WO2018181782A1 - 光レセプタクル及び光トランシーバ - Google Patents

光レセプタクル及び光トランシーバ Download PDF

Info

Publication number
WO2018181782A1
WO2018181782A1 PCT/JP2018/013378 JP2018013378W WO2018181782A1 WO 2018181782 A1 WO2018181782 A1 WO 2018181782A1 JP 2018013378 W JP2018013378 W JP 2018013378W WO 2018181782 A1 WO2018181782 A1 WO 2018181782A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
block
elastic member
fiber
Prior art date
Application number
PCT/JP2018/013378
Other languages
English (en)
French (fr)
Inventor
弘嗣 我妻
悟史 箱▲崎▼
裕希 佐藤
哲史 兼行
康平 冨永
新人 鈴木
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201880003685.1A priority Critical patent/CN109791262A/zh
Priority to JP2019510167A priority patent/JPWO2018181782A1/ja
Publication of WO2018181782A1 publication Critical patent/WO2018181782A1/ja
Priority to US16/356,479 priority patent/US20190212501A1/en
Priority to US17/067,081 priority patent/US20210026080A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3846Details of mounting fibres in ferrules; Assembly methods; Manufacture with fibre stubs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Definitions

  • An aspect of the present invention generally relates to an optical receptacle and an optical transceiver for optical communication, and more particularly to an optical receptacle and an optical transceiver suitable for a high-speed communication module.
  • the optical receptacle is used as a component for optically connecting an optical fiber connector and an optical element such as a light receiving element or a light emitting element in an optical module of an optical communication transceiver.
  • optical communication transceivers are required to increase in speed.
  • the shape of a transceiver or the like that adopts a receptacle-type optical module is standardized, and if the modulation speed of an optical signal emitted from a semiconductor laser, which is one of optical elements, is increased, the space required for an electric circuit increases. Therefore, downsizing of the optical module is demanded.
  • the mode field diameter (MFD) of the semiconductor laser element is generally smaller than the core diameter of 10 ⁇ m of an optical fiber used as an optical signal transmission path.
  • a single module has a plurality of semiconductor lasers, and light emitted from each semiconductor laser is transmitted into an optical waveguide formed inside a plate-shaped member.
  • an optical module having a structure of optically coupling with an optical fiber of an optical receptacle after being combined into one waveguide is also used.
  • a lens for condensing light emitted from a semiconductor laser element onto a fiber core or condensing light emitted from a fiber core onto a light receiving element has a difference between the mode field diameter of the optical element and the fiber core diameter. In some cases, it is necessary to have a magnification function. However, the larger the difference, the longer the focal length of the lens, or the larger the number of necessary lenses, and there is a problem that the optical system becomes complicated and expensive.
  • the magnification by the lens is kept small. Instead, a lens is formed on a part of the optical fiber side end face of the optical fiber, or a GI fiber is fused.
  • a method is known in which the mode field diameter of the incident light is enlarged and the optimum mode field diameter for the fiber is incident on the fiber end face (for example, Patent Document 1).
  • Patent Document 1 since the method of Patent Document 1 uses a GI fiber whose mode field diameter periodically changes, in order to obtain an optimum mode field diameter, the length of the GI fiber must be strictly controlled. There was a problem that it was difficult to manage.
  • a fiber having different refractive indexes is fused stepwise from the core center to the outer peripheral portion in the radial direction, such as a GI fiber
  • a core having a different refractive index is fused in a fusion technique in which the fiber end faces are fused and integrated. Since it melts and mixes, it is difficult to manage the refractive index around the fused part, and there is a problem that optical loss increases.
  • Patent Document 2 proposes an optical receptacle in which the optical element side of the optical fiber is formed in a tapered shape, and the mode field diameter on the optical element side is smaller than the mode field diameter on the PC (Physical Contact) side. Thereby, connection loss can be suppressed.
  • the taper shape is located at the end on the optical element side. Both end portions of the optical fiber need to be mirrored (polished) so as not to cause adverse effects of light entering and exiting. For this reason, there has been a problem that the diameter varies depending on the degree of mirror finishing, and it is difficult to stably control the mode field diameter. That is, the configuration of Patent Document 2 also requires a highly accurate dimensional tolerance with respect to the axial length of the optical fiber.
  • An aspect of the present invention has been made to solve the above-described problems.
  • the core of the optical element side end surface of the optical fiber is made smaller, and the refractive index difference between the core and the clad than the fiber generally used in the transmission line is reduced.
  • the loss on the optical connection surface is suppressed and the overall length of the optical module is shortened, while the refractive index difference between the fiber, core, and cladding generally used in transmission lines is large.
  • the mode field conversion efficiency can be suppressed, and as a result, the decrease in coupling efficiency from the optical element to the plug ferrule can be suppressed.
  • An object is to provide an optical receptacle and an optical transceiver.
  • a fiber stub including an optical fiber having a core and a clad for conducting light, and a ferrule provided on one end side of the optical fiber; A block having a second end surface opposite to the first end surface and a through hole extending from the first end surface to the second end surface, wherein a portion protruding from the ferrule of the optical fiber is from the first end surface side. A block inserted into the through hole; and a first elastic member for fixing the optical fiber to the through hole. A portion of the optical fiber protruding from the ferrule includes a first portion and a second portion.
  • the core diameter in the third portion is smaller than the core diameter in the third portion, the core diameter in the second portion is increased from the first portion toward the third portion, and the first elastic member is the optical fiber. And an inner wall of the through hole.
  • the core diameter in the first part is smaller than the core diameter in the third part, it is possible to suppress loss at the optical connection surface and shorten the length of the optical module.
  • the second part it is possible to suppress an abrupt change in the core shape when transitioning from the first part to the third part, thereby suppressing optical loss in the second part.
  • the loss of light in the first part and the third part is small, when the second part is provided in the through hole of the block, the second part may be located anywhere in the through hole. As a result, an optical receptacle can be manufactured economically without requiring precise length control of the optical fiber.
  • connection method for directly pressing the block against the optical element while suppressing the coupling loss due to the difference in MFD becomes possible.
  • optical devices between the blocks can be reduced. This makes it possible to reduce costs and loss due to device alignment errors.
  • the number of components of the block can be reduced (for example, one), and assembly can be performed by inserting the optical fiber into the block. The number of manufacturing processes can be reduced.
  • the shapes of the first part and the third part do not change with respect to the axial direction and the loss of light is small, when the second part is provided in the through hole of the block, the second part is located anywhere in the through hole. There is no problem. This makes it possible to manufacture the receptacle economically without requiring precise length control of the optical fiber on the fiber block.
  • a fiber stub including an optical fiber having a core and a clad for conducting light, and a ferrule provided on one end side of the optical fiber; A block having the other end surface opposite to the one end surface and a V-shaped groove extending from the one end surface to the other end surface, wherein a portion protruding from the ferrule of the optical fiber is the one end surface A block disposed along the groove from the side, and a first elastic member for fixing the optical fiber to the groove,
  • the portion of the optical fiber that protrudes from the ferrule has a first portion, a second portion, and a third portion, and the first portion is provided on the other end surface side than the third portion.
  • the second part is provided between the first part and the third part, and the core diameter in the first part is smaller than the core diameter in the third part, and the core diameter in the second part is Is an optical receptacle characterized in that the first elastic member increases from the first part toward the third part, and the first elastic member is disposed between the optical fiber and the groove.
  • the length of the optical module can be reduced. Also, by forming the second part, it is possible to suppress a sudden change in the core shape when transitioning from the first part to the third part, thereby suppressing optical loss in the second part. Can do. Furthermore, since the shape of the first part and the third part does not change with respect to the axial direction and the loss of light is small, when the second part is provided on the groove of the block, the second part can be located anywhere on the groove. No problem. This makes it possible to manufacture the receptacle economically without requiring precise length management of the optical fiber. Further, when an adhesive is used as the first elastic member, a sufficient amount of adhesive can be deposited between the groove and the optical fiber or on the optical fiber disposed on the groove, thereby increasing the adhesive strength. Can do.
  • the block includes a first member provided with the groove, and a second member facing the first member, and the optical fiber includes the first member.
  • the first elastic member is provided between the optical fiber and the groove and between the optical fiber and the second member. Is an optical receptacle.
  • the optical fiber can be pressed into the groove by the second member. Thereby, the optical fiber can be made to follow the groove with high accuracy.
  • the whole of the first part and the whole of the second part are in the direction along the central axis of the optical fiber. And the other end surface, and the third portion has a portion protruding from the one end surface.
  • the second portion can be protected from external stress by aligning the entire area of the first portion and the second portion along the block and fixing with the first elastic member.
  • At least a part of the first portion is formed between the one end face and the other end face in a direction along the central axis of the optical fiber.
  • the optical receptacle is characterized in that the second part and the third part are located between and protrude from the one end face.
  • the optical receptacle even if the diameter of the clad in the second part changes with the fusion of the optical fiber, only the first part is along the through-hole or V-shaped groove of the block.
  • the diameter of the first part is, for example, the same over the entire area of the first part. For this reason, the optical fiber can be fixed to the block without affecting the positional relationship between the block and the core.
  • the refractive index of the core of the first portion, the refractive index of the core of the second portion, and the refractive index of the core of the third portion are And the refractive index of the cladding of the first portion is smaller than the refractive index of the cladding of the third portion,
  • the optical receptacle is characterized in that the refractive index of the cladding of the second part increases from the first part side toward the third part side.
  • this optical receptacle by using a fiber having a large refractive index difference, light can be confined without scattering even with a small core diameter, and loss when light enters the fiber can be suppressed.
  • the second portion by forming the second portion, it is possible to suppress a sudden change in the refractive index difference when transitioning from the first portion to the third portion, thereby suppressing optical loss in the second portion. be able to.
  • the core material can be shared, and there is no difference in the refractive index between the cores in the connection part between the first part and the second part and the connection part between the second part and the third part. Loss due to reflection of the part can be suppressed.
  • the refractive index of the cladding of the first portion, the refractive index of the cladding of the second portion, and the refractive index of the cladding of the third portion are And the refractive index of the core of the first part is larger than the refractive index of the core of the third part, and the refractive index of the core of the second part is from the first part side to the third part side. It is an optical receptacle characterized by becoming smaller toward it.
  • the clad can be formed of the same material, the clad can have uniform physical properties. Thereby, since the melting point becomes uniform, the outer diameter of the clad at the time of fusion can be easily formed.
  • An eighth invention is characterized in that, in any one of the first to seventh inventions, an end face on the block side of the optical fiber is inclined from a plane perpendicular to a central axis of the optical fiber. It is an optical receptacle.
  • the end face of the optical fiber is inclined from a plane perpendicular to the central axis of the optical fiber, the light emitted from the optical element connected to the optical receptacle is incident on the optical fiber.
  • the light reflected by the end face of the optical fiber can be prevented from returning to the optical element, and the optical element can be operated stably.
  • a ninth invention is the optical receptacle according to any one of the first to eighth inventions, wherein a translucent member is disposed on an end face of the optical fiber on the other end face side of the block. It is.
  • this optical receptacle by attaching an isolator as a translucent member, reflection of light incident on the first part from the optical element or light emitted from the first part to the optical element can be suppressed.
  • a covering portion that covers at least part of a portion of the optical fiber that protrudes from the one end surface of the block, the covering portion, and the block And a second elastic member provided between the two and the optical receptacle.
  • this optical receptacle it is possible to prevent the optical fiber from being broken by providing the second elastic member in the portion of the optical fiber protruding from the block. Moreover, it can suppress that a coating
  • An eleventh aspect of the invention is the tenth aspect of the invention, further comprising a third elastic member provided between the covering portion and the block, wherein the third elastic member includes the block and the second elastic member.
  • An optical receptacle characterized by being positioned between.
  • this optical receptacle it is possible to prevent the optical fiber from being broken by providing the third elastic member in the portion of the optical fiber protruding from the block. Moreover, it can suppress that a coating
  • a twelfth aspect of the invention is an optical transceiver comprising the optical receptacle according to any one of the first to eleventh aspects of the invention.
  • the core of the optical fiber side end face of the optical fiber is made small, and a fiber having a refractive index difference between the core and the clad larger than that of a fiber generally used in a transmission path is fused.
  • the refractive index and the core at the fusion part of the fiber generally used in the transmission line and the fiber having a large refractive index difference between the core and the clad By forming the portion where the diameter gradually changes, the conversion efficiency of the mode field can be suppressed, and as a result, the decrease in the coupling efficiency from the optical element to the plug ferrule can be suppressed.
  • An optical receptacle and an optical transceiver capable of preventing a reduction in coupling efficiency by suppressing and suppressing a loss of MFD conversion are provided.
  • FIG. 1 is a schematic cross-sectional view illustrating an optical receptacle according to a first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIGS. 5A and 5B are schematic views illustrating the propagation of the beam in the optical fiber.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • It is typical sectional drawing which illustrates the optical fiber used for examination of an optical fiber. It is a graph which illustrates the analysis result of an optical fiber.
  • FIG. 13A and FIG. 13B are graphs illustrating the analysis results of the optical fiber.
  • FIG. 14C are schematic views illustrating an example of the optical receptacle of the reference example used for the study on the length of the first portion and an analysis result thereof.
  • FIG. 15A to FIG. 15C are schematic cross-sectional views illustrating a part of the optical receptacle according to the first embodiment. It is a perspective view which illustrates some optical receptacles concerning a 1st embodiment.
  • FIGS. 17A and 17B are schematic views illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • 1 is a schematic perspective view illustrating a part of an optical receptacle according to a first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 22A to FIG. 22C are schematic cross-sectional views illustrating a part of the optical receptacle according to the first embodiment.
  • 1 is a schematic perspective view illustrating a part of an optical receptacle according to a first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 5 is a schematic perspective view illustrating a part of an optical receptacle according to a second embodiment.
  • FIG. 6 is a schematic cross-sectional view illustrating a part of an optical receptacle according to a second embodiment.
  • FIGS. 27A and 27B are schematic views illustrating an optical transceiver according to the third embodiment
  • FIG. 1 is a schematic cross-sectional view illustrating an optical receptacle according to the first embodiment.
  • an optical receptacle 1 according to the present embodiment includes a fiber stub 4 including an optical fiber 2 for conducting light and a ferrule 3 provided on one end E1 side of the optical fiber 2.
  • the optical receptacle 1 includes a block (fixing member) 80 provided on the other end E2 side of the optical fiber 2 and spaced from the ferrule 3.
  • FIG. 2 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 2 shows an enlarged view of the periphery of the ferrule 3 shown in FIG.
  • the ferrule 3 has a through hole 3 c that holds the optical fiber 2.
  • the fiber stub 4 includes an elastic member 9 that bonds and fixes the optical fiber 2 to the through hole 3c.
  • the optical fiber 2 is fixed to the through hole 3 c of the ferrule 3 using an elastic member (adhesive) 9.
  • the elastic member 9 is a member having an elastic modulus lower than that of zirconia or glass fiber, for example.
  • the elastic modulus of the elastic member 9 is lower than the elastic modulus of the optical fiber 2 and the elastic modulus of the ferrule 3.
  • the elastic member 9 has a role of fixing the optical fiber 2 and the zirconia ferrule 3 and absorbing stress so that external stress acting on the zirconia ferrule 3 is not transmitted to the glass optical fiber 2.
  • Examples of the elastic member 9 include an epoxy resin, an acrylic resin, a silicone resin, and the like.
  • an epoxy adhesive an acrylic adhesive, a silicone adhesive, or the like.
  • a material suitable for the adhesive used as the elastic member 9 include resin-based adhesives such as epoxy and silicon. In this embodiment, a high-temperature curing type epoxy-based adhesive was used.
  • a space existing between the optical fiber 2 and the inner wall of the ferrule 3 is filled with an elastic member 9 without a gap.
  • the optical receptacle 1 further includes a holder 5 that holds the fiber stub 4 and a sleeve 6 that holds the tip of the fiber stub 4 at one end and can hold the plug ferrule inserted into the optical receptacle 1 at the other end. .
  • the optical receptacle 1 further includes, for example, a storage unit 10.
  • the accommodating portion 10 fits on the outer surface of the holder 5 and covers the ferrule 3 and the sleeve 6.
  • the accommodating portion 10 covers the ferrule 3 and the sleeve 6 around the axis, and protects the ferrule 3 and the sleeve 6 from an external force and the like.
  • Suitable materials for the ferrule 3 include ceramics and glass.
  • zirconia ceramics is used, and the optical fiber 2 is bonded and fixed at the center, and one end (end face 3b) optically connected to the plug ferrule is convex. Polished to a spherical surface.
  • the fiber stub 4 is often press-fitted and fixed to the holder 5.
  • the material suitable for the sleeve 6 includes resin, metal, ceramics, etc.
  • a split sleeve made of zirconia ceramics having slits in the full length direction was used.
  • the sleeve 6 holds the tip end polished on the convex spherical surface of the fiber stub 4 at one end and holds the plug ferrule inserted into the optical receptacle at the other end.
  • the optical fiber 2 has a core 8 extending along the central axis of the optical fiber 2 and a clad 7 surrounding the core 8.
  • the refractive index of the core is higher than the refractive index of the cladding.
  • quartz glass can be cited as a material of the optical fiber (the core 8 and the clad 7).
  • Silica glass may be doped with impurities for controlling the refractive index.
  • the optical fiber 2 has a portion 2e fixed to the ferrule 3 and a portion 2f protruding from the ferrule 3.
  • the part 2e is a part arranged in the through hole 3c of the ferrule 3, and the part 2f is a part arranged outside the through hole 3c.
  • the fiber stub 4 includes an end face (end face 3b) optically connected to the plug ferrule and the other end face opposite to the one end face (end face 3a optically connected to the optical element). And).
  • the core 8 is exposed from the clad 7 at the end face 3a and the end face 3b.
  • an optical element 110 such as a semiconductor laser element or an optical integrated circuit is disposed on the end face 3a side.
  • Light emitted from the optical element 110 enters the optical receptacle 1 from the end face 3 a side and propagates in the core 8.
  • the light incident on the core 8 from the end surface 3b propagates in the core 8 and is emitted toward the optical element 110 from the end surface 3a side.
  • An optical element such as an isolator may be provided between the end face 3a and an optical element such as a semiconductor laser element.
  • the isolator has, for example, an element (such as a Faraday element) that rotates a polarization angle or a polarizer, and transmits light only in one direction. Thereby, for example, damage to the laser element due to the return light reflected by the end face 3a, noise, and the like can be suppressed.
  • the fiber stub 4 may be polished so that the end surface 3b is inclined with respect to a plane orthogonal to the central axis C1 (direction X2). That is, the convex spherical end surface 3b may be an oblique convex spherical surface that is inclined with respect to a plane orthogonal to the central axis C1.
  • the optical receptacle 1 is optically connected to an APC (AngledngPhysical Contact) connector at the end face 3b, and reflection and connection loss at the connection point can be suppressed.
  • the direction X2 is a direction in which the portion 2e fixed to the ferrule 3 of the optical fiber extends.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 3 shows an enlarged view around the block 80 shown in FIG.
  • the block 80 has one end face (first face F1), the other end face (second face F2) opposite to the one end face, and a through hole 88.
  • the first surface F1 is an end surface on the ferrule 3 side
  • the second surface F2 is an end surface on the optical element side.
  • the through hole 88 extends from the first surface F ⁇ b> 1 to the second surface F ⁇ b> 2 and penetrates the block 80.
  • the portion 2f protruding from the ferrule 3 of the optical fiber 2 is inserted into the through hole 88 from the first surface F1 side.
  • a portion of the optical fiber 2 that protrudes from the block 80 on the first surface F ⁇ b> 1 extends toward the ferrule 3.
  • the block 80 is provided at the end of the optical fiber 2 on the optical element side, and fixes the optical fiber 2.
  • the block 80 may have a rectangular parallelepiped shape used for physically fixing the position of the end face 2a of the optical fiber 2.
  • the shape is not limited to a rectangular parallelepiped, and may be any shape such as a cylindrical shape, a polygon, a polygonal pyramid, a cone, or the like.
  • the block 80 has, for example, a through hole or a V-shaped groove as a part for fixing the optical fiber 2.
  • the material of the block 80 can be appropriately selected from, for example, a resin considering cost and productivity, ceramics such as zirconia and alumina having a lower coefficient of thermal expansion than the resin, glass that can be fixed with an ultraviolet curable adhesive, and the like. is there.
  • the optical receptacle 1 has an elastic member (first elastic member) 83 a that bonds and fixes the optical fiber 2 to the through hole 88.
  • the elastic member 83 a is filled between the optical fiber 2 and the inner wall of the through hole 88.
  • the end of the optical fiber 2 on the optical element side is fixed to the block 80.
  • an epoxy resin, an acrylic resin, a silicon resin, or the like is used for the elastic member 83a.
  • the elastic member 83a for example, substantially the same material as that described for the elastic member 9 can be used.
  • the optical fiber 2 is provided with a coating (coating portion 86).
  • the covering portion 86 covers at least a part of the portion 2g of the optical fiber 2 that protrudes from the first surface F1 to the ferrule 3 side. In the direction X1 along the central axis C1 of the optical fiber 2, the first surface F1 is located between the portion 2g and the second surface F2.
  • the covering portion 86 covers a portion between the block 80 of the optical fiber 2 and the ferrule 3.
  • the covering portion 86 covers a portion of the optical fiber 2 that is not covered with the ferrule 3 and the block 80.
  • the covering portion 86 protects the portion exposed from the ferrule 3 and the block 80 of the optical fiber 2.
  • the covering portion 86 is in contact with the surface of the optical fiber 2, for example.
  • a resin material such as a UV curable resin is used.
  • a portion 2 f protruding from the ferrule 3 of the optical fiber 2 has a first portion 21, a second portion 22, and a third portion 23.
  • the optical fiber 2 is a single fiber formed by fusing a fiber that becomes the first portion 21 and a fiber that becomes the third portion 23. That is, the first part 21, the second part 22, and the third part 23 are integrated.
  • the first portion 21 includes a clad (first clad portion 7a) and a core (first core portion 8a)
  • the second portion 22 includes a clad (second clad portion 7b) and a core (second core portion 8b).
  • the third portion 23 has a clad (third clad portion 7c) and a core (third core portion 8c).
  • the first portion 21 is provided on the end surface 3 a side as viewed from the third portion 23, that is, on the second surface F 2 side of the block 80 as viewed from the third portion 23.
  • the third portion 23 is provided on the end surface 3 b side as viewed from the first portion 21, that is, on the first surface F 1 side of the block 80 as viewed from the first portion 21.
  • the second portion 22 is provided between the first portion 21 and the third portion 23.
  • Each of the first cladding part 7 a, the second cladding part 7 b and the third cladding part 7 c is included in the cladding 7.
  • Each of the first core portion 8a, the second core portion 8b, and the third core portion 8c is included in the core 8.
  • the first portion 21 and the second portion 22 are provided in the through hole 88 over the entire region and extend along the block 80.
  • the entire first portion 21 and the entire second portion 22 are located between the first surface F1 and the second surface F2 in the direction X1 along the central axis C1 of the optical fiber 2. That is, the positions of the first portion 21 and the portion 22 in the direction X1 are respectively between the position of the first surface F1 in the direction X1 and the position of the second surface F2 in the direction X1.
  • the direction X1 is a direction in which a portion of the optical fiber 2 fixed to the block 80, that is, a portion disposed in the through hole 88 extends.
  • the direction X1 is parallel to the direction X2.
  • the optical fiber 2 is not necessarily linear.
  • the third portion 23 includes a portion 23a provided in the through hole 88 and a portion 23b protruding from the first surface F1 to the ferrule 3 side.
  • the third portion 23 continues to the end surface 3b that is optically connected to the plug ferrule. That is, the core diameter, the cladding diameter, the core refractive index, the cladding refractive index, and the like in the portion 2e fixed to the ferrule 3 of the optical fiber 2 are the core diameter, the cladding diameter, the core refractive index, and the cladding refractive index in the third portion 23. It is substantially the same as the rate.
  • FIG. 4 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 4 is an enlarged view of the periphery of the second portion 22 of the optical fiber 2.
  • the core diameter D1 of the first portion 21 is smaller than the core diameter D3 of the third portion 23, and the core diameter D2 of the second portion 22 gradually increases from the first portion 21 toward the third portion 23.
  • the fiber outer diameter D4 in the first portion 21 is, for example, equal to the fiber outer diameter D6 in the third portion 23.
  • the fiber outer diameter D5 in the second portion 22 is smaller than the fiber outer diameter D4 in the first portion 21 and smaller than the fiber outer diameter D6 in the third portion 23.
  • the core diameter is the length of the core along the direction orthogonal to the central axis C1 (direction X1), that is, the core diameter.
  • the fiber outer diameter is the fiber length (cladding length) along the direction perpendicular to the central axis C1 (direction X1), that is, the fiber diameter.
  • the core diameter D1 of the first portion 21 is not less than 0.5 ⁇ m and not more than 8 ⁇ m.
  • the core diameter D3 of the third portion 23 is 8 ⁇ m or more and 20 ⁇ m or less.
  • the second portion 22 As a method of forming the second portion 22, when the first portion 21 and the third portion 23 are fused, heat above the melting point of quartz is applied from the outer periphery of the fused portion, and the core additive is applied to the cladding side. And a method of expanding the diameter of the core, a method of stretching the optical fiber fusion part while applying heat, and the like.
  • the length of the second portion 22 in the central axis direction of the optical fiber needs to be designed in consideration of the length with the least loss and the limit length that can be stretched while applying heat.
  • the length is preferably 10 micrometers ( ⁇ m) or more and 1000 ⁇ m.
  • FIGS. 5A and 5B are schematic views illustrating the propagation of the beam in the optical fiber.
  • the core diameter D ⁇ b> 2 of the second portion 22 increases linearly as it transitions from the first portion 21 to the third portion 23.
  • the speed at which the fiber is pulled and the discharge amount, discharge timing, and discharge position for applying heat to the fiber must be strictly controlled. high.
  • FIG. 6 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 6 shows an enlarged view of the periphery of the second portion 22 of the optical fiber 2.
  • the core diameter D ⁇ b> 2 of the second portion 22 increases nonlinearly as it transitions from the first portion 21 to the third portion 23.
  • FIG. 7 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 7 shows an enlarged view of the periphery of the second portion 22 of the optical fiber 2.
  • the core diameter D ⁇ b> 2 of the second portion 22 increases nonlinearly as it transitions from the first portion 21 to the third portion 23, while the boundary between the cladding 7 and the core 8.
  • the difference between the refractive index of the core and the refractive index of the cladding in the first portion 21 is larger than the difference between the refractive index of the core and the refractive index of the cladding in the second portion 22.
  • the difference between the refractive index of the core and the refractive index of the cladding in the first portion 21 is larger than the difference between the refractive index of the core and the refractive index of the cladding in the third portion 23.
  • the difference between the refractive index of the core and the refractive index of the cladding in the second portion 22 is larger than the difference between the refractive index of the core and the refractive index of the cladding in the third portion 23.
  • the second portion 22 is formed by fusion of the first portion 21 and the third portion 23, so that the refractive index difference is large on the first portion 21 side, and the third portion 23. It gradually gets smaller toward the side.
  • the refractive index of the core of the first portion 21, the refractive index of the core of the second portion 22, and the refractive index of the core of the third portion 23 are equal to each other, and the refractive index of the cladding of the first portion 21 is the third portion.
  • the refractive index of the cladding of the second portion 22 increases from the first portion 21 side toward the third portion 23 side.
  • the refractive index of the cladding of the first portion 21, the refractive index of the cladding of the second portion 22, and the refractive index of the cladding of the third portion 23 are equal to each other, and the refractive index of the core of the first portion 21 is the third
  • the refractive index of the core of the portion 23 is larger than the refractive index of the core of the portion 23, and the refractive index of the core of the second portion 22 decreases from the first portion 21 side toward the third portion 23 side.
  • the laser When the laser is focused to a certain beam waist diameter D7, it has the characteristic of spreading at a spread angle of ⁇ degrees. That is, if one of the divergence angle or the beam diameter is determined, the other is inevitably determined.
  • the refractive index difference between the core and the clad As a method for producing a refractive index difference between the core and the clad, a method of adding rare earth such as erbium or germanium to quartz glass is known, and examples of the addition target include the core, the clad, or both.
  • the refractive index can be adjusted by the additive substance and concentration in the quartz glass.
  • the refractive index of the core and the refractive index of the cladding are about 1.4 or more and 1.6 or less, respectively.
  • the fiber used for the first portion 21 has an NA that is greater than the spread angle ⁇ of the laser incident on the first portion 21 and the spread angle of the beam. Therefore, it is necessary to use a fiber having a refractive index difference so that
  • the incident diameter is also determined. Therefore, it is necessary to use a fiber having an MFD (mode field diameter) matched to the incident beam diameter together with the refractive index difference.
  • MFD mode field diameter
  • the lengths of the first portion 21 and the third portion 23 in the central axis direction are preferably 100 ⁇ m or more in order to secure a distance until the incident light settles in a single mode, and the second portion 22 is blocked. It is desirable to adjust so as to be arranged near the center of the 80 through holes 88.
  • the optical fiber 2 is fixed to the through hole 88 using an elastic member (adhesive) 83a.
  • materials suitable for the adhesive used as the elastic member 83a include resin adhesives such as epoxy and silicon.
  • a high temperature curable epoxy adhesive is used for the elastic member 83a.
  • the elastic member 83a includes the first portion 21 and the block 80 (the inner wall of the through hole 88), the second portion 22 and the block 80 (the inner wall of the through hole 88), and the third portion 23. It is provided between the block 80 (the inner wall of the through hole 88).
  • the fiber outer diameter D5 in the second portion 22 is smaller than the fiber outer diameter D4 in the first portion 21, and smaller than the fiber outer diameter D6 in the third portion 23. Therefore, a gap is generated between the block 80 and the outer circumference of the fiber of the second portion 22 in the through hole 88.
  • This gap is filled with an elastic member 83a as an adhesive without any gap.
  • the elastic member 83a filled outside the fiber of the second portion 22 becomes a wedge for the fiber, and the fiber stub 4 and the plug ferrule inserted into the optical receptacle 1 come into contact with each other for optical connection. Even if an external force is applied parallel to the axial direction, the fiber stub 4 or the optical fiber 2 is prevented from moving in the axial direction.
  • the strength of the second portion 22 may be the strength of the first portion 21 or the second portion 22 depending on the formation conditions.
  • the strength of the three portions 23 may be lower.
  • the second portion 22 can be reinforced by filling the outer periphery of the second portion 22 with the elastic member 9.
  • the fiber outer diameter D5 in the second portion 22 is not necessarily smaller than the fiber outer diameter D4 in the first portion 21 or the fiber outer diameter D6 in the third portion 23.
  • the shape of the optical fiber 2 may be as shown in the examples shown in FIGS. 8 and 9 are schematic cross-sectional views illustrating a part of the optical receptacle according to the first embodiment. These drawings show the periphery of the second portion 22 in an enlarged manner.
  • the fiber outer diameter D5 in the second portion 22 is substantially the same as the fiber outer diameter D4 in the first portion 21 or the fiber outer diameter D6 in the third portion 23.
  • the fiber outer diameter D5 in the second portion 22 is larger than the fiber outer diameter D4 in the first portion 21 and larger than the fiber outer diameter D6 in the third portion 23. By taking this shape, the strength of the fused portion can be improved.
  • the end surface 2a of the optical fiber 2 is polished so as to be a plane substantially perpendicular to the central axis C1 (direction X1).
  • substantially perpendicular is preferably about 85 to 95 degrees with respect to the central axis C1.
  • the end surface 2a of the optical fiber 2 is polished so as to be a plane perpendicular to the central axis C1, and the end surface 2a of the optical fiber 2 and the second surface F2 of the block 80 are It exists on almost the same plane.
  • “almost on the same plane” desirably means that the distance along the direction of the central axis C1 between the end face 2a of the optical fiber 2 and the second face F2 of the block 80 is about ⁇ 250 nm to +250 nm.
  • the center of the core 8 of the optical fiber 2 exists within a range of 0.005 millimeters (mm) from the center of the through hole 88.
  • the convex spherical surface of the fiber stub 4 is usually formed on a plane perpendicular to the central axis C1 of the ferrule 3, but a predetermined angle (for example, 4 degrees to 4 degrees) from the plane perpendicular to the central axis C1 of the ferrule 3 (10 degrees) may be formed on an inclined plane.
  • FIG. 10 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • the members constituting the optical receptacle shown in FIG. 10 are the same as those of the optical receptacle 1 described with reference to FIGS.
  • the end face 2a of the optical fiber 2 (end face 3a on the block 80 side) is inclined at a predetermined angle (for example, 4 to 10 degrees) from a plane perpendicular to the central axis C1 (direction X1). Polished to be flat.
  • the light reflected from the end surface 2a of the optical fiber 2 out of the light emitted from the light emitting element connected to the optical receptacle 1 and incident on the optical fiber 2 is prevented from returning to the light emitting element, thereby stabilizing the optical element. Can be operated.
  • the optical fiber 2 is inserted into the through hole 88 of the block 80 and fixed with an adhesive, and then the block 80 and the optical fiber are fixed. 2 is polished simultaneously.
  • an elastic member (adhesive) 83 a for fixing the optical fiber 2 in the through hole 88 of the block 80 is filled in the outer periphery of the portion of the second portion 22 where the outer diameter of the fiber is reduced. For this reason, even if a force parallel to the central axis C1 acts on the optical fiber 2, the elastic member acts as a wedge and can suppress deviation in the central axis direction of the fiber. The phenomenon of jumping out of the block is less likely to occur.
  • 11 to 13 are schematic views illustrating examples of analysis conditions and analysis results used in the examination.
  • FIG. 11 is a schematic cross-sectional view illustrating the optical fiber used in this study.
  • a beam having a beam waist having a diameter w1 is incident on a fiber having an MFD having a diameter w2
  • the coupling efficiency ⁇ is It is known that it is required in
  • the MFD of a single mode fiber has a diameter that is 0.5 to 4 ⁇ m larger than the core diameter of the fiber, although it varies depending on the wavelength when the core diameter is in the range of 0 to 10 ⁇ m. From this fact, it is desirable that the core diameter of the fiber is smaller by 0.5 to 4 ⁇ m than the incident beam waist.
  • the divergence angle ⁇ 1 can be obtained.
  • the light receiving angle ⁇ 2 of the fiber is As can be seen from the above, it is found from the refractive index n core of the core and the refractive index n clad of the cladding.
  • the refractive index of the core and the clad changes in the range of about 1.4 to 1.6.
  • the length of the second portion 22 in the central axis C1 direction will be described.
  • optical CAE analysis was performed.
  • the core diameter D1 of the first portion 21 is 3 ⁇ m
  • the refractive index of the first core portion 8a is 1.49
  • the core diameter D3 of the third portion 23 is 8.2 ⁇ m
  • the refractive index of the third core portion 8c is 1. .4677
  • the total length of the fiber is 1000 ⁇ m
  • the refractive indexes of the clads (7a, 7b, and 7c) of each portion are 1.4624 in common
  • the beam waist diameter D7 of the incident beam is 3.2 ⁇ m.
  • FIG. 12 shows a graph summarizing the analysis results of this analysis.
  • the horizontal axis indicates the length of the second portion 22 in the direction of the central axis C1
  • the vertical axis indicates the logarithm of the light intensity at the fiber exit end when the incident light is 1.
  • 13 (a) and 13 (b) are diagrams showing the light intensity distribution in the fiber as a contour diagram and a graph in an example of the present analysis conditions.
  • the vertical axis of the graph indicates the distance from the incident end of the fiber, and the horizontal axis indicates the light intensity.
  • the incident light is initially reduced in intensity due to light interference, but is stabilized when it has propagated to some extent from the exit end. Thereafter, the light enters the second portion 22 while maintaining a constant intensity.
  • loss due to MFD conversion and refractive index change occurs, so that the light intensity decreases, and then the light enters the third portion 23.
  • the intensity does not substantially change and remains constant up to the emission end.
  • the length of the first portion 21 and the third portion 23 in the direction of the central axis C1 does not affect the attenuation. Loss is not affected.
  • the lengths of the first portion 21 and the third portion 23 can be designed with an arbitrary length by the designer, and the dimensional tolerance of the design dimension can be increased. This advantage does not require strict dimensional accuracy like GI fiber or fiber with lens, and can greatly contribute to the improvement of mass productivity.
  • FIG. 14A to FIG. 14C are schematic views illustrating an example of the optical receptacle of the reference example used for the study on the length of the first portion and an analysis result thereof.
  • the optical receptacle of the reference example has a fiber stub 49 shown in FIG.
  • the structure of the fiber stub 49 of the reference example is the same as the structure in which the first portion 21 (the first cladding portion 7a and the first core portion 8a) is not provided in the fiber stub 4 according to the embodiment.
  • the fiber stub 49 has an optical fiber 29.
  • the fiber stub 49 has an end face 39b connected to the plug ferrule and an end face 39a opposite to the end face 39b.
  • the optical fiber 29 has a second portion 229 (conversion unit) and a third portion 239.
  • the third portion 239 is aligned with the second portion 229 in the axial direction and is continuous with the second portion 229.
  • the second part 229 forms at least a part of the end face 39a
  • the third part 239 forms at least a part of the end face 39b.
  • the core diameter of the second portion 229 increases toward the third portion 239.
  • the core diameter of the third portion 239 is substantially constant in the central axis direction.
  • some elements such as an elastic member are omitted.
  • the end surface 39a is polished in a mirror shape.
  • the end surface 39b is polished into a convex spherical shape. Thereby, the loss of light at the end faces 39a and 39b can be suppressed.
  • the polishing amount of the end face 39a is, for example, not less than 5 ⁇ m and not more than 50 ⁇ m. Thereby, a mirror-like end surface can be formed.
  • the length of the second portion 229 is shortened according to the polishing amount.
  • the end surface position of the second portion 229 (the position of the portion exposed as the end surface 39a in the second portion 229) varies by about 5 to 50 ⁇ m according to the polishing amount. That is, the core diameter Da on the end face 39a varies. This causes a loss when using a fiber whose MFD changes periodically, such as a GI fiber.
  • FIG. 14B and FIG. 14C show examples of analysis results.
  • the length La along the axial direction of the second portion 229 was set to 50 ⁇ m
  • the core diameter Da at the end surface 39a was set to 3 ⁇ m
  • the core diameter Db at the end surface 39b was set to 9 ⁇ m.
  • the rate of change along the axial direction of the core diameter in the second portion 229 was constant.
  • FIG. 14B in the fiber stub 49 as described above, by polishing the end face 39a, the length La is 20% (polishing amount 10 ⁇ m), 40% (polishing amount 20 ⁇ m), 60% (polishing amount 30 ⁇ m) or It represents the loss (dB) when shortened by 80% (polishing amount 40 ⁇ m).
  • the loss is -1.06 dB before the end face 39a is polished. It can be seen from the graph that the loss increases as the second portion 229 is shortened by polishing. For example, when the conversion portion (second portion 229) is shortened by 50% by polishing, the loss is about ⁇ 3 dB.
  • the loss is increased by polishing the end face.
  • the loss varies depending on the variation in the polishing amount.
  • the amount of polishing needs to be strictly controlled, and mass productivity may be reduced.
  • a first portion in which the core diameter and the refractive index do not substantially change along the central axis C1 is provided. Even if the length of the first portion along the central axis C1 varies due to the polishing of the end surface 3a, an increase in optical loss and a variation in variation are small. For example, even if the end face position changes within the length of the first portion, the characteristics of the optical receptacle are not substantially deteriorated.
  • the length of the first portion along the central axis C1 is desirably equal to or greater than the polishing amount of the end surface 3a.
  • the end surface 3a is polished by about 5 ⁇ m or more and 50 ⁇ m or less. Therefore, the length of the first portion along the central axis C1 (direction X1) is preferably 5 ⁇ m or more, and more preferably 50 ⁇ m or more if possible.
  • the length of the first portion along the central axis C1 is desirably 10 mm or less.
  • the upper limit of the length of the first portion along the central axis C ⁇ b> 1 is not particularly limited, but it is preferable that the second portion and a part of the third portion can be disposed in the through hole 88 of the block 80. Therefore, depending on the total length of the block 80, the first portion may be extended to about 7 to 10 mm. Thereby, mass productivity can be improved.
  • the core diameter at the end face connected to the plug ferrule varies depending on the polishing amount. Loss increases due to changes in the core diameter at the end face.
  • a third portion in which the core diameter and the refractive index do not substantially change along the central axis C1 is provided. Even if the length of the third portion along the central axis C1 varies due to the polishing of the end surface 3b, an increase in optical loss and a variation in variation are small.
  • the length of the third portion along the central axis C1 is desirably equal to or greater than the polishing amount of the end surface 3b.
  • the end surface 3b is polished by about 5 ⁇ m or more and 20 ⁇ m or less. Therefore, the length of the third portion along the central axis C1 (direction X1 or X2) is preferably 5 ⁇ m or more, and more preferably 20 ⁇ m or more if possible.
  • the upper limit of the length of the third portion along the central axis C ⁇ b> 1 is not particularly limited, but it is desirable that the first portion and the second portion can be disposed in the through hole 88 of the block 80.
  • the length of the third portion along the central axis C1 can be, for example, the length to the PC (Physical Contact) surface.
  • the core diameter D1 of the end surface 3a opposite to the end surface 3b polished to the convex spherical surface of the fiber stub 4 is smaller than the core diameter D3 of the end surface 3b polished to the convex spherical surface. Therefore, loss at the optical connection surface (for example, the connection surface between the optical element and the optical fiber) can be suppressed, and the length of the optical module can be shortened. For example, a condensing lens or the like may not be provided between the optical element such as a semiconductor laser element and the optical fiber.
  • the second portion 22 is formed, a rapid change in the core shape can be suppressed when the first portion 21 transitions to the third portion 23. Loss can be suppressed.
  • the shape of the first portion 21 and the shape of the third portion 23 do not change in the central axis direction of the optical fiber 2, and the light loss in the first portion 21 and the third portion 23 is small.
  • the second portion 22 may be located anywhere in the through hole.
  • an optical receptacle can be manufactured economically without requiring precise length management of the optical fiber 2.
  • the optical fiber 2 is provided on a V-shaped groove to be described later. Since the fiber outer diameter D5 of the second portion 22 is smaller than the diameter of the through hole 88, the fiber can be prevented from moving in the central axis direction by filling the gap with the elastic member 83a.
  • the second portion 22 (fused portion) can be protected from external stress by aligning the entire area of the first portion 21 and the second portion 22 along the block 80 and fixing them with the elastic member 83a.
  • a connection method (butt joint) that directly presses the block 80 to the optical element while suppressing coupling loss due to the difference in MFD becomes possible.
  • the optical device between the optical element and the block 80 can be reduced. For example, when light having a diameter of 1 ⁇ m or less is emitted from the optical integrated circuit, the light can be incident on the optical fiber 2 without using a beam conversion device such as a lens. Thereby, cost reduction and loss due to device alignment error can be reduced.
  • the number of components of the block 80 can be reduced (for example, one), and assembly is performed by inserting the optical fiber 2 into the block 80. Therefore, the number of manufacturing processes can be reduced.
  • a method of providing the second part as described above in the ferrule 3 is also conceivable.
  • the ferrule since the second part is accommodated in the ferrule, the ferrule becomes longer according to the length of the second part.
  • the optical fiber from which the coating has been removed at the time of fusion is stored inside the ferrule, the ferrule becomes longer according to the length of the optical fiber from which the coating has been removed at the time of fusion.
  • many standards such as connector standards are provided around the ferrule. For this reason, when a ferrule becomes long, the design for complying with a standard may become difficult.
  • the block 80 for example, optical glass such as quartz glass is used.
  • the material of the block 80 may be, for example, a brittle material such as ceramics or a metal material such as stainless steel.
  • the block 80 When a light-transmitting material such as optical glass is used as the material of the block 80, ultraviolet rays can pass through the block 80. Therefore, when the block 80 is fixed to a transceiver or the like, UV curing is performed on the bottom surface of the block 80. It can be performed. Further, for example, when the second portion 22 (MFD conversion portion) is provided inside the ferrule 3, the periphery of the MFD conversion portion is covered by the ferrule 3, the holder 5, the sleeve 6, the housing portion 10, and the like. Therefore, the MFD conversion unit cannot be visually confirmed from the outside.
  • MFD conversion portion the periphery of the MFD conversion portion
  • the MFD conversion unit can be visually confirmed from the outside.
  • a crack or breakage occurring in the MFD conversion portion formed by fusion can be visually confirmed from the outside.
  • the block can have various functions. For example, when a low thermal expansion ceramic such as cordierite is used, the position of the block 80 can be prevented from being displaced with respect to an optical element such as an optical integrated circuit due to temperature after the block 80 is bonded.
  • a low thermal expansion ceramic such as cordierite
  • the position of the block 80 can be prevented from being displaced with respect to an optical element such as an optical integrated circuit due to temperature after the block 80 is bonded.
  • the production cost can be kept low by producing the block 80 using a resin with a highly accurate mold.
  • FIG. 15A to FIG. 15C are schematic cross-sectional views illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 15A to FIG. 15C show the periphery of the block 80 in an enlarged manner.
  • the optical receptacle 1 further includes a translucent member 72 disposed on the end surface 2 a of the optical fiber 2 on the second surface F2 side of the block 80.
  • the elastic member 83a is filled in a gap between the optical fiber 2 and the through hole of the block 80, and is filled, for example, between the translucent member 72 and the second surface F2 of the block 80. Thereby, the translucent member 72 is adhesively fixed to the block 80 by the elastic member 83a.
  • the end face 2a of the optical fiber 2 opposite to the side that is optically connected to the plug ferrule is in close contact with the elastic member 83a.
  • the end surface 72a of the light transmissive member 72 on the optical fiber 2 side is in close contact with the elastic member 83a.
  • the elastic member 83a and the translucent member 72 have translucency. Thereby, the light irradiated from the optical element enters the optical fiber 2 via the translucent member 72 and the elastic member 83a, and the light emitted from the optical fiber 2 passes through the translucent member 72 and the elastic member 83a. Through the optical element.
  • the translucent member 72 is disposed outside the block 80 (on the optical element side from the second surface F2). You may provide at least one part of the translucent member 72 inside the block 80 (inside the through-hole 88). Thereby, the fixing strength of the translucent member 72 can be ensured.
  • At least a part of the end surface 72b of the translucent member 72 opposite to the optical fiber 2 has a plane that is substantially perpendicular to the central axis C1 of the optical receptacle 1.
  • substantially perpendicular refers to, for example, an angle of about 85 degrees or more and 95 degrees or less with respect to the central axis C1 of the optical receptacle 1.
  • the surface roughness of the end surface 72b of the translucent member 72 is desirably an arithmetic average roughness of 0.1 micrometers or less in order to minimize the amount of reflected light.
  • each of the elastic member 83a and the translucent member 72 has a refractive index substantially the same as the refractive index of the core of the optical fiber 2.
  • the substantially same refractive index here is about 1.4 or more and 1.6 or less.
  • the refractive index of the core of the optical fiber 2 is, for example, about 1.46 or more and 1.47 or less.
  • the refractive index of the elastic member 83a is, for example, about 1.4 or more and 1.5 or less.
  • the refractive index of the translucent member 72 is, for example, about 1.4 or more and 1.6 or less.
  • the material of the elastic member 83 a that is in close contact with the translucent member 72 may be different from the material of the elastic member 83 a that is filled in the gap between the optical fiber 2 and the block 80.
  • an epoxy resin, an acrylic resin, a silicon resin, or the like is used as the material of the elastic member 83a that is in close contact with the light transmitting member 72.
  • the translucent member 72 for example, an isolator may be used.
  • the translucent member 72 when the translucent member 72 is an isolator, the translucent member 72 includes a first polarizer 74, a second polarizer 75, and a Faraday rotator 76.
  • the Faraday rotator 76 is provided between the first polarizer 74 and the second polarizer 75.
  • the Faraday rotator 76 includes a material such as garnet.
  • the first polarizer 74 passes only linearly polarized light in a predetermined direction.
  • the Faraday rotator 76 rotates the polarization plane of linearly polarized light that has passed through the first polarizer 74 by approximately 45 °.
  • the second polarizer 75 passes only the linearly polarized light that has passed through the Faraday rotator 76. That is, the polarization direction of the second polarizer 75 is rotated by approximately 45 ° with respect to the polarization direction of the first polarizer 74.
  • the light emitted from the optical element and incident on the optical fiber 2 can be transmitted only in one direction.
  • the light incident on the first part from the optical element such as the optical integrated circuit or the light emitted from the first part to the optical element is reflected on the end surface 72b. Can be suppressed. Or it can suppress that the reflected light returns to an optical element, and can operate an optical element stably.
  • an AR (anti-reflective) coating may be applied to the end surface 72 b of the translucent member 72 on the side opposite to the optical fiber 2.
  • the block 80 has a substantially rectangular parallelepiped shape.
  • the isolator (translucent member 72) has a substantially rectangular parallelepiped shape. Therefore, for example, as compared with the case where the isolator is attached to the cylindrical fiber stub 4 or the like, it is possible to facilitate the positioning operation of the isolator.
  • the polarization direction of the isolator can be easily installed at a predetermined angle. The deviation of the angle of the polarization direction of the isolator can be suppressed and the isolator can be attached with high accuracy. Thereby, for example, it is easy to align the rotation direction with the optical element, and the alignment time can be shortened.
  • the first polarizer 74 of the translucent member 72 that is an isolator has a notch 74a.
  • the notch 74a is provided, for example, on one side surface (a surface parallel to the central axis C1) of the first polarizer 74 having a substantially rectangular parallelepiped shape.
  • the notch 74a is continuous with the end surface 72b of the translucent member 72 opposite to the optical fiber 2, for example.
  • the notch 74a is provided on one side surface of the first polarizer 74 and extends to the end surface 72b.
  • the notch 74 a is provided, for example, in parallel with the polarization direction of the first polarizer 74.
  • the polarization direction of the first polarizer 74 can be easily recognized.
  • the orientation of the optical element can be easily adjusted. That is, it is easy to align the rotation direction with the optical element, and the alignment time can be further shortened.
  • the second polarizer 75 of the translucent member 72 that is an isolator has a notch 75a.
  • the notch 75a is provided, for example, on one side surface (a surface parallel to the central axis C1) of the second polarizer 75 having a substantially rectangular parallelepiped shape.
  • the notch 75a is continuous with, for example, the end face 72a on the optical fiber 2 side of the translucent member 72.
  • the notch 75a is provided on one side surface of the second polarizer 75 and extends to the end surface 72a.
  • the notch 75a is provided in parallel with the polarization direction of the second polarizer 75, for example. Thereby, similarly to the above, the polarization direction of the second polarizer 75 can be easily visually confirmed. The alignment time can be shortened.
  • the elastic member 83a is filled between the translucent member 72 and the second surface F2 of the block 80, and a part of the elastic member 83a enters the notch 75a. Thereby, the adhesive strength between the translucent member 72 and the block 80 can be further increased.
  • the shape of the notches 74a and 75a is not limited to the above, and may be any shape that can indicate the polarization direction of the first polarizer 74 or the second polarizer 75. Moreover, you may provide a notch in both the 1st polarizer 74 and the 2nd polarizer 75, for example. Alternatively, the Faraday rotator 76 may be provided with a notch.
  • FIG. 16 is a schematic perspective view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 16 shows an enlarged view around the block 80.
  • the optical receptacle 1 further includes an elastic member (second elastic member) 83b and an elastic member (third elastic member) 83c.
  • the elastic members 83 b and 83 c are adhesives that are provided on the first surface F 1 side of the block 80 and adhere the optical fiber 2 to the block 80.
  • an epoxy resin, an acrylic resin, a silicon resin, or the like is used for the elastic members 83b and 83c.
  • the elastic members 83b and 83c for example, substantially the same material as that described for the elastic member 9 can be used.
  • FIGS. 17A and 17B are schematic views illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 17A is a schematic cross-sectional view of the block 80 shown in FIG.
  • the optical fiber 2 is provided with the covering portion 86 that covers the portion 2g of the optical fiber 2 protruding from the first surface F1.
  • the elastic member 83 b is provided between the covering portion 86 and the block 80.
  • the elastic member 83b is in contact with the covering portion 86 and the first surface F1, for example. Thereby, the elastic member 83b adheres the optical fiber 2 to the first surface F1 side of the block 80.
  • the elastic member 83 c is provided between the covering portion 86 and the block 80.
  • the elastic member 83c is in contact with the covering portion 86 and the first surface F1, for example. Thereby, the elastic member 83c bonds the optical fiber 2 to the first surface F1 side of the block 80.
  • the elastic member 83c is located between the block 80 and the elastic member 83b. In this example, the elastic member 83c is in contact with the elastic member 83b and is covered with the elastic member 83b.
  • the elastic member 83c may be continuous with the elastic member 83a provided inside the through hole 88 of the block 80, for example.
  • the material of the elastic member 83c may be the same as the material of the elastic member 83a.
  • the elastic member 83c and the elastic member 83a may be integrated and formed as one elastic member.
  • the elastic member 83a may have a portion provided in the through hole 88 and a portion protruding from the through hole 88 (a portion corresponding to the elastic member 83c).
  • the elastic members 83b and 83c on the portion 2g protruding from the block 80 of the optical fiber 2, the stress applied from the outside to the portion 2g protruding from the block 80 is reduced, and the optical fiber 2 is bent. Can be suppressed. Further, by providing the elastic members 83b and 83c between the covering portion 86 covering the optical fiber 2 and the block 80, the covering portion 86 can be protected and the covering portion can be prevented from being broken.
  • the material of the elastic member 83b is softer than the material of the elastic member 83c.
  • the elastic member 83b is, for example, a high elastic adhesive.
  • the elastic member 83c is a fiber fixing adhesive that fixes the root portion of the optical fiber 2 (the portion around the opening end of the through hole 88).
  • a relatively hard elastic member 83c is provided at the base portion of the optical fiber 2, and a relatively soft and highly elastic elastic member 83b is provided closer to the ferrule 3 than the elastic member 83c.
  • FIG. 17B is a plan view of the block 80, the optical fiber 2, and the elastic members 83b and 83c as viewed along a direction parallel to the central axis C1 (direction X1).
  • the center Ct1 of the through hole 88 is different from the center Ct2 of the elastic member 83b and different from the center Ct3 of the elastic member 83c.
  • the center is, for example, the position of the center of gravity of the planar shape formed by the outer edge of the elastic member or optical fiber.
  • the center Ct2 and the center Ct3 are located in the direction of the arrow A1 (eg, downward) as viewed from the center Ct1.
  • the center Ct1 may coincide with at least one of the center Ct2 and the center Ct3.
  • the planar shape of the elastic member is point-symmetric with respect to the center Ct1, for example. Thereby, durability can be improved uniformly in all directions centering on the central axis.
  • FIG. 18 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 18 shows an enlarged view around the block 80.
  • the through hole 88 of the block 80 has a small diameter portion 87a and a large diameter portion 87b.
  • the enlarged diameter portion 87b is provided closer to the first surface F1 than the smaller diameter portion 87a.
  • the diameter of the small diameter portion 87a is substantially constant in the direction along the central axis C1.
  • the diameter of the enlarged diameter portion 87b is larger than the diameter of the small diameter portion 87a, and becomes larger toward the first surface F1 in the direction along the central axis C1.
  • the diameter of the enlarged diameter portion 87b is a width in a direction orthogonal to the central axis C1.
  • the optical fiber 2 has a portion 2h disposed in the small diameter portion 87a and a portion 2i disposed in the large diameter portion 87b.
  • the covering portion 86 that covers the portion 2g that protrudes from the first surface F1 of the optical fiber 2 further covers the portion 2i that is disposed in the enlarged diameter portion 87b of the optical fiber 2.
  • an elastic member 83a or an elastic member 83c can be filled between the covering portion 86 and the inner wall of the enlarged diameter portion 87b.
  • FIG. 19 is a schematic perspective view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 20 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 19 shows an enlarged view of the periphery of the block 80
  • FIG. 20 shows a cross section of the block shown in FIG.
  • the block 80 includes a base portion 80a and a stepped portion 80b.
  • the first surface F1, the second surface F2, and the through hole 88 are provided in the base 80a.
  • the stepped portion 80b is a portion protruding from the first surface F1 side of the base portion 80a to the ferrule 3 side along the central axis C1. That is, the stepped portion 80b is aligned with the portion 2g protruding from the first surface F1 of the optical fiber 2 in the direction perpendicular to the central axis C1.
  • the stepped portion 80b has a third surface F3 facing the optical fiber 2.
  • the third surface F3 is a plane perpendicular to the first surface F1.
  • Each of the elastic member 83b and the elastic member 83c is disposed between the covering portion 86 of the optical fiber 2 and the third surface F3.
  • each of the elastic member 83b and the elastic member 83c is in contact with the third surface F3.
  • the application area of an adhesive agent can be widened. That is, the optical fiber 2 and the covering portion 86 can be bonded and fixed to the third surface F3 of the stepped portion 80b. Thereby, it is possible to prevent bending stress from concentrating on the interface between the optical fiber 2 and the block 80.
  • the bending base point of the optical fiber 2 can be shifted to the end E3 side on the ferrule 3 side of the third surface F3. Thereby, it can suppress that the force of a bending direction is directly added to the part exposed from the coating
  • FIG. The bending of the optical fiber 2 can be further suppressed. Therefore, the adhesive strength and reinforcement strength of the optical fiber 2 can be further improved.
  • the elastic member 83b may be separated from the elastic member 83c and the first surface F1. The elastic member 83b relaxes the stress applied to the optical fiber 2 by bonding the third surface F3 and the covering portion 86.
  • the stepped portion 80b has an end E3 located at the end of the third surface F3 on the ferrule 3 side.
  • the end E3 is formed by chamfering the corner of the stepped portion 80b.
  • “beveled” is a state in which the corner of the end portion E3 is not an acute angle, for example, an obtuse angle.
  • the end E3 may have a curved surface.
  • FIG. 22A to FIG. 22C are schematic cross-sectional views illustrating a part of the optical receptacle according to the first embodiment.
  • the end portion E3 of the stepped portion 80b of the block 80 is formed into an inclined surface shape that is inclined downward linearly toward the ferrule 3 side, whereby the elastic member 83b or the elastic member 83c. It is possible to suppress the (adhesive) from flowing out onto the end face F1a facing the ferrule 3 side of the stepped portion 80b.
  • the linear inclined surface end E3 suppresses the elastic member 83b and the elastic member 83c from flowing out to the end surface F1a due to, for example, surface tension.
  • the end surface F1a may be used as a positioning surface for determining the positions of the optical fiber 2 and the block 80, for example, in a fixing process for fixing the optical fiber 2 to the block 80.
  • the elastic member 83b or the elastic member 83c flows out to the end face F1a and the elastic member 83b or the elastic member 83c covers the end face F1a, the positioning accuracy of the optical fiber 2 or the block 80 is affected.
  • the end portion E3 is formed into a linear inclined surface to suppress the elastic member 83b and the elastic member 83c from flowing out to the end surface F1a.
  • the end surface F1a as a positioning surface, it can suppress that the elastic member 83b and the elastic member 83c affect the precision of positioning.
  • the end E3 of the stepped portion 80b of the block 80 may be a convex curved surface.
  • the end E3 is preferably a convex curved surface with a radius of about 0.1 mm to 3 mm, for example.
  • the end portion on the block 80 side of the covering portion 86 may be separated from the first surface F1 of the block 80. Thereby, for example, management of the length dimension of the covering portion 86 can be facilitated. It is not necessary to strictly set the length of the covering portion 86 in the direction parallel to the central axis C1, and the optical receptacle 1 can be easily manufactured.
  • coated part 86 is spaced apart from the 1st surface F1 of the block 80, as represented to FIG.22 (c), the edge part by the side of the block 80 of the coating
  • FIG. 23 is a schematic perspective view illustrating a part of the optical receptacle according to the first embodiment.
  • the elastic members 83 b are provided on both the left and right sides of the optical fiber 2 and the covering portion 86.
  • the elastic member 83 b is provided only in a portion below the upper ends of the optical fiber 2 and the covering portion 86. In other words, the elastic member 83 b is not provided above the optical fiber 2 and the covering portion 86.
  • the elastic member 83b does not cover the optical fiber 2 and the covering portion 86.
  • the elastic member 83 b and the elastic member 83 c may be provided only in a portion below the upper ends of the optical fiber 2 and the covering portion 86. Thereby, for example, the height of the base 80a of the block 80 can be suppressed. In addition, for example, it is possible to suppress the elastic member 83b and the elastic member 83c from flowing on the fourth surface F4 facing the same direction as the third surface F3 of the base 80a. For example, when the fourth surface F4 is used as a positioning surface, it is possible to suppress the elastic member 83b and the elastic member 83c from affecting the positioning accuracy.
  • FIG. 24 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the first embodiment.
  • FIG. 24 shows an enlarged view around the block 80.
  • the position of the second portion 22 is different from that of the optical receptacle described with reference to FIG.
  • the second portion 22 and the third portion 23 protrude from the first surface F1 to the ferrule 3 side.
  • the position of the first surface F1 in the direction X1 is between the position of the second portion 22 and the third portion 23 in the direction X1 and the position of the second surface F2 in the direction X1.
  • At least part of the first portion 21 is located between the first surface F1 and the second surface F2 in the direction X1.
  • the position of at least a part of the first portion 21 in the direction X1 is between the position of the first surface F1 in the direction X1 and the position of the second surface F2 in the direction X1.
  • the optical fiber 2 can be fixed to the block 80 without affecting the positional relationship between the block 80 and the core 8.
  • the elastic member 83c is provided between a part of the first portion 21 and the third surface F3 of the block 80, between the second portion 22 and the third surface F3 of the block 80, and one of the third portions 23. And the third surface F3 of the block 80. Thereby, the 2nd part 22 can be protected by the elastic member 83c.
  • FIG. 25 is a schematic perspective view illustrating a part of the optical receptacle according to the second embodiment.
  • FIG. 26 is a schematic cross-sectional view illustrating a part of the optical receptacle according to the second embodiment.
  • FIG. 25 is an enlarged view of the periphery of the optical receptacle block 80, and
  • FIG. 26 is an enlarged view of a cross section orthogonal to the central axis C 1 of the optical fiber 2.
  • the block 80 includes a base portion (first member) 81 and a lid portion (second member) 82.
  • a V-shaped groove 81 a is provided in the base portion 81 instead of the through hole 88.
  • the configuration of the second embodiment other than the above is the same as the configuration of the first embodiment.
  • the groove 81a is formed according to the shape of the optical fiber 2, and extends from the first surface F1 of the block 80 to the second surface F2. A portion 2f protruding from the ferrule 3 of the optical fiber 2 is disposed along the groove 81a from the first surface F1 side. Thereby, the base part 81 accommodates one end of the optical fiber 2 in the groove 81 a and supports one end of the optical fiber 2.
  • the surface FV of the groove 81a has a first groove surface FV1 and a second groove surface FV2.
  • the first groove surface FV1 and the second groove surface FV2 each extend in a direction (direction X1) along the central axis C1 of the optical fiber 2.
  • the V shape refers to a shape in which the distance between the first groove surface FV1 and the second groove surface FV2 becomes narrower in the direction in which the groove becomes deeper in a direction perpendicular to the direction X1.
  • the V-shaped range may include a case where the connection portion CP between the first groove surface FV1 and the second groove surface FV2 has a curved surface shape or a planar shape.
  • the lid portion 82 is disposed so as to face the base portion 81. That is, the lid portion 82 is provided on the base portion 81 and closes the groove 81 a of the base portion 81.
  • the lid 82 covers the upper part of one end of the optical fiber 2 accommodated in the groove 81a. As described above, one end of the optical fiber is provided between the groove 81 a of the base portion 81 and the lid portion 82 and is sandwiched.
  • the elastic member 83 a is provided between the base portion 81 and the lid portion 82.
  • the elastic member 83a is filled in the groove 81a.
  • the elastic member 83a is disposed between the optical fiber 2 and the surface FV of the groove 81a, and between the optical fiber 2 and the lid portion 82. As a result, the elastic member 83a adheres and fixes one end of the optical fiber 2 to the groove 81a and bonds and fixes the lid portion 82 to the base portion 81.
  • a sufficient adhesive can be deposited between the groove 81a and the optical fiber 2 or on the optical fiber 2 disposed on the groove 81a, so that the adhesive strength can be increased. Further, since the optical fiber 2 can be pressed against the groove 81a by the lid portion 82, the optical fiber 2 can be made to accurately follow the groove 81a.
  • the optical fiber 2 can be disposed near the end of the block 80 by thinning the lid portion 82. However, if the lid portion 82 is too thin, the lid portion 82 may break when the optical fiber 2 is pressed against the groove 81a by the lid portion 82. For this reason, it may be difficult to arrange the optical fiber 2 near the end of the block 80. In such a case, the through hole 88 is provided and the optical fiber 2 is fixed to the through hole 88 as in the first embodiment. When the through-hole 88 is used, the optical fiber 2 can be disposed near the end of the block 80 because the optical fiber 2 is not pressed down. Further, the lid portion 82 may be thickened and a groove similar to the groove 81a may be formed in the lid portion 82.
  • FIGS. 27A and 27B are schematic views illustrating an optical transceiver according to the third embodiment.
  • the optical transceiver 200 according to this embodiment includes the optical receptacle 1, the optical element 110, and the control board 120.
  • a circuit or the like is formed on the control board 120.
  • the control board 120 is electrically connected to the optical element 110.
  • the control board 120 controls the operation of the optical element 110.
  • the optical element 110 for example, a light receiving element or a light emitting element is used.
  • the optical element 110 is a light emitting unit.
  • the optical element 110 has a laser diode 111.
  • the laser diode 111 is controlled by the control board 120 and emits light to the fiber stub 4 of the optical receptacle 1.
  • the optical element 110 has an element 113 as shown in FIG.
  • the element 113 includes a laser diode and an optical waveguide having a small core diameter. Light propagating in the core of the waveguide is incident on the optical receptacle 1.
  • the optical waveguide is formed by, for example, silicon photonics. A quartz waveguide may be used as the optical waveguide.
  • light emitted from a laser diode or an optical waveguide may be incident on the optical receptacle 1 via the lens 112 or the like.
  • a plug ferrule 50 is inserted into the optical receptacle 1.
  • the plug ferrule 50 is held by the sleeve 6.
  • the optical fiber 2 is optically connected to the plug ferrule 50 at the end face 3b.
  • the optical element 110 and the plug ferrule 50 are optically connected via the optical receptacle, and optical communication is possible.
  • This embodiment includes the following aspects.
  • Appendix 1 An optical fiber having a core and a cladding for conducting light; A ferrule provided on one end of the optical fiber; Including a fiber stub, A block spaced apart from the ferrule and having one end surface, the other end surface opposite to the one end surface, and a through hole extending from the one end surface to the other end surface, and protrudes from the ferrule of the optical fiber A block inserted into the through hole from the one end surface side, A first elastic member for fixing the optical fiber to the through hole; With The portion of the optical fiber that protrudes from the ferrule has a first portion, a second portion, and a third portion.
  • the first portion is provided on the other end surface side than the third portion
  • the second part is provided between the first part and the third part
  • the core diameter in the first part is smaller than the core diameter in the third part
  • the core diameter in the second part increases from the first part toward the third part
  • the optical receptacle is characterized in that the first elastic member is provided between the optical fiber and an inner wall of the through hole.
  • the first portion is provided on the other end surface side than the third portion
  • the second part is provided between the first part and the third part
  • the core diameter in the first part is smaller than the core diameter in the third part
  • the core diameter in the second part increases from the first part toward the third part
  • the optical receptacle is characterized in that the first elastic member is disposed between the optical fiber and the groove.
  • the block has a first member provided with the groove, and a second member facing the first member, The optical fiber is provided between the second member and the groove;
  • the optical receptacle according to appendix 2 wherein the first elastic member is provided between the optical fiber and the groove and between the optical fiber and the second member.
  • the refractive index of the core of the first portion, the refractive index of the core of the second portion, and the refractive index of the core of the third portion are equal to each other,
  • the refractive index of the cladding of the first portion is smaller than the refractive index of the cladding of the third portion,
  • Appendix 10 Appendices 1-7, wherein the core of the second part has a step in a part of a region where the core diameter of the second part is increased from the first part side to the third part side.
  • the optical receptacle according to any one of the above. (Appendix 11) 11.
  • the optical receptacle according to any one of appendices 1 to 10 wherein the core diameter in the first portion is not less than 0.5 ⁇ m and not more than 8 ⁇ m.
  • Appendix 12 Any one of appendices 1 to 11, wherein the difference between the refractive index of the core and the refractive index of the cladding in the first portion is larger than the difference between the refractive index of the core and the refractive index of the cladding in the third portion.
  • the optical receptacle according to one. Any one of appendices 1 to 12, wherein the difference between the refractive index of the core and the refractive index of the cladding in the first portion is larger than the difference between the refractive index of the core and the refractive index of the cladding in the second portion.
  • Appendix 15 Any one of appendices 1 to 14, wherein the difference between the refractive index of the core and the refractive index of the cladding in the third portion is smaller than the difference between the refractive index of the core and the refractive index of the cladding in the second portion.
  • (Appendix 22) The optical receptacle according to any one of appendices 1 to 21, wherein an end face of the optical fiber on the block side is inclined from a plane perpendicular to a central axis of the optical fiber.
  • (Appendix 23) The optical receptacle according to any one of appendices 1 to 22, wherein the first portion, the second portion, and the third portion are integrally formed.
  • (Appendix 24) The optical receptacle according to any one of claims 1 to 23, wherein a length of the first portion along a central axis of the optical fiber is 5 ⁇ m or more. (Appendix 25) 25.
  • Appendix 26 The optical receptacle according to any one of appendices 1 to 25, wherein the block includes a light-transmitting material.
  • Appendix 27 The optical receptacle according to any one of appendices 1 to 25, wherein the block includes ceramics.
  • Appendix 28 The optical receptacle according to any one of appendices 1 to 25, wherein the block includes a resin. (Appendix 29) 29.
  • Appendix 30 A covering portion covering at least a part of a portion of the optical fiber protruding from the one end surface of the block; A second elastic member provided between the covering portion and the block;
  • (Appendix 34) A covering portion; The through hole has an enlarged diameter portion provided on the one end surface side, The diameter of the enlarged diameter portion increases in a direction along the central axis of the optical fiber, The optical receptacle according to claim 1, wherein the covering portion covers a portion of the optical fiber that is disposed in the enlarged diameter portion.
  • (Appendix 35) 2. The optical receptacle according to claim 1, wherein the first elastic member has a portion provided in the through hole and a portion protruding from the through hole.
  • (Appendix 36) An optical transceiver comprising the optical receptacle according to any one of appendices 1 to 35.
  • the optical receptacle of Supplementary Note 1 since the core diameter in the first portion is smaller than the core diameter in the third portion, it is possible to suppress loss at the optical connection surface and shorten the length of the optical module. By forming the second part, it is possible to suppress an abrupt change in the core shape when transitioning from the first part to the third part, thereby suppressing optical loss in the second part. . Furthermore, since the loss of light in the first part and the third part is small, when the second part is provided in the through hole of the block, the second part may be located anywhere in the through hole. As a result, an optical receptacle can be manufactured economically without requiring precise length control of the optical fiber.
  • connection method for directly pressing the block against the optical element while suppressing the coupling loss due to the difference in MFD becomes possible.
  • optical devices between the blocks can be reduced. This makes it possible to reduce costs and loss due to device alignment errors.
  • the number of components of the block can be reduced (for example, one), and assembly can be performed by inserting the optical fiber into the block. The number of manufacturing processes can be reduced.
  • the shapes of the first part and the third part do not change with respect to the axial direction and the loss of light is small, when the second part is provided in the through hole of the block, the second part is located anywhere in the through hole. There is no problem. This makes it possible to manufacture the receptacle economically without requiring precise length control of the optical fiber on the fiber block.
  • the length of the optical module can be reduced. Also, by forming the second part, it is possible to suppress a sudden change in the core shape when transitioning from the first part to the third part, thereby suppressing optical loss in the second part. Can do. Furthermore, since the shape of the first part and the third part does not change with respect to the axial direction and the loss of light is small, when the second part is provided on the groove of the block, the second part can be located anywhere on the groove. No problem. This makes it possible to manufacture the receptacle economically without requiring precise length management of the optical fiber. Further, when an adhesive is used as the first elastic member, a sufficient amount of adhesive can be deposited between the groove and the optical fiber or on the optical fiber disposed on the groove, thereby increasing the adhesive strength. Can do.
  • the optical fiber can be pressed into the groove by the second member. Thereby, the optical fiber can be made to follow the groove with high accuracy.
  • the second portion can be protected from external stress by aligning the entire area of the first portion and the second portion along the block and fixing with the first elastic member. .
  • the optical receptacle of appendix 5 even if the diameter of the clad in the second part changes as the optical fiber is fused, only the first part is along the through-hole or V-shaped groove of the block. is there.
  • the diameter of the first part is, for example, the same over the entire area of the first part. For this reason, the optical fiber can be fixed to the block without affecting the positional relationship between the block and the core.
  • the optical receptacle of Supplementary Note 6 by using a fiber having a large refractive index difference, it is possible to confine light without scattering even with a small core diameter, and it is possible to suppress loss when light enters the fiber.
  • the second portion by forming the second portion, it is possible to suppress a sudden change in the refractive index difference when transitioning from the first portion to the third portion, thereby suppressing optical loss in the second portion. be able to.
  • the core material can be shared, and there is no difference in the refractive index between the cores in the connection part between the first part and the second part and the connection part between the second part and the third part. Loss due to reflection of the part can be suppressed.
  • the clad can be formed of the same material, the clad can have uniform physical properties. Thereby, since the melting point becomes uniform, the outer diameter of the clad at the time of fusion can be easily formed.
  • the optical receptacle of appendix 8 even if the laser that has entered the second portion spreads radially, it enters the boundary between the clad and the core at a small angle, and the light is totally reflected to cause the clad The light can be prevented from escaping to the side.
  • the optical receptacle of Supplementary Note 10 since it is not necessary to control the fusion fiber pulling speed, the fusion discharge time, and the power when forming the second portion with high precision, it is possible to manufacture relatively easily. Can do. In addition, if this shape is adopted, even fibers having different melting points can be connected, so that the options of fibers used for fusion can be expanded.
  • the MFD is reduced on the fiber side with respect to the light emitted from the fine optical waveguide, it is not necessary to zoom the light when entering the fiber. Accordingly, the coupling distance can be shortened and the lens can be simplified.
  • the optical receptacle of Supplementary Note 12 when transmitting light having a beam waist smaller than that of the third portion in the first portion, the light can be propagated in a single mode and with little loss.
  • the optical receptacle of Supplementary Note 13 when transmitting light with a beam waist smaller than that of the second portion, the light can be propagated in a single mode and with little loss.
  • the third portion transmits light having a beam waist larger than that of the second portion, the light can be propagated in a single mode with less loss.
  • the refractive index gradually decreases from the first part side toward the third part side, a sudden change in the refractive index between the first part and the third part can be prevented. In addition, light loss due to reflection or scattering at the coupling position of the first part and the third part can be suppressed.
  • the optical receptacle of appendix 17 since the outer shapes of the first part and the third part are equal, the center axis deviation of the first part and the third part can be prevented, and the fusion loss caused by the axis deviation can be prevented. Can be suppressed.
  • the optical receptacle of appendix 18 since the elastic member exists in a wedge shape on the outer periphery of the second portion where the outer diameter of the optical fiber is narrowed, the optical fiber is prevented from protruding outward from the ferrule, and the outer periphery of the optical fiber is reduced. It is possible to suppress cracks and cracks.
  • the wedge action by the elastic member filled outside the cladding of the second portion is made more effective by providing a difference in the outer diameter of the cladding of the second portion and the third portion. I can do things.
  • the strength of the fused portion can be improved due to the large outer diameter of the optical fiber in the second portion.
  • the strength of the fused portion can be improved due to the large outer diameter of the optical fiber in the second portion.
  • the end face of the optical fiber is inclined from a plane perpendicular to the central axis of the optical fiber, so that the light emitted from the optical element connected to the optical receptacle is incident on the optical fiber.
  • the light reflected by the end face of the optical fiber can be prevented from returning to the optical element, and the optical element can be operated stably.
  • optical receptacle of Supplementary Note 23 by forming the optical fiber integrally, it is possible to suppress the optical loss by preventing the generation of air gaps at the boundaries of the first part, the second part, and the third part. Can do.
  • optical receptacle of appendix 24 it is possible to suppress optical loss due to variations in the length of the optical fiber and polishing.
  • optical receptacle of Supplementary Note 25 it is possible to suppress optical loss due to variations in the length of optical fiber and polishing.
  • UV curing can be performed on the bottom surface of the block.
  • the block can have various functions by using ceramics.
  • the position of the block can be prevented from shifting with respect to an optical element such as an optical integrated circuit due to the temperature after bonding the blocks.
  • the production cost can be kept low by producing a block using resin as a material using a highly accurate mold.
  • optical receptacle of Supplementary Note 29 by attaching an isolator as the translucent member, reflection of light incident on the first part from the optical element or light emitted from the first part to the optical element can be suppressed. .
  • the optical receptacle of Supplementary Note 30 it is possible to prevent the optical fiber from being broken by providing the second elastic member in the portion of the optical fiber protruding from the block. Moreover, it can suppress that a coating
  • the optical receptacle of Supplementary Note 31 it is possible to prevent the optical fiber from being broken by providing the third elastic member in the portion of the optical fiber protruding from the block. Moreover, it can suppress that a coating
  • the optical receptacle of Supplementary Note 32 by having the step portion aligned with the optical fiber, the application area of the adhesive can be widened, and bending stress is prevented from concentrating on the interface between the optical fiber and the block. Can do.
  • the contact portion can be prevented from becoming a starting point of the breakage of the optical fiber or the covering portion.
  • the optical receptacle of Supplementary Note 34 if the covering portion is fixed by the elastic member in the enlarged diameter portion, the adhesive strength and the reinforcing strength of the optical fiber are increased, and the optical fiber is prevented from being broken.
  • the optical fiber can be prevented from being broken at the portion protruding from the block of the optical fiber.
  • the optical transceiver of Supplementary Note 36 by reducing the core of the optical fiber side end face of the optical fiber and fusing the fiber having a larger refractive index difference between the core and the clad than the fiber generally used for the transmission line Reducing the refractive index at the fusion part between the fiber generally used in the transmission line and the fiber having a large refractive index difference between the core and the clad while contributing to shortening the total length of the optical module while suppressing loss at the optical connection surface
  • the mode field conversion efficiency can be suppressed, and as a result, a decrease in coupling efficiency from the optical element to the plug ferrule can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光ファイバと、光ファイバに設けられたフェルールと、を含むファイバスタブと、一端面から他端面まで延びる貫通孔を有し、光ファイバのフェルールから突出した部分が一端面の側から貫通孔に挿入されたブロックと、光ファイバを貫通孔に固定する第1弾性部材と、を備え、光ファイバのフェルールから突出した部分は、第1~3部分を有し、第1部分は第3部分よりもブロックの他端面側に設けられ、第2部分は第1、第3部分の間に設けられ、第1部分のコア径は、第3部分のコア径よりも小さく、第2部分のコア径は、第1部分から第3部分へ向かって大きくなる、光レセプタクルである。

Description

光レセプタクル及び光トランシーバ
 本発明の態様は、一般に、光通信用の光レセプタクル及び光トランシーバに係り、特に高速通信用モジュールに好適な光レセプタクル及び光トランシーバに関する。
 光レセプタクルは、光通信用トランシーバの光モジュールにおいて、光ファイバコネクタと、受光素子や発光素子等の光素子と、を光学的に接続するための部品として用いられる。
 近年、IPトラフィックの増加に伴い光通信用トランシーバは高速化が要求されている。一般に、レセプタクル型光モジュールを採用するトランシーバ等の形状は規格化されており、光学素子の1つである半導体レーザーから出射する光信号の変調速度を高速化すると、電気回路に必要なスペースが大きくなり、光モジュールの小型化が求められている。
 半導体レーザー素子のモードフィールド径(MFD)は、一般的に光信号の伝送路として用いられる光ファイバのコア径10μmよりも小さい。
 近年では光トランシーバの通信速度をより高速化するため、単一のモジュール内に複数の半導体レーザーを有し、各半導体レーザーから出射された光を、板状部材の内部に形成された光導波路内で1つの導波路に合波した後、光レセプタクルの光ファイバと光学的に結合する構造の光モジュールも使われている。これらの光モジュールでは、小型化するために前述の光導波路を持つ板状部材を小型化する必要があり、光導波路のコア径は小さくなる傾向がある。
 発光素子に代えて受光素子を用いる光モジュールにおいても、より高速、より長距離通信用途で用いるために、受光素子の受光径を小さくする傾向がある。
 入射された光の径とファイバコア径が異なる場合、そこでは入射損失が発生する。受光素子等の受光部においても、小さな受光部に対して径の大きい光を当てた場合、受光部に当たらなかった光は損失となってしまう問題がある。これまではこの問題に対して、レンズを用いて径の大きさを変換する、または損失が発生することを前提で光ファイバと導波路や光学素子を直接接続する方法が採られていた。
 半導体レーザー素子から出射された光をファイバコアに集光する、またはファイバコアから出射された光を受光素子に集光するためのレンズは、光学素子のモードフィールド径とファイバコア径に差がある場合には倍率機能を有する必要があるが、差が大きければ大きいほど、レンズの焦点距離が長くなる、または必要レンズ枚数が多くなり光学系が複雑かつ高価になる問題があった。
 モジュール全長が長くなることまたは光学系の複雑化を防ぐために、レンズによる倍率は小さく抑え、代わりに光ファイバの光学素子側端面の一部のファイバ先端にレンズを形成したり、GIファイバを融着することで入射された光のモードフィールド径を拡大しファイバに最適なモードフィールド径をファイバ端面に入射する方法が知られている(例えば特許文献1)。
 しかしながら特許文献1の方法は、周期的にモードフィールド径が変化するGIファイバを用いるため、最適なモードフィールド径を得るためにはGIファイバの長さを厳密に管理しなければならず、製造上の管理が困難であるという課題があった。
 また、GIファイバのように径方向に対してコア中心から外周部にかけて段階的に屈折率が異なるファイバを融着するとき、ファイバ端面を溶かして一体化させる融着技術では屈折率の異なるコアが溶け出し混ざりあってしまうため、融着部周辺の屈折率を管理することが困難であり、光損失が大きくなってしまう課題があった。
 また、特許文献2では、光ファイバの光学素子側をテーパ状に形成し、光学素子側のモードフィールド径をPC(Physical Contact)側のモードフィールド径よりも小さくした光レセプタクルを提案している。これにより、接続損失を抑制することができる。しかしながら、特許文献2の構成では、テーパ形状が、光学素子側の端部に位置している。光ファイバの両端部は、光入出射の弊害とならないように鏡面(研磨)加工が必要となる。このため、鏡面加工の具合によって径が変化してしまい、モードフィールド径を安定的に制御することが難しいという課題があった。すなわち、特許文献2の構成においても、光ファイバの軸方向長さに関して高い精度の寸法公差を必要としていた。
特開2006-154243号公報 特開2006-119633号公報
 本発明の態様は、上記問題を解決するためになされたもので、光ファイバの光学素子側端面のコアを小さくし、かつ一般的に伝送路に用いられるファイバよりもコアとクラッドの屈折率差の大きいファイバを融着することで、光学接続面での損失を抑え、光モジュール全長を短くすることに貢献しながら、一般的に伝送路に用いられるファイバとコアとクラッドの屈折率差の大きいファイバの融着部分に屈折率およびコア径が緩やかに推移する部分を形成することで、モードフィールドの変換効率を抑え、結果として光学素子からプラグフェルールまでの結合効率の低下を抑制することができる光レセプタクル及び光トランシーバを提供することを目的とする。
 第1の発明は、光を導通するためのコアとクラッドとを有する光ファイバと、前記光ファイバの一端側に設けられたフェルールと、を含むファイバスタブと、前記フェルールと離間し、一端面と、前記一端面とは反対側の他端面と、前記一端面から前記他端面まで延びる貫通孔と、を有するブロックであって、前記光ファイバの前記フェルールから突出した部分が前記一端面の側から前記貫通孔に挿入された、ブロックと、前記光ファイバを前記貫通孔に固定する第1弾性部材と、を備え、前記光ファイバの前記フェルールから突出した部分は、第1部分と、第2部分と、第3部分と、を有し、前記第1部分は、前記第3部分よりも前記他端面側に設けられ、前記第2部分は、前記第1部分と前記第3部分との間に設けられ、前記第1部分におけるコア径は、前記第3部分におけるコア径よりも小さく、前記第2部分におけるコア径は、前記第1部分から前記第3部分へ向かって大きくなり、前記第1弾性部材は、前記光ファイバと前記貫通孔の内壁との間に設けられたことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、第1部分におけるコア径が、第3部分におけるコア径よりも小さいため、光学接続面での損失を抑え、光モジュールの長さを短くすることができる。
 第2部分を形成することで、第1部分から第3部分へ推移していく際に、コア形状の急激な変化を抑えることができるため、第2部分での光学的損失を抑えることができる。
 さらに、第1部分及び第3部分における光の損失は小さいため、第2部分をブロックの貫通孔内に設ける場合、第2部分は貫通孔内のどこに位置してもよい。これにより、光ファイバの精密な長さ管理を必要とせず、経済的に光レセプタクルを製造することができる。
 また、光集積回路等の光学素子のMFDとブロック内部のMFDとを近づけることにより、MFDの差による結合損失を抑えながら光学素子にブロックを直接押し付ける接続方法(バットジョイント)が可能となり、光学素子とブロックとの間の光学デバイスを削減することができる。これにより、コスト削減、デバイス調芯誤差による損失の低減が可能となる。また、光ファイバを貫通孔に固定することで、ブロックの構成部品数を少なく(例えば1つに)することができ、かつ、光ファイバをブロックに挿入することによって組み立てを行うことができるため、製造工程の数を削減することができる。
 さらに、第1部分と第3部分は形状が軸方向に対して変化せず、光の損失も小さいため、第2部分をブロックの貫通孔に設ける場合、第2部分は貫通孔内のどこに所在しても問題はない。これにより、ファイバブロック上における光ファイバの精密な長さ管理を必要とせず、経済的にレセプタクルを製造することができる。
 第2の発明は、光を導通するためのコアとクラッドとを有する光ファイバと、前記光ファイバの一端側に設けられたフェルールと、を含むファイバスタブと、前記フェルールと離間し、一端面と、前記一端面とは反対側の他端面と、前記一端面から前記他端面まで延びるV字状の溝と、を有するブロックであって、前記光ファイバの前記フェルールから突出した部分が前記一端面の側から前記溝に沿って配設されたブロックと、前記光ファイバを前記溝に固定する第1弾性部材と、を備え、
 前記光ファイバの前記フェルールから突出した部分は、第1部分と、第2部分と、第3部分と、を有し、前記第1部分は、前記第3部分よりも前記他端面側に設けられ、前記第2部分は、前記第1部分と前記第3部分との間に設けられ、前記第1部分におけるコア径は、前記第3部分におけるコア径よりも小さく、前記第2部分におけるコア径は、前記第1部分から前記第3部分へ向かって大きくなり、前記第1弾性部材は、前記光ファイバと前記溝との間に配設されたことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、第1部分におけるコア径が、第3部分におけるコア径よりも小さいため、光モジュールの長さを小さくすることができる。
 また、第2部分を形成することで、第1部分から第3部分へ推移していく際に、コア形状の急激な変化を抑えることができるため、第2部分での光学的損失を抑えることができる。
 さらに、第1部分と第3部分は形状が軸方向に対して変化せず、光の損失も小さいため、第2部分をブロックの溝上に設ける場合、第2部分は溝上のどこに所在しても問題はない。これにより、光ファイバの精密な長さ管理を必要とせず、経済的にレセプタクルを製造することができる。
 また、第1弾性部材として接着剤を用いる場合、溝と光ファイバとの間や、溝上に配置された光ファイバの上部に十分な量の接着剤を盛ることができるため、接着強度を増すことができる。
 第3の発明は、第2の発明において、前記ブロックは、前記溝が設けられた第1部材と、前記第1部材と対向する第2部材と、を有し、前記光ファイバは、前記第2部材と前記溝との間に設けられ、前記第1弾性部材は、前記光ファイバと前記溝との間、および、前記光ファイバと前記第2部材との間に設けられたことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、第2部材によって、光ファイバを溝に押し付けることができる。これにより、光ファイバを精度よく溝に倣わせることができる。
 第4の発明は、第1~第3のいずれか1つの発明において、前記第1部分の全体、及び前記第2部分の全体は、前記光ファイバの中心軸に沿った方向において、前記一端面と前記他端面との間に位置し、前記第3部分は、前記一端面から突出した部分を有することを特徴とする光レセプタクルである。
 この光レセプタクルによれば、第1部分及び第2部分の全域をブロックに沿わせ、第1弾性部材によって固定することで、外部からの応力に対して第2部分を保護することができる。
 第5の発明は、第1~第3のいずれか1つの発明において、前記第1部分の少なくとも一部は、前記光ファイバの中心軸に沿った方向において、前記一端面と前記他端面との間に位置し、前記第2部分及び前記第3部分は、前記一端面から突出したことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、光ファイバの融着に伴って第2部分におけるクラッドの直径が変化したとしても、ブロックの貫通孔又はV字状の溝に沿うのは、第1部分のみである。第1部分の直径は、第1部分の全域に亘って例えば同一である。このため、ブロックとコアとの位置関係に影響を及ぼさずに、光ファイバをブロックに固定できる。
 第6の発明は、第1~第5のいずれか1つの発明において、前記第1部分のコアの屈折率、前記第2部分のコアの屈折率、および前記第3部分のコアの屈折率は、互いに等しく、前記第1部分のクラッドの屈折率は、前記第3部分のクラッドの屈折率より小さく、
 前記第2部分のクラッドの屈折率は、前記第1部分側から前記第3部分側に向かって大きくなることを特徴とする光レセプタクルである。
 この光レセプタクルによれば、屈折率差の大きいファイバを用いることで、小さいコア径でも光を散乱させること無く閉じ込めることができ、光がファイバに入射する際の損失を抑えることができる。また、第2部分を形成することで、第1部分から第3部分へ推移していく際に、屈折率差の急激な変化を抑えることができるため、第2部分での光学的損失を抑えることができる。また、コアの素材を共通化することができ、第1部分と第2部分との接続部および第2部分と第3部分との接続部において、コア同士の屈折率差が存在しないため、接続部の反射による損失をおさえることができる。
 第7の発明は、第1~第5のいずれか1つの発明において、前記第1部分のクラッドの屈折率、前記第2部分のクラッドの屈折率、および前記第3部分におけるクラッドの屈折率は、互いに等しく、前記第1部分のコアの屈折率は、前記第3部分のコアの屈折率より大きく、前記第2部分のコアの屈折率は、前記第1部分側から前記第3部分側に向かって小さくなることを特徴とする光レセプタクルである。
 この光レセプタクルによれば、クラッドが同一素材で形成できるため、クラッドが一様な物性を持つことができる。それにより、融点も一様になるため融着時のクラッド外径の成形を容易に行うことができる。
 第8の発明は、第1~第7のいずれか1つの発明において、前記光ファイバの前記ブロック側の端面が、前記光ファイバの中心軸に対して垂直な面から傾いたことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、光ファイバの端面が光ファイバの中心軸に対して垂直な面から傾いていることで、光レセプタクルに接続される光学素子から出射され光ファイバに入射する光のうちで、光ファイバの端面で反射した光が光学素子に戻ることを防止し、光学素子を安定して動作させることができる。
 第9の発明は、第1~第8のいずれか1つの発明において、前記ブロックの前記他端面側において、前記光ファイバの端面に透光性部材が配設されたことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、透光性部材としてアイソレータを取り付けることで、光学素子から第1部分に入射する光または第1部分から光学素子に出射される光の反射を抑制することができる。
 第10の発明は、第1~第9のいずれか1つの発明において、前記光ファイバのうち前記ブロックの前記一端面から突出した部分の少なくとも一部を覆う被覆部と、前記被覆部と前記ブロックとの間に設けられた第2弾性部材と、をさらに備えたことを特徴とする光レセプタクルである。
 この光レセプタクルによれば、光ファイバのうちブロックから突出した部分において、第2弾性部材が設けられることにより光ファイバが折れることを抑制できる。また、光ファイバを覆う被覆部とブロックとの間に第2弾性部材が設けられることによって、被覆部が破れることを抑制できる。
 第11の発明は、第10の発明において、前記被覆部と前記ブロックとの間に設けられた第3弾性部材をさらに備え、前記第3弾性部材は、前記ブロックと前記第2弾性部材との間に位置することを特徴とする光レセプタクルである。
 この光レセプタクルによれば、光ファイバのうちブロックから突出した部分において、第3弾性部材が設けられることにより光ファイバが折れることを抑制できる。また、光ファイバを覆う被覆部とブロックとの間に第3弾性部材が設けられることによって、被覆部が破れることを抑制できる。
 第12の発明は、第1~第11のいずれか1つの発明の光レセプタクルを備えたことを特徴とする光トランシーバである。
 この光トランシーバによれば、光ファイバの光学素子側端面のコアを小さくし、かつ一般的に伝送路に用いられるファイバよりもコアとクラッドの屈折率差の大きいファイバを融着することで、光学接続面での損失を抑え、光モジュール全長を短くすることに貢献しながら、一般的に伝送路に用いられるファイバとコアとクラッドの屈折率差の大きいファイバとの融着部分に屈折率およびコア径が緩やかに推移する部分を形成することで、モードフィールドの変換効率を抑え、結果として光学素子からプラグフェルールまでの結合効率の低下を抑制することができる。
 光ファイバの光学素子側端面のコアを小さくすることで光モジュール全長を短くすることに貢献しながら、ファイバの軸方向長さに関して高い精度の寸法公差を必要とせず、ファイバの軸方向の動きを抑制することで結合効率の低下を防止し、またMFD変換の損失を抑えることのできる光レセプタクル及び光トランシーバが提供される。
第1の実施形態に係る光レセプタクルを例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 図5(a)及び図5(b)は、光ファイバにおけるビームの伝播を例示する模式図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 光ファイバの検討に用いた光ファイバを例示する模式的断面図である。 光ファイバの解析結果を例示するグラフ図である。 図13(a)及び図13(b)は、光ファイバの解析結果を例示するグラフ図である。 図14(a)~図14(c)は、第1部分の長さに関する検討に用いた参考例の光レセプタクル及びその解析結果の一例を例示する模式図である。 図15(a)~図15(c)は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する斜視図である。 図17(a)及び図17(b)は、第1の実施形態に係る光レセプタクルの一部を例示する模式図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 図22(a)~図22(c)は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。 第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 第2の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。 第2の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。 図27(a)及び図27(b)は、第3の実施形態に係る光トランシーバを例示する模式図である。
 以下、図面を参照しつつ、本発明の実施形態について例示をする。尚、各図面中同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 (第1の実施形態)
 図1は、第1の実施形態に係る光レセプタクルを例示する模式的断面図である。
 図1に示すように、本実施形態に係る光レセプタクル1は、光を導通するための光ファイバ2と、光ファイバ2の一端E1の側に設けられたフェルール3と、を含むファイバスタブ4を有する。また、光レセプタクル1は、光ファイバ2の他端E2の側に設けられ、フェルール3と離間したブロック(固定部材)80を有する。
 図2は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図2は、図1に表したフェルール3の周辺を拡大して表す。
 図2に表したように、フェルール3は、光ファイバ2を保持する貫通孔3cを有する。ファイバスタブ4は、光ファイバ2を貫通孔3cに接着固定する弾性部材9を有する。
 ファイバスタブ4において光ファイバ2はフェルール3の貫通孔3cに弾性部材(接着剤)9を用いて固定される。弾性部材9は、例えば、ジルコニアやガラスファイバよりも低い弾性率を有する部材である。弾性部材9の弾性率は、例えば、光ファイバ2の弾性率及びフェルール3の弾性率よりも低い。弾性部材9は、光ファイバ2とジルコニアのフェルール3との固定、及びジルコニアのフェルール3に作用する外部応力をガラスの光ファイバ2まで伝わらないように応力を吸収する等の役割を持つ。弾性部材9の例としてはエポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂等が挙げられる。エポキシ接着剤やアクリル接着剤、シリコーン系接着剤等を硬化させることで得ることができる。弾性部材9として用いられる接着剤に適する材料としてはエポキシ、シリコン等の樹脂系接着剤があげられるが、本実施例では高温硬化型のエポキシ系接着剤を用いた。なお、フェルール3の貫通孔3c内において、光ファイバ2とフェルール3の内壁との間に存在する空間には弾性部材9が隙間無く充填されている。
 さらに、光レセプタクル1は、ファイバスタブ4を保持する保持具5と、ファイバスタブ4の先端を一端で保持し、他端で光レセプタクル1に挿入されるプラグフェルールを保持可能なスリーブ6とを有する。なお、光レセプタクル1に挿入されるプラグフェルールは図示されていない。光レセプタクル1は、例えば、収容部10をさらに有する。収容部10は、保持具5の外側面に嵌り、フェルール3及びスリーブ6を覆う。収容部10は、フェルール3及びスリーブ6を軸周りに覆い、フェルール3及びスリーブ6を外力などから保護する。
 フェルール3に適する材質はセラミックス、ガラス等が挙げられるが、本実施例ではジルコニアセラミックスを用い、その中心に光ファイバ2を接着固定し、プラグフェルールと光学的接続される一端(端面3b)を凸球面に研磨して形成した。また、光レセプタクル1の組立てにおいて、ファイバスタブ4は保持具5に圧入固定されることが多い。
 スリーブ6に適する材質は樹脂、金属、セラミックス等があげられるが、本実施例では全長方向にスリットを有するジルコニアセラミックス製の割りスリーブを用いた。スリーブ6は一端でファイバスタブ4の凸球面に研磨された先端部を保持し、他端で光レセプタクルに挿入されるプラグフェルールを保持するようになっている。
 光ファイバ2は、光ファイバ2の中心軸に沿って延在するコア8と、コア8の周囲を囲むクラッド7と、を有する。例えば、コアの屈折率は、クラッドの屈折率よりも高い。光ファイバ(コア8及びクラッド7)の材料としては、例えば石英ガラスが挙げられる。石英ガラスには屈折率制御のため、不純物が添加されていてもよい。
 光ファイバ2は、フェルール3に固定された部分2eと、フェルール3から突出した部分2fと、を有する。部分2eは、フェルール3の貫通孔3c内に配置された部分であり、部分2fは、貫通孔3cの外に配置された部分である。
 図1に表したように、ファイバスタブ4は、プラグフェルールと光学的接続される一端面(端面3b)と、当該一端面とは反対側の他端面(光学素子と光学的接続される端面3a)と、を有する。コア8は、端面3a及び端面3bにおいてクラッド7から露出している。
 例えば、端面3a側に半導体レーザ素子や光集積回路等の光学素子110が配置される。半導体レーザ素子や光集積回路等の光学素子110から出射された光は、端面3a側から光レセプタクル1に入射し、コア8内を伝搬する。または、端面3bからコア8に入射した光は、コア8内を伝搬し、端面3a側から光学素子110へ向けて出射される。
 端面3aと半導体レーザ素子等の光学素子等との間に、アイソレータ等の光学素子を設けてもよい。アイソレータは、例えば、偏光角度を回転させる素子(ファラデー素子等)や偏光子を有し、光を1方向にのみ透過させる。これにより、例えば、端面3aで反射された戻り光によるレーザ素子の損傷や、ノイズ等を抑制することができる。
 また、ファイバスタブ4は、端面3bが中心軸C1(方向X2)と直交する平面に対して傾斜するように、研磨されていてもよい。すなわち、凸球面状の端面3bは、中心軸C1と直交する平面に対して傾斜する斜め凸球面であってもよい。これにより、光レセプタクル1は、端面3bにおいてAPC(Angled Physical Contact)コネクタと光学的に接続され、接続点における反射や接続損失を抑制することができる。方向X2は、光ファイバのうちフェルール3に固定された部分2eが延びる方向である。
 図3は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図3は、図1に表したブロック80の周辺を拡大して表す。
 ブロック80は、一端面(第1面F1)と、当該一端面とは反対側の他端面(第2面F2)と、貫通孔88と、を有する。第1面F1は、フェルール3側の端面であり、第2面F2は、光学素子側の端面である。貫通孔88は、第1面F1から第2面F2まで延び、ブロック80を貫く。
 光ファイバ2のフェルール3から突出した部分2fは、第1面F1の側から貫通孔88に挿入されている。言い換えれば、光ファイバ2のうち、第1面F1においてブロック80から突出した部分は、フェルール3へ向かって延びる。ブロック80は、光ファイバ2の光学素子側の端部に設けられ、光ファイバ2を固定する。ブロック80は、光ファイバ2の端面2aの位置を物理的に固定するために用いられる直方体状とすることができる。ただし、光ファイバ2の被覆86の保護や取り扱い性を考慮した場合、形状は直方体に限らず円柱型、多角形、多角錐、円錐などの任意の形状でよい。ブロック80は、光ファイバ2を固定する部位として例えば貫通孔あるいはV字状の溝を有する。ブロック80の材質は、例えば、コストと生産性を考慮した樹脂、樹脂よりも熱膨張率が低いジルコニア、アルミナ等のセラミックス、紫外線硬化型接着剤による固定が可能なガラス等から、適宜選択可能である。
 また、光レセプタクル1は、光ファイバ2を貫通孔88に接着固定する弾性部材(第1弾性部材)83aを有する。弾性部材83aは、光ファイバ2と貫通孔88の内壁との間に充填される。これにより、光ファイバ2の光学素子側の端部がブロック80に固定される。弾性部材83aには、例えば、エポキシ系樹脂、アクリル系樹脂、シリコン系樹脂等が用いられる。弾性部材83aには、例えば、弾性部材9に関して説明した材料と実質的に同じ材料を用いることができる。
 光ファイバ2には、被覆(被覆部86)が設けられる。被覆部86は、光ファイバ2のうち第1面F1からフェルール3側へ突出した部分2gの少なくとも一部を覆う。光ファイバ2の中心軸C1に沿った方向X1において、第1面F1は、部分2gと第2面F2との間に位置する。
 例えば、被覆部86は、光ファイバ2のブロック80とフェルール3との間の部分を覆う。換言すれば、被覆部86は、光ファイバ2のうちのフェルール3及びブロック80に覆われていない部分を覆う。これにより、被覆部86は、光ファイバ2のフェルール3及びブロック80から露出した部分を保護する。被覆部86は、例えば光ファイバ2の表面に接する。被覆部86には、例えば、UV硬化樹脂などの樹脂材料が用いられる。
 光ファイバ2のフェルール3から突出した部分2fは、第1部分21と、第2部分22と、第3部分23と、を有する。光ファイバ2は、第1部分21となるファイバと、第3部分23となるファイバと、の融着により形成された一本のファイバである。つまり、第1部分21、第2部分22及び第3部分23は、一体である。
 第1部分21は、クラッド(第1クラッド部7a)とコア(第1コア部8a)とを有し、第2部分22は、クラッド(第2クラッド部7b)とコア(第2コア部8b)とを有し、第3部分23は、クラッド(第3クラッド部7c)とコア(第3コア部8c)とを有する。第1部分21は、第3部分23から見て端面3a側、すなわち第3部分23から見てブロック80の第2面F2側に設けられる。第3部分23は、第1部分21から見て端面3b側、すなわち第1部分21から見てブロック80の第1面F1側に設けられる。第2部分22は、第1部分21と第3部分23との間に設けられる。なお、第1クラッド部7a、第2クラッド部7b及び第3クラッド部7cのそれぞれは、クラッド7に含まれる。第1コア部8a、第2コア部8b及び第3コア部8cのそれぞれは、コア8に含まれる。
 この例では、第1部分21及び第2部分22は、全域に亘って、貫通孔88内に設けられ、ブロック80に沿って延びる。言い換えると、第1部分21の全体および第2部分22の全体は、光ファイバ2の中心軸C1に沿った方向X1において、第1面F1と第2面F2との間に位置する。すなわち、方向X1における第1部分21及び部分22の位置は、それぞれ、方向X1における第1面F1の位置と、方向X1における第2面F2の位置と、の間である。
 なお、方向X1は、光ファイバ2のうちブロック80に固定された部分、すなわち貫通孔88内に配置された部分が延びる方向である。例えば、図1に示すように光ファイバ2が直線状に配置された場合、方向X1は、方向X2と平行である。ただし、実施形態において光ファイバ2は必ずしも直線状でなくてもよい。
 第3部分23は、貫通孔88内に設けられた部分23aと、第1面F1からフェルール3側へ突出した部分23bと、を有する。第3部分23は、例えば、プラグフェルールと光学的に接続される端面3bまで連続している。つまり、光ファイバ2のフェルール3に固定された部分2eにおけるコア径、クラッド径、コアの屈折率、クラッドの屈折率などは、第3部分23におけるコア径、クラッド径、コア屈折率、クラッド屈折率などと実質的に同じである。
 図4は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図4は光ファイバ2の第2部分22の周辺を拡大して表す。
 第1部分21のコア径D1は、第3部分23のコア径D3よりも小さく、第2部分22のコア径D2は第1部分21から第3部分23へ向かって徐々に大きくなっている。第1部分21におけるファイバ外径D4は、第3部分23におけるファイバ外径D6と例えば等しい。第2部分22におけるファイバ外径D5は、第1部分21におけるファイバ外径D4よりも小さく、第3部分23におけるファイバ外径D6よりも小さい。なお、コア径は、中心軸C1(方向X1)と直交する方向に沿ったコアの長さ、すなわちコアの直径である。また、ファイバ外径は、中心軸C1(方向X1)と直交する方向に沿ったファイバの長さ(クラッドの長さ)、すなわちファイバの直径である。
 例えば、第1部分21のコア径D1は、0.5μm以上8μm以下である。例えば、第3部分23のコア径D3は、8μm以上20μm以下である。
 第2部分22を形成する手法としては、第1部分21と第3部分23とを融着する際に、融着部の外周から石英の融点以上の熱を加え、コアの添加物をクラッド側に拡散させ、コアを拡径する方法や、熱を加えながら光ファイバ融着部を引き伸ばす方法等が挙げられる。第2部分22の光ファイバの中心軸方向の長さは、最も損失が少ない長さと、熱を加えながら引き伸ばす事ができる限界の長さと、を考えて設計する必要がある。その長さは、10マイクロメートル(μm)以上から1000μmであることが望ましい。
 図5(a)及び図5(b)は、光ファイバにおけるビームの伝播を例示する模式図である。
 例えば、図4に表したように、第2部分22のコア径D2は、第1部分21から第3部分23に推移していくにつれて線形的に拡大する。この形状をとることにより、第2部分22に進入したレーザーが広がり角αで広がっていったとしても、図5(a)及び図5(b)に示すように、壁に対して小さい角度α’で入射され、クラッド側に光が逃げていくことを防ぐ。ただし、この形状を作成するためには、ファイバを引っ張る速度とファイバに熱を加えるための放電量や放電タイミング、放電位置を厳密に制御しなくてはならず、形状形成の難易度は比較的高い。
 図6は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図6は光ファイバ2の第2部分22の周辺を拡大して表す。
 例えば、図6に表したように、第2部分22のコア径D2は、第1部分21から第3部分23に推移していくにつれて非線形に拡大する。この形状をとることにより、線形でコアが拡大していく時よりも変換部(第2部分22)における損失は大きくなる可能性はあるが、上記制御項目に関して許容値が広がるため、放電量や放電タイミングが制御できないような製造機器に置いても、比較的簡単な制御によって作成できる利点がある。
 図7は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図7は光ファイバ2の第2部分22の周辺を拡大して表す。
 例えば、図7に表したように、第2部分22のコア径D2は、第1部分21から第3部分23に推移していくにつれて非線形に拡大しつつ、クラッド7とコア8との境の一部は、ファイバ中心軸C1に対してほぼ垂直となる部分S1(本明細書ではこれを段差と呼ぶ)を有する。この形状をとることにより、融着時に第2部分22の全域にわたって熱を伝えることが困難な場合でも作成することができる利点がある。
 第1部分21におけるコアの屈折率とクラッドの屈折率との差は、第2部分22におけるコアの屈折率とクラッドの屈折率との差よりも大きい。第1部分21におけるコアの屈折率とクラッドの屈折率との差は、第3部分23におけるコアの屈折率とクラッドの屈折率との差よりも大きい。第2部分22におけるコアの屈折率とクラッドの屈折率との差は、第3部分23におけるコアの屈折率とクラッドの屈折率との差よりも大きい。第2部分22に関しては、第1部分21と第3部分23との融着によって第2部分22が形成されるという理由から、屈折率差は、第1部分21側では大きく、第3部分23側に向かって徐々に小さくなっていく。
 例えば、第1部分21のコアの屈折率、第2部分22のコアの屈折率、および第3部分23のコアの屈折率は互いに等しく、第1部分21のクラッドの屈折率は、第3部分23のクラッドの屈折率より小さく、第2部分22のクラッドの屈折率は、第1部分21側から第3部分23側に向かって大きくなる。
 あるいは、第1部分21のクラッドの屈折率、第2部分22のクラッドの屈折率、および第3部分23におけるクラッドの屈折率は、互いに等しく、第1部分21のコアの屈折率は、第3部分23のコアの屈折率より大きく、第2部分22のコアの屈折率は、第1部分21側から第3部分23側に向かって小さくなる。
 レーザーはあるビームウェスト径D7の状態まで集光された場合、広がり角α度で広がっていく特性を持つ。つまり、広がり角またはビーム径どちらか一方が決定すれば、もう一方も必然的に決定する。
 コアとクラッドの屈折率差を生じさせる方法として、石英ガラスにエルビウムやゲルマニウムなど希土類を添加する方法が知られており、添加する対象は、コア、クラッド、またはその両方が挙げられる。石英ガラス中の添加物質や濃度によって、屈折率を調整することができる。第1部分21、第2部分22、第3部分23のそれぞれにおいて、コアの屈折率とクラッドの屈折率とは、それぞれ1.4以上1.6以下程度である。コアとファイバの屈折率の差によって入射できるNA(開口度)が決定するため、第1部分21に用いるファイバは、第1部分21に入射するレーザーの広がり角αとビームの広がり角以上のNAを持つように屈折率差を持たせたファイバを用いる必要がある。
 広がり角が決定すれば入射径も決まるため、屈折率差と合わせて、入射するビーム径にあわせたMFD(モードフィールド径)を持つファイバを用いる必要がある。
 第1部分21、第3部分23の中心軸方向の長さは、入射した光が単一のモードに落ち着くまでの距離を確保するためにそれぞれ100μm以上持つことが望ましく、第2部分22がブロック80の貫通孔88の中央付近に配置されるように調整されることが望ましい。
 ブロック80において光ファイバ2は、貫通孔88に弾性部材(接着剤)83aを用いて固定される。弾性部材83aとして用いられる接着剤に適する材料としてはエポキシ、シリコン等の樹脂系接着剤が挙げられる。例えば、弾性部材83aには、高温硬化型のエポキシ接着剤が用いられる。なお、ブロック80の貫通孔88内において、光ファイバ2とブロック80の内壁との間に存在する空間には弾性部材83aが隙間無く充填されている。例えば、弾性部材83aは、第1部分21とブロック80(貫通孔88の内壁)との間、第2部分22とブロック80(貫通孔88の内壁)との間、及び、第3部分23とブロック80(貫通孔88の内壁)との間に設けられる。
 ここで、図2~図7に表した例では、第2部分22におけるファイバ外径D5は、第1部分21におけるファイバ外径D4よりも小さく、第3部分23におけるファイバ外径D6よりも小さいため、貫通孔88内においてブロック80と第2部分22のファイバ外周との間に隙間が発生する。この隙間に接着剤として弾性部材83aが隙間無く充填される。これにより、第2部分22のファイバの外側に充填された弾性部材83aがファイバに対しての楔となり、ファイバスタブ4と光レセプタクル1に挿入されるプラグフェルールとが光学接続を行うために接触し、軸方向に平行に外力が作用したとしても、ファイバスタブ4又は光ファイバ2が軸方向に移動することを抑制する。
 また、第2部分22は、第1部分21と第3部分23とを融着させることで形成されるため、形成条件によっては、第2部分22の強度は、第1部分21の強度又は第3部分23の強度よりも低い場合がある。これに対して、第2部分22の外周に弾性部材9が充填されることにより、第2部分22を補強することができる。
 但し、実施形態においては、第2部分22におけるファイバ外径D5は、必ずしも第1部分21におけるファイバ外径D4又は第3部分23におけるファイバ外径D6よりも小さくなくてもよい。光ファイバ2の形状は、図8及び図9に示す例のようであってもよい。
 図8及び図9は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。これらの図は、第2部分22の周辺を拡大して表す。
 図8の例では、第2部分22におけるファイバ外径D5は、第1部分21におけるファイバ外径D4又は第3部分23におけるファイバ外径D6と実質的に同じである。この形状をとることにより、融着によって光ファイバ2を形成するときに、放電量や放電タイミングの制御を比較的簡単とすることができる。図9の例では、第2部分22におけるファイバ外径D5は、第1部分21におけるファイバ外径D4よりも大きく、第3部分23におけるファイバ外径D6よりも大きい。この形状をとることにより、融着部の強度を向上させることができる。
 また、通常、光レセプタクル1では光を光ファイバ2に入射する、または光ファイバ2より光を出射する際に光ファイバ2の端面2a(図3を参照)での光の反射を防ぐため、ファイバスタブ4の凸球面に研磨された端面3bとは反対側の端面3aにおいて、光ファイバ2の端面2aは中心軸C1(方向X1)に対して略垂直な平面となるように研磨される。ここで略垂直とは、中心軸C1に対して85度~95度程度であることが望ましい。
 図3等に示した例では、光ファイバ2の端面2aは中心軸C1に対して垂直な平面となるように研磨されており、さらに光ファイバ2の端面2aとブロック80の第2面F2はほぼ同一平面上に存在している。ここでほぼ同一平面上とは、光ファイバ2の端面2aとブロック80の第2面F2との間の、中心軸C1の方向に沿った距離が-250nm~+250nm程度であることが望ましい。
 ファイバスタブ4の凸球面に研磨した端面3bとは反対側の端面3aにおいて、光ファイバ2のコア8の中心は、貫通孔88の中心から0.005ミリメートル(mm)の範囲内に存在する。これにより、光ファイバ2のコア8の位置を制御することで、光モジュールの組み立て時の接続ロスを小さくし、容易に光モジュールを組み立てることができる。
 ファイバスタブ4の凸球面は、通常フェルール3の中心軸C1に対して垂直な平面上に形成されているが、フェルール3の中心軸C1に対して垂直な平面から所定の角度(例えば4度~10度)傾いた平面上に形成されても良い。
 図10は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。図10に表した光レセプタクルを構成する部材は、図1~9に関して説明した光レセプタクル1と同様である。図10に示す例では、光ファイバ2の端面2a(ブロック80側の端面3a)が、中心軸C1(方向X1)に対して垂直な面から所定の角度(例えば4度~10度)傾いた平面となるように研磨されている。
 このことにより、光レセプタクル1に接続される発光素子から出射され光ファイバ2に入射する光のうち光ファイバ2の端面2aで反射した光が、発光素子に戻ることを防止し、光学素子を安定して動作させることができる。
 例えば、中心軸C1に対して垂直な面から所定の角度を持つ面を形成するためには、ブロック80の貫通孔88に光ファイバ2を挿入し、接着剤で固定した後にブロック80と光ファイバ2とを同時に研磨する。
 例えば、第2部分22のファイバ外径が細くなった部分の外周に、光ファイバ2をブロック80の貫通孔88内に固定するための弾性部材(接着剤)83aが充填される。このため、中心軸C1と平行な力が光ファイバ2に作用したとしても、弾性部材が楔として作用し、ファイバの中心軸方向のズレを抑制することができるため、接触不良に伴う損失やファイバがブロックから飛び出す現象が起きにくくなる。
 次に、本発明者が実施した第1部分21の光ファイバのコア径、屈折率、第2部分22の中心軸方向の長さに関する検討について、図面を参照しつつ説明する。
 図11~図13は、検討に用いた解析条件および解析結果の一例を例示する模式図である。
 まず、コア径について説明する。
 図11は、本検討に用いた光ファイバを例示する模式的断面図である。
 直径w1のビームウェストを持つビームが直径w2のMFDを持つファイバに入射される場合、光軸垂直方向の軸ずれ、角度ずれ、光軸方向のずれがないと仮定すると結合効率ηは以下の式で求められることが知られている。
Figure JPOXMLDOC01-appb-M000001

 この理論式によれば、レーザのビームウェストとファイバのMFDが一致するw1=w2の時に効率は1(100%)になる事がわかる。また、シングルモードファイバのMFDは、コア径が0~10μmの範囲においては、波長によって変動するがファイバのコア径よりも直径が0.5~4μm大きくなることが知られている。この事実より、ファイバのコア径は入射されるビームウェストよりも0.5~4μm程度小さいことが望ましい。
 屈折率差について説明する。光がシングルモードファイバの中を伝播していくには、光の広がり角θ1とファイバの受光角θ2とが一致していることが望ましい。なお、このθ1は、次式で求められることが知られている。
Figure JPOXMLDOC01-appb-M000002

 この式によれば、入射されるレーザービームのビームウェストw1が分かれば広がり角θ1を求めることができる。また、ファイバの受光角θ2は、
Figure JPOXMLDOC01-appb-M000003

に示されるとおり、コアの屈折率ncoreとクラッドの屈折率ncladから求められることが分かっている。
 入射されるビームウェストw1が決定されれば、そのビームの広がり角も決定されるため、ファイバのコアとクラッドの屈折率差はθ2=θ1となるように決定される。例えば、コアとクラッドに石英ガラスを用いた場合、コアとクラッドの屈折率は1.4~1.6程度の範囲で推移する。
 第2部分22の中心軸C1方向の長さについて説明する。この長さの違いによる効果を確認するために、光CAE解析を実施した。本検討では第1部分21のコア径D1は3μm、第1コア部8aの屈折率は1.49、第3部分23のコア径D3は8.2μm、第3コア部8cの屈折率は1.4677、ファイバ全長を1000μm、各部分のクラッド(7aと7bと7c)の屈折率は共通で1.4624、入射されたビームのビームウェスト径D7は3.2μmとした。この条件の下で、第2部分22の中心軸C1方向の長さを0μmから500μmまで100μm刻みで変化させた場合に、光強度がどのように変化するか計算した。なお、第1部分21の長さ、第3部分23の長さは、それぞれ(1000μm - 第2部分22の長さ)÷2とした。
 この解析の解析結果をまとめたグラフを図12に示す。横軸は第2部分22の中心軸C1方向の長さ、縦軸は入射された光を1としたときの、ファイバ出射端における光の強度を対数表示したものである。この解析結果によれば、第2部分22の中心軸C1方向の長さが長くなれば、光ファイバ2の内部における損失が小さくなる。その変化の様子としては、0~100μmまでは長さが増加することにより損失は急激に低下し、100μm以上では損失はほぼ横ばいとなる。これより、中心軸C1(方向X1)に沿った第2部分22の長さは100μm以上であることが望ましいと考えられる。
 図13(a)及び図13(b)は、本解析条件の一例において、ファイバ内の光強度分布をコンタ図とグラフで示した図である。グラフの縦軸はファイバの入射端からの距離、横軸は光の強度を示している。このグラフで特筆すべきことは、第1部分21と第3部分23を伝播していく過程において、光はほぼ減衰しないという点である。入射された光は当初光の干渉によって強度が減少するものの、それが出射端からある程度伝播したところで安定する。その後光は、一定の強度を保ったまま第2部分22に入る。第2部分22ではMFDの変換および屈折率の変化による損失が発生するため光強度は低下し、その後光は第3部分23へと入る。第3部分23では、強度はほぼ変化せず、出射端まで一定の値を保つ。
 本発明の一実施形態によれば、第1部分21と第3部分23の中心軸C1方向の長さは減衰には影響しないため、その長さが変化してもファイバの機能およびファイバ全体の損失には影響は無い。言い換えれば第1部分21と第3部分23の長さは設計者の任意の長さで設計することができるうえに、その設計寸法の寸法公差は大きくとることができる。この利点はGIファイバやレンズ付ファイバのように厳密な寸法精度を必要とせず、量産性の向上に大きく貢献することができる。
 次に、中心軸C1方向に沿った第1部分21の長さ、及び中心軸C1方向に沿った第3部分23の長さに関する検討について、説明する。
 図14(a)~図14(c)は、第1部分の長さに関する検討に用いた参考例の光レセプタクル及びその解析結果の一例を例示する模式図である。
 参考例の光レセプタクルは、図14(a)に示すファイバスタブ49を有する。参考例のファイバスタブ49の構造は、実施形態に係るファイバスタブ4において第1部分21(第1クラッド部7aと第1コア部8a)が設けられない構造と同様である。
 ファイバスタブ49は、光ファイバ29を有する。ファイバスタブ49は、プラグフェルールと接続される端面39bと、端面39bとは反対側の端面39aと、を有する。また、光ファイバ29は、第2部分229(変換部)と、第3部分239と、を有する。第3部分239は、第2部分229と軸方向において並び、第2部分229と連続する。第2部分229は、端面39aの少なくとも一部を形成し、第3部分239は、端面39bの少なくとも一部を形成する。中心軸方向において、第2部分229のコア径は、第3部分239へ向かって拡大している。第3部分239のコア径は、中心軸方向において、実質的に一定である。なお、図14(a)では、便宜上、弾性部材など一部の要素を省略している。
 一般に、端面39aは、鏡面状に研磨される。また、端面39bは、凸球面状に研磨される。これにより、端面39a、39bにおける光の損失を抑制することができる。光レセプタクルにおいては、光学素子と光レセプタクルとの接続や、付着した接着剤の除去の観点からも端面を研磨することが望ましい。
 端面39aの研磨量は、例えば5μm以上50μm以下である。これにより、鏡面状の端面を形成することができる。
 ここで、図14(a)に示したファイバスタブ49において、例えば、端面39aが5~50μm程度研磨されると、研磨量に応じて、第2部分229の長さが短くなる。言い換えれば、研磨量に応じて、第2部分229の端面位置(第2部分229のうち端面39aとして露出する部分の位置)が5~50μm程度変動する。つまり、端面39aにおけるコア径Daが変動する。これは、GIファイバなど、周期的にMFDが変化するようなファイバを用いる場合には、損失の原因となる。
 本願発明者は、上記のような端面39aの研磨と、損失と、の関係について解析を行った。図14(b)及び図14(c)に解析結果の一例を示す。この検討では、端面39aの研磨前において、第2部分229の軸方向に沿った長さLaを50μmとし、端面39aにおけるコア径Daを3μmとし、端面39bにおけるコア径Dbを9μmとした。第2部分229におけるコア径の軸方向に沿った変化率は、一定とした。
 図14(b)は、上記のようなファイバスタブ49において、端面39aの研磨により、長さLaが20%(研磨量10μm)、40%(研磨量20μm)、60%(研磨量30μm)又は80%(研磨量40μm)短くなった場合の損失(dB)を表す。図14(c)は、図14(b)のデータを表すグラフ図である。ここで、損失(dB)は、端面39aから光(径DL=3μm)が入射した場合の出射端(端面39b)における光の強度から算出される。
 端面39aの研磨が行われる前において損失は、-1.06dBである。グラフより、研磨によって第2部分229が短くなると損失が大きくなることが分かる。例えば、研磨によって変換部(第2部分229)が50%短くなると損失は、-3dB程度となる。
 このように、第1部分が設けられない参考例においては、端面を研磨することによって損失が増大してしまう。また、参考例において、予め研磨量を考慮して研磨前の端面のコア径を定めたとしても、研磨量のばらつきに応じて損失がばらつく。研磨量を厳密に管理する必要が生じ、量産性が低下することがある。
 これに対して、実施形態に係る光レセプタクルにおいては、実質的にコア径及び屈折率が中心軸C1に沿って変化しない第1部分が設けられる。端面3aの研磨によって、中心軸C1に沿った第1部分の長さが変動しても、光学的損失の増大やばらつきの変化は小さい。例えば、第1部分の長さの範囲内で端面位置が変化しても、光レセプタクルの特性は、実質的に劣化しない。
 以上により、中心軸C1に沿った第1部分の長さは、端面3aの研磨量以上であることが望ましい。上述の通り、端面3aを鏡面状とするため、端面3aは、5μm以上50μm以下程度研磨される。したがって、中心軸C1(方向X1)に沿った第1部分の長さは、5μm以上であることが望ましく、可能であれば50μm以上であることが、さらに望ましい。また、中心軸C1に沿った第1部分の長さは、10mm以下であることが望ましい。中心軸C1に沿った第1部分の長さの上限は、特に制限されないが、ブロック80の貫通孔88内に第2部分及び第3部分の一部を配設することができることが望ましい。そのためブロック80の全長によっては、第1部分を7~10mm程度にまで伸ばしてもよい。これにより、量産性を向上させることができる。
 図14(a)~図14(c)に関する説明は、例えば、第3部分を有さない参考例においても、同様である。すなわち、この場合は、プラグフェルールと接続される端面におけるコア径が、研磨量によって変化する。端面におけるコア径の変化によって、損失が増大する。これに対して、実施形態に係る光レセプタクルにおいては、実質的にコア径及び屈折率が中心軸C1に沿って変化しない第3部分が設けられる。端面3bの研磨によって、中心軸C1に沿った第3部分の長さが変動しても、光学的損失の増大やばらつきの変化は小さい。
 以上により、中心軸C1に沿った第3部分の長さは、端面3bの研磨量以上であることが望ましい。例えば、端面3bを凸球面状とするため、端面3bは、5μm以上20μm以下程度研磨される。したがって、中心軸C1(方向X1又はX2)に沿った第3部分の長さは、5μm以上であることが望ましく、可能であれば20μm以上であることが、さらに望ましい。中心軸C1に沿った第3部分の長さの上限は、特に制限されないが、ブロック80の貫通孔88内に第1部分及び第2部分を配設できることが望ましい。中心軸C1に沿った第3部分の長さは、例えば、PC(Physical Contact)面までの長さとすることができる。
 以上説明したように、本実施形態によればファイバスタブ4の凸球面に研磨した端面3bとは反対側の端面3aにおけるコア径D1が、凸球面に研磨した端面3bのコア径D3よりも小さいため、光学接続面(例えば光学素子と光ファイバとの接続面)での損失を抑え、光モジュールの長さを短くすることができる。例えば、半導体レーザ素子などの光学素子と、光ファイバと、の間に集光のためのレンズ等を設けなくてもよい。
 また、第2部分22を形成することで、第1部分21から第3部分23へ推移していく際に、コア形状の急激な変化を抑えることができるため、第2部分22での光学的損失を抑えることができる。
 さらに、第1部分21の形状および第3部分23の形状は、光ファイバ2の中心軸方向において変化せず、第1部分21及び第3部分23における光の損失も小さいため、第2部分22をブロックの貫通孔内に設ける場合、第2部分22は貫通孔内のどこに所在してもよい。これにより、光ファイバ2の精密な長さ管理を必要とせず、経済的に光レセプタクルを製造することができる。後述するV字状の溝上に光ファイバ2を設ける場合も同様である。
 第2部分22のファイバ外径D5は、貫通孔88の径よりも小さいため、隙間に弾性部材83aが充填されることにより、ファイバが中心軸方向に移動することを抑止することができる。
 また、第1部分21及び第2部分22の全域をブロック80に沿わせ、弾性部材83aによって固定することで、外部からの応力から第2部分22(融着部)を保護することができる。また、光集積回路等の光学素子のMFDとブロック80内部のMFDとを近づけることにより、MFDの差による結合損失を抑えながら光学素子にブロック80を直接押し付ける接続方法(バットジョイント)が可能となり、光学素子とブロック80との間の光学デバイスを削減することができる。例えば、光集積回路から径が1μm以下の光が射出された場合に、レンズ等のビーム変換デバイスを用いることなく、光ファイバ2に光を入射させることができる。それにより、コスト削減、デバイス調芯誤差による損失の低減が可能となる。
 また、光ファイバ2を貫通孔に固定することで、ブロック80の構成部品数を少なく(例えば1つに)することができ、かつ、光ファイバ2をブロック80に挿入することによって組み立てを行うことができるため、製造工程の数を削減することができる。
 以上説明したような第2部分をフェルール3の内部に設ける方法も考えられる。この場合には、第2部分をフェルールの内部に収納するため、第2部分の長さに応じて、フェルールが長くなる。また、融着時に被覆が除去された光ファイバをフェルール内部に収納するために、融着時に被覆が除去された光ファイバの長さに応じて、フェルールが長くなる。一方、フェルールの周辺には、コネクタ規格等の多くの標準規格が設けられる。このため、フェルールが長くなると、標準規格を遵守するための設計が困難になる場合も考えられる。
 また、ブロック80には、例えば、石英ガラスなどの光学ガラスが用いられる。ブロック80の材料は、例えば、セラミックスなどの脆性材料やステンレスなどの金属材料でもよい。
 ブロック80の材料に光学ガラス等の透光性材料を用いた場合には、紫外線がブロック80を透過することができるため、ブロック80をトランシーバ等に固定する際に、ブロック80の底面においてUV硬化を行うことができる。また、例えば、第2部分22(MFD変換部)をフェルール3の内部などに設けた場合には、MFD変換部の周囲が、フェルール3、保持具5、スリーブ6、及び収容部10などによって覆われるため、MFD変換部を外側から目視などで確認することができない。これに対して、本実施形態に係る光レセプタクル1では、ブロック80に透光性材料を用いることにより、MFD変換部を外側から目視などで確認することができる。例えば、融着で形成したMFD変換部に発生した亀裂や破損などを、外側から目視などで確認することができる。
 ブロック80の材料にセラミックスを用いた場合には、ブロックに様々な機能を持たせることができる。例えば、コーディエライトのように低熱膨張のセラミックを用いた場合、ブロック80の接着後に、温度によって、ブロック80の位置が、光集積回路等の光学素子に対してずれることを抑制できる。
 ブロック80の材料に樹脂を用いた場合には、精度の高い金型を用いて樹脂を材料としてブロック80を生産することで、生産コストを低く抑えることができる。
 図15(a)~図15(c)は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図15(a)~図15(c)は、ブロック80の周辺を拡大して表す。
 図15(a)に表したように、この例において、光レセプタクル1は、ブロック80の第2面F2側において、光ファイバ2の端面2aに配設された透光性部材72をさらに有する。
 弾性部材83aは、光ファイバ2とブロック80の貫通孔との間の隙間に充填されるとともに、例えば透光性部材72とブロック80の第2面F2との間に充填される。これにより、透光性部材72は、弾性部材83aによって、ブロック80に接着固定される。
 光ファイバ2のプラグフェルールと光学接続する側とは反対側の端面2aは、弾性部材83aと密着している。透光性部材72の光ファイバ2側の端面72aは、弾性部材83aと密着している。弾性部材83a及び透光性部材72は、透光性を有する。これにより、光学素子から照射された光が、透光性部材72及び弾性部材83aを介して光ファイバ2に入射し、光ファイバ2から出射した光が、透光性部材72及び弾性部材83aを介して光学素子に入射する。
 この例では、透光性部材72は、ブロック80の外側(第2面F2よりも光学素子側)に配設されている。透光性部材72の少なくとも一部をブロック80の内側に(貫通孔88の内部)に設けてもよい。これにより、透光性部材72の固定強度を確保することができる。
 透光性部材72の光ファイバ2とは反対側の端面72bのうちの少なくとも一部は、光レセプタクル1の中心軸C1に対し略垂直となる平面を有している。ここで、略垂直とは、例えば、光レセプタクル1の中心軸C1に対して約85度以上、95度以下の角度である。
 透光性部材72の端面72bに平面を形成する際の方法としては、ダイヤ砥粒を持つ研磨フィルム等による方法がある。また、透光性部材72の端面72bの面粗さは、光の反射量をできるだけ小さくするため、算術平均粗さ0.1マイクロメートル以下となることが望ましい。
 弾性部材83aおよび透光性部材72のそれぞれは、光ファイバ2のコアの屈折率と略同じ屈折率を有していることが望ましい。ここでいう略同じ屈折率とは、1.4以上1.6以下程度である。光ファイバ2のコアの屈折率は、例えば約1.46以上、1.47以下程度である。弾性部材83aの屈折率は、例えば約1.4以上、1.5以下程度である。透光性部材72の屈折率は、例えば約1.4以上、1.6以下程度である。これにより、透光性部材72と弾性部材83aとの間の境界面、および弾性部材83aと光ファイバ2との間の境界面における光の反射を減少させることができ、光モジュールの結合効率が向上する。
 透光性部材72と密着する弾性部材83aの材料は、光ファイバ2とブロック80との間の隙間に充填される弾性部材83aの材料と異なっていてもよい。透光性部材72と密着する弾性部材83aの材料には、例えば、エポキシ系樹脂、アクリル系樹脂、シリコン系樹脂等が用いられる。
 光レセプタクルでは、反射を減少させるため、光ファイバ2の端面2aを鏡面状の平面となるように研磨加工を施すことが一般的である。これに対して、図15(a)に表した構成では、光ファイバ2の端面2aに同様に研磨加工を施さなくても、端面2aにおける光の反射を減少させることができる。
 透光性部材72には、例えばアイソレータを用いてもよい。透光性部材72がアイソレータである場合、透光性部材72は、第1の偏光子74と、第2の偏光子75と、ファラデー回転子76と、を有する。ファラデー回転子76は、第1の偏光子74と第2の偏光子75との間に設けられている。ファラデー回転子76は、例えばガーネットなどの材料を含む。
 例えば、光学素子から発射された光を光ファイバ2に入射させる場合、第1の偏光子74は、所定の方向の直線偏光のみを通過させる。ファラデー回転子76は、第1の偏光子74を通過した直線偏光の偏波面を略45°回転させる。第2の偏光子75は、ファラデー回転子76を通過した直線偏光のみを通過させる。すなわち、第2の偏光子75の偏光方向は、第1の偏光子74の偏光方向に対して略45°回転している。これにより、光学素子から発射され光ファイバ2に入射する光を一方向にだけ通過させることができる。
 このように、透光性部材72としてアイソレータを取り付けることで、端面72bにおいて光集積回路等の光学素子から第1部分に入射する光、または第1部分から光学素子に出射される光の反射を抑制することができる。または、反射した光が光学素子に戻ることを抑制し、光学素子を安定して動作させることができる。また、透光性部材72の光ファイバ2と反対側の端面72bには、例えば、AR(anti-reflective)コーティングを施してもよい。
 また、ブロック80は、略直方体状である。アイソレータ(透光性部材72)も同様に、略直方体状である。従って、例えば、円柱状のファイバスタブ4などに対してアイソレータを取り付ける場合と比べて、アイソレータの位置決め作業をし易くすることができる。例えば、ブロック80を基準とすることで、アイソレータの偏波方向を所定の角度に設置し易くすることができる。アイソレータの偏波方向の角度のズレを抑制し、精度良く取り付けることができる。これにより、例えば、光学素子との回転方向の調芯をし易くし、調芯時間の短縮を図ることができる。
 図15(b)に表したように、この例では、アイソレータである透光性部材72の第1の偏光子74が、切り欠き74aを有する。切り欠き74aは、例えば、略直方体状の第1の偏光子74の1つの側面(中心軸C1と平行な面)に設けられる。切り欠き74aは、例えば、透光性部材72の光ファイバ2とは反対側の端面72bに連続する。換言すれば、切り欠き74aは、第1の偏光子74の1つの側面に設けられ、端面72bまで延びている。
 切り欠き74aは、例えば、第1の偏光子74の偏波方向と平行に設けられる。このように、第1の偏光子74に切り欠き74aを設けることにより、第1の偏光子74の偏波方向を容易に視認することができる。例えば、光学素子から発射された光を第1の偏光子74に入射させる際に、光学素子の向きを合わせやすくすることができる。すなわち、光学素子との回転方向の調芯をし易くし、より調芯時間の短縮を図ることができる。
 図15(c)に表したように、この例では、アイソレータである透光性部材72の第2の偏光子75が、切り欠き75aを有する。切り欠き75aは、例えば、略直方体状の第2の偏光子75の1つの側面(中心軸C1と平行な面)に設けられる。切り欠き75aは、例えば、透光性部材72の光ファイバ2側の端面72aに連続する。換言すれば、切り欠き75aは、第2の偏光子75の1つの側面に設けられ、端面72aまで延びている。
 切り欠き75aは、例えば、第2の偏光子75の偏波方向と平行に設けられる。これにより、上記と同様に、第2の偏光子75の偏波方向を容易に視認することができる。調芯時間の短縮などを図ることができる。また、この例では、弾性部材83aが、透光性部材72とブロック80の第2面F2との間に充填されるとともに、弾性部材83aの一部が、切り欠き75a内に入り込んでいる。これにより、透光性部材72とブロック80との接着強度をより高めることができる。
 なお、切り欠き74a、75aの形状は、上記に限ることなく、第1の偏光子74又は第2の偏光子75の偏波方向を示すことができる任意の形状でよい。また、切り欠きは、例えば、第1の偏光子74及び第2の偏光子75の双方に設けてもよい。あるいは、ファラデー回転子76に切り欠きを設けてもよい。
 図16は、第1の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。図16は、ブロック80の周辺を拡大して表す。図16に表したように、この例では、光レセプタクル1は、弾性部材(第2弾性部材)83bおよび弾性部材(第3弾性部材)83cをさらに有する。弾性部材83b、83cは、ブロック80の第1面F1側に設けられ、光ファイバ2をブロック80に接着する接着剤である。弾性部材83b、83cには、例えば、エポキシ系樹脂、アクリル系樹脂、シリコン系樹脂等が用いられる。弾性部材83b、83cには、例えば、弾性部材9に関して説明した材料と実質的に同じ材料を用いることができる。
 図17(a)及び図17(b)は、第1の実施形態に係る光レセプタクルの一部を例示する模式図である。
 図17(a)は、図16に示したブロック80の模式的断面図である。
 前述したとおり、光ファイバ2には、光ファイバ2のうち第1面F1から突出した部分2gを覆う被覆部86が設けられる。弾性部材83bは、被覆部86とブロック80との間に設けられる。弾性部材83bは、例えば被覆部86及び第1面F1と接する。これにより、弾性部材83bは、ブロック80の第1面F1側に光ファイバ2を接着する。
 弾性部材83cは、被覆部86とブロック80との間に設けられる。弾性部材83cは、例えば被覆部86及び第1面F1と接する。これにより、弾性部材83cは、ブロック80の第1面F1側に光ファイバ2を接着する。また、弾性部材83cは、ブロック80と弾性部材83bとの間に位置する。この例では、弾性部材83cは、弾性部材83bと接し、弾性部材83bによって覆われている。
 弾性部材83cは、例えば、ブロック80の貫通孔88の内側に設けられた弾性部材83aと連続していてもよい。弾性部材83cの材料は、弾性部材83aの材料と同じであってもよい。例えば、弾性部材83cと弾性部材83aとを一体とし、1つの弾性部材として形成してもよい。言い換えると、弾性部材83aが、貫通孔88内に設けられた部分と、貫通孔88から飛び出した部分(弾性部材83cに相当する部分)と、を有していてもよい。
 このように、光ファイバ2のブロック80から突出した部分2gに弾性部材83b、83cが設けられることにより、ブロック80から突出した部分2gに外部から掛かる応力を低減し、光ファイバ2が折れることを抑制できる。また、光ファイバ2を覆う被覆部86とブロック80との間に弾性部材83b、83cが設けられることで、被覆部86を保護し、被覆部が破れることを抑制できる。
 弾性部材83bの材料は、弾性部材83cの材料よりも柔らかい。弾性部材83bは、例えば高弾性接着剤である。弾性部材83cは、光ファイバ2の根元部分(貫通孔88の開口端周辺の部分)を固定するファイバ固定接着剤である。比較的硬い弾性部材83cが光ファイバ2の根元部分に設けられ、比較的柔らかく高弾性の弾性部材83bが、弾性部材83cよりもフェルール3側に設けられる。これにより、柔らかい弾性部材83bによって光ファイバ2に掛かる応力を緩和しつつ、硬い弾性部材83cによって応力が集中しやすい光ファイバ2の根元部分を保護することができる。
 図17(b)は、ブロック80、光ファイバ2、弾性部材83b、83cを、中心軸C1(方向X1)と平行な方向に沿って見た平面図である。
 図17(b)の平面図において、貫通孔88の中心Ct1は、弾性部材83bの中心Ct2と異なり、弾性部材83cの中心Ct3と異なる。ここで、中心とは、例えば弾性部材又は光ファイバの外縁からなる平面形状の重心位置である。中心Ct2及び中心Ct3は、中心Ct1から見て矢印A1の方向(例えば下方)に位置する。これにより、光ファイバ2に作用する矢印A1の方向の応力に対して、耐久性が向上する。また、弾性部材83c(接着剤)を第1面F1に塗布するときに、弾性部材83cが第1面F1の全体に広がることを防ぎ、第1面F1上において弾性部材83b(接着剤)が塗布される領域を確保しやすい。
 実施形態においては、中心Ct1は、中心Ct2及び中心Ct3の少なくともいずれかと一致してもよい。弾性部材の平面形状は、例えば中心Ct1に対して点対称である。これにより、中心軸を中心とする全方位において満遍なく耐久性を向上できる。
 図18は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。図18は、ブロック80の周辺を拡大して表す。図18に表した例においては、ブロック80の貫通孔88は、小径部87aと拡径部87bとを有する。拡径部87bは、小径部87aよりも第1面F1側に設けられる。小径部87aの径は、中心軸C1に沿った方向において略一定である。拡径部87bの径は、小径部87aの径よりも大きく、中心軸C1に沿った方向において、第1面F1に向かって大きくなる。拡径部87bの径とは、中心軸C1と直交する方向の幅である。
 光ファイバ2は、小径部87a内に配置された部分2hと、拡径部87b内に配置された部分2iと、を有する。光ファイバ2の第1面F1から突出した部分2gを覆う被覆部86は、光ファイバ2の拡径部87b内に配置された部分2iをさらに覆う。
 拡径部87b内において、被覆部86と拡径部87bの内壁との間には、例えば弾性部材83aや弾性部材83cを充填することができる。このように、拡径部内において、被覆部86を弾性部材によって固定することで、光ファイバの接着強度及び補強強度を増し、光ファイバ2の折れを抑制できる。
 図19は、第1の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。
 図20は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図19は、ブロック80の周辺を拡大して表し、図20は、図19に示したブロックの断面を表す。
 図19及び図20に表した例において、ブロック80は、基部80aと、段差部80bと、を有する。第1面F1、第2面F2及び貫通孔88は、基部80aに設けられている。
 段差部80bは、基部80aの第1面F1側から、中心軸C1に沿ってフェルール3側に突出した部分である。すなわち、段差部80bは、中心軸C1に対して垂直な方向において、光ファイバ2の第1面F1から突出した部分2gと並ぶ。
 段差部80bは、光ファイバ2と対向する第3面F3を有する。第3面F3は、例えば第1面F1に対して垂直な平面である。弾性部材83b及び弾性部材83cのそれぞれは、光ファイバ2の被覆部86と第3面F3との間に配置される。例えば、弾性部材83b及び弾性部材83cのそれぞれは、第3面F3と接する。これにより、接着剤の塗布面積を広くすることができる。すなわち、光ファイバ2及び被覆部86を段差部80bの第3面F3に接着固定することが可能になる。そして、これにより、光ファイバ2とブロック80との界面に曲げ応力が集中することを防ぐことができる。例えば、光ファイバ2の曲げの基点を、第3面F3のフェルール3側の端部E3側にシフトさせることができる。これにより、光ファイバ2の被覆部86から露出した部分に、曲げ方向の力が直接的に加わってしまうことを抑制することができる。光ファイバ2の折れを、より抑制することができる。従って、光ファイバ2の接着強度及び補強強度をさらに向上させることができる。なお、図21に表したように、弾性部材83bが、弾性部材83c及び第1面F1から離れていてもよい。弾性部材83bは、第3面F3と被覆部86とを接着することで、光ファイバ2に掛かる応力を緩和する。
 また、段差部80bの端部の少なくとも一部は、面取りされている。例えば、段差部80bは、第3面F3のフェルール3側の端に位置する端部E3を有する。端部E3は、段差部80bの角を面取りすることで形成される。なお、「面取りされている」とは、端部E3の角が鋭角でなく、例えば鈍角である状態である。または、端部E3の表面が曲面を有する状態でもよい。光ファイバ2や被覆部86が端部E3と接触した場合に、その接触部分が、光ファイバ2の折れや被覆部86の破れの起点となることを抑制することができる。
 図22(a)~図22(c)は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図22(a)に表したように、ブロック80の段差部80bの端部E3を、フェルール3側に向かって直線状に下降傾斜する傾斜面状にすることにより、弾性部材83bや弾性部材83c(接着剤)が、段差部80bのフェルール3側を向く端面F1aの上に流れ出てしまうことを抑制することができる。直線状の傾斜面状の端部E3は、例えば、表面張力により、弾性部材83bや弾性部材83cが端面F1aに流れ出てしまうことを抑制する。
 端面F1aは、例えば、光ファイバ2をブロック80に固定する固定工程の際などに、光ファイバ2及びブロック80の位置を決めるための位置決め面として用いられる可能性がある。この際、弾性部材83bや弾性部材83cが端面F1aに流れ出て、弾性部材83bや弾性部材83cが端面F1aを覆ってしまうと、光ファイバ2やブロック80の位置決めの精度に影響を与えてしまう。
 従って、上記のように、端部E3を直線状の傾斜面状にし、弾性部材83bや弾性部材83cが端面F1aに流れ出てしまうことを抑制する。これにより、端面F1aを位置決め面として使用する際に、弾性部材83bや弾性部材83cが位置決めの精度に影響を与えてしまうことを抑制することができる。
 図22(b)に表したように、ブロック80の段差部80bの端部E3は、凸曲面状にしてもよい。この場合、端部E3は、例えば、半径0.1mm~3mm程度の凸曲面状であることが好ましい。これにより、例えば、光ファイバ2や被覆部86が端部E3と接触した場合に、その接触部分が、光ファイバ2の折れや被覆部86の破れの起点となることを、より抑制することができる。光ファイバ2や被覆部86が端部E3と接触した場合の、光ファイバ2や被覆部86への応力集中を、より確実に抑制することができる。
 図22(c)に表したように、被覆部86のブロック80側の端部は、ブロック80の第1面F1から離間してもよい。これにより、例えば、被覆部86の長さの寸法の管理を容易にすることができる。被覆部86の中心軸C1と平行な方向の長さを厳密に設定する必要をなくし、光レセプタクル1を製造し易くすることができる。
 なお、被覆部86のブロック80側の端部を、ブロック80の第1面F1から離間させる場合には、図22(c)に表したように、被覆部86のブロック80側の端部を弾性部材83b及び弾性部材83cの少なくとも一方によって覆うことが好ましい。換言すれば、光ファイバ2の第1面F1と被覆部86との間で露出する部分を、弾性部材83b及び弾性部材83cの少なくとも一方によって覆うことが好ましい。これにより、被覆部86のブロック80側の端部を、ブロック80の第1面F1から離間させた場合においても、光ファイバ2の被覆部86から露出した部分にダメージが加わってしまうことなどを抑制することができる。
 図23は、第1の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。
 図23に表したように、この例では、弾性部材83bが、光ファイバ2及び被覆部86の左右両側に設けられている。この例では、弾性部材83bが、光ファイバ2及び被覆部86の上端よりも下方の部分のみに設けられている。換言すれば、弾性部材83bが、光ファイバ2及び被覆部86よりも上方に設けられていない。弾性部材83bが、光ファイバ2及び被覆部86の上方を覆わない。
 このように、弾性部材83b及び弾性部材83cは、光ファイバ2及び被覆部86の上端よりも下方の部分のみに設けてもよい。これにより、例えば、ブロック80の基部80aの高さを抑えることができる。また、例えば、基部80aの第3面F3と同じ方向を向く第4面F4の上に、弾性部材83bや弾性部材83cが流れてしまうことを抑制することができる。例えば、第4面F4を位置決め面として使用する際などに、弾性部材83bや弾性部材83cが位置決めの精度に影響を与えてしまうことを抑制することができる。
 図24は、第1の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。図24は、ブロック80の周辺を拡大して表す。図24に表した光レセプタクルにおいては、第2部分22の位置が図20に関して説明した光レセプタクルと異なる。
 この例では、第2部分22及び第3部分23は、第1面F1からフェルール3側に突出している。言い換えれば、方向X1における第1面F1の位置は、方向X1における第2部分22及び第3部分23の位置と、方向X1における第2面F2の位置と、の間である。
 第1部分21の少なくとも一部は、方向X1において、第1面F1と第2面F2との間に位置する。言い換えれば、方向X1における第1部分21の少なくとも一部の位置は、方向X1における第1面F1の位置と、方向X1における第2面F2の位置と、の間である。
 光ファイバの融着に伴って第2部分22におけるクラッドの直径が変化したとしても、ブロック80の貫通孔88(又は後述するV字状の溝)に沿うのは、第1部分21のみである。第1部分21の直径は、第1部分21の全域に亘って例えば同一である。このため、ブロック80とコア8との位置関係に影響を及ぼさずに、光ファイバ2をブロック80に固定できる。
 例えば、弾性部材83cが、第1部分21の一部とブロック80の第3面F3との間、第2部分22とブロック80の第3面F3との間、および、第3部分23の一部とブロック80の第3面F3との間、に設けられる。これにより、第2部分22を弾性部材83cによって保護することができる。
 (第2の実施形態)
 図25は、第2の実施形態に係る光レセプタクルの一部を例示する模式的斜視図である。
 図26は、第2の実施形態に係る光レセプタクルの一部を例示する模式的断面図である。
 図25は、光レセプタクルのブロック80の周辺を拡大して表し、図26は、光ファイバ2の中心軸C1に対して直交する断面を拡大して表す。
 第2の実施形態においては、ブロック80は、土台部(第1部材)81と、蓋部(第2部材)82と、を有する。ブロック80においては、貫通孔88の代わりに、土台部81にV字状の溝81aが設けられる。第2の実施形態の上記以外の構成は、第1の実施形態の構成と同様である。
 溝81aは、光ファイバ2の形状に応じて形成され、ブロック80の第1面F1から第2面F2まで延びる。光ファイバ2のフェルール3から突出した部分2fは、第1面F1の側から溝81aに沿って配設される。これにより、土台部81は、光ファイバ2の一端を溝81a内に収容し、光ファイバ2の一端を支持する。
 図26に表したように、溝81aの表面FVは、第1溝面FV1と第2溝面FV2とを有する。第1溝面FV1及び第2溝面FV2は、それぞれ、光ファイバ2の中心軸C1に沿った方向(方向X1)に延在する。V字状とは、方向X1に対して垂直な方向において、第1溝面FV1と第2溝面FV2との間の距離が、溝が深くなる方向において狭くなる形状をいう。例えば、V字状という範囲は、第1溝面FV1と第2溝面FV2との接続部CPが曲面状や平面状である場合を含んでもよい。
 蓋部82は、土台部81と対向するように配置される。すなわち、蓋部82は、土台部81の上に設けられ、土台部81の溝81aを塞ぐ。蓋部82は、溝81a内に収容された光ファイバ2の一端の上方を覆う。このように、光ファイバの一端は、土台部81の溝81aと蓋部82との間に設けられ、挟み込まれている。
 弾性部材83aは、土台部81と蓋部82との間に設けられる。弾性部材83aは、溝81a内に充填される。弾性部材83aは、光ファイバ2と溝81aの表面FVとの間、および、光ファイバ2と蓋部82との間、に配設される。これにより、弾性部材83aは、光ファイバ2の一端を溝81aに接着固定し、蓋部82を土台部81に接着固定する。
 このような構成により、溝81aと光ファイバ2との間や、溝81a上に配置された光ファイバ2の上に十分な接着剤を盛ることができるため、接着強度を増すことができる。また、蓋部82によって、光ファイバ2を溝81aに押し付けることができるため、光ファイバ2を精度よく溝81aに倣わせることができる。
 蓋部82を薄くすることにより、光ファイバ2をブロック80の端の近くに配置することができる。ただし、蓋部82が薄すぎると、蓋部82によって光ファイバ2を溝81aに押し付けるとき、蓋部82が割れてしまう場合がある。このため、ブロック80の端の近くには光ファイバ2を配置することが難しい場合がある。このような場合には、第1の実施形態のように、貫通孔88を設け、貫通孔88に光ファイバ2を固定する。貫通孔88を用いる場合には、光ファイバ2を押さえつけないため、ブロック80の端の近くにも光ファイバ2を配置することができる。また、蓋部82を厚くし、溝81aと同様の溝を蓋部82に形成してもよい。
 (第3の実施形態)
 図27(a)及び図27(b)は、第3の実施形態に係る光トランシーバを例示する模式図である。
 図27(a)に表したように、本実施形態に係る光トランシーバ200は、光レセプタクル1と、光学素子110と、制御基板120と、を有する。
 制御基板120上には、回路等が形成されている。制御基板120は、光学素子110と電気的に接続されている。制御基板120は、光学素子110の動作を制御する。
 光学素子110には、例えば、受光素子または発光素子が用いられる。この例では、光学素子110は、発光部である。光学素子110は、レーザダイオード111を有する。レーザダイオード111は、制御基板120に制御され、光を光レセプタクル1のファイバスタブ4へ出射する。
 光学素子110は、図27(a)に表したように、素子113を有する。この素子113は、レーザダイオードと、コア径の小さい光導波路と、を有する。導波路のコア内を伝搬する光は、光レセプタクル1に入射する。光導波路は、例えば、シリコンフォトニクスによって形成される。また、光導波路には、石英導波路を用いてもよい。なお、実施形態においては、図27(b)に表したようにレンズ112等を介して、レーザダイオードや光導波路から出射される光を光レセプタクル1に入射させてもよい。
 また、光レセプタクル1には、プラグフェルール50が挿入されている。プラグフェルール50は、スリーブ6によって保持されている。光ファイバ2は、端面3bにおいて、プラグフェルール50と光学的に接続されている。これにより、光学素子110とプラグフェルール50とが光レセプタクルを介して光学的に接続され、光通信が可能となる。
 本実施形態は、以下の態様を含む。
(付記1)
  光を導通するためのコアとクラッドとを有する光ファイバと、
  前記光ファイバの一端側に設けられたフェルールと、
 を含むファイバスタブと、
 前記フェルールと離間し、一端面と、前記一端面とは反対側の他端面と、前記一端面から前記他端面まで延びる貫通孔と、を有するブロックであって、前記光ファイバの前記フェルールから突出した部分が前記一端面の側から前記貫通孔に挿入された、ブロックと、
 前記光ファイバを前記貫通孔に固定する第1弾性部材と、
 を備え、
 前記光ファイバの前記フェルールから突出した部分は、第1部分と、第2部分と、第3部分と、を有し、
 前記第1部分は、前記第3部分よりも前記他端面側に設けられ、
 前記第2部分は、前記第1部分と前記第3部分との間に設けられ、
 前記第1部分におけるコア径は、前記第3部分におけるコア径よりも小さく、
 前記第2部分におけるコア径は、前記第1部分から前記第3部分へ向かって大きくなり、
 前記第1弾性部材は、前記光ファイバと前記貫通孔の内壁との間に設けられたことを特徴とする光レセプタクル。
(付記2)
  光を導通するためのコアとクラッドとを有する光ファイバと、
  前記光ファイバの一端側に設けられたフェルールと、
 を含むファイバスタブと、
 前記フェルールと離間し、一端面と、前記一端面とは反対側の他端面と、前記一端面から前記他端面まで延びるV字状の溝と、を有するブロックであって、前記光ファイバの前記フェルールから突出した部分が前記一端面の側から前記溝に沿って配設されたブロックと、
 前記光ファイバを前記溝に固定する第1弾性部材と、
 を備え、
 前記光ファイバの前記フェルールから突出した部分は、第1部分と、第2部分と、第3部分と、を有し、
 前記第1部分は、前記第3部分よりも前記他端面側に設けられ、
 前記第2部分は、前記第1部分と前記第3部分との間に設けられ、
 前記第1部分におけるコア径は、前記第3部分におけるコア径よりも小さく、
 前記第2部分におけるコア径は、前記第1部分から前記第3部分へ向かって大きくなり、
 前記第1弾性部材は、前記光ファイバと前記溝との間に配設されたことを特徴とする光レセプタクル。
(付記3)
 前記ブロックは、前記溝が設けられた第1部材と、前記第1部材と対向する第2部材と、を有し、
 前記光ファイバは、前記第2部材と前記溝との間に設けられ、
 前記第1弾性部材は、前記光ファイバと前記溝との間、および、前記光ファイバと前記第2部材との間に設けられたことを特徴とする付記2記載の光レセプタクル。
(付記4)
 前記第1部分の全体、及び前記第2部分の全体は、前記光ファイバの中心軸に沿った方向において、前記一端面と前記他端面との間に位置し、
 前記第3部分は、前記一端面から突出した部分を有することを特徴とする付記1~3のいずれか1つに記載の光レセプタクル。
(付記5)
 前記第1部分の少なくとも一部は、前記光ファイバの中心軸に沿った方向において、前記一端面と前記他端面との間に位置し、
 前記第2部分及び前記第3部分は、前記一端面から突出したことを特徴とする請求項1~3のいずれか1つに記載の光レセプタクル。
(付記6)
 前記第1部分のコアの屈折率、前記第2部分のコアの屈折率、および前記第3部分のコアの屈折率は、互いに等しく、
 前記第1部分のクラッドの屈折率は、前記第3部分のクラッドの屈折率より小さく、
 前記第2部分のクラッドの屈折率は、前記第1部分側から前記第3部分側に向かって大きくなることを特徴とする付記1~5のいずれか1つに記載の光レセプタクル。
(付記7)
 前記第1部分のクラッドの屈折率、前記第2部分のクラッドの屈折率、および前記第3部分におけるクラッドの屈折率は、互いに等しく、
 前記第1部分のコアの屈折率は、前記第3部分のコアの屈折率より大きく、
 前記第2部分のコアの屈折率は、前記第1部分側から前記第3部分側に向かって小さくなることを特徴とする付記1~5のいずれか1つに記載の光レセプタクル。
(付記8)
 前記第2部分のコア径は、前記第1部分側から前記第3部分側に向かって線形に大きくなることを特徴とする付記1~7のいずれか1つに記載の光レセプタクル。
(付記9)
 前記第2部分のコア径は、前記第1部分側から前記第3部分側に向かって非線形に大きくなることを特徴とする付記1~7のいずれか1つに記載の光レセプタクル。
(付記10)
 前記第2部分のコアは、前記第1部分側から前記第3部分側にかけて、前記第2部分のコア径が大きくなっている領域の一部に段差を有することを特徴とする付記1~7のいずれか1つに記載の光レセプタクル。
(付記11)
 前記第1部分におけるコア径が、0.5μm以上、8μm以下であることを特徴とする付記1~10のいずれか1つに記載の光レセプタクル。
(付記12)
 前記第1部分におけるコアの屈折率とクラッドの屈折率との差は、前記第3部分におけるコアの屈折率とクラッドの屈折率との差より大きいことを特徴とする付記1~11のいずれか1つに記載の光レセプタクル。
(付記13)
 前記第1部分におけるコアの屈折率とクラッドの屈折率との差は、前記第2部分におけるコアの屈折率とクラッドの屈折率との差より大きいことを特徴とする付記1~12のいずれか1つに記載の光レセプタクル。
(付記14)
 前記第3部分におけるコア径が、8μm以上、20μm以下であることを特徴とする付記1~13のいずれか1つに記載の光レセプタクル。
(付記15)
 前記第3部分におけるコアの屈折率とクラッドの屈折率との差は、前記第2部分におけるコアの屈折率とクラッドの屈折率との差より小さいことを特徴とする付記1~14のいずれか1つに記載の光レセプタクル。
(付記16)
 前記第2部分におけるコアの屈折率とクラッドの屈折率の差は、前記第1部分側から前記第3部分側に向かって小さくなることを特徴とする付記1~15のいずれか1つに記載の光レセプタクル。
(付記17)
 前記第1部分における前記光ファイバの外径は、前記第3部分における前記光ファイバの外径と等しいことを特徴とする付記1~16のいずれか1つに記載の光レセプタクル。
(付記18)
 前記第2部分における前記光ファイバの外径は、前記第1部分における前記光ファイバの外径よりも小さいことを特徴とする付記1~17のいずれか1つに記載の光レセプタクル。
(付記19)
 前記第2部分における前記光ファイバの外径は、前記第3部分における前記光ファイバの外径よりも小さいことを特徴とする付記1~18のいずれか1つに記載の光レセプタクル。
(付記20)
 前記第2部分における前記光ファイバの外径は、前記第1部分における前記光ファイバの外径よりも大きいことを特徴とする付記1~17のいずれか1つに記載の光レセプタクル。
(付記21)
 前記第2部分における前記光ファイバの外径は、前記第3部分における前記光ファイバの外径よりも大きいことを特徴とする付記1~17のいずれか1つに記載の光レセプタクル。
(付記22)
 前記光ファイバの前記ブロック側の端面が、前記光ファイバの中心軸に対して垂直な面から傾いたことを特徴とする付記1~21のいずれか1つに記載の光レセプタクル。
(付記23)
 前記第1部分、前記第2部分、および前記第3部分は、一体でできていることを特徴とする付記1~22のいずれか1つに記載の光レセプタクル。
(付記24)
 前記光ファイバの中心軸に沿った前記第1部分の長さは、5μm以上であることを特徴とする請求項1~23のいずれか1つに記載の光レセプタクル。
(付記25)
 前記光ファイバの中心軸に沿った前記第3部分の長さは、5μm以上であることを特徴とする付記1~24のいずれか1つに記載の光レセプタクル。
(付記26)
 前記ブロックは、透光性材料を含むことを特徴とする付記1~25のいずれか1つに記載の光レセプタクル。
(付記27)
 前記ブロックは、セラミックスを含むことを特徴とする付記1~25のいずれか1つに記載の光レセプタクル。
(付記28)
 前記ブロックは、樹脂を含むことを特徴とする付記1~25のいずれか1つに記載の光レセプタクル。
(付記29)
 前記ブロックの前記他端面側において、前記光ファイバの端面に透光性部材が配設されたことを特徴とする付記1~28のいずれか1つに記載の光レセプタクル。
(付記30)
 前記光ファイバのうち前記ブロックの前記一端面から突出した部分の少なくとも一部を覆う被覆部と、
 前記被覆部と前記ブロックとの間に設けられた第2弾性部材と、
 をさらに備えたことを特徴とする付記1~29のいずれか1つに記載の光レセプタクル。
(付記31)
 前記被覆部と前記ブロックとの間に設けられた第3弾性部材をさらに備え、
 前記第3弾性部材は、前記ブロックと前記第2弾性部材との間に位置することを特徴とする付記30記載の光レセプタクル。
(付記32)
 前記ブロックは、前記光ファイバの中心軸に対して垂直な方向において、前記光ファイバのうち前記一端面から突出した部分と並ぶ段差部を有することを特徴とする付記1~31のいずれか1つに記載の光レセプタクル。
(付記33)
 前記段差部の端部の少なくとも一部は、面取りされていることを特徴とする付記32記載の光レセプタクル。
(付記34)
 被覆部をさらに備え、
 前記貫通孔は、前記一端面側に設けられた拡径部を有し、
 前記拡径部の径は、前記光ファイバの中心軸に沿った方向において大きくなり、
 前記被覆部は、前記光ファイバのうち前記拡径部内に配置された部分を覆うことを特徴とする付記1記載の光レセプタクル。
(付記35)
 前記第1弾性部材は、前記貫通孔内に設けられた部分と、前記貫通孔から飛び出した部分と、を有することを特徴とする付記1記載の光レセプタクル。
(付記36)
 付記1~35のいずれか1つに記載の光レセプタクルを備えたことを特徴とする光トランシーバ。
 付記1の光レセプタクルによれば、第1部分におけるコア径が、第3部分におけるコア径よりも小さいため、光学接続面での損失を抑え、光モジュールの長さを短くすることができる。
 第2部分を形成することで、第1部分から第3部分へ推移していく際に、コア形状の急激な変化を抑えることができるため、第2部分での光学的損失を抑えることができる。
 さらに、第1部分及び第3部分における光の損失は小さいため、第2部分をブロックの貫通孔内に設ける場合、第2部分は貫通孔内のどこに位置してもよい。これにより、光ファイバの精密な長さ管理を必要とせず、経済的に光レセプタクルを製造することができる。
 また、光集積回路等の光学素子のMFDとブロック内部のMFDとを近づけることにより、MFDの差による結合損失を抑えながら光学素子にブロックを直接押し付ける接続方法(バットジョイント)が可能となり、光学素子とブロックとの間の光学デバイスを削減することができる。これにより、コスト削減、デバイス調芯誤差による損失の低減が可能となる。また、光ファイバを貫通孔に固定することで、ブロックの構成部品数を少なく(例えば1つに)することができ、かつ、光ファイバをブロックに挿入することによって組み立てを行うことができるため、製造工程の数を削減することができる。
 さらに、第1部分と第3部分は形状が軸方向に対して変化せず、光の損失も小さいため、第2部分をブロックの貫通孔に設ける場合、第2部分は貫通孔内のどこに所在しても問題はない。これにより、ファイバブロック上における光ファイバの精密な長さ管理を必要とせず、経済的にレセプタクルを製造することができる。
 付記2の光レセプタクルによれば、第1部分におけるコア径が、第3部分におけるコア径よりも小さいため、光モジュールの長さを小さくすることができる。
 また、第2部分を形成することで、第1部分から第3部分へ推移していく際に、コア形状の急激な変化を抑えることができるため、第2部分での光学的損失を抑えることができる。
 さらに、第1部分と第3部分は形状が軸方向に対して変化せず、光の損失も小さいため、第2部分をブロックの溝上に設ける場合、第2部分は溝上のどこに所在しても問題はない。これにより、光ファイバの精密な長さ管理を必要とせず、経済的にレセプタクルを製造することができる。
 また、第1弾性部材として接着剤を用いる場合、溝と光ファイバとの間や、溝上に配置された光ファイバの上部に十分な量の接着剤を盛ることができるため、接着強度を増すことができる。
 付記3の光レセプタクルによれば、第2部材によって、光ファイバを溝に押し付けることができる。これにより、光ファイバを精度よく溝に倣わせることができる。
 付記4の光レセプタクルによれば、第1部分及び第2部分の全域をブロックに沿わせ、第1弾性部材によって固定することで、外部からの応力に対して第2部分を保護することができる。
 付記5の光レセプタクルによれば、光ファイバの融着に伴って第2部分におけるクラッドの直径が変化したとしても、ブロックの貫通孔又はV字状の溝に沿うのは、第1部分のみである。第1部分の直径は、第1部分の全域に亘って例えば同一である。このため、ブロックとコアとの位置関係に影響を及ぼさずに、光ファイバをブロックに固定できる。
 付記6の光レセプタクルによれば、屈折率差の大きいファイバを用いることで、小さいコア径でも光を散乱させること無く閉じ込めることができ、光がファイバに入射する際の損失を抑えることができる。また、第2部分を形成することで、第1部分から第3部分へ推移していく際に、屈折率差の急激な変化を抑えることができるため、第2部分での光学的損失を抑えることができる。また、コアの素材を共通化することができ、第1部分と第2部分との接続部および第2部分と第3部分との接続部において、コア同士の屈折率差が存在しないため、接続部の反射による損失をおさえることができる。
 付記7の光レセプタクルによれば、クラッドが同一素材で形成できるため、クラッドが一様な物性を持つことができる。それにより、融点も一様になるため融着時のクラッド外径の成形を容易に行うことができる。
 付記8の光レセプタクルによれば、第2部分に進入したレーザーが放射状に広がっていったとしても、クラッドとコアの境界には小さい角度で入射されることとなり、光が全反射することによりクラッド側に光が逃げていくことを防ぐことができる。
 付記9の光レセプタクルによれば、第2部分を形成する際の融着ファイバ引っ張り速度、融着放電時間やパワーに精度の高い制御を必要としないため、製造が比較的容易に可能とすることができる。
 付記10の光レセプタクルによれば、第2部分を形成する際の融着ファイバ引っ張り速度、融着放電時間やパワーに精度の高い制御を必要としないため、製造が比較的容易に可能とすることができる。また、この形状を取れば融点の異なるファイバでも接続することができるため、融着に用いるファイバの選択肢を広げることができる。
 付記11の光レセプタクルによれば、微細な光導波路から放出された光に対して、ファイバ側がMFDを小さくすることで、ファイバに入射する際に光のズームを必要としなくなる。それにより結合距離の短縮を図れると共に、レンズの簡略化にも貢献することができる。
 付記12の光レセプタクルによれば、第1部分において、第3部分よりも小さいビームウェストの光を伝える場合に、シングルモードでかつ損失少なく光を伝播することができる。
 付記13の光レセプタクルによれば、第1部分において、第2部分よりも小さいビームウェストの光を伝える場合に、シングルモードでかつ損失少なく光を伝播することができる。
 付記14の光レセプタクルによれば、現在一般的に使用されている光通信用シングルモードファイバとMFDをそろえることができるため、プラグフェルールと結合する場合のMFD差に起因する結合損失を抑えることができる。
 付記15の光レセプタクルによれば、第3部分において、第2部分よりも大きいビームウェストの光を伝える場合に、シングルモードでかつ損失少なく光を伝播することができる。
 付記16の光レセプタクルによれば、第1部分側から第3部分側に向かって徐々に屈折率が小さくなることで、第1部分と第3部分の急激な屈折率の変化を防ぐことができ、第1部分と第3部分の結合位置における反射や散乱による光損失を抑えることができる。
 付記17の光レセプタクルによれば、第1部分と第3部分の外形が等しいことにより、第1部分と第3部分の中心軸ずれを防止することができ、軸ずれに起因する融着損失を抑えることができる。
 付記18の光レセプタクルによれば、光ファイバの外径が細くなる第2部分の外周には弾性部材が楔状に存在するため、光ファイバがフェルールよりも外側に突き出ることを抑え、光ファイバの外周のカケやクラックを抑制することができる。
 付記19の光レセプタクルによれば、第2部分と第3部分のクラッド外径に差を持たせることで、第2部分のクラッドの外側に充填された弾性部材による楔作用をより効果的にする事ができる。
 付記20の光レセプタクルによれば、第2部分における光ファイバの外径が大きいことにより、融着部の強度を向上させることができる。
 付記21の光レセプタクルによれば、第2部分における光ファイバの外径が大きいことにより、融着部の強度を向上させることができる。
 付記22の光レセプタクルによれば、光ファイバの端面が光ファイバの中心軸に対して垂直な面から傾いていることで、光レセプタクルに接続される光学素子から出射され光ファイバに入射する光のうちで、光ファイバの端面で反射した光が光学素子に戻ることを防止し、光学素子を安定して動作させることができる。
 付記23の光レセプタクルによれば、光ファイバを一体で形成することで、第1部分、第2部分、第3部分のそれぞれの境界に空隙が発生することを防ぐことにより、光損失を抑えることができる。
 付記24の光レセプタクルによれば、光ファイバの長さ及び研磨のばらつきを原因とした光損失を抑制することができる。
 付記25の光レセプタクルによれば、光ファイバの長さ及び研磨のばらつきを原因とした光損失を抑制することができる。
 付記26の光レセプタクルによれば、紫外線がブロックを透過することができるため、ブロックをトランシーバ等に固定する際に、ブロックの底面においてUV硬化を行うことができる。
 付記27の光レセプタクルによれば、ブロックにセラミックスを用いることでブロックに様々な機能を持たせることができる。例えば、低熱膨張セラミックスを用いた場合、ブロック接着後に、温度によって、ブロックの位置が光集積回路等の光学素子に対してずれることを抑制できる。
 付記28の光レセプタクルによれば、精度の高い金型を用いて樹脂を材料としてブロックを生産することで、生産コストを低く抑えることができる。
 付記29の光レセプタクルによれば、透光性部材としてアイソレータを取り付けることで、光学素子から第1部分に入射する光または第1部分から光学素子に出射される光の反射を抑制することができる。
 付記30の光レセプタクルによれば、光ファイバのうちブロックから突出した部分において、第2弾性部材が設けられることにより光ファイバが折れることを抑制できる。また、光ファイバを覆う被覆部とブロックとの間に第2弾性部材が設けられることによって、被覆部が破れることを抑制できる。
 付記31の光レセプタクルによれば、光ファイバのうちブロックから突出した部分において、第3弾性部材が設けられることにより光ファイバが折れることを抑制できる。また、光ファイバを覆う被覆部とブロックとの間に第3弾性部材が設けられることによって、被覆部が破れることを抑制できる。
 付記32の光レセプタクルによれば、光ファイバと並ぶ段差部を有することで、接着剤の塗布面積を広くすることができると共に、光ファイバとブロックとの界面に曲げ応力が集中することを防ぐことができる。
 付記33の光レセプタクルによれば、光ファイバや被覆部が段差部と接触した場合、その接触部分が、光ファイバの折れや被覆部の破れの起点となることを抑制することができる。
 付記34の光レセプタクルによれば、拡径部内において被覆部を弾性部材によって固定すれば、光ファイバの接着強度及び補強強度を増し、光ファイバの折れを防ぐ。
 付記35の光レセプタクルによれば、第1弾性部材が貫通孔から飛び出した部分を有することにより、光ファイバのうちブロックから突出した部分において、光ファイバが折れることを抑制できる。
 付記36の光トランシーバによれば、光ファイバの光学素子側端面のコアを小さくし、かつ一般的に伝送路に用いられるファイバよりもコアとクラッドの屈折率差の大きいファイバを融着することで、光学接続面での損失を抑え、光モジュール全長を短くすることに貢献しながら、一般的に伝送路に用いられるファイバとコアとクラッドの屈折率差の大きいファイバとの融着部分に屈折率およびコア径が緩やかに推移する部分を形成することで、モードフィールドの変換効率を抑え、結果として光学素子からプラグフェルールまでの結合効率の低下を抑制することができる。
 以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、光レセプタクルなどが備える各要素の形状、寸法、材質、配置、設置形態などは、例示したものに限定されるわけではなく適宜変更することができる。
 また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
 1 光レセプタクル、 2 光ファイバ、 2a 端面、 3 フェルール、 3a 端面、 3b 端面、 3c 貫通孔、 4 ファイバスタブ、 5 保持具、 6 スリーブ、 7 クラッド、 8 コア、 9 弾性部材、 10 収容部、 21 第1部分、 22 第2部分、 23 第3部分、 29 光ファイバ、 39a 端面、 39b 端面、 49 ファイバスタブ、 50 プラグフェルール、 72 透光性部材、 72a 端面、 72b 端面、 74 第1の偏光子、 75 第2の偏光子、 76 ファラデー回転子、 80 ブロック、 80a 基部、 80b 段差部、 81 土台部、 81a 溝、 82 蓋部、 83a 第1弾性部材、 83b 第2弾性部材、 83c 第3弾性部材、 86 被覆部、 87a 小径部、 87b 拡径部、 88 貫通孔、 110 光学素子、 111 レーザダイオード、 113 素子、 120 制御基板、 200 光トランシーバ、 229 第2部分、 239 第3部分、 C1 中心軸

Claims (12)

  1.   光を導通するためのコアとクラッドとを有する光ファイバと、
      前記光ファイバの一端側に設けられたフェルールと、
     を含むファイバスタブと、
     前記フェルールと離間し、一端面と、前記一端面とは反対側の他端面と、前記一端面から前記他端面まで延びる貫通孔と、を有するブロックであって、前記光ファイバの前記フェルールから突出した部分が前記一端面の側から前記貫通孔に挿入された、ブロックと、
     前記光ファイバを前記貫通孔に固定する第1弾性部材と、
     を備え、
     前記光ファイバの前記フェルールから突出した部分は、第1部分と、第2部分と、第3部分と、を有し、
     前記第1部分は、前記第3部分よりも前記他端面側に設けられ、
     前記第2部分は、前記第1部分と前記第3部分との間に設けられ、
     前記第1部分におけるコア径は、前記第3部分におけるコア径よりも小さく、
     前記第2部分におけるコア径は、前記第1部分から前記第3部分へ向かって大きくなり、
     前記第1弾性部材は、前記光ファイバと前記貫通孔の内壁との間に設けられたことを特徴とする光レセプタクル。
  2.   光を導通するためのコアとクラッドとを有する光ファイバと、
      前記光ファイバの一端側に設けられたフェルールと、
     を含むファイバスタブと、
     前記フェルールと離間し、一端面と、前記一端面とは反対側の他端面と、前記一端面から前記他端面まで延びるV字状の溝と、を有するブロックであって、前記光ファイバの前記フェルールから突出した部分が前記一端面の側から前記溝に沿って配設されたブロックと、
     前記光ファイバを前記溝に固定する第1弾性部材と、
     を備え、
     前記光ファイバの前記フェルールから突出した部分は、第1部分と、第2部分と、第3部分と、を有し、
     前記第1部分は、前記第3部分よりも前記他端面側に設けられ、
     前記第2部分は、前記第1部分と前記第3部分との間に設けられ、
     前記第1部分におけるコア径は、前記第3部分におけるコア径よりも小さく、
     前記第2部分におけるコア径は、前記第1部分から前記第3部分へ向かって大きくなり、
     前記第1弾性部材は、前記光ファイバと前記溝との間に配設されたことを特徴とする光レセプタクル。
  3.  前記ブロックは、前記溝が設けられた第1部材と、前記第1部材と対向する第2部材と、を有し、
     前記光ファイバは、前記第2部材と前記溝との間に設けられ、
     前記第1弾性部材は、前記光ファイバと前記溝との間、および、前記光ファイバと前記第2部材との間に設けられたことを特徴とする請求項2記載の光レセプタクル。
  4.  前記第1部分の全体、及び前記第2部分の全体は、前記光ファイバの中心軸に沿った方向において、前記一端面と前記他端面との間に位置し、
     前記第3部分は、前記一端面から突出した部分を有することを特徴とする請求項1~3のいずれか1つに記載の光レセプタクル。
  5.  前記第1部分の少なくとも一部は、前記光ファイバの中心軸に沿った方向において、前記一端面と前記他端面との間に位置し、
     前記第2部分及び前記第3部分は、前記一端面から突出したことを特徴とする請求項1~3のいずれか1つに記載の光レセプタクル。
  6.  前記第1部分のコアの屈折率、前記第2部分のコアの屈折率、および前記第3部分のコアの屈折率は、互いに等しく、
     前記第1部分のクラッドの屈折率は、前記第3部分のクラッドの屈折率より小さく、
     前記第2部分のクラッドの屈折率は、前記第1部分側から前記第3部分側に向かって大きくなることを特徴とする請求項1~5のいずれか1つに記載の光レセプタクル。
  7.  前記第1部分のクラッドの屈折率、前記第2部分のクラッドの屈折率、および前記第3部分におけるクラッドの屈折率は、互いに等しく、
     前記第1部分のコアの屈折率は、前記第3部分のコアの屈折率より大きく、
     前記第2部分のコアの屈折率は、前記第1部分側から前記第3部分側に向かって小さくなることを特徴とする請求項1~5のいずれか1つに記載の光レセプタクル。
  8.  前記光ファイバの前記ブロック側の端面が、前記光ファイバの中心軸に対して垂直な面から傾いたことを特徴とする請求項1~7のいずれか1つに記載の光レセプタクル。
  9.  前記ブロックの前記他端面側において、前記光ファイバの端面に透光性部材が配設されたことを特徴とする請求項1~8のいずれか1つに記載の光レセプタクル。
  10.  前記光ファイバのうち前記ブロックの前記一端面から突出した部分の少なくとも一部を覆う被覆部と、
     前記被覆部と前記ブロックとの間に設けられた第2弾性部材と、
     をさらに備えたことを特徴とする請求項1~9のいずれか1つに記載の光レセプタクル。
  11.  前記被覆部と前記ブロックとの間に設けられた第3弾性部材をさらに備え、
     前記第3弾性部材は、前記ブロックと前記第2弾性部材との間に位置することを特徴とする請求項10記載の光レセプタクル。
  12.  請求項1~11のいずれか1つに記載の光レセプタクルを備えたことを特徴とする光トランシーバ。
PCT/JP2018/013378 2017-03-30 2018-03-29 光レセプタクル及び光トランシーバ WO2018181782A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880003685.1A CN109791262A (zh) 2017-03-30 2018-03-29 光插座及光收发器
JP2019510167A JPWO2018181782A1 (ja) 2017-03-30 2018-03-29 光レセプタクル及び光トランシーバ
US16/356,479 US20190212501A1 (en) 2017-03-30 2019-03-18 Optical receptacle and optical transceiver
US17/067,081 US20210026080A1 (en) 2017-03-30 2020-10-09 Optical receptacle and optical transceiver

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-067219 2017-03-30
JP2017067219 2017-03-30
JP2018047131 2018-03-14
JP2018-047131 2018-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/356,479 Continuation US20190212501A1 (en) 2017-03-30 2019-03-18 Optical receptacle and optical transceiver

Publications (1)

Publication Number Publication Date
WO2018181782A1 true WO2018181782A1 (ja) 2018-10-04

Family

ID=63678170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013378 WO2018181782A1 (ja) 2017-03-30 2018-03-29 光レセプタクル及び光トランシーバ

Country Status (4)

Country Link
US (2) US20190212501A1 (ja)
JP (1) JPWO2018181782A1 (ja)
CN (2) CN113568114A (ja)
WO (1) WO2018181782A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723942B (zh) * 2020-09-02 2021-04-01 國家中山科學研究院 高功率全光纖式抗反射裝置
US20220381995A1 (en) * 2021-05-26 2022-12-01 Sumitomo Electric Industries, Ltd. Optical fiber array and optical fiber connection structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030185508A1 (en) * 2002-03-26 2003-10-02 Ngk Insulators, Ltd. Lensed fiber array and production method thereof
US20040047575A1 (en) * 2000-10-16 2004-03-11 Philippe Chanclou Optical collimator for monomode fibres, monomode fibre with integrated collimator and method for making same
JP2004302459A (ja) * 2003-03-20 2004-10-28 Sumitomo Electric Ind Ltd 光モジュール
JP2005134528A (ja) * 2003-10-29 2005-05-26 Mitsubishi Cable Ind Ltd 光ファイバアレイ、光ファイバアレイ収容構造及びそれらを備えた光ファイババンドル
JP2012230275A (ja) * 2011-04-27 2012-11-22 Kyocera Corp 光ファイバ保持用部品、光レセプタクル、ピグテール型光レセプタクルおよび光モジュール
JP2016126339A (ja) * 2014-12-26 2016-07-11 Toto株式会社 光レセプタクル及び光トランシーバ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279787A (ja) * 2002-03-22 2003-10-02 Sumitomo Electric Ind Ltd 異種光ファイバの接続方法および多心光ファイバ部品
JP2004205654A (ja) * 2002-12-24 2004-07-22 Showa Electric Wire & Cable Co Ltd スポットサイズ変換用光ファイバ部品及びその製造方法
CN203365738U (zh) * 2013-05-30 2013-12-25 北京凯普林光电科技有限公司 一种光连接器
JP5952326B2 (ja) * 2013-06-28 2016-07-13 Toto株式会社 光レセプタクル
CN110646895B (zh) * 2014-12-26 2021-12-28 阿卡西亚通信有限公司 光插座及光收发器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040047575A1 (en) * 2000-10-16 2004-03-11 Philippe Chanclou Optical collimator for monomode fibres, monomode fibre with integrated collimator and method for making same
US20030185508A1 (en) * 2002-03-26 2003-10-02 Ngk Insulators, Ltd. Lensed fiber array and production method thereof
JP2004302459A (ja) * 2003-03-20 2004-10-28 Sumitomo Electric Ind Ltd 光モジュール
JP2005134528A (ja) * 2003-10-29 2005-05-26 Mitsubishi Cable Ind Ltd 光ファイバアレイ、光ファイバアレイ収容構造及びそれらを備えた光ファイババンドル
JP2012230275A (ja) * 2011-04-27 2012-11-22 Kyocera Corp 光ファイバ保持用部品、光レセプタクル、ピグテール型光レセプタクルおよび光モジュール
JP2016126339A (ja) * 2014-12-26 2016-07-11 Toto株式会社 光レセプタクル及び光トランシーバ
JP2016128900A (ja) * 2014-12-26 2016-07-14 Toto株式会社 光レセプタクル及び光トランシーバ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723942B (zh) * 2020-09-02 2021-04-01 國家中山科學研究院 高功率全光纖式抗反射裝置
US20220381995A1 (en) * 2021-05-26 2022-12-01 Sumitomo Electric Industries, Ltd. Optical fiber array and optical fiber connection structure
US11714242B2 (en) * 2021-05-26 2023-08-01 Sumitomo Electric Industries, Ltd. Optical fiber array and optical fiber connection structure

Also Published As

Publication number Publication date
US20210026080A1 (en) 2021-01-28
US20190212501A1 (en) 2019-07-11
CN109791262A (zh) 2019-05-21
CN113568114A (zh) 2021-10-29
JPWO2018181782A1 (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
US10180546B2 (en) Optical receptacle and optical transceiver
JP5952326B2 (ja) 光レセプタクル
JP7270084B2 (ja) 光レセプタクル及び光トランシーバ
US20080267567A1 (en) Optical splicer, optical module, and method of producing optical splicer
US10191224B2 (en) Optical receptacle
WO2018181782A1 (ja) 光レセプタクル及び光トランシーバ
JP7107194B2 (ja) 光接続構造
JP4883969B2 (ja) 光レセプタクルおよびこれを用いた光モジュール
JP2006047951A (ja) 光アイソレータ
CN110646895B (zh) 光插座及光收发器
JP2016212414A (ja) 導波路用結合回路
US20210041631A1 (en) Fiber module
WO2018003940A1 (ja) 光レセプタクル及び光トランシーバ
JP2007226182A (ja) 光アイソレータ付き光ファイバ保持部品およびそれを用いた光レセプタクルならびに光モジュール
JP2003131066A (ja) 光ファイバスプライス
WO2018221589A1 (ja) 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
JP2015096978A (ja) 光レセプタクル
JP2005215156A (ja) 光デバイス
JP2005316151A (ja) 光モジュール、光システム、光モジュールの製造方法、及び、光伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777739

Country of ref document: EP

Kind code of ref document: A1