WO2018194296A1 - 배터리 모듈 - Google Patents
배터리 모듈 Download PDFInfo
- Publication number
- WO2018194296A1 WO2018194296A1 PCT/KR2018/003933 KR2018003933W WO2018194296A1 WO 2018194296 A1 WO2018194296 A1 WO 2018194296A1 KR 2018003933 W KR2018003933 W KR 2018003933W WO 2018194296 A1 WO2018194296 A1 WO 2018194296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus bar
- battery module
- case
- cell assembly
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/643—Cylindrical cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/653—Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6551—Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6553—Terminals or leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/262—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/296—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/503—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/505—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/521—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
- H01M50/522—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/548—Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery module having a large number of can-type secondary batteries, and more particularly, to a battery module and a battery pack including the same, which can be designed to have a low height and can stably secure cooling performance.
- the battery module or battery pack typically contains one or more secondary batteries, also called cells.
- secondary batteries include nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and lithium secondary batteries.
- nickel cadmium batteries include nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and lithium secondary batteries.
- lithium secondary batteries are getting more attention due to advantages such as free charge and discharge, very low self discharge rate, and high energy density compared to nickel-based secondary batteries.
- Such lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
- the lithium secondary battery further includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and a battery case sealingly storing the electrode assembly together with the electrolyte solution.
- the lithium secondary battery may be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet according to the type of battery case.
- the can-type secondary battery may be further classified into a cylindrical battery and a square battery according to the shape of the metal can.
- Such a rectangular or cylindrical secondary battery packaging material has a case having an open end, that is, a battery can and a cap assembly sealingly coupled to the open end of the battery can.
- the battery module may be configured to include a plurality of such can-type secondary batteries. At this time, many can-type secondary batteries are often erected in the vertical direction in order to facilitate cooling.
- the cooling device is often located in the lower part of the battery module or the lower part of the battery module for cooling the battery module. In this case, when each can type secondary battery is erected in the vertical direction, the lower part of all the batteries can be connected to the cooling device.
- the battery module is configured in such a manner that a plurality of can-type secondary batteries are erected in the vertical direction to facilitate cooling, it is difficult to lower the height of the battery module to a predetermined level or less.
- the battery module is often located under the vehicle. In this case, due to the size or structural limitations of the vehicle, there is no choice but to limit the height of the battery module to a predetermined level or less.
- regulated it is difficult to arbitrarily lower the length, ie, height of a can type secondary battery.
- the height cannot be smaller than the height of the can type secondary battery. If the height of the battery module is lower than the standard height of the can-type secondary battery, the secondary battery must be redesigned and manufactured accordingly, but in this case, the cost and time are increased, resulting in poor efficiency.
- the battery module may have a different height depending on the device to which the battery module is applied, such as a vehicle, and it is more preferable to separately manufacture the secondary battery. Therefore, for the battery module configured in the form of the can-shaped secondary battery, various problems may occur such as a height of a garage or a lower part of a vehicle body when applied to a vehicle.
- the can type secondary battery may be configured to be laid down in the horizontal direction.
- the can-type secondary batteries stacked at the top may not be in direct contact with a cooling device located at the bottom of the battery module. Therefore, it is necessary to provide a separate cooling configuration, such as a cooling tube or a cooling fin, on the side of the battery module to transfer the heat of each secondary battery to the cooling device.
- a separate cooling configuration such as a cooling tube or cooling fins must be provided, the structure of the battery module is complicated, making assembly difficult, increasing the weight of the battery module, and reducing the energy density by the space occupied by the cooling configuration. It must be.
- a battery pack may have a plurality of battery modules arranged in a horizontal direction. In this case, the problem may be more serious when each battery module has a separate cooling configuration such as a cooling tube or a cooling fin.
- the present invention has been made to solve the above problems, the battery module has a low height, stable cooling performance, stable structure, high energy density and high energy density without changing the design of a general can type secondary battery.
- An object of the present invention is to provide a battery pack including the same.
- a battery module including: a battery module having a heat dissipation member disposed below, a cell assembly including a plurality of can-type secondary batteries stacked in a horizontally laid down form; And a connection part electrically contacting the electrodes of at least two can-type secondary batteries provided in the cell assembly, and a connection part electrically connected between the at least two can-type secondary batteries and a lower portion of the connection part to contact the heat dissipation member. It includes a heat transfer unit for transmitting to the heat dissipation member, at least a portion includes a bus bar made of an electrically conductive material.
- the bus bar is configured in the form of a bent plate
- the connecting portion is configured in the form of the up and down direction along one side of the cell assembly
- the heat transfer portion is configured in the form of lying down in the horizontal direction of the cell assembly It may be interposed between the lower portion and the upper portion of the heat dissipation member.
- the bus bar may include a positive electrode bus bar having a contact portion connected to a positive electrode of a can type secondary battery provided in the cell assembly, and a negative electrode bus bar having a connection portion contacted to a negative electrode of a can type secondary battery provided at the cell assembly. .
- anode bus bar and the cathode bus bar may be disposed on opposite sides of the cell assembly such that the heat transfer parts are bent in opposite directions to each other.
- the positive electrode bus bar and the negative electrode bus bar are in contact with one heat dissipation member,
- the battery module may further include a thermal pad interposed between at least one of the positive electrode bus bar and the negative electrode bus bar and the heat radiating member to transfer heat of the bus bar to the heat radiating member, the thermal pad being made of an electrically insulating material. can do.
- bus bar may further include a terminal unit providing a terminal for electrical connection with an external component.
- the terminal portion may be configured to be bent in the upper direction of the cell assembly in the upper portion of the connection.
- two or more terminal units may be provided to be spaced apart from each other by a predetermined distance in one bus bar.
- the battery module according to the present invention includes a first case in which an empty space is formed to receive a part of the cell assembly and a second case in which an empty space is formed to accommodate another part of the cell assembly.
- the first case and the second case may further include a module case configured to be coupled to one side and the other side of the cell assembly, respectively.
- bus bar may be attached to the outside of the module case.
- a coupling groove may be formed so that at least a portion of the bus bar can be inserted.
- the battery pack according to the present invention for achieving the above object includes a battery module according to the present invention.
- the vehicle according to the present invention for achieving the above object includes a battery module according to the present invention.
- the height of the battery module can be configured low without changing the design even with a general secondary battery.
- the structure of the battery module can be simplified to facilitate manufacturing, reduce weight and manufacturing cost, and increase energy density.
- FIG. 1 is a combined perspective view of a battery module according to an embodiment of the present invention.
- FIG. 2 is an exploded perspective view of a battery module according to an embodiment of the present invention.
- FIG 3 is a cross-sectional view schematically showing the configuration of a can type secondary battery according to an embodiment of the present invention.
- FIG. 4 is a diagram schematically illustrating a heat transfer configuration of a battery module according to an embodiment of the present invention.
- FIG. 5 is a diagram schematically showing a cross-sectional configuration of a battery module according to another embodiment of the present invention.
- FIG. 6 is a cross-sectional view schematically illustrating a configuration in which a positive electrode bus bar according to an embodiment of the present invention is separated from a cell assembly.
- FIG. 7 is a cross-sectional view schematically illustrating a structure in which a negative electrode busbar according to an embodiment of the present invention is separated from a cell assembly.
- FIG. 8 is a perspective view schematically illustrating a configuration in which a part of terminal portions of a bus bar is erected in a battery module according to an embodiment of the present invention.
- FIG. 9 is a diagram schematically illustrating a configuration in which a plurality of battery modules are connected according to an embodiment of the present invention.
- FIG. 10 is an enlarged view of a portion A2 of FIG. 2.
- FIG. 11 is an enlarged view of a portion A3 of FIG. 2.
- FIG. 12 is a perspective view schematically illustrating a configuration of a battery module according to another embodiment of the present invention.
- FIG. 13 is a sectional front view of the portion A4 of FIG. 12.
- FIG. 14 is a diagram schematically showing a configuration in which a plurality of battery modules are connected according to another embodiment of the present invention.
- FIG. 1 is a combined perspective view of a battery module according to an embodiment of the present invention
- Figure 2 is an exploded perspective view of a battery module according to an embodiment of the present invention.
- FIG. 2 is a perspective view of the form seen from the lower side of the battery module.
- the battery module according to the present invention may include a cell assembly 100 and a bus bar 200.
- the heat dissipation member 10 may be disposed below the battery module.
- the heat dissipation member 10 may be configured to allow the refrigerant to flow in the inner space or the lower space, as shown by the arrow in FIG. 1.
- the refrigerant may be a liquid or gas such as cooling water or air.
- the heat dissipation member 10 may absorb heat from the side of the cell assembly 100 and the bus bar 200 and transmit the heat to the refrigerant by contacting the refrigerant.
- the heat dissipation member 10 may be configured to allow air to flow in the lower portion in the form of a heat sink, or may be configured to allow cooling water or the like to flow in the hollow in the form of a pipe.
- the heat dissipation member 10 may be a component mounted on an external device of the battery module, such as a vehicle, as a separate component from the battery module. Alternatively, the heat dissipation member 10 may be included as some component of the battery module.
- the cell assembly 100 may include a plurality of can type secondary batteries 110.
- the can type secondary battery 110 may be configured in a form in which an electrode assembly and an electrolyte are accommodated in a battery case, that is, a battery can, and a cap assembly may be coupled to an open end of the battery can.
- FIG 3 is a cross-sectional view schematically showing the configuration of a can type secondary battery 110 according to an embodiment of the present invention.
- the can type secondary battery 110 may include an electrode assembly 111, a battery can 112, and a cap assembly 113.
- the electrode assembly 111 may have a structure in which a separator is interposed between the positive electrode plate and the negative electrode plate, and a positive electrode tab 114 is attached to the positive electrode plate and connected to the cap assembly 113, and the negative electrode tab is connected to the negative electrode plate.
- 115 may be attached and connected to the lower end of the battery can 112.
- the battery can 112 may have an empty space formed therein to accommodate the electrode assembly 111.
- the battery can 112 may be configured in a cylindrical or rectangular shape, the top of which is open.
- the battery can 112 may be made of a metal material such as steel or aluminum to secure rigidity.
- the battery can has a negative electrode tab attached to a lower end thereof, and the battery can itself can function as a negative electrode terminal as well as the lower part of the battery can.
- the cap assembly 113 may be coupled to the top opening of the battery can 112 to seal the open end of the battery can.
- the cap assembly 113 may have a circular or square shape according to the shape of the battery can, and may include sub-components such as a top cap c1, a safety vent c2, and a gasket c3. .
- the top cap (c1) is located on the top of the cap assembly, it may be configured to protrude in the upper direction.
- a top cap can function as a positive electrode terminal in the can type secondary battery 110.
- the top cap may be electrically connected to other secondary batteries, loads, or charging devices through an external device such as a bus bar.
- Such a top cap may be formed of a metal material such as, for example, stainless steel or aluminum.
- the safety vent c2 may be configured to deform when the internal pressure of the secondary battery, that is, the internal pressure of the battery can increases to a predetermined level or more.
- the gasket c3 may be formed of a material having electrical insulation such that the edge portion of the top cap and the safety vent may be insulated from the battery can.
- the cap assembly may further include a current blocking member c4.
- the current interrupting member is also called a CID (Current Interrupt Device).
- CID Current Interrupt Device
- the structure of the can type secondary battery 110 is widely known to those skilled in the art at the time of filing the present invention, a detailed description thereof will be omitted.
- 3 illustrates an example of a can type secondary battery
- the battery module according to the present invention is not limited to a specific can type secondary battery. That is, various secondary batteries known at the time of filing the present invention may be employed in the battery module according to the present invention.
- the can type secondary battery 110 of FIG. 3 is illustrated based on a cylindrical secondary battery, a square secondary battery may be applied to the battery module according to the present invention.
- the cell assembly 100 may be configured such that a plurality of such can-type secondary batteries 110 are stacked.
- the plurality of can type secondary batteries 110 may be configured in a form of a plurality arranged in a horizontal direction.
- the plurality of can-type secondary batteries 110 may be configured in the form of a plurality of cans arranged in the vertical direction.
- the plurality of can-type secondary batteries 110 may be stacked in such a manner that side surfaces, such as portions formed in curved surfaces of the cylindrical battery can, face each other.
- the cell assembly 100 may be configured such that a plurality of can-type secondary batteries 110 are laid down in a horizontal direction. That is, as shown in FIG. 2, each can type secondary battery 110 may be configured to extend in a left and right direction (x-axis direction in the drawing). In this case, the positive electrode terminal and the negative electrode terminal of each can type secondary battery 110 may be positioned in a left or right direction.
- the height of the battery module can be made low. That is, when the can-type secondary battery 110 is laid down, a battery module having a height shorter than the length of the can-type secondary battery can be configured. Therefore, the design of the battery module having a low height is easy.
- the bus bar 200 may electrically connect a plurality of can-type secondary batteries provided in the cell assembly 100, for example, all secondary batteries, or some of them. To this end, the bus bar 200, at least a portion may be made of an electrically conductive material.
- the bus bar 200 may be made of a metal material such as copper, aluminum, nickel, or the like.
- the bus bar 200 may include a connection part 210 and a heat transfer part 220.
- connection unit 210 may electrically connect between two or more can type secondary batteries 110 provided in the cell assembly 100. To this end, the connection unit 210 may contact the electrodes of two or more can type secondary batteries 110 provided in the cell assembly 100. For example, the connection unit 210 may be in contact with the electrodes of all the secondary batteries 110 provided in the cell assembly 100, and may electrically connect all the secondary batteries 110. In addition, the connection unit 210 may contact the same polarity of two or more can-type secondary batteries 110 provided in the cell assembly 100, and may connect them in parallel. Alternatively, the connection unit 210 may contact the electrodes of some of the secondary batteries of all the secondary batteries provided in the cell assembly 100 to electrically connect them.
- the heat transfer part 220 may be located below the connection part 210.
- the heat dissipation member 10 may be disposed below the heat transfer part 220.
- the heat transfer part 220 may transfer heat to the heat dissipation member 10. That is, heat generated from the secondary battery side of the cell assembly 100 may be transferred to the connection unit 210, and the heat transfer unit 220 may radiate heat of the secondary battery transferred to the connection unit 210 as described above. 10) can be delivered.
- the heat transfer part 220 may be in contact with the heat dissipation member 10 to transmit heat in a conductive manner.
- FIG. 4 is a diagram schematically illustrating a heat transfer configuration of a battery module according to an embodiment of the present invention.
- FIG. 4 can be called the structure which showed an example of the structure of the cross section with respect to the A1-A1 'line of FIG.
- FIG. 4 does not show all the components of FIG. 1, and only some components are shown for convenience of description.
- the arrow indicates the heat movement path.
- heat generated from each of the secondary batteries stacked in the vertical direction on the ground is moved in the horizontal direction (left and right directions in the drawing), and is located on the side of each secondary battery and is connected to the vertical shape on the ground. May be passed to 210.
- the heat transferred to the connection unit 210 may move to the lower direction and may be transferred to the lower heat transfer unit 220.
- the heat transfer part 220 is in direct or indirect contact with the heat dissipation member 10. Therefore, the heat of the heat transfer part 220 may be transferred to the heat dissipation member 10 and then discharged to the outside through the coolant.
- the cooling of the secondary battery together with the electrical connection of the secondary battery can be achieved. That is, in the case of the bus bar 200 according to the present invention, while the plurality of secondary batteries may be electrically connected to each other by the connection unit 210, the heat of the plurality of secondary batteries may be radiated by the heat transfer unit 220. 10) to cool each secondary battery.
- the heat of each secondary battery is conducted to the connection portion 210, and the heat conducted to the connection portion 210 is the heat transfer portion 220. And it is conducted to the heat radiating member 10, it can be discharged to the outside through the refrigerant.
- the heat of all secondary batteries provided in the cell assembly 100 can be discharged to the outside in a conductive manner, cooling of each secondary battery can be effectively achieved. Therefore, according to this structure, it does not need to interpose a component for cooling separately between each secondary battery. Therefore, the structure of the battery module is not complicated, the weight and volume are reduced, and the energy density can be improved.
- the bus bar 200 may be configured in a plate shape.
- the bus bar 200 may be configured in the form of a metal plate to ensure rigidity and electrical conductivity.
- the bus bar 200 may be configured in the form of a bent plate.
- the bus bar 200 may be configured in the form of a plate having a lower end bent about 90 degrees.
- the upper portion may be the connection portion 210
- the lower portion may be the heat transfer portion 220.
- connection part 210 may be configured to be erected in an up-down direction (z-axis direction of the drawing) along one side of the cell assembly 100, for example, the left side or the right side of the cell assembly 100. That is, in the present invention, the can-type secondary battery of the cell assembly 100 is laid down in the left-right direction (x-axis direction of the drawing) in the form of the front and rear direction (y-axis direction of the drawing) and / or up and down direction (z-axis direction of the drawing) When stacked in), the electrodes of the various secondary batteries may be configured to be arranged in parallel in the front and rear direction and the vertical direction. Therefore, the connection part 210 is formed in a flat shape in the form of a flat shape in the front-rear direction and the vertical direction, and may be in direct contact with electrodes of various secondary batteries.
- the heat transfer part 220 may be configured to be laid down in the horizontal direction.
- the heat transfer part 220 may have a surface parallel to the x-y plane.
- the heat transfer part 220 may be interposed between the lower part of the cell assembly 100 and the upper part of the heat dissipation member 10.
- connection part 210 and the heat transfer part 220 may be configured in a form in which one plate, for example, one metal plate is bent. In this case, the manufacture and structure of the bus bar 200 can be simplified.
- each secondary battery provided in the cell assembly 100 may be provided with a positive electrode and a negative electrode.
- the bus bar 200 may include at least two bus bars 200 to connect the positive and negative electrodes of the secondary battery, respectively. That is, the bus bar 200 may include a positive bus bar 201 and a negative bus bar 202.
- connection part 210 may be in contact with the positive electrode (positive electrode terminal) of the can type secondary battery provided in the cell assembly 100.
- the positive electrode bus bar 201 may electrically connect the positive electrodes of various can type secondary batteries with each other.
- the connection part 210 may contact the negative electrode (cathode terminal) of the can-type secondary battery provided in the cell assembly 100 in the negative electrode bus bar 202.
- the negative electrode busbar 202 may electrically connect between negative electrodes of various can type secondary batteries.
- two busbars may be disposed on the side of the cell assembly 100.
- one of the busbars may be a positive busbar 201 and the other busbar may be a negative busbar 202.
- the positive electrode bus bars 201 may be connected to each other by contacting the positive electrodes of all can secondary batteries provided in the cell assembly 100, and the negative bus bars 202 may include all the can secondary batteries provided in the cell assembly 100. The cathodes of the can be contacted and connected to each other.
- the positive bus bar 201 and the negative bus bar 202 may be located on opposite sides with respect to the cell assembly 100.
- Each can type secondary battery provided in the cell assembly 100 may be formed to extend in one direction.
- each can type secondary battery may have a positive electrode terminal and a negative electrode terminal respectively disposed on opposite sides of the can type secondary battery.
- the plurality of can-type secondary batteries may be disposed in a flat shape, that is, the longitudinal direction may be in a horizontal direction, and the positive electrode terminal and the negative electrode terminal may be positioned at both ends of the horizontal direction, respectively.
- the plurality of can-type secondary batteries may be disposed such that the positive electrode terminals are positioned on the same side of each other, and the negative electrode terminals are positioned on the same side of each other. Accordingly, the positive bus bar 201 and the negative bus bar 202 may be located on opposite sides of the secondary battery.
- the secondary battery is formed to elongate in the left and right directions (x-axis direction) so that the positive and negative terminals may be disposed on the right and left sides of the secondary battery, respectively. have. Therefore, the positive bus bar 201 may be disposed on the right side of the cell assembly 100 and the negative bus bar 202 may be disposed on the left side of the cell assembly 100.
- the positive bus bar 201 and the negative bus bar 202 may be configured such that the heat transfer parts 220 are bent in opposite directions. That is, the positive bus bar 201 and the negative bus bar 202 may be divided into a connection part 210 and a heat transfer part 220 around the bent and bent bottom portion, wherein the bending directions are opposite to each other. This can be
- the anode bus bar 201 may have a lower end bent in a left direction (-x axis direction).
- the cathode bus bar 202 may have a lower end bent in a right direction (+ x-axis direction). That is, the positive bus bar 201 and the negative bus bar 202 may be bent in a direction in which the lower ends face each other, that is, in a direction closer to each other.
- the heat transfer part 220 of the positive bus bar 201 and the negative bus bar 202 may be interposed between the cell assembly 100 and the heat dissipation member 10, as shown in FIG. 4. Can be.
- connection portion 210 of the positive electrode busbar 201 and the connection portion 210 of the negative electrode busbar 202 are spaced apart from each other by a predetermined distance in the longitudinal direction (x-axis direction) of the secondary battery, and are configured in parallel to each other. Can be.
- the heat transfer part 220 of the positive bus bar 201 and the heat transfer part 220 of the negative bus bar 202 are in a state in which both surfaces face down and face each other, so as to lie on one plane. Can be.
- the distance between the cell assembly 100 and the heat dissipation member 10 can be narrowed, and the one of the positive bus bar 201 and the negative bus bar 202 is connected to one heat dissipation member 10. All of the heat transfer parts 220 may be in contact with each other. In this case, therefore, the volume of the battery module can be reduced, the cooling configuration can be simplified, and the cooling efficiency can be further improved.
- the positive bus bar 201 and the negative bus bar 202 may be in contact with one heat dissipation member 10.
- the battery module according to the present invention may further include a thermal pad 300.
- the thermal pad 300 may be interposed between at least one of the positive bus bar 201 and the negative bus bar 202 and the heat dissipation member 10.
- the anode bus bar 201 and the cathode bus bar 202 may be in contact with the top surface of the same heat dissipation member 10 as the bottom surface of the heat transfer part 220. have.
- the thermal pad 300 can transfer the heat of the bus bar side to the heat radiation member 10. Therefore, the thermal pad 300 may be made of a thermally conductive material.
- the thermal pad 300 may be made of an electrically insulating material to which a current does not substantially flow in order to prevent a short circuit between the positive bus bar 201 and the negative bus bar 202.
- the heat dissipation member 10 may be made of a material such as metal. In this case, the positive and negative bus bars 201 and 202 are connected to each other by the heat dissipating member 10, and short circuit occurs. Problems can be prevented by the thermal pad 300.
- the thermal pad 300 may be formed of a material having thermal conductivity and electrical insulation.
- the thermal pad 300 may be made of a material such as silicon or acrylic.
- the heat transfer part 220 may have a protrusion formed at a lower portion thereof. This will be described in more detail with reference to the configuration of FIG. 5.
- FIG. 5 is a diagram schematically showing a cross-sectional configuration of a battery module according to another embodiment of the present invention.
- FIG. 5 can be said to be a modification of FIG.
- a plurality of protrusions may be formed in the heat transfer part 220, as indicated by P1.
- the protrusion P1 may be formed to protrude downward from the bottom of the heat transfer part 220.
- the protrusions P1 may be provided in plural in one bus bar.
- a plurality of protrusions P1 may be provided on the bottom surface of the heat transfer part 220 of the positive electrode bus bar 201 and may be provided on the bottom surface of the heat transfer part 220 of the negative electrode bus bar 202.
- the plurality of protrusions P1 may be configured to be spaced apart from each other by a predetermined distance from each bus bar.
- the plurality of protrusions P1 may be configured to be spaced apart from each other in a left and right direction (x-axis direction) at a lower surface of the heat transfer part 220 of each bus bar.
- the plurality of protrusions P1 may be configured to be spaced apart from each other by a predetermined distance in the front-rear direction (y-axis direction of FIG. 1) from the bottom surface of the heat transfer part 220 of each bus bar.
- the lower surface area of the heat transfer part 220 of each bus bar can be increased to improve the cooling efficiency by the heat transfer part 220.
- the thermal pad 300 may be a flexible material. Therefore, in this case, even if the unevenness is formed on the surface of the heat transfer part 220 by the projection P1, the thermal pad 300 corresponds to the uneven shape, and as shown in FIG. 5, the shape of the upper surface changes. can do. Therefore, the contact area between the busbar and the thermal pad 300 is increased by the projection P1 of the heat transfer part 220, and the amount of heat transferred from the busbar to the heat dissipation member 10 via the thermal pad 300 is increased. Can be increased. In addition, by the protrusion P1, the frictional force and the contact area between the heat transfer part 220 and the thermal pad 300 are increased, whereby the coupling between the busbar and the thermal pad 300 may be improved.
- the heat dissipation member 10 has an insertion groove (not shown) in a position and shape corresponding to the protrusion of the heat transfer part 220 thereon. Can be formed.
- the protrusion P1 of the bus bar is inserted into the insertion groove of the heat dissipation member 10, whereby the coupling between the bus bar and the heat dissipation member 10 can be increased.
- the upper surface area of the heat dissipation member 10 is increased, thereby increasing the amount of heat transferred from the busbar to the heat dissipation member 10 per unit time, thereby further improving cooling efficiency.
- connection portion 210 may have a concave portion formed to match the positive electrode shape of the can type secondary battery. This will be described in more detail with reference to FIG. 6.
- FIG. 6 is a cross-sectional view schematically illustrating a structure in which the positive electrode bus bar 201 is separated from the cell assembly 100 according to an exemplary embodiment of the present invention.
- the positive terminal provided at the right end of each secondary battery included in the cell assembly 100 may be configured to protrude in the right direction, as indicated by B1.
- This projecting portion may be a top cap c1 portion in the configuration shown in FIG. 3.
- the positive electrode busbar 201 provided on the right side of the cell assembly 100 and in contact with the positive electrodes of the plurality of secondary batteries is concave in the right direction as indicated by G1 on the inner surface, that is, the left surface.
- a recessed shape can be formed.
- the positive electrode terminal B1 of each secondary battery may be inserted into the recess.
- the recess G1 may be formed in a position, number, and shape corresponding to the positive electrode terminals of the respective secondary batteries provided in the cell assembly 100.
- a recess of the positive electrode bus bar 201 is provided.
- Four may be formed in a form spaced apart a predetermined distance in the vertical direction.
- the bondability of the cell assembly 100 and the positive bus bar 201 can be improved. That is, the positive terminal of each secondary battery provided in the cell assembly 100 is inserted into the recess G1 of the positive electrode bus bar 201, thereby improving the coupling between the secondary battery and the positive electrode bus bar 201, and Forward and backward flow can be prevented.
- the coupling position of the secondary battery and the positive bus bar 201 is guided by the recess G1, so that the assembly of the cell assembly 100 and the positive bus bar 201 may be improved.
- the contact area between the positive terminal and the positive bus bar 201 of the secondary battery can be increased.
- approximately three inner surfaces may be formed in the concave portion of the positive electrode bus bar 201, and the positive terminal of the secondary battery may be formed on these three inner surfaces. Can touch all of them.
- the contact area between the positive electrode terminal of the secondary battery and the positive electrode busbar 201 is increased, the area where heat is transferred from the positive electrode of the secondary battery to the positive electrode busbar 201 is increased, thereby cooling the secondary battery through the busbar. This can be further improved.
- the electrical path may be enlarged to reduce the electrical resistance.
- the depth of the recess G1 is preferably smaller than the protruding length of the positive terminal B1.
- the left and right lengths of the positive electrode terminal B1 may be longer than the left and right lengths of the recess G1.
- the positive electrode busbar 201 is not configured to contact the battery can when the positive terminal is inserted into the recess.
- connection portion 210 may be formed with a convex portion to match the shape of the can type secondary battery.
- FIG. 7 is a cross-sectional view schematically illustrating a structure in which the negative electrode busbar 202 is separated from the cell assembly 100 according to an exemplary embodiment of the present invention.
- the negative terminal provided at the left end of each secondary battery included in the cell assembly 100 may be configured to have a substantially flat shape, as indicated by B2.
- the negative electrode bus bar 202 may have a convex portion protruding in an inner direction, that is, a secondary battery side direction (the right direction in the drawing), as indicated by P2.
- the convex portion P2 may be positioned between the secondary batteries and interposed between the secondary batteries when the negative electrode busbar 202 and the cell assembly 100 are coupled to each other.
- the convex portions may be interposed in a space between the secondary batteries stacked in the vertical direction. In this case, it may be said that the battery can negative electrode end part of a secondary battery is inserted in the space between the convex parts P2.
- the bondability between the secondary battery and the negative electrode busbar 202 is increased, and the assembly position of the secondary battery and the negative electrode busbar 202 can be easily guided.
- the contact area between the negative electrode terminal of the secondary battery and the negative electrode busbar 202 may be increased, thereby increasing the amount and speed of heat transfer from the secondary battery to the negative electrode busbar 202.
- the battery can 112 may function as a negative electrode terminal not only at the bottom but also at the side surface.
- the electrode terminal of the secondary battery and the bus bar may be in direct contact.
- the electrode and the bus bar of the secondary battery are welded or the like.
- the mutual contact can be fixed in the manner of.
- the concave portion G1 or the convex portion P2 is formed in the connection portion 210 of the bus bar as in the configuration of FIGS. 6 to 7, the secondary battery and the bus bar are first fixed before welding, so that the secondary The welding process between the cell and the busbar can be improved.
- the fixing force by welding can be improved more.
- the heat transfer part 220 of the bus bar may contact the lower part of the can type secondary battery stacked at the lowermost part of the cell assembly 100.
- the cooling performance of the cell assembly 100 may be further improved.
- the bus bar may further include a terminal unit 230, as shown in FIG.
- the terminal unit 230 may provide a terminal for electrical connection with an external component.
- the terminal unit 230 may be positioned above the connection unit 210 and configured to protrude from the connection unit 210.
- the terminal unit 230 may be configured to be integrated with the connection unit 210 of the secondary battery.
- the terminal unit 230, the connection unit 210, and the heat transfer unit 220 may be formed of one metal plate.
- the terminal portion 230 may be configured in a form in which the upper portion of the connection portion 210 is bent.
- the terminal portion 230 may be configured to be bent about 90 degrees from the upper portion of the connection portion 210 to the upper direction side of the cell assembly 100.
- the bus bar 200 has a shape in which one metal plate is bent at an upper side and a lower side, and is connected to the connection unit 210, the heat transfer unit 220, and the terminal unit 230 based on the bent portion (folding line). Can be distinguished.
- the terminal unit 230 may be provided in both the positive bus bar 201 and the negative bus bar 202.
- the terminal 230 of the positive bus bar 201 and the terminal 230 of the negative bus bar 202 may be configured to be bent in opposite directions toward each other.
- a terminal portion 230 bent in a left direction may be formed on an upper portion of the anode bus bar 201 disposed on the right side of the cell assembly 100.
- the upper portion of the negative electrode bus bar 202 disposed on the left side of the cell assembly 100 may have a terminal portion 230 bent in a right direction.
- the terminal unit 230 may be provided in two or more spaced apart from each other by a predetermined distance from one bus bar.
- a positive bus bar 201 and a negative bus bar 202 may be disposed on the right side and the left side of the battery module, respectively.
- the terminal unit 230 may be provided, and two terminal units 230 may also be provided on the negative electrode bus bar 202.
- Each terminal unit 230 may be configured to be spaced apart from each bus bar by a predetermined distance.
- the two terminal units 230 provided on the anode bus bar 201 may be configured to be spaced apart by a predetermined distance in the front-rear direction (y-axis direction of the drawing).
- a plurality of terminal portions 230 are formed in the same bus bar, the connection configuration of the bus bar and the external device can be variously made. That is, no matter which side the connection terminal of the device to which the battery module is applied, the appropriate terminal 230 may be selectively used depending on the situation. Therefore, when assembling using the battery module, the assemblability can be improved and the structure can be simplified.
- terminal portions 230 when a plurality of terminal portions 230 are formed in one bus bar, some terminal portions 230 may be configured in an upright form. This will be described in more detail with reference to FIG. 8.
- FIG. 8 is a perspective view schematically showing a configuration in which a part of the terminal 230 of the bus bar is erected in the battery module according to an embodiment of the present invention.
- each of the positive bus bar 201 and the negative bus bar 202 may include two terminal parts 230 spaced a predetermined distance in the front-rear direction (y-axis direction).
- the two terminal portions 230 of the positive bus bar 201 are denoted by M1 and M2, respectively
- the two terminal portions 230 of the negative electrode busbar 202 are denoted by N1 and N2, respectively.
- the anode bus bar 201 may be configured in a form in which the M1 terminal portion located on the front side is laid down, and in a form in which the M2 terminal portion located on the rear side is erected. That is, the M1 terminal portion of the positive bus bar 201 is configured to be bent approximately 90 degrees at the connecting portion 210 to the upper side of the cell assembly 100, and the M2 terminal portion is substantially parallel to the connecting portion 210 in the vertical direction (z). Axially oriented).
- the negative bus bar 202 may be configured in a form in which the N1 terminal portion located on the front side is erected, and in a form in which the N2 terminal portion located on the rear side is laid down. That is, the N1 terminal portion of the negative electrode busbar 202 is configured to be erected in a vertical direction in parallel with the connection portion 210, and the N2 terminal portion is bent to the upper side of the cell assembly 100 and bent approximately 90 degrees at the connection portion 210. It may be configured in the form.
- the separation between the positive busbar 201 and the negative busbar 202 can be improved.
- the positive bus bar 201 and the negative bus bar 202 when the plurality of terminal portions 230 of each bus bar are arranged to be spaced apart by a predetermined distance along the longitudinal direction of the battery module, for example, the front and rear directions of the battery module.
- the terminal portion of the upright shape may be configured to be positioned at different positions in the front-back direction of the battery module.
- the terminal portions of the positive bus bar 201 and the negative bus bar 202 are configured to be spaced apart by a predetermined distance in the front-rear direction (y-axis direction) of the battery module. ) May be configured such that the terminal portion N1 located at the front side is erected, and the anode bus bar 201 is erected at the terminal portion M2 located at the rear side.
- the terminal portion N2 located on the rear side of the negative electrode bus bar 202 and the terminal portion M1 located on the front side of the positive electrode bus bar 201 may be configured to be laid down.
- the front terminal portion N1 of the negative busbar 202 and the rear terminal portion M2 of the positive busbar 201 function as respective terminal portions of the negative busbar 202 and the positive busbar 201. can do. Therefore, when the battery pack is configured using the battery module, the terminals of the negative bus bar 202 and the terminals of the positive bus bar 201 to be connected to each other or to an external device may be N1 and M2, respectively. have.
- a plurality of terminal parts may be configured to be bent. That is, the user may select and fold or unfold some of the terminal parts of the various terminal parts of the positive bus bar 201 and the negative bus bar 202 with respect to the battery module according to the present invention. Therefore, an appropriate terminal portion can be erected or laid down depending on the situation in which the battery module is applied.
- the connection to the terminal portion may be more easily performed, and the separation between the positive busbar 201 and the negative busbar 202 may be improved. have.
- FIG. 9 is a diagram schematically illustrating a configuration in which a plurality of battery modules are connected according to an embodiment of the present invention.
- a plurality of battery modules according to the present invention may be arranged in a lateral horizontal direction (x-axis direction), that is, left and right directions.
- the positive bus bar 201 and the negative bus bar 202 of each battery module may be configured such that the connecting portion 210 faces each other.
- the negative bus bar 202 may be configured in a form in which the front side terminal portion is erected
- the positive bus bar 201 may be configured in a form in which the rear side terminal portion is erected. have.
- the front side negative terminal portion may be connected to the negative connection member 520
- the rear side positive terminal portion may be connected to the positive connection member 510.
- the parallel connection configuration between a plurality of battery modules can be easily made. That is, as shown in FIG. 9, the negative terminal parts connected to each other in each battery module may be arranged in a line at the front side of the battery module, and the positive terminal parts connected to each other may be arranged in a line at the rear side of the battery module. Therefore, the negative electrode connecting member 520 connecting between the negative electrode terminal parts and the positive electrode connecting member 510 connecting between the positive electrode terminal parts may be formed in a substantially straight line shape. In addition, a distance between the cathode connecting member 520 and the anode connecting member 510 may be secured to a predetermined level or more. In addition, when the installation of the negative connection member 510 is not structurally interfered with the positive terminal, and when the installation of the positive connection member 520 may not be structurally interfered with the negative terminal.
- FIG. 9 is described based on a parallel connection configuration between a plurality of battery modules, a serial connection configuration between a plurality of battery modules is also possible.
- the battery module according to the present invention may further include a module case 400.
- the module case 400 may include a first case 401 and a second case 402.
- the first case 401 may be configured to accommodate a part of the cell assembly 100 by forming an empty space therein.
- the second case 402 may be configured to accommodate another part of the cell assembly 100 by forming an empty space therein.
- the first case 401 and the second case 402 may include a space for accommodating each can type secondary battery separately.
- the first case 401 may be configured such that a space for accommodating each secondary battery is separated from each other by a partition wall.
- the second case 402 may also be configured such that spaces for accommodating each of the secondary batteries are separated from each other by partition walls, as indicated by R2 in FIG. 2.
- the whole of the cell assembly 100, the fixing of each secondary battery, and the fixing of the bus bar can be made at a time by the module case 400.
- the module case 400 may be made of an insulating material such as a polymer. In this case, insulation of the cell assembly 100 and the bus bar may be easily secured.
- the first case 401 and the second case 402 may have a secondary battery accommodating space represented by R1 and R2 having a cylindrical shape corresponding to the shape of the can type secondary battery. have.
- the spaces R1 and R2 for accommodating the secondary batteries are connected to the module case 400 in the longitudinal direction (x-axis direction in the drawing) of the secondary batteries. It may be configured to penetrate.
- the hollow (R1, R2) for accommodating the secondary battery in the module case 400 is formed in a form penetrating in the left and right direction
- the electrode of the secondary battery located inside the module case 400 is a module case ( 400 may be configured to be exposed to the outside. Therefore, in this case, the bus bar located at the outside may directly contact the electrode of the secondary battery exposed to the outside.
- the first case 401 and the second case 402 may be configured to be coupled to one side and the other side of the cell assembly 100, respectively.
- the first case 401 may be disposed on the right side of the cell assembly 100 to receive a right portion of the cell assembly 100.
- the second case 402 may be positioned at the left side of the cell assembly 100 to receive a left side portion of the cell assembly 100.
- the first case 401 and the second case 402 may cover one side and the other side of the cell assembly 100, respectively, and may be configured to cover the side of the can type secondary battery as a whole.
- the first case 401 and the second case 402 cover the side surface (curved surface) of the cylindrical battery as a whole, so that the side surface of the secondary battery is outside of the battery module. It may be configured not to be exposed to.
- the module case 400 blocks side exposure of the secondary battery, the insulation of the secondary battery is improved, and the secondary battery can be protected from external physical and chemical elements.
- first case 401 and the second case 402 may be fixed to each other. That is, the left end of the first case 401 and the right end of the second case 402 may be coupled to each other, and through this coupling configuration, the top, bottom, front and rear surfaces of the cell assembly 100 may be entirely covered. can do.
- the side surface (cylindrical curved surface) of the secondary battery in FIG. 3 may be entirely covered.
- the fastening protrusion and the fastening groove is formed in a form corresponding to each other, such that the fastening protrusion and the fastening groove by mutual coupling Can be fixed.
- the bus bar may be attached to the outside of the module case 400.
- the first case 401 and the second case 402 may be coupled to the right and left sides of the cell assembly 100 to form a battery module. have. Then, the positive bus bar 201 and the negative bus bar 202 may be coupled to the outside of the first case 401 and the second case 402.
- the coupling between the busbar and the cell assembly 100 can be made stable.
- the bus bar since the bus bar may be fixed to the outside of the module case 400, the contact state between the bus bar and the secondary battery and the contact state between the bus bar and the heat dissipation member 10 may be stably maintained.
- the positive bus bar 201 insulation between the positive bus bar 201 and the negative bus bar 202 may be ensured.
- the positive electrode busbar 201 is connected to the negative electrode side of the secondary battery to prevent short circuiting since the positive electrode busbar 201 may contact only the positive terminal of the can type secondary battery and may not contact the battery can. can do.
- the module case 400 may be made of an electrically insulating material such as plastic to prevent the bus bar from being electrically connected with other bus bars or other parts of the secondary battery in unintended parts.
- bus bar may be configured to be bent to surround the top, side and bottom of the module case 400.
- the anode bus bar 201 is provided on the outer side, that is, on the right side of the first case 401, and the upper end and the lower end are on the inner side of the first case 401, that is, on the left side. It may be configured to be bent. In addition, due to the bending configuration, the anode bus bar 201 may wrap at least a portion of each of the upper, side, and lower portions of the first case 401 from the outside. At this time, the center portion flat in the bus bar is the connection portion 210, the portion bent in the left direction from the upper end of the bus bar is the terminal portion 230, the portion bent in the left direction from the lower end of the bus bar is the heat transfer portion ( 220).
- the negative electrode busbar 202 is provided on the outer side, that is, the left side of the second case 402, such that the upper end and the lower end are bent inward, that is, the right direction of the second case 402. Can be configured.
- the negative electrode bus bar 202 may surround at least a portion of each of the upper, side, and lower portions of the second case 402 from the outside.
- the flat portion in the center may be the connection portion 210
- the bent portion of the upper portion may be the terminal portion 230
- the bent portion of the lower portion may be the heat transfer portion 220.
- the module case 400 may be formed with a coupling groove so that at least a portion of the bus bar may be inserted.
- FIG. 10 is an enlarged view of portion A2 of FIG. 2
- FIG. 11 is an enlarged view of portion A3 of FIG. 2.
- coupling grooves having a concave shape in an upward direction may be formed on a lower surface of the first case 401.
- the heat transfer part 220 of the positive bus bar 201 may be inserted and seated.
- the first case 401 may be configured such that a blocking portion is formed outside the distal end of the heat transfer part 220 of the positive electrode bus bar 201. That is, in the configuration of Figure 10, the lower surface of the first case 401, the coupling groove G2 is formed, the inner side (left side of the figure), as shown by the W2, blocking of the form protruding downward An additional may be provided. In this case, the heat transfer part 220 inserted into the coupling groove G2 is cut off from the distal end by the blocking part W2, and the heat transfer part 220 of the positive bus bar 201 is the negative bus bar 202.
- a coupling groove having a concave shape in an upward direction may be formed on a lower surface of the second case 402.
- the heat transfer part 220 of the negative bus bar 202 may be inserted and seated.
- the second case 402 may be configured such that a blocking part is formed outside the distal end of the heat transfer part 220 of the negative electrode bus bar 202. That is, in the configuration of FIG. 11, a coupling groove G3 is formed on a lower surface of the second case 402, and a blocking portion may be provided on the inner side (right side of the drawing) as indicated by W3. In this case, the outer side of the distal end of the heat transfer part 220 inserted into the coupling groove G3 is blocked by the blocking part W3, so that the insulation between the negative busbar 202 and the positive busbar 201 is more stable. Can be secured.
- the heat transfer unit 220 of the bus bar has been described based on the configuration in which the module case 400 is inserted.
- the connection unit 210 and / or the terminal unit 230 of the bus bar is described. It may also be configured to be inserted into the module case 400.
- a coupling groove may be formed in a position, a number, and a shape corresponding to a terminal portion of the positive bus bar 201 on the rear side of the upper surface of the first case 401.
- the terminal portion M2 of the positive bus bar 201 may be inserted into the coupling groove G4.
- a coupling groove may be formed in a position, a number, and a shape corresponding to the terminal portion of the negative bus bar 202 on the front surface side of the second case 402.
- the terminal portion N1 of the negative electrode bus bar 202 may be inserted into the coupling groove G5.
- terminal portion M1 of the positive bus bar 201 and the terminal portion N2 of the negative bus bar 202 are also inserted into the upper surface front side of the first case 401 and the upper surface rear side of the second case 402. Coupling grooves may be formed.
- the coupling between the bus bar, in particular, the terminal portion 230 of the bus bar and the module case 400 can be increased.
- the terminal portion 230 by inserting the terminal portion 230 into the coupling groove, it is possible to reduce the external exposure of the terminal portion 230 to reduce the unintentional contact of other components to the terminal portion 230. Therefore, the electrical insulation with respect to the terminal portion 230 of the bus bar can be improved.
- the terminal unit 230 which is not used for electrical connection with the external device of the battery module may be inserted into the coupling groove.
- the coupling grooves G4 and G5 of the module case 400 may be configured such that a blocking part is formed outside the distal end of the terminal part 230.
- the terminal portion 230 inserted into the coupling groove is moved to the outside or the coupling groove
- the inserted terminal portion 230 may prevent other conductors from approaching. In this case, therefore, the contact between the terminal portions 230 of the module busbar can be blocked more reliably.
- module case 400 and the bus bar may be configured to be coupled to each other.
- the second case 402 may include a protrusion formed on the outer side (left side of the drawing) in the outward direction as indicated by P3 in FIGS. 2 and 11.
- the negative electrode bus bar 202 may have a coupling hole formed at a position and shape corresponding to the protrusion P3 of the second case 402 as indicated by H3 in FIG. 2. In this case, when the second case 402 and the negative electrode bus bar 202 are coupled to each other, the protrusion P3 may be inserted into the coupling hole H3.
- first case 401 and the positive bus bar 201 also have protrusions and coupling holes similar to those of the protrusion of the second case 402 and the coupling hole of the negative bus bar 202, and are mutually coupled to each other. Can be.
- the coupling between the module case 400 and the bus bar can be improved, and assembly between them can be made easier.
- the process of welding the busbar with the electrode terminal of the secondary battery can be made more smoothly.
- FIG. 12 is a perspective view schematically illustrating a configuration of a battery module according to another exemplary embodiment of the present invention
- FIG. 13 is an enlarged cross-sectional view of a portion A4 of FIG. 12.
- 14 is a diagram schematically illustrating a configuration in which a plurality of battery modules of FIG. 12 are connected.
- the present embodiment will be mainly described with respect to the parts that are different from the previous embodiment, and the detailed description will be omitted for the parts to which the description of the previous embodiment may be applied in the same or similar manner.
- the terminal unit 230 may be configured to protrude to the upper portion of the module case 400 so that at least a portion thereof is bent to extend in a horizontal direction.
- the terminal portion 230 extends upward from the connection portion 210 attached to the outside of the module case 400 and is bent at approximately right angles at the portion indicated by A5 to extend in the horizontal direction. It may be configured in the form.
- the terminal portion 230 like the portion indicated by J in Fig. 13, a portion formed flat in the horizontal direction parallel to the ground in a state protruded from the upper surface of the module case 400 in a predetermined distance apart from the upper direction It can be provided.
- connection member and the terminal portion 230 is more easily connected due to the portion formed flat in the horizontal direction in the state protruding in the upper direction of the terminal portion 230, that is, the protruding horizontal configuration J. It can be made stable.
- the protruding horizontal configuration of the terminal portion 230 ( J) may be in surface contact with each of the connecting members 510 and 520. Therefore, the electrical contact between the terminal unit 230 and the connection members 510 and 520 is made more stable and the contact resistance can be lowered.
- the fastening process may be more smoothly performed.
- connection portion 210 and the terminal portion 230 may be configured in the form of one integrated metal sheet. That is, the configuration of the terminal portion 230 including the protruding horizontal configuration J may be formed in the form of one metal plate integrated with the connection portion 210. In this case, it can be said that the upper end portion of the connecting portion 210 is bent to form the terminal portion 230, in particular, the terminal portion 230 including the protruding horizontal configuration J. According to this configuration of the present invention, the manufacturing of the bus bar 200 having the terminal portion 230 can be made easier.
- this projecting horizontal arrangement J can be provided in the terminal portion which functions as a module terminal of the battery module.
- the terminal portion 230 of the negative bus bar 202 may be provided with two N1, N2, the protruding horizontal configuration (J), the terminal portion (N1) located on the front side Can only be formed.
- the terminal portion 230 of the positive bus bar 201 may be provided with two M1, M2, the protruding horizontal configuration (J) can be formed only in the terminal portion (M2) located on the rear side. have.
- the terminal portion 230 may be formed in a form of protruding horizontal configuration (J) to extend in the downward direction again. More specifically, referring to FIG. 13, the terminal portion 230 protrudes to the upper portion of the module case 400 and is bent in a horizontal direction in the A5 portion to form the protruding horizontal configuration J, and again, the A6 portion. It may be configured to be bent in a substantially perpendicular direction in the downward direction. In this case, it can be said that the terminal portion 230 has at least two bent portions A5 and A6.
- the lower end of the portion bent in the downward direction from the terminal portion 230 may be referred to as the end of the terminal portion 230 and the upper end of the bus bar 200 itself.
- the distal end of the terminal portion 230 may be configured to contact the surface of the module case 400. That is, as shown by the portion A7 in Figure 13, the distal end of the terminal portion 230 may be configured to be seated on the upper surface of the module case 400.
- the distal end of the terminal portion 230 can be supported in the upper direction by the module case 400. Therefore, in the process after the configuration of the connecting members 510, 520 and the like is in contact with or in contact with the protruding horizontal portion J of the terminal portion 230, the distal end portion of the terminal portion 230 does not move downward, so that the protruding horizontal portion (J) can keep the horizontal state stable. Therefore, in this case, the connection process of the terminal unit 230 and the connection members 510 and 520 is made more smoothly, and the connection state of the terminal unit 230 and the connection members 510 and 520 is more effective even in vibration or external shock. It can be kept stable.
- the module case 400 may be formed with a mounting groove so that the distal end of the terminal portion 230 is inserted into the module case 400. 12 and 13, the upper surface of the module case 400, in particular, the upper coupling grooves G4 and G5 of the module case 400, as indicated by E1, is concave downward.
- the seating groove can be formed. Then, the distal end of the terminal portion 230 may be inserted in the downward direction to the seating groove (E1) of the module case 400.
- the seating groove E1 of the module case 400 may be configured in the form of a slit formed to extend in the longitudinal direction of the battery module.
- the distal end of the terminal portion 230 is inserted into the seating groove E1 of the module case 400, the shape of the terminal portion 230 can be maintained stably.
- the distal end of the terminal portion 230 may not move easily in the left and right directions (X-axis direction of the drawing). Therefore, the projecting horizontal configuration J of the terminal portion 230 can maintain the state parallel to the upper surface of the module case 400, parallel to the ground, or parallel to the longitudinal direction of the connecting members 510 and 520. have. Therefore, the connection and connection state of the terminal part 230 and a connection member can be maintained more reliably.
- the battery module according to the present invention may further include an insulation panel on the outside of the bus bar.
- the insulating panel may be made of an electrically insulating material such as polymer, silicon, rubber, or the like.
- the insulating panel is formed in the vertical direction, it may be provided outside the connection portion 210 of the bus bar.
- connection portion 210 is prevented or reduced by the insulating panel can be secured to the electrical insulation to the bus bar.
- the insulation panel may be coupled to the outside of the module case 400.
- a groove may be formed near the outer edge of the module case 400 so that the edge of the insulation panel may be inserted into the groove.
- protrusions may be formed at the outer edges of the module case 400 so that the protrusions may be inserted at edges of the insulation panel.
- the battery pack according to the present invention may include one or more battery modules according to the present invention.
- the battery pack according to the present invention may include a plurality of battery modules, and in this case, may further include a connection member for connection between the battery modules.
- the battery pack according to the present invention may further include a pack case for accommodating the battery module, various devices for controlling charging and discharging of the battery module, such as a BMS, a current sensor, a fuse, and the like. .
- the battery module according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle. That is, the vehicle according to the present invention may include a battery module according to the present invention. In particular, in the case of an electric vehicle, the battery module may be disposed under the vehicle, and at this time, it is not necessary to configure the height thereof. In addition, for such automotive battery modules, cooling performance is also very important. Therefore, when the battery module according to the present invention is applied to such a vehicle, a battery module capable of securing an effective cooling performance while having a low height may be provided.
- connection portion connection portion
- 220 heat transfer portion
- 230 terminal portion
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
본 발명은 높이가 낮고 냉각 성능이 안정적으로 확보될 수 있는 배터리 모듈을 개시한다. 본 발명에 따른 배터리 모듈은, 방열 부재가 하부에 배치된 배터리 모듈로서, 수평 방향으로 눕혀진 형태로 적층된 다수의 캔형 이차 전지를 구비하는 셀 어셈블리; 및 상기 셀 어셈블리에 구비된 둘 이상의 캔형 이차 전지의 전극에 접촉하여 상기 둘 이상의 캔형 이차 전지 사이를 전기적으로 연결하는 연결부 및 상기 연결부의 하부에 위치하고 상기 방열 부재와 접촉하여 상기 이차 전지의 열을 상기 방열 부재로 전달하는 열전달부를 구비하며, 적어도 일부분이 전기 전도성 재질로 구성된 버스바를 포함한다.
Description
본 출원은 2017년 4월 18일자로 출원된 한국 특허출원 번호 제10-2017-0049938호 및 2018년 3월 6일자로 출원된 한국 특허출원 번호 제10-2018-0026447호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 캔형 이차 전지를 다수 구비하는 배터리 모듈에 관한 것으로서, 보다 상세하게는 높이를 낮게 설계할 수 있으면서도 냉각 성능이 안정적으로 확보될 수 있는 배터리 모듈과 이를 포함하는 배터리 팩 등에 관한 것이다.
근래에 들어서, 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 자동차, 로봇, 위성 등의 사용 및 개발이 확대됨에 따라, 이에 사용되는 배터리 팩에 대한 관심이 집중되고 그 연구 또한 활발히 진행되고 있다.
배터리 모듈 또는 배터리 팩에는, 셀이라고도 불리는 이차 전지가 통상적으로 하나 이상 포함된다. 그리고, 현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있다. 그 중, 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높다는 등의 장점으로 인해 더욱 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 또한, 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 전지 케이스를 구비한다.
한편, 리튬 이차 전지는 전지 케이스의 종류에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다. 그리고, 캔형 이차 전지는 다시 금속 캔의 형태에 따라 원통형 전지와 각형 전지로 분류될 수 있다. 이러한 각형 또는 원통형 이차 전지의 외장재는 개방단이 형성된 케이스, 즉 전지 캔 및 전지 캔의 개방단에 밀봉 결합되는 캡 조립체를 구비한다.
배터리 모듈은, 이러한 캔형 이차 전지를 다수 포함한 형태로 구성될 수 있다. 이때, 다수의 캔형 이차 전지는, 냉각을 용이하게 하기 위해, 상하 방향으로 세워지는 경우가 많다. 배터리 모듈, 특히 전기 자동차 등에 장착되는 차량용 배터리 모듈의 경우, 배터리 모듈의 냉각을 위해 냉각 장치가 배터리 모듈 내의 하부 또는 배터리 모듈 외의 하부에 위치하는 경우가 많다. 이 경우, 각각의 캔형 이차 전지가 상하 방향으로 세워지면, 모든 전지의 하부가 냉각 장치에 연결될 수 있다.
하지만, 이와 같이, 냉각을 용이하게 하고자 다수의 캔형 이차 전지가 상하 방향으로 세워진 형태로 배터리 모듈을 구성하면, 배터리 모듈의 높이를 일정 수준 이하로 낮추는 것이 어렵다. 일부 배터리 모듈, 특히 차량용 배터리 모듈에 대해서는 높이가 낮게 설계될 필요가 있다. 더욱이, 대부분의 전기 자동차 등에 있어서, 배터리 모듈은 차량의 하부에 위치하는 경우가 많다. 이 경우, 차량의 크기 내지 구조적 한계로 인해, 배터리 모듈의 높이를 일정 수준 이하로 제한할 수밖에 없다. 그런데, 캔형 이차 전지는 일반적으로 규격이 정해져 있기 때문에, 캔형 이차 전지의 길이, 즉 높이 또한 임의로 낮추는 것이 어렵다. 따라서, 캔형 이차 전지가 세워진 형태로 구성된 배터리 모듈에 대해서는, 그 높이가 캔형 이차 전지의 높이보다 작을 수가 없다. 만일, 배터리 모듈의 높이를 캔형 이차 전지의 규격 높이보다 낮추기 위해서는, 그에 맞추어 이차 전지를 다시 설계 및 제조해야 하나, 이 경우 그에 따른 비용 및 시간이 증대되므로 효율성이 떨어진다. 또한, 배터리 모듈은 적용되는 장치, 이를테면 차량마다 그 높이가 다를 수 있는데, 그때마다 이차 전지를 별도로 제조하는 것은 더욱 바람직하지 않다. 따라서, 캔형 이차 전지가 세워진 형태로 구성된 배터리 모듈에 대해서는, 차량에 적용 시 차고가 높아지거나 차체 하부가 낮아지는 등 여러 문제가 발생할 수 있다.
한편, 배터리 모듈의 높이를 낮추기 위해, 캔형 이차 전지가 수평 방향으로 눕혀진 형태로 구성될 수 있다. 하지만, 이와 같이 구성될 경우, 가장 하부에 적층된 캔형 이차 전지를 제외하고는, 상부에 적층된 캔형 이차 전지들은 배터리 모듈의 하부에 위치하는 냉각 장치와 직접 접촉될 수 없다. 따라서, 냉각 튜브나 냉각 핀과 같은 별도의 냉각 구성을 배터리 모듈의 측면에 구비시켜, 각각의 이차 전지의 열을 냉각 장치까지 전달할 필요가 있다. 하지만, 이 경우, 냉각 튜브나 냉각 핀과 같은 별도의 냉각 구성을 구비해야 하므로, 배터리 모듈의 구조가 복잡해져 조립이 어려워지고, 배터리 모듈의 무게가 증가하며, 냉각 구성이 차지하는 공간만큼 에너지 밀도가 감소될 수밖에 없다. 더욱이, 배터리 팩에는 다수의 배터리 모듈이 수평 방향으로 배열될 수 있는데, 이 경우, 각 배터리 모듈마다 냉각 튜브나 냉각 핀과 같은 별도의 냉각 구성을 구비할 경우, 이러한 문제는 더욱 심각해질 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 일반적인 캔형 이차 전지의 설계를 변경하지 않으면서도 높이가 낮고 냉각 성능이 안정적으로 확보되며 구조가 복잡하지 않고 에너지 밀도가 높은 배터리 모듈 및 이를 포함하는 배터리 팩을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은, 방열 부재가 하부에 배치된 배터리 모듈로서, 수평 방향으로 눕혀진 형태로 적층된 다수의 캔형 이차 전지를 구비하는 셀 어셈블리; 및 상기 셀 어셈블리에 구비된 둘 이상의 캔형 이차 전지의 전극에 접촉하여 상기 둘 이상의 캔형 이차 전지 사이를 전기적으로 연결하는 연결부 및 상기 연결부의 하부에 위치하고 상기 방열 부재와 접촉하여 상기 이차 전지의 열을 상기 방열 부재로 전달하는 열전달부를 구비하며, 적어도 일부분이 전기 전도성 재질로 구성된 버스바를 포함한다.
여기서, 상기 버스바는 절곡된 플레이트 형태로 구성되어, 상기 연결부는 상기 셀 어셈블리의 일 측면을 따라 상하 방향으로 세워진 형태로 구성되고, 상기 열전달부는 수평 방향으로 눕혀진 형태로 구성되어 상기 셀 어셈블리의 하부와 상기 방열 부재의 상부 사이에 개재될 수 있다.
또한, 상기 버스바는, 상기 셀 어셈블리에 구비된 캔형 이차 전지의 양극에 연결부가 접촉된 양극 버스바 및 상기 셀 어셈블리에 구비된 캔형 이차 전지의 음극에 연결부가 접촉된 음극 버스바를 구비할 수 있다.
또한, 상기 양극 버스바와 상기 음극 버스바는, 상기 셀 어셈블리의 반대되는 측면에 위치하여, 상기 열전달부가 서로 반대 방향으로 절곡된 형태로 구성될 수 있다.
또한, 상기 양극 버스바와 상기 음극 버스바는, 하나의 방열 부재에 접촉되고,
또한, 상기 배터리 모듈은, 상기 양극 버스바 및 상기 음극 버스바 중 적어도 하나와 상기 방열 부재 사이에 개재되어 상기 버스바의 열을 상기 방열 부재로 전달하며, 전기 절연 재질로 구성된 써멀 패드를 더 포함할 수 있다.
또한, 상기 버스바는, 외부 구성요소와의 전기적 연결을 위한 단자를 제공하는 단자부를 더 구비할 수 있다.
또한, 상기 단자부는, 상기 연결부의 상부에서 상기 셀 어셈블리의 상부 방향으로 절곡된 형태로 구성될 수 있다.
또한, 상기 단자부는, 하나의 버스바에서 서로 소정 거리 이격되게 둘 이상 구비될 수 있다.
또한, 본 발명에 따른 배터리 모듈은, 내부에 빈 공간이 형성되어 상기 셀 어셈블리의 일부를 수용하는 제1 케이스 및 내부에 빈 공간이 형성되어 상기 셀 어셈블리의 다른 일부를 수용하는 제2 케이스를 구비하며, 상기 제1 케이스와 상기 제2 케이스는 상기 셀 어셈블리의 일측과 타측에서 각각 결합되도록 구성된 모듈 케이스를 더 포함할 수 있다.
또한, 상기 버스바는, 상기 모듈 케이스의 외측에 부착될 수 있다.
또한, 상기 모듈 케이스는, 상기 버스바의 적어도 일부분이 삽입될 수 있도록 결합홈이 형성될 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 포함한다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함한다.
본 발명의 일 측면에 의하면, 다수의 캔형 이차 전지가 눕혀진 형태로 배열되므로, 일반적인 이차 전지로도 설계 변경 없이 배터리 모듈의 높이를 낮게 구성할 수 있다.
또한, 본 발명의 일 측면에 의하면, 배터리 모듈의 측면에 별도의 냉각 튜브나 냉각 핀과 별도의 냉각 구성들을 구비하지 않더라도, 배터리 모듈의 효율적인 냉각이 가능하다.
특히, 배터리 모듈의 하부 측에 히트 싱크나 냉각관, 방열핀과 같은 방열 부재가 구비될 때, 모든 이차 전지의 열이 방열 부재로 원활하게 전달됨으로써, 배터리 모듈의 냉각 성능이 안정적으로 확보될 수 있다.
또한, 별도의 냉각 구성이 필요 없으므로, 배터리 모듈의 구조가 단순화되어 제조가 용이하고, 무게 및 제조 비용이 감소하며, 에너지 밀도가 증대될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 배터리 모듈의 결합 사시도이다.
도 2는, 본 발명의 일 실시예에 따른 배터리 모듈의 분리 사시도이다.
도 3은, 본 발명의 일 실시예에 따른 캔형 이차 전지의 구성을 개략적으로 나타내는 단면도이다.
도 4는, 본 발명의 일 실시예에 따른 배터리 모듈의 열 전달 구성을 개략적으로 도식화하여 나타내는 도면이다.
도 5는, 본 발명의 다른 실시예에 따른 배터리 모듈의 단면 구성을 개략적으로 나타내는 도면이다.
도 6은, 본 발명의 일 실시예에 따른 양극 버스바가 셀 어셈블리에서 분리된 구성을 개략적으로 나타내는 단면도이다.
도 7은, 본 발명의 일 실시예에 따른 음극 버스바가 셀 어셈블리에 분리된 구성을 개략적으로 나타내는 단면도이다.
도 8은, 본 발명의 일 실시예에 따른 배터리 모듈에서, 버스바의 일부 단자부가 세워진 형태의 구성을 개략적으로 나타내는 사시도이다.
도 9는, 본 발명의 일 실시예에 따른 배터리 모듈이 다수 연결된 구성을 개략적으로 나타내는 도면이다.
도 10은, 도 2의 A2 부분에 대한 확대도이다.
도 11은, 도 2의 A3 부분에 대한 확대도이다.
도 12는, 본 발명의 다른 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 사시도이다.
도 13은, 도 12의 A4 부분에 대한 정단면도이다.
도 14는, 본 발명의 다른 실시예에 따른 배터리 모듈이 다수 연결된 구성을 개략적으로 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 결합 사시도이고, 도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 분리 사시도이다. 특히, 도 2는, 배터리 모듈의 하부 측에서 바라본 형태의 사시도이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 배터리 모듈은, 셀 어셈블리(100) 및 버스바(200)를 포함할 수 있다. 그리고, 이러한 배터리 모듈의 하부에는 방열 부재(10)가 배치될 수 있다.
방열 부재(10)는, 도 1에서 화살표로 도시된 바와 같이, 내부 공간 또는 하부 공간에 냉매가 흐르도록 구성될 수 있다. 여기서, 냉매는, 냉각수나 공기와 같은 액체 또는 기체일 수 있다. 방열 부재(10)는, 이러한 냉매와 접촉함으로써, 셀 어셈블리(100) 및 버스바(200) 측의 열을 흡수하여 냉매로 전달할 수 있다. 예를 들어, 방열 부재(10)는, 히트 싱크 형태로서 하부에 공기가 흐르도록 구성될 수도 있고, 파이프 형태로서 중공에 냉각수 등이 흐르도록 구성될 수도 있다.
이러한 방열 부재(10)는, 배터리 모듈과는 별개의 구성요소로서 배터리 모듈의 외부 장치, 이를테면 차량에 장착된 구성요소일 수 있다. 또는 방열 부재(10)는, 배터리 모듈의 일부 구성요소로서 포함될 수도 있다.
상기 셀 어셈블리(100)는, 다수의 캔형 이차 전지(110)를 구비할 수 있다. 여기서, 캔형 이차 전지(110)는, 전극 조립체와 전해액이 전지 케이스, 다시 말해 전지 캔에 수납된 형태로 구성될 수 있으며, 전지 캔의 개방단에는 캡 조립체가 결합될 수 있다.
도 3은, 본 발명의 일 실시예에 따른 캔형 이차 전지(110)의 구성을 개략적으로 나타내는 단면도이다.
도 3의 구성을 참조하면, 캔형 이차 전지(110)는, 전극 조립체(111), 전지 캔(112) 및 캡 조립체(113)를 구비할 수 있다.
상기 전극 조립체(111)는, 양극판과 음극판 사이에 세퍼레이터가 개재된 상태로 권취된 구조를 가질 수 있으며, 양극판에는 양극 탭(114)이 부착되어 캡 조립체(113)에 접속되고, 음극판에는 음극 탭(115)이 부착되어 전지 캔(112)의 하단에 접속될 수 있다.
상기 전지 캔(112)은, 내부에 빈 공간이 형성되어, 전극 조립체(111)를 수납할 수 있다. 특히, 상기 전지 캔(112)은, 원통형 또는 각형으로서, 상단이 개방된 형태로 구성될 수 있다. 또한, 상기 전지 캔(112)은, 강성 등의 확보를 위해 스틸이나 알루미늄과 같은 금속 재질로 구성될 수 있다. 그리고, 상기 전지 캔은, 하단에 음극 탭이 부착되어, 전지 캔의 하부는 물론이고, 전지 캔 자체가 음극 단자로서 기능할 수 있다.
상기 캡 조립체(113)는, 전지 캔(112)의 상단 개방부에 결합되어, 전지 캔의 개방단을 밀폐시킬 수 있다. 이러한 캡 조립체(113)는, 전지 캔의 형태에 따라 원형 또는 각형 등의 형태를 가질 수 있으며, 탑 캡(c1), 안전 벤트(c2) 및 가스켓(c3) 등의 하위 구성을 포함할 수 있다.
여기서, 탑 캡(c1)은, 캡 조립체의 최상부에 위치하여, 상부 방향으로 돌출된 형태로 구성될 수 있다. 특히, 이러한 탑 캡은, 캔형 이차 전지(110)에서 양극 단자로서 기능할 수 있다. 따라서, 탑 캡은, 외부 장치, 이를테면 버스바 등을 통해 다른 이차 전지나 부하, 충전 장치와 전기적으로 접속될 수 있다. 이러한 탑 캡은, 예를 들어 스테인리스 스틸이나 알루미늄과 같은 금속 재질로 형성될 수 있다.
상기 안전 벤트(c2)는, 이차 전지의 내압, 즉 전지 캔의 내압이 일정 수준 이상으로 증가하는 경우, 형태가 변형되도록 구성될 수 있다. 또한, 상기 가스켓(c3)은, 탑 캡 및 안전 벤트의 테두리 부분이 전지 캔과 절연될 수 있도록 전기 절연성을 갖는 재질로 이루어질 수 있다.
한편, 상기 캡 조립체는, 전류차단부재(c4)를 더 포함할 수 있다. 상기 전류차단부재는 CID(Current Interrupt Device)라고도 불리며, 가스 발생으로 전지의 내압이 증가하여 안전 벤트의 형상이 역전되면, 안전 벤트와 전류차단부재 사이의 접촉이 끊어지거나, 전류차단부재가 파손되어, 안전 벤트와 전극 조립체 사이의 전기적 접속은 차단될 수 있다.
이러한 캔형 이차 전지(110)의 구성은, 본 발명의 출원 시점에 당업자에게 널리 알려져 있으므로, 본 명세서에서는 보다 상세한 설명은 생략한다. 또한, 도 3에 캔형 이차 전지의 일례를 도시하였으나, 본 발명에 따른 배터리 모듈은 특정 캔형 이차 전지의 구성으로 한정되지 않는다. 즉, 본 발명의 출원 시점에 공지된 다양한 이차 전지가 본 발명에 따른 배터리 모듈에 채용될 수 있다.
더욱이, 도 3의 캔형 이차 전지(110)는, 원통형 이차 전지를 기준으로 도시되어 있으나, 본 발명에 따른 배터리 모듈에는, 각형 이차 전지가 적용될 수도 있다.
상기 셀 어셈블리(100)는, 이러한 캔형 이차 전지(110)가 다수 적층된 형태로 구성될 수 있다. 예를 들어, 다수의 캔형 이차 전지(110)는, 수평 방향으로 다수 배열된 형태로 구성될 수 있다. 또한, 다수의 캔형 이차 전지(110)는, 상하 방향으로 다수 배열된 형태로 구성될 수 있다. 더욱이, 다수의 캔형 이차 전지(110)는, 원통형 전지 캔에서 곡면으로 형성된 부분과 같은 측면이 서로 대면되는 형태로 적층될 수 있다.
특히, 본 발명에 따른 배터리 모듈에 있어서, 상기 셀 어셈블리(100)는, 다수의 캔형 이차 전지(110)가 수평 방향으로 눕혀진 형태로 구성될 수 있다. 즉, 도 2에 도시된 바와 같이, 각각의 캔형 이차 전지(110)는, 좌우 방향(도면의 x축 방향)으로 길게 연장된 형태로 구성될 수 있다. 이때, 각 캔형 이차 전지(110)의 양극 단자 및 음극 단자가 좌측 또는 우측 방향에 위치할 수 있다.
본 발명의 이러한 구성에 의하면, 배터리 모듈의 높이를 낮게 구성할 수 있다. 즉, 캔형 이차 전지(110)를 눕히게 되면, 캔형 이차 전지의 길이보다 짧은 높이를 갖는 배터리 모듈을 구성할 수 있다. 따라서, 높이가 낮은 배터리 모듈의 설계가 용이하다.
상기 버스바(200)는, 셀 어셈블리(100)에 구비된 다수의 캔형 이차 전지 사이, 이를테면 모든 이차 전지 사이, 또는 그 중 일부 이차 전지 사이를 전기적으로 연결할 수 있다. 이를 위해, 상기 버스바(200)는, 적어도 일부분이 전기 전도성 재질로 구성될 수 있다. 예를 들어, 상기 버스바(200)는, 구리, 알루미늄, 니켈 등과 같은 금속 재질로 구성될 수 있다.
특히, 본 발명에 있어서, 상기 버스바(200)는, 도 2에 도시된 바와 같이, 연결부(210) 및 열전달부(220)를 구비할 수 있다.
상기 연결부(210)는, 셀 어셈블리(100)에 구비된 둘 이상의 캔형 이차 전지(110) 사이를 전기적으로 연결할 수 있다. 이를 위해, 상기 연결부(210)는, 셀 어셈블리(100)에 구비된 둘 이상의 캔형 이차 전지(110)의 전극에 접촉할 수 있다. 예를 들어, 상기 연결부(210)는, 셀 어셈블리(100)에 구비된 모든 이차 전지(110)의 전극에 접촉하여, 모든 이차 전지(110) 사이를 전기적으로 연결할 수 있다. 더욱이, 상기 연결부(210)는, 셀 어셈블리(100)에 구비된 둘 이상의 캔형 이차 전지(110)의 동일 극성에 접촉하여 이들 사이를 병렬 연결할 수 있다. 또는, 상기 연결부(210)는, 셀 어셈블리(100)에 구비된 모든 이차 전지 중, 일부 이차 전지의 전극에 접촉하여 이들 사이를 전기적으로 연결할 수도 있다.
상기 열전달부(220)는, 연결부(210)의 하부에 위치할 수 있다. 그리고, 이러한 열전달부(220)의 하부에는 방열 부재(10)가 배치되어 있을 수 있다. 열전달부(220)는, 이러한 방열 부재(10)로 열을 전달할 수 있다. 즉, 셀 어셈블리(100)의 이차 전지 측에서 발생하는 열은 연결부(210)로 전달될 수 있고, 상기 열전달부(220)는 이와 같이 연결부(210)로 전달된 이차 전지의 열을 방열 부재(10)로 전달할 수 있다. 더욱이, 상기 열전달부(220)는, 방열 부재(10)와 접촉하여, 전도 방식으로 열을 전달할 수 있다.
도 4는, 본 발명의 일 실시예에 따른 배터리 모듈의 열 전달 구성을 개략적으로 도식화하여 나타내는 도면이다. 예를 들어, 도 4는, 도 1의 A1-A1'선에 대한 단면의 구성의 일례를 개략적으로 나타낸 구성이라 할 수 있다. 다만, 도 4에는 도 1의 모든 구성이 도시되지 않고, 설명의 편의를 위해 일부 구성만 도시되어 있다. 한편, 도 4에서, 화살표는 열 이동 경로를 나타낸다.
도 4를 참조하면, 지면에서 상하 방향으로 적층된 각 이차 전지로부터 생성된 열은, 수평 방향(도면의 좌우 방향)으로 이동하여, 각 이차 전지의 측면에 위치하며 지면에서 수직으로 세워진 형태의 연결부(210)로 전달될 수 있다. 그리고, 연결부(210)로 전달된 열은, 하부 방향으로 이동하여, 하부의 열전달부(220)로 전달될 수 있다. 그리고, 이러한 열전달부(220)는 하부의 방열 부재(10)와 직접 또는 간접적으로 접촉한다. 따라서, 열전달부(220)의 열은 방열 부재(10)로 전달된 후 냉매를 통해 외부로 배출될 수 있다.
본 발명의 이러한 구성에 의하면, 버스바(200)에 의해, 이차 전지의 전기적 연결과 더불어 이차 전지의 냉각이 함께 달성될 수 있다. 즉, 본 발명에 따른 버스바(200)의 경우, 연결부(210)에 의해 복수의 이차 전지 사이가 서로 전기적으로 연결될 수 있으면서도, 열전달부(220)에 의해 복수의 이차 전지의 열이 방열 부재(10)로 전달되어 각 이차 전지가 냉각될 수 있다.
더욱이, 셀 어셈블리(100)에 구비된 모든 이차 전지가 연결부(210)에 연결된 경우, 각 이차 전지의 열은 연결부(210)에 전도되고, 연결부(210)에 전도된 열은 열전달부(220) 및 방열 부재(10)로 전도되어, 냉매를 통해 외부로 배출될 수 있다. 이 경우, 셀 어셈블리(100)에 구비된 모든 이차 전지의 열이 전도 방식으로 외부로 배출될 수 있으므로, 각 이차 전지의 냉각이 효과적으로 달성될 수 있다. 따라서, 이러한 구성에 의하면, 각 이차 전지 사이에, 냉각을 위한 구성요소를 별도로 개재시킬 필요가 없다. 그러므로, 배터리 모듈의 구조가 복잡하지 않고, 무게 및 부피가 감소하며, 에너지 밀도가 향상될 수 있다.
상기 버스바(200)는, 판상으로 구성될 수 있다. 더욱이, 상기 버스바(200)는 강성 및 전기적 전도성을 확보하기 위해, 금속판 형태로 구성될 수 있다. 특히, 본 발명에 있어서, 상기 버스바(200)는 절곡된 플레이트 형태로 구성될 수 있다.
예를 들어, 도 1 및 도 2에 도시된 바와 같이, 상기 버스바(200)는, 하단부가 대략 90도 정도 절곡된 플레이트 형태로 구성될 수 있다. 이 경우, 절곡된 부분을 중심으로, 상부는 연결부(210)가 될 수 있고, 하부는 열전달부(220)가 될 수 있다.
특히, 상기 연결부(210)는, 셀 어셈블리(100)의 일 측면, 이를테면 셀 어셈블리(100)의 좌측면이나 우측면을 따라 상하 방향(도면의 z축 방향)으로 세워진 형태로 구성될 수 있다. 즉, 본 발명에서 셀 어셈블리(100)의 캔형 이차 전지가 좌우 방향(도면의 x축 방향)으로 길게 눕혀진 형태로 전후 방향(도면의 y축 방향) 및/또는 상하 방향(도면의 z축 방향)으로 적층되는 경우, 여러 이차 전지의 전극은 전후 방향 및 상하 방향으로 평행하게 배치된 형태로 구성될 수 있다. 따라서, 상기 연결부(210)는, 판상으로서 전후 방향 및 상하 방향으로 평평하게 세워진 형태로 구성됨으로써, 여러 이차 전지의 전극과 직접 접촉될 수 있다.
또한, 상기 열전달부(220)는, 수평 방향으로 눕혀진 형태로 구성될 수 있다. 예를 들어, 상기 열전달부(220)는, 표면이 x-y 평면과 평행하게 구성될 수 있다. 이 경우, 상기 열전달부(220)는, 도 4에 도시된 바와 같이, 셀 어셈블리(100)의 하부와 방열 부재(10)의 상부 사이에 개재될 수 있다.
상기 연결부(210)와 상기 열전달부(220)는, 하나의 판, 이를테면 하나의 금속판이 벤딩된 형태로 구성될 수 있다. 이 경우, 버스바(200)의 제조 및 구조가 간단해질 수 있다.
한편, 셀 어셈블리(100)에 구비된 각각의 이차 전지에는 양극과 음극이 구비될 수 있다. 상기 버스바(200)는, 이러한 이차 전지의 양극과 음극을 각각 연결하기 위해 적어도 2개의 버스바(200)를 구비할 수 있다. 즉, 상기 버스바(200)는, 양극 버스바(201) 및 음극 버스바(202)를 구비할 수 있다.
여기서, 양극 버스바(201)는, 셀 어셈블리(100)에 구비된 캔형 이차 전지의 양극(양극 단자)에 연결부(210)가 접촉될 수 있다. 따라서, 상기 양극 버스바(201)는, 여러 캔형 이차 전지의 양극 사이를 서로 전기적으로 연결할 수 있다. 그리고, 음극 버스바(202)는, 셀 어셈블리(100)에 구비된 캔형 이차 전지의 음극(음극 단자)에 연결부(210)가 접촉될 수 있다. 따라서, 상기 음극 버스바(202)는, 여러 캔형 이차 전지의 음극 사이를 전기적으로 연결할 수 있다.
예를 들어, 도 2의 구성을 참조하면, 셀 어셈블리(100)의 측면에 2개의 버스바가 배치될 수 있다. 이때, 어느 하나의 버스바는 양극 버스바(201)이고, 다른 하나의 버스바는 음극 버스바(202)일 수 있다. 그리고, 양극 버스바(201)에는 셀 어셈블리(100)에 구비된 모든 캔형 이차 전지의 양극이 접촉되어 서로 연결될 수 있고, 음극 버스바(202)에는 셀 어셈블리(100)에 구비된 모든 캔형 이차 전지의 음극이 접촉되어 서로 연결될 수 있다.
바람직하게는, 양극 버스바(201)와 음극 버스바(202)는, 셀 어셈블리(100)를 기준으로 서로 반대되는 측면에 위치할 수 있다.
셀 어셈블리(100)에 구비된 각각의 캔형 이차 전지는, 일 방향으로 길게 연장된 형태로 형성될 수 있다. 그리고, 각각의 캔형 이차 전지는, 길이 방향의 서로 반대되는 측면에 양극 단자와 음극 단자가 각각 배치될 수 있다. 특히, 복수의 캔형 이차 전지는 눕혀진 형태, 즉 길이 방향이 수평 방향이 되도록 배치되어, 양극 단자와 음극 단자가 수평 방향 양단에 각각 위치할 수 있다. 더욱이, 복수의 캔형 이차 전지는, 양극 단자끼리 서로 동일한 측면에 위치하고, 음극 단자끼리 서로 동일한 측면에 위치하도록 배치될 수 있다. 따라서, 양극 버스바(201)와 음극 버스바(202)는, 이차 전지를 중심으로 서로 반대되는 측에 위치할 수 있다.
예를 들어, 도 2의 구성에 도시된 바와 같이, 이차 전지는 좌우 방향(x축 방향)으로 길게 연장된 형태로 형성되어, 이차 전지의 우측과 좌측에 각각 양극 단자와 음극 단자가 배치될 수 있다. 그러므로, 양극 버스바(201)는 셀 어셈블리(100)의 우측에 배치되고, 음극 버스바(202)는 셀 어셈블리(100)의 좌측에 배치될 수 있다.
이 경우, 양극 버스바(201)와 음극 버스바(202)는, 열전달부(220)가 서로 반대 방향으로 절곡된 형태로 구성될 수 있다. 즉, 양극 버스바(201)와 음극 버스바(202)는, 하단부가 절곡되어 절곡된 부분을 중심으로 연결부(210)와 열전달부(220)로 구분될 수 있는데, 이때 절곡 방향은 서로 반대 방향이 될 수 있다.
예를 들어, 도 2의 구성에서, 양극 버스바(201)는, 하단부가 좌측 방향(-x축 방향)으로 절곡될 수 있다. 그리고, 음극 버스바(202)는, 하단부가 우측 방향(+x축 방향)으로 절곡될 수 있다. 즉, 양극 버스바(201)와 음극 버스바(202)는, 하단부가 서로를 향하는 방향, 다시 말해 서로 가까워지는 방향으로 절곡될 수 있다. 이러한 절곡 구성을 통해, 양극 버스바(201)와 음극 버스바(202)의 열전달부(220)는, 도 4에 도시된 바와 같이, 셀 어셈블리(100)와 방열 부재(10) 사이에 개재될 수 있다. 특히, 양극 버스바(201)의 연결부(210)와 음극 버스바(202)의 연결부(210)는, 이차 전지의 길이 방향(x축 방향)으로 서로 소정 거리 이격되며, 상호 평행한 형태로 구성될 수 있다. 그리고, 양극 버스바(201)의 열전달부(220)와 음극 버스바(202)의 열전달부(220)는, 양면이 상부와 하부를 향하도록 눕혀진 상태로서, 하나의 평면상에 놓이도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 셀 어셈블리(100)와 방열 부재(10) 사이의 간격이 좁아질 수 있고, 하나의 방열 부재(10)에 양극 버스바(201)와 음극 버스바(202)의 열전달부(220)가 모두 접촉될 수 있다. 따라서, 이 경우, 배터리 모듈의 부피가 감소하고, 냉각 구성이 간단해지며, 냉각 효율이 더욱 향상될 수 있다.
한편, 냉각 구성의 간소화 및 효율화를 위해, 양극 버스바(201)와 음극 버스바(202)는, 하나의 방열 부재(10)에 접촉될 수 있다. 이 경우, 본 발명에 따른 배터리 모듈은, 써멀 패드(300)를 더 포함할 수 있다.
상기 써멀 패드(300)는, 양극 버스바(201) 및 음극 버스바(202) 중 적어도 하나와 방열 부재(10) 사이에 개재될 수 있다. 예를 들어, 도 1 및 도 4에 도시된 바와 같이, 양극 버스바(201)와 음극 버스바(202)는, 열전달부(220)의 하면이 동일한 방열 부재(10)의 상면에 접촉될 수 있다.
그리고, 이러한 써멀 패드(300)는, 버스바 측의 열을 방열 부재(10)로 전달할 수 있다. 따라서, 써멀 패드(300)는, 열전도성 재질로 구성될 수 있다.
다만, 써멀 패드(300)는, 양극 버스바(201)와 음극 버스바(202) 사이의 단락을 방지하기 위해, 전류가 실질적으로 흐르지 않는 전기적 절연 재질로 구성될 수 있다. 더욱이, 방열 부재(10)는 금속 등의 재질로 구성될 수 있는데, 이러한 경우에도, 방열 부재(10)에 의해 양극 버스바(201)와 음극 버스바(202)가 상호 연결되어 단락이 발생하는 문제가 써멀 패드(300)에 의해 방지될 수 있다.
이처럼, 써멀 패드(300)는, 열전도성 및 전기절연성을 갖는 재질로 구성될 수 있다. 예를 들어, 상기 써멀 패드(300)는, 실리콘, 아크릴 등의 재질로 구성될 수 있다.
또한 바람직하게는, 상기 열전달부(220)는, 하부에 돌기가 형성될 수 있다. 이에 대해서는, 도 5의 구성을 참조하여 보다 구체적으로 설명하도록 한다.
도 5는, 본 발명의 다른 실시예에 따른 배터리 모듈의 단면 구성을 개략적으로 나타내는 도면이다. 특히, 도 5는, 도 4의 변형예라 할 수 있다.
도 5를 참조하면, 열전달부(220)에는, P1로 표시된 바와 같이, 다수의 돌기가 형성될 수 있다. 이러한 돌기(P1)는, 열전달부(220)의 하부에서 하부 방향으로 돌출되는 형태로 형성될 수 있다. 특히, 돌기(P1)는, 하나의 버스바에서 다수 구비될 수 있다. 예를 들어, 돌기(P1)는, 양극 버스바(201)의 열전달부(220) 하면에 다수 구비되고, 음극 버스바(202)의 열전달부(220) 하면에 다수 구비될 수 있다.
그리고, 이러한 다수의 돌기(P1)는, 각 버스바에서 서로 소정 거리 이격된 형태로 구성될 수 있다. 예를 들어, 도 5에 도시된 바와 같이, 다수의 돌기(P1)는, 각 버스바의 열전달부(220) 하면에서 좌우 방향(x축 방향)으로 소정 거리 이격된 형태로 구성될 수 있다. 또는, 다수의 돌기(P1)는, 각 버스바의 열전달부(220) 하면에서 전후 방향(도 1의 y축 방향)으로 소정 거리 이격된 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 각 버스바의 열전달부(220)의 하부 표면적이 증대되어 열전달부(220)에 의한 냉각 효율이 향상될 수 있다. 특히, 써멀 패드(300)는, 유연성이 있는 재질일 수 있다. 따라서, 이 경우, 돌기(P1)에 의해 열전달부(220)의 표면에 요철이 형성되더라도, 써멀 패드(300)는 이러한 요철 형상에 대응하여, 도 5에 도시된 바와 같이, 상면의 형태가 변화할 수 있다. 따라서, 열전달부(220)의 돌기(P1)에 의해 버스바와 써멀 패드(300) 사이의 접촉 면적이 증가하여, 버스바로부터 써멀 패드(300)를 거쳐 방열 부재(10)로 전달되는 열의 양이 증대될 수 있다. 또한, 이러한 돌기(P1)에 의해, 열전달부(220)와 써멀 패드(300) 사이의 마찰력 및 접촉 면적이 증대됨으로써, 버스바와 써멀 패드(300) 사이의 결합성이 향상될 수 있다.
더욱이, 이와 같이 열전달부(220) 하부에 돌기가 형성된 구성에 있어서, 방열 부재(10)는, 그 상부에 이러한 열전달부(220)의 돌기에 대응되는 위치 및 형태로 삽입홈(미도시)이 형성될 수 있다. 이러한 구성에 의하면, 버스바의 돌기(P1)가 방열 부재(10)의 삽입홈에 삽입됨으로써, 버스바와 방열 부재(10) 사이의 결합성이 증대될 수 있다. 또한, 이 경우, 방열 부재(10)의 상부 표면적이 증대되어 단위 시간 당 버스바로부터 방열 부재(10)로 전달되는 열의 양을 증가시킴으로써, 냉각 효율이 보다 향상될 수 있다.
또한 바람직하게는, 상기 양극 버스바(201)에서, 연결부(210)는 캔형 이차 전지의 양극 형태에 맞게 오목부가 형성될 수 있다. 이에 대해서는, 도 6을 참조하여 보다 구체적으로 설명하도록 한다.
도 6은, 본 발명의 일 실시예에 따른 양극 버스바(201)가 셀 어셈블리(100)에서 분리된 구성을 개략적으로 나타내는 단면도이다.
도 6을 참조하면, 셀 어셈블리(100)에 구비된 각 이차 전지의 우측 단부에 구비된 양극 단자는, B1로 표시된 바와 같이, 우측 방향으로 돌출된 형태로 구성될 수 있다. 이러한 돌출 부분은, 도 3에 도시된 구성에서 탑 캡(c1) 부분일 수 있다. 이와 같은 구성에서, 셀 어셈블리(100)의 우측에 구비되어 다수의 이차 전지의 양극과 접촉되는 양극 버스바(201)는, 내측 표면, 즉 좌측 표면에, G1로 표시된 바와 같이, 우측 방향으로 오목하게 들어간 형태의 오목부가 형성될 수 있다. 그리고, 이러한 오목부에는, 배터리 모듈 구성 시, 각 이차 전지의 양극 단자(B1)가 삽입될 수 있다. 이를 위해, 상기 오목부(G1)는, 셀 어셈블리(100)에 구비된 각 이차 전지의 양극 단자에 대응되는 위치, 개수 및 형태로 형성될 수 있다. 예를 들어, 도 6에 도시된 바와 같이, 4개의 이차 전지가 상하 방향으로 적층되어, 4개의 양극 단자가 상하 방향으로 소정 거리 이격된 형태로 존재하는 경우, 양극 버스바(201)의 오목부 역시 상하 방향으로 소정 거리 이격된 형태로 4개 형성될 수 있다.
본 발명의 이러한 구성에 의하면, 셀 어셈블리(100)와 양극 버스바(201)의 결합성을 향상시킬 수 있다. 즉, 셀 어셈블리(100)에 구비된 각 이차 전지의 양극 단자가 양극 버스바(201)의 오목부(G1)에 삽입됨으로써 이차 전지와 양극 버스바(201)의 결합성이 향상되고, 상하 및 전후 방향 유동이 방지될 수 있다. 또한, 오목부(G1)에 의해 이차 전지와 양극 버스바(201)의 결합 위치가 가이드되어, 셀 어셈블리(100)와 양극 버스바(201)의 조립성이 개선될 수 있다.
더욱이, 본 발명의 이러한 구성에 의하면, 이차 전지의 양극 단자와 양극 버스바(201) 사이의 접촉 면적이 증대될 수 있다. 예를 들어, 도 6의 단면 구성에서, 양극 버스바(201)의 오목부에는 대략 3개의 내측면(상면, 하면, 우측면)이 형성될 수 있으며, 이러한 3개의 내측면에 이차 전지의 양극 단자가 모두 접촉할 수 있다. 이처럼 이차 전지의 양극 단자와 양극 버스바(201) 사이의 접촉 면적이 증대되면, 이차 전지의 양극으로부터 양극 버스바(201)로 열이 전달되는 면적이 증대되어, 버스바를 통한 이차 전지의 냉각 성능이 더욱 향상될 수 있다. 또한, 이차 전지의 양극과 양극 버스바(201) 사이의 접촉 면적 증대로, 전기적 경로가 확대되어 전기 저항이 감소할 수 있다.
이와 같은 구성에서, 오목부(G1)의 깊이는, 양극 단자(B1)의 돌출 길이보다 작게 구성되는 것이 좋다. 예를 들어, 도 6의 구성에서, 양극 단자(B1)의 좌우 방향 길이는, 오목부(G1)의 좌우 방향 길이보다 길게 구성될 수 있다. 캔형 이차 전지의 경우, 전지 캔 자체가 음극으로 기능할 수 있으므로, 오목부에 양극 단자가 삽입될 때 양극 버스바(201)가 전지 캔에 접촉되지 않도록 구성되는 것이 좋다.
또한 바람직하게는, 상기 음극 버스바(202)에서, 연결부(210)는 캔형 이차 전지의 외형에 맞게 볼록부가 형성될 수 있다.
도 7은, 본 발명의 일 실시예에 따른 음극 버스바(202)가 셀 어셈블리(100)에 분리된 구성을 개략적으로 나타내는 단면도이다.
도 7을 참조하면, 셀 어셈블리(100)에 구비된 각 이차 전지의 좌측 단부에 구비된 음극 단자는, B2로 표시된 바와 같이, 대략 평평한 형태로 구성될 수 있다. 그리고, 음극 버스바(202)는, P2로 표시된 바와 같이, 내측면에 내측 방향, 즉 이차 전지 측 방향(도면의 우측 방향)으로 돌출된 형태의 볼록부가 형성될 수 있다.
이러한 볼록부(P2)는, 이차 전지 사이에 위치하여, 음극 버스바(202)와 셀 어셈블리(100)의 결합 시, 이차 전지 사이에 개재될 수 있다. 예를 들어, 도 7의 구성에서, 볼록부는 상하 방향으로 적층된 이차 전지의 사이 공간에 개재될 수 있다. 이 경우, 볼록부(P2)의 사이 공간에 이차 전지의 전지 캔 음극 측 단부가 삽입된다고 할 수도 있다.
본 발명의 이러한 구성에 의하면, 이차 전지와 음극 버스바(202) 사이의 결합성이 증대되고, 이차 전지와 음극 버스바(202) 조립 위치가 용이하게 가이드될 수 있다. 뿐만 아니라, 이차 전지의 음극 단자와 음극 버스바(202) 사이의 접촉 면적이 증대되어 이차 전지로부터 음극 버스바(202)로 열이 전달되는 양 및 속도가 증가할 수 있다. 특히, 도 3의 구성에 도시된 바와 같이, 캔형 이차 전지에서 전지 캔(112)은, 하부뿐 아니라, 측면까지도 음극 단자로서 기능할 수 있다. 따라서, 음극 버스바(202)의 볼록부 사이 공간에 전지 캔의 일부가 삽입되는 경우, 전지 캔의 하면(원통형 전지 캔의 하부 평면)뿐 아니라, 측면(원통형 전지 캔의 측부 곡면)의 일부에서도 음극 버스바(202)로 열을 전달할 수 있다. 따라서, 이 경우, 열전달 면적이 증대될 수 있다. 또한, 이차 전지의 음극 단자와 음극 버스바(202) 사이의 접촉 면적 증대로, 전기적 경로가 확대되어 전기 저항이 감소할 수 있다.
한편, 이차 전지의 전극 단자와 버스바는 직접 접촉할 수 있는데, 이 경우, 이러한 이차 전지의 전극 단자와 버스바 사이의 접촉 상태를 안정적으로 유지하기 위해, 이차 전지의 전극과 버스바는 용접 등의 방식으로 상호 접촉 고정될 수 있다. 특히, 상기 도 6 내지 도 7의 구성과 같이, 버스바의 연결부(210)에 오목부(G1)나 볼록부(P2)가 형성되는 경우, 용접 전에도 이차 전지와 버스바가 일차적으로 고정되므로, 이차 전지와 버스바 사이의 용접 공정이 개선될 수 있다. 더욱이, 양극 버스바(201)에 오목부(G1)가 형성된 부분에서는, 양극 버스바(201)의 좌우 방향 길이(폭)가 짧아지므로, 용접에 의한 고정력은 보다 향상될 수 있다.
또한, 버스바의 열전달부(220)는, 셀 어셈블리(100)에서 가장 하부에 적층된 캔형 이차 전지의 하부에 접촉할 수 있다. 이 경우, 가장 하부에 적층된 이차 전지의 열이 연결부(210)를 거치지 않고 열전달부(220)로 직접 전달됨으로써, 셀 어셈블리(100)의 냉각 성능이 보다 향상될 수 있다.
또한 바람직하게는, 상기 버스바는, 도 2에 도시된 바와 같이, 단자부(230)를 더 구비할 수 있다.
상기 단자부(230)는, 외부 구성요소와의 전기적 연결을 위한 단자를 제공할 수 있다. 상기 단자부(230)는, 연결부(210)의 상부에 위치하여, 연결부(210)에서 돌출된 형태로 구성될 수 있다.
특히, 상기 단자부(230)는, 이차 전지의 연결부(210)와 일체화된 형태로 구성될 수 있다. 예를 들어, 단자부(230), 연결부(210) 및 열전달부(220)는, 하나의 금속판으로 구성될 수 있다.
더욱 바람직하게는, 상기 단자부(230)는, 연결부(210)의 상부가 절곡된 형태로 구성될 수 있다. 예를 들어, 도 1 및 도 2에 도시된 바와 같이, 상기 단자부(230)는, 연결부(210)의 상부에서, 셀 어셈블리(100)의 상부 방향 측으로, 대략 90도 정도 절곡된 형태로 구성될 수 있다. 특히, 버스바(200)는, 하나의 금속판이 상부와 하부가 절곡된 형태로 구성되어, 절곡된 부분(폴딩선)을 기준으로 연결부(210), 열전달부(220) 및 단자부(230)로 구분될 수 있다.
이러한 단자부(230)는, 양극 버스바(201)와 음극 버스바(202)에 모두 구비될 수 있다. 그리고, 이러한 양극 버스바(201)의 단자부(230)와 음극 버스바(202)의 단자부(230)는, 서로를 향하여 반대 방향으로 절곡된 형태로 구성될 수 있다.
예를 들어, 도 2의 구성에 도시된 바와 같이, 셀 어셈블리(100)의 우측에 배치된 양극 버스바(201)의 상부에는, 좌측 방향으로 절곡된 형태의 단자부(230)가 형성될 수 있다. 그리고, 셀 어셈블리(100)의 좌측에 배치된 음극 버스바(202)의 상부에는, 우측 방향으로 절곡된 형태의 단자부(230)가 형성될 수 있다.
또한 바람직하게는, 상기 단자부(230)는, 하나의 버스바에서 서로 소정 거리 이격되게 둘 이상 구비될 수 있다.
예를 들어, 도 1에 도시된 바와 같이, 배터리 모듈의 우측과 좌측에는 각각 양극 버스바(201)와 음극 버스바(202)가 배치될 수 있는데, 양극 버스바(201)의 상부에 2개의 단자부(230)가 구비되고, 음극 버스바(202)의 상부에도 2개의 단자부(230)가 구비될 수 있다. 그리고, 각각의 단자부(230)는, 각 버스바에서 소정 거리 이격되게 구성될 수 있다. 이를테면, 양극 버스바(201)의 상부에 구비된 2개의 단자부(230)는, 전후 방향(도면의 y축 방향)으로 소정 거리 이격되게 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 동일 버스바에 복수의 단자부(230)가 형성됨으로써, 버스바와 외부 장치의 연결 구성이 다양하게 이루어질 수 있다. 즉, 배터리 모듈이 적용된 장치의 연결 단자가 어느 측면에서 접근하더라도, 상황에 따라 적절한 단자부(230)가 선택적으로 이용되도록 할 수 있다. 따라서, 배터리 모듈을 이용한 조립 시, 조립성이 개선되고 구조가 간소화될 수 있다.
특히, 이와 같이, 하나의 버스바에 복수의 단자부(230)가 형성된 경우, 일부 단자부(230)는 세워진 형태로 구성될 수 있다. 이에 대해서는, 도 8을 참조하여 보다 구체적으로 설명하도록 한다.
도 8은, 본 발명의 일 실시예에 따른 배터리 모듈에서, 버스바의 일부 단자부(230)가 세워진 형태의 구성을 개략적으로 나타내는 사시도이다.
도 8을 참조하면, 양극 버스바(201) 및 음극 버스바(202)는 각각, 전후 방향(y축 방향)으로 소정 거리 이격된 2개의 단자부(230)를 구비할 수 있다. 이때, 양극 버스바(201)의 2개의 단자부(230)는 각각 M1 및 M2로 표시되어 있고, 음극 버스바(202)의 2개의 단자부(230)는 각각 N1 및 N2로 표시되어 있다.
이러한 구성에서, 양극 버스바(201)는, 전방 측에 위치한 M1 단자부가 눕혀진 형태로 구성되고, 후방 측에 위치한 M2 단자부가 세워진 형태로 구성될 수 있다. 즉, 양극 버스바(201)의 M1 단자부는 셀 어셈블리(100)의 상부 측으로 연결부(210)에서 대략 90도 절곡된 형태로 구성되고, M2 단자부는 연결부(210)와 대략 평행하게 상하 방향(z축 방향)으로 세워진 형태로 구성될 수 있다.
또한, 상기 구성에서, 음극 버스바(202)는, 전방 측에 위치한 N1 단자부가 세워진 형태로 구성되고, 후방 측에 위치한 N2 단자부가 눕혀진 형태로 구성될 수 있다. 즉, 음극 버스바(202)의 N1 단자부는 연결부(210)와 대략 평행하게 상하 방향으로 세워진 형태로 구성되고, N2 단자부는 셀 어셈블리(100)의 상부 측으로, 연결부(210)에서 대략 90도 절곡된 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 버스바의 여러 단자부 중 세워진 단자부를 통해 외부 장치와 연결되도록 할 수 있다. 이처럼, 세워진 상태의 단자부는, 외부 장치의 연결 단자가 보다 용이하게 접근하여 결합할 수 있다.
더욱이, 이 경우, 양극 버스바(201)와 음극 버스바(202) 사이의 분리성이 향상될 수 있다. 특히, 각 버스바의 복수의 단자부(230)가 배터리 모듈의 길이 방향, 이를테면 배터리 모듈의 전후 방향을 따라 소정 거리 이격되게 배열될 때, 양극 버스바(201)와 음극 버스바(202)에서, 세워진 형태의 단자부는 배터리 모듈의 전후 방향으로 서로 다른 위치에 위치하도록 구성될 수 있다.
예를 들어, 도 8의 구성에서, 양극 버스바(201)와 음극 버스바(202)의 단자부는, 배터리 모듈의 전후 방향(y축 방향)으로 소정 거리 이격되게 구성되는데, 음극 버스바(202)는 전방 측에 위치하는 단자부(N1)가 세워지고, 양극 버스바(201)는 후방 측에 위치하는 단자부(M2)가 세워지도록 구성될 수 있다. 그리고, 음극 버스바(202)의 후방 측에 위치하는 단자부(N2) 및 양극 버스바(201)의 전방 측에 위치하는 단자부(M1)는 눕혀진 형태로 구성될 수 있다.
이 경우, 음극 버스바(202)의 전방 측 단자부(N1)와 양극 버스바(201)의 후방 측 단자부(M2)가 음극 버스바(202)와 양극 버스바(201)의 각 단자부로서 기능한다고 할 수 있다. 따라서, 이러한 배터리 모듈을 이용하여 배터리 팩 구성 시, 배터리 모듈 상호 간이나 외부 장치와 연결되기 위한 음극 버스바(202)의 단자 및 양극 버스바(201)의 단자는 각각 N1 및 M2가 된다고 할 수 있다.
상기 양극 버스바(201) 및 상기 음극 버스바(202)에서, 복수의 단자부는 벤딩 가능하게 구성될 수 있다. 즉, 사용자는, 본 발명에 따른 배터리 모듈에 대하여, 양극 버스바(201)와 음극 버스바(202)의 여러 단자부 중 일부 단자부를 선택하여 접거나 펼 수 있다. 그러므로, 배터리 모듈이 적용되는 상황에 따라 적절한 단자부가 세워지거나 눕혀질 수 있다.
이와 같이, 버스바의 각 단자부에 대하여, 벤딩 가능하도록 구성되는 경우, 단자부에 대한 연결이 보다 용이하게 이루어질 수 있고, 양극 버스바(201)와 음극 버스바(202) 간 분리성이 향상될 수 있다.
도 9는, 본 발명의 일 실시예에 따른 배터리 모듈이 다수 연결된 구성을 개략적으로 나타내는 도면이다.
도 9를 참조하면, 본 발명에 따른 배터리 모듈이 측면 수평 방향(x축 방향), 즉 좌우 방향으로 다수 배열될 수 있다. 이때, 각 배터리 모듈의 양극 버스바(201)와 음극 버스바(202)는 연결부(210)가 서로 대면되는 형태로 구성될 수 있다. 그리고, 각 배터리 모듈의 경우, 도 8에 도시된 바와 같이, 음극 버스바(202)는 전방 측 단자부가 세워진 형태로 구성되고, 양극 버스바(201)는 후방 측 단자부가 세워진 형태로 구성될 수 있다. 그리고, 이와 같이 세워진 전방 측 음극 단자부는 음극용 연결 부재(520)와 연결되고, 세워진 후방 측 양극 단자부는 양극용 연결 부재(510)와 연결될 수 있다.
이러한 구성에 의하면, 다수의 배터리 모듈 간 병렬 연결 구성이 용이하게 이루어질 수 있다. 즉, 도 9에 도시된 바와 같이, 각 배터리 모듈에서 서로 연결되는 음극 단자부는 배터리 모듈의 전방 측에서 일렬로 배열되고, 서로 연결되는 양극 단자부는 배터리 모듈의 후방 측에서 일렬로 배열될 수 있다. 따라서, 음극 단자부 사이를 연결하는 음극용 연결 부재(520)와 양극 단자부 사이를 연결하는 양극용 연결 부재(510)는 모두, 대략 일직선 형태로 형성될 수 있다. 또한, 음극용 연결 부재(520)와 양극용 연결 부재(510) 사이의 거리가 일정 수준 이상 확보될 수 있다. 그리고, 음극용 연결 부재(510)의 설치 시 구조적으로 양극 단자의 간섭을 받지 않고, 양극용 연결 부재(520)의 설치 시 구조적으로 음극 단자의 간섭을 받지 않을 수 있다.
한편, 도 9의 실시예의 경우, 다수의 배터리 모듈 간 병렬 연결 구성을 기준으로 설명되어 있으나, 다수의 배터리 모듈 간 직렬 연결 구성도 가능함은 물론이다.
본 발명에 따른 배터리 모듈은, 모듈 케이스(400)를 더 포함할 수 있다. 특히, 모듈 케이스(400)는, 도 2에 도시된 바와 같이, 제1 케이스(401) 및 제2 케이스(402)를 구비할 수 있다.
여기서, 상기 제1 케이스(401)는, 내부에 빈 공간이 형성되어 셀 어셈블리(100)의 일부를 수용하도록 구성될 수 있다. 또한, 상기 제2 케이스(402)는, 내부에 빈 공간이 형성되어 셀 어셈블리(100)의 다른 일부를 수용하도록 구성될 수 있다. 더욱이, 제1 케이스(401)와 제2 케이스(402)는, 각각의 캔형 이차 전지를 수용하기 위한 공간을 별도로 구비할 수 있다. 예를 들어, 제1 케이스(401)는, 도 2에서 R1으로 표시된 바와 같이, 각 이차 전지를 수용하기 위한 공간이 격벽에 의해 서로 분리된 형태로 구성될 수 있다. 또한, 제2 케이스(402)도, 도 2에서 R2로 표시된 바와 같이, 각 이차 전지를 수용하기 위한 공간이 격벽에 의해 서로 분리된 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 셀 어셈블리(100) 전체의 고정 및 각 이차 전지의 고정, 그리고 버스바의 고정이 모듈 케이스(400)에 의해 한 번에 이루어질 수 있다. 또한, 모듈 케이스(400)는 폴리머와 같은 절연 재질로 구성될 수 있는데, 이 경우, 셀 어셈블리(100) 및 버스바의 절연성이 용이하게 확보될 수 있다.
더욱이, 캔형 이차 전지가 원통형 이차 전지인 경우, 제1 케이스(401) 및 제2 케이스(402)는, R1 및 R2로 표시된 이차 전지 수용 공간이 캔형 이차 전지의 형태에 대응하여 원통형으로 구성될 수 있다.
한편, 제1 케이스(401) 및 제2 케이스(402)에서, 이차 전지를 수용하기 위한 공간(R1, R2)은, 이차 전지의 길이 방향(도면의 x축 방향)으로 모듈 케이스(400)를 관통하는 형태로 구성될 수 있다. 예를 들어, 모듈 케이스(400)에서 이차 전지를 수용하기 위한 중공(R1, R2)은 좌우 방향으로 관통되는 형태로 형성되어, 모듈 케이스(400)의 내측에 위치한 이차 전지의 전극이 모듈 케이스(400)의 외측으로 노출되도록 구성될 수 있다. 따라서, 이 경우, 외측에 위치한 버스바가 외측으로 노출된 이차 전지의 전극과 직접 접촉될 수 있다.
이러한 제1 케이스(401)와 제2 케이스(402)는, 셀 어셈블리(100)의 일측과 타측에서 각각 결합되도록 구성될 수 있다. 예를 들어, 도 2의 구성에서, 제1 케이스(401)는, 셀 어셈블리(100)의 우측에 배치되어 셀 어셈블리(100)의 우측 부분을 수용할 수 있다. 그리고, 제2 케이스(402)는, 셀 어셈블리(100)의 좌측에 위치하여 셀 어셈블리(100)의 좌측 부분을 수용할 수 있다.
특히, 제1 케이스(401)와 제2 케이스(402)는, 각각 셀 어셈블리(100)의 일측과 타측을 커버하되, 캔형 이차 전지의 측면을 전체적으로 커버하도록 구성될 수 있다. 예를 들어, 캔형 이차 전지가 원통형 이차 전지인 경우, 제1 케이스(401)와 제2 케이스(402)는, 원통형 전지의 측면(곡면)을 전체적으로 커버함으로써, 이차 전지의 측면이 배터리 모듈의 외부로 노출되지 않도록 구성될 수 있다. 본 발명의 이러한 구성에 의하면, 모듈 케이스(400)에 의해, 이차 전지의 측면 노출이 차단되므로, 이차 전지의 절연성이 향상되고, 외부의 물리적, 화학적 요소로부터 이차 전지를 보호할 수 있다.
또한, 제1 케이스(401)와 제2 케이스(402)는, 상호 결합 고정될 수 있다. 즉, 제1 케이스(401)의 좌측 단부와 제2 케이스(402)의 우측 단부는 상호 결합될 수 있으며, 이러한 결합 구성을 통해, 셀 어셈블리(100)의 상면, 하면, 전면 및 후면을 전체적으로 커버할 수 있다. 다시 말해, 이러한 제1 케이스(401)와 제2 케이스(402)의 결합 구성으로, 도 3에서의 이차 전지의 측면(원통의 곡면)을 전체적으로 커버할 수 있다. 여기서, 제1 케이스(401)와 제2 케이스(402)는, 도면에 도시된 바와 같이, 상호 대응되는 형태로 체결돌기 및 체결홈이 형성되어, 이러한 체결돌기와 체결홈의 끼움결합에 의해 상호 결합 고정될 수 있다.
이처럼, 배터리 모듈에 모듈 케이스(400)가 구비되는 구성에 있어서, 상기 버스바는 모듈 케이스(400)의 외측에 부착될 수 있다.
예를 들어, 도 2의 구성을 참조하면, 배터리 모듈을 구성하기 위해, 셀 어셈블리(100)를 중심으로, 우측과 좌측에 먼저 제1 케이스(401)와 제2 케이스(402)가 결합될 수 있다. 그리고 나서, 제1 케이스(401)와 제2 케이스(402)의 외측에 양극 버스바(201) 및 음극 버스바(202)가 결합될 수 있다.
본 발명의 이러한 구성에 의하면, 버스바와 셀 어셈블리(100) 사이의 결합이 안정적으로 이루어질 수 있다. 특히, 버스바는, 모듈 케이스(400)의 외측에 고정될 수 있으므로, 버스바와 이차 전지 사이의 접촉 상태, 그리고 버스바와 방열 부재(10) 사이의 접촉 상태가 안정적으로 유지될 수 있다.
또한, 이 경우, 양극 버스바(201)와 음극 버스바(202)의 절연성이 확보될 수 있다. 특히, 양극 버스바(201)의 경우, 캔형 이차 전지의 양극 단자에만 접촉되고 전지 캔에는 접촉되지 않을 수 있으므로, 양극 버스바(201)가 이차 전지의 음극 측에 연결되어 단락이 발생하는 것을 방지할 수 있다. 더욱이, 이 경우, 모듈 케이스(400)는, 버스바가 의도되지 않은 부분에서 다른 버스바 내지 이차 전지의 다른 부분과 전기적으로 연결되는 것을 방지하기 위해, 플라스틱 등의 전기 절연성 재질로 구성될 수 있다.
또한, 상기 버스바는, 모듈 케이스(400)의 상부, 측면 및 하부를 감싸도록 절곡된 형태로 구성될 수 있다.
예를 들어, 도 2의 구성에서, 양극 버스바(201)는, 제1 케이스(401)의 외측, 즉 우측에 구비되어, 상단부 및 하단부가 제1 케이스(401)의 내부 측, 즉 좌측 방향으로 절곡되도록 구성될 수 있다. 그리고, 이와 같은 절곡 구성으로 인해, 양극 버스바(201)는 제1 케이스(401)의 상부, 측면 및 하부 각각의 적어도 일부를 외측에서 감쌀 수 있다. 이때, 버스바에서 평평하게 세워진 중앙 부분은 연결부(210)이며, 버스바의 상단부에서 좌측 방향으로 절곡된 부분은 단자부(230)이고, 버스바의 하단부에서 좌측 방향으로 절곡된 부분은 열전달부(220)일 수 있다.
또한, 도 2의 구성에서, 음극 버스바(202)는, 제2 케이스(402)의 외측, 즉 좌측에 구비되어, 상단부 및 하단부가 제2 케이스(402)의 내측, 즉 우측 방향으로 절곡되도록 구성될 수 있다. 그리고, 이와 같은 절곡 구성으로 인해, 음극 버스바(202)는 제2 케이스(402)의 상부, 측면 및 하부 각각의 적어도 일부를 외측에서 감쌀 수 있다. 그리고, 이러한 음극 버스바(202)에서, 중앙의 평평한 부분은 연결부(210)이며, 상단부의 절곡된 부분은 단자부(230)이고, 하단부의 절곡된 부분은 열전달부(220)일 수 있다.
또한 바람직하게는, 상기 모듈 케이스(400)는, 버스바의 적어도 일부분이 삽입될 수 있도록 결합홈이 형성될 수 있다.
도 10은 도 2의 A2 부분에 대한 확대도이고, 도 11은 도 2의 A3 부분에 대한 확대도이다.
먼저, 도 10을 참조하면, 제1 케이스(401)의 하면에는, G2로 표시된 바와 같이, 상부 방향으로 오목하게 형성된 형태의 결합홈이 형성될 수 있다. 그리고, 이러한 결합홈(G2)에는, 제1 케이스(401)와 양극 버스바(201)의 결합 시, 양극 버스바(201)의 열전달부(220)가 삽입 및 안착될 수 있다.
이러한 구성에 있어서, 제1 케이스(401)는, 양극 버스바(201)의 열전달부(220)의 말단부 외측에 차단부가 형성되도록 구성될 수 있다. 즉, 도 10의 구성에서, 제1 케이스(401)의 하면에는, 결합홈(G2)이 형성되되, 그 내측(도면의 좌측)에는, W2로 표시된 바와 같이, 하부 방향으로 돌출된 형태의 차단부가 구비될 수 있다. 이 경우, 결합홈(G2)에 삽입된 열전달부(220)는, 차단부(W2)에 의해 말단부 외측이 차단되어, 양극 버스바(201)의 열전달부(220)가 음극 버스바(202)의 열전달부(220) 측으로 이동되거나, 음극 버스바(202)의 열전달부(220)가 양극 버스바(201)의 열전달부(220)로 이동되는 것을 보다 확실하게 방지할 수 있다. 그러므로, 이 경우, 양극 버스바(201)와 음극 버스바(202)의 절연성이 보다 안정적으로 확보될 수 있다.
또한, 도 11을 참조하면, 제2 케이스(402)의 하면에는, G3로 표시된 바와 같이, 상부 방향으로 오목하게 형성된 형태의 결합홈이 형성될 수 있다. 그리고, 이러한 결합홈(G3)에는, 제2 케이스(402)와 음극 버스바(202)의 결합 시, 음극 버스바(202)의 열전달부(220)가 삽입 및 안착될 수 있다.
이러한 구성에 있어서, 제2 케이스(402)는, 음극 버스바(202)의 열전달부(220)의 말단부 외측에 차단부가 형성되도록 구성될 수 있다. 즉, 도 11의 구성에서, 제2 케이스(402)의 하면에는, 결합홈(G3)이 형성되되, 그 내측(도면의 우측)에는, W3로 표시된 바와 같이 차단부가 구비될 수 있다. 이 경우, 결합홈(G3)에 삽입된 열전달부(220)의 말단부 외측은, 차단부(W3)에 의해 차단되어, 음극 버스바(202)와 양극 버스바(201)의 절연성이 보다 안정적으로 확보될 수 있다.
한편, 도 10 및 도 11의 실시예에서는, 버스바의 열전달부(220)가 모듈 케이스(400)에 삽입되는 구성을 중심으로 설명되었으나, 버스바의 연결부(210) 및/또는 단자부(230)도 모듈 케이스(400)에 삽입되도록 구성될 수 있다.
예를 들어, 도 8에서 G4로 표시된 바와 같이, 제1 케이스(401)의 상면 후방 측에는 양극 버스바(201)의 단자부에 대응되는 위치, 개수 및 형태로 결합홈이 형성될 수 있다. 그리고, 이러한 결합홈(G4)에는, 양극 버스바(201)의 단자부(M2)가 삽입될 수 있다.
또한, 도 8에서 G5로 표시된 바와 같이, 제2 케이스(402)의 상면 전방 측에는 음극 버스바(202)의 단자부에 대응되는 위치, 개수 및 형태로 결합홈이 형성될 수 있다. 그리고, 이러한 결합홈(G5)에는, 음극 버스바(202)의 단자부(N1)가 삽입될 수 있다.
또한, 제1 케이스(401)의 상면 전방 측 및 제2 케이스(402)의 상면 후방 측에도, 양극 버스바(201)의 단자부(M1) 및 음극 버스바(202)의 단자부(N2)가 삽입되도록 결합홈이 형성될 수 있다.
본 발명의 이러한 구성에 의하면, 버스바, 특히 버스바의 단자부(230)와 모듈 케이스(400) 사이의 결합성이 증대될 수 있다. 또한, 결합홈에 단자부(230)가 삽입됨으로써, 단자부(230)의 외부 노출을 감소시켜 단자부(230)에 다른 구성요소가 비의도적으로 접촉되는 것을 줄일 수 있다. 따라서, 버스바의 단자부(230)에 대한 전기적 절연성을 향상시킬 수 있다. 더욱이, 이 경우, 배터리 모듈의 외부 장치와의 전기적 연결 시 이용되지 않는 단자부(230)가 결합홈에 삽입되도록 할 수도 있다.
특히, 모듈 케이스(400)의 결합홈(G4, G5)은, 단자부(230)의 말단부 외측에 차단부가 형성되도록 구성될 수 있다.
예를 들어, 도 8의 구성에서 W4 및 W5로 표시된 부분과 같이, 모듈 케이스(400)의 결합홈 외측에는 차단부가 형성됨으로써, 결합홈에 삽입된 단자부(230)가 외측으로 이동하거나 결합홈에 삽입된 단자부(230)로 다른 전도체가 접근하는 것을 방지할 수 있다. 따라서, 이 경우, 모듈 버스바의 단자부(230) 간 접촉이 보다 확실하게 차단될 수 있다.
또한, 상기 모듈 케이스(400)와 버스바는, 상호 결합되기 위한 구성을 구비할 수 있다.
예를 들어, 상기 제2 케이스(402)는, 도 2 및 도 11에서 P3로 표시된 바와 같이, 외측면(도면의 좌측면)에, 외측 방향으로 볼록하게 형성된 돌출부를 구비할 수 있다. 그리고, 음극 버스바(202)는, 이러한 제2 케이스(402)의 돌출부(P3)에 대응되는 위치 및 형태로, 도 2에서 H3로 표시된 바와 같이 결합홀이 형성될 수 있다. 이 경우, 제2 케이스(402)와 음극 버스바(202)가 결합할 때, 돌출부(P3)가 결합홀(H3)에 삽입될 수 있다.
또한, 제1 케이스(401)와 양극 버스바(201) 역시, 이러한 제2 케이스(402)의 돌출부 및 음극 버스바(202)의 결합홀과 유사한 형태의 돌출부 및 결합홀을 구비하여, 상호 결합될 수 있다.
본 발명의 이러한 구성에 의하면, 모듈 케이스(400)와 버스바의 결합성이 향상될 수 있고, 이들 간의 조립이 보다 용이해질 수 있다. 또한, 이 경우, 버스바를 이차 전지의 전극 단자와 용접하는 공정이 보다 원활하게 이루어질 수 있다.
도 12는 본 발명의 다른 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 사시도이고, 도 13은 도 12의 A4 부분에 대한 정단면 형상을 확대하여 나타낸 도면이다. 또한, 도 14는, 도 12의 배터리 모듈이 다수 연결된 구성을 개략적으로 나타내는 도면이다. 본 실시예에 대해서는 앞선 실시예와 차이점이 있는 부분을 위주로 설명하고, 앞선 실시예에 대한 설명이 동일 또는 유사하게 적용될 수 있는 부분에 대해서는 상세한 설명을 생략한다.
도 12 내지 도 14를 참조하면, 단자부(230)는, 모듈 케이스(400)의 상부로 돌출되다가 적어도 일부분이 수평 방향으로 연장되도록 절곡되는 형태로 구성될 수 있다. 특히, 도 13에 도시된 바를 참조하면, 단자부(230)는 모듈 케이스(400)의 외측에 부착된 연결부(210)에서 상부 방향으로 연장되다가 A5로 표시된 부분에서 대략 직각으로 절곡되어 수평 방향으로 연장되는 형태로 구성될 수 있다. 이 경우, 단자부(230)는, 도 13에서 J로 표시된 부분과 같이, 모듈 케이스(400)의 상면에서 상부 방향으로 소정 거리 이격되게 돌출된 상태로 지면에 평행하게 수평 방향으로 평평하게 형성된 부분을 구비할 수 있다.
본 발명의 이러한 구성에 의하면, 단자부(230)의 상부 방향으로 돌출된 상태에서 수평 방향으로 평평하게 형성된 부분, 즉 돌출 수평 구성(J)으로 인해 연결 부재와 단자부(230)의 연결이 보다 용이하고 안정적으로 이루어지도록 할 수 있다. 다시 말해, 도 12에 도시된 바를 참조하면, 양극용 연결 부재(510)와 음극용 연결 부재(520)가 단자부(230)와 접촉하여 연결되도록 구성될 때, 단자부(230)의 돌출 수평 구성(J)이 각 연결 부재(510, 520)와 면접촉할 수 있다. 따라서, 단자부(230)와 연결 부재(510, 520)의 전기적 접촉이 보다 안정적으로 이루어지며 접촉 저항을 보다 낮출 수 있다. 뿐만 아니라, 이 경우, 단자부(230)와 연결 부재(510, 520) 사이를 용접 등을 통해 체결할 때, 이러한 체결 공정이 보다 원활하게 이루어질 수 있다.
또한, 단자부(230)에 돌출 수평 구성(J)을 구비하는 구성에 있어서도, 연결부(210)와 단자부(230)는 모두 하나의 일체화된 금속 시트 형태로 구성될 수 있다. 즉, 돌출 수평 구성(J)을 포함한 단자부(230)의 구성은, 연결부(210)와 일체화된 하나의 금속판 형태로 이루어질 수 있다. 이 경우, 연결부(210)의 상단 부분이 절곡되어 단자부(230), 특히 돌출 수평 구성(J)을 포함한 단자부(230)가 형성된다고 할 수 있다. 본 발명의 이러한 구성에 의하면, 단자부(230)를 구비하는 버스바(200)의 제조가 보다 용이하게 이루어질 수 있다.
더욱이, 이러한 돌출 수평 구성(J)은, 배터리 모듈의 모듈 단자로서 기능하는 단자부에 구비될 수 있다. 예를 들어, 도 12에 도시된 구성에서, 음극 버스바(202)의 단자부(230)에는 N1, N2 2개가 구비될 수 있는데, 돌출 수평 구성(J)은, 전방 측에 위치한 단자부(N1)에만 형성될 수 있다. 또한, 도 12의 구성에서, 양극 버스바(201)의 단자부(230)에는 M1, M2 2개가 구비될 수 있는데, 돌출 수평 구성(J)은, 후방 측에 위치한 단자부(M2)에만 형성될 수 있다.
더욱 바람직하게는, 상기 단자부(230)는, 돌출 수평 구성(J)을 형성하다가 다시 하부 방향으로 연장되는 형태로 구성될 수 있다. 보다 구체적으로, 도 13에 도시된 바를 참조하면, 상기 단자부(230)는 모듈 케이스(400)의 상부로 돌출되다가 A5 부분에서 수평 방향으로 절곡되어 돌출 수평 구성(J)을 형성하고, 다시 A6 부분에서 하부 방향으로 대략 직각으로 절곡되는 형태로 구성될 수 있다. 이 경우, 단자부(230)는 적어도 2개의 절곡부(A5, A6)가 형성된다고 할 수 있다.
한편, 상기와 같은 구성에 있어서, 단자부(230)에서 하부 방향으로 절곡된 부분의 하단부는, 단자부(230)의 말단부이자 버스바(200) 자체의 상부 말단부라 할 수 있다. 여기서, 이러한 단자부(230)의 말단부는 모듈 케이스(400)의 표면에 접촉하도록 구성될 수 있다. 즉, 도 13에서 A7으로 표시된 부분과 같이, 단자부(230)의 말단부는 모듈 케이스(400)의 상부 표면에 안착되도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 단자부(230)의 말단부가 모듈 케이스(400)에 의해 상부 방향으로 지지될 수 있다. 따라서, 연결 부재(510, 520) 등의 구성이 단자부(230)의 돌출 수평 부분(J)에 접촉되거나 접촉된 이후 과정에서, 단자부(230)의 말단부가 하부 방향으로 이동하지 않음으로써 돌출 수평 부분(J)이 수평 상태를 안정적으로 유지할 수 있다. 그러므로, 이 경우, 단자부(230)와 연결 부재(510, 520)의 연결 공정이 보다 원활하게 이루어지며, 진동이나 외부 충격 등에도 단자부(230)와 연결 부재(510, 520)의 연결 상태가 보다 안정적으로 유지될 수 있다.
더욱이, 이와 같은 구성에 있어서, 모듈 케이스(400)는, 상기 단자부(230)의 말단부가 삽입되어 안착될 수 있도록 안착홈이 형성될 수 있다. 보다 구체적으로 도 12 및 13에 도시된 바를 참조하면, 모듈 케이스(400)의 상면, 특히 모듈 케이스(400)의 상부 결합홈(G4, G5)에, E1으로 표시된 바와 같이, 하부 방향으로 오목한 형태의 안착홈이 형성될 수 있다. 그리고, 이러한 모듈 케이스(400)의 안착홈(E1)에 단자부(230)의 말단부가 하부 방향으로 삽입될 수 있다. 특히, 모듈 케이스(400)의 안착홈(E1)은, 배터리 모듈의 전후 방향으로 길게 연장된 형태로 형성된 슬릿 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 단자부(230)의 말단부가 모듈 케이스(400)의 안착홈(E1)에 삽입되어, 단자부(230)의 형태가 안정적으로 유지될 수 있다. 특히, 단자부(230)의 말단부는 좌우 방향(도면의 X축 방향)으로 쉽게 움직이지 않을 수 있다. 그러므로, 단자부(230)의 돌출 수평 구성(J)은, 모듈 케이스(400)의 상부 표면에 평행하거나, 지면에 평행하거나, 연결 부재(510, 520)의 길이 방향에 평행한 상태를 잘 유지할 수 있다. 따라서, 단자부(230)와 연결 부재의 접속 및 연결 상태가 보다 확실하게 유지될 수 있다.
또한, 본 발명에 따른 배터리 모듈은, 버스바의 외측에 절연 패널을 더 포함할 수 있다. 상기 절연 패널은, 폴리머나 실리콘, 고무 등의 전기 절연성 재질로 구성될 수 있다. 더욱이, 상기 절연 패널은 상하 방향으로 세워진 형태로, 버스바의 연결부(210) 외측에 구비될 수 있다.
본 발명의 이러한 구성에 의하면, 절연 패널에 의해 연결부(210)의 노출이 방지되거나 감소되어 버스바에 대한 전기적 절연성이 안정적으로 확보될 수 있다.
또한, 배터리 모듈에 모듈 케이스(400)가 구비된 실시예에 있어서, 상기 절연 패널은, 모듈 케이스(400)의 외측에 결합될 수 있다. 예를 들어, 모듈 케이스(400)의 외측 모서리 부근에는 홈이 형성되어 상기 절연 패널의 모서리가 이러한 홈에 삽입될 수 있다. 또는, 모듈 케이스(400)의 외측 모서리에는 돌기가 형성되어, 상기 절연 패널의 모서리에 이러한 돌기가 삽입될 수 있다.
본 발명에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 하나 이상 포함할 수 있다. 예를 들어, 도 9에 도시된 바와 같이, 본 발명에 따른 배터리 팩은 다수의 배터리 모듈을 포함할 수 있으며, 이 경우, 배터리 모듈 간 연결을 위한 연결 부재를 더 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩은, 이러한 배터리 모듈 이외에, 배터리 모듈을 수납하기 위한 팩 케이스, 배터리 모듈의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS, 전류 센서, 퓨즈 등을 더 포함할 수 있다.
본 발명에 따른 배터리 모듈은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 즉, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함할 수 있다. 특히, 전기 자동차의 경우, 배터리 모듈은 차량의 하부에 배치될 수 있는데, 이때 그 높이를 높게 구성하지 않을 필요가 있다. 뿐만 아니라, 이러한 자동차용 배터리 모듈의 경우, 냉각 성능 또한 매우 중요하다. 따라서, 이러한 자동차에 본 발명에 따른 배터리 모듈이 적용되는 경우, 높이가 낮으면서도 효과적인 냉각 성능이 확보될 수 있는 배터리 모듈이 제공될 수 있다.
한편, 본 명세서에서는 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
10: 방열 부재
100: 셀 어셈블리
110: 이차 전지
200: 버스바
201: 양극 버스바, 202: 음극 버스바
210: 연결부, 220: 열전달부, 230: 단자부
300: 써멀 패드
400: 모듈 케이스
401: 제1 케이스, 402: 제2 케이스
510: 양극용 연결 부재, 520: 음극용 연결 부재
Claims (13)
- 방열 부재가 하부에 배치된 배터리 모듈에 있어서,수평 방향으로 눕혀진 형태로 적층된 다수의 캔형 이차 전지를 구비하는 셀 어셈블리; 및상기 셀 어셈블리에 구비된 둘 이상의 캔형 이차 전지의 전극에 접촉하여 상기 둘 이상의 캔형 이차 전지 사이를 전기적으로 연결하는 연결부 및 상기 연결부의 하부에 위치하고 상기 방열 부재와 접촉하여 상기 이차 전지의 열을 상기 방열 부재로 전달하는 열전달부를 구비하며, 적어도 일부분이 전기 전도성 재질로 구성된 버스바를 포함하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 버스바는 절곡된 플레이트 형태로 구성되어, 상기 연결부는 상기 셀 어셈블리의 일 측면을 따라 상하 방향으로 세워진 형태로 구성되고, 상기 열전달부는 수평 방향으로 눕혀진 형태로 구성되어 상기 셀 어셈블리의 하부와 상기 방열 부재의 상부 사이에 개재된 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 버스바는, 상기 셀 어셈블리에 구비된 캔형 이차 전지의 양극에 연결부가 접촉된 양극 버스바 및 상기 셀 어셈블리에 구비된 캔형 이차 전지의 음극에 연결부가 접촉된 음극 버스바를 구비하는 것을 특징으로 하는 배터리 모듈.
- 제3항에 있어서,상기 양극 버스바와 상기 음극 버스바는, 상기 셀 어셈블리의 반대되는 측면에 위치하여, 상기 열전달부가 서로 반대 방향으로 절곡된 형태로 구성된 것을 특징으로 하는 배터리 모듈.
- 제3항에 있어서,상기 양극 버스바와 상기 음극 버스바는, 하나의 방열 부재에 접촉되고,상기 배터리 모듈은, 상기 양극 버스바 및 상기 음극 버스바 중 적어도 하나와 상기 방열 부재 사이에 개재되어 상기 버스바의 열을 상기 방열 부재로 전달하며, 전기 절연 재질로 구성된 써멀 패드를 더 포함하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 버스바는, 외부 구성요소와의 전기적 연결을 위한 단자를 제공하는 단자부를 더 구비하는 것을 특징으로 하는 배터리 모듈.
- 제6항에 있어서,상기 단자부는, 상기 연결부의 상부에서 상기 셀 어셈블리의 상부 방향으로 절곡된 형태로 구성된 것을 특징으로 하는 배터리 모듈.
- 제6항에 있어서,상기 단자부는, 하나의 버스바에서 서로 소정 거리 이격되게 둘 이상 구비된 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,내부에 빈 공간이 형성되어 상기 셀 어셈블리의 일부를 수용하는 제1 케이스 및 내부에 빈 공간이 형성되어 상기 셀 어셈블리의 다른 일부를 수용하는 제2 케이스를 구비하며, 상기 제1 케이스와 상기 제2 케이스는 상기 셀 어셈블리의 일측과 타측에서 각각 결합되도록 구성된 모듈 케이스를 더 포함하는 것을 특징으로 하는 배터리 모듈.
- 제9항에 있어서,상기 버스바는, 상기 모듈 케이스의 외측에 부착된 것을 특징으로 하는 배터리 모듈.
- 제9항에 있어서,상기 모듈 케이스는, 상기 버스바의 적어도 일부분이 삽입될 수 있도록 결합홈이 형성된 것을 특징으로 하는 배터리 모듈.
- 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을 하나 이상 포함하는 배터리 팩.
- 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을 하나 이상 포함하는 자동차.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/339,631 US10892464B2 (en) | 2017-04-18 | 2018-04-03 | Battery module |
JP2019529254A JP6782844B2 (ja) | 2017-04-18 | 2018-04-03 | バッテリーモジュール |
EP18787680.0A EP3531500A4 (en) | 2017-04-18 | 2018-04-03 | BATTERY MODULE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170049938 | 2017-04-18 | ||
KR10-2017-0049938 | 2017-04-18 | ||
KR1020180026447A KR102043969B1 (ko) | 2017-04-18 | 2018-03-06 | 배터리 모듈 |
KR10-2018-0026447 | 2018-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018194296A1 true WO2018194296A1 (ko) | 2018-10-25 |
Family
ID=63855916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/003933 WO2018194296A1 (ko) | 2017-04-18 | 2018-04-03 | 배터리 모듈 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN108735936B (ko) |
WO (1) | WO2018194296A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111630683A (zh) * | 2018-11-05 | 2020-09-04 | 株式会社Lg化学 | 包括安装结构的电池组 |
CN111725446A (zh) * | 2019-03-20 | 2020-09-29 | 宁德时代新能源科技股份有限公司 | 一种电池模块及电池包 |
CN113826270A (zh) * | 2019-10-15 | 2021-12-21 | 株式会社Lg新能源 | 电池组、电子装置及车辆 |
CN114074563A (zh) * | 2020-08-14 | 2022-02-22 | 沃尔沃卡车集团 | 电池电动车辆超级模块 |
US20220109132A1 (en) * | 2020-10-06 | 2022-04-07 | Rivian Ip Holdings, Llc | Battery module support beam |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020102117A1 (en) * | 2018-11-13 | 2020-05-22 | Wynn Nathaniel C | Battery module with close-pitch cylindrical cells and method of assembly |
JP7164634B2 (ja) * | 2019-02-05 | 2022-11-01 | 本田技研工業株式会社 | 電動車両 |
WO2020163665A1 (en) * | 2019-02-08 | 2020-08-13 | Cps Technology Holdings L.L.C | Battery system having a passive heat sink |
WO2020214384A1 (en) * | 2019-04-15 | 2020-10-22 | Robert Bosch Gmbh | Battery module including asymmetric cell electrical connections |
JP7332711B2 (ja) * | 2019-04-15 | 2023-08-23 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 絶縁バスバーアセンブリを含む電池モジュール |
CN110289377B (zh) * | 2019-05-29 | 2020-08-14 | 南京航空航天大学 | 基于泡沫铝材料和圆柱形电池的动力电池包 |
CN114204147B (zh) * | 2019-06-28 | 2024-03-22 | 宁德时代新能源科技股份有限公司 | 电池模组 |
KR20210066528A (ko) * | 2019-11-28 | 2021-06-07 | 주식회사 엘지에너지솔루션 | 전지 모듈 및 이를 포함하는 전지 팩 |
KR20210094924A (ko) * | 2020-01-22 | 2021-07-30 | 주식회사 엘지에너지솔루션 | 배터리 모듈 |
KR20210108127A (ko) * | 2020-02-25 | 2021-09-02 | 삼성에스디아이 주식회사 | 이차 전지 팩 |
DE102020125856A1 (de) * | 2020-10-30 | 2022-05-05 | Volkswagen Aktiengesellschaft | Batteriemodul |
CN116960519B (zh) * | 2023-09-21 | 2023-12-01 | 河南锂动电源有限公司 | 一种模块化拼接式锂电池组 |
CN118156627A (zh) * | 2024-05-10 | 2024-06-07 | 晶科储能科技有限公司 | 一种二次电池、电池包及储能箱 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000077049A (ja) * | 1998-09-01 | 2000-03-14 | Sanyo Electric Co Ltd | 組電池 |
JP2011159474A (ja) * | 2010-01-29 | 2011-08-18 | Sanyo Electric Co Ltd | 電池パック |
KR20170011349A (ko) * | 2015-07-22 | 2017-02-02 | 주식회사 엘지화학 | 배터리 모듈 어셈블리 및 이를 포함하는 배터리 팩 |
KR20170022371A (ko) * | 2015-08-20 | 2017-03-02 | 삼성에스디아이 주식회사 | 이차 전지 모듈 |
JP2017059346A (ja) * | 2015-09-15 | 2017-03-23 | 日立オートモティブシステムズ株式会社 | 二次電池および組電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4632097B2 (ja) * | 2008-03-05 | 2011-02-16 | 株式会社デンソー | 組電池 |
US8580423B2 (en) * | 2009-10-22 | 2013-11-12 | Samsung Sdi Co., Ltd. | Bus bar holder and battery pack including the same |
KR101201747B1 (ko) * | 2010-05-24 | 2012-11-15 | 에스비리모티브 주식회사 | 전지 모듈 |
US8889292B2 (en) * | 2011-10-13 | 2014-11-18 | Samsung Sdi Co., Ltd. | Rechargeable battery |
CN103346355A (zh) * | 2013-07-11 | 2013-10-09 | 上海空间电源研究所 | 一种锂离子软包装电池组结构 |
CN103490032B (zh) * | 2013-09-26 | 2017-10-20 | 浙江吉利控股集团有限公司 | 储电池汇流排连接结构及其汇流排 |
KR101807115B1 (ko) * | 2014-04-03 | 2017-12-08 | 주식회사 엘지화학 | 언더 베이스 바를 포함하는 배터리 모듈 어레이 |
WO2016045752A1 (en) * | 2014-09-26 | 2016-03-31 | Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Nv | Method for packaging and connecting electric storage cells for efficiency and cycle/life expectancy |
-
2018
- 2018-04-03 WO PCT/KR2018/003933 patent/WO2018194296A1/ko unknown
- 2018-04-18 CN CN201810350194.6A patent/CN108735936B/zh active Active
- 2018-04-18 CN CN201820556992.XU patent/CN208078066U/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000077049A (ja) * | 1998-09-01 | 2000-03-14 | Sanyo Electric Co Ltd | 組電池 |
JP2011159474A (ja) * | 2010-01-29 | 2011-08-18 | Sanyo Electric Co Ltd | 電池パック |
KR20170011349A (ko) * | 2015-07-22 | 2017-02-02 | 주식회사 엘지화학 | 배터리 모듈 어셈블리 및 이를 포함하는 배터리 팩 |
KR20170022371A (ko) * | 2015-08-20 | 2017-03-02 | 삼성에스디아이 주식회사 | 이차 전지 모듈 |
JP2017059346A (ja) * | 2015-09-15 | 2017-03-23 | 日立オートモティブシステムズ株式会社 | 二次電池および組電池 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111630683A (zh) * | 2018-11-05 | 2020-09-04 | 株式会社Lg化学 | 包括安装结构的电池组 |
CN111630683B (zh) * | 2018-11-05 | 2022-11-29 | 株式会社Lg新能源 | 包括安装结构的电池组以及包括该电池组的电子装置及车辆 |
CN111725446A (zh) * | 2019-03-20 | 2020-09-29 | 宁德时代新能源科技股份有限公司 | 一种电池模块及电池包 |
CN113826270A (zh) * | 2019-10-15 | 2021-12-21 | 株式会社Lg新能源 | 电池组、电子装置及车辆 |
CN113826270B (zh) * | 2019-10-15 | 2023-08-25 | 株式会社Lg新能源 | 电池组、电子装置及车辆 |
CN114074563A (zh) * | 2020-08-14 | 2022-02-22 | 沃尔沃卡车集团 | 电池电动车辆超级模块 |
US20220109132A1 (en) * | 2020-10-06 | 2022-04-07 | Rivian Ip Holdings, Llc | Battery module support beam |
US11967724B2 (en) * | 2020-10-06 | 2024-04-23 | Rivian Ip Holdings, Llc | Battery module support beam |
Also Published As
Publication number | Publication date |
---|---|
CN108735936A (zh) | 2018-11-02 |
CN108735936B (zh) | 2021-01-12 |
CN208078066U (zh) | 2018-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018194296A1 (ko) | 배터리 모듈 | |
WO2019107717A1 (ko) | 방열 플레이트를 구비한 배터리 모듈 | |
WO2019139385A1 (ko) | 가스 배출 구조가 형성된 배터리 모듈 | |
WO2019203426A1 (ko) | 버스바를 구비한 배터리 모듈 및 배터리 팩 | |
WO2020096221A1 (ko) | 탑재 구조물을 포함하는 배터리 팩 | |
WO2018230857A1 (ko) | 배터리 모듈 | |
WO2019059538A1 (ko) | 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩 | |
WO2018034383A1 (ko) | 배터리 모듈 | |
WO2019098588A1 (ko) | 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈 | |
WO2020071642A1 (ko) | 접속 플레이트를 구비한 배터리 팩 | |
WO2020145531A1 (ko) | 절연 튜브를 포함한 배터리 팩 | |
WO2021118028A1 (ko) | 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈 | |
WO2018221818A1 (ko) | 배터리 모듈 | |
WO2021075780A1 (ko) | 배터리 팩 및 전자 디바이스 및 자동차 | |
WO2020022678A1 (ko) | 도포 방지부가 구비된 셀 프레임을 포함하는 이차전지 팩 | |
WO2023038396A1 (ko) | 파우치형 배터리 셀의 길이 방향 확장 구조를 적용한 셀 어셈블리, 이를 포함하는 배터리 팩 | |
WO2019107938A1 (ko) | 전장 어셈블리 및 상기 전장 어셈블리를 포함하는 배터리 팩 | |
WO2020145530A1 (ko) | 내부 플레이트를 포함한 배터리 모듈 | |
WO2022186663A1 (ko) | 배터리 팩 및 이를 포함하는 자동차 | |
WO2020101209A1 (ko) | 모듈 하우징을 포함한 배터리 모듈 | |
WO2020145532A1 (ko) | 모듈 케이스를 구비한 배터리 모듈 | |
WO2022149964A1 (ko) | 배터리 팩 및 이를 포함하는 자동차 | |
WO2022149884A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2022080754A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2021141397A1 (ko) | 접속 플레이트를 구비한 배터리 팩, 전자 디바이스, 및 자동차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787680 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019529254 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018787680 Country of ref document: EP Effective date: 20190523 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |