WO2018195619A1 - Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine - Google Patents

Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine Download PDF

Info

Publication number
WO2018195619A1
WO2018195619A1 PCT/BR2018/050107 BR2018050107W WO2018195619A1 WO 2018195619 A1 WO2018195619 A1 WO 2018195619A1 BR 2018050107 W BR2018050107 W BR 2018050107W WO 2018195619 A1 WO2018195619 A1 WO 2018195619A1
Authority
WO
WIPO (PCT)
Prior art keywords
processes
cycle
thermodynamic
temperature
polytropic
Prior art date
Application number
PCT/BR2018/050107
Other languages
French (fr)
Portuguese (pt)
Inventor
Marno Iockheck
Saulo Finco
LUIS Mauro MOURA
Original Assignee
Associação Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102017008545-7A external-priority patent/BR102017008545B1/en
Application filed by Associação Paranaense De Cultura - Apc filed Critical Associação Paranaense De Cultura - Apc
Publication of WO2018195619A1 publication Critical patent/WO2018195619A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/057Regenerators

Definitions

  • the present invention relates to a thermal motor and its eight process thermodynamic cycle, more specifically, it is a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four process but interdependent thermodynamic cycle. forming a complex cycle of eight processes, operates with gas, the circuit of this hybrid system is closed in differential configuration, based on the concept of hybrid thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it performs At any time during the cycle, two complementary and simultaneous interdependent processes, four of which are "isobaric" and four "polytropic" processes with variable mass transfer, may be null or partial.
  • thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
  • thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the engine development.
  • the open thermodynamic system is defined as a thermodynamic system in which energy and matter can enter and leave this system.
  • Examples of an open thermodynamic system are the Otto cycle, Atkinson cycle, Otto cycle, diesel cycle, Sabathe cycle, diesel cycle, internal combustion engine, Rankine cycle, internal combustion engine steam exhaust to the environment.
  • the materials that come into these systems are fuels and oxygen or working fluid or working gas.
  • the energy that enters these systems is heat.
  • the materials that come out of these systems are the combustion or working fluid exhaust, gases, waste, the energies that come out of these systems are the mechanical working energy and part of the heat dissipated.
  • the closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system.
  • Examples are closed thermodynamic systems, external combustion engines such as Stirling cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Camot cycle.
  • the energy that enters this system is heat.
  • the energies that come out of this system is the working mechanical energy and part of the heat dissipated, but no matter comes out of these systems, as they do in the open system.
  • thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle completes, as can be seen in the pressure / volume graph in figure 2. So are the Otto, Atkinson, Diesel, Sabathe, Rankine, Stirling, Ericsson cycle engines and Carnot's ideal theoretical cycle, and the Brayton cycle also belongs to either open or closed systems. but unlike the others, its four processes all occur simultaneously.
  • Equation (a) (U) represents the internal energy in "Joule”, (n) represents the number of mol, (R) represents the universal constant of perfect gases, (7) represents the gas temperature in "Kelvir e ( ⁇ ) represents the adiabatic expansion coefficient.
  • the current state of the art comprises a series of internal combustion and external combustion engines, most of these engines require a second auxiliary engine to get them into operation.
  • Internal combustion engines require compression, mixing fuel with oxygen, and a spark or pressure combustion, so a normally electric auxiliary starter motor is used.
  • External combustion engines such as the Stirling or Ericsson cycle in turn also require high power auxiliary engines, as they must overcome the resting state under pressure to start operating.
  • One exception is the Rankine cycle engine, which can start via the camshaft to provide the steam pressure to the motive power elements.
  • the current state of the art comprises a number of engines, most of them dependent on very specific and special conditions to operate, for example, internal combustion engines, each requiring its own specific fuel, fine fuel control, oxygen and combustion time and in some cases require specific conditions including pressure, fuel flexibility is quite limited.
  • internal combustion engines each requiring its own specific fuel, fine fuel control, oxygen and combustion time and in some cases require specific conditions including pressure, fuel flexibility is quite limited.
  • motors based on open and closed systems the most flexible motor is Rankine cycle, external combustion or Stiriing, also external combustion, these are more flexible in their source, but have other important deficiencies.
  • the current state of the art comprises a series of cycle engines, most of which require combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
  • the current state of the art comprises a series of engine cycles, most of which require high operating temperatures, especially those of internal combustion, usually operating with working gas at temperatures above 1000 ° C.
  • External combustion engines or engines operating from external heat sources such as Rankine and Stiriing cycle, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • Rankine and Stiriing cycle are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • motors based on open and closed systems often requiring high temperatures to operate, they all have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend exclusively on temperatures as defined by equation (b).
  • the current state of the art based on open and closed systems, comprises basically six motor cycles and some versions thereof: Atkinson cycle Otto cycle, Sabathe cycle Otto cycle, Diesel cycle, similar to Brayton cycle, Rankine cycle, Stiriing cycle, Ericsson cycle and Carnot cycle diesel, the ideal theoretical reference for open and closed engine based engines.
  • the latest news of the current state of the art has been presented through innovations by joining more than one old cycle into combined cycles, ie new engine systems composed of a Brayton cycling machine running on fossil fuels, gas or oil and a heat-dependent Rankine cycle machine rejected by the Brayton cycle. Or the same philosophy, joining a Diesel cycle engine with a Rankine cycle engine or even an Otto cycle engine, too, joining it with a Rankine cycle engine.
  • Carnot's ideal motor figure 3, while considered the ideal motor, most perfect to date, it is in theory and within open and closed system concepts considering all ideal parameters, for example. This is the reference to date for all existing engine concepts.
  • the Carnot engine is not found in practical use because real materials do not have the properties required to make the Carnot engine a reality, the physical dimensions for the Carnot cycle to be performed as in theory would be unfeasible in a practical case. Therefore, it is an ideal Engine in the open system and closed system concepts, but in the theoretical concept.
  • thermodynamic formed by two isothermal processes of two adiabatic processes "PCT / BR2014 / 000381" United States Patent of America defined as "Differential Thermal Machine with Eight Thermodynamic Transformation Cycle and Control Process” which consists of two subsystems and operates a thermodynamic cycle formed by four isothermal processes of four adiabatic processes.
  • PCT / BR2014 / 000381 United States Patent of America defined as "Differential Thermal Machine with Eight Thermodynamic Transformation Cycle and Control Process” which consists of two subsystems and operates a thermodynamic cycle formed by four isothermal processes of four adiabatic processes.
  • These references differ from the present invention as to the thermodynamic processes that form their cycles, each cycle gives the engine its own characteristics.
  • the concept of hybrid thermodynamic system provides the basis for the development of a new family of thermal engines, each engine will have its own characteristics according to the processes and phases that constitute their respective thermodynamic cycles, such as the Otto engine and the Diesel engine.
  • the Otto engine cycle is basically constituted by an adiabatic compression process, an isocoric combustion process, an adiabatic process.
  • diesel engine cycle consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an isocoric exhaust process, so they differ in only one of the processes that form enough cycles to give each u m, specific and different properties and uses.
  • the concept of hybrid system provides the basis for a new family of thermal motors consisting of two subsystems and these will operate with so-called differential cycles formed by processes where two simultaneous processes will always occur, each having its own particularities which will characterize each one. one of the motor cycles.
  • the aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept so that the efficiency of the motors would not be more dependent. temperatures only and whose energy sources could be diversified and which would allow the design of engines for environments even without air (oxygen).
  • the concept of the hybrid system the very characteristic that underlies this invention, eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and its potential differentials, while open and closed systems generate potentials.
  • () is the yield
  • (T1) is the initial temperature of the isobaric process of aita temperature
  • (72) is the final temperature of the isobaric process of aita, this temperature tends to equalize with the hot source temperature (Tq)
  • (T3) is the initial temperature of the low temperature isobaric process
  • (74) is the final temperature of the low temperature isobaric process, this temperature tends to equalize with the cold source temperature (7r )
  • all temperatures in "Kelvin * , (n1) is the number of moles of subsystem 1, indicated by region (21) in Figure 4, (n2) is the number of moles of subsystem 2, indicated by region (23) of figure 4.
  • thermodynamic cycles Otto, Atkinson, Diesel, Sabathe, Stirling, Ericsson, Rankine and the Carnot cycle perform one process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the driving force elements.
  • its control is a direct function of the power supply power, in turn the cycles Differentials of the hybrid system, perform two processes at a time, Figure 5, enabling the control of the thermodynamic cycle separate from the mechanical cycle, the cycle can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle and not the other way around.
  • Differential cycle motors are characterized by having two subsystems forming a hybrid system, represented by (21) and (23) of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always execute two simultaneous processes. and interdependent. Otherwise, considering a hybrid system with properties of both open and closed systems simultaneously, it is said that the system performs a compound thermodynamic cycle, Figure 5, that is, always executes two simultaneous processes (26) and (27). Figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems. Figure 6 shows the relationship between the hybrid system and the differential thermodynamic cycle.
  • thermodynamic system is new, it is formed by two interdependent subsystems and between them there is exchange of matter and energy and both provide out of bounds, energy in the form of work and heat dissipated part of the energy .
  • This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors.
  • the present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction.
  • Some of the main advantages that can be seen are: the total flexibility regarding the energy source (heat), the independence of the atmosphere, does not require
  • the differential cycle motor can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including , a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, it is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures.
  • the differential system engine based on the hybrid system concept may be constructed of materials and techniques similar to conventional engines and Stirling cycle engines, as it is a closed-loop gas engine considering the complete system, that is, the complete system is formed by two integrated thermodynamic subsystems, (31) and (37), forming a hybrid thermodynamic system, each subsystem is formed by a chamber, (33) and (35), containing working gas and each one of these are formed by three sub-chambers, one heated (33) with (317), and (35) with (42), a cold (33) with (41), and (35) with (318), and another isolated , (33) with (32) and (35) with (36), or in some cases nonexistent, connected to these two chambers is a driving force element (312), each subsystem has a regenerator, (310) and (314), which can be active or passive, between the subsystems there is a mass transfer element, (34), therefore the subsystems are open to each other, between the complete system and the external environment is considered closed, these two subsystems simultaneously execute one cycle
  • This closed-circuit concept of working gas with respect to the external environment indicates that the system must be sealed, or in some cases leaks may be permitted provided they are compensated. Suitable materials for this technology should be noted and are similar in this respect to Stirling cycle engine design technologies.
  • the working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as the gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others.
  • Conversion chambers items that characterize the hybrid system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These chambers each have three sub-chambers and these should be designed keeping in mind the requirement of thermal insulation to minimize the flow of energy from hot to cold areas, this condition is important for the overall efficiency of the system.
  • These chambers have internal elements that move the working gas between the hot, cold, and insulated sub chambers where they exist, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be in shape. discs in cylindrical or other form allowing the movement of work in a controlled manner between sub-chambers.
  • the mass transfer element, 34 interconnects the two chambers, 33 and 35, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time. during the polytropic processes.
  • This element may be designed in various ways depending on the requirements of the design, may operate by simple pressure difference, ie valve-shaped, or may operate in a forced manner, for example turbine, piston-shaped or in another geometric shape allowing it to perform the mass transfer of part of the working gas.
  • Active regenerators (310) and (314), operate on a specific working gas and this gas stores the energy of the engine gas during polytropic temperature lowering processes through internal expansion and regenerates, ie. returns this energy to the engine gas during polytropic processes of temperature rise through compression.
  • This regenerator is called an active regenerator because it performs its regeneration process dynamically through moving mechanical elements and its own working gas, unlike known passive regenerators, which operate by thermal exchange between the gas and a static element, operant by conducting heat between the gas your body. In the event that the use of a passive regenerator is considered in the project, it usually operates by conducting heat exchange between the working gas and the elements forming the regenerator. Passive regenerators do not use gas and moving elements.
  • the driving force element (12), is responsible for performing mechanical work and making it available for use.
  • This driving force element operates by the working gas forces of the engine, this element may be designed in various ways, depending on the design requirements, may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
  • Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system
  • Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems
  • Figure 3 shows the original idea of Carnot's thermal machine, conceptualized in 1824 by Nicolas Sadi Carnot;
  • Figure 4 represents the concept of hybrid thermodynamic system
  • Figure 5 represents the characteristic of differential thermodynamic cycles based on the hybrid system
  • Figure 6 shows the hybrid thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes
  • Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid system and its active regenerator;
  • Figure 8 shows the motor indicating the phase at which one of the regenerators, element 310, equalizes its temperature to the temperature of the hot source
  • Figure 9 shows the motor indicating the phase at which the second regenerator, element 314, equalizes its temperature to the temperature of the hot source
  • Figure 10 shows one of the subsystems, group (31), performing the high temperature isobaric process of the thermodynamic cycle and the second subsystem, group (37), performing the low temperature isobaric process of the thermodynamic cycle;
  • Figure 11 shows one of the subsystems, group (31), performing the polytropic temperature lowering process of the thermodynamic cycle and the second subsystem, group (37), performing the polytropic temperature raising process of the thermodynamic cycle;
  • Figure 12 shows in turn the first subsystem group (31) performing its low temperature isobaric process of the thermodynamic cycle and the second subsystem group (37) performing the high temperature isobaric process of the thermodynamic cycle;
  • Figure 13 shows the first subsystem, group (31), performing the polytropic temperature raising process of the thermodynamic cycle and the second subsystem, group (37), performing the polytropic temperature lowering process of the thermodynamic cycle;
  • Figure 14 shows the ideal thermodynamic cycle of the active regenerator
  • FIG. 15 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the heat transfer process for its respective active regenerator
  • Figure 16 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the process of heat regeneration by part of its respective active regenerator
  • Figure 17 shows the ideal differential thermodynamic cycle composed of two high-temperature isobaric processes, two low-temperature isobaric processes, two temperature-lowering, heat transfer, two-temperature increasing, heat-regenerating polytropic processes, and thermodynamic processes of the active regenerator;
  • Figure 18 shows an example of motor application for an electricity generating plant using geothermal energy as its primary source
  • Figure 19 shows an example of motor application for an electricity generating plant having thermosolar energy as its primary source
  • Figure 20 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
  • the differential cycle motor consisting of two high temperature isobaric processes, two low temperature isobaric processes, two polytropic heat transfer processes, two polytropic heat regeneration processes with active or passive regenerator is based on a thermodynamic system. hybrid because it has two interdependent thermodynamic subsystems which each perform a thermodynamic cycle that interact with each other and can exchange heat, work and mass as shown in figure 4. In (22), of figure 4, the hybrid system is shown. two subsystems indicated by (21) and (23).
  • FIG. 6 shows again the hybrid thermodynamic system and the differential thermodynamic cycle, detailing in this case the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (m1), mo number! (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), mol number (n2), temperature (Tf).
  • FIG 7 shows the engine model based on the hybrid system containing two subsystems indicated by (31) and (37).
  • Each subsystem has its thermomechanical conversion chamber, (33) and (35), a driving force element, (312), an active regenerator, (310) and (314), its drive shafts, respectively, (38), (39), (311) and (313), (315), (316).
  • FIGs 10, 11, 12 and 13 show how mechanically occur the eight processes, four isobaric and four mass transfer and heat regeneration polytropic.
  • subsystem (31) exposes working gas to the hot source at the temperature (Tq) indicated in (317), this subsystem performs the high temperature isobaric process and at the same time the subsystem indicated by (37) exposes the working gas at the cold source at the temperature (Tf) indicated in (318), and at this time simultaneously this subsystem performs the low temperature isobaric process.
  • figures 11 and 13 show how the subsystems process their respective polytropic processes with or without mass transfer and with regeneration after the subsystem ( 31)
  • the gas At the end of its high temperature isobaric process, the gas is exposed to a thermally isolated region, indicated by (32), the gas, initially at the hot temperature (Tq), yields heat to the regenerator (310) which starts from the state hot, expands the internal gas until it withdraws heat from the working gas and its own, until it reaches a cold temperature (Tf) by expanding the gas, transferring the energy to its axis as mechanical kinetic energy, simultaneously part of the gas.
  • Tq hot temperature
  • Tf cold temperature
  • subsystem (31) working pressure of subsystem (31) is transferred to subsystem (37) at lower pressure via the mass transfer element indicated in (34), if so the polytropic process of subsystem temperature lowering (31) simultaneously, subsystem (37) receives part of the working gas mass of subsystem (31), and heat regeneration of regenerator (314) occurs simultaneously.
  • subsystem (37) has a larger mass than subsystem (31). But in polytropic processes, the driving force elements also perform compressions and expansions and there is a sharing in the heat and energy process between the gas as the regenerator and with the driving force elements simultaneously.
  • the polytropic process in this cycle motor has intermediate characteristics between isochoric and adiabatic processes and can be described by expression (d).
  • the parameter (k) will be greater than (y), the adiabatic coefficient of expansion, and the slope of the pressure variation curve with volume will be between the slope of the isocoric process and the inclination of the adiabatic process.
  • the graph in figure 14 clarifies how the active regenerator works, the curve indicated by (71) shows the initial process for conditioning the regenerator's operability, the curve indicated by (72) shows the regenerator process in operation with the cycle.
  • the heat transfer of the gas from the motor to the regenerator occurs alternately and sequentially, from the hot temperature (Tq) to the temperature (Tf) and regeneration when the process occurs in the opposite direction, from the temperature (Tf) to the regenerator. the temperature (Tq).
  • Curve 71 of Figure 14 is an adiabatic process and its unit energy (Joule) is represented by the following expression:
  • This energy (W71) is the internal energy of the regenerator's own gas. which stays internally for as long as the engine will be running.
  • Curve 72 of Figure 14 is also an adiabatic process and its unit energy (Joule) is represented by the following expression:
  • the first energy term (W72) is the internal gas energy itself shown by (W71) and remains indefinitely in the regenerator
  • the second term is the motor cycle adiabatic energy in the polytropic processes, corresponds to the sum of the energies of the regenerator gas expansion and the motor gas expansion itself
  • the parameters (Tq) and (77) are replaced by the parameters of the respective range in which heat transfer to the regenerator and regeneration occur, both are equal.
  • Figure 15 shows in (73) the processes that form the cycle of one of the subsystems.
  • Process (bc) of the cycle shown in (73) is polytropic and starts at point (b) at hot temperature (Tq) with (n1) mol of gas and proceeds to point (c), transferring part of the gas mass , equivalent to (n1 -n2) mol of gas to the other subsystem and transferring its heat (energy) to the regenerator and departs simultaneously to the engine motive power element, reaching point (c) at a cooler start temperature. isobaric process (Tc) and with (n2) mol of gas.
  • Graph (75) shows the process in which the regenerator removes heat from the subsystem gas by expanding the internal gas from the active regenerator.
  • Figure 16 shows in (77), simultaneously with the cycle shown in figure 15, the processes that form the cycle of the other subsystem comprising the engine concept formed by two interdependent subsystems.
  • the polytropic process (bc) shown in figure 15 in the first subsystem is of lowering the gas temperature, its energy is transferred to the active regenerator and the driving force element, while simultaneously occurs in the second subsystem a polytropic process (4-1) of temperature growth, shown in figure 16, the gas mass equivalent to (n1 - n2) mol of gas of the first subsystem is transferred from point (b) shown in (73) to the second subsystem, indicated in detail (78), Figure 16, which initiates this polytropic process with (n2) mol of gas at (4) and arrives at (1) with (n1) mol of gas at a warmer temperature (T1) received from the stored energy of the active regenerator and the motive power element of the motor whose curve of the regenerator portion of its process is indicated in (76).
  • T1 warmer temperature
  • Figure 17 shows the complete eight-process ideal engine differential cycle based on the concept of hybrid thermodynamic system, where two simultaneous engine processes always occur, exemplified by indications (86) and (88), until the full eight process cycle and two process cycles on each of the two active regenerators.
  • the sequence (1 -2-3-4-1) shows the processes of one of the subsystems that form the engine cycle
  • the sequence (abcda) shows the processes of the other subsystem, in (81) are shown.
  • the processes of one of the active regenerators in (83) show the processes of the other active regenerator, all interdependent.
  • the (da) process is polytropic with temperature increase (regeneration), with mass increment and occurs simultaneously with the (2-3) process of temperature reduction (heat transfer to the regenerator), with mass reduction, thus finalizing the process.
  • thermodynamic cycle with eight motor processes, always two simultaneous and the cycles of the two active regenerators, each with two adiabatic processes.
  • the sum of the working gas mass of the two subsystems that make up the engine is always constant.
  • isobaric engine cycle processes (1-2), (ab), (3-4) and (cd) are performed with gas confined to a geometry characterized by thermal inertia. wherein the gas has a rate of change of temperature such that it tends to equalize with hot or cold elements only at the end of these processes, making the pressure relatively stable, that is, isobaric.
  • This geometry shall be characterized by a depth not too small for the penetration of heat into the gas, or a gas displacement between the hot and not too fast to produce a rate of change in temperature throughout the isobaric process causing the pressure to behave steadily.
  • the engine cycle (2-3) and (bc) polytropic processes are performed with the gas in a thermally insulated region or in the transition between the hot and cold areas of the engine, and in this process the engine driving force element and the regenerator in thermal contact with the working gas will perform rapid adiabatic expansion by transferring the energy from the gas to the mechanical elements of the regenerator and the engine, storing the energy in the form of kinetic energy and in the engine cycle polytropic processes (4- 1) and (da) are also performed with gas in a thermally insulated region or in the transition between hot and cold engine areas, and in this process the regenerator in thermal contact with the working gas will perform a rapid compression together with the element. engine power, adiabatic, transferring the kinetic energy of its elements back to the engine gas, raising its temperature, completing regeneration.
  • Table 1 shows process by process forming the differential cycle of eight heat engine processes shown step by step, with four isobaric processes, four polytropic processes, and the thermodynamic cycle with two active regenerator adiabatic processes and transfer steps. pasta.
  • This differential cycle of an engine consisting of two subsystems based on the hybrid system concept, whose pressure and volume curve is shown in Figure 17, has eight processes, two high temperature isobaric processes of energy input into the system, curves (1-2) and (ab) are represented by expressions (g) and (h), two low temperature isobaric processes of discarding unused energy, curves (3-4) and (cd) represented by expressions (i ) and (j), two polytropic heat transfer processes (2-3) and (bc) by means of an active regenerator, represented by the expressions (k) and (I), two polytropic heat regeneration processes (4- 1) and (da), represented by the expressions (m) and (n). Expressions consider the direction signal of the flow of energies.
  • Hybrid based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel burning, although they can be used, so they can operate in environments with or without atmosphere.
  • the thermodynamic cycle does not require changing the physical state of the working gas. Due to their properties set forth in this description, differential cycle motors can be designed to operate over a wide temperature range, superior to most existing motor cycles based on open or closed systems. Differential cycle motors are fully flexible in terms of their energy source (heat).
  • Figure 18 shows an application for the use of differential cycle motors for power generation from geothermal sources.
  • FIG 18 shows a ground heat transfer system 96 for a manifold (94), formed basically by a pump (97) that injects a fluid, usually water, through the duct (93).
  • the heat in the collector (94) is transferred to the differential cycle motor (91), which discards part of the energy to the external medium through the heat exchanger (95) and converts another part of the energy to work by operating a generator ( 92) which produces electricity.
  • FIG 19 shows another useful application for the differential cycle motor for producing heat from the sun's heat.
  • the sun's rays are collected through the concentrator (103), the energy (heat) is transferred to the element (104) which dries heat to the differential cycle motor (101), which converts part of the energy into useful work to operate.
  • an electricity generator, (102) part of the energy is discharged to the outside through the exchanger (105).
  • Figure 20 shows another useful application for the differential cycle engine to improve the efficiency of internal combustion engines by forming combined cycles with them.
  • the heat rejected by the exhausts 116 of the internal combustion engines indicated by 112 fueled engines 117 of Brayton cycle Diesel cycle Sabathe cycle Otto cycle Atkinson cycle are channeled to energy (heat) input from the differential cycle engine (111) via a heat exchanger (113) providing a heat flow (1111) from the internal combustion engine (112) towards the cycle motor differential (111) and this converts part of this energy into useful mechanical force, (1113) which can be integrated with the mechanical force of the internal combustion engine, (1112) generating a single mechanical force, (118), or directed to produce electrical energy.
  • Discharge of energy not converted by the differential cycle motor proceeds to the external medium indicated by (1110). This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve overall system efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The present invention relates to a heat engine and the eight-process thermodynamic cycle thereof, and more specifically to a thermal machine characterized by two interconnected thermodynamic subsystems, each implementing a four-process thermodynamic cycle interdependently with one another, forming a complex eight-process cycle, operating with gas, the circuit of this hybrid system being closed in a differential configuration, based on the concept of a hybrid thermodynamic system, this system implementing a thermodynamic cycle comprising eight processes so that, at any moment of the cycle, same is implementing two simultaneous, complementary and interdependent processes, four of these processes being "isobaric" and four being "polytropic" with variable mass transfer, which transfer may be zero or partial.

Description

"MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS POLITRÓPICOS COM REGENERADOR E PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO"  "DIFFERENTIAL CYCLE THERMAL MOTOR COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYROPIC REGENERATOR PROCESSES AND CONTROL PROCESS FOR THE THERMAL THERMAL CYCLE"
CAMPO TÉCNICO DA INVENÇÃO TECHNICAL FIELD OF THE INVENTION
[001] Refere-se a presente invenção a um motor térmico e seu ciclo termodinâmico de oito processos, mais especificamente, trata-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um opera um ciclo termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, opera com gás, o circuito deste sistema híbrido é fechado em configuração diferencial, baseado no conceito de sistema termodinâmico híbrido, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo executa em qualquer momento do ciclo, dois processos simultâneos e interdependentes, complementares, sendo quatro destes processos "isobáricos" e quatro "politrópicos" com transferência de massa variável, podendo esta ser nula ou parcial. The present invention relates to a thermal motor and its eight process thermodynamic cycle, more specifically, it is a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four process but interdependent thermodynamic cycle. forming a complex cycle of eight processes, operates with gas, the circuit of this hybrid system is closed in differential configuration, based on the concept of hybrid thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it performs At any time during the cycle, two complementary and simultaneous interdependent processes, four of which are "isobaric" and four "polytropic" processes with variable mass transfer, may be null or partial.
ANTECEDENTES DA INVENÇÃO BACKGROUND OF THE INVENTION
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XIX nos primórdios da criação das leis da termodinâmica e fundamentam todos os ciclos motores conhecidos até o presente. [002] Classical thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
[003] O sistema termodinâmico isolado é definido como um sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvoivimento de motores. The isolated thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the engine development.
[004] O sistema termodinâmico aberto é definido como um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistema termodinâmico aberto os motores de combustão interna, de cicio Otto, de cicio Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Bra ton de combustão interna, de ciclo Rankine com exaustão do vapor ao ambiente. As matérias que entram nestes sistemas são os combustíveis e oxigénio ou fluido de trabalho ou gás de trabalho. A energia que entra nestes sistemas é o calor. As matérias que saem destes sistemas são a exaustão da combustão ou do fluido de trabalho, gases, resíduos, as energias que saem destes sistemas são a energia mecânica de trabalho e parte do calor dissipado. [004] The open thermodynamic system is defined as a thermodynamic system in which energy and matter can enter and leave this system. Examples of an open thermodynamic system are the Otto cycle, Atkinson cycle, Otto cycle, diesel cycle, Sabathe cycle, diesel cycle, internal combustion engine, Rankine cycle, internal combustion engine steam exhaust to the environment. The materials that come into these systems are fuels and oxygen or working fluid or working gas. The energy that enters these systems is heat. The materials that come out of these systems are the combustion or working fluid exhaust, gases, waste, the energies that come out of these systems are the mechanical working energy and part of the heat dissipated.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em que apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stirling, de ciclo Ericsson, de ciclo Rankine com fluido de trabalho em circuito fechado, de ciclo Brayton de calor ou de combustão externa, de ciclo Camot. A energia que entra neste sistema é o calor. As energias que saem deste sistema é a energia mecânica de trabalho e parte do calor dissipado, porém não sai matéria destes sistemas, como ocorrem no sistema aberto. [005] The closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system. Examples are closed thermodynamic systems, external combustion engines such as Stirling cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Camot cycle. The energy that enters this system is heat. The energies that come out of this system is the working mechanical energy and part of the heat dissipated, but no matter comes out of these systems, as they do in the open system.
[006] Ambos os sistemas, aberto e fechado, como entrada eles possuem no tempo (t1) a temperatura (Tq), a massa (m1) e o número de mol (n1) e na saída, no tempo (t2), ambos possuem a temperatura (Tf), a massa (m1) e o número de mol (n1), a massa é constante, a diferença entre ambos é que no sistema aberto a massa (m1) atravessa o sistema e no sistema fechado, a massa (m1) permanece no sistema, conforme a figura 1. O ESTADO ATUAL DA TÉCNICA Both systems, open and closed, as input they have at time (t1) temperature (Tq), mass (m1) and number of mol (n1) and at output, at time (t2), both have the temperature (Tf), the mass (m1) and the number of mol (n1), the mass is constant, the difference between them is that in the open system the mass (m1) goes through the system and in the closed system the mass (m1) remains in the system as shown in figure 1. THE CURRENT STATE OF TECHNIQUE
[007] Os motores conhecidos até o presente são fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, eles possuem seus ciclos termodinâmicos compostos por uma série de processos sequenciais e independentes, e ocorre um único processo por vez até que o cicio se complete, como pode ser observado no gráfico pressão/volume na figura 2. Assim são os motores de ciclo Otto, Atkinson, Diesel, Sabathe, Rankine, Stirling, Ericsson e o ciclo teórico ideal de Carnot e o ciclo Brayton também pertence aos sistemas ou aberto ou fechado, porém diferente dos demais, seus quatro processos ocorrem todos simultaneamente. Motors known to date are based on open thermodynamic systems or closed thermodynamic systems, they have their thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle completes, as can be seen in the pressure / volume graph in figure 2. So are the Otto, Atkinson, Diesel, Sabathe, Rankine, Stirling, Ericsson cycle engines and Carnot's ideal theoretical cycle, and the Brayton cycle also belongs to either open or closed systems. but unlike the others, its four processes all occur simultaneously.
[008] A energia interna do gás de trabalho dos motores baseados nos sistemas aberto e fechado não é constante durante o seu ciclo, a equação que representa a energia interna é indicada na equação (a)
Figure imgf000005_0001
[008] The internal working gas energy of motors based on open and closed systems is not constant during their cycle, the equation representing internal energy is given in equation (a)
Figure imgf000005_0001
[009] Na equação (a), (U) representa a energia interna em "Joule", (n) representa o número de mol, (R) representa a constante universal dos gases perfeitos, (7) representa a temperatura do gás em "Kelvir e (γ) representa o coeficiente de expansão adiabática.  In equation (a), (U) represents the internal energy in "Joule", (n) represents the number of mol, (R) represents the universal constant of perfect gases, (7) represents the gas temperature in "Kelvir e (γ) represents the adiabatic expansion coefficient.
[010] Como ocorre sempre um único processo por vez na maioria dos motores projetados com o conceito de sistema aberto ou fechado, a energia interna varia com o tempo, uma vez que o produto: número de mol (/?) pela temperatura (7), (n.T) não é constante durante o ciclo, pois a temperatura (7) é uma variável nos processos e o número de mol (n) é uma constante nos processos. [010] Since only one process occurs at a time on most motors designed with the open or closed system concept, the internal energy varies over time as the product: mol number (/?) By temperature (7 ), (nT) is not constant during the cycle because temperature (7) is a process variable and the number of mol (n) is a process constant.
[011] O atual estado da técnica que caracteriza todos os motores, é caracterizado ainda pela propriedade onde a saída do processo, o trabalho, é uma consequência direta da entrada da energia, calor ou combustão, ou seja, quando é necessário mais trabalho, injeta-se mais calor ou se promove mais combustão, todos os processos que formam o ciclo do motor são igualmente influenciados, em outras palavras, os motores são controlados pela alimentação direta. Por exemplo, nos motores de combustão interna, Otto, Diesel, Brayton, para se obter maior potência injeta-se mais combustível, mais oxigénio e assim se produz mais trabalho, mais rotação. Para se obter maior potência com rotação constante, normalmente utilizam-se caixas de redução ou transformação de rotação. Por analogia, tais tecnologias podem ser comparadas na eletrícidade a motores de corrente contínua, estes, para aumentar a potência, aumenta-se a tensão de alimentação do motor. [011] The current state of the art that characterizes all engines is further characterized by the property where the process output, the work, is a direct consequence of the input of energy, heat or combustion, ie when more work is needed, more heat is injected or more combustion is promoted, all processes that form the engine cycle are equally influenced, in other words the motors are controlled by direct power. For example, in internal combustion engines, Otto, Diesel, Brayton, to get more power, more fuel, more oxygen is injected and thus more work is done, more rotation. For greater power with constant speed, gearboxes or speed transformation are usually used. By analogy, such technologies can be compared in electricity to direct current motors, which, to increase power, increase the motor supply voltage.
[012] O atual estado da técnica compreende uma série de motores de combustão interna e de combustão externa, a maioria destes motores exigem um segundo motor auxiliar para leva-los a partir, ao funcionamento. Os motores de combustão interna exigem a compressão, mistura de combustível com o oxigénio e uma centelha ou combustão por pressão, desta forma um motor auxiliar de partida, normalmente elétrico, é utilizado. Os motores de combustão externa, como o de ciclo Stirling ou Ericsson por sua vez também exigem motores auxiliares e de alta potência, pois eles precisam vencer o estado de repouso sob pressão para entrar em operação. Uma exceção é o motor de ciclo Rankine, este pode partir através do comando de válvulas para fornecer a pressão do vapor aos elementos de força motriz. [012] The current state of the art comprises a series of internal combustion and external combustion engines, most of these engines require a second auxiliary engine to get them into operation. Internal combustion engines require compression, mixing fuel with oxygen, and a spark or pressure combustion, so a normally electric auxiliary starter motor is used. External combustion engines such as the Stirling or Ericsson cycle in turn also require high power auxiliary engines, as they must overcome the resting state under pressure to start operating. One exception is the Rankine cycle engine, which can start via the camshaft to provide the steam pressure to the motive power elements.
[013] O atual estado da técnica compreende uma série de motores, a maioria deles, dependentes de condições muito específicas e especiais para operar, por exemplo, os motores de combustão interna, cada um deles exige seu combustível específico, controle fino de combustível, oxigénio e o tempo da combustão e em alguns casos exigem condições específicas inclusive de pressão, a flexibilidade no combustível é bem limitada. Nesta categoria, dos motores fundamentados nos sistemas aberto e fechado, o motor mais flexível é o de ciclo Rankine, de combustão externa ou o Stiriing, também de combustão externa, estes são mais flexíveis quanto a fonte, mas possuem outras deficiências importantes. [013] The current state of the art comprises a number of engines, most of them dependent on very specific and special conditions to operate, for example, internal combustion engines, each requiring its own specific fuel, fine fuel control, oxygen and combustion time and in some cases require specific conditions including pressure, fuel flexibility is quite limited. In this category, of motors based on open and closed systems, the most flexible motor is Rankine cycle, external combustion or Stiriing, also external combustion, these are more flexible in their source, but have other important deficiencies.
[014] O atual estado da técnica compreende uma série de ciclo motores, a maioria exige combustão, isto é, a queima de algum tipo de combustível, e, portanto, a necessidade de oxigénio. [014] The current state of the art comprises a series of cycle engines, most of which require combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
[015] O estado atual da técnica compreende uma série de ciclo motores, a maioria exige altas temperaturas para operação, os de combustão interna especialmente, costumam operar com o gás de trabalho em temperatura superiores a 1000 °C. Os motores de combustão externa ou operante por fontes de calor externas, como de ciclo Rankine e Stiriing, normalmente são projetados para operarem com temperaturas do gás de trabalho entre 400 °C e 800 °C. Além dos motores baseados nos sistemas aberto e fechado exigirem na maioria das vezes altas temperaturas para que possam operar, todos eles possuem suas eficiências limitadas ao teorema de Carnot, isto é, suas eficiências máximas dependem exclusivamente das temperaturas conforme definido pela equação (b).
Figure imgf000007_0001
[015] The current state of the art comprises a series of engine cycles, most of which require high operating temperatures, especially those of internal combustion, usually operating with working gas at temperatures above 1000 ° C. External combustion engines or engines operating from external heat sources, such as Rankine and Stiriing cycle, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C. In addition to motors based on open and closed systems often requiring high temperatures to operate, they all have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend exclusively on temperatures as defined by equation (b).
Figure imgf000007_0001
[016] Na equação (b), ( ) é o rendimento, {Tf) é a temperatura da fonte fria e (Tq) é a temperatura da fonte quente, ambas em "Kelvin".  [016] In equation (b), () is the yield, {Tf) is the cold source temperature and (Tq) is the hot source temperature, both in "Kelvin".
[017] O estado atual da técnica, baseado nos sistemas aberto e fechado, compreende basicamente seis ciclos motores e algumas versões destes: o ciclo Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton, de ciclo Rankine, de ciclo Stiriing, de ciclo Ericsson e o de ciclo Carnot, referência teórica ideal para os motores fundamentados nos sistema aberto e fechado. As últimas novidades do estado atual da técnica, vem sendo apresentadas através de inovações juntando-se mais de um ciclo antigo formando ciclos combinados, isto é: novos sistemas de motores compostos por uma máquina de cicio Brayton operante com combustíveis de origem fóssil, gás ou óleo e uma máquina de ciclo Rankine dependente do calor rejeitado pela máquina de ciclo Brayton. Ou a mesma filosofia, unindo-se um motor de ciclo Diesel com um de ciclo Rankine ou ainda um motor de ciclo Otto, também, unindo-o com um motor de ciclo Rankine. [017] The current state of the art, based on open and closed systems, comprises basically six motor cycles and some versions thereof: Atkinson cycle Otto cycle, Sabathe cycle Otto cycle, Diesel cycle, similar to Brayton cycle, Rankine cycle, Stiriing cycle, Ericsson cycle and Carnot cycle diesel, the ideal theoretical reference for open and closed engine based engines. The latest news of the current state of the art has been presented through innovations by joining more than one old cycle into combined cycles, ie new engine systems composed of a Brayton cycling machine running on fossil fuels, gas or oil and a heat-dependent Rankine cycle machine rejected by the Brayton cycle. Or the same philosophy, joining a Diesel cycle engine with a Rankine cycle engine or even an Otto cycle engine, too, joining it with a Rankine cycle engine.
[018] O estado atual da técnica apresenta uma série de limitações e oferece também uma série de problemas. A maioria dos motores, como os de combustão interna, de ciclo Otto, Atkinson, Diesel, Sabathe e Brayton, exigem combustíveis específicos para cada conceito, por exemplo: gasolina, óleo diesel, gás, querosene, e de alto poder calorífico, precisam trabalhar sob altas temperaturas e por consequência, durante muitos anos vem dependendo de combustíveis fósseis, trazendo danos graves ao clima e meio-ambiente, isto é, são caracterizados pela não sustentabilidade. O sistema termodinâmico sob os quais estes motores são prqjetados trazem como limitação de eficiência o teorema de Carnot o qual, em função de seu princípio, impõe o limite da eficiência como função direta e exclusiva das temperaturas, conforme equação (b). [018] The current state of the art has a number of limitations and also offers a number of problems. Most engines, such as Otto, Atkinson, Diesel, Sabathe and Brayton internal combustion engines, require specific fuels for each concept, for example: gasoline, diesel, gas, kerosene, and high calorific power, need to work. under high temperatures and consequently, for many years has been relying on fossil fuels, bringing severe damage to the climate and the environment, that is, they are characterized by non-sustainability. The thermodynamic system under which these motors are designed brings as a limitation of efficiency the Carnot theorem which, due to its principle, imposes the limit of efficiency as a direct and exclusive function of temperatures, according to equation (b).
[019] A maioria dos motores da atualidade exigem combustíveis refinados e poluentes com efeitos nocivos ao clima, ao ambiente e, portanto, comprometem a sustentabilidade. Uma das mais recentes tecnologias desenvolvidas para minimizar o impacto, foi a junção de dois antigos conceitos de motores, o motor de cicio Brayton e o motor de ciclo Rankine, formando um sistema composto por dois ciclos combinados, de forma tal que o rejeito de calor da primeira máquina é utilizado pela segunda máquina para melhorar a eficiência do conjunto, porém o uso de combustíveis fósseis e seus efeitos permanecem. O ciclo combinado continua a ser caracterizado por um motor sob conceito de sistema aberto e um motor sob o conceito de sistema fechado, independentes, ou seja, é classificado como sistema combinado, dois ciclos completamente independentes, não se caracteriza como sistema híbrido. [019] Most engines today require refined fuels and pollutants that have a detrimental effect on the climate and the environment and thus compromise sustainability. One of the latest technologies developed to minimize the impact was the joining of two old engine concepts, the Brayton cycle engine and the Rankine cycle engine, forming a system composed of two combined cycles, such that the heat waste The first machine is used by the second machine to improve the efficiency of the set, but the use of fossil fuels and their effects remain. The combined cycle continues to be characterized by an engine under an open system concept and an engine under a closed system concept, independent, that is, it is classified as combined system, two completely independent cycles, is not characterized as hybrid system.
[020] Os demais motores, de ciclo Stirling e Ericsson, são motores sob o conceito de sistema fechado, são de combustão externa ou fonte de calor externo. Em função de suas propriedades, embora tenham os conceitos mais simples de motores, são difíceis de serem construídos. Exigem parâmetros de projetos casados, isto é, funcionam bem, com boa eficiência, apenas em seu regime específico de operação, temperatura, pressão, carga, fora do ponto central de operação suas eficiências caem bruscamente, ou não operam. Portanto são máquinas muito pouco utilizadas para uso industrial ou popular. [020] The other engines, Stirling and Ericsson cycle, are engines under the closed system concept, are of external combustion or external heat source. Because of their properties, although they have the simplest motor concepts, they are difficult to build. They require married design parameters, that is, they work well, with good efficiency, only in their specific operating regime, temperature, pressure, load, outside the central point of operation their efficiencies drop sharply, or do not operate. Therefore they are machines very little used for industrial or popular use.
[021] O motor ideal de Carnot, figura 3, por sua vez, embora seja considerado o motor ideal, mais perfeito até o presente, ele o é na teoria e dentro dos conceitos de sistema aberto e fechado considerando todos os parâmetros ideais, por este motivo é a referência até hoje para todos os conceitos de motores existentes. O motor de Carnot não é encontrado no uso prático porque os materiais reais não possuem as propriedades exigidas para tornar o motor de Carnot uma realidade, as dimensões físicas para que o ciclo de Carnot possa ser executado como na teoria, seriam inviáveis em um caso prático, portanto ele é um Motor ideal nos conceitos de sistema aberto e sistema fechado, porém no conceito teórico. [021] Carnot's ideal motor, figure 3, while considered the ideal motor, most perfect to date, it is in theory and within open and closed system concepts considering all ideal parameters, for example. This is the reference to date for all existing engine concepts. The Carnot engine is not found in practical use because real materials do not have the properties required to make the Carnot engine a reality, the physical dimensions for the Carnot cycle to be performed as in theory would be unfeasible in a practical case. Therefore, it is an ideal Engine in the open system and closed system concepts, but in the theoretical concept.
[022] O controle de potencia, rotação e torque, dos motores existentes, de ciclo Otto, Atkinson, Diesel, Sabathe, Brayton, estes de combustão interna, são decorrentes diretamente da alimentação de combustíveis e oxigénio e como resultado oferecem maior rotação e torque simultaneamente. Para haver separação entre o torque e a rotação, eles exigem caixas de velocidade. Estas máquinas não permitem controlabilidade, ou no mínimo, oferecem dificuldades na controlabilidade através de seus ciclos termodinâmicos. [022] The power, rotation and torque control of existing Otto, Atkinson, Diesel, Sabathe, Brayton cycle engines, these internal combustion engines, are derived directly from the fuel and oxygen supply and as a result offer increased rotation and torque. simultaneously. For separation between torque and rotation, they require gearboxes. These machines do not allow controllability, or at the very least, offer difficulties in controllability through their thermodynamic cycles.
[023] O controle de potência, rotação e torque, dos motores existentes de ciclo Rankine, este de combustão externa, são decorrentes da vazão e da pressão do vapor ou gás de trabalho, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. [023] Power, rotation and torque control of existing cycle motors Rankine, this from external combustion, is due to the flow and pressure of the steam or working gas, and as a result offer interdependent variations of rotation and torque simultaneously, there is no separate controllability between torque and rotation.
[024] O controle de potência, rotação e torque, dos motores existentes de ciclo Stirling e Ericsson, estes de combustão externa, são decorrentes da massa ou pressão do gás de trabalho, das temperaturas, da geometria construtiva, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. Estas máquinas possuem suas curvas de operação muito estreitas oferecendo baixa controlabilidade e uma faixa estreita de operacionalidade. Nestes casos são comuns projetos que não funcionam porque os parâmetros, nas suas interdependências podem não oferecer as condições que levam o motor a funcionar. [024] The power, speed and torque control of existing Stirling and Ericsson cycle engines, these from external combustion, are due to working gas mass or pressure, temperatures, construction geometry, and as a result offer interdependent variations. of rotation and torque simultaneously, there is no separate controllability between torque and rotation. These machines have very narrow operating curves offering low controllability and a narrow operating range. In these cases, designs that do not work are common because the parameters in their interdependencies may not offer the conditions that make the engine run.
[025] O estado atual da técnica, recentemente revelou algumas referências que já se encontram com conceitos semelhantes do sistema híbrido, são motores que apresentam características de possuírem dois ciclos termodinâmicos interdependentes constituindo um ciclo complexo formado por oito processos, sempre com dois processos operando simultaneamente em um sistema formado por dois subsistemas integrados. A patente "PI 1000624-9" registrada no Brasil definida como "Conversor de energia termomecânico" é constituído por dois subsistemas que opera por meio de um ciclo termodinâmico formado por quatro processos isotérmicos e quatro processos isocóricos, sem regeneração. A patente "PCT/BR2013/000222" registrada nos Estados Unidos da América definida como "Máquina térmica que opera em conformidade com o ciclo termodinâmico de Carnot e processo de controle" a qual é constituída por dois subsistemas e opera em cada subsistema, um ciclo termodinâmico formado por dois processos isotérmicos de dois processos adiabáticos. A patente "PCT/BR2014/000381" registrada nos Estados Unidos da América definida como "Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle" a qual é constituída por dois subsistemas e opera um ciclo termodinâmico formado por quatro processos isotérmicos de quatro processos adiabáticos. Estas referencias diferem da presente invenção quanto aos processos termodinâmicos que formam seus ciclos, cada ciclo oferece ao motor características próprias. O conceito de sistema termodinâmico híbrido oferece a base para o desenvolvimento de uma nova família de motores térmicos, cada motor terá características próprias conforme os processos e fases que constituem os seus respectivos ciclos termodinâmicos, como por exemplo, o motor Otto e o motor Diesel são motores fundamentados no sistema termodinâmico aberto de combustão interna, porém constituem motores distintos e o que os distingue são detalhes de seus ciclos termodinâmicos, o ciclo do motor Otto é constituído basicamente por um processo adiabático de compressão, um processo isocórico de combustão, um processo adiabático de expansão e um isocórico de exaustão e o ciclo do motor Diesel é constituído por um processo adiabático de compressão, um processo isobárico de combustão, um processo adiabático de expansão e um processo isocórico de exaustão, portanto eles diferem em apenas um dos processos que formam seus ciclos, o suficiente para conferir a cada um, propriedades e usos específicos e diferentes. Da mesma forma, o conceito de sistema híbrido oferece a base para uma nova família de motores térmicos constituídos por dois subsistemas e estes irão operar com ciclos ditos diferenciais formados por processos onde sempre ocorrerão dois processos simultâneos, cada um terá particularidades próprias às quais caracterizarão cada um dos ciclos-motores. [025] The current state of the art has recently revealed some references that already meet similar concepts of the hybrid system, are motors that have characteristics of having two interdependent thermodynamic cycles constituting a complex cycle formed by eight processes, always with two processes operating simultaneously. in a system consisting of two integrated subsystems. The patent "PI 1000624-9" registered in Brazil defined as "Thermomechanical Energy Converter" consists of two subsystems operating through a thermodynamic cycle formed by four isothermal processes and four isochoric processes without regeneration. The "PCT / BR2013 / 000222" patent registered in the United States of America defined as "Carnot thermodynamic cycle thermal control machine and control process" which consists of two subsystems and operates in each subsystem, one cycle. thermodynamic formed by two isothermal processes of two adiabatic processes. "PCT / BR2014 / 000381" United States Patent of America defined as "Differential Thermal Machine with Eight Thermodynamic Transformation Cycle and Control Process" which consists of two subsystems and operates a thermodynamic cycle formed by four isothermal processes of four adiabatic processes. These references differ from the present invention as to the thermodynamic processes that form their cycles, each cycle gives the engine its own characteristics. The concept of hybrid thermodynamic system provides the basis for the development of a new family of thermal engines, each engine will have its own characteristics according to the processes and phases that constitute their respective thermodynamic cycles, such as the Otto engine and the Diesel engine. engines based on the open thermodynamic internal combustion system, but constitute distinct engines and what distinguishes them are details of their thermodynamic cycles, the Otto engine cycle is basically constituted by an adiabatic compression process, an isocoric combustion process, an adiabatic process. diesel engine cycle consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an isocoric exhaust process, so they differ in only one of the processes that form enough cycles to give each u m, specific and different properties and uses. Similarly, the concept of hybrid system provides the basis for a new family of thermal motors consisting of two subsystems and these will operate with so-called differential cycles formed by processes where two simultaneous processes will always occur, each having its own particularities which will characterize each one. one of the motor cycles.
OBJETTVOS DA INVENÇÃO OBJECTS OF THE INVENTION
[026] Os grandes problemas do estado da técnica são, portanto, a dificuldade das tecnologias atuais a atender projetos sustentáveis, em função da dependência de combustíveis fósseis, poluentes, com impactos graves ao ambiente e ao clima, baixa eficiência, limitada exclusivamente às temperaturas, demonstrado peio teorema de Carnot, baixo nível de controlabilidade em função das limitações na variabilidade dos parâmetros dos modelos fundamentados nos sistemas termodinâmicos aberto e fechado, falta de flexibilidade quanto às fontes de energia, muitos exigem combustíveis refinados e específicos, alta dependência do ar (oxigénio) para combustão e muitos deles dependem de um segundo motor para leva-los à operação (um motor de partida). [026] The major problems of the state of the art are, therefore, the difficulty of current technologies to meet sustainable projects, due to the dependence on fossil fuels, pollutants, with serious impacts on environment and climate, low efficiency, limited exclusively to temperatures, demonstrated by Carnot's theorem, low level of controllability due to limitations in the variability of model parameters based on open and closed thermodynamic systems, lack of flexibility in energy sources, many require refined and specific fuels, high reliance on air (oxygen) for combustion, and many rely on a second engine to drive them into operation (a starter).
[027] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes e minimizar outros problemas, porém o maior objetivo foi em desenvolver novos ciclos-motores baseados em um novo conceito de sistema termodinâmico de forma que a eficiência dos motores não ficasse mais dependentes exclusivamente das temperaturas e cujas fontes de energia possam ser diversificadas e que permitisse projeto de motores para ambientes inclusive sem ar (oxigénio). O conceito de sistema híbrido, característica própria que fundamenta esta invenção, elimina a dependência da eficiência de forma exclusiva à temperatura, a eficiência de qualquer máquina térmica depende dos seus potenciais e de seus diferenciais de potenciais, enquanto que os sistemas aberto e fechado geram potenciais onde a massa do gás é constante e por este motivo elas se cancelam nas equações, nos sistemas híbridos a massa não necessariamente é constante, portanto não se cancelam e as suas eficiências dependem dos potenciais dos quais se originam a força motriz, isto é, das pressões. O conceito de sistema híbrido proporciona potenciais dependentes, proporcionais ao produto da massa de gás de trabalho pela temperatura, como no sistema híbrido, diferente dos sistemas aberto e fechado, a massa é variável, a sua eficiência passa a ser uma função não exclusiva da temperatura, mas dependente da massa e para um motor de ciclo diferencial composto por quatro processos isobáricos, quatro processos politrópicos regenerativos, a eficiência é demonstrada conforme apresentado na equação (c) e figura 4.
Figure imgf000013_0001
[027] The aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept so that the efficiency of the motors would not be more dependent. temperatures only and whose energy sources could be diversified and which would allow the design of engines for environments even without air (oxygen). The concept of the hybrid system, the very characteristic that underlies this invention, eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and its potential differentials, while open and closed systems generate potentials. where the mass of the gas is constant and for this reason they cancel out in the equations, in hybrid systems the mass is not necessarily constant, so they do not cancel out and their efficiencies depend on the potentials from which the driving force originates, ie the pressures. The concept of hybrid system provides dependent potentials, proportional to the product of the working gas mass by temperature, as in the hybrid system, unlike open and closed systems, mass is variable, its efficiency becomes a non-exclusive function of temperature. but mass dependent and for a differential cycle motor composed of four isobaric processes, four regenerative polytropic processes, the efficiency is demonstrated as presented in equation (c) and figure 4.
Figure imgf000013_0001
[028] Na equação (c), ( ) é o rendimento, (T1) é a temperatura iniciai do processo isobárico de aita temperatura, (72) é a temperatura finai do processo isobárico de aita, esta temperatura tende a se equaiizar com a temperatura da fonte quente (Tq), (T3) é a temperatura inicial do processo isobárico de baixa temperatura, (74) é a temperatura finai do processo isobárico de baixa temperatura, esta temperatura tende a se equaiizar com a temperatura da fonte fria (7r), todas as temperaturas em "Kelvin*, (n1) é o número de moles do subsistema 1 , indicado pela região (21 ) da figura 4, (n2) é o número de moles do subsistema 2, indicado pela região (23) da figura 4. In equation (c), () is the yield, (T1) is the initial temperature of the isobaric process of aita temperature, (72) is the final temperature of the isobaric process of aita, this temperature tends to equalize with the hot source temperature (Tq), (T3) is the initial temperature of the low temperature isobaric process, (74) is the final temperature of the low temperature isobaric process, this temperature tends to equalize with the cold source temperature (7r ), all temperatures in "Kelvin * , (n1) is the number of moles of subsystem 1, indicated by region (21) in Figure 4, (n2) is the number of moles of subsystem 2, indicated by region (23) of figure 4.
[029] A dependência de altas temperaturas da maioria dos motores do atual estado da técnica levam também à dependência de combustíveis com alto poder calorífico, dificultando o uso de fontes limpas as quais normalmente oferecem menor temperatura, O conceito de ciclo diferencial sob o sistema híbrido, e fluido de trabalho cujos processos não obriguem a troca de fase física, elimina esta obrigatoriedade da dependência de altas temperaturas, O conceito diferencial onde o ciclo opera sempre dois processos por vez, (26) e (27) da figura 5, simultaneamente e interdependentes, viabiliza máquinas que possam operar com baixas temperaturas e por consequência, as fontes limpas renováveis, como a termossolar, geotermal, passam a ser plenamente viáveis e suas eficiências passam a ter a massa, ou número de moles, como mostrado na equação (c), como parâmetro para a obtenção de eficiências melhores, mesmo com diferenciais de temperatura relativamente baixos. [029] The high temperature dependence of most state-of-the-art engines also leads to dependence on high calorific fuels, making it difficult to use clean sources which typically offer lower temperatures. The concept of differential cycle under the hybrid system , and working fluid whose processes do not require physical phase change, eliminates this requirement of dependence on high temperatures. The differential concept where the cycle always operates two processes at a time, (26) and (27) of figure 5, simultaneously and interdependent, enables machines that can operate at low temperatures and as a result, renewable renewable sources such as thermosolar, geothermal, become fully viable and their efficiencies have the mass, or number of moles, as shown in equation (c ) as a parameter for obtaining better efficiencies even with relatively low temperature differentials.
[030] Os principais ciclos termodinâmicos conhecidos, Otto, Atkinson, Diesel, Sabathe, Stirling, Ericsson, Rankine e o ciclo Carnot executam um único processo por vez sequencialmente, conforme mostrado na figura 2, referenciado ao ciclo mecânico dos elementos de força motriz, seu controle é uma função direta da alimentação da fonte de energia, por sua vez, os ciclos diferenciais do sistema híbrido, executam dois processos por vez, figura 5, viabilizando o controle do ciclo termodinâmico separado do ciclo mecânico, o ciclo pode ser modulado e desta forma o ciclo mecânico passa a ser uma consequência do ciclo termodinâmico e não mais o contrário. [030] The major known thermodynamic cycles, Otto, Atkinson, Diesel, Sabathe, Stirling, Ericsson, Rankine and the Carnot cycle perform one process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the driving force elements. its control is a direct function of the power supply power, in turn the cycles Differentials of the hybrid system, perform two processes at a time, Figure 5, enabling the control of the thermodynamic cycle separate from the mechanical cycle, the cycle can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle and not the other way around.
DESCRIÇÃO DA INVENÇÃO DESCRIPTION OF THE INVENTION
[031] Os motores de ciclos diferenciais são caracterizados por possuírem dois subsistemas, formando um sistema híbrido, representado por (21) e (23) da figura 4, cada subsistema executa um ciclo referenciado ao outro subsistema de modo a executarem sempre dois processos simultâneos e interdependentes. De outra forma, considerando um sistema híbrido com propriedades dos sistemas aberto e do fechado simultaneamente, diz-se que o sistema executa um ciclo termodinâmico composto, figura 5, isto é, executa sempre dois processos por vez simultâneos (26) e (27) da figura 5, interdependentes, inclusive com transferência de massa. Portanto trata-se de motores e ciclos completamente distintos dos motores e ciclos baseados nos sistemas aberto ou fechado. Na figura 6 pode ser observada a relação entre o sistema híbrido e o ciclo termodinâmico diferencial. [031] Differential cycle motors are characterized by having two subsystems forming a hybrid system, represented by (21) and (23) of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always execute two simultaneous processes. and interdependent. Otherwise, considering a hybrid system with properties of both open and closed systems simultaneously, it is said that the system performs a compound thermodynamic cycle, Figure 5, that is, always executes two simultaneous processes (26) and (27). Figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems. Figure 6 shows the relationship between the hybrid system and the differential thermodynamic cycle.
[032] O conceito de sistema termodinâmico híbrido é novo, é formado por dois subsistemas interdependentes e entre eles há troca de matéria e energia e ambos fornecem para fora de seus limites, energia em forma de trabalho e parte da energia em forma de calor dissipada. Este sistema termodinâmico foi criado no século XXI e oferece novas possibilidades para o desenvolvimento de motores térmicos. [032] The concept of hybrid thermodynamic system is new, it is formed by two interdependent subsystems and between them there is exchange of matter and energy and both provide out of bounds, energy in the form of work and heat dissipated part of the energy . This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors.
[033] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica seja esta para uso em geração de energia ou outro uso, como força mecânica para movimentação e tração. Algumas das principais vantagens que podem ser constatadas são: a total flexibilidade quanto à fonte da energia (calor), a independência de atmosfera, não necessita de atmosfera para que um motor do ciclo diferencial possa operar, a flexibilidade quanto às temperaturas, o motor de ciclo diferencial pode ser projetado para funcionar em uma faixa muito extensa de temperatura, bem superior à maioria dos motores fundamentados nos sistemas aberto e fechado, inclusive, um motor de ciclo diferencial pode ser projetado para funcionar com ambas as temperaturas abaixo de zero grau Celsius, basta que as condições de projeto promovam a expansão e contração do gás de trabalho e basta que os materiais escolhidos para a sua construção tenham as propriedades para executar as suas funções operacionais nas temperaturas de projeto. Outras vantagens importantes que distinguem o motor de ciclo diferencial fundamentado no sistema híbrido é a sua controlabilidade em função da facilidade na modulação dos processos termodinâmicos e em projetos de motores que dispensam o uso de motores de partida, ou no mínimo, estes seriam de pequeno porte, em função da facilidade de gerar um torque por meio do diferencial de forças propiciado pelo sistema formado por duas subcâmaras de conversão, isto é, dois subsistemas. Portanto as vantagens constatadas abrangem a flexibilidade das fontes, promovendo o uso de fontes limpas e renováveis como as vantagens operacionais, podendo operar teoricamente em quaisquer faixas de temperatura e sua propriedade de controle da rotação e torque. [033] The present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction. Some of the main advantages that can be seen are: the total flexibility regarding the energy source (heat), the independence of the atmosphere, does not require In order for a differential cycle motor to operate, temperature flexibility, the differential cycle motor can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including , a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, it is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures. Other important advantages that distinguish the differential-cycle engine based on the hybrid system is its controllability due to the ease of modulation of thermodynamic processes and designs of engines that do not require the use of starters, or at least these would be small. , due to the ease of generating a torque through the force differential provided by the system formed by two conversion sub-chambers, that is, two subsystems. Therefore, the advantages found include the flexibility of the sources, promoting the use of clean and renewable sources as the operational advantages, and can theoretically operate in any temperature range and its rotation and torque control property.
[034] O motor de ciclo diferencial baseado no conceito de sistema híbrido poderá ser construído com materiais e técnicas semelhantes aos motores convencionais e motores de ciclo Stirling, como se trata de um motor que trabalha com gás em circuito fechado, considerando o sistema completo, isto é, o sistema completo é formado por dois subsistemas termodinâmicos integrados, (31) e (37), configurando um sistema termodinâmico híbrido, cada subsistema é formado por uma câmara, (33) e (35), contendo gás de trabalho e cada uma destas, são formadas por três subcâmaras, uma aquecida (33) com (317), e (35) com (42), uma resfriada (33) com (41 ), e (35) com (318), e outra isolada, (33) com (32) e (35) com (36), ou em alguns casos, esta inexistente, conectado a estas duas câmaras há um elemento de força motriz (312), cada subsistema possui um regenerador, (310) e (314), podendo ser ativo ou passivo, entre os subsistemas há um elemento de transferencia de massa, (34), portanto os subsistemas são abertos entre si, entre o sistema completo e o meio externo é considerado fechado, estes dois subsistemas executam simultaneamente cada um deles um ciclo de quatro processos interdependentes formando um ciclo termodinâmico diferencial, (82), único, de oito processos, sendo quatro deles isobáricos, (a-b), (1-2), (c-d) e (3-4), quatro politrópicos, (b-c), (2-3), (d-a) e (4-1 ), com transferência de massa variável. Este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, são semelhantes, neste aspecto, às tecnologias de projetos de motores de ciclo Stirling. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás poderá ser vários, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros. [034] The differential system engine based on the hybrid system concept may be constructed of materials and techniques similar to conventional engines and Stirling cycle engines, as it is a closed-loop gas engine considering the complete system, that is, the complete system is formed by two integrated thermodynamic subsystems, (31) and (37), forming a hybrid thermodynamic system, each subsystem is formed by a chamber, (33) and (35), containing working gas and each one of these are formed by three sub-chambers, one heated (33) with (317), and (35) with (42), a cold (33) with (41), and (35) with (318), and another isolated , (33) with (32) and (35) with (36), or in some cases nonexistent, connected to these two chambers is a driving force element (312), each subsystem has a regenerator, (310) and (314), which can be active or passive, between the subsystems there is a mass transfer element, (34), therefore the subsystems are open to each other, between the complete system and the external environment is considered closed, these two subsystems simultaneously execute one cycle of four interdependent processes forming a unique differential thermodynamic cycle (82) of eight processes, four of them isobaric, (ab), (1-2), (cd) and (3-4), four polytropic, (bc), (2-3), (da) and (4-1), with transfer of variable mass. This closed-circuit concept of working gas with respect to the external environment indicates that the system must be sealed, or in some cases leaks may be permitted provided they are compensated. Suitable materials for this technology should be noted and are similar in this respect to Stirling cycle engine design technologies. The working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as the gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others.
[035] As câmaras de conversão, itens que caracterizam o sistema híbrido, poderão ser construídas com diversos materiais, dependendo das temperaturas de projeto, do gás de trabalho utilizado, das pressões envolvidas, do ambiente e condições de operação. Estas câmaras possuem cada uma, três subcâmaras e estas devem ser projetadas observando a exigência de isolamento térmico entre si para minimizar o fluxo de energia a partir das áreas quentes para as frias, esta condição é importante para a eficiência geral do sistema. Estas câmaras possuem internamente elementos que movimentam o gás de trabalho entre as subcâmaras quente, fria, e isoladas quando esta existir, estes elementos podem ser de diversas formas geométricas, depende da exigência e dos parâmetros do projeto, poderá, por exemplo, ser em forma de discos, em forma cilíndrica ou outra que permita a movimentação do gás de trabalho de forma controlada entre as subcâmaras. [035] Conversion chambers, items that characterize the hybrid system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These chambers each have three sub-chambers and these should be designed keeping in mind the requirement of thermal insulation to minimize the flow of energy from hot to cold areas, this condition is important for the overall efficiency of the system. These chambers have internal elements that move the working gas between the hot, cold, and insulated sub chambers where they exist, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be in shape. discs in cylindrical or other form allowing the movement of work in a controlled manner between sub-chambers.
[036] O elemento de transferencia de massa, (34), interliga as duas câmaras, (33) e (35), este elemento é o responsável pela transferência de parte da massa de gás de trabalho entre as câmaras que ocorre em momento específico durante os processos politrópicos. Este elemento poderá ser projetado de várias formas dependendo das exigências do projeto, poderá operar pela simples diferença de pressão, isto é em forma de válvula, ou poderá operar de modo forçado, por exemplo, em forma de turbina, em forma de pistões ou em outra forma geométrica que lhe permita executar a transferência de massa de parte do gás de trabalho. The mass transfer element, 34, interconnects the two chambers, 33 and 35, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time. during the polytropic processes. This element may be designed in various ways depending on the requirements of the design, may operate by simple pressure difference, ie valve-shaped, or may operate in a forced manner, for example turbine, piston-shaped or in another geometric shape allowing it to perform the mass transfer of part of the working gas.
[037] Os regeneradores ativos, (310) e (314), operam com um gás de trabalho específico e este gás armazena a energia do gás do motor durante os processos politrópicos de abaixamento de temperatura através da expansão interna e regenera, isto é, devolve esta energia para o gás do motor durante os processos politrópicos de elevação da temperatura através da compressão. Este regenerador é chamado de regenerador ativo por realizar o seu processo de regeneração dinamicamente através de elementos mecânicos móveis e de um gás de trabalho próprio, diferentemente dos regeneradores conhecidos, passivos, os quais operam através de troca térmica entre o gás e um elemento estático, operante por condução de calor entre o gás o seu corpo. No caso em que for considerado no projeto o uso de regenerador passivo, este geralmente opera com troca de calor por condução entre o gás de trabalho e os elementos que formam o regenerador. Os regeneradores passivos não utilizam gás e elementos móveis. [037] Active regenerators, (310) and (314), operate on a specific working gas and this gas stores the energy of the engine gas during polytropic temperature lowering processes through internal expansion and regenerates, ie. returns this energy to the engine gas during polytropic processes of temperature rise through compression. This regenerator is called an active regenerator because it performs its regeneration process dynamically through moving mechanical elements and its own working gas, unlike known passive regenerators, which operate by thermal exchange between the gas and a static element, operant by conducting heat between the gas your body. In the event that the use of a passive regenerator is considered in the project, it usually operates by conducting heat exchange between the working gas and the elements forming the regenerator. Passive regenerators do not use gas and moving elements.
[038] O elemento de força motriz, (312), é o responsável por executar o trabalho mecânico e disponibilizá-lo para usos. Este elemento de força motriz opera pelas forças do gás de trabalho do motor, este elemento poderá ser projetado de várias formas, dependendo das exigências de projeto, poderá, por exemplo, ser em forma de turbina, em forma de pistões com cilindro, bielas, virabrequins, em forma de diafragma ou em outra forma que permita a realização de trabalho a partir das forças do gás durante as conversões termodinâmicas. [038] The driving force element, (312), is responsible for performing mechanical work and making it available for use. This driving force element operates by the working gas forces of the engine, this element may be designed in various ways, depending on the design requirements, may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
DESCRIÇÃO DOS DESENHOS DESCRIPTION OF DRAWINGS
[039] As figuras anexas demonstram as principais características e propriedades dos conceitos antigos das máquinas térmicas e as inovações propostas baseadas no sistema híbrido, nas quais estão representadas: [039] The attached figures show the main characteristics and properties of the old concepts of thermal machines and the proposed innovations based on the hybrid system, in which they are represented:
A figura 1 representa o conceito de sistema termodinâmico aberto e o conceito de sistema termodinâmico fechado; Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system;
A figura 2 representa a característica de todos os ciclos termodinâmicos fundamentados nos sistemas aberto e fechado; Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems;
A figura 3 mostra a ideia original da máquina térmica de Carnot, conceituada em 1824 por Nicolas Sadi Carnot; Figure 3 shows the original idea of Carnot's thermal machine, conceptualized in 1824 by Nicolas Sadi Carnot;
A figura 4 representa o conceito de sistema termodinâmico híbrido; Figure 4 represents the concept of hybrid thermodynamic system;
A figura 5 representa a característica dos ciclos termodinâmicos diferenciais fundamentados no sistema híbrido; Figure 5 represents the characteristic of differential thermodynamic cycles based on the hybrid system;
A figura 6 mostra o sistema termodinâmico híbrido e um ciclo termodinâmico diferencial e o detalhe dos dois processos termodinâmicos que ocorrem simultaneamente; Figure 6 shows the hybrid thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes;
A figura 7 mostra o modelo mecânico constituído pelos dois subsistemas termodinâmicos que formam um motor térmico sob o conceito de sistema híbrido e seu regenerador ativo; Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid system and its active regenerator;
A figura 8 mostra o motor indicando a fase em que um dos regeneradores, elemento (310), equaliza a sua temperatura à temperatura da fonte quente; Figure 8 shows the motor indicating the phase at which one of the regenerators, element 310, equalizes its temperature to the temperature of the hot source;
A figura 9 mostra o motor indicando a fase em que o segundo regenerador, elemento (314), equaliza a sua temperatura à temperatura da fonte quente; Figure 9 shows the motor indicating the phase at which the second regenerator, element 314, equalizes its temperature to the temperature of the hot source;
A figura 10 mostra um dos subsistemas, grupo (31 ), realizando o processo isobárico de alta temperatura do ciclo termodinâmico e o segundo subsistema, grupo (37), realizando o processo isobárico de baixa temperatura do ciclo termodinâmico; Figure 10 shows one of the subsystems, group (31), performing the high temperature isobaric process of the thermodynamic cycle and the second subsystem, group (37), performing the low temperature isobaric process of the thermodynamic cycle;
A figura 11 mostra um dos subsistemas, grupo (31 ), realizando o processo politrópico de abaixamento da temperatura, do ciclo termodinâmico e o segundo subsistema, grupo (37), realizando o processo politrópico de levantamento da temperatura do ciclo termodinâmico; Figure 11 shows one of the subsystems, group (31), performing the polytropic temperature lowering process of the thermodynamic cycle and the second subsystem, group (37), performing the polytropic temperature raising process of the thermodynamic cycle;
A figura 12, mostra por sua vez, o primeiro subsistema, grupo (31), realizando o seu processo isobárico de baixa temperatura do ciclo termodinâmico e o segundo subsistema, grupo (37), realizando o processo isobárico de alta temperatura do ciclo termodinâmico; Figure 12 shows in turn the first subsystem group (31) performing its low temperature isobaric process of the thermodynamic cycle and the second subsystem group (37) performing the high temperature isobaric process of the thermodynamic cycle;
A figura 13 mostra primeiro subsistema, grupo (31 ), realizando o processo politrópico de levantamento da temperatura, do ciclo termodinâmico e o segundo subsistema, grupo (37), realizando o processo politrópico de abaixamento da temperatura do ciclo termodinâmico; Figure 13 shows the first subsystem, group (31), performing the polytropic temperature raising process of the thermodynamic cycle and the second subsystem, group (37), performing the polytropic temperature lowering process of the thermodynamic cycle;
A figura 14 mostra o ciclo termodinâmico ideal do regenerador ativo; Figure 14 shows the ideal thermodynamic cycle of the active regenerator;
A figura 15 mostra o detalhe do ciclo termodinâmico de um dos subsistemas e o ciclo termodinâmico no processo de transferência de calor para o seu respectivo regenerador ativo; Figure 15 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the heat transfer process for its respective active regenerator;
A figura 16 mostra o detalhe do ciclo termodinâmico de um dos subsistemas e o ciclo termodinâmico no processo de regeneração do calor por parte de seu respectivo regenerador ativo; Figure 16 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the process of heat regeneration by part of its respective active regenerator;
A figura 17 mostra o ciclo termodinâmico diferencial ideal composto por dois processos isobáricos de alta temperatura, dois processos isobáricos de baixa temperatura dois processos politrópicos de abaixamento de temperatura, transferencia de calor, dois processos politrópicos de elevação de temperatura, regeneração de calor, e os processos termodinâmicos do regenerador ativo; Figure 17 shows the ideal differential thermodynamic cycle composed of two high-temperature isobaric processes, two low-temperature isobaric processes, two temperature-lowering, heat transfer, two-temperature increasing, heat-regenerating polytropic processes, and thermodynamic processes of the active regenerator;
A figura 18 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia geotermal; Figure 18 shows an example of motor application for an electricity generating plant using geothermal energy as its primary source;
A figura 19 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia termossolar; Figure 19 shows an example of motor application for an electricity generating plant having thermosolar energy as its primary source;
A figura 20 mostra um exemplo de aplicação do motor de ciclo diferencial para um projeto de um sistema combinado, formando um ciclo combinado com um motor de combustão interna do sistema aberto. Figure 20 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
DESCRIÇÃO DETALHADA DO INVENTO DETAILED DESCRIPTION OF THE INVENTION
[040] O motor de ciclo diferencial constituído por dois processos isobáricos de alta temperatura, dois processos isobáricos de baixa temperatura, dois processos politrópicos de transferência de calor, dois processos politrópicos de regeneração de calor com regenerador ativo ou passivo é fundamentado em um sistema termodinâmico híbrido por possuir dois subsistemas termodinâmicos interdependentes os quais cada um realiza um ciclo termodinâmico que interagem entre si, podendo trocar calor, trabalho e massa conforme é representado na figura 4. Em (22), da figura 4, é mostrado o sistema híbrido composto por dois subsistemas indicados por (21 ) e (23). [040] The differential cycle motor consisting of two high temperature isobaric processes, two low temperature isobaric processes, two polytropic heat transfer processes, two polytropic heat regeneration processes with active or passive regenerator is based on a thermodynamic system. hybrid because it has two interdependent thermodynamic subsystems which each perform a thermodynamic cycle that interact with each other and can exchange heat, work and mass as shown in figure 4. In (22), of figure 4, the hybrid system is shown. two subsystems indicated by (21) and (23).
[041] Na figura 6 é mostrado novamente o sistema termodinâmico híbrido e o ciclo termodinâmico diferencial, detalhando, neste caso os processos, que quando em um dos subsistemas, no tempo (t1 ) o ciclo opera com massa (m1 ), número de mo! (n1 ) e temperatura (Tq), neste mesmo instante, simultaneamente, no outro subsistema, o cicio opera com massa (m2), número de mol (n2), temperatura (Tf). Em uma máquina baseada em um sistema híbrido composto por dois subsistemas, a soma da massa de gás de trabalho é sempre constante (m1 + m2 = cte), porém não necessariamente são constantes nos seus respectivos subsistemas, entre eles pode haver troca de massa. [041] Figure 6 shows again the hybrid thermodynamic system and the differential thermodynamic cycle, detailing in this case the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (m1), mo number! (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), mol number (n2), temperature (Tf). In a machine based on a hybrid system composed of two subsystems, the sum of the working gas mass is always constant (m1 + m2 = cte), but not necessarily constant in their respective subsystems, between them there may be mass exchange.
[042] Na figura 7 é mostrado o modelo de motor baseado no sistema híbrido contendo dois subsistemas indicado por (31) e (37). Cada subsistema possui sua câmara de conversão termomecânica, (33) e (35), um elemento de força motriz, (312), um regenerador ativo, (310) e (314), seus eixos de transmissão, respectivamente, (38), (39), (311) e (313), (315), (316). Fazendo conexão entre os subsistemas para os processos de transferência de massa, há um elemento de transferência de massa (34). [042] Figure 7 shows the engine model based on the hybrid system containing two subsystems indicated by (31) and (37). Each subsystem has its thermomechanical conversion chamber, (33) and (35), a driving force element, (312), an active regenerator, (310) and (314), its drive shafts, respectively, (38), (39), (311) and (313), (315), (316). Linking the subsystems for mass transfer processes, there is a mass transfer element (34).
[043] Na figura 8 e na figura 9, é mostrado o processo responsável por gerar o estado inicial de operação dos regeneradores, (310) e (314). No estado inicial de operação, os regeneradores são, ambos, levados à equalizar-se com a temperatura da fonte quente (Tq). Na figura 8, enquanto um dos subsistemas, (31 ), realiza seu processo isobárico de alta temperatura, seu respectivo regenerador é pressurizado por força mecânica através das transmissões, (38), (39) e (311 ), equalizando-se com a temperatura do gás de trabalho do subsistema (31 ) em (Tq), mostrado no gráfico da figura 14 no trajeto indicado em (71 ). Na figura 9, enquanto o segundo subsistema, (37), realiza seu processo isobárico de alta temperatura, seu respectivo regenerador é pressurizado por força mecânica através das transmissões, (316), (315) e (313), equalizando-se com a temperatura do gás de trabalho do subsistema (37) em (Tq), mostrado também no gráfico da figura 14 no trajeto indicado em (71 ). [043] In Figure 8 and Figure 9, the process responsible for generating the initial state of operation of the regenerators 310 and 314 is shown. In the initial state of operation, both regenerators are brought to equalize with the temperature of the hot source (Tq). In Figure 8, while one of the subsystems (31) performs its high temperature isobaric process, its respective regenerator is mechanically pressurized through the transmissions, (38), (39) and (311), equalizing with the working gas temperature of subsystem (31) at (Tq), shown in the graph of figure 14 in the path indicated at (71). In Figure 9, while the second subsystem, 37, performs its high temperature isobaric process, its respective regenerator is mechanically pressurized through the transmissions 316, 315 and 313, equalizing with the working gas temperature of subsystem (37) at (Tq), also shown in the graph of figure 14 in the path indicated at (71).
[044] As figuras 10, 11 , 12 e 13 mostram como ocorrem mecanicamente os oito processos, quatro isobáricos e quatro politrópicos com transferência de massa e com regeneração do calor. Na figura 10, o subsistema (31 ) expõe o gás de trabalho à fonte quente, na temperatura (Tq), indicado em (317), este subsistema executa o processo isobárico de alta temperatura e simultaneamente o subsistema indicado por (37) expõe o gás de trabalho à fonte fria, na temperatura (Tf), indicado em (318), e neste instante, simultaneamente, este subsistema executa o processo isobárico de baixa temperatura. Estes processos se alternam ente os subsistemas, conforme mostrado na figura 12. Após finalização dos processos isobáricos, na figura 11 e 13 são mostrados como os subsistemas processam os seus respectivos processos politrópicos com ou sem transferencia de massa e com regeneração, após o subsistema (31) finalizar seu processo isobárico de alta temperatura, o gás é exposto a uma região isolada termicamente, indicado por (32), o gás, inicialmente na temperatura quente (Tq), cede calor para o regenerador (310) o qual parte do estado quente, expande o gás interno até retirar o calor do gás de trabalho e seu próprio, até atingir uma temperatura fria (Tf) através da expansão do gás, transferindo a energia para seu eixo em forma de energia cinética mecânica, simultaneamente, parte do gás de trabalho do subsistema (31 ), com pressão maior, é transferido para o subsistema (37) em pressão menor através do elemento de transferência de massa indicado em (34), conclui-se assim o processo politrópico de abaixamento da temperatura do subsistema (31 ), simultaneamente, o subsistema (37) recebe parte da massa de gás de trabalho do subsistema (31 ), e ocorre também, simultaneamente a regeneração do calor do regenerador (314), levando o gás da temperatura fria (Tf) para uma temperatura mais quente na qual inicia-se o processo isobárico de alta temperatura através da pressurização do gás interno do regenerador pela energia mecânica nos eixos obtida no processo de expansão, finalizando o processo politrópico de regeneração. E o subsistema (37) passa a ter massa maior que o subsistema (31 ). Porém nos processos politrópicos, os elementos de força motriz também executam compressões e expansões e existe um compartilhamento no processo de calor e energia entre o gás como o regenerador e com os elementos de força motriz simultaneamente. [1044] Figures 10, 11, 12 and 13 show how mechanically occur the eight processes, four isobaric and four mass transfer and heat regeneration polytropic. In Figure 10, subsystem (31) exposes working gas to the hot source at the temperature (Tq) indicated in (317), this subsystem performs the high temperature isobaric process and at the same time the subsystem indicated by (37) exposes the working gas at the cold source at the temperature (Tf) indicated in (318), and at this time simultaneously this subsystem performs the low temperature isobaric process. These processes alternate between subsystems as shown in figure 12. After completion of the isobaric processes, figures 11 and 13 show how the subsystems process their respective polytropic processes with or without mass transfer and with regeneration after the subsystem ( 31) At the end of its high temperature isobaric process, the gas is exposed to a thermally isolated region, indicated by (32), the gas, initially at the hot temperature (Tq), yields heat to the regenerator (310) which starts from the state hot, expands the internal gas until it withdraws heat from the working gas and its own, until it reaches a cold temperature (Tf) by expanding the gas, transferring the energy to its axis as mechanical kinetic energy, simultaneously part of the gas. working pressure of subsystem (31) is transferred to subsystem (37) at lower pressure via the mass transfer element indicated in (34), if so the polytropic process of subsystem temperature lowering (31) simultaneously, subsystem (37) receives part of the working gas mass of subsystem (31), and heat regeneration of regenerator (314) occurs simultaneously. , bringing the cold temperature gas (Tf) to a warmer temperature at which the high temperature isobaric process is initiated by pressurizing the regenerator internal gas by the mechanical energy in the axes obtained in the expansion process, ending the polytropic process. regeneration. And subsystem (37) has a larger mass than subsystem (31). But in polytropic processes, the driving force elements also perform compressions and expansions and there is a sharing in the heat and energy process between the gas as the regenerator and with the driving force elements simultaneously.
[045] O processo politrópico neste ciclo-motor possui características intermediárias entre os processos isocóricos e adiabáticos e pode ser descrito pela expressão (d).
Figure imgf000023_0001
[045] The polytropic process in this cycle motor has intermediate characteristics between isochoric and adiabatic processes and can be described by expression (d).
Figure imgf000023_0001
[046] No limite onde
Figure imgf000023_0003
o processo politrópico ganha características isocórícas, e no limite onde
Figure imgf000023_0004
o processo politrópico ganha características isentrópicas ou adiabáticas, portanto, em projetos na prática, o parâmetro (k) será maior que (y), o coeficiente de expansão adiabático, e a inclinação da curva da variação da pressão com o volume estará entre a inclinação do processo isocórico e a inclinação do processo adiabático.
[046] At the limit where
Figure imgf000023_0003
the polytropic process gains isochoric characteristics, and at the limit where
Figure imgf000023_0004
the polytropic process gains isentropic or adiabatic characteristics, so in practical projects, the parameter (k) will be greater than (y), the adiabatic coefficient of expansion, and the slope of the pressure variation curve with volume will be between the slope of the isocoric process and the inclination of the adiabatic process.
[047] O gráfico da figura 14 esclarece como o regenerador ativo funciona, a curva indicada por (71 ) mostra o processo inicial para condicionar a operacionalidade do regenerador, a curva indicada por (72) mostra o processo do regenerador em operação com o ciclo do motor, ocorre alternadamente e sequencialmente a transferência de calor do gás do motor para o regenerador, este saindo da temperatura quente (Tq) para a temperatura (Tf) e a regeneração quando o processo ocorre ao contrário, partindo da temperatura (Tf) para a temperatura (Tq). Estes processos sempre ocorrem durante os processos politrópicos do ciclo do motor. [047] The graph in figure 14 clarifies how the active regenerator works, the curve indicated by (71) shows the initial process for conditioning the regenerator's operability, the curve indicated by (72) shows the regenerator process in operation with the cycle. The heat transfer of the gas from the motor to the regenerator occurs alternately and sequentially, from the hot temperature (Tq) to the temperature (Tf) and regeneration when the process occurs in the opposite direction, from the temperature (Tf) to the regenerator. the temperature (Tq). These processes always occur during the engine cycle polytropic processes.
[048] A curva (71) da figura 14 é um processo adiabático e sua energia na unidade (Joule) é representada pela seguinte expressão:
Figure imgf000023_0002
[048] Curve 71 of Figure 14 is an adiabatic process and its unit energy (Joule) is represented by the following expression:
Figure imgf000023_0002
[049] Esta energia (W71) é a energia interna do gás do próprio regenerador que permanece internamente durante todo o tempo em que o motor estará funcionando. [049] This energy (W71) is the internal energy of the regenerator's own gas. which stays internally for as long as the engine will be running.
[048] A curva (72) da figura 14 também é um processo adiabático e sua energia na unidade (Joule) é representada pela seguinte expressão:
Figure imgf000024_0001
[048] Curve 72 of Figure 14 is also an adiabatic process and its unit energy (Joule) is represented by the following expression:
Figure imgf000024_0001
[050] O primeiro termo da energia ( W72) é a própria energia interna do gás mostrado por ( W71) e permanece indefinidamente no regenerador, o segundo termo, é a energia das adiabáticas do ciclo do motor nos processo politrópicos, corresponde a soma das energias da expansão do gás do regenerador e da expansão do gás do próprio motor, os parâmetros (Tq) e (77) são substituídos pelos parâmetros do respectivo intervalo em que ocorrem a transferência de calor para o regenerador e a regeneração, ambos são iguais. [050] The first energy term (W72) is the internal gas energy itself shown by (W71) and remains indefinitely in the regenerator, the second term is the motor cycle adiabatic energy in the polytropic processes, corresponds to the sum of the energies of the regenerator gas expansion and the motor gas expansion itself, the parameters (Tq) and (77) are replaced by the parameters of the respective range in which heat transfer to the regenerator and regeneration occur, both are equal.
[051] O processo termodinâmico da curva (72) da figura 14 ocorre nas condições mostradas nos desenhos mecânicos das figuras 11 e 13. [051] The thermodynamic process of curve 72 of Figure 14 takes place under the conditions shown in the mechanical drawings of Figures 11 and 13.
[052] A figura 15 mostra em (73) os processos que formam o ciclo de um dos subsistemas. O processo (b-c) do ciclo mostrado em (73) é politrópico e inicia no ponto (b) na temperatura quente (Tq), com (n1) mol de gás e segue para o ponto (c), transferindo parte da massa de gás, equivalente a (n1 -n2) mol de gás para o outro subsistema e transferindo seu calor (energia) para o regenerador e parte simultaneamente para o elemento de força motriz do motor, chegando ao ponto (c) numa temperatura mais fria de início do processo isobárico (Tc) e com (n2) mol de gás. O gráfico (75) mostra o processo em que o regenerador retira o calor do gás do subsistema, através da expansão do gás interno do regenerador ativo. Figure 15 shows in (73) the processes that form the cycle of one of the subsystems. Process (bc) of the cycle shown in (73) is polytropic and starts at point (b) at hot temperature (Tq) with (n1) mol of gas and proceeds to point (c), transferring part of the gas mass , equivalent to (n1 -n2) mol of gas to the other subsystem and transferring its heat (energy) to the regenerator and departs simultaneously to the engine motive power element, reaching point (c) at a cooler start temperature. isobaric process (Tc) and with (n2) mol of gas. Graph (75) shows the process in which the regenerator removes heat from the subsystem gas by expanding the internal gas from the active regenerator.
[053] A figura 16 mostra em (77), simultaneamente ao ciclo mostrado na figura 15, os processos que formam o ciclo do outro subsistema que compreende o conceito do motor formado por dois subsistemas interdependentes. O processo politrópico (b-c) mostrado na figura 15 no primeiro subsistema é de abaixamento da temperatura do gás, a sua energia é transferida ao regenerador ativo e ao elemento de força motriz, simultaneamente ocorre no segundo subsistema um processo politrópico (4-1 ) de crescimento da temperatura, mostrado na figura 16, a massa de gás equivalente a (n1 - n2) mol de gás do primeiro subsistema é transferido a partir do ponto (b), mostrado em (73), para o segundo subsistema, indicado no detalhe (78), figura 16, o qual inicia este processo politrópico com (n2) mol de gás em (4) e chega em (1 ) com (n1) mol de gás em uma temperatura mais quente (T1 ) recebida da energia armazenada do regenerador ativo e do elemento de força motriz do motor, cuja curva da parcela do regenerador de seu processo está indicada em (76). [053] Figure 16 shows in (77), simultaneously with the cycle shown in figure 15, the processes that form the cycle of the other subsystem comprising the engine concept formed by two interdependent subsystems. The polytropic process (bc) shown in figure 15 in the first subsystem is of lowering the gas temperature, its energy is transferred to the active regenerator and the driving force element, while simultaneously occurs in the second subsystem a polytropic process (4-1) of temperature growth, shown in figure 16, the gas mass equivalent to (n1 - n2) mol of gas of the first subsystem is transferred from point (b) shown in (73) to the second subsystem, indicated in detail (78), Figure 16, which initiates this polytropic process with (n2) mol of gas at (4) and arrives at (1) with (n1) mol of gas at a warmer temperature (T1) received from the stored energy of the active regenerator and the motive power element of the motor whose curve of the regenerator portion of its process is indicated in (76).
[054] A figura 17 mostra o ciclo diferencial ideal do motor, de oito processos, completo, baseado no conceito de sistema termodinâmico híbrido, onde sempre ocorrem dois processos simultâneos no motor, exemplificado pelas indicações (86) e (88), até formar o ciclo completo de oito processos e ciclos de dois processos em cada um dos dois regeneradores ativos. Em (82), a sequência (1 -2-3-4-1 ) mostra os processos de um dos subsistemas que formam o ciclo do motor, a sequencia (a-b-c-d-a) mostra os processos do outro subsistema, em (81 ) são mostrados os processos de um dos regeneradores ativos, em (83) são mostrados os processos do outro regenerador ativo, todos interdependentes. [054] Figure 17 shows the complete eight-process ideal engine differential cycle based on the concept of hybrid thermodynamic system, where two simultaneous engine processes always occur, exemplified by indications (86) and (88), until the full eight process cycle and two process cycles on each of the two active regenerators. In (82), the sequence (1 -2-3-4-1) shows the processes of one of the subsystems that form the engine cycle, the sequence (abcda) shows the processes of the other subsystem, in (81) are shown. The processes of one of the active regenerators in (83) show the processes of the other active regenerator, all interdependent.
[055] Na figura 17, em (82). A curva indicada por (87) mostra os processos (a- b-c-d-a) de um dos subsistemas, o processo (a~b) é isobárico de alta temperatura onde ocorre a entrada de energia no sistema, ocorre simultaneamente com o processo isobárico de baixa temperatura (3-4) por onde ocorre o descarte da energia não utilizada, da curva indicada por (85) do outro subsistema. O processo (b-c) é politrópico de abaixamento de temperatura, ocorre simultaneamente com o processo (4-1 ), também politrópico, porém de aumento da temperatura, no processo (b-c) ocorre a transferência de calor (energia) do gás do motor para o elemento de força motriz do motor e também do gás do motor para o regenerador mostrado em (83), num processo adiabático indicado pela curva (89), simultaneamente no processo (4-1 ) ocorre a regeneração do calor (energia) para o gás do motor recebida do elemento de força motriz do motor e do regenerador mostrado em (81 ), também num processo adiabático indicado pela curva (84), simultaneamente ainda, durante os processo politrópicos do ciclo do motor e durante os processo adiabáticos dos regeneradores ativos, ocorre a transferência de massa, saindo (n1 - n2) mol de gás no processo (b-c), para o outro subsistema, durante o processo politrópico (4-1 ), mostrado no detalhe (78) na curva do gráfico (77) na figura 16. Os processos (2-3) e (d-a) são idênticos aos processos (b-c) e (4-1 ). O processo (c~d) é isobárico de baixa temperatura e ocorre simultaneamente ao processo (1 -2), isobárico de alta temperatura. O processo (d-a) é politrópico de aumento de temperatura (regeneração), com incremento de massa e ocorre simultaneamente ao processo (2-3) politrópico de redução de temperatura (transferência de calor ao regenerador), com redução de massa, finalizando assim o ciclo termodinâmico com oito processos do motor, sempre dois simultâneos e os ciclos dos dois regeneradores ativos, cada um com dois processos adiabáticos. A soma da massa de gás de trabalho dos dois subsistemas que formam o motor é sempre constante. [055] In Figure 17, at (82). The curve indicated by (87) shows the processes (abcda) of one of the subsystems, the process (a ~ b) is high temperature isobaric where energy enters the system, occurs simultaneously with the low temperature isobaric process. (3-4) where the unused energy is discharged from the curve indicated by (85) of the other subsystem. Process (bc) is a polytropic temperature lowering, occurring simultaneously with process (4-1), also In the process (bc), the heat transfer (heat) from the engine gas to the engine driving force element and also from the engine gas to the regenerator shown in (83) occurs in one process. indicated by curve (89), simultaneously in process (4-1) heat (energy) regeneration occurs for the engine gas received from the engine driving force element and the regenerator shown in (81), also in an adiabatic process indicated by curve (84), simultaneously, during the engine cycle polytropic processes and during the adiabatic processes of the active regenerators, mass transfer occurs, leaving (n1 - n2) mol of gas in the process (bc) to the another subsystem during the polytropic process (4-1) shown in detail (78) on the curve of graph (77) in figure 16. Processes (2-3) and (da) are identical to processes (bc) and ( 4-1). Process (c-d) is low temperature isobaric and occurs simultaneously with process (1-2), high temperature isobaric. The (da) process is polytropic with temperature increase (regeneration), with mass increment and occurs simultaneously with the (2-3) process of temperature reduction (heat transfer to the regenerator), with mass reduction, thus finalizing the process. thermodynamic cycle with eight motor processes, always two simultaneous and the cycles of the two active regenerators, each with two adiabatic processes. The sum of the working gas mass of the two subsystems that make up the engine is always constant.
[056] Nas câmaras de conversão do motor, os processos isobáricos do ciclo do motor (1 -2), (a-b), (3-4) e (c-d) são realizados com o gás confinado em uma geometria caracterizada por uma inércia térmica em que o gás tenha uma taxa de variação da temperatura tal que o mesmo tende a equalizar com os elementos quentes ou frios apenas no final destes processos, fazendo que a pressão fique relativamente estável, isto é, isobárica. Esta geometria deve ser caracterizada por uma profundidade não muito pequena para a penetração do calor no gás, ou por um deslocamento do gás entre os elementos quentes e frios não muito rápido de forma a produzir uma taxa de variação da temperatura em todo o processo isobárico fazendo com que a pressão tenha um comportamento constante. Os processos politrópicos do cicio do motor (2- 3) e (b-c) são realizados com o gás em uma região isolada termicamente ou na transição entre as áreas quentes e frias do motor, e neste processo o elemento de força motriz do motor e o regenerador em contato térmico com o gás de trabalho realizarão uma expansão rápida, adiabática, transferindo a energia do gás para os elementos mecânicos do regenerador e do motor, armazenando a energia em forma de energia cinética e nos processos politrópicos do ciclo do motor (4-1 ) e (d-a) são realizados também com o gás em uma região isolada termicamente ou na transição entre as áreas quentes e frias do motor, e neste processo o regenerador em contato térmico com o gás de trabalho realizará uma compressão rápida juntamente com o elemento de força motriz do motor, adiabática, transferindo a energia cinética de seus elementos de volta para o gás do motor, elevando sua temperatura, concluindo a regeneração. [056] In engine conversion chambers, isobaric engine cycle processes (1-2), (ab), (3-4) and (cd) are performed with gas confined to a geometry characterized by thermal inertia. wherein the gas has a rate of change of temperature such that it tends to equalize with hot or cold elements only at the end of these processes, making the pressure relatively stable, that is, isobaric. This geometry shall be characterized by a depth not too small for the penetration of heat into the gas, or a gas displacement between the hot and not too fast to produce a rate of change in temperature throughout the isobaric process causing the pressure to behave steadily. The engine cycle (2-3) and (bc) polytropic processes are performed with the gas in a thermally insulated region or in the transition between the hot and cold areas of the engine, and in this process the engine driving force element and the regenerator in thermal contact with the working gas will perform rapid adiabatic expansion by transferring the energy from the gas to the mechanical elements of the regenerator and the engine, storing the energy in the form of kinetic energy and in the engine cycle polytropic processes (4- 1) and (da) are also performed with gas in a thermally insulated region or in the transition between hot and cold engine areas, and in this process the regenerator in thermal contact with the working gas will perform a rapid compression together with the element. engine power, adiabatic, transferring the kinetic energy of its elements back to the engine gas, raising its temperature, completing regeneration.
[057] A tabela 1 mostra processo por processo que formam o ciclo diferencial de oito processos do motor térmico mostrados passo a passo, com quatro processos isobáricos, quatro processos politrópicos e o ciclo termodinâmico com dois processos adiabáticos do regenerador ativo e etapas de transferência de massa. [057] Table 1 shows process by process forming the differential cycle of eight heat engine processes shown step by step, with four isobaric processes, four polytropic processes, and the thermodynamic cycle with two active regenerator adiabatic processes and transfer steps. pasta.
Tabela 1 Table 1
Figure imgf000027_0001
Figure imgf000028_0002
Figure imgf000027_0001
Figure imgf000028_0002
[058] Este ciclo diferencial de um motor composto por dois subsistemas baseado no conceito de sistema híbrido, cuja curva da pressão e do volume é indicado na figura 17, possui oito processos, dois processos isobáricos de alta temperatura de entrada de energia no sistema, curvas (1 -2) e (a-b) são representadas pelas expressões (g) e (h), dois processos isobáricos de baixa temperatura de descarte da energia não utilizada, curvas (3-4) e (c-d) representados pelas expressões (i) e (j), dois processos politrópicos de transferencia de calor (2-3) e (b-c) por meio de um regenerador ativo, representados pelas expressões (k) e (I), dois processos politrópicos de regeneração de calor (4-1) e (d-a), representados pelas expressões (m) e (n). As expressões consideram o sinal do sentido do fluxo das energias. [058] This differential cycle of an engine consisting of two subsystems based on the hybrid system concept, whose pressure and volume curve is shown in Figure 17, has eight processes, two high temperature isobaric processes of energy input into the system, curves (1-2) and (ab) are represented by expressions (g) and (h), two low temperature isobaric processes of discarding unused energy, curves (3-4) and (cd) represented by expressions (i ) and (j), two polytropic heat transfer processes (2-3) and (bc) by means of an active regenerator, represented by the expressions (k) and (I), two polytropic heat regeneration processes (4- 1) and (da), represented by the expressions (m) and (n). Expressions consider the direction signal of the flow of energies.
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000029_0001
[059] Considerando que
Figure imgf000029_0005
o total de energia de entrada no motor é a soma das energias e é representada peia expressão
Figure imgf000029_0006
[059] Whereas
Figure imgf000029_0005
the total input energy in the motor is the sum of the energies and is represented by the expression
Figure imgf000029_0006
(o) abaixo.
Figure imgf000029_0002
(o) below.
Figure imgf000029_0002
[060] Considerando que (73 = Tc) e (74 = Td), o total de energia descartada para o meio exterior é a soma das energias Qp- ) e e na sua forma positiva, é representada pela expressão (p) abaixo.
Figure imgf000029_0003
Considering that (73 = Tc) and (74 = Td), the total energy discarded to the outside environment is the sum of the energies Qp-) and and in their positive form, is represented by the expression (p) below.
Figure imgf000029_0003
[061] O trabalho útil total do motor, considerando um modelo ideal sem perdas, é a diferença entre a entrada e a saída da energia e é representado pela expressão (q) abaixo.
Figure imgf000029_0004
[061] The total useful motor work, considering an ideal lossless model, is the difference between the input and output of the energy and is represented by the expression (q) below.
Figure imgf000029_0004
[062] Os processos politrópicos, mostrados pelas expressões (k), (I), (m) e (n) são iguais e regenerativos, a energia é transferida no processo de abaixamento de temperatura e regenerada nos processos de aumento da temperatura, isto é, a energia se conserva nos subsistemas.  [062] The polytropic processes, shown by the expressions (k), (I), (m) and (n) are equal and regenerative, energy is transferred in the temperature lowering process and regenerated in the temperature raising processes, ie that is, energy is conserved in the subsystems.
[063] A demonstração final teórica da eficiência do ciclo diferencial de oito processos, quatro processos isobáricos, quatro processos politrópicos com transferencia de massa e regenerador ativo é dada pela expressão (r), caracterizando que os ciclos diferenciais baseados no sistema termodinâmico híbrido possuem como parâmetro da eficiência, também o número de moles ou massa nos processos e portanto estes ciclos não possuem suas eficiências dependentes exclusivamente das temperaturas..
Figure imgf000030_0001
[063] The theoretical final demonstration of the differential cycle efficiency of eight processes, four isobaric processes, four mass transfer polytropic processes and active regenerator is given by the expression (r), characterizing that differential cycles based on the hybrid thermodynamic system have as efficiency parameter, also the number of moles or mass in the processes and therefore these cycles do not have their efficiencies solely dependent on temperatures.
Figure imgf000030_0001
EXEMPLOS DE APLICAÇÕES  APPLICATION EXAMPLES
[064] Os motores de ciclo diferenciais baseados no sistema híbrido operam com calor, não exigem combustão, embora possa ser utilizada, não exige queima de combustíveis, embora possa ser utilizada, portanto podem operar em ambientes com ou sem atmosfera. O ciclo termodinâmico não exige troca do estado físico do gás de trabalho. Pelas suas propriedades expostas nesta descrição, os motores de ciclo diferenciais podem ser projetados para operar em uma larga faixa de temperatura, superiores à maioria dos ciclos motores existentes baseados nos sistemas aberto ou fechado. Os motores de ciclo diferenciais são totalmente flexíveis quanto à fonte da energia (calor), na figura 18 é mostrado uma aplicação para o emprego do motor de ciclo diferencial para a geração de energia a partir de fontes geotermais. A figura 18 mostra um sistema de transferência de calor do solo 96 para um coletor (94), formado basicamente por uma bomba (97) que injeta um fluido, normalmente água, pelo duto (93). O calor no coletor (94) é transferido para o motor de ciclo diferencial (91 ), o qual descarta parte da energia para o meio externo através do trocador de calor (95) e converte outra parte da energia em trabalho, operando um gerador (92) o qual produz eletricidade. [064] Hybrid based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel burning, although they can be used, so they can operate in environments with or without atmosphere. The thermodynamic cycle does not require changing the physical state of the working gas. Due to their properties set forth in this description, differential cycle motors can be designed to operate over a wide temperature range, superior to most existing motor cycles based on open or closed systems. Differential cycle motors are fully flexible in terms of their energy source (heat). Figure 18 shows an application for the use of differential cycle motors for power generation from geothermal sources. Figure 18 shows a ground heat transfer system 96 for a manifold (94), formed basically by a pump (97) that injects a fluid, usually water, through the duct (93). The heat in the collector (94) is transferred to the differential cycle motor (91), which discards part of the energy to the external medium through the heat exchanger (95) and converts another part of the energy to work by operating a generator ( 92) which produces electricity.
[065] A figura 19 mostra outra aplicação útil para o motor de ciclo diferencial para a produção de energia a partir do calor do sol. Os raios solares são coletados através do concentrador (103), a energia (calor) é transferida para o elemento (104) o qual dírecíona o calor para o motor de ciclo diferencial (101 ), este converte parte da energia em trabalho útil para operar um gerador de eletricidade, (102), parte da energia é descartada ao meio externo através do trocador (105). [065] Figure 19 shows another useful application for the differential cycle motor for producing heat from the sun's heat. The sun's rays are collected through the concentrator (103), the energy (heat) is transferred to the element (104) which dries heat to the differential cycle motor (101), which converts part of the energy into useful work to operate. an electricity generator, (102), part of the energy is discharged to the outside through the exchanger (105).
[066] A figura 20 mostra outra aplicação útil para o motor de ciclo diferencial para melhorar a eficiência de motores de combustão interna, formando ciclos combinados com estes. O calor rejeitado pelas exaustões, (116), dos motores de combustão interna, indicado por (112), alimentados por combustíveis, (117), de ciclo Brayton, ciclo Diesel, ciclo Sabathe, ciclo Otto, ciclo Atkinson, são canalizados para a entrada de energia (calor) do motor de ciclo diferencial, (111 ), através de um trocador (113), promovendo um fluxo de calor, (1111 ), do motor de combustão interna, (112), em direção ao motor de ciclo diferencial (111 ) e este converte parte desta energia em força mecânica útil, (1113) que pode ser integrada à força mecânica do motor de combustão interna, (1112) gerando uma força mecânica única, (118), ou direcionada a produzir energia elétríca. O descarte da energia não convertida pelo motor de ciclo diferencial segue para o meio externo indicado por (1110). Esta aplicação permite recuperar parte da energia que os ciclos dos motores de combustão interna não podem utilizar para a realização de trabalho útil e assim melhorar a eficiência geral do sistema. [066] Figure 20 shows another useful application for the differential cycle engine to improve the efficiency of internal combustion engines by forming combined cycles with them. The heat rejected by the exhausts 116 of the internal combustion engines indicated by 112 fueled engines 117 of Brayton cycle Diesel cycle Sabathe cycle Otto cycle Atkinson cycle are channeled to energy (heat) input from the differential cycle engine (111) via a heat exchanger (113) providing a heat flow (1111) from the internal combustion engine (112) towards the cycle motor differential (111) and this converts part of this energy into useful mechanical force, (1113) which can be integrated with the mechanical force of the internal combustion engine, (1112) generating a single mechanical force, (118), or directed to produce electrical energy. . Discharge of energy not converted by the differential cycle motor proceeds to the external medium indicated by (1110). This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve overall system efficiency.

Claims

REIVINDICAÇÕES
1 ) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS POLITRÓPICOS COM REGENERADOR", caracterizado por ser composto por dois subsistemas termodinâmicos, (31 ) e (37), configurando um sistema termodinâmico híbrido, sendo cada subsistema formado por uma câmara, (33) e (35), contendo gás de trabalho e cada uma destas duas câmaras são formadas por três subcâmaras, uma aquecida, (33 com 317) e (35 com 42), uma resfriada, (33 com 41 ) e (35 com 318), e outra isolada, (33 com 32) e (35 com 36), conectado a estas duas câmaras há um elemento de força motriz, (312), cada subsistema possui um regenerador ativo ou passivo, (310) e (314), entre os subsistemas há um elemento de transferência de massa, (34), estes dois subsistemas executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um ciclo termodinâmico diferencial, (82), único, de oito processos, sendo quatro deles isobáricos, (a-b), (1-2), (c-d) e (3-4), quatro politrópicos, (b-c), (2-3), (d-a) e (4-1), com transferência de massa variável. 1) "DIFFERENTIAL CYCLE THERMAL MOTOR COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYROPIC REGENERATOR PROCESSES", characterized in that it consists of two thermodynamic subsystems, (31) and (37), forming a hybrid thermodynamic system, each subsystem consisting of one chamber (33) and (35) containing working gas and each of these two chambers are formed by three sub-chambers, one heated, (33 with 317) and (35 with 42), one cold, (33 with 41) and (35 with 318), and one isolated, (33 with 32) and (35 with 36), connected to these two chambers is a driving force element, (312), each subsystem has an active or passive regenerator, (310) and (314), between the subsystems there is a mass transfer element, (34) these two subsystems simultaneously execute each other, a cycle of four interdependent processes forming a single differential thermodynamic cycle (82) of eight processes. , four of them isobaric, (ab), (1-2), ( c-d) and (3-4), four polytropic, (b-c), (2-3), (d-a) and (4-1), with variable mass transfer.
2) " MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS POLITRÓPICOS COM REGENERADOR", de acordo com a reivindicação 1 , caracterizado por ser composto por duas câmaras, (33) e (35), cada câmara é dividida em três subcâmaras, uma subcâmara aquecida, (33 com 317) e (35 com 42), uma subcâmara resfriada, (33 com 41 ) e (35 com 318), e uma subcâmara isolada termicamente, (33 com 32) e (35 com 36), formando cada câmara, um subsistema, (31 ) e (37), e a junção destes dois subsistemas formam um sistema termodinâmico híbrido. 2) "DIFFERENTIAL CYCLE THERMAL MOTOR COMPOSED OF FOUR ISOBATIC PROCESSES, FOUR POLYROPIC REGENERATOR PROCESSES" according to claim 1, comprising two chambers, (33) and (35), each chamber is divided into three sub-chambers, a heated sub-chamber (33 with 317) and (35 with 42), a cooled sub-chamber, (33 with 41) and (35 with 318), and a thermally insulated sub-chamber, (33 with 32) and (35 with 36 ), each chamber forming a subsystem, (31) and (37), and the junction of these two subsystems form a hybrid thermodynamic system.
3) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS POLITRÓPICOS COM REGENERADOR", de acordo com as reivindicações 1 e 2, caracterizado por possuir um elemento de força motriz, (312), conectado às duas câmaras de conversão termodinâmicas, (33) e (35). 3) "DIFFERENTIAL CYCLE THERMAL MOTOR COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYROPIC REGENERATOR PROCESSES" according to claims 1 and 2, characterized in that it has a driving force element, (312), connected to both chambers. thermodynamic conversion, (33) and (35).
4) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS POLITRÓPICOS COM REGENERADOR", de acordo com as reivindicações 1 , 2 e 3, caracterizado por possuir um regenerador ativo ou passivo, (310) e (314), em cada uma das câmaras (33) e (35). 4) "DIFFERENTIAL CYCLE THERMAL MOTOR COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYROPIC REGENERATOR PROCESSES" according to claims 1, 2 and 3, characterized by having an active or passive regenerator, (310) and (314), in each of the chambers (33) and (35).
5) "MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS POLITRÓPICOS COM REGENERADOR", de acordo com as reivindicações 1 , 2, 3 e 4, caracterizado por possuir um elemento de transferência de massa do gás de trabalho, (34), entre as câmaras (33) e (35). (5) "DIFFERENTIAL CYCLE HEAT MOTOR COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYROPIC REGENERATOR PROCESSES" according to claims 1, 2, 3 and 4, characterized in that it has a working gas mass transfer element, (34) ), between chambers (33) and (35).
6) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", caracterizado por um processo executado pelo sistema híbrido formando um ciclo termodinâmico diferencial de oito processos termodinâmicos do motor, (82), sendo dois isobáricos de alta temperatura, (a-b) e (1-2), dois isobáricos de baixa temperatura, (c-d) e (3-4), dois politrópicos de abaixamento de temperatura com transferência de massa, (b-c) e (2-3), dois politrópicos de elevação da temperatura com recebimento de massa, (d-a) e (4- 1 ), e dois processos adiabáticos, (84) e (89), do regenerador. 6) "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE", characterized by a process performed by the hybrid system forming a differential thermodynamic cycle of eight engine thermodynamic processes, (82) being two high temperature isobarics, (ab) and (1-2), two low temperature isobarics, (cd) and (3-4), two mass transfer temperature lowering polytropics, (bc) and (2-3), two temperature elevation polytropics with mass reception, (da) and (4- 1), and two adiabatic processes, (84) and (89), from the regenerator.
7) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com a reivindicação 6, caracterizado por possuir um processo isobárico de alta temperatura, (a-b), em um dos subsistemas o qual é executado simultaneamente a outro processo isobárico de baixa temperatura, (3-4), no outro subsistema e um processo isobárico de baixa temperatura, (c-d) no primeiro subsistema que é executado simultaneamente a outro processo isobárico de alta temperatura, (1-2), no segundo subsistema, compondo os quatro processos isobáricos do ciclo. 8) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com a reivindicação 6, caracterizado por possuir um processo politrópico de abaixamento de temperatura e transferencia de massa, (b-c), em um dos subsistemas o qual é executado simultaneamente a outro processo politrópico, (4-1), no segundo subsistema, sendo este segundo processo, de aumento da temperatura por meio da regeneração e este processo recebe a massa do processo de abaixamento da temperatura e um processo politrópico de elevação de temperatura, regenerativo com aumento de massa, (d-a), no primeiro subsistema, simultaneamente a um processo politrópico de abaixamento de temperatura, e transferência de massa, (2-3), do segundo subsistema, compondo os quatro processos politrópicos do ciclo. 7) "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claim 6, characterized in that it has a high temperature isobaric process, (ab), in one of the subsystems which is performed simultaneously with another isobaric process of low temperature (3-4) in the other subsystem and a low temperature isobaric process (cd) in the first subsystem running simultaneously with another high temperature isobaric process (1-2) in the second subsystem, composing the four isobaric processes of the cycle. 8. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claim 6, characterized in that it has a polytropic process of lowering temperature and mass transfer, (bc), in one of the subsystems which is executed simultaneously. to another polytropic process, (4-1), in the second subsystem, which is the second process of temperature rise by regeneration and this process receives the mass of the temperature lowering process and a polytropic temperature rise process, regenerative with mass increase, (da), in the first subsystem, simultaneously to a polytropic process of temperature lowering, and mass transfer, (2-3), of the second subsystem, composing the four polytropic processes of the cycle.
9) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 6 e 8, caracterizado por possuir no ciclo termodinâmico, dois processos de regeneração da energia - calor - (84) e (89), os quais são executados pelo elemento de força motriz do motor e pelos regeneradores, (310) e (314), onde a energia - calor - é cedida durante os processos politrópicos de abaixamento de temperatura, (b-c) e (2- 3), sendo armazenada no regenerador e parte no elemento de força motriz do motor, e recebido, regenerado pelos processos politrópicos de aumento da temperatura, (d-a) e (4-1 ). 9) "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claims 6 and 8, characterized in that it has in the thermodynamic cycle two processes of heat energy regeneration (84) and (89), which are performed by the engine driving force element and regenerators, 310 and 314, where the energy - heat - is delivered during the polytropic temperature lowering processes, (bc) and (2-3), and is stored in the regenerator and part in the engine driving force element, and received, regenerated by the polytropic temperature increase processes, (da) and (4-1).
10) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 6, 8 e 9, caracterizado por possuir no ciclo termodinâmico dois processos de armazenamento da energia, (89), executados pelo elemento de força motriz (312) do motor e pelos regeneradores, (310) e (314), para posterior regeneração, (84), através dos regeneradores, os quais absorvem a energia durante os processos politrópicos de abaixamento da temperatura, (b-c) e (2-3). 11) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 6, 8 e 9, caracterizado por possuir no ciclo termodinâmico dois processos de regeneração da energia, (84), executados pelos regeneradores, (310) e (314), os quais devolvem a energia ao gás do motor durante os processos politrópicos de elevação da temperatura, (d-a) e (4-1 ). 10. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claims 6, 8 and 9, characterized in that the thermodynamic cycle has two energy storage processes (89) carried out by the driving force element ( 312) of the motor and regenerators, (310) and (314), for further regeneration, (84), through the regenerators, which absorb energy during the polytropic temperature lowering processes, (bc) and (2-3). ). 11) "CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THERMAL MOTOR "according to claims 6, 8 and 9, characterized in that it has in the thermodynamic cycle two energy regeneration processes, (84), performed by the regenerators, (310) and (314), which return the energy to the engine gas during polytropic temperature rise processes, (da) and (4-1).
PCT/BR2018/050107 2017-04-25 2018-04-17 Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine WO2018195619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102017008545-7A BR102017008545B1 (en) 2017-04-25 DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BRBR102017008545-7 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018195619A1 true WO2018195619A1 (en) 2018-11-01

Family

ID=63917903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050107 WO2018195619A1 (en) 2017-04-25 2018-04-17 Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine

Country Status (1)

Country Link
WO (1) WO2018195619A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026215A1 (en) * 2018-08-03 2020-02-06 Saulo Finco Integrated internal-combustion engine formed by an otto-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine
US12128869B2 (en) 2017-10-27 2024-10-29 Quantum Industrial Development Corporation External combustion engine series hybrid electric drivetrain

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342103A1 (en) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger
JPS5732038A (en) * 1980-08-04 1982-02-20 Mitsuo Okamoto Gas system external combustion engine
DE3304729A1 (en) * 1983-02-11 1984-08-16 Jürgen 2804 Lilienthal Henkel Process for the operation of a heat engine with a gaseous medium
RU2189481C2 (en) * 2000-04-28 2002-09-20 Андреев Виктор Иванович Engine design and method of operation
JP2004084564A (en) * 2002-08-27 2004-03-18 Toyota Motor Corp Exhaust heat recovering device
WO2006062425A1 (en) * 2004-12-10 2006-06-15 Piotr Hardt Thermal multi-valve piston engine and a method of control of thermal multi-valve piston engine operation
RU2284420C1 (en) * 2005-03-17 2006-09-27 Закрытое акционерное общество "МЭТР" Method of operation of heat machine and piston engine for implementing the method
WO2014109667A1 (en) * 2013-01-09 2014-07-17 Pospelov Sergey Vyacheslavovich Rayleigh cycle thermal machine
WO2016114683A1 (en) * 2015-01-15 2016-07-21 Борис Львович ЕГОРОВ Internal combustion engine and operating method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342103A1 (en) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger
JPS5732038A (en) * 1980-08-04 1982-02-20 Mitsuo Okamoto Gas system external combustion engine
DE3304729A1 (en) * 1983-02-11 1984-08-16 Jürgen 2804 Lilienthal Henkel Process for the operation of a heat engine with a gaseous medium
RU2189481C2 (en) * 2000-04-28 2002-09-20 Андреев Виктор Иванович Engine design and method of operation
JP2004084564A (en) * 2002-08-27 2004-03-18 Toyota Motor Corp Exhaust heat recovering device
WO2006062425A1 (en) * 2004-12-10 2006-06-15 Piotr Hardt Thermal multi-valve piston engine and a method of control of thermal multi-valve piston engine operation
RU2284420C1 (en) * 2005-03-17 2006-09-27 Закрытое акционерное общество "МЭТР" Method of operation of heat machine and piston engine for implementing the method
WO2014109667A1 (en) * 2013-01-09 2014-07-17 Pospelov Sergey Vyacheslavovich Rayleigh cycle thermal machine
WO2016114683A1 (en) * 2015-01-15 2016-07-21 Борис Львович ЕГОРОВ Internal combustion engine and operating method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12128869B2 (en) 2017-10-27 2024-10-29 Quantum Industrial Development Corporation External combustion engine series hybrid electric drivetrain
WO2020026215A1 (en) * 2018-08-03 2020-02-06 Saulo Finco Integrated internal-combustion engine formed by an otto-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine

Also Published As

Publication number Publication date
BR102017008545A2 (en) 2018-11-21
BR102017008545A8 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2018195619A1 (en) Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine
WO2018195622A1 (en) Binary-cycle turbine engine comprising three isothermal processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
WO2018035588A1 (en) Differential-cycle heat engine with four isothermal processes, four isochoric processes with active regenerator and control method for the thermodynamic cycle of the heat engine
WO2018035585A1 (en) Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine
WO2018195620A1 (en) Differential-cycle heat engine with four isothermal processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine
WO2018195618A1 (en) Differential-cycle heat engine comprising four isobaric processes and four isothermal processes and a method for controlling the thermodynamic cycle of the heat engine
WO2018035586A1 (en) Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine
WO2015054767A1 (en) Differential thermodynamic machine with a cycle of eight thermodynamic transformations, and control method
BR102017008545B1 (en) DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BR102017008544B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING FOUR ISOBARIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
WO2018195626A1 (en) Binary-cycle turbine engine comprising three polytropic processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
WO2018152603A1 (en) Thermal engine with differentiated cycle composed of two isochoric processes, four isothermal process and two adiabatic processes, and process for controlling the thermodynamic cycle of the thermal engine
WO2018195621A1 (en) Binary-cycle turbine engine comprising three isobaric processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
BR102017003822B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING TWO ISOCHORIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND TWO ADIABATIC PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
BR102018004172A2 (en) CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED BY AN ISOCORIC PROCESS, TWO ISOTHERMIC PROCESSES AND AN ADIABATHIC PROCESS AND CONTROL PROCESS FOR THE THERMAL THERMAL CYCLE
WO2014000072A1 (en) Heat engine operating in accordance with carnot's thermodynamic cycle and control process
BR102018068525A2 (en) BRAYTON INTEGRATED CYCLE TURBINE ENGINE WITH REGENERATIVE CLOSED CIRCUIT FOR GENERATION FROM HELIOTHERMAL OR THERMONUCLEAR SOURCE AND CONTROL PROCESS FOR THE ENGINE THERMODYNAMIC CYCLE
BR102018004170A2 (en) CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED BY AN ISOCORIC PROCESS, AN ADIABATIC PROCESS AND AN ISOTHERMIC PROCESS AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BR102018004165A2 (en) MODULATED CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED OF AN ISOCORIC PROCESS, TWO ISOTHERMIC PROCESSES AND AN ADIABATHIC PROCESS AND CONTROL PROCESS FOR THE THERMOMYNAMIC THERMAL CYCLE
WO2018195634A1 (en) Combined atkinson or miller and binary isothermal-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
BR102017008582A2 (en) atkinson or miller and torque-isobaric-adiabatic combined-cycle engine and control process for the thermodynamic cycle of the combined-cycle engine
BR102018015325A2 (en) integrated internal combustion engine consisting of a main turbine unit and a secondary piston unit and control process for the engine's thermodynamic cycle.
WO2018035587A1 (en) Active regenerator for heat engines and control method for the thermodynamic cycle of the active regenerator
BR102018015950A2 (en) INTEGRATED INTERNAL COMBUSTION ENGINE FORMED BY A MAIN UNIT OF CYCLE OTTO AND A SECONDARY UNIT TO PISTONS AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE ENGINE.
BR102018068965A2 (en) DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF TWO ISOCHORIC PROCESSES, TWO POLYTHROPIC PROCESSES, TWO ADIABATIC PROCESSES AND TWO ISOTHERMAL PROCESSES AND THE THERMODYNAMIC MOTOR CYCLE PROCESS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791532

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791532

Country of ref document: EP

Kind code of ref document: A1