WO2018167872A1 - 多段変速機 - Google Patents

多段変速機 Download PDF

Info

Publication number
WO2018167872A1
WO2018167872A1 PCT/JP2017/010400 JP2017010400W WO2018167872A1 WO 2018167872 A1 WO2018167872 A1 WO 2018167872A1 JP 2017010400 W JP2017010400 W JP 2017010400W WO 2018167872 A1 WO2018167872 A1 WO 2018167872A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
gear set
planet carrier
brake
gear
Prior art date
Application number
PCT/JP2017/010400
Other languages
English (en)
French (fr)
Inventor
伸人 安田
拓 松尾
正樹 塩原
豊 鎌谷
浩平 泉
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2017/010400 priority Critical patent/WO2018167872A1/ja
Publication of WO2018167872A1 publication Critical patent/WO2018167872A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another

Definitions

  • This disclosure relates to a multi-stage transmission.
  • Construction vehicles such as dump trucks are equipped with a multi-stage transmission having a plurality of planetary gear sets.
  • the planetary gear type multi-stage transmission can obtain a desired reduction ratio by using each planetary gear set in an appropriate combination.
  • a conventional multi-stage transmission is disclosed in, for example, US Patent Application Publication No. 2011/0124462 (Patent Document 1).
  • a multi-stage transmission capable of realizing an increase in the speed stage, a reduction in the number of components, an increase in the total inter-stage ratio, and a reduction in variation in the inter-stage ratio is provided.
  • a multi-stage transmission including an input shaft, an output shaft, a first planetary gear set, a second planetary gear set, a third planetary gear set, a fourth planetary gear set, and six control elements.
  • Each of the first planetary gear set, the second planetary gear set, the third planetary gear set, and the fourth planetary gear set has a sun gear, a planet carrier, a ring gear, and a planetary gear.
  • the planetary gear meshes directly with the sun gear and the ring gear.
  • the six control elements are operably coupled to at least one of the first planetary gear set, the second planetary gear set, the third planetary gear set, and the fourth planetary gear set.
  • Each of the six control elements has an engagement state and a non-engagement state, and the input shaft and the output are selected by selecting the engagement state and the non-engagement state of each of the six control elements.
  • Different sets of gear ratios between the shafts are generated.
  • the different gear ratio sets include at least nine forward speed stages and at least two reverse speed stages.
  • the first planetary gear set, the second planetary gear set, the third planetary gear set, and the fourth planetary gear set are arranged in this order from the input side to the output side.
  • the planet carrier of the third planetary gear set and the planet carrier of the fourth planetary gear set are configured to rotate integrally.
  • the multi-stage transmission it is possible to realize an increase in the speed stage, a reduction in the number of parts, an increase in the total inter-stage ratio, and a reduction in the variation in the inter-stage ratio.
  • 1 is a schematic view of a multi-stage transmission according to a first embodiment. It is a table
  • FIG. 1 is a schematic diagram of a multi-stage transmission 100 according to the first embodiment.
  • the multi-stage transmission 100 is a planetary gear type multi-stage transmission, and shifts and outputs the rotational speed of power from a drive source (not shown) such as an engine.
  • the power from the drive source may be input to the multi-stage transmission 100 via a torque converter.
  • the multi-stage transmission 100 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, and a housing 9.
  • Each planetary gear set 1 to 4, each clutch 51 to 53, each brake 61 to 63, the input shaft 7, and the output shaft 10 are disposed in the housing 9.
  • the rotation axis direction indicates the direction in which the input shaft 7 and the output shaft 10 that are rotation axes extend.
  • the radial direction of the rotation axis indicates the radial direction of a circle around the rotation axis.
  • the rotation axis direction is the left-right direction in FIG. 1
  • the radial direction is the up-down direction in FIG.
  • the left side indicates the side (input side) where the multi-stage transmission inputs power
  • the right side in FIG. 1 indicates the side (output side) where the multi-stage transmission outputs power.
  • the input shaft 7 and the output shaft 10 are rotatably supported by the housing 9. Power from the drive source is input to the input shaft 7.
  • the output shaft 10 outputs the power changed by the multi-stage transmission 100.
  • the multi-stage transmission 100 includes a first planetary gear set 1, a second planetary gear set 2, a third planetary gear set 3, and a fourth planetary gear set 4 as a plurality of planetary gear sets.
  • the first planetary gear set 1, the second planetary gear set 2, the third planetary gear set 3, and the fourth planetary gear set 4 are arranged in this order along the rotation axis direction.
  • the first planetary gear set 1, the second planetary gear set 2, the third planetary gear set 3, and the fourth planetary gear set 4 are arranged in this order from the input side to the output side.
  • the first planetary gear set 1, the second planetary gear set 2, the third planetary gear set 3, and the fourth planetary gear set 4 each have a sun gear, a planet carrier, a ring gear, and a plurality of planetary gears. Yes.
  • Each of the plurality of planetary gears directly meshes with the sun gear and directly meshes with the ring gear.
  • Each planetary gear set is a single pinion type planetary gear set, which makes it easy to manufacture the planetary gear set.
  • the sun gear, planetary carrier, planetary gear, and ring gear may all rotate at the same time, or one or more of them may stop without rotating.
  • the speed change by the multi-stage transmission 100 that is, the change in the rotational speed of the power input to the input shaft 7 and the power output from the output shaft 10 depends on the gear ratio between the sun gear and the ring gear of each planetary gear set, And it depends on the connection of the elements which comprise each planetary gear set, and the switching of the rotation braking of an element.
  • the first planetary gear set 1 includes a first sun gear 11, a plurality of first planetary gears 12, a first ring gear 13, and a first planet carrier 14.
  • the second planetary gear set 2 includes a second sun gear 21, a plurality of second planetary gears 22, a second ring gear 23, and a second planet carrier 24.
  • the third planetary gear set 3 includes a third sun gear 31, a plurality of third planetary gears 32, a third ring gear 33, and a third planet carrier 34.
  • the fourth planetary gear set 4 includes a fourth sun gear 41, a plurality of fourth planetary gears 42, a fourth ring gear 43, and a fourth planet carrier 44.
  • the multi-stage transmission 100 includes a plurality of control elements.
  • the control element includes, for example, a plurality of clutches and a plurality of brakes.
  • the multi-stage transmission 100 includes six control elements.
  • the multi-stage transmission 100 includes a first clutch 51, a second clutch 52, and a third clutch 53 as a plurality of clutches.
  • the multi-stage transmission 100 includes a first brake 61, a second brake 62, and a third brake 63 as a plurality of brakes.
  • the six control elements include a first clutch 51, a second clutch 52, and a third clutch 53, and a first brake 61, a second brake 62, and a third brake 63.
  • Each of the six control elements is operably coupled to any one or more of the planetary gear sets 1-4.
  • Each of the six control elements is configured to selectively engage the housing 9, the planetary gear sets 1 to 4, the input shaft 7 or the output shaft 10.
  • the six control elements are selectively engaged.
  • Each of the six control elements has an engaged state and a disengaged state. By selecting the engaged state and the disengaged state of each of the six control elements, different gear ratio sets between the input shaft 7 and the output shaft 10 are generated.
  • Each of the six control elements can connect the two rotatable elements of the multi-stage transmission 100 to each other, or each of the six control elements can connect the rotatable element of the multi-stage transmission 100 and the housing 9. It is configured.
  • control element that is a clutch connects the two rotatable elements of the multi-stage transmission 100 to each other, and integrally rotates the two elements.
  • control element which is a clutch, disconnects the connection between the two rotatable elements of the multi-stage transmission 100 and makes the two elements relatively rotatable.
  • the control element that is a brake In the engaged state, the control element that is a brake connects the rotatable element of the multi-stage transmission 100 and the housing 9, and brakes the rotation of the element, that is, makes the element non-rotatable. In a non-engagement state, the control element that is a brake does not connect the rotatable element of the multi-stage transmission 100 and the housing 9, and makes the element rotatable.
  • the first planet carrier 14 of the first planetary gear set 1 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 of the second planetary gear set 2 is configured to rotate integrally with the first ring gear 13 of the first planetary gear set 1.
  • the third sun gear 31 of the third planetary gear set 3 and the fourth sun gear 41 of the fourth planetary gear set 4 are configured to rotate integrally with the second ring gear 23 of the second planetary gear set 2.
  • the third planet carrier 34 of the third planetary gear set 3 and the fourth planet carrier 44 of the fourth planetary gear set 4 are configured to rotate integrally.
  • the output shaft 10 is configured to rotate integrally with the third planet carrier 34 of the third planetary gear set 3 and the fourth planet carrier 44 of the fourth planetary gear set 4.
  • the first sun gear 11 of the first planetary gear set 1 and the second planet carrier 24 of the second planetary gear set 2 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the first sun gear 11 and the second planet carrier 24.
  • the first planet carrier 14 of the first planetary gear set 1 and the second planet carrier 24 of the second planetary gear set 2 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second planet carrier 24.
  • the third clutch 53 is configured to selectively connect the first ring gear 13 and the second sun gear 21 to the third planet carrier 34 and the fourth planet carrier 44.
  • the third clutch 53 is configured to selectively connect the first ring gear 13 and the second sun gear 21 to the output shaft 10.
  • the first sun gear 11 of the first planetary gear set 1 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the third ring gear 33 of the third planetary gear set 3 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third ring gear 33.
  • the fourth ring gear 43 of the fourth planetary gear set 4 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth ring gear 43.
  • FIG. 2 is a table showing control elements, reduction ratios, and interstage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the first embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • the crosses in FIG. 2 indicate each clutch or each brake in the engaged state.
  • Each clutch and each brake not marked with a cross in FIG. 2 are in a non-engaged state.
  • FIG. 3 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the first embodiment.
  • the gear ratio is the ratio of the number of teeth of the ring gear to the number of teeth of the sun gear.
  • the reduction ratio at each speed stage when the gear ratio of each planetary gear set 1 to 4 is as shown in FIG. 3 will be described.
  • the speed stage of the multi-stage transmission 100 is set to the first forward speed (F1)
  • the second clutch 52 is engaged, and the first planet carrier 14 and the second planet carrier 24 Are connected.
  • the first brake 61 is engaged, and the first sun gear 11 is not rotatable.
  • the third brake 63 is engaged and the fourth ring gear 43 cannot be rotated.
  • the reduction ratio of the first forward speed is approximately 6.87.
  • the first brake 61 is disengaged and the second clutch 52 and the third brake 63 are engaged. Further, the first clutch 51 is engaged, and the first sun gear 11 and the second planet carrier 24 are connected.
  • the reduction ratio of the second forward speed is approximately 5.09.
  • the first clutch 51 is disengaged and the second clutch 52 and the third brake 63 are engaged. Further, the third clutch 53 is engaged, and the first ring gear 13 and the second sun gear 21 are connected to the third planet carrier 34 and the fourth planet carrier 44.
  • the reduction ratio of the third forward speed is approximately 3.63.
  • the third clutch 53 and the third brake 63 are disengaged and the second clutch 52 is engaged.
  • the first clutch 51 is engaged, the first sun gear 11 and the second planet carrier 24 are connected, the second brake 62 is engaged, and the third ring gear 33 cannot be rotated.
  • the reduction ratio of the fourth forward speed is approximately 2.96.
  • the first clutch 51 is disengaged and the second clutch 52 and the second brake 62 are engaged. Further, the third clutch 53 is engaged, and the first ring gear 13 and the second sun gear 21 are connected to the third planet carrier 34 and the fourth planet carrier 44.
  • the reduction ratio of the fifth forward speed is approximately 2.26.
  • the second clutch 52 and the second brake 62 are disengaged and the third clutch 53 is engaged. Further, the first clutch 51 is engaged and the first sun gear 11 and the second planet carrier 24 are connected, and the third brake 63 is engaged and the fourth ring gear 43 cannot be rotated. And The reduction ratio of the sixth forward speed is approximately 1.84.
  • the third brake 63 is disengaged and the first clutch 51 and the third clutch 53 are engaged.
  • the second brake 62 is engaged and the third ring gear 33 cannot be rotated.
  • the reduction ratio of the forward seventh speed is about 1.40.
  • the second brake 62 is disengaged and the first clutch 51 and the third clutch 53 are engaged. Further, the second clutch 52 is engaged, and the first planet carrier 14 and the second planet carrier 24 are connected.
  • the reduction ratio of the eighth forward speed is about 1.00.
  • the first clutch 51 is disengaged and the second clutch 52 and the third clutch 53 are engaged.
  • the first brake 61 is engaged and the first sun gear 11 cannot be rotated.
  • the reduction ratio of the ninth forward speed is about 0.68.
  • the speed stage of the multi-stage transmission 100 is set to the reverse first speed (R1)
  • the first clutch 51 is engaged and the first sun gear 11 and the second planet carrier 24 are connected.
  • the first brake 61 is engaged, and the first sun gear 11 is not rotatable.
  • the third brake 63 is engaged and the fourth ring gear 43 cannot be rotated.
  • the reduction ratio of the first reverse speed is approximately ⁇ 6.25.
  • the third brake 63 is disengaged and the first clutch 51 and the first brake 61 are engaged.
  • the second brake 62 is engaged and the third ring gear 33 cannot be rotated.
  • the reduction ratio of the second speed in reverse is about ⁇ 3.63.
  • the interstage ratio shown in FIG. 2 represents the ratio between the reduction ratios of the respective speed stages. More specifically, a value obtained by dividing the reduction ratio of the low speed stage by the reduction ratio of the high speed stage is referred to as the interstage ratio.
  • the total gear ratio is a value obtained by dividing the speed reduction ratio of the lowest speed stage by the speed reduction ratio of the highest speed stage.
  • the multi-stage transmission 100 according to the present embodiment has nine forward speed stages.
  • the total inter-stage ratio of the multi-stage transmission 100 of the present embodiment is a value obtained by dividing the reduction ratio of the first forward speed by the reduction ratio of the ninth forward speed.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 2 is 10.08, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.23 to 1.47, and variations in the interstage ratio are reduced.
  • FIG. 4 is a schematic diagram of the multi-stage transmission 100 according to the second embodiment.
  • a multi-stage transmission 100 shown in FIG. 4 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the multi-stage transmission 100 includes a first planetary gear set 1, a second planetary gear set 2, a third planetary gear set 3, and a fourth planetary gear set 4 as a plurality of planetary gear sets.
  • the first planetary gear set 1, the second planetary gear set 2, the third planetary gear set 3, and the fourth planetary gear set 4 are arranged in this order from the input side to the output side.
  • the first planetary gear set 1 includes a first sun gear 11, a plurality of first planetary gears 12, a first ring gear 13, and a first planet carrier 14.
  • the second planetary gear set 2 includes a second sun gear 21, a plurality of second planetary gears 22, a second ring gear 23, and a second planet carrier 24.
  • the third planetary gear set 3 includes a third sun gear 31, a plurality of third planetary gears 32, a third ring gear 33, and a third planet carrier 34.
  • the fourth planetary gear set 4 includes a fourth sun gear 41, a plurality of fourth planetary gears 42, a fourth ring gear 43, and a fourth planet carrier 44.
  • the multi-stage transmission 100 includes six control elements.
  • the six control elements include a first clutch 51, a second clutch 52, and a third clutch 53, and a first brake 61, a second brake 62, and a third brake 63.
  • Each of the six control elements has an engaged state and a disengaged state. By selecting the engaged state and the disengaged state of each of the six control elements, different gear ratio sets between the input shaft 7 and the output shaft 10 are generated.
  • a control element that is a clutch is connected between two rotatable elements of the multi-stage transmission 100.
  • a control element which is a brake is connected to the housing 9.
  • the first planet carrier 14 of the first planetary gear set 1 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 of the second planetary gear set 2 is configured to rotate integrally with the first ring gear 13 of the first planetary gear set 1.
  • the third planet carrier 34 of the third planetary gear set 3 is configured to rotate integrally with the second ring gear 23 of the second planetary gear set 2.
  • the fourth sun gear 41 of the fourth planetary gear set 4 is configured to rotate integrally with the third sun gear 31 of the third planetary gear set 3.
  • the fourth ring gear 43 of the fourth planetary gear set 4 is configured to rotate integrally with the third ring gear 33 of the third planetary gear set 3.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44 of the fourth planetary gear set 4.
  • the first clutch 51 is connected.
  • the first clutch is configured to selectively connect the first ring gear 13 and the second sun gear 21 to the third sun gear 31 and the fourth sun gear 41.
  • the first planet carrier 14 of the first planetary gear set 1 and the second planet carrier 24 of the second planetary gear set 2 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second planet carrier 24.
  • the second planet carrier 24 of the second planetary gear set 2, the third sun gear 31 of the third planetary gear set 3, and the fourth sun gear 41 of the fourth planetary gear set 4 are connected via a third clutch 53. Yes.
  • the third clutch 53 is configured to selectively connect the second planet carrier 24 with the third sun gear 31 and the fourth sun gear 41.
  • the first sun gear 11 of the first planetary gear set 1 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the second ring gear 23 of the second planetary gear set 2 and the third planet carrier 34 of the third planetary gear set 3 are connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the second ring gear 23 and the third planet carrier 34.
  • the third ring gear 33 of the third planetary gear set 3 and the fourth ring gear 43 of the fourth planetary gear set 4 are connected to the housing 9 via a third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the third ring gear 33 and the fourth ring gear 43.
  • FIG. 5 is a table showing control elements, reduction ratios, and interstage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the second embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • the crosses in FIG. 5 indicate each clutch or each brake in the engaged state.
  • FIG. 6 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the second embodiment.
  • the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 5 is 9.11, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.16 to 1.46, and variations in the interstage ratio are reduced.
  • FIG. 7 is a schematic view of a multi-stage transmission 100 according to the third embodiment.
  • a multi-stage transmission 100 shown in FIG. 7 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, and a housing 9.
  • the first planet carrier 14 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first ring gear 13.
  • the third sun gear 31 is configured to rotate integrally with the second ring gear 23.
  • the fourth ring gear 43 is configured to rotate integrally with the second ring gear 23 and the third sun gear 31.
  • the fourth planet carrier 44 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the third planet carrier 34 and the fourth planet carrier 44.
  • the first sun gear 11 and the second planet carrier 24 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the first sun gear 11 and the second planet carrier 24.
  • the first planet carrier 14 and the second planet carrier 24 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second planet carrier 24.
  • the first ring gear 13 and the second sun gear 21, the third planet carrier 34, the fourth planet carrier 44, and the output shaft 10 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first ring gear 13 and the second sun gear 21 to the third planet carrier 34, the fourth planet carrier 44, and the output shaft 10.
  • the first sun gear 11 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the third ring gear 33 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third ring gear 33.
  • the fourth sun gear 41 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth sun gear 41.
  • FIG. 8 is a table showing control elements, reduction ratios, and interstage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the third embodiment.
  • FIG. 8 shows the first and fourth planetary gear sets 1 to 4 for establishing 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10. A combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 9 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the third embodiment.
  • the gear ratio of each planetary gear set 1 to 4 is as shown in FIG. 9, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 8 is 8.79, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.13 to 1.51, and variations in the interstage ratio are reduced.
  • FIG. 10 is a schematic diagram of a multi-stage transmission 100 according to the fourth embodiment.
  • a multi-stage transmission 100 shown in FIG. 10 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first planet carrier 14 is configured to rotate integrally with the input shaft 7.
  • the second planet carrier 24 is configured to rotate integrally with the first ring gear 13.
  • the third sun gear 31 is configured to rotate integrally with the second ring gear 23.
  • the fourth sun gear 41 is configured to rotate integrally with the first ring gear 13 and the second planet carrier 24.
  • the fourth planet carrier 44 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the third planet carrier 34 and the fourth planet carrier 44.
  • the first sun gear 11 and the second sun gear 21 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the first sun gear 11 and the second sun gear 21.
  • the first planet carrier 14 and the second sun gear 21 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second sun gear 21.
  • the second planet carrier 24 and the third ring gear 33 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the second planet carrier 24 and the third ring gear 33.
  • the first sun gear 11 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the third ring gear 33 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third ring gear 33.
  • the fourth ring gear 43 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth ring gear 43.
  • FIG. 11 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the fourth embodiment.
  • FIG. 11 shows the first and fourth planetary gear sets 1 to 4 for establishing 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10. A combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 12 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the fourth embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 12, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 11 is 9.60, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.11 to 1.50, and the variation in the interstage ratio is reduced.
  • FIG. 13 is a schematic diagram of a multi-stage transmission 100 according to the fifth embodiment.
  • a multi-stage transmission 100 shown in FIG. 13 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the second sun gear 21 is configured to rotate integrally with the first ring gear 13.
  • the second ring gear 23 is configured to rotate integrally with the first sun gear 11.
  • the third planet carrier 34 is configured to rotate integrally with the first ring gear 13 and the second sun gear 21.
  • the fourth sun gear 41 is configured to rotate integrally with the second planet carrier 24.
  • the fourth ring gear 43 is configured to rotate integrally with the third ring gear 33.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44.
  • the input shaft 7 and the first sun gear 11 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7 and the first sun gear 11.
  • the input shaft 7 and the first planet carrier 14 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the input shaft 7 and the first planet carrier 14.
  • the first ring gear 13, the second sun gear 21, the third planet carrier 34, and the fourth planet carrier 44 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first ring gear 13, the second sun gear 21, the third planet carrier 34, and the fourth planet carrier 44.
  • the first planet carrier 14 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first planet carrier 14.
  • the third sun gear 31 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third sun gear 31.
  • the third ring gear 33 and the fourth ring gear 43 are connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the third ring gear 33 and the fourth ring gear 43.
  • FIG. 14 is a table showing control elements, reduction ratios, and interstage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the fifth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 15 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the fifth embodiment.
  • the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 14 is 9.74, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.16 to 1.56, and variations in the interstage ratio are reduced.
  • FIG. 16 is a schematic diagram of a multi-stage transmission 100 according to the sixth embodiment.
  • a multi-stage transmission 100 shown in FIG. 16 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a second intermediate shaft 82. , And a housing 9.
  • the first sun gear 11 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first ring gear 13.
  • the third planet carrier 34 is configured to rotate integrally with the second ring gear 23.
  • the fourth ring gear 43 is configured to rotate integrally with the second ring gear 23 and the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44.
  • the input shaft 7 is connected to the third sun gear 31 and the fourth sun gear 41 via the first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7, the third sun gear 31 and the fourth sun gear 41.
  • the input shaft 7 and the third ring gear 33 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the input shaft 7 and the third ring gear 33.
  • the second planet carrier 24 and the third ring gear 33 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the second planet carrier 24 and the third ring gear 33.
  • the first ring gear 13 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first ring gear 13.
  • the first planet carrier 14 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the first planet carrier 14.
  • the second planet carrier 24 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the second planet carrier 24.
  • FIG. 17 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the sixth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 backward speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 18 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the sixth embodiment.
  • the gear ratio of each planetary gear set 1 to 4 is as shown in FIG. 18, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 17 is 8.87, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.17 to 1.43, and variations in the interstage ratio are reduced.
  • FIG. 19 is a schematic diagram of a multi-stage transmission 100 according to the seventh embodiment.
  • a multi-stage transmission 100 shown in FIG. 19 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first planet carrier 14 is configured to rotate integrally with the input shaft 7.
  • the second planet carrier 24 is configured to rotate integrally with the first ring gear 13.
  • the third sun gear 31 is configured to rotate integrally with the second ring gear 23.
  • the fourth sun gear 41 is configured to rotate integrally with the second sun gear 21.
  • the fourth ring gear 43 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44.
  • the input shaft 7, the second sun gear 21 and the fourth sun gear 41 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7, the second sun gear 21 and the fourth sun gear 41.
  • the first planet carrier 14, the second ring gear 23 and the third sun gear 31 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14, the second ring gear 23, and the third sun gear 31.
  • the second planet carrier 24, the third planet carrier 34 and the fourth ring gear 43 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the second planet carrier 24, the third planet carrier 34, and the fourth ring gear 43.
  • the first sun gear 11 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the third ring gear 33 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third ring gear 33.
  • the third planet carrier 34 and the fourth ring gear 43 are connected to the housing 9 via a third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the third planet carrier 34 and the fourth ring gear 43.
  • FIG. 20 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the seventh embodiment.
  • FIG. 20 shows the first and fourth planetary gear sets 1 to 4 for establishing 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10. A combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 21 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the seventh embodiment.
  • the gear ratio of each planetary gear set 1 to 4 is as shown in FIG. 21, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 20 is 8.37, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.20 to 1.48, and variations in the interstage ratio are reduced.
  • FIG. 22 is a schematic diagram of a multi-stage transmission 100 according to the eighth embodiment.
  • a multi-stage transmission 100 shown in FIG. 22 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first planet carrier 14 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first ring gear 13.
  • the third ring gear 33 is configured to rotate integrally with the second ring gear 23.
  • the fourth sun gear 41 is configured to rotate integrally with the second ring gear 23 and the third ring gear 33.
  • the fourth planet carrier 44 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the third planet carrier 34 and the fourth planet carrier 44.
  • the first sun gear 11 and the second planet carrier 24 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the first sun gear 11 and the second planet carrier 24.
  • the first planet carrier 14 and the second planet carrier 24 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second planet carrier 24.
  • the first ring gear 13 and the second sun gear 21, and the third planet carrier 34 and the fourth planet carrier 44 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first ring gear 13 and the second sun gear 21 to the third planet carrier 34 and the fourth planet carrier 44.
  • the first sun gear 11 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the third sun gear 31 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third sun gear 31.
  • the fourth ring gear 43 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth ring gear 43.
  • FIG. 23 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the eighth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 24 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the eighth embodiment.
  • the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 23 is 10.26, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.15 to 1.60, and the variation in the interstage ratio is reduced.
  • FIG. 25 is a schematic diagram of a multi-stage transmission 100 according to the ninth embodiment.
  • a multi-stage transmission 100 shown in FIG. 25 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a second intermediate shaft 82. , And a housing 9.
  • the first ring gear 13 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first sun gear 11.
  • the second ring gear 23 is configured to rotate integrally with the first planet carrier 14.
  • the third sun gear 31 is configured to rotate integrally with the first planet carrier 14 and the second ring gear 23.
  • the fourth ring gear 43 is configured to rotate integrally with the third planet carrier 34.
  • the fourth planet carrier 44 is configured to rotate integrally with the third ring gear 33.
  • the output shaft 10 is configured to rotate integrally with the third ring gear 33 and the fourth planet carrier 44.
  • the input shaft 7 is connected to the third planet carrier 34 and the fourth ring gear 43 via the first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7, the third planet carrier 34, and the fourth ring gear 43.
  • the second planet carrier 24, the third ring gear 33, the fourth planet carrier 44, and the output shaft 10 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the second planet carrier 24, the third ring gear 33, the fourth planet carrier 44, and the output shaft 10.
  • the second planet carrier 24 and the fourth sun gear 41 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the second planet carrier 24 and the fourth sun gear 41.
  • the first sun gear 11 and the second sun gear 21 are connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11 and the second sun gear 21.
  • the first planet carrier 14 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the first planet carrier 14, the second ring gear 23, and the third sun gear 31.
  • the fourth sun gear 41 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth sun gear 41.
  • FIG. 26 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the ninth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 27 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the ninth embodiment.
  • the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 26 is 9.22, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.20 to 1.48, and variations in the interstage ratio are reduced.
  • FIG. 28 is a schematic diagram of a multi-stage transmission 100 according to the tenth embodiment.
  • a multi-stage transmission 100 shown in FIG. 28 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the second ring gear 23 is configured to rotate integrally with the first planet carrier 14.
  • the second planet carrier 24 is configured to rotate integrally with the first ring gear 13.
  • the third ring gear 33 is configured to rotate integrally with the second sun gear 21.
  • the fourth ring gear 43 is configured to rotate integrally with the first ring gear 13 and the second planet carrier 24.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44.
  • the input shaft 7 and the first sun gear 11 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7 and the first sun gear 11.
  • the input shaft 7 and the first planet carrier 14 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the input shaft 7 and the first planet carrier 14.
  • the first ring gear 13, the second planet carrier 24, the fourth ring gear 43, and the third planet carrier 34 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first ring gear 13, the second planet carrier 24, the fourth ring gear 43, and the third planet carrier 34.
  • the first planet carrier 14 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first planet carrier 14.
  • the third planet carrier 34 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third planet carrier 34.
  • the third sun gear 31 and the fourth sun gear 41 are connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the third sun gear 31 and the fourth sun gear 41.
  • FIG. 29 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the tenth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 30 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the tenth embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 30, the reduction ratios of the first speed to the ninth speed of the forward and the first speed to the second speed of the reverse are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 29 is 8.60, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.17 to 1.53, and variations in the interstage ratio are reduced.
  • FIG. 31 is a schematic diagram of a multi-stage transmission 100 according to the eleventh embodiment.
  • 31 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a second intermediate shaft 82. , And a housing 9.
  • the second sun gear 21 is configured to rotate integrally with the first sun gear 11.
  • the second planet carrier 24 is configured to rotate integrally with the first ring gear 13.
  • the third ring gear 33 is configured to rotate integrally with the second ring gear 23.
  • the fourth sun gear 41 is configured to rotate integrally with the third sun gear 31.
  • the fourth ring gear 43 is configured to rotate integrally with the first ring gear 13 and the second planet carrier 24.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44.
  • the input shaft 7 is connected to the first sun gear 11 and the second sun gear 21 via the first clutch 51.
  • the first clutch 51 is configured to be able to selectively connect the input shaft 7 to the first sun gear 11 and the second sun gear 21.
  • the input shaft 7 and the first planet carrier 14 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the input shaft 7 and the first planet carrier 14.
  • the first ring gear 13, the second planet carrier 24, the fourth ring gear 43, and the third planet carrier 34 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first ring gear 13, the second planet carrier 24, the fourth ring gear 43, and the third planet carrier 34.
  • the first planet carrier 14 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first planet carrier 14.
  • the third planet carrier 34 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the third planet carrier 34.
  • the third sun gear 31 and the fourth sun gear 41 are connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the third sun gear 31 and the fourth sun gear 41.
  • FIG. 32 is a table showing control elements, reduction ratios, and interstage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the eleventh embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 33 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the eleventh embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 33, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 32 is 8.95, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.20 to 1.55, and variations in the interstage ratio are reduced.
  • FIG. 34 is a schematic diagram of the multi-stage transmission 100 according to the twelfth embodiment.
  • a multi-stage transmission 100 shown in FIG. 34 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, and a housing 9.
  • the second sun gear 21 is configured to rotate integrally with the input shaft 7.
  • the second ring gear 23 is configured to rotate integrally with the first planet carrier 14.
  • the second planet carrier 24 is configured to rotate integrally with the first ring gear 13.
  • the third sun gear 31 is configured to rotate integrally with the first ring gear 13 and the second planet carrier 24.
  • the fourth ring gear 43 is configured to rotate integrally with the third planet carrier 34.
  • the fourth planet carrier 44 is configured to rotate integrally with the third ring gear 33.
  • the output shaft 10 is configured to rotate integrally with the third ring gear 33 and the fourth planet carrier 44.
  • the input shaft 7 is connected to the third planet carrier 34 and the fourth ring gear 43 via the first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7, the third planet carrier 34, and the fourth ring gear 43.
  • the first planet carrier 14 and the second ring gear 23, the third ring gear 33, the fourth planet carrier 44 and the output shaft 10 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second ring gear 23 to the third ring gear 33, the fourth planet carrier 44 and the output shaft 10.
  • the first planet carrier 14, the second ring gear 23, and the fourth sun gear 41 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first planet carrier 14 and the second ring gear 23 and the fourth sun gear 41.
  • the first sun gear 11 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11.
  • the first ring gear 13 and the second planet carrier 24 are connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the first ring gear 13 and the second planet carrier 24.
  • the fourth sun gear 41 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth sun gear 41.
  • FIG. 35 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the twelfth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 36 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the twelfth embodiment.
  • the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 35 is 12.59, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.21 to 1.51, and variations in the interstage ratio are reduced.
  • FIG. 37 is a schematic diagram of a multi-stage transmission 100 according to the thirteenth embodiment.
  • a multi-stage transmission 100 shown in FIG. 37 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a second intermediate shaft 82. , And a housing 9.
  • the first ring gear 13 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first sun gear 11.
  • the second ring gear 23 is configured to rotate integrally with the first planet carrier 14.
  • the third ring gear 33 is configured to rotate integrally with the second planet carrier 24.
  • the fourth sun gear 41 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the fourth planet carrier 44.
  • the first planet carrier 14, the second ring gear 23, and the third sun gear 31 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the first planet carrier 14 and the second ring gear 23 and the third sun gear 31.
  • the first planet carrier 14 and the second ring gear 23, and the third planet carrier 34 and the fourth sun gear 41 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second ring gear 23, and the third planet carrier 34 and the fourth sun gear 41.
  • the third sun gear 31 and the fourth planet carrier 44 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the third sun gear 31 and the fourth planet carrier 44.
  • the first sun gear 11 and the second sun gear 21 are connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11 and the second sun gear 21.
  • the first planet carrier 14 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the first planet carrier 14 and the second ring gear 23.
  • the fourth ring gear 43 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth ring gear 43.
  • FIG. 38 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the thirteenth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 39 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the thirteenth embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 39, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 38 is 14.80, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.28 to 1.50, and the variation in the interstage ratio is reduced.
  • FIG. 40 is a schematic view of the multi-stage transmission 100 according to the fourteenth embodiment.
  • a multi-stage transmission 100 shown in FIG. 40 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first ring gear 13 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first sun gear 11.
  • the third ring gear 33 is configured to rotate integrally with the second ring gear 23.
  • the fourth sun gear 41 is configured to rotate integrally with the second ring gear 23 and the third ring gear 33.
  • the fourth planet carrier 44 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the third planet carrier 34 and the fourth planet carrier 44.
  • the first planet carrier 14, the second ring gear 23, the third ring gear 33, and the fourth sun gear 41 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the first planet carrier 14 to the second ring gear 23, the third ring gear 33, and the fourth sun gear 41.
  • the first planet carrier 14 and the second planet carrier 24 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second planet carrier 24.
  • the first planet carrier 14 and the third sun gear 31 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first planet carrier 14 and the third sun gear 31.
  • the first sun gear 11 and the second sun gear 21 are connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11 and the second sun gear 21.
  • the second planet carrier 24 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the second planet carrier 24.
  • the fourth ring gear 43 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth ring gear 43.
  • FIG. 41 is a table showing control elements, reduction ratios, and interstage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the fourteenth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 42 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the fourteenth embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 42, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are respectively It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 41 is 9.54, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.22 to 1.54, and variations in the interstage ratio are reduced.
  • FIG. 43 is a schematic diagram of a multi-stage transmission 100 according to the fifteenth embodiment.
  • a multi-stage transmission 100 shown in FIG. 43 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first sun gear 11 is configured to rotate integrally with the input shaft 7.
  • the second ring gear 23 is configured to rotate integrally with the first sun gear 11.
  • the third planet carrier 34 is configured to rotate integrally with the first planet carrier 14 and the second sun gear 21.
  • the fourth ring gear 43 is configured to rotate integrally with the first planet carrier 14, the second sun gear 21, and the third planet carrier 34.
  • the fourth planet carrier 44 is configured to rotate integrally with the third ring gear 33.
  • the output shaft 10 is configured to rotate integrally with the third ring gear 33 and the fourth planet carrier 44.
  • the input shaft 7, the first sun gear 11, the second ring gear 23, and the third sun gear 31 are connected via a first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7, the first sun gear 11, the second ring gear 23, and the third sun gear 31.
  • the second planet carrier 24 and the third sun gear 31 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the second planet carrier 24 and the third sun gear 31.
  • the second planet carrier 24, the third ring gear 33, the fourth planet carrier 44, and the output shaft 10 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the second planet carrier 24, the third ring gear 33, the fourth planet carrier 44, and the output shaft 10.
  • the first ring gear 13 is connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first ring gear 13.
  • the first planet carrier 14 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to be selectively connectable to the rotation of the first planet carrier 14.
  • the fourth sun gear 41 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth sun gear 41.
  • FIG. 44 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the fifteenth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 45 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the fifteenth embodiment.
  • the gear ratio of each planetary gear set 1 to 4 is as shown in FIG. 45
  • the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: It is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 44 is 8.62, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.19 to 1.50, and variations in the interstage ratio are reduced.
  • FIG. 46 is a schematic diagram of the multi-stage transmission 100 according to the sixteenth embodiment.
  • a multi-stage transmission 100 shown in FIG. 46 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first ring gear 13 is configured to rotate integrally with the input shaft 7.
  • the second sun gear 21 is configured to rotate integrally with the first sun gear 11.
  • the third planet carrier 34 is configured to rotate integrally with the second ring gear 23.
  • the fourth sun gear 41 is configured to rotate integrally with the third sun gear 31.
  • the fourth planet carrier 44 is configured to rotate integrally with the third ring gear 33.
  • the output shaft 10 is configured to rotate integrally with the third ring gear 33 and the fourth planet carrier 44.
  • the input shaft 7 and the first ring gear 13 are connected to the third sun gear 31 and the fourth sun gear 41 via the first clutch 51.
  • the first clutch 51 is configured to selectively connect the input shaft 7 and the first ring gear 13 to the third sun gear 31 and the fourth sun gear 41.
  • the first planet carrier 14 and the second planet carrier 24 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 and the second planet carrier 24.
  • the first planet carrier 14, the third sun gear 31 and the fourth sun gear 41 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first planet carrier 14, the third sun gear 31, and the fourth sun gear 41.
  • the first sun gear 11 and the second sun gear 21 are connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first sun gear 11 and the second sun gear 21.
  • the second planet carrier 24 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the second planet carrier 24.
  • the fourth ring gear 43 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the fourth ring gear 43.
  • FIG. 47 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the sixteenth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of engagement of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 48 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the sixteenth embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 48, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 47 is 9.49, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.22 to 1.57, and variations in the interstage ratio are reduced.
  • FIG. 49 is a schematic diagram of a multi-stage transmission according to the seventeenth embodiment.
  • a multi-stage transmission 100 shown in FIG. 49 includes a plurality of planetary gear sets 1 to 4, a plurality of clutches 51 to 53, a plurality of brakes 61 to 63, an input shaft 7, an output shaft 10, an intermediate shaft 81, and a housing 9. ing.
  • the first sun gear 11 is configured to rotate integrally with the input shaft 7.
  • the second ring gear 23 is configured to rotate integrally with the first ring gear 13.
  • the third ring gear 33 is configured to rotate integrally with the second sun gear 21.
  • the fourth sun gear 41 is configured to rotate integrally with the second sun gear 21 and the third ring gear 33.
  • the fourth planet carrier 44 is configured to rotate integrally with the third planet carrier 34.
  • the output shaft 10 is configured to rotate integrally with the fourth ring gear 43.
  • the input shaft 7 and the first sun gear 11 are connected to the third planet carrier 34 and the fourth planet carrier 44 via the first clutch 51.
  • the first clutch 51 is configured to be able to selectively connect the input shaft 7 and the first sun gear 11 to the third planet carrier 34 and the fourth planet carrier 44.
  • the first planet carrier 14, the second sun gear 21, the third ring gear 33, and the fourth sun gear 41 are connected via a second clutch 52.
  • the second clutch 52 is configured to selectively connect the first planet carrier 14 to the second sun gear 21, the third ring gear 33, and the fourth sun gear 41.
  • the first planet carrier 14 and the third sun gear 31 are connected via a third clutch 53.
  • the third clutch 53 is configured to selectively connect the first planet carrier 14 and the third sun gear 31.
  • the first ring gear 13 and the second ring gear 23 are connected to the housing 9 via the first brake 61.
  • the first brake 61 is configured to selectively brake the rotation of the first ring gear 13 and the second ring gear 23.
  • the second planet carrier 24 is connected to the housing 9 via the second brake 62.
  • the second brake 62 is configured to selectively brake the rotation of the second planet carrier 24.
  • the fourth planet carrier 44 is connected to the housing 9 via the third brake 63.
  • the third brake 63 is configured to selectively brake the rotation of the third planet carrier 34 and the fourth planet carrier 44.
  • FIG. 50 is a table showing control elements, reduction ratios, and inter-stage ratios that are engaged at each speed stage of the multi-stage transmission 100 according to the seventeenth embodiment.
  • the first to fourth planetary gear sets 1 to 4 are used to establish 9 forward speed stages and 2 reverse speed stages between the input shaft 7 and the output shaft 10.
  • a combination of the first to third clutches 51, 52, and 53 and the first to third brakes 61, 62, and 63 is shown.
  • FIG. 51 is a table showing the gear ratio in each planetary gear set 1 to 4 of the multi-stage transmission 100 according to the seventeenth embodiment.
  • the gear ratios of the planetary gear sets 1 to 4 are as shown in FIG. 51, the reduction ratios of the first to ninth forward speeds and the first to second reverse speed stages are as follows: This is shown in the table of FIG.
  • the multi-stage transmission 100 has nine forward speed stages and two reverse speed stages, and the speed stages of the multi-stage transmission 100 are increased.
  • the multi-speed transmission 100 has four planetary gear mechanisms and a total of six clutches and brakes, and the number of parts is reduced.
  • the total step ratio shown in FIG. 50 is 10.10, and the total step ratio is increased.
  • the interstage ratio of the nine forward speed stages is in the range of 1.23 to 1.43, and variations in the interstage ratio are reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

第1遊星歯車セット(1)は、第1サンギヤ(11)と、第1遊星キャリア(14)と、第1リングギヤ(13)と、第1プラネタリギヤ(12)とを有している。第2遊星歯車セット(2)は、第2サンギヤ(12)と、第2遊星キャリア(24)と、第2リングギヤ(23)と、第2プラネタリギヤ(22)とを有している。第3遊星歯車セット(3)は、第3サンギヤ(31)と、第3遊星キャリア(34)と、第3リングギヤ(33)と、第3プラネタリギヤ(32)とを有している。第4遊星歯車セット(4)は、第4サンギヤ(41)と、第4遊星キャリア(44)と、第4リングギヤ(43)と、第4プラネタリギヤ(42)とを有している。第3遊星キャリア(34)と第4遊星キャリア(44)とは、一体的に回転するように構成されている。

Description

多段変速機
 本開示は、多段変速機に関する。
 ダンプトラックなどの建設車両は、複数の遊星歯車セットを有する多段変速機を備えている。遊星歯車式の多段変速機は、各遊星歯車セットを適宜組み合わせて使用することによって、所望の減速比を得ることができる。従来の多段変速機は、たとえば、米国特許出願公開第2011/0124462号明細書(特許文献1)に開示されている。
米国特許出願公開第2011/0124462号明細書
 遊星歯車式の多段変速機においては、燃費の改善および走行性能の向上のために速度段の増加が要望されており、重量低減および小型化のために部品数の低減が要望されており、最大牽引力の向上および最大車速の向上のために総段間比の拡大が要望されており、速度段のスムーズな切り換えのために段間比のばらつきの低減が要望されている。
 本開示では、速度段の増加、部品数の低減、総段間比の拡大、および段間比のばらつきの低減を実現できる、多段変速機が提供される。
 本開示に従うと、入力軸と、出力軸と、第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットおよび第4遊星歯車セットと、6つの制御要素とを備える、多段変速機が提供される。第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットおよび第4遊星歯車セットは、各々がサンギヤ、遊星キャリア、リングギヤ、およびプラネタリギヤを有している。プラネタリギヤは、サンギヤおよびリングギヤに直接噛み合っている。6つの制御要素は、第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットおよび第4遊星歯車セットの少なくともいずれか1つに動作可能に結合されている。6つの制御要素の各々は、係合状態と非係合状態とを有しており、6つの制御要素の各々の係合状態と非係合状態とが選択されることによって、入力軸と出力軸との間の異なる変速比の組が生成される。異なる変速比の組は、少なくとも9の前進の速度段と少なくとも2の後進の速度段とを含んでいる。第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットおよび第4遊星歯車セットは、入力側から出力側に向かってこの順で配置されている。第3遊星歯車セットの遊星キャリアと第4遊星歯車セットの遊星キャリアとは、一体的に回転するように構成されている。
 本開示に係る多段変速機によれば、速度段の増加、部品数の低減、総段間比の拡大、および段間比のばらつきの低減を実現することができる。
第1実施形態に係る多段変速機の概略図である。 第1実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第1実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第2実施形態に係る多段変速機の概略図である。 第2実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第2実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第3実施形態に係る多段変速機の概略図である。 第3実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第3実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第4実施形態に係る多段変速機の概略図である。 第4実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第4実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第5実施形態に係る多段変速機の概略図である。 第5実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第5実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第6実施形態に係る多段変速機の概略図である。 第6実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第6実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第7実施形態に係る多段変速機の概略図である。 第7実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第7実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第8実施形態に係る多段変速機の概略図である。 第8実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第8実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第9実施形態に係る多段変速機の概略図である。 第9実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第9実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第10実施形態に係る多段変速機の概略図である。 第10実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第10実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第11実施形態に係る多段変速機の概略図である。 第11実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第11実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第12実施形態に係る多段変速機の概略図である。 第12実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第12実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第13実施形態に係る多段変速機の概略図である。 第13実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第13実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第14実施形態に係る多段変速機の概略図である。 第14実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第14実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第15実施形態に係る多段変速機の概略図である。 第15実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第15実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第16実施形態に係る多段変速機の概略図である。 第16実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第16実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。 第17実施形態に係る多段変速機の概略図である。 第17実施形態に係る多段変速機の各速度段において係合される制御要素、減速比、および段間比を示す表である。 第17実施形態に係る多段変速機の各遊星歯車セットにおける歯数比を示す表である。
 多段変速機の各実施形態について、以下、図面を参照しながら説明する。同一の部品および相当部品には同一の参照番号を付し、重複する説明は繰り返さない場合がある。
 (第1実施形態)
 図1は、第1実施形態に係る多段変速機100の概略図である。多段変速機100は、遊星歯車式の多段変速機であって、エンジンなどの駆動源(図示省略)からの動力の回転速度を変速して出力する。駆動源からの動力は、トルクコンバータを介して多段変速機100に入力されてもよい。
 多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、およびハウジング9を備えている。各遊星歯車セット1~4、各クラッチ51~53、各ブレーキ61~63、入力軸7、および出力軸10は、ハウジング9内に配設されている。
 なお、以下の説明において、回転軸方向とは、回転軸である入力軸7および出力軸10が延びる方向を示す。回転軸の径方向とは、回転軸を中心とした円の径方向を示す。具体的には、回転軸方向は図1においては左右方向であり、径方向は図1においては上下方向である。図1においては左側が、多段変速機が動力を入力する側(入力側)を示し、図1においては右側が、多段変速機が動力を出力する側(出力側)を示す。
 入力軸7および出力軸10は、ハウジング9に回転可能に支持されている。駆動源からの動力が、入力軸7に入力される。出力軸10は、多段変速機100によって変速された動力を出力する。
 多段変速機100は、複数の遊星歯車セットとして、第1遊星歯車セット1、第2遊星歯車セット2、第3遊星歯車セット3、および第4遊星歯車セット4を備えている。第1遊星歯車セット1、第2遊星歯車セット2、第3遊星歯車セット3、および第4遊星歯車セット4は、回転軸方向に沿って、この順に配置されている。詳細には、入力側から出力側に向かって、第1遊星歯車セット1、第2遊星歯車セット2、第3遊星歯車セット3、および第4遊星歯車セット4の順で配置されている。
 第1遊星歯車セット1、第2遊星歯車セット2、第3遊星歯車セット3、および第4遊星歯車セット4は、各々、サンギヤと、遊星キャリアと、リングギヤと、複数のプラネタリギヤとを有している。複数のプラネタリギヤの各々は、サンギヤに直接噛み合い、かつリングギヤに直接噛み合っている。各遊星歯車セットは、シングルピニオン式の遊星歯車セットであり、そのため遊星歯車セットの製造が容易になっている。
 サンギヤ、遊星キャリア、プラネタリギヤおよびリングギヤは、これらすべてが同時に回転する場合もあり、または、これらのいずれか1つもしくは複数が回転せず停止する場合もある。多段変速機100による変速、すなわち、入力軸7に入力された動力と出力軸10から出力される動力の回転速度の変化は、各遊星歯車セットのサンギヤとリングギヤとの歯数比に依存し、かつ、各遊星歯車セットを構成する要素同士の連結および要素の回転制動の切り替えに依存している。
 第1遊星歯車セット1は、第1サンギヤ11、複数の第1プラネタリギヤ12、第1リングギヤ13、および第1遊星キャリア14を有している。第2遊星歯車セット2は、第2サンギヤ21、複数の第2プラネタリギヤ22、第2リングギヤ23、および第2遊星キャリア24を有している。第3遊星歯車セット3は、第3サンギヤ31、複数の第3プラネタリギヤ32、第3リングギヤ33、および第3遊星キャリア34を有している。第4遊星歯車セット4は、第4サンギヤ41、複数の第4プラネタリギヤ42、第4リングギヤ43、および第4遊星キャリア44を有している。
 多段変速機100は、複数の制御要素を備えている。制御要素は、たとえば複数のクラッチおよび複数のブレーキを含んでいる。
 より具体的には、多段変速機100は、6つの制御要素を備えている。多段変速機100は、複数のクラッチとして、第1クラッチ51、第2クラッチ52、および第3クラッチ53を備えている。多段変速機100は、複数のブレーキとして、第1ブレーキ61、第2ブレーキ62、および第3ブレーキ63を備えている。6つの制御要素は、第1クラッチ51、第2クラッチ52、および第3クラッチ53と、第1ブレーキ61、第2ブレーキ62、および第3ブレーキ63とを含んでいる。
 6つの制御要素の各々は、遊星歯車セット1~4のいずれか1つまたは複数に動作可能に結合されている。6つの制御要素の各々は、ハウジング9、遊星歯車セット1~4、入力軸7または出力軸10に選択的に係合するように構成されている。6つの制御要素は、選択的に係合される。6つの制御要素の各々は、係合状態と非係合状態とを有している。6つの制御要素の各々の係合状態と非係合状態とが選択されることによって、入力軸7と出力軸10との間の異なる変速比の組が生成される。
 6つの制御要素の各々は、多段変速機100の2つの回転可能な要素を互いに連結可能、または、6つの制御要素の各々は、多段変速機100の回転可能な要素とハウジング9とを連結可能に、構成されている。
 クラッチである制御要素は、係合状態において、多段変速機100の2つの回転可能な要素を互いに連結し、当該2つの要素を一体的に回転させる。クラッチである制御要素は、非係合状態において、多段変速機100の2つの回転可能な要素の連結を遮断し、当該2つの要素を相対的に回転可能とする。
 ブレーキである制御要素は、係合状態において、多段変速機100の回転可能な要素とハウジング9とを連結し、当該要素の回転を制動する、すなわち、当該要素を回転不能な状態にする。ブレーキである制御要素は、非係合状態において、多段変速機100の回転可能な要素とハウジング9とを連結せず、当該要素を回転可能な状態にする。
 図1に示すように、第1遊星歯車セット1の第1遊星キャリア14は、入力軸7と一体的に回転するように構成されている。第2遊星歯車セット2の第2サンギヤ21は、第1遊星歯車セット1の第1リングギヤ13と一体的に回転するように構成されている。第3遊星歯車セット3の第3サンギヤ31、および第4遊星歯車セット4の第4サンギヤ41は、第2遊星歯車セット2の第2リングギヤ23と一体的に回転するように構成されている。第3遊星歯車セット3の第3遊星キャリア34と第4遊星歯車セット4の第4遊星キャリア44とは、一体的に回転するように構成されている。出力軸10は、第3遊星歯車セット3の第3遊星キャリア34および第4遊星歯車セット4の第4遊星キャリア44と一体的に回転するように、構成されている。
 第1遊星歯車セット1の第1サンギヤ11と第2遊星歯車セット2の第2遊星キャリア24とは、第1クラッチ51を介して連結されている。第1クラッチ51は、第1サンギヤ11と第2遊星キャリア24とを選択的に連結可能に構成されている。第1遊星歯車セット1の第1遊星キャリア14と第2遊星歯車セット2の第2遊星キャリア24とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2遊星キャリア24とを選択的に連結可能に構成されている。
 第1遊星歯車セット1の第1リングギヤ13および第2遊星歯車セット2の第2サンギヤ21と、第3遊星歯車セット3の第3遊星キャリア34および第4遊星歯車セット4の第4遊星キャリア44、ならびに出力軸10とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34および第4遊星キャリア44とを、選択的に連結可能に構成されている。第3クラッチ53は、第1リングギヤ13および第2サンギヤ21と、出力軸10とを、選択的に連結可能に構成されている。
 第1遊星歯車セット1の第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第3遊星歯車セット3の第3リングギヤ33は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3リングギヤ33の回転を選択的に制動可能に構成されている。第4遊星歯車セット4の第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4リングギヤ43の回転を選択的に制動可能に構成されている。
 多段変速機100の6つの制御要素が生成する、入力軸7と出力軸10との間の異なる変速比の組は、9の前進の速度段(F1~F9)と2の後進の速度段(R1~R2)とを含んでいる。図2は、第1実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図2には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。図2中の×印は、係合状態にある各クラッチまたは各ブレーキを示している。図2中に×印が付されていない各クラッチおよび各ブレーキは、非係合状態にある。
 図3は、第1実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。歯数比とは、サンギヤの歯数に対するリングギヤの歯数の比をいう。以下、各遊星歯車セット1~4の歯数比が図3に示す通りであるときの、各速度段における減速比について説明する。
 図2に示すように、多段変速機100の速度段を前進の第1速(F1)とする際は、第2クラッチ52を係合状態にし、第1遊星キャリア14と第2遊星キャリア24とを連結する。第1ブレーキ61を係合状態にし、第1サンギヤ11を回転不能とする。第3ブレーキ63を係合状態にし、第4リングギヤ43を回転不能とする。前進の第1速の減速比は、約6.87である。
 多段変速機100の速度段を前進の第1速から前進の第2速(F2)とする際は、第1ブレーキ61を非係合状態とし、第2クラッチ52と第3ブレーキ63とを係合状態に維持し、さらに、第1クラッチ51を係合状態にし、第1サンギヤ11と第2遊星キャリア24とを連結する。前進の第2速の減速比は、約5.09である。
 多段変速機100の速度段を前進の第2速から前進の第3速(F3)とする際は、第1クラッチ51を非係合状態とし、第2クラッチ52と第3ブレーキ63とを係合状態に維持し、さらに、第3クラッチ53を係合状態にし、第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34および第4遊星キャリア44とを連結する。前進の第3速の減速比は、約3.63である。
 多段変速機100の速度段を前進の第3速から前進の第4速(F4)とする際は、第3クラッチ53と第3ブレーキ63とを非係合状態とし、第2クラッチ52を係合状態に維持し、さらに、第1クラッチ51を係合状態にして第1サンギヤ11と第2遊星キャリア24とを連結し、第2ブレーキ62を係合状態にして第3リングギヤ33を回転不能とする。前進の第4速の減速比は、約2.96である。
 多段変速機100の速度段を前進の第4速から前進の第5速(F5)とする際は、第1クラッチ51を非係合状態とし、第2クラッチ52と第2ブレーキ62とを係合状態に維持し、さらに、第3クラッチ53を係合状態にし、第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34および第4遊星キャリア44とを連結する。前進の第5速の減速比は、約2.26である。
 多段変速機100の速度段を前進の第5速から前進の第6速(F6)とする際は、第2クラッチ52と第2ブレーキ62とを非係合状態とし、第3クラッチ53を係合状態に維持し、さらに、第1クラッチ51を係合状態にして第1サンギヤ11と第2遊星キャリア24とを連結し、第3ブレーキ63を係合状態にして第4リングギヤ43を回転不能とする。前進の第6速の減速比は、約1.84である。
 多段変速機100の速度段を前進の第6速から前進の第7速(F7)とする際は、第3ブレーキ63を非係合状態とし、第1クラッチ51と第3クラッチ53とを係合状態に維持し、さらに、第2ブレーキ62を係合状態にし、第3リングギヤ33を回転不能とする。前進の第7速の減速比は、約1.40である。
 多段変速機100の速度段を前進の第7速から前進の第8速(F8)とする際は、第2ブレーキ62を非係合状態とし、第1クラッチ51と第3クラッチ53とを係合状態に維持し、さらに、第2クラッチ52を係合状態にし、第1遊星キャリア14と第2遊星キャリア24とを連結する。前進の第8速の減速比は、約1.00である。
 多段変速機100の速度段を前進の第8速から前進の第9速(F9)とする際は、第1クラッチ51を非係合状態とし、第2クラッチ52と第3クラッチ53とを係合状態に維持し、さらに、第1ブレーキ61を係合状態にし、第1サンギヤ11を回転不能とする。前進の第9速の減速比は、約0.68である。
 多段変速機100の速度段を後進の第1速(R1)とする際は、第1クラッチ51を係合状態にし、第1サンギヤ11と第2遊星キャリア24とを連結する。第1ブレーキ61を係合状態にし、第1サンギヤ11を回転不能とする。第3ブレーキ63を係合状態にし、第4リングギヤ43を回転不能とする。後進の第1速の減速比は、約-6.25である。
 多段変速機100の速度段を後進の第1速から後進の第2速(R2)とする際は、第3ブレーキ63を非係合状態とし、第1クラッチ51と第1ブレーキ61とを係合状態に維持し、さらに、第2ブレーキ62を係合状態にし、第3リングギヤ33を回転不能とする。後進の第2速の減速比は、約-3.63である。
 なお、図2中に示す段間比とは、各速度段の減速比間の比を表す。詳細には、隣同士の速度段の減速比について、低速段の減速比を高速段の減速比で除した値を段間比という。総段間比とは、最低速段の減速比を最高速段の減速比で除した値をいう。本実施形態の多段変速機100は、前進9段の速度段を有している。本実施形態の多段変速機100の総段間比は、前進の第1速の減速比を、前進の第9速の減速比で除した値である。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図2に示す総段間比は10.08であり、総段間比が拡大している。前進9段の速度段の段間比は、1.23~1.47の範囲にあり、段間比のばらつきが低減されている。
 (第2実施形態)
 図4は、第2実施形態に係る多段変速機100の概略図である。図4に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。多段変速機100は、複数の遊星歯車セットとして、第1遊星歯車セット1、第2遊星歯車セット2、第3遊星歯車セット3、および第4遊星歯車セット4を備えている。第1遊星歯車セット1、第2遊星歯車セット2、第3遊星歯車セット3、および第4遊星歯車セット4は、入力側から出力側に向かって、この順で配置されている。
 第1遊星歯車セット1は、第1サンギヤ11、複数の第1プラネタリギヤ12、第1リングギヤ13、および第1遊星キャリア14を有している。第2遊星歯車セット2は、第2サンギヤ21、複数の第2プラネタリギヤ22、第2リングギヤ23、および第2遊星キャリア24を有している。第3遊星歯車セット3は、第3サンギヤ31、複数の第3プラネタリギヤ32、第3リングギヤ33、および第3遊星キャリア34を有している。第4遊星歯車セット4は、第4サンギヤ41、複数の第4プラネタリギヤ42、第4リングギヤ43、および第4遊星キャリア44を有している。
 多段変速機100は、6つの制御要素を備えている。6つの制御要素は、第1クラッチ51、第2クラッチ52、および第3クラッチ53と、第1ブレーキ61、第2ブレーキ62、および第3ブレーキ63とを含んでいる。6つの制御要素の各々は、係合状態と非係合状態とを有している。6つの制御要素の各々の係合状態と非係合状態とが選択されることによって、入力軸7と出力軸10との間の異なる変速比の組が生成される。クラッチである制御要素は、多段変速機100の2つの回転可能な要素の間に連結されている。ブレーキである制御要素は、ハウジング9に連結されている。
 図4に示すように、第1遊星歯車セット1の第1遊星キャリア14は、入力軸7と一体的に回転するように構成されている。第2遊星歯車セット2の第2サンギヤ21は、第1遊星歯車セット1の第1リングギヤ13と一体的に回転するように構成されている。第3遊星歯車セット3の第3遊星キャリア34は、第2遊星歯車セット2の第2リングギヤ23と一体的に回転するように構成されている。第4遊星歯車セット4の第4サンギヤ41は、第3遊星歯車セット3の第3サンギヤ31と一体的に回転するように構成されている。第4遊星歯車セット4の第4リングギヤ43は、第3遊星歯車セット3の第3リングギヤ33と一体的に回転するように構成されている。出力軸10は、第4遊星歯車セット4の第4遊星キャリア44と一体的に回転するように、構成されている。
 第1遊星歯車セット1の第1リングギヤ13および第2遊星歯車セット2の第2サンギヤ21と、第3遊星歯車セット3の第3サンギヤ31および第4遊星歯車セット4の第4サンギヤ41とは、第1クラッチ51を介して連結されている。第1クラッチは、第1リングギヤ13および第2サンギヤ21と第3サンギヤ31および第4サンギヤ41とを選択的に連結可能に構成されている。
 第1遊星歯車セット1の第1遊星キャリア14と第2遊星歯車セット2の第2遊星キャリア24とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2遊星キャリア24とを選択的に連結可能に構成されている。
 第2遊星歯車セット2の第2遊星キャリア24と、第3遊星歯車セット3の第3サンギヤ31および第4遊星歯車セット4の第4サンギヤ41とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第2遊星キャリア24と第3サンギヤ31および第4サンギヤ41とを、選択的に連結可能に構成されている。
 第1遊星歯車セット1の第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第2遊星歯車セット2の第2リングギヤ23および第3遊星歯車セット3の第3遊星キャリア34は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第2リングギヤ23および第3遊星キャリア34の回転を選択的に制動可能に構成されている。第3遊星歯車セット3の第3リングギヤ33および第4遊星歯車セット4の第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第3リングギヤ33および第4リングギヤ43の回転を選択的に制動可能に構成されている。
 多段変速機100の6つの制御要素が生成する、入力軸7と出力軸10との間の異なる変速比の組は、9の前進の速度段(F1~F9)と2の後進の速度段(R1~R2)とを含んでいる。図5は、第2実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図5には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。図5中の×印は、係合状態にある各クラッチまたは各ブレーキを示している。
 図6は、第2実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図6に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図5の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図5に示す総段間比は9.11であり、総段間比が拡大している。前進9段の速度段の段間比は、1.16~1.46の範囲にあり、段間比のばらつきが低減されている。
 (第3実施形態)
 図7は、第3実施形態に係る多段変速機100の概略図である。図7に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、およびハウジング9を備えている。
 図7に示すように、第1遊星キャリア14は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1リングギヤ13と一体的に回転するように構成されている。第3サンギヤ31は、第2リングギヤ23と一体的に回転するように構成されている。第4リングギヤ43は、第2リングギヤ23および第3サンギヤ31と一体的に回転するように構成されている。第4遊星キャリア44は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第3遊星キャリア34および第4遊星キャリア44と一体的に回転するように、構成されている。
 第1サンギヤ11と第2遊星キャリア24とは、第1クラッチ51を介して連結されている。第1クラッチ51は、第1サンギヤ11と第2遊星キャリア24とを選択的に連結可能に構成されている。第1遊星キャリア14と第2遊星キャリア24とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2遊星キャリア24とを選択的に連結可能に構成されている。第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34、第4遊星キャリア44および出力軸10とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34、第4遊星キャリア44および出力軸10とを、選択的に連結可能に構成されている。
 第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第3リングギヤ33は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3リングギヤ33の回転を選択的に制動可能に構成されている。第4サンギヤ41は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4サンギヤ41の回転を選択的に制動可能に構成されている。
 図8は、第3実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図8には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図9は、第3実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図9に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図8の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図8に示す総段間比は8.79であり、総段間比が拡大している。前進9段の速度段の段間比は、1.13~1.51の範囲にあり、段間比のばらつきが低減されている。
 (第4実施形態)
 図10は、第4実施形態に係る多段変速機100の概略図である。図10に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図10に示すように、第1遊星キャリア14は、入力軸7と一体的に回転するように構成されている。第2遊星キャリア24は、第1リングギヤ13と一体的に回転するように構成されている。第3サンギヤ31は、第2リングギヤ23と一体的に回転するように構成されている。第4サンギヤ41は、第1リングギヤ13および第2遊星キャリア24と一体的に回転するように構成されている。第4遊星キャリア44は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第3遊星キャリア34および第4遊星キャリア44と一体的に回転するように、構成されている。
 第1サンギヤ11と第2サンギヤ21とは、第1クラッチ51を介して連結されている。第1クラッチ51は、第1サンギヤ11と第2サンギヤ21とを選択的に連結可能に構成されている。第1遊星キャリア14と第2サンギヤ21とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2サンギヤ21とを選択的に連結可能に構成されている。第2遊星キャリア24と第3リングギヤ33とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第2遊星キャリア24と第3リングギヤ33とを選択的に連結可能に構成されている。
 第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第3リングギヤ33は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3リングギヤ33の回転を選択的に制動可能に構成されている。第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図11は、第4実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図11には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図12は、第4実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図12に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図11の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図11に示す総段間比は9.60であり、総段間比が拡大している。前進9段の速度段の段間比は、1.11~1.50の範囲にあり、段間比のばらつきが低減されている。
 (第5実施形態)
 図13は、第5実施形態に係る多段変速機100の概略図である。図13に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図13に示すように、第2サンギヤ21は、第1リングギヤ13と一体的に回転するように構成されている。第2リングギヤ23は、第1サンギヤ11と一体的に回転するように構成されている。第3遊星キャリア34は、第1リングギヤ13および第2サンギヤ21と一体的に回転するように構成されている。第4サンギヤ41は、第2遊星キャリア24と一体的に回転するように構成されている。第4リングギヤ43は、第3リングギヤ33と一体的に回転するように構成されている。出力軸10は、第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と第1サンギヤ11とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と第1サンギヤ11とを選択的に連結可能に構成されている。入力軸7と第1遊星キャリア14とは、第2クラッチ52を介して連結されている。第2クラッチ52は、入力軸7と第1遊星キャリア14とを選択的に連結可能に構成されている。第1リングギヤ13、第2サンギヤ21および第3遊星キャリア34と、第4遊星キャリア44とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1リングギヤ13、第2サンギヤ21および第3遊星キャリア34と、第4遊星キャリア44とを、選択的に連結可能に構成されている。
 第1遊星キャリア14は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1遊星キャリア14の回転を選択的に制動可能に構成されている。第3サンギヤ31は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3サンギヤ31の回転を選択的に制動可能に構成されている。第3リングギヤ33および第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第3リングギヤ33および第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図14は、第5実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図14には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図15は、第5実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図15に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図14の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図14に示す総段間比は9.74であり、総段間比が拡大している。前進9段の速度段の段間比は、1.16~1.56の範囲にあり、段間比のばらつきが低減されている。
 (第6実施形態)
 図16は、第6実施形態に係る多段変速機100の概略図である。図16に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、第2中間軸82、およびハウジング9を備えている。
 図16に示すように、第1サンギヤ11は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1リングギヤ13と一体的に回転するように構成されている。第3遊星キャリア34は、第2リングギヤ23と一体的に回転するように構成されている。第4リングギヤ43は、第2リングギヤ23および第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と、第3サンギヤ31および第4サンギヤ41とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と、第3サンギヤ31および第4サンギヤ41とを、選択的に連結可能に構成されている。入力軸7と、第3リングギヤ33とは、第2クラッチ52を介して連結されている。第2クラッチ52は、入力軸7と第3リングギヤ33とを選択的に連結可能に構成されている。第2遊星キャリア24と第3リングギヤ33とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第2遊星キャリア24と第3リングギヤ33とを、選択的に連結可能に構成されている。
 第1リングギヤ13は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1リングギヤ13の回転を選択的に制動可能に構成されている。第1遊星キャリア14は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第1遊星キャリア14の回転を選択的に制動可能に構成されている。第2遊星キャリア24は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第2遊星キャリア24の回転を選択的に制動可能に構成されている。
 図17は、第6実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図17には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図18は、第6実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図18に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図17の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図17に示す総段間比は8.87であり、総段間比が拡大している。前進9段の速度段の段間比は、1.17~1.43の範囲にあり、段間比のばらつきが低減されている。
 (第7実施形態)
 図19は、第7実施形態に係る多段変速機100の概略図である。図19に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図19に示すように、第1遊星キャリア14は、入力軸7と一体的に回転するように構成されている。第2遊星キャリア24は、第1リングギヤ13と一体的に回転するように構成されている。第3サンギヤ31は、第2リングギヤ23と一体的に回転するように構成されている。第4サンギヤ41は、第2サンギヤ21と一体的に回転するように構成されている。第4リングギヤ43は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と、第2サンギヤ21および第4サンギヤ41とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と、第2サンギヤ21および第4サンギヤ41とを、選択的に連結可能に構成されている。第1遊星キャリア14と、第2リングギヤ23および第3サンギヤ31とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と、第2リングギヤ23および第3サンギヤ31とを、選択的に連結可能に構成されている。第2遊星キャリア24と、第3遊星キャリア34および第4リングギヤ43とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第2遊星キャリア24と、第3遊星キャリア34および第4リングギヤ43とを、選択的に連結可能に構成されている。
 第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第3リングギヤ33は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3リングギヤ33の回転を選択的に制動可能に構成されている。第3遊星キャリア34および第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第3遊星キャリア34および第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図20は、第7実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図20には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図21は、第7実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図21に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図20の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図20に示す総段間比は8.37であり、総段間比が拡大している。前進9段の速度段の段間比は、1.20~1.48の範囲にあり、段間比のばらつきが低減されている。
 (第8実施形態)
 図22は、第8実施形態に係る多段変速機100の概略図である。図22に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図22に示すように、第1遊星キャリア14は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1リングギヤ13と一体的に回転するように構成されている。第3リングギヤ33は、第2リングギヤ23と一体的に回転するように構成されている。第4サンギヤ41は、第2リングギヤ23および第3リングギヤ33と一体的に回転するように構成されている。第4遊星キャリア44は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第3遊星キャリア34および第4遊星キャリア44と一体的に回転するように構成されている。
 第1サンギヤ11と第2遊星キャリア24とは、第1クラッチ51を介して連結されている。第1クラッチ51は、第1サンギヤ11と第2遊星キャリア24とを、選択的に連結可能に構成されている。第1遊星キャリア14と第2遊星キャリア24とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2遊星キャリア24とを選択的に連結可能に構成されている。第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34および第4遊星キャリア44とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1リングギヤ13および第2サンギヤ21と、第3遊星キャリア34および第4遊星キャリア44とを、選択的に連結可能に構成されている。
 第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第3サンギヤ31は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3サンギヤ31の回転を選択的に制動可能に構成されている。第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図23は、第8実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図23には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図24は、第8実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図24に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図23の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図23に示す総段間比は10.26であり、総段間比が拡大している。前進9段の速度段の段間比は、1.15~1.60の範囲にあり、段間比のばらつきが低減されている。
 (第9実施形態)
 図25は、第9実施形態に係る多段変速機100の概略図である。図25に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、第2中間軸82、およびハウジング9を備えている。
 図25に示すように、第1リングギヤ13は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1サンギヤ11と一体的に回転するように構成されている。第2リングギヤ23は、第1遊星キャリア14と一体的に回転するように構成されている。第3サンギヤ31は、第1遊星キャリア14および第2リングギヤ23と一体的に回転するように構成されている。第4リングギヤ43は、第3遊星キャリア34と一体的に回転するように構成されている。第4遊星キャリア44は、第3リングギヤ33と一体的に回転するように構成されている。出力軸10は、第3リングギヤ33および第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と、第3遊星キャリア34および第4リングギヤ43とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と、第3遊星キャリア34および第4リングギヤ43とを、選択的に連結可能に構成されている。第2遊星キャリア24と、第3リングギヤ33、第4遊星キャリア44および出力軸10とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第2遊星キャリア24と、第3リングギヤ33、第4遊星キャリア44および出力軸10とを、選択的に連結可能に構成されている。第2遊星キャリア24と第4サンギヤ41とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第2遊星キャリア24と第4サンギヤ41とを、選択的に連結可能に構成されている。
 第1サンギヤ11および第2サンギヤ21は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11および第2サンギヤ21の回転を選択的に制動可能に構成されている。第1遊星キャリア14は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第1遊星キャリア14、第2リングギヤ23および第3サンギヤ31の回転を、選択的に制動可能に構成されている。第4サンギヤ41は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4サンギヤ41の回転を選択的に制動可能に構成されている。
 図26は、第9実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図26には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図27は、第9実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図27に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図26の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図26に示す総段間比は9.22であり、総段間比が拡大している。前進9段の速度段の段間比は、1.20~1.48の範囲にあり、段間比のばらつきが低減されている。
 (第10実施形態)
 図28は、第10実施形態に係る多段変速機100の概略図である。図28に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図28に示すように、第2リングギヤ23は、第1遊星キャリア14と一体的に回転するように構成されている。第2遊星キャリア24は、第1リングギヤ13と一体的に回転するように構成されている。第3リングギヤ33は、第2サンギヤ21と一体的に回転するように構成されている。第4リングギヤ43は、第1リングギヤ13および第2遊星キャリア24と一体的に回転するように構成されている。出力軸10は、第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と第1サンギヤ11とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と第1サンギヤ11とを、選択的に連結可能に構成されている。入力軸7と第1遊星キャリア14とは、第2クラッチ52を介して連結されている。第2クラッチ52は、入力軸7と第1遊星キャリア14とを、選択的に連結可能に構成されている。第1リングギヤ13、第2遊星キャリア24および第4リングギヤ43と、第3遊星キャリア34とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1リングギヤ13、第2遊星キャリア24および第4リングギヤ43と、第3遊星キャリア34とを、選択的に連結可能に構成されている。
 第1遊星キャリア14は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1遊星キャリア14の回転を選択的に制動可能に構成されている。第3遊星キャリア34は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3遊星キャリア34の回転を選択的に制動可能に構成されている。第3サンギヤ31および第4サンギヤ41は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第3サンギヤ31および第4サンギヤ41の回転を選択的に制動可能に構成されている。
 図29は、第10実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図29には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図30は、第10実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図30に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図29の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図29に示す総段間比は8.60であり、総段間比が拡大している。前進9段の速度段の段間比は、1.17~1.53の範囲にあり、段間比のばらつきが低減されている。
 (第11実施形態)
 図31は、第11実施形態に係る多段変速機100の概略図である。図31に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、第2中間軸82、およびハウジング9を備えている。
 図31に示すように、第2サンギヤ21は、第1サンギヤ11と一体的に回転するように構成されている。第2遊星キャリア24は、第1リングギヤ13と一体的に回転するように構成されている。第3リングギヤ33は、第2リングギヤ23と一体的に回転するように構成されている。第4サンギヤ41は、第3サンギヤ31と一体的に回転するように構成されている。第4リングギヤ43は、第1リングギヤ13および第2遊星キャリア24と一体的に回転するように構成されている。出力軸10は、第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と、第1サンギヤ11および第2サンギヤ21とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と、第1サンギヤ11および第2サンギヤ21とを、選択的に連結可能に構成されている。入力軸7と第1遊星キャリア14とは、第2クラッチ52を介して連結されている。第2クラッチ52は、入力軸7と第1遊星キャリア14とを、選択的に連結可能に構成されている。第1リングギヤ13、第2遊星キャリア24および第4リングギヤ43と、第3遊星キャリア34とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1リングギヤ13、第2遊星キャリア24および第4リングギヤ43と、第3遊星キャリア34とを、選択的に連結可能に構成されている。
 第1遊星キャリア14は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1遊星キャリア14の回転を選択的に制動可能に構成されている。第3遊星キャリア34は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第3遊星キャリア34の回転を選択的に制動可能に構成されている。第3サンギヤ31および第4サンギヤ41は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第3サンギヤ31および第4サンギヤ41の回転を選択的に制動可能に構成されている。
 図32は、第11実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図32には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図33は、第11実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図33に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図32の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図32に示す総段間比は8.95であり、総段間比が拡大している。前進9段の速度段の段間比は、1.20~1.55の範囲にあり、段間比のばらつきが低減されている。
 (第12実施形態)
 図34は、第12実施形態に係る多段変速機100の概略図である。図34に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、およびハウジング9を備えている。
 図34に示すように、第2サンギヤ21は、入力軸7と一体的に回転するように構成されている。第2リングギヤ23は、第1遊星キャリア14と一体的に回転するように構成されている。第2遊星キャリア24は、第1リングギヤ13と一体的に回転するように構成されている。第3サンギヤ31は、第1リングギヤ13および第2遊星キャリア24と一体的に回転するように構成されている。第4リングギヤ43は、第3遊星キャリア34と一体的に回転するように構成されている。第4遊星キャリア44は、第3リングギヤ33と一体的に回転するように構成されている。出力軸10は、第3リングギヤ33および第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7と、第3遊星キャリア34および第4リングギヤ43とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7と、第3遊星キャリア34および第4リングギヤ43とを、選択的に連結可能に構成されている。第1遊星キャリア14および第2リングギヤ23と、第3リングギヤ33、第4遊星キャリア44および出力軸10とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14および第2リングギヤ23と、第3リングギヤ33、第4遊星キャリア44および出力軸10とを、選択的に連結可能に構成されている。第1遊星キャリア14および第2リングギヤ23と、第4サンギヤ41とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1遊星キャリア14および第2リングギヤ23と、第4サンギヤ41とを、選択的に連結可能に構成されている。
 第1サンギヤ11は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11の回転を選択的に制動可能に構成されている。第1リングギヤ13および第2遊星キャリア24は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第1リングギヤ13および第2遊星キャリア24の回転を選択的に制動可能に構成されている。第4サンギヤ41は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4サンギヤ41の回転を選択的に制動可能に構成されている。
 図35は、第12実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図35には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図36は、第12実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図36に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図35の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図35に示す総段間比は12.59であり、総段間比が拡大している。前進9段の速度段の段間比は、1.21~1.51の範囲にあり、段間比のばらつきが低減されている。
 (第13実施形態)
 図37は、第13実施形態に係る多段変速機100の概略図である。図37に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、第2中間軸82、およびハウジング9を備えている。
 図37に示すように、第1リングギヤ13は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1サンギヤ11と一体的に回転するように構成されている。第2リングギヤ23は、第1遊星キャリア14と一体的に回転するように構成されている。第3リングギヤ33は、第2遊星キャリア24と一体的に回転するように構成されている。第4サンギヤ41は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第4遊星キャリア44と一体的に回転するように構成されている。
 第1遊星キャリア14および第2リングギヤ23と、第3サンギヤ31とは、第1クラッチ51を介して連結されている。第1クラッチ51は、第1遊星キャリア14および第2リングギヤ23と、第3サンギヤ31とを、選択的に連結可能に構成されている。第1遊星キャリア14および第2リングギヤ23と、第3遊星キャリア34および第4サンギヤ41とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14および第2リングギヤ23と、第3遊星キャリア34および第4サンギヤ41とを、選択的に連結可能に構成されている。第3サンギヤ31と第4遊星キャリア44とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第3サンギヤ31と第4遊星キャリア44とを、選択的に連結可能に構成されている。
 第1サンギヤ11および第2サンギヤ21は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11および第2サンギヤ21の回転を選択的に制動可能に構成されている。第1遊星キャリア14は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第1遊星キャリア14および第2リングギヤ23の回転を、選択的に制動可能に構成されている。第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図38は、第13実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図38には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図39は、第13実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図39に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図38の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図38に示す総段間比は14.80であり、総段間比が拡大している。前進9段の速度段の段間比は、1.28~1.50の範囲にあり、段間比のばらつきが低減されている。
 (第14実施形態)
 図40は、第14実施形態に係る多段変速機100の概略図である。図40に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図40に示すように、第1リングギヤ13は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1サンギヤ11と一体的に回転するように構成されている。第3リングギヤ33は、第2リングギヤ23と一体的に回転するように構成されている。第4サンギヤ41は、第2リングギヤ23および第3リングギヤ33と一体的に回転するように構成されている。第4遊星キャリア44は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第3遊星キャリア34および第4遊星キャリア44と一体的に回転するように構成されている。
 第1遊星キャリア14と、第2リングギヤ23、第3リングギヤ33および第4サンギヤ41とは、第1クラッチ51を介して連結されている。第1クラッチ51は、第1遊星キャリア14と、第2リングギヤ23、第3リングギヤ33および第4サンギヤ41とを、選択的に連結可能に構成されている。第1遊星キャリア14と、第2遊星キャリア24とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2遊星キャリア24とを、選択的に連結可能に構成されている。第1遊星キャリア14と、第3サンギヤ31とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1遊星キャリア14と第3サンギヤ31とを、選択的に連結可能に構成されている。
 第1サンギヤ11および第2サンギヤ21は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11および第2サンギヤ21の回転を選択的に制動可能に構成されている。第2遊星キャリア24は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第2遊星キャリア24の回転を選択的に制動可能に構成されている。第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図41は、第14実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図41には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図42は、第14実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図42に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図41の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図41に示す総段間比は9.54であり、総段間比が拡大している。前進9段の速度段の段間比は、1.22~1.54の範囲にあり、段間比のばらつきが低減されている。
 (第15実施形態)
 図43は、第15実施形態に係る多段変速機100の概略図である。図43に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図43に示すように、第1サンギヤ11は、入力軸7と一体的に回転するように構成されている。第2リングギヤ23は、第1サンギヤ11と一体的に回転するように構成されている。第3遊星キャリア34は、第1遊星キャリア14および第2サンギヤ21と一体的に回転するように構成されている。第4リングギヤ43は、第1遊星キャリア14、第2サンギヤ21および第3遊星キャリア34と一体的に回転するように構成されている。第4遊星キャリア44は、第3リングギヤ33と一体的に回転するように構成されている。出力軸10は、第3リングギヤ33および第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7、第1サンギヤ11および第2リングギヤ23と、第3サンギヤ31とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7、第1サンギヤ11および第2リングギヤ23と、第3サンギヤ31とを、選択的に連結可能に構成されている。第2遊星キャリア24と第3サンギヤ31とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第2遊星キャリア24と第3サンギヤ31とを、選択的に連結可能に構成されている。第2遊星キャリア24と、第3リングギヤ33、第4遊星キャリア44および出力軸10とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第2遊星キャリア24と、第3リングギヤ33、第4遊星キャリア44および出力軸10とを、選択的に連結可能に構成されている。
 第1リングギヤ13は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1リングギヤ13の回転を選択的に制動可能に構成されている。第1遊星キャリア14は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第1遊星キャリア14の回転を選択的に連結可能に構成されている。第4サンギヤ41は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4サンギヤ41の回転を選択的に制動可能に構成されている。
 図44は、第15実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図44には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図45は、第15実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図45に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図44の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図44に示す総段間比は8.62であり、総段間比が拡大している。前進9段の速度段の段間比は、1.19~1.50の範囲にあり、段間比のばらつきが低減されている。
 (第16実施形態)
 図46は、第16実施形態に係る多段変速機100の概略図である。図46に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図46に示すように、第1リングギヤ13は、入力軸7と一体的に回転するように構成されている。第2サンギヤ21は、第1サンギヤ11と一体的に回転するように構成されている。第3遊星キャリア34は、第2リングギヤ23と一体的に回転するように構成されている。第4サンギヤ41は、第3サンギヤ31と一体的に回転するように構成されている。第4遊星キャリア44は、第3リングギヤ33と一体的に回転するように構成されている。出力軸10は、第3リングギヤ33および第4遊星キャリア44と一体的に回転するように構成されている。
 入力軸7および第1リングギヤ13と、第3サンギヤ31および第4サンギヤ41とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7および第1リングギヤ13と、第3サンギヤ31および第4サンギヤ41とを、選択的に連結可能に構成されている。第1遊星キャリア14と第2遊星キャリア24とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と第2遊星キャリア24とを、選択的に連結可能に構成されている。第1遊星キャリア14と、第3サンギヤ31および第4サンギヤ41とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1遊星キャリア14と、第3サンギヤ31および第4サンギヤ41とを、選択的に連結可能に構成されている。
 第1サンギヤ11および第2サンギヤ21は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1サンギヤ11および第2サンギヤ21の回転を選択的に制動可能に構成されている。第2遊星キャリア24は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第2遊星キャリア24の回転を選択的に制動可能に構成されている。第4リングギヤ43は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第4リングギヤ43の回転を選択的に制動可能に構成されている。
 図47は、第16実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図47には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の係合の組み合わせが示されている。
 図48は、第16実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図48に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図47の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図47に示す総段間比は9.49であり、総段間比が拡大している。前進9段の速度段の段間比は、1.22~1.57の範囲にあり、段間比のばらつきが低減されている。
 (第17実施形態)
 図49は、第17実施形態に係る多段変速機の概略図である。図49に示す多段変速機100は、複数の遊星歯車セット1~4、複数のクラッチ51~53、複数のブレーキ61~63、入力軸7、出力軸10、中間軸81、およびハウジング9を備えている。
 図49に示すように、第1サンギヤ11は、入力軸7と一体的に回転するように構成されている。第2リングギヤ23は、第1リングギヤ13と一体的に回転するように構成されている。第3リングギヤ33は、第2サンギヤ21と一体的に回転するように構成されている。第4サンギヤ41は、第2サンギヤ21および第3リングギヤ33と一体的に回転するように構成されている。第4遊星キャリア44は、第3遊星キャリア34と一体的に回転するように構成されている。出力軸10は、第4リングギヤ43と一体的に回転するように構成されている。
 入力軸7および第1サンギヤ11と、第3遊星キャリア34および第4遊星キャリア44とは、第1クラッチ51を介して連結されている。第1クラッチ51は、入力軸7および第1サンギヤ11と、第3遊星キャリア34および第4遊星キャリア44とを、選択的に連結可能に構成されている。第1遊星キャリア14と、第2サンギヤ21、第3リングギヤ33および第4サンギヤ41とは、第2クラッチ52を介して連結されている。第2クラッチ52は、第1遊星キャリア14と、第2サンギヤ21、第3リングギヤ33および第4サンギヤ41とを、選択的に連結可能に構成されている。第1遊星キャリア14と第3サンギヤ31とは、第3クラッチ53を介して連結されている。第3クラッチ53は、第1遊星キャリア14と第3サンギヤ31とを、選択的に連結可能に構成されている。
 第1リングギヤ13および第2リングギヤ23は、ハウジング9と、第1ブレーキ61を介して連結されている。第1ブレーキ61は、第1リングギヤ13および第2リングギヤ23の回転を選択的に制動可能に構成されている。第2遊星キャリア24は、ハウジング9と、第2ブレーキ62を介して連結されている。第2ブレーキ62は、第2遊星キャリア24の回転を選択的に制動可能に構成されている。第4遊星キャリア44は、ハウジング9と、第3ブレーキ63を介して連結されている。第3ブレーキ63は、第3遊星キャリア34および第4遊星キャリア44の回転を選択的に制動可能に構成されている。
 図50は、第17実施形態に係る多段変速機100の各速度段において係合される制御要素、減速比、および段間比を示す表である。図50には、第1~4遊星歯車セット1~4を用いて入力軸7と出力軸10との間で9の前進の速度段と2の後進の速度段とを確立するための、第1~3クラッチ51,52,53および第1~3ブレーキ61,62,63の組み合わせが示されている。
 図51は、第17実施形態に係る多段変速機100の各遊星歯車セット1~4における歯数比を示す表である。各遊星歯車セット1~4の歯数比が図51に示す通りであるときの、前進の第1速~第9速および後進の第1速~第2速の各速度段の減速比を、図50の表に示す。
 本実施形態の多段変速機100は、前進の速度段を9段有するとともに後進の速度段を2段有しており、多段変速機100の速度段が増加している。前進9段、後進2段の速度段を実現するために、多段変速機100は4つの遊星歯車機構と合計6つのクラッチおよびブレーキとを有しており、部品数が低減している。図50に示す総段間比は10.10であり、総段間比が拡大している。前進9段の速度段の段間比は、1.23~1.43の範囲にあり、段間比のばらつきが低減されている。
 上記の実施形態は、9の前進の速度段と2の後進の速度段とについて特定したが、上述した多段変速機は、各々、各クラッチおよび各ブレーキの図示されていない他の組み合わせの係合によって、追加または代替の速度段を特定することも可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 第1遊星歯車セット、2 第2遊星歯車セット、3 第3遊星歯車セット、4 第4遊星歯車セット、7 入力軸、9 ハウジング、10 出力軸、11 第1サンギヤ、12 第1プラネタリギヤ、13 第1リングギヤ、14 第1遊星キャリア、21 第2サンギヤ、22 第2プラネタリギヤ、23 第2リングギヤ、24 第2遊星キャリア、31 第3サンギヤ、32 第3プラネタリギヤ、33 第3リングギヤ、34 第3遊星キャリア、41 第4サンギヤ、42 第4プラネタリギヤ、43 第4リングギヤ、44 第4遊星キャリア、51 第1クラッチ、52 第2クラッチ、53 第3クラッチ、61 第1ブレーキ、62 第2ブレーキ、63 第3ブレーキ、81 中間軸、82 第2中間軸、100 多段変速機。

Claims (20)

  1.  入力軸と、
     出力軸と、
     各々がサンギヤ、遊星キャリア、リングギヤ、ならびに前記サンギヤおよび前記リングギヤに直接噛み合うプラネタリギヤを有する、第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットならびに第4遊星歯車セットと、
     前記第1遊星歯車セット、前記第2遊星歯車セット、前記第3遊星歯車セットおよび前記第4遊星歯車セットの少なくともいずれか1つに動作可能に結合された6つの制御要素とを備え、
     前記6つの制御要素の各々は、係合状態と非係合状態とを有し、前記6つの制御要素の各々の前記係合状態と前記非係合状態とが選択されることによって、前記入力軸と前記出力軸との間の異なる変速比の組が生成され、前記異なる変速比の組は、少なくとも9の前進の速度段と少なくとも2の後進の速度段とを含み、
     前記第1遊星歯車セット、前記第2遊星歯車セット、前記第3遊星歯車セットおよび前記第4遊星歯車セットは、入力側から出力側に向かってこの順で配置されており、
     前記第3遊星歯車セットの前記遊星キャリアと前記第4遊星歯車セットの前記遊星キャリアとが一体的に回転するように構成されている、多段変速機。
  2.  前記出力軸は、前記第3遊星歯車セットの前記遊星キャリアおよび前記第4遊星歯車セットの前記遊星キャリアと一体的に回転するように構成されている、請求項1に記載の多段変速機。
  3.  前記第1遊星歯車セットの前記遊星キャリアは、前記入力軸と一体的に回転するように構成されている、請求項1に記載の多段変速機。
  4.  前記6つの制御要素は、前記第1遊星歯車セットの前記遊星キャリアと前記第2遊星歯車セットの前記遊星キャリアとを連結可能に構成されたクラッチを含む、請求項1に記載の多段変速機。
  5.  前記6つの制御要素は、前記第1遊星歯車セットの前記サンギヤの回転を制動可能に構成されたブレーキを含む、請求項1に記載の多段変速機。
  6.  前記6つの制御要素は、前記第4遊星歯車セットの前記リングギヤの回転を制動可能に構成されたブレーキを含む、請求項1に記載の多段変速機。
  7.  前記第2遊星歯車セットの前記サンギヤは、前記第1遊星歯車セットの前記リングギヤと一体的に回転するように構成されている、請求項1に記載の多段変速機。
  8.  前記第3遊星歯車セットの前記サンギヤは、前記第2遊星歯車セットの前記リングギヤと一体的に回転するように構成されている、請求項1に記載の多段変速機。
  9.  前記6つの制御要素は、前記第1遊星歯車セットの前記サンギヤと前記第2遊星歯車セットの前記遊星キャリアとを連結可能に構成されたクラッチを含む、請求項1に記載の多段変速機。
  10.  前記6つの制御要素は、前記第1遊星歯車セットの前記リングギヤと前記第3遊星歯車セットの前記遊星キャリアおよび前記第4遊星歯車セットの前記遊星キャリアとを連結可能に構成されたクラッチを含む、請求項1に記載の多段変速機。
  11.  前記6つの制御要素は、前記第1遊星歯車セットの前記リングギヤと前記出力軸とを連結可能に構成されたクラッチを含む、請求項1に記載の多段変速機。
  12.  前記6つの制御要素は、前記第3遊星歯車セットの前記リングギヤの回転を制動可能に構成されたブレーキを含む、請求項1に記載の多段変速機。
  13.  前記第4遊星歯車セットの前記サンギヤは、前記第3遊星歯車セットの前記サンギヤと一体的に回転するように構成されている、請求項1に記載の多段変速機。
  14.  入力軸と、
     出力軸と、
     各々がサンギヤ、遊星キャリア、リングギヤ、ならびに前記サンギヤおよび前記リングギヤに直接噛み合うプラネタリギヤを有する、第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットならびに第4遊星歯車セットと、
     前記第1遊星歯車セット、前記第2遊星歯車セット、前記第3遊星歯車セットおよび前記第4遊星歯車セットの少なくともいずれか1つに動作可能に結合された6つの制御要素とを備え、
     前記6つの制御要素の各々は、係合状態と非係合状態とを有し、前記6つの制御要素の各々の前記係合状態と前記非係合状態とが選択されることによって、前記入力軸と前記出力軸との間の異なる変速比の組が生成され、前記異なる変速比の組は、少なくとも9の前進の速度段と少なくとも2の後進の速度段とを含み、
     前記第1遊星歯車セット、前記第2遊星歯車セット、前記第3遊星歯車セットおよび前記第4遊星歯車セットは、入力側から出力側に向かってこの順で配置されており、
     前記第3遊星歯車セットの前記リングギヤと前記第4遊星歯車セットの前記リングギヤとが一体的に回転するように構成されている、多段変速機。
  15.  前記6つの制御要素は、前記第3遊星歯車セットの前記リングギヤと前記第4遊星歯車セットの前記リングギヤとの両方の回転を制動可能に構成されたブレーキを含む、請求項14に記載の多段変速機。
  16.  前記第2遊星歯車セットの前記サンギヤは、前記第1遊星歯車セットの前記リングギヤと一体的に回転するように構成されている、請求項14に記載の多段変速機。
  17.  前記出力軸は、前記第4遊星歯車セットの前記遊星キャリアと一体的に回転するように構成されている、請求項14に記載の多段変速機。
  18.  入力軸と、
     出力軸と、
     各々がサンギヤ、遊星キャリア、リングギヤ、ならびに前記サンギヤおよび前記リングギヤに直接噛み合うプラネタリギヤを有する、第1遊星歯車セット、第2遊星歯車セット、第3遊星歯車セットならびに第4遊星歯車セットと、
     前記第1遊星歯車セット、前記第2遊星歯車セット、前記第3遊星歯車セットおよび前記第4遊星歯車セットの少なくともいずれか1つに動作可能に結合された6つの制御要素とを備え、
     前記6つの制御要素の各々は、係合状態と非係合状態とを有し、前記6つの制御要素の各々の前記係合状態と前記非係合状態とが選択されることによって、前記入力軸と前記出力軸との間の異なる変速比の組が生成され、前記異なる変速比の組は、少なくとも9の前進の速度段と少なくとも2の後進の速度段とを含み、
     前記第1遊星歯車セット、前記第2遊星歯車セット、前記第3遊星歯車セットおよび前記第4遊星歯車セットは、入力側から出力側に向かってこの順で配置されており、
     前記6つの制御要素は、前記第4遊星歯車セットの前記サンギヤの回転を制動可能に構成されたブレーキを含む、多段変速機。
  19.  前記6つの制御要素は、前記第1遊星歯車セットの前記サンギヤの回転を制動可能に構成された他のブレーキを含む、請求項18に記載の多段変速機。
  20.  前記第4遊星歯車セットの前記遊星キャリアは、前記第3遊星歯車セットの前記遊星キャリアと一体的に回転するように構成されている、請求項18に記載の多段変速機。
PCT/JP2017/010400 2017-03-15 2017-03-15 多段変速機 WO2018167872A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010400 WO2018167872A1 (ja) 2017-03-15 2017-03-15 多段変速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010400 WO2018167872A1 (ja) 2017-03-15 2017-03-15 多段変速機

Publications (1)

Publication Number Publication Date
WO2018167872A1 true WO2018167872A1 (ja) 2018-09-20

Family

ID=63523963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010400 WO2018167872A1 (ja) 2017-03-15 2017-03-15 多段変速機

Country Status (1)

Country Link
WO (1) WO2018167872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005764A (zh) * 2019-04-25 2019-07-12 湖北星星电驱动有限公司 一种两档变速式电驱动桥

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124462A1 (en) * 2009-11-25 2011-05-26 Caterpillar, Inc. Multi-Speed Transmission
JP2016037978A (ja) * 2014-08-05 2016-03-22 株式会社小松製作所 遊星歯車式変速機
JP2016514813A (ja) * 2013-03-27 2016-05-23 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 自動車用変速機
JP2016517932A (ja) * 2013-03-27 2016-06-20 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 自動車用変速機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124462A1 (en) * 2009-11-25 2011-05-26 Caterpillar, Inc. Multi-Speed Transmission
JP2016514813A (ja) * 2013-03-27 2016-05-23 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 自動車用変速機
JP2016517932A (ja) * 2013-03-27 2016-06-20 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 自動車用変速機
JP2016037978A (ja) * 2014-08-05 2016-03-22 株式会社小松製作所 遊星歯車式変速機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005764A (zh) * 2019-04-25 2019-07-12 湖北星星电驱动有限公司 一种两档变速式电驱动桥

Similar Documents

Publication Publication Date Title
JP5876887B2 (ja) 遊星歯車式多段変速機
JP5964035B2 (ja) 車両用変速機
JP5204098B2 (ja) 変速機
CN110832225B (zh) 用于机动车电动动力传动设备的传动装置以及机动车用电动动力传动设备
WO2013146247A1 (ja) 自動変速機
WO2013146031A1 (ja) 自動変速機装置
WO2015011953A1 (ja) 自動変速機装置
JP2013072464A (ja) 自動変速機装置
WO2015108017A1 (ja) 自動変速機
US20180163825A1 (en) Planetary gear train of automatic transmission for vehicle
WO2018167872A1 (ja) 多段変速機
WO2016021293A1 (ja) 遊星歯車式変速機
JP2003194160A (ja) 車両用遊星歯車式多段変速機
JP2005042882A (ja) 車両用遊星歯車式多段変速機
WO2017134950A1 (ja) 遊星歯車式変速機
WO2016108294A1 (ja) 遊星歯車式変速機
JP4254413B2 (ja) 車両用遊星歯車式多段変速機
WO2022255011A1 (ja) 多段変速機
JP4333262B2 (ja) 車両用遊星歯車式多段変速機
JP2017137890A (ja) 遊星歯車式変速機
JP2009156297A (ja) 車両用自動変速機
WO2023079886A1 (ja) 多段変速機
WO2024180969A1 (ja) 多段変速機
JP2017053388A (ja) 自動変速機
JP4760796B2 (ja) 車両用自動変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP