WO2018193601A1 - カテーテル - Google Patents

カテーテル Download PDF

Info

Publication number
WO2018193601A1
WO2018193601A1 PCT/JP2017/015957 JP2017015957W WO2018193601A1 WO 2018193601 A1 WO2018193601 A1 WO 2018193601A1 JP 2017015957 W JP2017015957 W JP 2017015957W WO 2018193601 A1 WO2018193601 A1 WO 2018193601A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh member
hollow shaft
tip
proximal end
distal end
Prior art date
Application number
PCT/JP2017/015957
Other languages
English (en)
French (fr)
Inventor
雄太 中川
俊彦 塚本
知也 沢田
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to JP2019513180A priority Critical patent/JP6755385B2/ja
Priority to PCT/JP2017/015957 priority patent/WO2018193601A1/ja
Priority to CN201780089653.3A priority patent/CN110545876A/zh
Priority to EP17906447.2A priority patent/EP3613461A1/en
Publication of WO2018193601A1 publication Critical patent/WO2018193601A1/ja
Priority to US16/658,544 priority patent/US20200046937A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0074Dynamic characteristics of the catheter tip, e.g. openable, closable, expandable or deformable
    • A61M2025/0079Separate user-activated means, e.g. guidewires, guide tubes, balloon catheters or sheaths, for sealing off an orifice, e.g. a lumen or side holes, of a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M2025/0096Catheter tip comprising a tool being laterally outward extensions or tools, e.g. hooks or fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/0293Catheter, guide wire or the like with means for holding, centering, anchoring or frictionally engaging the device within an artificial lumen, e.g. tube

Definitions

  • the present invention relates to a catheter.
  • the occlusion is removed at a site where the obstruction in the blood vessel exists, for example.
  • a mesh-shaped blade is expanded in the radial direction (for example, see Patent Document 1), or a mesh-shaped self-expandable area is provided so that the removed obstruction can be collected (for example, Patent Document 2) is known.
  • the mesh-like member when a mesh-like member as described above is expanded, the mesh-like member may not be sufficiently expanded in a narrow blood vessel, and it cannot always be said that a retrograde guide wire can be reliably received.
  • the present invention has been made based on the circumstances as described above, and an object of the present invention is to provide a catheter capable of preventing the second hollow shaft from damaging the guide membrane or from damaging the second hollow shaft itself. It is to provide.
  • the present invention (1) a tubular mesh member that can be expanded and contracted in the radial direction; A first hollow shaft connected to a proximal end of the mesh member; A tip chip connected to the tip of the mesh member; An induction membrane disposed on the mesh member and having a distal end located between a proximal end of the distal tip and a distal end of the first hollow shaft; A first end connected to the distal tip and projecting proximally in a space inside the mesh member, the proximal end being located between the distal end of the first hollow shaft and the proximal end of the distal tip.
  • the distal end is connected to the distal end of the mesh member and / or the distal end tip, the proximal end is located on the proximal end side with respect to the proximal end of the first hollow shaft, and extends along the outer periphery of the second hollow shaft;
  • a core wire extending through the mesh member and the interior of the first hollow shaft;
  • a holding member that is provided in the core wire and covers the second hollow shaft, and (2) the holding member is made of a radiopaque material.
  • the “tip side” refers to a direction along the longitudinal direction of the catheter and in which the tip of the mesh member is located.
  • the “proximal end side” refers to a direction along the longitudinal direction and opposite to the distal end side.
  • the “tip” refers to the end on the tip side of each member constituting the catheter.
  • the “proximal end” refers to an end portion on the proximal end side in each member constituting the catheter.
  • the “maximum expanded diameter” means an outer diameter of a portion where the outer diameter of the mesh member orthogonal to the axial direction is maximized in a state where the mesh member is expanded.
  • the present invention can provide a catheter capable of preventing the second hollow shaft from damaging the induction membrane or from damaging the second hollow shaft itself.
  • FIG. 1 It is a schematic front view which shows the 1st Embodiment of this invention, Comprising: It is a figure which shows the state which the mesh member reduced in diameter. It is a schematic front view which shows the state which the mesh member of FIG. 1 expanded. It is a schematic perspective view which shows an example of each strand. It is a schematic perspective view which shows the other example of each strand. It is a schematic sectional drawing which shows the state which joined the strands of FIG. It is a schematic sectional drawing which shows the state which joined the strand of FIG. 3 and the strand of FIG. It is a schematic sectional drawing which shows the other example of a sealing member, Comprising: (a) has a curved end surface, (b) has a flat end surface.
  • FIG. 4 is a schematic view showing a joint portion between a core wire and a mesh member, where (a) shows a substantially annular joint portion of the core wire, (b) shows a substantially C-shaped joint portion of the core wire, and (c) to (c) e) each shows that the joint is composed of a substantially annular part.
  • FIG. 2 is a schematic diagram showing a positional relationship between a core wire and a center of gravity of a tip, and is a diagram showing a cross section of a portion taken along line VII-VII in FIG.
  • FIG. 13 is a schematic sectional view taken along line IX-IX in FIG. 12. It is a schematic diagram showing one suitable mode of an induction membrane. It is the schematic which shows the other suitable aspect of a guidance film
  • FIG. 19 It is a schematic front view which shows the state which the mesh member of FIG. 19 expanded. It is a schematic front view which shows the use condition of FIG. It is a schematic front view which shows the 2nd Embodiment of this invention, Comprising: It is a figure which shows the state which the mesh member reduced in diameter. It is a schematic sectional drawing which shows a holding member, Comprising: (a) is an example, (b) has shown the other example, respectively. It is a schematic front view which shows the other example of FIG. 22, Comprising: It is a figure which shows the state which the mesh member reduced in diameter. It is a schematic front view which shows the state which the mesh member of FIG. 24 expanded. It is the schematic front view which showed the modification of FIG.
  • an antegrade guidewire means a guidewire that is pushed forward to an operation site such as an occlusion site in a blood vessel prior to the catheter.
  • an operation site such as an occlusion site in a blood vessel prior to the catheter.
  • a guide wire that comes from the distal end side of the catheter inside the blood vessel, for example, among the guide wires.
  • FIG. 1 is a schematic front view showing a first embodiment of the present invention, and is a view showing a state where a mesh member has a reduced diameter.
  • the catheter 1 schematically includes a mesh member 110, a first hollow shaft 120, a tip tip 130, a second hollow shaft 140, a core wire 150, and a guide membrane 160. And the connector 170.
  • the mesh member 110 is a tubular member that can expand and contract in the radial direction.
  • the mesh member 110 is expanded in diameter by, for example, being deformed out of plane and bulging outwardly as shown in FIG.
  • a retrograde guide wire is received in the catheter 1 through the opening m of the member 110.
  • the mesh member 110 has a plurality of first strands 111 and a plurality of second strands 112, and the first strands 111 and the second strands 112 are knitted in a lattice shape. And formed into a tube shape as a whole. Further, the mesh member 110 has a mesh m between adjacent knitted wires, and receives the retrograde guide wire through the expanded mesh m when the diameter is expanded. Note that a distal tip 130 and a first hollow shaft 120, which will be described later, are joined to the distal end and the proximal end of each strand constituting the mesh member 110, respectively.
  • each of the strands (the first strand 111 and the second strand 112) constituting the mesh member 110 can employ either the single wire a shown in FIG. 3 or a plurality of strands.
  • a plurality of strands having different wire diameters are twisted, such as a core wire b1 disposed in the center as shown in FIG. 4 and a plurality of side wires b2 disposed so as to surround the core wire b1.
  • the twisted wires b may be formed from each other (hereinafter, when the twisted wires b as shown in FIG. 4 are used as the first strand 111 and the second strand 112, respectively, the first strand 111 , Described as a second stranded wire 112).
  • the single wire a and a portion of the plurality of strands constituting the stranded wire b are joined. It is preferable that
  • the tubular mesh member 110 can be formed deformably (flexibly). The expandability can be improved, and only a part of the strands are joined as described above, so that the first strand 111 and the second strand 112 can be released by excessive expansion of the mesh member 110. And the mesh member 110 can be safely expanded.
  • the mesh member 110 has a maximum expanded diameter when expanded, and the joint portion 110b provided at the intersection 110a of the first stranded wire 111 and the second stranded wire 112 has a maximum expanded diameter. It is more preferable that the number of joints be minimized in the portion. Specifically, in the mesh member 110, the number of the joint portions 110b in the circumferential direction of the cross section of the portion having the maximum expanded diameter is smaller than the number of the joint portions 110b in the circumferential direction of the cross section of the remaining portion. Is formed. Thereby, the expansibility of the mesh member 110 can be improved more.
  • the number of the joint portions 110b in the circumferential direction provided at the intersecting portion 110a of the first stranded wire 111 and the second stranded wire 112 faces both end portions of the mesh member 110 (the front end and the base end of the mesh member 110). It is also preferred that it increases according to Thereby, it is possible to prevent the mesh member 110 from being unwound from both ends, and as a result, the expandability and robustness of the mesh member 110 can be improved.
  • each element wire of the mesh member 110 a metal material or a resin material can be adopted.
  • the metal material include stainless steel such as SUS304, nickel titanium alloy, cobalt chrome alloy, and the like.
  • the resin material include polyamide, polyester, polyacrylate, polyether ether ketone, and the like. Among these, a metal material is preferable from the viewpoint of improving strength and flexibility.
  • the first strand 111 and the second strand 112, and the core wire b1 and the side wire b2 may be formed of the same material or different materials.
  • the material constituting each strand of the mesh member 110 is preferably a radiopaque material from the viewpoint of improving the visibility of the mesh member 110.
  • a radiopaque material gold
  • the radiopaque material may be a combination of the radiopaque material and a material other than this material, such as a material coated on the surface of a material that is not radiopaque.
  • the first hollow shaft 120 is a member connected to the proximal end of the mesh member 110.
  • the first hollow shaft 120 includes a hollow distal shaft 121 having a distal end connected to the proximal end of the mesh member 110, and a proximal end of the distal shaft 121. And a hollow proximal shaft 123 connected to the.
  • the distal shaft 121 has a lumen 122 so that a retrograde guide wire and a core wire 150, which will be described later, can be inserted therein.
  • the proximal end side shaft 123 has a lumen 124 so that the core wire 150 can be inserted therein.
  • an opening portion 126 that opens toward the proximal end side is formed at the proximal end of the distal end side shaft 121.
  • a retrograde guide wire is delivered to the outside of the catheter 1 via the.
  • the distal end of the proximal end side shaft 123 covers the outer periphery of the core wire 150 as shown in FIG. It is preferable that a cylindrical sealing member 127 on which the core wire 150 is slidable in the axial direction is disposed. Thereby, the clearance gap between the outer periphery of the core wire 150 and the inner periphery of the sealing member 127 can be made small, and it can suppress that a retrograde guide wire (not shown) end part strays into the base end side shaft 123. FIG. As a result, damage to the first hollow shaft 120 and the retrograde guide wire can be prevented.
  • the sealing member 127 described above is inclined so that the volume increases from the distal end toward the proximal end side, and the end surface 127 a on the distal end side of the sealing member 127 approaches the opening 126.
  • the end surface 127a of the sealing member 127 is exposed to the lumen 122, and the end surface 127a is inclined toward the opening 126 so that the retrograde guide wire passes smoothly through the opening 126. Is formed.
  • the end of the retrograde guide wire can be prevented from being caught at the tip of the proximal end side shaft 123, and the retrograde guide wire can be easily guided to the opening 126.
  • damage to the first hollow shaft 120 and the retrograde guide wire can be prevented.
  • the shape of the end surface 128a of the front end side as shown to Fig.7 (a) is a curved surface shape, and the shape of the end surface 129a of the front end side as shown in FIG.7 (b). May be a sealing member 129 having a planar shape perpendicular to the axial direction.
  • the material constituting the sealing member 127 may be any material as long as the core wire 150 is slidable.
  • the material As a material constituting the first hollow shaft 120, since the first hollow shaft 120 is inserted into the blood vessel, the material preferably has antithrombogenicity, flexibility and biocompatibility. Resin materials and metal materials can be used. Since flexibility is required for the distal shaft 121, it is preferable to employ a resin material such as a polyamide resin, a polyolefin resin, a polyester resin, a polyurethane resin, a silicone resin, or a fluororesin. As the base end side shaft 123, since pushability is calculated
  • adopt metal pipes such as a hypotube, for example.
  • the tip chip 130 is a member connected to the tip of the mesh member 110. Specifically, the distal tip 130 is formed in a sharp shape toward the distal end side so that the catheter 1 can easily travel in the blood vessel. At the proximal end of the distal tip 130, the mesh member 110 The tip of each strand and the tip of a second hollow shaft 140 to be described later are embedded.
  • the material constituting the distal tip 130 is preferably flexible because the catheter 1 travels through the blood vessel.
  • Examples of the material having flexibility include resin materials such as polyurethane and polyurethane elastomer.
  • the second hollow shaft 140 is connected to the distal tip 130 and protrudes toward the proximal end in the space inside the mesh member 110. As shown in FIG. 1, the proximal end of the second hollow shaft 140 is located between the distal end of the first hollow shaft 120 and the proximal end of the distal tip 130 in the space inside the mesh member 110. At the same time, the proximal end of the second hollow shaft 140 can be separated from the core wire 150 without being constrained by the core wire 150. For this reason, when the core wire 150 is pulled toward the proximal end side, the second hollow shaft 140 is inclined with respect to the axial direction of the mesh member 110 as shown in FIG.
  • the mesh member 110 When the end presses the inner periphery of the mesh member 110 toward the radially outer side, the mesh member 110 is promoted to increase in diameter. On the other hand, even if the second hollow shaft 140 is tilted but the base end thereof is not in contact with the inner periphery of the mesh member 110, as shown in FIG. It can be spread asymmetrically, making the retrograde guidewire more acceptable.
  • the second hollow shaft 140 is also inserted into the blood vessel in the same manner as the first hollow shaft 120 described above. It is preferable to have compatibility.
  • the material include materials similar to those exemplified in the description of the first hollow shaft 120, and a resin material is preferable from the viewpoint of flexibility.
  • the core wire 150 has a distal end connected to the distal end of the mesh member 110 and / or the distal tip 130, and the proximal end is located on the proximal side with respect to the proximal end of the first hollow shaft 120.
  • the core wire 150 is external to the outside of the second hollow shaft 140 inside the mesh member 110, the inside of the first hollow shaft 120, and the through hole 171 of the connector 170 (described later). It extends to.
  • the core wire 150 advances and retracts in the axial direction, and the mesh member 110 expands and contracts in the radial direction.
  • the material constituting the core wire 150 has sufficient tensile strength and rigidity from the viewpoint of preventing the core wire 150 itself from being cut and reliably expanding and contracting the mesh member 110.
  • the material include metal materials such as stainless steel such as SUS304, nickel titanium alloy, and cobalt chromium alloy.
  • the mesh member 110 and the core wire 150 are formed of a metal material, and as shown in FIG. 9, the tip of the core wire 150 is positioned at the tip of the mesh member 110 in the axial direction, and the tip of the core wire 150 It is preferable that a joint d is formed by joining the mesh member 110 and the tip of the mesh member 110. As described above, since the joint portion d is formed, the mesh member 110 and the core wire 150 can be strongly connected, and the core wire 150 is prevented from being detached from the mesh member 110 when the mesh member 110 is expanded. can do.
  • the cross-sectional shape of the joint portion d is not particularly limited, but from the viewpoint of improving the joint strength between the mesh member 110 and the core wire 150, a substantially annular shape in which the cylindrical member 153 is joined to the core wire 150 (FIG. 9A Or a substantially C shape (see FIG. 9B) formed integrally with the core wire 151. Further, the shape of the joint portion d is, for example, from the viewpoint of improving the flexibility of the tip chip 130 in a state of being joined to the tip chip 130 and improving the bonding strength between the core wire 150 and the tip chip 130.
  • An integrally formed shape see FIG. 9C
  • a shape in which a plurality of cylindrical members 154 are joined to the core wire 150 see FIG.
  • a shape joined to the core wire 150 can also be employed.
  • the joint portion d may be disposed on either the outer periphery of the tip portion of the mesh member 110 (see FIG. 9A) or the inner periphery of the tip portion (see FIG. 10).
  • the portion where the core wire 150 is connected to the distal tip 130 and / or the mesh member 110 has a projected position p1 on the cross section orthogonal to the axial direction, and the center of gravity of the distal tip 130.
  • it may be eccentric with respect to the projection position (not shown) of the center of gravity of the second hollow shaft 140 on the transverse plane. Accordingly, when the diameter of the mesh member 110 is increased by pulling the core wire 150 toward the proximal end side, the second hollow shaft 140 is easily tilted with respect to the axial direction of the mesh member 110 (the second center with respect to the center of gravity). The hollow shaft 140 can be rotated). As a result, the proximal end of the second hollow shaft 140 can be easily brought into contact with the mesh member 110 to surely press the inner periphery of the mesh member 110, and the diameter expansion of the mesh member 110 can be promoted.
  • the guide membrane 160 is disposed on the mesh member 110, and the tip of the guide membrane 160 is located between the base end of the tip tip 130 and the tip of the first hollow shaft 120. Yes.
  • the guide film 160 smoothly guides the retrograde guide wire received through the mesh m of the mesh member 110 toward the first hollow shaft 120.
  • the guide membrane 160 of the present embodiment is shown in FIG. 13 in a region extending from a substantially central portion in the axial direction of the mesh member 110 where the tip is located to the tip of the first hollow shaft 120 where the base end of the guide membrane 160 is located. As described above, it is formed on the mesh member 110 so as to bridge adjacent strands 111 and 112.
  • the retrograde guidewire is guided into the first hollow shaft 120 through the mesh member 110 when the guide member 160 expands in a funnel shape when the diameter of the mesh member 110 expands.
  • the guide film 160 may be bonded to the mesh member 110, and may be, for example, a film (not shown).
  • Examples of the material constituting the induction film 160 include polyethylene, polyurethane, polyamide, polyamide elastomer, polyolefin, polyester, polyester elastomer, and the like. Among these, the material is preferably polyurethane from the viewpoint of improving the sliding property of the surface.
  • the method for forming the guide film 160 is not particularly limited.
  • a dip method is used for the guide film disposed on the mesh member 110, and a method of fusing the tip of the film to the mesh member 110 is used for a film-like guide film. be able to.
  • the guide membrane 160 is formed of a stretchable material, is disposed on the mesh member 110, and the distal end is located between the proximal end of the distal tip 130 and the distal end of the first hollow shaft 120, As shown in FIG. 14, it is preferable that the thickness of the base end of the guide film 160 is larger than the thickness of the tip of the guide film 160 (the guide film having this configuration is also referred to as “guide film A” hereinafter).
  • Such a guiding film A is formed by, for example, using the above-described dip method and lifting the mesh member from the immersion bath and then curing the mesh member 110 in a state in which the base end side is directed vertically downward. Can do.
  • the mesh member 110 can be easily expanded by an amount corresponding to the thickness of the tip of the guide film A being thinner than the thickness of the base end, and the thickness of the base end of the guide film A is thicker than the thickness of the tip end.
  • the damage of the induction film A accompanying the contact of the retrograde guide wire can be reduced.
  • the tip of the guiding membrane A is located at a portion where the mesh member 110 has a maximum expansion diameter when the mesh member 110 is expanded. Accordingly, the funnel-shaped guide membrane 160 can be expanded to the maximum, and the received retrograde guide wire can be easily guided to the first hollow shaft 120.
  • the thickness of the guide film A increases from the distal end toward the proximal end (see the solid line and the broken line in FIG. 14), and from the portion where the expanded diameter of the mesh member 110 is the maximum expanded diameter. It decreases toward the base end (see the one-dot chain line in FIG. 14), and the film thickness of the guide film 160 increases from the front end toward the base end in inverse proportion to the decrease in the expanded diameter of the mesh member 110 (see FIG. 14 (see the solid line).
  • the mesh member 110 can be easily expanded, and even if the retrograde guide wire comes into contact with the proximal end portion of the guide film 160 with a high load, the guide film 160 can be prevented from being broken.
  • the guiding membrane 160 is disposed on the mesh member 110 and has a distal end located between the proximal end of the distal tip 130 and the distal end of the first hollow shaft 120, as shown by the solid line and the broken line in FIG. It is also preferable that the film thickness at the tip of the induction film 160 is thicker than the film thickness of the portion where the film thickness of the induction film 160 is the smallest (the induction film having this configuration is hereinafter also referred to as “induction film B”). As shown in FIG. 16, for example, after forming an induction film 160a having a uniform film thickness, the induction film B is formed at the tip of the induction film 160a having the uniform film thickness using a coating method.
  • the guide film 160 can be formed by applying the material buildup 160b, or can be formed by applying the buildup 160b in the same manner as described above after forming the guide film using the above-described dip method. Thereby, even if the retrograde guide wire is in contact with the tip of the guide film 160, the damage of the guide film 160 is suppressed by an amount that is thicker than the thickness of the thinnest part of the guide film 160. be able to. The same effect can also be achieved by making the film thickness at the tip of the induction film 160 larger than the film thickness of other parts of the induction film 160.
  • the guide film B closes a part of the openings m among the openings m formed between the first strand 111 and the second strand 112.
  • the leading end of the guide film 161 is located at the intersection 110a between the first strand 111 and the second strand 112, and the openings m1 and m2 adjacent in the circumferential direction of the intersection 110a are opened. It is also preferable.
  • all ends of the induction film 161 existing in the opening m are bordered by the strands (first strand 111, second strand 112) (the end of the guidance membrane 161). All parts are bonded to the strands).
  • the thickness of the induction film B is preferably the thickest at the intersection 110a between the strands 111 and 112, as shown in FIG. Thereby, even if it is a case where a retrograde guide wire contacts the front-end
  • the outer periphery of the intersection 110a of the first strand 111 and the second strand 112 at the tip of the guide film B is covered with the guide film 161 as shown in FIG.
  • the guide film 161 can be further prevented from being damaged, and the guide film 161 is prevented from peeling off from the mesh member 110. be able to.
  • the catheter 1 can easily and reliably guide the retrograde guide wire along the guide membrane 160 to the first hollow shaft 120 by arranging the guide membrane 160 on the mesh member 110.
  • the connector 170 is a member for the operator to hold the catheter 1. As shown in FIG. 1, the connector 170 is connected to the proximal end of the first hollow shaft 120 and communicates with the lumens 122 and 124 of the first hollow shaft 120 so that the core wire 150 can be exposed to the outside. A through hole 171 and an opening 172 formed at the base end of the through hole 171.
  • the form of the connector 170 is not particularly limited, and may be any shape as long as the operator can easily grasp it.
  • the catheter 1 is a core wire located inside the distal end of the guide membrane 160 when the diameter of the mesh member 110 is increased, more preferably when the diameter of the mesh member 110 is optimally expanded. It is preferable to have a marker 180 provided at a site 150 and made of a radiopaque material.
  • the marker 180 and radiation provided at the tip of the guide film 160 and made of a radiopaque material More preferably, it has an impermeable portion 160a.
  • the marker 180 is formed by mixing a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate with, for example, polyamide resin, polyolefin resin, polyester resin, polyurethane resin, silicone resin, or fluorine resin.
  • a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate
  • polyamide resin polyolefin resin
  • polyester resin polyurethane resin
  • silicone resin polyurethane resin
  • fluorine resin fluorine resin
  • a metal material for example, it is preferable to form the material with a radiopaque material such as gold, platinum, tungsten, or an alloy containing these elements (for example, platinum nickel alloy).
  • the radiopaque portion 160a is preferably formed by mixing a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate at the tip of the guide film 160. Is preferably bonded to the distal end portion of the induction film 160 by a radiopaque material such as gold, platinum, tungsten, or an alloy containing these elements (for example, a platinum nickel alloy). Accordingly, since the marker 180 and the tip of the guide film 160 can be easily recognized under fluoroscopic radiation such as X-rays, the marker 180 is positioned inside the radiation opaque portion 160a at the tip of the guide film 160.
  • a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate
  • the diameter of the mesh member 110 can be optimally expanded, and the retrograde guide wire can be easily guided to the inside of the guide film 160 using the radiopaque portion 160a as a clue.
  • the guide film 160 can be prevented from being damaged by preventing contact between the retrograde guide wire 160 and the guide film 160.
  • “optimally expanding the diameter” means that the diameter of the mesh member 110 is increased to the maximum so that the retrograde guide wire can be easily received within a range in which the guide film 160 is not damaged due to excessive expansion. Means that.
  • the catheter 1 can be used not only for receiving a retrograde guide wire W2 (use mode 1) but also for removing an obstruction (use mode 2), for example.
  • usage modes 1 and 2 will be described.
  • (Usage mode 1) In the usage mode 1, the catheter 1 is used to receive the retrograde guide wire W2.
  • an antegrade guide wire W1 (not shown) is inserted into a blood vessel, for example, and then pushed forward to a site where an obstruction exists (hereinafter also referred to as “occlusion site”) along the blood vessel.
  • the proximal end of the antegrade guide wire W1 is inserted into the through hole of the distal end of the second hollow shaft 140, and the antegrade guide wire W1 is inserted.
  • the distal end of the catheter 1 is pushed to the occluded site in the blood vessel.
  • the catheter 1 is inserted into the blood vessel with the mesh member 110 having a reduced diameter, and the reduced diameter is maintained until the distal end of the catheter 1 reaches the occlusion site.
  • the antegrade guide wire W1 is pulled toward the proximal end side by pulling the antegrade guide wire W1 with respect to the catheter 1. Pull out from.
  • the core wire 150 exposed to the outside of the connector 170 toward the proximal end side the distance between the distal end of the mesh member 110 and the distal end of the first hollow shaft 120 is narrowed.
  • the mesh member 110 has a diameter. The outside diameter is deformed outward and the diameter is increased.
  • the opening m is also expanded, so that the retrograde guide wire W2 can be easily received.
  • the inner diameter of the mesh member 110 is pressed toward the radially outer side by the tilting of the second hollow shaft 140, so that the diameter expansion of the mesh member 110 is promoted.
  • the induction film 160 since the leading end of the induction film 160 is joined to the substantially central portion in the axial direction of the mesh member 110, the induction film 160 is expanded to follow the expansion of the mesh member 110, and the induction film 160. Becomes a funnel shape as a whole.
  • the retrograde guide wire W ⁇ b> 2 coming from the distal end side is received by the catheter 1.
  • a pseudo-cavity in the blood vessel wall surrounding the occlusion site, a through-hole penetrating the occlusion site, and the like are assumed as the path toward which the retrograde guide wire W2 is directed. It may be a wire W2.
  • the retrograde guide wire W2 is inserted into the space inside the mesh member 110 through the opening m of the mesh member 110 having an enlarged diameter, and then inserted into the distal end side shaft 121 from the opening 120a of the first hollow shaft 120. Then, it is delivered to the outside of the catheter 1 through the opening 126.
  • the retrograde guidewire W2 delivered from the opening 126 passes through the blood vessel, and then the end is delivered out of the body. As a result, it is possible to create a state in which the retrograde guidewire W2 penetrates the occluded portion and both end portions of the retrograde guidewire W2 are exposed outside the body.
  • the catheter 1 can receive the retrograde guide wire W2 and can guide the end portion outside the body, it can be suitably used as a medical instrument combined with the retrograde guide wire W2.
  • (Usage mode 2) In the usage mode 2, the obstruction is removed by the antegrade guide wire W1 using the catheter 1.
  • the antegrade guide wire W1 and the method for inserting the catheter 1 and the method for expanding the diameter of the mesh member 110 are the same as those described above, and thus the description thereof is omitted here.
  • the antegrade guide wire W1 and the catheter 1 are made to reach the occlusion site by operating in the same manner as in the usage mode 1.
  • the diameter of the mesh member 110 is increased by operating the core wire 150.
  • the antegrade guide wire W1 is not pulled out from the catheter 1.
  • the obstruction is crushed using the antegrade guide wire W1 or the like.
  • the crushed blockage is taken into the space inside the mesh member 110 through the openings m of the expanded mesh member 110 and then guided into the first hollow shaft 120 through the opening 120a.
  • the first hollow shaft 120 is discharged outside the body.
  • the catheter 1 can be suitably used as a medical instrument for removing the obstruction because the obstruction in the blood vessel can be crushed and removed from the body.
  • the catheter 1 has the above-described configuration, when the diameter of the mesh member 110 is increased by pulling the core wire 150 toward the proximal end side, the proximal end of the second hollow shaft 140 is separated from the core wire 150. Since separation is possible, the diameter of the mesh member 110 can be easily expanded by pressing the inner periphery of the mesh member 110. Further, even when the base end of the second hollow shaft 140 does not contact the inner periphery of the mesh member 110, the space inside the expanded mesh member 110 can be asymmetrically expanded, and the retrograde guide The wire can be made easier to accept.
  • FIG. 22 is a schematic front view showing the second embodiment of the present invention, and is a view showing a state where the mesh member has a reduced diameter.
  • the catheter 2 schematically includes a mesh member 110, a first hollow shaft 120, a tip tip 130, a second hollow shaft 240, a core wire 250, and a holding member 280.
  • the guide film 160 and the connector 170 (not shown) are configured.
  • the second embodiment is different from the first embodiment in that a second hollow shaft 240, a core wire 250, and a holding member 280 are provided.
  • the configurations of the mesh member 110, the first hollow shaft 120, the tip tip 130, the guide membrane 160, and the connector 170 are the same as those in the first embodiment, and thus the same parts are denoted by the same reference numerals. Detailed description thereof will be omitted. Moreover, since the material of the 2nd hollow shaft 240 and the core wire 250 is the same as the thing of 1st Embodiment, the description in 1st Embodiment is used and the detailed description is abbreviate
  • the second hollow shaft 240 is connected to the distal tip 130 and protrudes proximally in the space inside the mesh member 110, and the proximal end is the distal end of the first hollow shaft 120 and the proximal end of the distal tip 130. It is a member located between.
  • the core wire 250 has a distal end connected to the distal end of the mesh member 110 and / or the distal end tip 130, a proximal end located on the proximal end side with respect to the proximal end of the first hollow shaft 120, and an outer periphery of the second hollow shaft 240. Along the mesh member 110 and the interior of the first hollow shaft 120.
  • the holding member 280 has a substantially annular shape or a substantially C shape in a cross-sectional view (see FIGS. 23A and 23B), and is a member that is provided on the core wire 250 and covers the second hollow shaft 240.
  • the holding member 280 covers the outer periphery of the second hollow shaft 240, and the second hollow shaft 240 can move relative to the holding member 280 in the axial direction.
  • the holding member 280 is provided so as to cover the base end of the second hollow shaft 240, but the base end of the second hollow shaft 240 is covered by the holding member 280.
  • the holding member has moved from the proximal end to the distal end side of the second hollow shaft 240, as shown in FIGS. You may provide so that a part may be covered.
  • Examples of the material constituting the holding member 280 include resin materials such as polyamide resin, polyolefin resin, polyester resin, polyurethane resin, silicone resin, and fluororesin, stainless steel such as SUS304, nickel titanium alloy, and cobalt chromium alloy.
  • resin materials such as polyamide resin, polyolefin resin, polyester resin, polyurethane resin, silicone resin, and fluororesin, stainless steel such as SUS304, nickel titanium alloy, and cobalt chromium alloy.
  • the metal material can be adopted.
  • the holding member 280 contains a radiopaque material. As shown in FIGS. 26 and 27, the holding member 280 containing the radiopaque material and the guide membrane 160 It is more preferable to have a radiopaque portion 160a provided at the tip portion and made of a radiopaque material.
  • the holding member 280 is formed of the resin material described above, it is preferable that the holding member 280 is mixed with a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate, and the holding member 280 is formed of a metal material.
  • radiopaque portion 160a when a resin material is used as the radiopaque material, it is preferable to mix a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate at the tip of the guide film 160, and a metal material Is preferably bonded to the distal end portion of the induction film 160 by a radiopaque material such as gold, platinum, tungsten, or an alloy containing these elements (for example, a platinum nickel alloy).
  • a radiopaque material such as bismuth trioxide, tungsten, or barium sulfate
  • the holding member 280 is placed inside the distal end of the guide membrane 160 when the diameter of the mesh member 110 is increased, more preferably when the diameter of the mesh member 110 is optimally expanded. It is preferable to position. Accordingly, since the holding member 280 and the distal end of the guide film 160 can be easily recognized under fluoroscopic radiation such as X-rays, the holding member 280 is positioned inside the radiation opaque portion 160a at the front end of the guide film 160.
  • the diameter of the mesh member 110 can be optimally expanded, and the retrograde guide wire can be easily guided to the inside of the guide film 160 using the radiopaque portion 160a as a clue, It is possible to prevent the guide film 160 from being damaged by preventing the guide film 160 from contacting the retrograde guide wire.
  • the core wire 250 is operated to expand the diameter of the mesh member 110 as shown in FIG.
  • the second hollow shaft 240 since the base end of the second hollow shaft 240 is covered with the holding member 280, the second hollow shaft 240 does not tilt, and the base end of the second hollow shaft 240 and the mesh member
  • the mesh member 110 is expanded in diameter by being pulled toward the base end side along the axial direction without coming into contact with 110. Accordingly, the retrograde guide wire W2 can be received through the mesh m of the mesh member 110.
  • the catheter 2 does not separate the proximal end of the second hollow shaft 240 from the core wire 250 by the holding member 280. These can be moved together, and the second hollow shaft 240 can be prevented from breaking through the guide membrane 160 as much as the proximal end of the second hollow shaft 240 is not separated from the core wire 250.
  • the core wire 250 at the base end of the second hollow shaft 240 is not touched with the guide membrane 160 so that the base end of the second hollow shaft 240 is not in contact with the guide membrane 160. You may comprise so that separation
  • FIG. 29 is a schematic front view showing a third embodiment of the present invention, and is a view showing a state where a mesh member has a reduced diameter.
  • the catheter 3 schematically includes a mesh member 110, a first hollow shaft 120, a tip tip 130, a second hollow shaft 340, a core wire 150, and a guide membrane 160. And a connector 170 (not shown).
  • the third embodiment differs from the first embodiment in that a second hollow shaft 340 is provided. Since the configurations of the mesh member 110, the first hollow shaft 120, the tip tip 130, the core wire 150, the guide membrane 160, and the connector 170 are the same as those in the first embodiment, the same reference numerals are used for the same portions. The detailed description is omitted. Moreover, since the material of the 2nd hollow shaft 340 is the same as that of 1st Embodiment, the description in 1st Embodiment is used and the detailed description is abbreviate
  • the second hollow shaft 340 is a member that is partially disposed in a space inside the mesh member 110, penetrates the mesh member 110, and has a proximal end located outside the mesh member 110.
  • the above-mentioned “the base end is located outside the mesh member” means that the base end 341 a of the second hollow shaft 341 is positioned on the outer periphery of the mesh member 110 as shown in FIGS. 30 and 31. It is a concept that includes.
  • the both ends of the said 2nd hollow shaft 340 may be fixed to other members (for example, tip tip 130, mesh member 110, the 1st hollow shaft 120, etc.).
  • the tip of the second hollow shaft is connected to the tip tip 130, and the base end of the second hollow shaft is a free end, or the tip of the second hollow shaft is a free end, and the second hollow shaft It is preferable that the outer periphery of the base end portion of the mesh member 110 is connected to the outer periphery of the mesh member 110 or the first hollow shaft 120.
  • the second hollow shaft 340 is connected to the other member, thereby preventing the second hollow shaft 340 from being broken when the mesh member 110 is expanded. It is possible to ensure the passage of the antegrade guide wire W1 and perform the procedure stably and efficiently.
  • the base end of the second hollow shaft 340 is open toward the base end side. Accordingly, when the proximal end of the antegrade guide wire W1 is inserted into the distal end of the second hollow shaft 340 by a procedure, the proximal end of the antegrade guide wire W1 is an opening of the proximal end of the second hollow shaft 340. The surgeon quickly recognizes the position of the proximal end of the antegrade guidewire W1 and easily and reliably grasps the proximal end portion of the antegrade guidewire W1 by the distance from the proximal end of the catheter 3 to the proximal end. Can do. As a result, the procedure can be efficiently performed using the catheter 3.
  • the distal end of the second hollow shaft 340 is a free end, and the distal end side of the second hollow shaft 340 is disposed in a space inside the mesh member 110. ing.
  • the second hollow shaft 340 passes through the mesh m of the mesh member 110 in the middle of the axial direction, and the base end of the second hollow shaft 340 is located outside the mesh member 110 and has a base end portion. Is joined to the outer periphery of the first hollow shaft 120.
  • An opening 340 a that opens toward the base end side is provided at the base end of the second hollow shaft 340.
  • the catheter 3 is a core wire positioned inside the distal end of the guide membrane 160 when the mesh member 110 is expanded, more preferably when the mesh member 110 is optimally expanded. It is preferable to have a marker 180 provided at a site 150 and made of a radiopaque material.
  • the marker 180 and radiation provided at the tip of the guide film 160 and made of a radiopaque material More preferably, it has an impermeable portion 160a.
  • the structure similar to what was demonstrated in 1st Embodiment is employable, for example.
  • the marker 180 and the tip of the guide film 160 can be easily recognized under fluoroscopic radiation such as X-rays, the marker 180 is positioned inside the radiation opaque portion 160a at the tip of the guide film 160.
  • the diameter of the mesh member 110 can be optimally expanded, and the retrograde guide wire can be easily guided to the inside of the guide film 160 using the radiopaque portion 160a as a clue.
  • the guide film 160 can be prevented from being damaged by preventing contact between the retrograde guide wire 160 and the guide film 160.
  • the antegrade guide wire W1 is not pulled out from the second hollow shaft 340 as shown in FIG.
  • the mesh member 110 is expanded in diameter by operating 150.
  • the antegrade guide wire W ⁇ b> 1 is not present in the first hollow shaft 120. Therefore, the retrograde guide wire W2 received through the mesh m of the mesh member 110 and inserted into the first hollow shaft 120 coexists with the antegrade guide wire W1 in the first hollow shaft 120. It is possible to smoothly feed out from the opening 126 without doing so.
  • the mesh member 110, the distal tip 130, the second hollow shaft 340, and the guide membrane 160 are configured as described above, so that the antegrade guide wire W1 passes through the first hollow shaft 120.
  • the retrograde guide wire W2 can be guided to the first hollow shaft 120 while the antegrade guide wire W1 is passed through the second hollow shaft 340, and the procedure can be performed efficiently and easily. .
  • this invention is not limited to the structure of embodiment mentioned above, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included. Is done. A part of the configuration of the above-described embodiment may be deleted or replaced with another configuration, or another configuration may be added to the configuration of the above-described embodiment.
  • the catheter 1 including the second hollow shaft 140 has been described.
  • the catheter 4 that does not include the second hollow shaft 140 as illustrated in FIGS. Within the intended scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

逆行性ガイドワイヤを目開きを介して確実に受け入れることができるカテーテルの提供を目的とする。 本発明のカテーテル2は、径方向に拡縮可能なチューブ状のメッシュ部材と、第1の中空シャフト120と、先端チップ130と、メッシュ部材110に配置され、先端が、先端チップ130の基端と第1の中空シャフト120の先端との間に位置する誘導膜160と、先端チップ130に接続され、メッシュ部材110の内側の空間にて基端側に突設し、基端が、第1の中空シャフト120の先端と先端チップ130の基端との間に位置する第2の中空シャフト240と、コアワイヤ250と、横断面視の形状が略環状または略C形状であり、コアワイヤ250に設けられ、第2中空シャフト240を覆う保持部材280とを備えている。

Description

カテーテル
 本発明は、カテーテルに関する。
 慢性完全閉塞(CTO:Choronic total occlusion)のような血管を閉塞する閉塞物を除去して血流を改善する医療器具として、例えば、血管内の閉塞物が存する部位において、上記閉塞部を除去するためにメッシュ状のブレーデッドワイヤを径方向に拡張するもの(例えば、特許文献1参照)や、除去した閉塞物を回収できるようにメッシュ状の自己拡張可能なエリアにカバーを設けるもの(例えば、特許文献2参照)が知られている。
 他方、上記閉塞物は非常に硬いために上述のような医療器具では閉塞物を除去することが困難なケースが多く、このような場合には、順行するガイドワイヤを用いて偽腔拡張を行った後、この拡張した偽腔を介して逆行性ガイドワイヤを導通させる技術や、メッシュ状の部材を拡張させてその目開きを通して上記ガイドワイヤを受け入れる技術も提案されている(例えば、非特許文献1参照)。
特許第3655920号公報 特表2011-517424号公報
南都伸介編「改訂版確実に身につくPCIの基本とコツ」羊土社、2016年2月25日、p.222-227
 しかしながら、上述したようなメッシュ状の部材を拡張させる場合、狭い血管内では上記メッシュ状の部材が十分に拡張できない虞があり、逆行性ガイドワイヤを確実に受け入れることができるとは必ずしも言えない。
 そこで、メッシュ部材の内周を径外側に向かって押圧できるように第2の中空シャフトを設け、その基端がコアワイヤから離間できるような構成とすることも考えられるが、第2の中空シャフトがメッシュ部材に設けられた誘導膜を傷つけたり、第2の中空シャフト自身が破損する虞がある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、第2の中空シャフトが誘導膜を傷つけたり、第2の中空シャフト自身が破損するのを防止可能なカテーテルを提供することにある。
 本発明は、
(1)径方向に拡縮可能なチューブ状のメッシュ部材と、
 前記メッシュ部材の基端に接続された第1の中空シャフトと、
 前記メッシュ部材の先端に接続された先端チップと、
 前記メッシュ部材に配置され、先端が、前記先端チップの基端と前記第1の中空シャフトの先端との間に位置する誘導膜と、
 前記先端チップに接続され、前記メッシュ部材の内側の空間にて基端側に突設し、基端が、前記第1の中空シャフトの先端と前記先端チップの基端との間に位置する第2の中空シャフトと、
 先端が前記メッシュ部材の先端および/または前記先端チップに接続され、基端が前記第1の中空シャフトの基端よりも基端側に位置し、前記第2の中空シャフトの外周に沿ってかつ前記メッシュ部材および前記第1の中空シャフトの内部を通って延びるコアワイヤと、
 横断面視の形状が略環状または略C形状であり、前記コアワイヤに設けられ、前記第2中空シャフトを覆う保持部材と、を備えるカテーテル、並びに
(2)前記保持部材は、放射線不透過材料で形成され、前記メッシュ部材の径方向への拡張時に前記誘導膜の先端の内側に位置する前記(1)に記載のカテーテル
に関する。
 なお、本明細書において、「先端側」とは、カテーテルの長手方向に沿った方向であってメッシュ部材に対する先端チップが位置する方向を指す。「基端側」とは、上記長手方向に沿った方向であって上記先端側とは反対の方向を指す。「先端」とは、カテーテルを構成する各部材における上記先端側の端部を指す。「基端」とは、カテーテルを構成する各部材における上記基端側の端部を指す。「最大拡張径」とは、メッシュ部材を拡張させた状態において、軸方向に直交する上記メッシュ部材の外径が最大となる部位の外径を意味する。
 本発明は、第2の中空シャフトが誘導膜を傷つけたり、第2の中空シャフト自身が破損するのを防止することが可能なカテーテルを提供することができる。
本発明の第1の実施形態を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図1のメッシュ部材が拡径した状態を示す概略正面図である。 各素線の一例を示す概略斜視図である。 各素線の他の例を示す概略斜視図である。 図4の素線どうしを接合した状態を示す概略断面図である。 図3の素線と図4の素線とを接合した状態を示す概略断面図である。 封止部材の他の例を示す概略断面図であって、(a)は端面が曲面状のもの、(b)は端面が平面状のものをそれぞれ示している。 図1の第2の中空シャフトが傾倒した状態の一例を示す概略正面図である。 コアワイヤとメッシュ部材との接合部を示す概略図であって、(a)はコアワイヤの接合部が略環状のもの、(b)はコアワイヤの接合部が略C形状のもの、(c)~(e)は接合部が略環状の一部で構成されるものをそれぞれ示している。 コアワイヤとメッシュ部材との接合の他の例を示す概略図である。 コアワイヤと、先端チップの重心との位置関係を示す概略図であって、図1のVII-VII線の部位の横断面を示す図である。 誘導膜の一例を示す概略正面図である。 図12のIX-IX線で切断した概略断面図である。 誘導膜の一好適態様を示す概略図である。 誘導膜の他の好適態様を示す概略図である。 図15の誘導膜の先端部の一例を示す概略断面図である。 図15の誘導膜の先端部の他の例を示す概略正面図である。 図17のXIV-XIV線で切断した概略断面図である。 図1の変形例を示した概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図19のメッシュ部材が拡径した状態を示す概略正面図である。 図2の使用状態を示す概略正面図である。 本発明の第2の実施形態を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。 保持部材を示す概略断面図であって、(a)は一例、(b)は他の例をそれぞれ示している。 図22の他の例を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図24のメッシュ部材が拡径した状態を示す概略正面図である。 図22の変形例を示した概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図26のメッシュ部材が拡径した状態を示す概略正面図である。 図22のメッシュ部材が拡径した状態を示す概略正面図である。 本発明の第3の実施形態を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図29の他の例を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図30のメッシュ部材が拡径した状態を示す概略正面図である。 図29のメッシュ部材が拡径した状態を示す概略正面図であって、順行性ガイドワイヤと逆行性ガイドワイヤとが挿通している状態の図である。 図1の第2の中空シャフトが設けられていないカテーテルを示した概略正面図であって、メッシュ部材が縮径した状態を示す図である。 図33のメッシュ部材が拡径した状態を示す概略正面図である。
 以下、本発明に係るカテーテルの第1~第3の実施形態について図面を参照して説明するが、本発明は、当該図面に記載の実施形態にのみ限定されるものではない。
 なお、本明細書において、「順行性ガイドワイヤ」とは、ガイドワイヤのうち、当該カテーテルに先立って血管中の閉塞部位などの術部に押し進められるガイドワイヤを意味し、「逆行性ガイドワイヤ」とは、ガイドワイヤのうち、例えば血管内を当該カテーテルの先端側から向かって来るガイドワイヤを意味する。
[第1の実施形態]
 図1は、本発明の第1の実施形態を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。当該カテーテル1は、図1に示すように、概略的に、メッシュ部材110と、第1の中空シャフト120と、先端チップ130と、第2の中空シャフト140と、コアワイヤ150と、誘導膜160と、コネクタ170とにより構成されている。
 メッシュ部材110は、径方向に拡縮可能なチューブ状の部材である。このメッシュ部材110は、後述するコアワイヤ150を基端側に向かって引っ張る際、例えば、図2に示すように面外変形して径外側へ膨出することで拡径し、この拡径したメッシュ部材110の目開きmを介して逆行性ガイドワイヤを当該カテーテル1に受け入れる。
 本実施形態では、メッシュ部材110が複数の第1素線111と複数の第2素線112とを有しており、これら第1素線111と第2素線112とが格子状に編まれて全体としてチューブ状になるように形成されている。また、メッシュ部材110は、編まれた隣り合う素線間に目開きmを有しており、拡径したときの拡大した目開きmを通して逆行性ガイドワイヤを受け入れる。なお、メッシュ部材110を構成する各素線の先端および基端には、それぞれ後述する先端チップ130および第1の中空シャフト120が接合されている。
 ここで、メッシュ部材110を構成する各素線(第1素線111および第2素線112)のそれぞれは、図3に示す単線a、および複数の素線のいずれをも採用することができるが、例えば図4に示すような中央部に配置された芯線b1とこの芯線b1の周りを取り囲むように配設された複数の側線b2のように、線径などが異なる複数の素線が撚り合された撚線bから形成されていてもよい(以下、第1素線111および第2素線112として図4に記載のような撚線bを用いる場合には、それぞれ第1撚線111、第2撚線112と記載する)。かかる場合、第1撚線111と第2撚線112との交差部110aのうちの一部の交差部110aにおいて、図5に示すように、第1撚線111を構成する複数の素線のうちの一部と、第2撚線112を構成する複数の素線のうちの一部(本実施形態では一部の側線b2)とが接合されていることが好ましい。また、メッシュ部材110を構成する素線は、図6に示すように、単線aと撚線bとを組み合わせたものであってもよい。この場合、交差部110aのうちの一部の交差部110aでは、単線aと、撚線bを構成する複数の素線のうちの一部(本実施形態では一部の側線b2)とが接合されていることが好ましい。
 このように、第1素線111および第2素線112が撚線bで形成されていることで、チューブ状のメッシュ部材110を変形自在(柔軟)に形成することができ、メッシュ部材110の拡張性を向上することができると共に、上述のように一部の素線のみが接合されていることで、メッシュ部材110の過度な拡張による第1素線111および第2素線112の解れを防止し、メッシュ部材110を安全に拡張することができる。
 また、メッシュ部材110は、図2に示すように拡張時に最大拡張径を有し、第1撚線111と第2撚線112との交差部110aに設けられた接合部110bは、最大拡張径となる部分において、接合部数が最小となることがより好ましい。メッシュ部材110は、具体的には、最大拡張径となる部位の横断面の周方向における接合部110bの数が、残りの部位の横断面の周方向における接合部110bの数よりも小さくなるように形成されている。これにより、メッシュ部材110の拡張性をより向上させることができる。
 また、第1撚線111と第2撚線112との交差部110aに設けられた周方向における接合部110bの数は、メッシュ部材110の両端部(メッシュ部材110の先端および基端)に向うに従って増加していることも好ましい。これにより、メッシュ部材110の両端部からの解れを防止することができ、その結果、メッシュ部材110の拡張性および堅牢性を向上させることができる。
 メッシュ部材110の各素線を構成するを材料としては、金属材料または樹脂材料を採用することができる。上記金属材料としては、例えば、SUS304などのステンレス鋼、ニッケルチタン合金、コバルトクロム合金等が挙げられる。上記樹脂材料としては、例えば、ポリアミド、ポリエステル、ポリアクリレート、ポリエーテルエーテルケトン等が挙げられる。これらの中で、強度および可撓性を向上させる観点からは金属材料であることが好ましい。なお、上述の第1素線111と第2素線112、および芯線b1と側線b2は、それぞれ同一の材料で形成されていてもよく、異なる材料で形成されていてもよい。
 また、上記メッシュ部材110の各素線を構成するを材料としては、メッシュ部材110の視認性を向上させる観点から、放射線不透過性材料であることも好ましい。上記放射線不透過材料としては、例えば、金、白金、タングステン、またはこれらの元素を含む合金(例えば、白金ニッケル合金など)等が挙げられる。なお、放射線不透過性材料は、放射線不透過性ではない材料の表面にコートされるものなど、当該放射線不透過性材料とこの材料以外の材料とを組み合わせたものであってもよい。
 第1の中空シャフト120は、メッシュ部材110の基端に接続された部材である。本実施形態では、この第1の中空シャフト120は、図1に示すように、先端がメッシュ部材110の基端に接続された中空の先端側シャフト121と、先端が先端側シャフト121の基端に接続された中空の基端側シャフト123とを有している。
 先端側シャフト121は、内部に後述する逆行性ガイドワイヤおよびコアワイヤ150が挿通可能となるようにルーメン122を有している。基端側シャフト123は、内部にコアワイヤ150が挿通可能となるようにルーメン124を有している。また、先端側シャフト121と基端側シャフト123との接続部125において、先端側シャフト121の基端には、基端側に向かって開口する開口部126が形成されており、この開口部126を介して逆行性ガイドワイヤが当該カテーテル1の外部に送出される。
 ここで、上述の先端側シャフト121と基端側シャフト123との接続部125において、基端側シャフト123の先端の内部には、図1に示すように、コアワイヤ150の外周を覆いかつ内部にコアワイヤ150が軸方向に摺動可能な円筒状の封止部材127が配置されていることが好ましい。これにより、コアワイヤ150の外周と封止部材127内周の隙間を小さくすることができ、逆行性ガイドワイヤ(不図示)端部が基端側シャフト123へ迷入するのを抑制することができる。その結果、第1の中空シャフト120や逆行性ガイドワイヤの破損を防止することができる。
 また、上述した封止部材127は、先端から基端側に向かって体積が増大し、封止部材127の先端側の端面127aが、開口部126に近づくように傾斜していることが好ましい。具体的には、封止部材127の端面127aがルーメン122に露出しており、逆行性ガイドワイヤが開口部126を円滑に通過するように、端面127aが開口部126に向かって傾斜するように形成されている。これにより、逆行性ガイドワイヤ端部の基端側シャフト123先端への引っかかりを防ぐことができ、逆行性ガイドワイヤを開口部126へ容易に導くことができる。その結果、第1の中空シャフト120や逆行性ガイドワイヤの破損を防止することができる。なお、封止部材としては、図7(a)に示すような先端側の端面128aの形状が曲面状である封止部材128、図7(b)に示すような先端側の端面129aの形状が軸方向に垂直な平面状である封止部材129等であってもよい。
 封止部材127を構成する材料としては、コアワイヤ150が摺動可能であればよく、例えば、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、ポリアミドエラストマー、ポリオレフィンエラストマー、ポリエステルエラストマー、ポリウレタンエラストマー等の樹脂が挙げられる。
 第1の中空シャフト120を構成する材料としては、この第1の中空シャフト120が血管内に挿通されることから、抗血栓性、可撓性および生体適合性を有していることが好ましく、樹脂材料、金属材料を採用することができる。先端側シャフト121としては、柔軟性が求められるため、例えばポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂等の樹脂材料を採用することが好ましい。基端側シャフト123としては、押し込み性が求められるため、例えばハイポチューブ等の金属管を採用することが好ましい。
 先端チップ130は、メッシュ部材110の先端に接続されている部材である。この先端チップ130は、具体的には、当該カテーテル1が血管中を進行し易いように、先端側に向かって尖鋭状に形成されており、当該先端チップ130の基端に、メッシュ部材110の各素線それぞれの先端部および後述する第2の中空シャフト140の先端部が埋設されている。
 先端チップ130を構成する材料としては、当該カテーテル1が血管中を進行することから、柔軟性を有していることが好ましい。上記柔軟性と有する材料としては、例えば、ポリウレタン、ポリウレタンエラストマーなどの樹脂材料等が挙げられる。
 第2の中空シャフト140は、先端チップ130に接続され、メッシュ部材110の内側の空間にて基端側に突設している。この第2の中空シャフト140の基端は、図1に示すように、メッシュ部材110の内側の空間における第1の中空シャフト120の先端と先端チップ130の基端との間に位置していると共に、第2の中空シャフト140の基端が、コアワイヤ150に拘束されずに当該コアワイヤ150から離間可能となっている。このため、コアワイヤ150を基端側に向かって引っ張る際、図2に示すように、第2の中空シャフト140がメッシュ部材110の軸方向に対して傾倒し、かつ第2の中空シャフト140の基端がメッシュ部材110の内周を径外側に向かって押圧することでメッシュ部材110が拡径するのを促進する。他方、第2の中空シャフト140が傾倒するがその基端がメッシュ部材110の内周に当接しない場合であっても、図8に示すように、拡径したメッシュ部材110の内側の空間を非対称的に拡げることができ、逆行性ガイドワイヤをより受け入れ易くすることができる。
 第2の中空シャフト140を構成する材料としては、上述した第1の中空シャフト120と同様にこの第2の中空シャフト140も血管内に挿通されることから、抗血栓性、可撓性および生体適合性を有していることが好ましい。上記材料としては、例えば、第1の中空シャフト120の説明中で例示した材料と同様のもの等が挙げられるが、柔軟性の観点から樹脂材料が好ましい。
 コアワイヤ150は、先端がメッシュ部材110の先端および/または先端チップ130に接続され、基端が第1の中空シャフト120の基端よりも基端側に位置するようにメッシュ部材110および第1の中空シャフト120の内部を通って延びている部材である。このコアワイヤ150は、具体的には、メッシュ部材110の内部における第2の中空シャフト140の外側の空間、第1の中空シャフト120の内部、およびコネクタ170(後述)の通孔171を介して外部に延びている。なお、コアワイヤ150をコネクタ170の外部にて操作することで、当該コアワイヤ150が軸方向に進退し、メッシュ部材110が径方向に拡縮する。
 コアワイヤ150を構成する材料としては、当該コアワイヤ150自身の切断を防止しかつメッシュ部材110を確実に拡縮する観点から、十分な引張強度および剛性を有していることが好ましい。上記材料としては、例えば、SUS304などのステンレス鋼、ニッケルチタン合金、コバルトクロム合金などの金属材料等が挙げられる。
 ここで、メッシュ部材110およびコアワイヤ150が金属材料で形成されており、図9に示すように、軸方向においてコアワイヤ150の先端がメッシュ部材110の先端に位置していると共に、コアワイヤ150の先端部とメッシュ部材110の先端部との接合により接合部dが形成されていることが好ましい。このように、接合部dが形成されていることで、メッシュ部材110とコアワイヤ150とを強力に接続することができ、メッシュ部材110を拡張する際にメッシュ部材110からコアワイヤ150が外れるのを防止することができる。
 なお、接合部dの横断面形状としては特に限定されないが、メッシュ部材110とコアワイヤ150との接合強度を向上させる観点から、円筒状の部材153をコアワイヤ150に接合した略環状(図9(a)参照)、またはコアワイヤ151と一体的に形成した略C形状(図9(b)参照)であることが好ましい。また、接合部dの形状としては、先端チップ130に接合された状態での当該先端チップ130の柔軟性向上、およびコアワイヤ150と先端チップ130との接合強度向上の観点から、例えば、コアワイヤ152と一体的に形成した形状(図9(c)参照)、複数の円筒状の部材154をコアワイヤ150に接合した形状(図9(d)参照)、円筒状の一部を切り欠いた部材155をコアワイヤ150に接合した形状(図9(e)参照)等を採用することもできる。また、この接合部dは、メッシュ部材110の先端部外周(図9(a)参照)または先端部内周(図10参照)のいずれにも配置してもよい。これにより、メッシュ部材110を基端側に引っ張る際にメッシュ部材110の先端部により均等に力を加えることができ、メッシュ部材110とコアワイヤ150とが破断せずに両者をより強力に接続することができる。
 なお、コアワイヤ150と、先端チップ130および/またはメッシュ部材110とが接続されている部位は、図11に示すように、軸方向に直交する横断面への投影位置p1が、先端チップ130の重心の横断面への投影位置p2に対して偏心していることが好ましいが、第2の中空シャフト140の重心の横断面への投影位置(不図示)に対して偏心していてもよい。これにより、コアワイヤ150を基端側に向かって引っ張ってメッシュ部材110を拡径する際、第2の中空シャフト140をメッシュ部材110の軸方向に対して容易に傾倒(上記重心に対して第2の中空シャフト140が回転)させることができる。その結果、第2の中空シャフト140の基端をメッシュ部材110に容易に当接させてメッシュ部材110の内周を確実に押圧し、メッシュ部材110の拡径を促進することができる。
 誘導膜160は、図1および図12に示すように、メッシュ部材110に配置され、誘導膜160の先端が先端チップ130の基端と第1の中空シャフト120の先端との間に位置している。この誘導膜160は、メッシュ部材110の目開きmを通して受け入れた逆行性ガイドワイヤを第1の中空シャフト120に向かって円滑に導くものである。本実施形態の誘導膜160は、先端が位置するメッシュ部材110の軸方向略中央部から、誘導膜160の基端が位置する第1の中空シャフト120の先端に亘る領域において、図13に示すように、隣り合う素線111、112どうしを架橋するようにメッシュ部材110上に形成されている。ここで、逆行性ガイドワイヤは、メッシュ部材110が拡径する際に誘導膜160が漏斗形状に展開することで、メッシュ部材110を通して第1の中空シャフト120内に導びかれる。なお、誘導膜160は、少なくとも一部(例えば、誘導膜160の先端外周など)がメッシュ部材110に接合されていればよく、例えば、フィルム状のもの(不図示)であってもよい。
 誘導膜160を構成する材料としては、例えば、ポリエチレン、ポリウレタン、ポリアミド、ポリアミドエラストマー、ポリオレフィン、ポリエステル、ポリエステルエラストマー等が挙げられる。これらの中では、上記材料としては、表面の滑動性を向上させる観点から、ポリウレタンであることが好ましい。
 誘導膜160を形成する方法としては特に限定されず、例えば、メッシュ部材110に配置する誘導膜ではディップ法、フィルム状の誘導膜ではフィルムの先端をメッシュ部材110に融着する方法等を採用することができる。
 ここで、誘導膜160は、伸縮性を有する材料で形成され、メッシュ部材110に配置されていると共に先端が先端チップ130の基端と第1の中空シャフト120の先端との間に位置し、図14に示すように、誘導膜160の基端の膜厚が誘導膜160の先端の膜厚よりも厚いことが好ましい(この構成の誘導膜を、以下「誘導膜A」とも称する)。このような誘導膜Aは、例えば、上述したディップ法を用い、メッシュ部材を浸漬浴から引き揚げた後、メッシュ部材110の基端側を鉛直下方に向けた状態にて硬化させることにより形成することができる。これにより、誘導膜A先端の膜厚が基端の膜厚よりも薄い分、メッシュ部材110を容易に拡張することができると共に、誘導膜A基端の膜厚が先端の膜厚よりも厚い分、逆行性ガイドワイヤの接触に伴う誘導膜Aの破損を低減することができる。
 なお、誘導膜Aの先端は、図2に示すように、メッシュ部材110が拡張した際に、メッシュ部材110が最大拡張径となる部位に位置していることも好ましい。これにより、漏斗状の誘導膜160を最大限に拡張することができ、受け入れた逆行性ガイドワイヤを第1の中空シャフト120へ容易に誘導することができる。
 また、誘導膜Aの膜厚は、先端から基端に向かって増加している(図14の実線および破線参照)ことも好ましく、メッシュ部材110の拡張径が、上記最大拡張径となる部位から基端に向かって減少し(図14の一点鎖線参照)、誘導膜160の膜厚が、メッシュ部材110の拡張径の減少に反比例して、先端から基端に向かって増加している(図14の実線参照)ことも好ましい。これにより、メッシュ部材110を容易に拡張することができると共に、誘導膜160の基端部に逆行性ガイドワイヤが高い荷重で接触したとしても誘導膜160が破れるのを防止することができる。
 他方、誘導膜160は、メッシュ部材110に配置されていると共に先端が先端チップ130の基端と第1の中空シャフト120の先端との間に位置し、図15の実線および破線で示すように、誘導膜160の先端の膜厚が、誘導膜160の膜厚が最も薄い部位の膜厚よりも厚いことも好ましい(この構成の誘導膜を、以下「誘導膜B」とも称する)。このような誘導膜Bは、図16に示すように、例えば膜厚が均一な誘導膜160aを作製した後、塗布法を用いて上記膜厚が均一な誘導膜160aの先端部に誘導膜形成材料の肉盛り160bを施すことで誘導膜160を形成したり、上述したディップ法を用いて誘導膜を形成した後、上記同様に肉盛り160bを施することで形成することができる。これにより、誘導膜160の先端の膜厚が最も薄い部位の膜厚よりも厚い分、逆行性ガイドワイヤが誘導膜160の先端に接触した場合であっても、誘導膜160の破損を抑制することができる。また、誘導膜160の先端の膜厚を誘導膜160の他の部位の膜厚よりも厚くすることによっても同様の効果を奏することができる。
 なお、誘導膜Bは、図17に示すように、第1素線111と第2素線112との間に形成される複数の目開きmのうちの一部の目開きmを閉塞するように形成されており、誘導膜161の先端が、第1素線111と第2素線112との交差部110aに位置し、交差部110aの周方向に隣接する目開きm1、m2が開口していることも好ましい。このような態様の誘導膜Bでは、目開きm内に存する誘導膜161の端部全てが素線(第1素線111、第2素線112)で縁取られている(誘導膜161の端部全てが素線に接合されている)。これにより、逆行性ガイドワイヤが誘導膜161の先端に接触した場合であっても、誘導膜161の破損をより抑制することができると共に、誘導膜161がメッシュ部材110から剥離するのを防止することができる。
 また、誘導膜Bの膜厚は、図18(a)に示すように、素線111、112どうしの交差部110aにおいて最も厚いことも好ましい。これにより、逆行性ガイドワイヤが誘導膜161の先端に接触した場合であっても、誘導膜161の破損を抑制することができる。
 また、誘導膜Bの先端における第1素線111および第2素線112の交差部110aの外周は、図18(b)に示すように、誘導膜161で覆われていることも好ましい。これにより、逆行性ガイドワイヤが誘導膜161の先端に接触した場合であっても、誘導膜161の破損をより抑制することができると共に、誘導膜161がメッシュ部材110から剥離するのを防止することができる。
 このように、当該カテーテル1は、誘導膜160をメッシュ部材110に配置させることで、逆行性ガイドワイヤを誘導膜160に沿って第1の中空シャフト120に容易かつ確実に誘導することができる。
 コネクタ170は、オペレータが当該カテーテル1を把持する部材である。このコネクタ170は、図1に示すように、第1の中空シャフト120の基端に接続されており、コアワイヤ150を外部に露出できるように、第1の中空シャフト120のルーメン122、124と相通する通孔171と、この通孔171の基端に形成された開口部172とを有している。なお、コネクタ170の形態は特に限定されず、オペレータが把持し易ければいずれの形状であってもよい。
 なお、当該カテーテル1は、図19および図20に示すように、メッシュ部材110の拡径時に、より好ましくはメッシュ部材110が最適に拡径した時に、誘導膜160の先端の内側に位置するコアワイヤ150の部位に設けられ、放射線不透過材料で形成されたマーカー180を有していることが好ましく、上記マーカー180と、誘導膜160の先端部に設けられ、放射線不透過材料で形成された放射線不透過部160aとを有していることがより好ましい。マーカー180は、樹脂材料を用いる場合、例えば、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂などに、三酸化ビスマス、タングステン、硫酸バリウム等の放射線不透過材料を混ぜて形成することが好ましく、金属材料を用いる場合、例えば、放射線不透過材料である金、白金、タングステン、またはこれらの元素を含む合金(例えば、白金ニッケル合金等)等で形成することが好ましい。放射線不透過部160aは、放射線不透過材料として樹脂材料を用いる場合、誘導膜160の先端部に三酸化ビスマス、タングステン、硫酸バリウム等の放射線不透過材料を混ぜて形成することが好ましく、金属材料を用いる場合、誘導膜160の先端部に金、白金、タングステン、またはこれらの元素を含む合金(例えば、白金ニッケル合金等)等の放射線不透過材料を接合することが好ましい。これにより、X線などの放射線の透視下にてマーカー180と誘導膜160先端とを容易に認識することができるため、マーカー180を誘導膜160先端の放射線不透過部160aの内側に位置するようにコアワイヤ150を引っ張ることで、メッシュ部材110を最適に拡径することができると共に、放射線不透過部160aを手がかりとして逆行性ガイドワイヤを容易に誘導膜160の内側に導くことができ、誘導膜160と逆行性ガイドワイヤとの接触を防いで誘導膜160の破損を防止することができる。なお、本明細書において、「最適に拡径」とは、過度な拡張による誘導膜160の破損が生じない範囲で、逆行性ガイドワイヤを受け入れ易いようにメッシュ部材110を最大限に拡径することを意味する。
 次に、上述した当該カテーテル1の使用態様について説明する。当該カテーテル1は、逆行性ガイドワイヤW2を受け入れるもの(使用態様1)の他、例えば閉塞物の除去(使用態様2)にも用いることができる。以下、使用態様1および2について説明する。
(使用態様1)
 使用態様1では、当該カテーテル1を用いて逆行性ガイドワイヤW2を受け入れる。この使用態様1では、まず順行性ガイドワイヤW1(不図示)を例えば血管内に挿入した後、血管に沿って閉塞物が存在する部位(以下、「閉塞部位」ともいう)まで押し進める。
 次に、順行性ガイドワイヤW1の先端が閉塞部位に到達した後、順行性ガイドワイヤW1の基端を第2の中空シャフト140先端の通孔に挿通させ、順行性ガイドワイヤW1をガイドとして当該カテーテル1の先端を血管内にて閉塞部位まで押し進める。この際、当該カテーテル1は、メッシュ部材110が縮径した状態で血管に挿入され、当該カテーテル1の先端が閉塞部位に到達するまで上記縮径した状態を維持する。
 次に、上述したように当該カテーテル1の先端が閉塞部位に到達した後、当該カテーテル1に対して順行性ガイドワイヤW1を基端側に引っ張ることで順行性ガイドワイヤW1を当該カテーテル1から引き抜く。次いで、コネクタ170の外部に露出しているコアワイヤ150を基端側に向かって引っ張ることでメッシュ部材110の先端と第1の中空シャフト120の先端との間隔が狭まり、結果としてメッシュ部材110が径外側に面外変形して拡径する。この際、メッシュ部材110の拡径に伴って目開きmも拡張されるので、逆行性ガイドワイヤW2を受け入れやすい状態となる。また、第2の中空シャフト140の傾倒によりメッシュ部材110の内周が径外側に向かって押圧されることで、メッシュ部材110の拡径が促進される。なお、本実施形態では、誘導膜160の先端がメッシュ部材110の軸方向略中央部に接合されているので、メッシュ部材110の拡径に追従して誘導膜160が拡径され、誘導膜160が全体として漏斗形状になる。
 次に、図21に示すように、先端側から向かって来る逆行性ガイドワイヤW2を当該カテーテル1に受け入れる。上記逆行性ガイドワイヤW2が向かってくる経路としては、例えば、閉塞部位を囲繞する血管壁内の偽腔、閉塞部位を貫通する貫通孔等が想定されるが、いずれの経路からの逆行性ガイドワイヤW2であってもよい。上記逆行性ガイドワイヤW2は、拡径したメッシュ部材110の目開きmを通してメッシュ部材110の内側の空間に受け入れられた後、第1の中空シャフト120の開口部120aから先端側シャフト121に挿通され、開口部126を介して当該カテーテル1の外部に送出される。次いで、開口部126から送出された逆行性ガイドワイヤW2は、血管内を通過した後、端部が体外に送出される。これにより、逆行性ガイドワイヤW2が閉塞部位を貫通しかつこの逆行性ガイドワイヤW2の両端部が体外に露出した状態を作り出すことができる。
 このように、当該カテーテル1は、逆行性ガイドワイヤW2を受け入れて端部を体外に誘導することができるので、逆行性ガイドワイヤW2と組み合わせた医療器具として好適に用いることができる。
(使用態様2)
 使用態様2では、当該カテーテル1を用いて順行性ガイドワイヤW1等により閉塞物を除去する。使用態様2において、順行性ガイドワイヤW1および当該カテーテル1を挿入する方法、並びにメッシュ部材110を拡径する方法は上述した方法と同様であるので、ここでの説明は省略する。この使用態様2では、まず使用態様1と同様に操作して順行性ガイドワイヤW1および当該カテーテル1を閉塞部位に到達させる。次いで、コアワイヤ150を操作してメッシュ部材110を拡径する。なお、順行性ガイドワイヤW1は当該カテーテル1から引き抜かない。
 次に、上記順行性ガイドワイヤW1等を用いて閉塞物を破砕する。この際、破砕された閉塞物は、拡径したメッシュ部材110の目開きmを通してメッシュ部材110の内側の空間に取り込まれた後、開口部120aを介して第1の中空シャフト120内に誘導され、この第1の中空シャフト120を通過して体外に排出される。
 このように、当該カテーテル1は、血管内の閉塞物を粉砕して体外に除去することができるので、閉塞物の除去する医療器具としても好適に使用することができる。
 以上のように、当該カテーテル1は上述した構成であるので、コアワイヤ150を基端側に向かって引っ張ることによりメッシュ部材110を拡径する際、第2の中空シャフト140の基端がコアワイヤ150から離間可能であるため、メッシュ部材110の内周を押圧することで、メッシュ部材110を容易に拡径することができる。また、第2の中空シャフト140の基端がメッシュ部材110の内周に当接しない場合であっても、拡径したメッシュ部材110の内側の空間を非対称的に拡げることができ、逆行性ガイドワイヤをより受け入れ易くすることができる。
[第2の実施形態]
 図22は、本発明の第2の実施形態を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。当該カテーテル2は、図22に示すように、概略的に、メッシュ部材110と、第1の中空シャフト120と、先端チップ130と、第2の中空シャフト240と、コアワイヤ250と、保持部材280と、誘導膜160と、コネクタ170(不図示)とにより構成されている。第2の実施形態は、第2の中空シャフト240、コアワイヤ250および保持部材280を備えている点で、第1の実施形態と異なっている。なお、メッシュ部材110、第1の中空シャフト120、先端チップ130、誘導膜160およびコネクタ170の構成は、第1の実施形態のものと同じ構成であるので、同一部分には同一符号を付してその詳細な説明は省略する。また、第2の中空シャフト240およびコアワイヤ250の材料は、第1の実施形態のものと同じであるので、第1の実施形態での説明を援用してその詳細な説明は省略する。
 第2の中空シャフト240は、先端チップ130に接続され、メッシュ部材110の内側の空間にて基端側に突設し、基端が第1の中空シャフト120の先端と先端チップ130の基端との間に位置する部材である。
 コアワイヤ250は、先端がメッシュ部材110の先端および/または先端チップ130に接続され、基端が第1の中空シャフト120の基端よりも基端側に位置し、第2の中空シャフト240の外周に沿ってかつメッシュ部材110および第1の中空シャフト120の内部を通って延びる部材である。
 保持部材280は、横断面視の形状が略環状または略C形状であり(図23(a)(b)参照)、コアワイヤ250に設けられ、第2の中空シャフト240を覆う部材である。この保持部材280は、第2の中空シャフト240の外周を覆っており、第2の中空シャフト240は、この保持部材280に対して軸方向に相対移動ができる。なお、本実施形態では、図22に示すように、保持部材280が第2の中空シャフト240の基端を覆うように設けられているが、保持部材280によって第2の中空シャフト240の基端がコアワイヤ250から離間せずにこれらを一体となって動かすことができる限りにおいて、保持部材は、図24および図25に示すように、第2の中空シャフト240の基端から先端側へ移動した部分を覆うように設けられていてもよい。
 なお、保持部材280を構成する材料としては、例えば、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂などの樹脂材料、SUS304などのステンレス鋼、ニッケルチタン合金、コバルトクロム合金などの金属材料を採用することができる。
 なお、当該カテーテル2は、保持部材280が放射線不透過材料を含んでいることが好ましく、図26および図27に示すように、この放射線不透過材料を含んだ保持部材280と、誘導膜160の先端部に設けられ、放射線不透過材料で形成された放射線不透過部160aとを有していることがより好ましい。保持部材280を上記した樹脂材料で形成する場合、保持部材280に、例えば、三酸化ビスマス、タングステン、硫酸バリウム等の放射線不透過材料を混ぜることが好ましく、保持部材280を金属材料で形成する場合、例えば、放射線不透過材料である金、白金、タングステン、またはこれらの元素を含む合金(例えば、白金ニッケル合金等)等で形成することが好ましい。放射線不透過部160aの構成としては、放射線不透過材料として樹脂材料を用いる場合、誘導膜160の先端部に三酸化ビスマス、タングステン、硫酸バリウム等の放射線不透過材料を混ぜることが好ましく、金属材料を用いる場合、誘導膜160の先端部に金、白金、タングステン、またはこれらの元素を含む合金(例えば、白金ニッケル合金等)等の放射線不透過材料を接合することが好ましい。当該カテーテル2では、図26及び図27に示すように、保持部材280を、メッシュ部材110の拡径時、より好ましくはメッシュ部材110が最適に拡径した時に、誘導膜160の先端の内側に位置させることが好ましい。これにより、X線などの放射線の透視下にて保持部材280と誘導膜160先端とを容易に認識することができるため、保持部材280を誘導膜160先端の放射線不透過部160aの内側に位置するようにコアワイヤ250を引っ張ることで、メッシュ部材110を最適に拡径することができると共に、放射線不透過部160aを手がかりとして逆行性ガイドワイヤを容易に誘導膜160の内側に導くことができ、誘導膜160と逆行性ガイドワイヤとの接触を防いで誘導膜160の破損を防止することができる。
 次に、当該カテーテル2の使用時の動作について説明する。例えば、上述した使用態様1と同様に操作して当該カテーテル2を閉塞部位に到達させた後、図28に示すように、コアワイヤ250を操作してメッシュ部材110を拡径する。この際、第2の中空シャフト240は、その基端が周囲を保持部材280で覆われているので、第2の中空シャフト240が傾倒せず、第2の中空シャフト240の基端とメッシュ部材110とが接触することなく軸方向に沿って基端側に引っ張られてメッシュ部材110が拡径する。これにより、メッシュ部材110の目開きmを介して逆行性ガイドワイヤW2を受け入れることが可能となる。
 このように、当該カテーテル2は、第2の中空シャフト240、コアワイヤ250および保持部材280が上述した構成であるので、保持部材280によって第2の中空シャフト240の基端がコアワイヤ250から離間せずにこれらを一体となって動かすことができ、第2の中空シャフト240の基端がコアワイヤ250から離間しない分、第2の中空シャフト240が誘導膜160を突き破るのを抑制することができる。なお、保持部材280で第2の中空シャフト240の外周を覆う場合、第2の中空シャフト240の基端が誘導膜160に接触しない程度に、第2の中空シャフト240の基端のコアワイヤ250からの離間が制限されるように構成してもよい。
[第3の実施形態]
 図29は、本発明の第3の実施形態を示す概略正面図であって、メッシュ部材が縮径した状態を示す図である。当該カテーテル3は、図29に示すように、概略的に、メッシュ部材110と、第1の中空シャフト120と、先端チップ130と、第2の中空シャフト340と、コアワイヤ150と、誘導膜160と、コネクタ170(不図示)とにより構成されている。第3の実施形態は、第2の中空シャフト340を備えてる点で、第1の実施形態と異なっている。なお、メッシュ部材110、第1の中空シャフト120、先端チップ130、コアワイヤ150、誘導膜160およびコネクタ170の構成は、第1の実施形態のものと同じ構成であるので、同一部分には同一符号を付してその詳細な説明は省略する。また、第2の中空シャフト340の材料は、第1の実施形態のものと同じであるので、第1の実施形態での説明を援用してその詳細な説明は省略する。
 第2の中空シャフト340は、一部がメッシュ部材110の内側の空間に配置され、メッシュ部材110を貫通して、基端がメッシュ部材110の外部に位置する部材である。なお、上述の「基端がメッシュ部材の外部に位置する」とは、図30および図31に示すように、第2の中空シャフト341の基端341aがメッシュ部材110の外周に位置する態様を含む概念である。
 ここで、第2の中空シャフト340は、当該第2の中空シャフト340の両端が他の部材(例えば、先端チップ130、メッシュ部材110、第1の中空シャフト120など)に固定されていてもよいが、第2の中空シャフトの先端が先端チップ130に接続され、第2の中空シャフトの基端が自由端であるか、第2の中空シャフトの先端が自由端であり、第2の中空シャフトの基端部の外周がメッシュ部材110または第1の中空シャフト120の外周に接続されていることが好ましい。これにより、第2の中空シャフト340の先端および基端部の一方のみが他の部材に接続されていることで、メッシュ部材110を拡張した際に第2の中空シャフト340が折れるのを防止することができ、順行性ガイドワイヤW1の通過性を確保して手技を安定的かつ効率よく行うことができる。
 また、第2の中空シャフト340の基端は、基端側に向かって開口していることが好ましい。これにより、手技にて順行性ガイドワイヤW1の基端を第2の中空シャフト340の先端に挿入する際、順行性ガイドワイヤW1の基端が第2の中空シャフト340の基端の開口から当該カテーテル3の基端側に向かう分、術者が順行性ガイドワイヤW1の基端の位置を素早く認識して、順行性ガイドワイヤW1の基端部を容易かつ確実に把持することができる。その結果、当該カテーテル3を用いて手技を効率よく行うことができる。
 本実施形態では、当該カテーテル3は、図29に示すように、第2の中空シャフト340の先端が自由端でありかつ第2の中空シャフト340の先端側がメッシュ部材110の内側の空間に配置されている。この第2の中空シャフト340は、軸方向の中途にてメッシュ部材110の目開きmを貫通しており、第2の中空シャフト340の基端がメッシュ部材110の外部に位置しかつ基端部の外周が第1の中空シャフト120の外周に接合されている。第2の中空シャフト340の基端には基端側に向かって開口する開口部340aが設けられている。
 なお、当該カテーテル3は、図29~図32に示すように、メッシュ部材110の拡径時、より好ましくはメッシュ部材110が最適に拡径した時に、誘導膜160の先端の内側に位置するコアワイヤ150の部位に設けられ、放射線不透過材料で形成されたマーカー180を有していることが好ましく、上記マーカー180と、誘導膜160の先端部に設けられ、放射線不透過材料で形成された放射線不透過部160aとを有していることがより好ましい。マーカー180および放射線不透過部160aの構成としては、例えば、第1の実施形態にて説明したものと同様の構成を採用することができる。これにより、X線などの放射線の透視下にてマーカー180と誘導膜160先端とを容易に認識することができるため、マーカー180を誘導膜160先端の放射線不透過部160aの内側に位置するようにコアワイヤ150を引っ張ることで、メッシュ部材110を最適に拡径することができると共に、放射線不透過部160aを手がかりとして逆行性ガイドワイヤを容易に誘導膜160の内側に導くことができ、誘導膜160と逆行性ガイドワイヤとの接触を防いで誘導膜160の破損を防止することができる。
 次に、当該カテーテル3の使用時の動作について説明する。例えば、上述した使用態様1と同様に操作して当該カテーテル3を閉塞部位に到達させた後、図32に示すように、順行性ガイドワイヤW1を第2の中空シャフト340から引き抜かずにコアワイヤ150を操作してメッシュ部材110を拡径する。この際、第2の中空シャフト340の基端がメッシュ部材110の外部に位置しているので、順行性ガイドワイヤW1は第1の中空シャフト120内に存在していない。そのため、メッシュ部材110の目開きmを介して受け入れられ第1の中空シャフト120内に挿通された逆行性ガイドワイヤW2は、第1の中空シャフト120内にて上記順行性ガイドワイヤW1と併存することなく円滑に開口部126から送出することができる。
 このように、当該カテーテル3は、メッシュ部材110、先端チップ130、第2の中空シャフト340および誘導膜160が、上述した構成であるので、順行性ガイドワイヤW1が第1の中空シャフト120を通らない分、順行性ガイドワイヤW1を第2の中空シャフト340に通したまま逆行性ガイドワイヤW2を第1の中空シャフト120へ導くことができ、手技を効率よくかつ簡便に行うことができる。
 なお、本発明は、上述した実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。上述した実施形態の構成のうちの一部を削除したり、他の構成に置換してもよく、上述した実施形態の構成に他の構成を追加等してもよい。
 例えば、第1の実施形態では、第2の中空シャフト140を備えているカテーテル1について説明したが、例えば、図33および図34に示すような第2の中空シャフト140を備えていないカテーテル4も本発明の意図する範囲内である。
 1、2、3、4 カテーテル
 p1、p2 投影位置
 W1 順行性ガイドワイヤ
 W2 逆行性ガイドワイヤ
 110 メッシュ部材
 111 第1素線
 112 第2素線
 110a 交差部
 110b 接合部
 m、m1、m2 目開き
 120 第1の中空シャフト
 121 先端側シャフト
 123 基端側シャフト
 126 開口部
 127、128、129 封止部材
 130 先端チップ
 140、240、340、341 第2の中空シャフト
 150、250 コアワイヤ
 280 保持部材
 160、161 誘導膜

Claims (2)

  1.  径方向に拡縮可能なチューブ状のメッシュ部材と、
     前記メッシュ部材の基端に接続された第1の中空シャフトと、
     前記メッシュ部材の先端に接続された先端チップと、
     前記メッシュ部材に配置され、先端が、前記先端チップの基端と前記第1の中空シャフトの先端との間に位置する誘導膜と、
     前記先端チップに接続され、前記メッシュ部材の内側の空間にて基端側に突設し、基端が、前記第1の中空シャフトの先端と前記先端チップの基端との間に位置する第2の中空シャフトと、
     先端が前記メッシュ部材の先端および/または前記先端チップに接続され、基端が前記第1の中空シャフトの基端よりも基端側に位置し、前記第2の中空シャフトの外周に沿ってかつ前記メッシュ部材および前記第1の中空シャフトの内部を通って延びるコアワイヤと、
     横断面視の形状が略環状または略C形状であり、前記コアワイヤに設けられ、前記第2中空シャフトを覆う保持部材と、を備えるカテーテル。
  2.  前記保持部材は、放射線不透過材料で形成され、前記メッシュ部材の径方向への拡張時に前記誘導膜の先端の内側に位置する請求項1に記載のカテーテル。
PCT/JP2017/015957 2017-04-20 2017-04-20 カテーテル WO2018193601A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019513180A JP6755385B2 (ja) 2017-04-20 2017-04-20 カテーテル
PCT/JP2017/015957 WO2018193601A1 (ja) 2017-04-20 2017-04-20 カテーテル
CN201780089653.3A CN110545876A (zh) 2017-04-20 2017-04-20 导管
EP17906447.2A EP3613461A1 (en) 2017-04-20 2017-04-20 Catheter
US16/658,544 US20200046937A1 (en) 2017-04-20 2019-10-21 Catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015957 WO2018193601A1 (ja) 2017-04-20 2017-04-20 カテーテル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/658,544 Continuation US20200046937A1 (en) 2017-04-20 2019-10-21 Catheter

Publications (1)

Publication Number Publication Date
WO2018193601A1 true WO2018193601A1 (ja) 2018-10-25

Family

ID=63856688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015957 WO2018193601A1 (ja) 2017-04-20 2017-04-20 カテーテル

Country Status (5)

Country Link
US (1) US20200046937A1 (ja)
EP (1) EP3613461A1 (ja)
JP (1) JP6755385B2 (ja)
CN (1) CN110545876A (ja)
WO (1) WO2018193601A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020079825A1 (ja) * 2018-10-19 2020-04-23 朝日インテック株式会社 カテーテル
EP3650072A1 (en) * 2018-10-19 2020-05-13 Asahi Intecc Co., Ltd. Catheter
WO2021255879A1 (ja) * 2020-06-17 2021-12-23 朝日インテック株式会社 カテーテル
WO2022168719A1 (ja) * 2021-02-03 2022-08-11 テルモ株式会社 経皮カテーテル
WO2022168720A1 (ja) * 2021-02-03 2022-08-11 テルモ株式会社 経皮カテーテル

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129194A1 (en) 2017-01-06 2018-07-12 Incept, Llc Thromboresistant coatings for aneurysm treatment devices
CA3095844A1 (en) 2018-05-01 2019-11-07 Incept, Llc Devices and methods for removing obstructive material from an intravascular site
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
WO2020010310A1 (en) 2018-07-06 2020-01-09 Imperative Care, Inc. Sealed neurovascular extendable catheter
CA3157362A1 (en) 2019-10-15 2021-04-22 Imperative Care, Inc. Systems and methods for multivariate stroke detection
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
US20210315598A1 (en) 2019-12-18 2021-10-14 Imperative Care, Inc. Methods of placing large bore aspiration catheters
WO2021127004A1 (en) 2019-12-18 2021-06-24 Imperative Care, Inc. Methods and systems for treating venous thromboembolic disease
WO2021183444A1 (en) 2020-03-10 2021-09-16 Imperative Care, Inc. Enhanced flexibility neurovascular catheter
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503154A (ja) * 1992-11-13 1996-04-09 シメッド ライフ システムズ インコーポレイテッド 脈管内閉塞除去のための装置及び方法
JP3655920B2 (ja) 1993-04-29 2005-06-02 シメッド ライフ システムズ インコーポレイテッド 拡張可能な脈管閉塞物除去装置
JP2012196294A (ja) * 2011-03-21 2012-10-18 Nipro Corp カテーテル
US20160066933A1 (en) * 2014-09-10 2016-03-10 Vascular Solutions, Inc. Guidewire Capture
US20160279393A1 (en) * 2015-03-25 2016-09-29 Covidien Lp Guidewire retrieval catheter
US20160278796A1 (en) * 2015-03-25 2016-09-29 Covidien Lp Guidewire retrieval system
WO2016204137A1 (ja) * 2015-06-16 2016-12-22 テルモ株式会社 医療デバイスおよび処置方法
JP2017077323A (ja) * 2015-10-20 2017-04-27 朝日インテック株式会社 カテーテル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371248B2 (en) * 2003-10-14 2008-05-13 Medtronic Vascular, Inc. Steerable distal protection guidewire and methods of use
US9233224B1 (en) * 2006-08-14 2016-01-12 Volcano Corporation Side port catheter device and method for accessing side branch occlusions
US8007490B2 (en) * 2007-10-19 2011-08-30 Cook Medical Technologies Llc Reduced width dual-lumen catheter
US8388644B2 (en) * 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US9808605B2 (en) * 2011-10-06 2017-11-07 W. L. Gore & Associates, Inc. Controlled porosity devices for tissue treatments, methods of use, and methods of manufacture
JP5971865B2 (ja) * 2013-09-25 2016-08-17 朝日インテック株式会社 ガイドワイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503154A (ja) * 1992-11-13 1996-04-09 シメッド ライフ システムズ インコーポレイテッド 脈管内閉塞除去のための装置及び方法
JP3655920B2 (ja) 1993-04-29 2005-06-02 シメッド ライフ システムズ インコーポレイテッド 拡張可能な脈管閉塞物除去装置
JP2012196294A (ja) * 2011-03-21 2012-10-18 Nipro Corp カテーテル
US20160066933A1 (en) * 2014-09-10 2016-03-10 Vascular Solutions, Inc. Guidewire Capture
US20160279393A1 (en) * 2015-03-25 2016-09-29 Covidien Lp Guidewire retrieval catheter
US20160278796A1 (en) * 2015-03-25 2016-09-29 Covidien Lp Guidewire retrieval system
WO2016204137A1 (ja) * 2015-06-16 2016-12-22 テルモ株式会社 医療デバイスおよび処置方法
JP2017077323A (ja) * 2015-10-20 2017-04-27 朝日インテック株式会社 カテーテル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kakuzitsuni minitsuku PCI no kihon to kotsu, Revised edition", 25 February 2016, YODOSHA CO. , LTD., pages: 222 - 227

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020079825A1 (ja) * 2018-10-19 2020-04-23 朝日インテック株式会社 カテーテル
EP3650072A1 (en) * 2018-10-19 2020-05-13 Asahi Intecc Co., Ltd. Catheter
US11213306B2 (en) 2018-10-19 2022-01-04 Asahi Intecc Co., Ltd. Catheter
WO2021255879A1 (ja) * 2020-06-17 2021-12-23 朝日インテック株式会社 カテーテル
WO2022168719A1 (ja) * 2021-02-03 2022-08-11 テルモ株式会社 経皮カテーテル
WO2022168720A1 (ja) * 2021-02-03 2022-08-11 テルモ株式会社 経皮カテーテル

Also Published As

Publication number Publication date
JPWO2018193601A1 (ja) 2019-11-07
US20200046937A1 (en) 2020-02-13
EP3613461A1 (en) 2020-02-26
CN110545876A (zh) 2019-12-06
JP6755385B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2018193603A1 (ja) カテーテル
WO2018193601A1 (ja) カテーテル
WO2018193597A1 (ja) カテーテル
WO2018193600A1 (ja) カテーテル
WO2018193602A1 (ja) カテーテル
WO2018193599A1 (ja) カテーテル
WO2018193604A1 (ja) カテーテル
WO2018193598A1 (ja) カテーテル
US20210145465A1 (en) Catheter
JP2020062318A (ja) カテーテル
WO2020250934A1 (ja) カテーテル
WO2022249413A1 (ja) カテーテル
WO2022249414A1 (ja) カテーテル
WO2023171200A1 (ja) カテーテル
JP6844000B2 (ja) カテーテル
JP2022059511A (ja) カテーテル
WO2020079825A1 (ja) カテーテル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017906447

Country of ref document: EP

Effective date: 20191120