrying a payload |
CN114506451A (en) * | 2022-04-21 | 2022-05-17 | 西北工业大学 | Rotor unmanned aerial vehicle verts |
CN114889806A (en) * | 2022-05-16 | 2022-08-12 | 河北科技大学 | Two-way automatic folding device |
USD1035547S1 (en) * | 2022-06-17 | 2024-07-16 | Autel Robotics Co., Ltd. | Aerial vehicle |
CN115027667B (en) * | 2022-07-04 | 2024-08-23 | 哈尔滨工业大学 | Bionic deformed wing unmanned aerial vehicle capable of taking off and landing vertically and flight attitude control method |
CN115258132B (en) * | 2022-07-21 | 2024-08-13 | 燕山大学 | Single-degree-of-freedom wing attitude transformation parallel mechanism for aircraft |
CN115367109A (en) * | 2022-08-26 | 2022-11-22 | 广西座头鲸无人机科技有限公司 | Variable-sweep wing aircraft capable of vertically taking off and landing |
USD1030555S1 (en) * | 2022-09-13 | 2024-06-11 | Autel Robotics Co., Ltd. | Drone |
USD1031516S1 (en) * | 2022-09-13 | 2024-06-18 | Autel Robotics Co., Ltd. | Drone |
WO2024100592A1 (en) * | 2022-11-11 | 2024-05-16 | Jobanpreet Singh Nagpal | System and method for tip-driven rotors and wings with vertical take-off and landing capabilities |
CN115675852B (en) * | 2023-01-05 | 2023-06-23 | 上海飞机制造有限公司 | Tilting wing aircraft and flight control method thereof |
US20240262530A1 (en) * | 2023-02-08 | 2024-08-08 | Anduril Industries, Inc. | Dissassembly for dual engine vertical take off and landing collapsible fixed wing aircraft |
GB2627481A (en) * | 2023-02-23 | 2024-08-28 | Beaupreau Aero Solutions Ltd | Airfoils and evtols with airfoils |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1556414A (en) * | 1925-07-11 | 1925-10-06 | Blackburn Aeroplane & Motor Co | Aeroplane with folding wings |
US3937424A (en) * | 1973-11-16 | 1976-02-10 | Vereinigte Flugtechnische Werke-Fokker Gmbh | Electrically powered aircraft |
US5192037A (en) * | 1991-08-23 | 1993-03-09 | Mcdonnell Douglas Corporation | Double-pivoting deployment system for aerosurfaces |
US20110042507A1 (en) * | 2009-08-19 | 2011-02-24 | Seiford Sr Donald S | Convertible Vehicle For Road, Air, and Water Usage |
US8157206B2 (en) * | 2008-06-11 | 2012-04-17 | Icon Aircraft, Inc. | Two-motion wing-fold mechanism with independent load path |
US20140117150A1 (en) * | 2012-10-30 | 2014-05-01 | The Boeing Company | Wing hinge assembly including hinged torque boxes |
WO2014177589A1 (en) | 2013-04-30 | 2014-11-06 | Johannes Reiter | Aircraft for vertical take-off and landing with hinged and bendable wings |
US20150336663A1 (en) | 2012-02-15 | 2015-11-26 | Aurora Flight Sciences Corporation | System, apparatus and method for long endurance vertical takeoff and landing vehicle |
US20160378120A1 (en) * | 2014-05-08 | 2016-12-29 | Northrop Grumman Systems Corporation | Vertical takeoff and landing (vtol) unmanned aerial vehicle (uav) |
US20170008625A1 (en) * | 2015-07-10 | 2017-01-12 | Orville Olm | Vertical Takeoff and Landing Unmanned Aircraft System |
US9550567B1 (en) * | 2014-10-27 | 2017-01-24 | Amazon Technologies, Inc. | In-flight reconfigurable hybrid unmanned aerial vehicle |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1848389A (en) | 1929-02-14 | 1932-03-08 | Sikorsky Aviat Corp | Aircraft, especially aircraft of the direct lift amphiblan type and means of constructing and operating the same |
US1793056A (en) | 1929-08-01 | 1931-02-17 | Cairns Dev Company | Folding wing |
US1846992A (en) | 1931-05-05 | 1932-02-23 | Decker Virgil Cecil | Four winged aeroplane |
GB447577A (en) * | 1935-05-29 | 1936-05-21 | Blackburn Aeroplane & Motor Co | Improvements in folding self-supporting cantilever wings for aircraft |
DE907502C (en) * | 1937-05-24 | 1954-03-25 | Francois Andre Rey | Airplane with articulated wings |
US2572421A (en) * | 1947-09-20 | 1951-10-23 | Jr Edmund Abel | Aircraft folding wing construction |
US2674422A (en) | 1949-05-12 | 1954-04-06 | Pellarini Luigi | Folding wing for roadable aircraft |
US3081964A (en) | 1958-12-08 | 1963-03-19 | Boeing Co | Airplanes for vertical and/or short take-off and landing |
GB909923A (en) * | 1960-03-29 | 1962-11-07 | David Hill | Improvements in aircraft |
US3179354A (en) | 1962-04-24 | 1965-04-20 | Alvarez-Calderon Alberto | Convertiplane and apparatus thereof |
US3231221A (en) | 1964-03-10 | 1966-01-25 | Haviland H Platt | Vertical take-off airplanes |
US3246861A (en) | 1964-03-30 | 1966-04-19 | Curci Alfred | Convertible aircraft |
US3519224A (en) | 1966-03-18 | 1970-07-07 | Turbo Circle Wing Inc | Vertical takeoff and landing aircraft |
US3439890A (en) | 1967-05-15 | 1969-04-22 | Raymond M Stits | Folding wing airplane |
US3666209A (en) | 1970-02-24 | 1972-05-30 | Boeing Co | V/stol aircraft with variable tilt wing |
US5094412A (en) | 1989-10-13 | 1992-03-10 | Bell Helicopter Textron Inc. | Flaperon system for tilt rotor wings |
WO1992001603A1 (en) | 1990-07-25 | 1992-02-06 | Sadleir Vtol Aircraft Co. Pty. Ltd. | Thrust unit for vtol aircraft |
US5405105A (en) | 1993-05-28 | 1995-04-11 | Hudson Valley V/Stol Aircraft, Inc. | Tilt wing VTOL aircraft |
US5765783A (en) | 1994-03-04 | 1998-06-16 | The Boeing Company | Vertically launchable and recoverable winged aircraft |
US5839691A (en) | 1996-05-22 | 1998-11-24 | Lariviere; Jean Soulez | Vertical takeoff and landing aircraft |
US9776715B2 (en) | 2002-10-01 | 2017-10-03 | Andrew H B Zhou | Amphibious vertical takeoff and landing unmanned device |
KR100822366B1 (en) | 2007-05-15 | 2008-04-16 | 한국항공우주연구원 | Tiltrotor aircraft |
US9259984B2 (en) | 2008-07-28 | 2016-02-16 | Fleck Future Concepts Gmbh | Combined air, water and road vehicle |
US8366049B2 (en) | 2008-10-09 | 2013-02-05 | Abe Karem | Hover delivery of cabin payload in tilt-rotor and tilt-wing aircraft |
RU2403177C1 (en) * | 2009-07-31 | 2010-11-10 | Общество С Ограниченной Ответственностью "Научно-Производственная Фирма "Сигма-Тс" | Aircraft with folding wing and device for aircraft wing folding |
US8800912B2 (en) | 2009-10-09 | 2014-08-12 | Oliver Vtol, Llc | Three wing, six-tilt propulsion unit, VTOL aircraft |
US20130008997A1 (en) | 2010-03-24 | 2013-01-10 | Gentile Francis X | Combination ground vehicle and helicopter and fixed wing aircraft |
CN101870355A (en) * | 2010-06-03 | 2010-10-27 | 杨茂亮 | Coaxial double-rotary wing and tilt wing aircraft |
US8991751B2 (en) * | 2011-03-24 | 2015-03-31 | Dzyne Technologies, Inc. | Long endurance vertical takeoff and landing aircraft |
IL217501A (en) | 2012-01-12 | 2017-09-28 | Israel Aerospace Ind Ltd | System and method for maneuvering of an air vehicle |
JP5277342B1 (en) | 2012-12-11 | 2013-08-28 | 和博 高橋 | Vertical take-off and landing aircraft |
EP2969603B1 (en) * | 2013-03-15 | 2017-05-24 | Terrafugia, Inc. | Combined flying/driving vehicle with vertical takeoff and fixed-wing cruise capabilities |
US10099770B2 (en) | 2013-07-26 | 2018-10-16 | Icon Aircraft, Inc. | Manuel wing-fold mechanism |
US9567075B2 (en) | 2014-02-10 | 2017-02-14 | Northrop Grumman Systems Corporation | Tilt wing aerial vehicle |
AT515456B1 (en) * | 2014-02-18 | 2018-04-15 | Iat 21 Innovative Aeronautics Tech Gmbh | aircraft |
US9694911B2 (en) | 2014-03-18 | 2017-07-04 | Joby Aviation, Inc. | Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades |
US10279903B2 (en) | 2014-05-20 | 2019-05-07 | Sikorsky Aircraft Corporation | In-flight reconfigurable aircraft tail |
US9676488B2 (en) | 2014-06-10 | 2017-06-13 | Sikorsky Aircraft Corporation | Dual dissimilar engines for an aircraft |
US9475585B2 (en) | 2014-06-25 | 2016-10-25 | The Boeing Company | Tilt-rotor vertical-lift aircraft |
GB201416842D0 (en) * | 2014-09-24 | 2014-11-05 | Rolls Royce Plc | Aircraft |
US9714090B2 (en) | 2015-06-12 | 2017-07-25 | Sunlight Photonics Inc. | Aircraft for vertical take-off and landing |
US10336459B2 (en) | 2016-02-01 | 2019-07-02 | Bell Helicopter Textron Inc. | Clamped splines for aircraft engine mount assemblies |
US9821909B2 (en) * | 2016-04-05 | 2017-11-21 | Swift Engineering, Inc. | Rotating wing assemblies for tailsitter aircraft |
US10252798B2 (en) * | 2017-04-27 | 2019-04-09 | Pterodynamics | Vertical takeoff and landing airframe |
-
2017
- 2017-12-20 US US15/848,705 patent/US10252798B2/en active Active
-
2018
- 2018-03-16 JP JP2019559092A patent/JP7080500B2/en active Active
- 2018-03-16 CN CN202410535531.4A patent/CN118323439A/en active Pending
- 2018-03-16 WO PCT/US2018/022814 patent/WO2018200093A1/en unknown
- 2018-03-16 EP EP18791174.8A patent/EP3615420A4/en active Pending
- 2018-03-16 CN CN201880037402.5A patent/CN110869276B/en active Active
-
2019
- 2019-04-02 US US16/373,003 patent/US10556679B2/en active Active
- 2019-12-23 US US16/725,042 patent/US10967969B2/en active Active
-
2022
- 2022-05-18 JP JP2022081615A patent/JP7414310B2/en active Active
-
2023
- 2023-12-21 JP JP2023215907A patent/JP2024019668A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1556414A (en) * | 1925-07-11 | 1925-10-06 | Blackburn Aeroplane & Motor Co | Aeroplane with folding wings |
US3937424A (en) * | 1973-11-16 | 1976-02-10 | Vereinigte Flugtechnische Werke-Fokker Gmbh | Electrically powered aircraft |
US5192037A (en) * | 1991-08-23 | 1993-03-09 | Mcdonnell Douglas Corporation | Double-pivoting deployment system for aerosurfaces |
US8157206B2 (en) * | 2008-06-11 | 2012-04-17 | Icon Aircraft, Inc. | Two-motion wing-fold mechanism with independent load path |
US20110042507A1 (en) * | 2009-08-19 | 2011-02-24 | Seiford Sr Donald S | Convertible Vehicle For Road, Air, and Water Usage |
US20150336663A1 (en) | 2012-02-15 | 2015-11-26 | Aurora Flight Sciences Corporation | System, apparatus and method for long endurance vertical takeoff and landing vehicle |
US20140117150A1 (en) * | 2012-10-30 | 2014-05-01 | The Boeing Company | Wing hinge assembly including hinged torque boxes |
WO2014177589A1 (en) | 2013-04-30 | 2014-11-06 | Johannes Reiter | Aircraft for vertical take-off and landing with hinged and bendable wings |
US20160378120A1 (en) * | 2014-05-08 | 2016-12-29 | Northrop Grumman Systems Corporation | Vertical takeoff and landing (vtol) unmanned aerial vehicle (uav) |
US9550567B1 (en) * | 2014-10-27 | 2017-01-24 | Amazon Technologies, Inc. | In-flight reconfigurable hybrid unmanned aerial vehicle |
US20170008625A1 (en) * | 2015-07-10 | 2017-01-12 | Orville Olm | Vertical Takeoff and Landing Unmanned Aircraft System |
Non-Patent Citations (1)
Title |
---|
See also references of EP3615420A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113232852A (en) * | 2021-05-11 | 2021-08-10 | 重庆大学 | Transmission mechanism for wings of tilt rotor aircraft |
CN114162299A (en) * | 2021-11-30 | 2022-03-11 | 大连理工大学 | Trans-medium aircraft based on cycloid propeller |
Also Published As
Publication number | Publication date |
---|---|
US10967969B2 (en) | 2021-04-06 |
JP2024019668A (en) | 2024-02-09 |
JP7080500B2 (en) | 2022-06-06 |
US10252798B2 (en) | 2019-04-09 |
EP3615420A4 (en) | 2021-01-20 |
CN118323439A (en) | 2024-07-12 |
CN110869276B (en) | 2024-05-24 |
JP2022103349A (en) | 2022-07-07 |
US20180312251A1 (en) | 2018-11-01 |
JP2020524106A (en) | 2020-08-13 |
EP3615420A1 (en) | 2020-03-04 |
US20190225333A1 (en) | 2019-07-25 |
JP7414310B2 (en) | 2024-01-16 |
US10556679B2 (en) | 2020-02-11 |
CN110869276A (en) | 2020-03-06 |
US20200277051A1 (en) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10967969B2 (en) | Vertical takeoff and landing airframe | |
EP2595882B1 (en) | Personal aircraft | |
JP6949869B2 (en) | Tail sitter aircraft rotor assembly | |
US10967964B2 (en) | Air wheel rotor, a gyro stabilized aircraft and a wind-driven power generator using the air wheel rotor, and a stationary launching device | |
US20190071174A1 (en) | Vertical take off and landing aircraft with four tilting wings and electric motors | |
AU2018239445B2 (en) | Vertical takeoff and landing aircraft | |
US20150232178A1 (en) | Aircraft for vertical take-off and landing with two wing arrangements | |
EP3683141B1 (en) | Multi-blade rotor system | |
US20220388640A1 (en) | Tandem electric rotorcraft | |
AU2011282250B2 (en) | Personal aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791174 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019559092 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018791174 Country of ref document: EP Effective date: 20191127 |