WO2018074119A1 - 集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法 - Google Patents

集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法 Download PDF

Info

Publication number
WO2018074119A1
WO2018074119A1 PCT/JP2017/033393 JP2017033393W WO2018074119A1 WO 2018074119 A1 WO2018074119 A1 WO 2018074119A1 JP 2017033393 W JP2017033393 W JP 2017033393W WO 2018074119 A1 WO2018074119 A1 WO 2018074119A1
Authority
WO
WIPO (PCT)
Prior art keywords
edmg
radio station
ppdu
station apparatus
legacy
Prior art date
Application number
PCT/JP2017/033393
Other languages
English (en)
French (fr)
Inventor
坂本 剛憲
誠隆 入江
裕幸 本塚
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201780061821.8A priority Critical patent/CN109804611B/zh
Priority to EP17862482.1A priority patent/EP3531665B1/en
Priority to JP2018546194A priority patent/JP6892456B2/ja
Publication of WO2018074119A1 publication Critical patent/WO2018074119A1/ja
Priority to US16/366,338 priority patent/US10917936B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/009Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location arrangements specific to transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to wireless communication, and more specifically, relates to an apparatus and method for configuring and communicating an aggregated PPDU (PLCP Protocol Data Unit (physical layer convergence protocol data unit)) in a wireless communication system.
  • PPDU Physical layer convergence protocol data unit
  • Wireless HD Hi-Definition
  • WiGig Another wireless communication technology for processing in the 60 GHz band is the WiGig technology, which has been standardized as IEEE 802.11ad standard by IEEE (Institut of Electrical and Electronic Engineers (American Institute of Electrical and Electronics Engineers)).
  • WiGig technology can provide a physical layer data transmission rate of up to 6.7 Gbps by using a standard bandwidth of 2.16 GHz.
  • the WiGig technology supports both SC (Single Carrier) modulation and OFDM (Orthogonal Frequency Division Multiplexing) modulation.
  • A-PPDU aggregated physical layer convergence protocol data unit
  • IFS Inter-frame Spacing (frame interval time)
  • preamble between two or more PPDUs.
  • A-MPDU Aggregate-MPDU (MAC (Protocol Data Unit)) is used for each PPDU constituting the A-PPDU.
  • the IEEE 802.11ay task group maintains backward compatibility with existing (ie, legacy) WiGig technology, and uses MIMO technology and channel bonding technology as the next generation (EDMG (Enhanced Multi-Gigabit)) WiGig technology.
  • the combination aims to realize a physical layer data transmission rate of several tens of Gbps (see Non-Patent Document 2).
  • EDMG A-PPDU a technology that transmits without providing IFS or preamble between two or more EDMG PPDUs.
  • EDMG A-PPDU a technology that transmits without providing IFS or preamble between two or more EDMG PPDUs.
  • how to define an access control method capable of maintaining backward compatibility with legacy WiGig devices in communication using EDMG A-PPDU is not considered.
  • Non-limiting examples of the present disclosure include aggregate physics including a legacy STF, a legacy CEF, a legacy header field, a non-legacy STF and a non-legacy CEF, a plurality of non-legacy header fields, and a plurality of data fields.
  • A-PPDU layer convergence protocol data unit
  • a PPDU generation unit that sets a field to 0, a signal processing unit that configures the A-PPDU below the nominal data field length, and a transmission unit that transmits the configured A-PPDU.
  • the upper data field length is the same as that of the non-legacy STF. Is the sum over time of the non-legacy CEF and the plurality of non-legacy header field and the plurality of data fields, contribute to providing a communication device.
  • the figure which shows an example of the process at the time of the normal reception of the transmission source EDMG radio station apparatus and the destination EDMG radio station apparatus in communication using EDMG PPDU assumed in the present disclosure The figure which shows an example of the process at the time of the FCS error generation
  • production in EDMG-Header-A of the transmission source EDMG radio station apparatus and the destination EDMG radio station apparatus in communication using EDMG PPDU assumed in the present disclosure The figure which shows an example of the process at the time of normal reception of the transmission source EDMG radio station apparatus and the non-destination EDMG radio station apparatus in the communication using EDMG PPDU assumed in the present disclosure
  • FIG. 1 is a diagram illustrating an example of processing of a transmission source EDMG wireless station apparatus 9000 and a destination EDMG wireless station apparatus 9100 in communication using EDMG PPDU assumed in the present disclosure.
  • the transmission source EDMG radio station apparatus 9000 transmits EDMGPDUPPDU 9099 to the destination EDMG radio station apparatus 9100.
  • EDMG PPDU9099 includes L-STF9001, L-CEF9002, L-Header9003, EDMG-Header-A9004, EDMG-STF9005, EDMG-CEF9006 and DATA9007.
  • EDMG-STF 9005 and EDMG-CEF 9006 are fields that exist when EDMG PPDU 9099 is transmitted using MIMO technology or channel bonding technology.
  • the transmission source EDMG radio station apparatus 9000 performs the following processing in transmission of EDMG PPDU 9099.
  • the transmission source EDMG radio station device 9000 considers that a legacy radio station device (not shown) does not support EDMG PPDU, that is, the legacy radio station device interprets the fields after EDMG-Header-A9004 as data fields.
  • the Legacy radio station apparatus processes the EDMG PPDU 9099 as a general Legacy PPDU.
  • the transmission source EDMG radio station device 9000 uses the octet size D1 based on a predetermined calculation method for the field length L1 time on the radio channel of the field combining EDMG-Header-A9004, EDMG-STF9005, EDMG-CEF9006, and DATA9007. And set in the Length field of the L-Header 9003.
  • the Legacy radio station apparatus can process a field combining EDMG-Header-A9004, EDMGEDSTF9005, EDMG-CEF9006, and DATA9007 as a nominal data field.
  • the transmission source EDMG radio station device 9000 sets the EDMG Indication field in the L-Header 9003 and sets it to 1 in order to indicate that EDMGMGHeader-A9004 exists in the EDMG PPDU 9099.
  • the transmission source EDMG radio station apparatus 9000 provides a Length field in EDMG-Header-A9004 and sets the octet size E1 of DATA9007.
  • the destination EDMG radio station apparatus 9100 performs the following processing on the received EDMG PPDU 9099.
  • the destination EDMG radio station apparatus 9100 performs synchronization processing 9101 using the L-STF 9001.
  • the destination EDMG radio station apparatus 9100 performs channel estimation (CE) 9102 using L-CEF9002. Destination EDMG radio station apparatus 9100 can use this channel estimation result for field equalization processing after L-Header 9003.
  • CE channel estimation
  • the destination EDMG radio station apparatus 9100 decodes 9103 the L-Header 9003. If no error is detected by HCS (Header Check Sequence) in the decode 9103, the destination EDMG radio station apparatus 9100 knows that EDMG-Header-A9004 exists in EDMG PPDU 9099. Further, since the destination EDMG radio station apparatus 9100 knows that the nominal data field size for the Legacy radio station apparatus is D1 octets, it converts D1 into the nominal data field length L1 by a predetermined calculation method, Set virtual CCA (Clear Channel Assessment) busy for L1 hour.
  • the virtual CCA is a function that virtually determines that the radio channel usage is busy based on the nominal data field length.
  • the destination EDMG radio station apparatus 9100 decodes 9104 EDMG-Header-A9004. If no error is detected by the HCS in the decode 9104, the destination EDMG radio station apparatus 9100 knows that the size of the DATA 9007 is E3 octets.
  • the destination EDMG radio station apparatus 9100 performs re-synchronization processing 9105 using EDMG-STF 9005.
  • the destination EDMG radio station apparatus 9100 performs re-channel estimation (re-CE) 9106 using EDMG-CEF9006 in order to equalize the data field transmitted using MIMO technology or channel bonding technology.
  • re-CE re-channel estimation
  • the destination EDMG radio station apparatus 9100 decodes 9107 data 9007 according to the setting value (E1) of the Length field of EDMG-Header-A9004.
  • the destination EDMG radio station 9100 waits for SIFS and then sends a block Ack (BA) 9108 to the source. It transmits to the EDMG radio station apparatus 9000.
  • BA block Ack
  • the transmission source EDMG radio station apparatus 9000 When the transmission source EDMG radio station apparatus 9000 normally receives the BA 9108, the transmission source EDMG radio station apparatus 9000 waits for the DIFS time to obtain the right to transmit the next packet, and then starts the back-off control 9008.
  • destination EDMG radio station apparatus 9100 When destination EDMG radio station apparatus 9100 detects an error by FCS (Frame ⁇ ⁇ ⁇ ⁇ Check Sequence) for all MPDUs in decode 9107 (see FIG. 2), or when an error is detected by HCS in decode 9104 (see FIG. 3). That is, when an error is detected in EDMG-Header-A9004, it is difficult for destination EDMG radio station apparatus 9100 to normally receive DATA 9007 because the size of the data field is unknown, and destination EDMG radio station apparatus 9100 , BA9108 may not be transmitted.
  • FCS Full ⁇ ⁇ ⁇ ⁇ ⁇ Check Sequence
  • the source EDMG radio station apparatus 9000 does not receive the BA 9108 within PIFS (Point IFS) after completing transmission of the EDMG PPDU 9099, and therefore determines that the EDMG PPDU 9099 did not reach the destination EDMG radio station apparatus 9100 normally.
  • EDMG PPDU 9099 is retransmitted 9009.
  • the transmission source EDMG wireless station 9000 waits for the SIFS time from completion of reception of the BA 9108 or waits for the DIFS time, and then performs back-off control. Resend after going.
  • back-off control means that when a wireless channel is released, the wireless stations that have been waiting while the wireless channel is in use start transmission all at once, so there is an extremely high probability that packets will collide on the wireless channel.
  • random number is generated after the radio channel is released in each radio station, and transmission is waited for according to the generated random number.
  • FIG. 4 is a diagram illustrating an example of processing of the transmission source EDMG wireless station apparatus 9000 and the non-destination EDMG wireless station apparatus 9200 in communication using EDMG PPDU assumed in the present disclosure.
  • the transmission source EDMG radio station apparatus 9000 transmits EDMG90PPDU 9099 to the destination EDMG radio station apparatus 9100 in FIG. 1 and normally receives BA 9108 from the destination EDMG radio station apparatus 9100, and the non-destination EDMG radio station apparatus Assume that 9200 is not a destination station device of EDMG PPDU 9099 but is in an environment where EDMG PPDU 9099 can be received.
  • the non-destination EDMG radio station apparatus 9200 performs the same processing as the destination EDMG radio station apparatus 9100 of FIG. 1 on the received EDMG PPDU 9099, but the processing after the decode 9207 is different from the destination EDMG radio station apparatus 9100. Specifically, if the non-destination EDMG radio station apparatus 9200 does not detect an error by FCS for one or more MPDUs in the decode 9207, it can be seen that EDMG PPDU 9099 is not addressed to the local station apparatus.
  • NAV Network Allocation Vector
  • the non-destination EDMG radio station apparatus 9200 starts backoff control 9209 after waiting for a DIFS time in order to obtain the right to transmit a packet.
  • the non-destination EDMG radio station apparatus 9200 If the non-destination EDMG radio station apparatus 9200 detects an error by FCS in all MPDUs in the decode 9207 (see FIG. 5) or detects an error by HCS in the decode 9204 (see FIG. 6), the non-destination EDMG The radio station apparatus 9200 starts backoff control 9209 after waiting for an EIFS (Extended ⁇ ⁇ ⁇ IFS) time after the physical CCA or virtual CCA changes from busy to idle.
  • EIFS Extended ⁇ ⁇ ⁇ IFS
  • EISF SIFS + BA9108 time on radio channel + DIFS.
  • FIG. 7 is a diagram illustrating an example of processing of the transmission source EDMG wireless station device 9000 and the Legacy wireless station device 9400 in communication using EDMG PPDU assumed in the present disclosure.
  • the transmission source EDMG radio station apparatus 9000 transmits EDMG PPDU 9099 to the destination EDMG radio station apparatus 9100 in FIG. 1 and normally receives BA 9108 from the destination EDMG radio station apparatus 9100, and the EDMG radio station apparatus 9400 , EDMG PPDU 9099 is not the destination station device, but it is in an environment where EDMG PPDU 9099 can be received.
  • Legacy radio station apparatus 9400 does not support EDMG PPDU, and therefore receives EDMG PPDU 9099 as a general Legacy PPDU. That is, Legacy STA 9400 decodes 9403 L-Header 9003 following synchronization processing 9401 and channel estimation (CE) 9402. When no error is detected by the HCS in the decode 9403, the Legacy radio station apparatus 9400 can know the size D1 of the nominal data field from the Length field.
  • the Legacy radio station apparatus 9400 decodes 9404 a field after EDMG-Header-A9004 as a data field having a size of D1 octets.
  • Legacy radio station apparatus 9400 decodes EDMG-Header-A9004, EDMG-STF9005, and EDMG-CEF9006 in addition to DATA9007, which is the original data field, so that there is a high possibility of detecting errors by FCS in all MPDUs.
  • the Legacy radio station apparatus 9400 starts the back-off control 9405 after waiting for the EIFS time after the physical CCA or virtual CCA changes from busy to idle.
  • FIG. 8 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and processing in the destination EDMG radio station apparatus 2000 in communication using EDMG A-PPDU according to the first embodiment.
  • Source EDMG radio station apparatus 1000 transmits EDMG A-PPDU 1400 to destination EDMG radio station apparatus 2000.
  • the EDMG A-PPDU 1400 includes a first EDMG PPDU 1100, a second EDMG PPDU 1200, and a third EDMG PPDU 1300.
  • the first EDMG PPDU 1100 includes L-STF 1101, L-CEF 1102, L-Header 1103, EDMG-Header-A 1104, EDMG-STF 1105, EDMG-CEF 1106, and DATA 1107.
  • the second EDMG PPDU 1200 includes EDMG-Header-A1201 and DATA1202.
  • the third EDMG PPDU 1300 includes EDMG-Header-A 1301 and DATA 1302.
  • the transmission source EDMG radio station apparatus 1000 performs the following processing in transmission of the EDMG A-PPDU 1400.
  • the transmission source EDMG radio station apparatus 1000 considers that the Legacy radio station apparatus (not shown) does not support EDMG PPDU and EDMG A-PPDU, and sets the EDMG A-PPDU 1400 as a single Legacy PPDU in the Legacy radio station device. In order to process, the AdditionalAddPPDU field of L-Header 1103 is set to 0.
  • the transmission source EDMG radio station apparatus 1000 is on the radio channel of the field combining EDMG-Header-A1104, EDMG-STF1105, EDMG-CEF1106, DATA1107, EDMG-Header-A1201, DATA1202, EDMG-Header-A1301, and DATA1302.
  • an arbitrary time L2 that is equal to or greater than the total field length is determined as the nominal data field length.
  • the transmission source EDMG radio station apparatus 1000 converts the nominal data field length L2 into a nominal data octet size D2 based on a predetermined calculation method, and sets it in the Length field of the L-Header 1103.
  • the transmission source EDMG radio station apparatus 1000 does not newly connect and transmit EDMGPDUPPDU for a time exceeding the nominal data field length L2.
  • the transmission source EDMG radio station apparatus 1000 can inform the legacy radio station apparatus of the nominal data octet size D2.
  • the source EDMG radio station apparatus 1000 sets the octet size E2 of DATA 1107 in the Length field of EDMG-Header-A 1104, sets the octet size E3 of DATA 1202 in the Length field of EDMG-Header-A 1201, and sets the octet size E4 of DATA 1302 Is set in the Length field of EDMG-Header-A1301.
  • the transmission source EDMG radio station apparatus 1000 sets the EDMG Indication field of the L-Header 1003 to 1 to indicate that EDMG-Header-A exists in each EDMG PPDU constituting the EDMG A-PPDU 1400.
  • the transmission source EDMG radio station apparatus 1000 includes EDMG-Header-A1104, 1201 and EMDG-Header-A1301 to indicate that the first EDMGEDPPDU 1100, the second EDMG PPDU 1200, and the third EDMG PPDU 1300 are connected. Is provided with an Additional PPDU field, the Additional PPDU field of EDMG-Header-A1104, 1201 is set to 1, and the Additional PPDU field of EDMG-Header-A1301 is set to 0.
  • the destination EDMG radio station apparatus 2000 performs the following processing on the received EDMG A-PPDU 1400.
  • the destination EDMG radio station apparatus 2000 performs synchronization processing 2001 using the L-STF 1101.
  • the destination EDMG radio station apparatus 2000 performs channel estimation (CE) 2002 using L-CEF1102. Destination EDMG radio station apparatus 2000 can use the channel estimation result for field equalization processing after L-Header 1103.
  • CE channel estimation
  • the destination EDMG radio station apparatus 2000 performs the decoding process 2003 of the L-Header 1103. If no error is detected by the HCS in the decode 2003, the destination EDMG radio station apparatus 2000 determines that EDMG Header-A 1104 exists in the EDMG A-PPDU 1400, and acquires the nominal data field size D2 octets for the Legacy radio station device. . Therefore, destination EDMG radio station apparatus 2000 converts nominal data field size D2 to nominal data field length L2 by a predetermined calculation method, and sets virtual CCA busy for L2 time.
  • the destination EDMG radio station apparatus 2000 decodes EDMG-Header-A 1104 2004. If no error is detected by the HCS in the decode 2004, the destination EDMG radio station apparatus 2000 determines that the second EDMG PPDU 1200 follows the first EDMG PPDU 1100, and acquires the size E2 octets of the DATA 1107.
  • the destination EDMG wireless station apparatus 2000 performs resynchronization processing 2005 using the EDMG-STF 1105.
  • the destination EDMG radio station apparatus 2000 performs re-channel estimation (re-CE) processing 2006 using the EDMG-CEF 1106.
  • re-CE re-channel estimation
  • the destination EDMG radio station apparatus 2000 performs the decoding process 2007 of DATA 1107 according to the setting value (E2) of the Length field of EDMG-Header-A1104.
  • the destination EDMG radio station apparatus 2000 performs the decoding process 2008 of the EDMG-Header-A 1201 in order to recognize the presence of the second EDMG ⁇ PPDU 1200 from the result of the decoding process 2004. If no error is detected by the HCS in the decoding process 2008, the destination EDMG wireless station apparatus 2000 recognizes that the third EDMG PPDU 1300 exists after the second EDMG PPDU 1200.
  • the destination EDMG radio station apparatus 2000 performs the decoding process 2009 of DATA 1202 according to the setting value (E3) of the Length field of EDMG-Header-A1202.
  • the decoding process 2010 of the EDMG-Header-A1301 is performed. If no error is detected by the HCS in the decoding process 2010, the destination EDMG radio station apparatus 2000 recognizes that there is no additional EDMG PPDU after the third EDMG PPDU 1300.
  • destination EDMG radio station apparatus 2000 decodes DATA 1302 in accordance with the setting value (E4) of the Length field of EDMG-Header-A1301 2011.
  • Ack (BA) 2012 is transmitted to transmission source EDMG radio station apparatus 1000.
  • the transmission source EDMG radio station apparatus 1000 normally receives the BA 2012, and then waits for a DIFS time to transmit the next packet, and then starts the back-off control 1500.
  • the transmission source EDMG radio station apparatus 1000 starts receiving the BA2012. After waiting for the SIFS time, the MPDU that was not normally received is retransmitted, or after waiting for the DIFS time and performing the back-off control 1500, the MPDU that was not normally received is retransmitted.
  • the destination EDMG radio station apparatus 2000 When the destination EDMG radio station apparatus 2000 detects an error by FCS in all the MPDUs of the decoding processes 2007, 2008, and 2011 (see FIG. 9) or when an error is detected by the HCS in the decoding process 2004, the destination EDMG The radio station apparatus 2000 does not transmit BA2012. If an error is detected in EDMG-Header-A 1104 of first EDMG PPDU 1100 arranged at the head, destination EDMG radio station apparatus 2000 does not normally receive DATA 1107, 1202, and 1302 (see FIG. 10).
  • the source EDMG radio station apparatus 1000 does not receive the BA 2012 within the PIFS time after the nominal data field length L2 ends, so that the EDMG A-PPDU 1400 has not normally reached the destination EDMG radio station apparatus 2000. Judgment is performed, and EDMG A-PPDU 1400 is retransmitted 1600.
  • FIG. 11 shows the fields transmitted and executed by the transmission source EDMG radio station apparatus 1000 and the fields transmitted and executed by the non-destination EDMG radio station apparatus 3000 in communication using EDMG A-PPDU according to the first embodiment. It is a figure which shows an example.
  • the transmission source EDMG radio station apparatus 1000 in FIG. 11 transmits EDMG ⁇ A-PPDU 1400 to the destination EDMG radio station apparatus 2000 in FIG. 8 and normally receives the BA 2012 from the destination EDMG radio station apparatus 2000, and the non-destination in FIG.
  • the EDMG radio station apparatus 3000 is not a destination station apparatus of the EDMG A-PPDU 1400 in FIG. 11 but exists in an environment where the EDMG A-PPDU 1400 can be received.
  • the non-destination EDMG radio station apparatus 3000 in FIG. 11 performs the same processing as the destination EDMG radio station apparatus 2000 in FIG. 8 on the received EDMG A-PPDU 1400, but the processing subsequent to the decoding process 3011 in FIG. Different from the destination EDMG radio station apparatus 2000.
  • the destination of the EDMG A-PPDU 1400 is the non-destination EDMG radio station apparatus.
  • the NAV 3012 is set, and after the NAV 3012 is finished, the DIFS time is waited and the back-off control 3013 is started.
  • non-destination EDMG radio station apparatus 3000 When non-destination EDMG radio station apparatus 3000 detects an error by FCS in all MPDUs obtained by decoding processes 3007, 3009, and 3011 (see FIG. 12), or when an error is detected by HCS in decoding process 3004 (see FIG. 12). The non-destination EDMG radio station apparatus 3000 waits for an EIFS time after the virtual CCA changes from busy to idle, and starts the backoff control 3013.
  • FIG. 14 shows fields transmitted by the transmission source EDMG radio station apparatus 1000 in communication using EDMG A-PPDU according to the first embodiment, processing to be executed, and execution of the EDMG radio station device 4000 that does not support EDMG A-PPDU. It is a figure which shows an example of the process to perform. 14 transmits EDMG A-PPDU 1400 to destination EDMG radio station device 2000 in FIG. 8 and normally receives BA 2012, and EDMG A-PPDU incompatible EDMG radio station device in FIG. 14. 4000 is not a destination station device of EDMG A-PPDU 1400, but exists in an environment where EDMG A-PPDU 1400 can be received.
  • EDMGMGA-PPDU non-compliant EDMG wireless station device 4000 does not support EDMG A-PPDU, so executes decoding process 4007 up to DATA 1107 and does not execute the decoding process of fields after EDMG-Header-A1201. If the EDMG A-PPDU non-compliant EDMG wireless station device 4000 does not detect an error by FCS in one or more MPDUs obtained by the decoding process 4007, the destination of the EDMG A-PPDU 1400 is EDMG A-PPDU non-compliant EDMG After determining that the wireless station device is not the wireless station device 4000 and changing the virtual CCA from busy to idle, the NAV 4008 is set. After the NAV 4008 is finished, the DIFS time is waited and the back-off control 4009 is started.
  • EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 When EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 detects an error by FCS for all MPDUs obtained by decoding process 4007 (see FIG. 15), or when an error is detected by HCS in decoding process 4004 (See FIG. 16), EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 waits for EIFS time after virtual CCA changes from busy to idle, and starts backoff control 4009.
  • FIG. 17 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and a process to be executed and a process executed by the Legacy radio station apparatus 5000 in communication using EDMG A-PPDU according to the first embodiment. .
  • the transmission source EDMG radio station apparatus 1000 in FIG. 17 transmits EDMG ⁇ A-PPDU 1400 to the destination EDMG radio station apparatus 2000 in FIG. 8 and normally receives BA 2012, and the Legacy radio station apparatus 5000 in FIG. Although it is not the destination station apparatus of PPDU 1400, it exists in an environment where EDMG A-PPDU 1400 can be received.
  • the Legacy radio station device 5000 Since the Legacy radio station device 5000 does not support EDMG A-PPDU, it processes the received EDMG A-PPDU 1400 as a general Legacy PPDU. That is, the Legacy radio station apparatus 5000 executes a decoding process 5003 of the L-Header 1103 following the synchronization process 5001 and the channel estimation (CE) process 5002. If no error is detected by the HCS in the decoding process 5003, the Legacy radio station apparatus 5000 considers the EDMG A-PPDU 1400 as a single Legacy PPDU based on the Additional PPDU field set to 0, and further nominally from the Length field. Recognize the data field size D2.
  • the Legacy radio station apparatus 5000 executes a decoding process 5004 with the fields after EDMG-Header-A1104 as a data field having a size of D2 octets.
  • Legacy radio station apparatus 5000 detects an error by FCS for all MPDUs in decoding process 5004.
  • the Legacy radio station device 5000 calculates the data field length L2 time on the radio channel from the octet size D2 of the nominal data field, and the virtual CCA After changing from busy to idle, EIFS time is waited and backoff control 5005 is started.
  • the back-off control start timings of the EDMG radio station apparatus and the Legacy radio station apparatus can be aligned, and transmission opportunities can be given equally to the respective radio station apparatuses.
  • FIG. 18 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the destination EDMG radio station apparatus 2000 in the communication using the EDMG A-PPDU according to the second embodiment, and a process executed by the field. This corresponds to FIG.
  • the same parts as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • the destination EDMG radio station apparatus 2000 waits for the SIFS time after the virtual CCA changes from busy to idle, transmits BA 2012 to the transmission source EDMG radio station apparatus 1000, and the transmission source EDMG radio station apparatus 1000 transmits the BA 2012.
  • the destination EDMG radio station apparatus 2000 waits for the SIFS time and transmits BA 2012 after the physical CCA changes from busy to idle. Then, the transmission source EDMG radio station apparatus 1000 normally receives the BA 2012, waits for the SIFS time, and starts the back-off control 1500. That is, the transmission timing of the block Ack of the EDMF radio station apparatus 2000 that is the receiving station apparatus is different from that of the first embodiment.
  • transmission source EDMG radio station apparatus 1000 receives BA2012, and SIFS After waiting for a time, a packet including an MPDU that has not been normally received is retransmitted, or after waiting for a DIFS time and performing backoff control, a packet including an MPDU that has not been normally received is retransmitted.
  • destination EDMG radio station apparatus 2000 When destination EDMG radio station apparatus 2000 detects an error by FCS in all MPDUs obtained by decoding processes 2007, 2008, and 2011 (see FIG. 19), or when an error is detected by HCS in decoding process 2004 (see FIG. 19). 20), the destination EDMG radio station apparatus 2000 does not transmit the BA 2012. In this case, the transmission source EDMG radio station apparatus 1000 does not receive the BA 2012 within the PIFS time from the completion of transmission of the EDMG A-PPDU 1400, so it is determined that the EDMG A-PPDU 1400 has not successfully reached the destination EDMG radio station apparatus 2000, and EDMG A retransmission process 1600 of the A-PPDU 1400 is executed.
  • FIG. 21 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the non-destination EDMG radio station apparatus 3000 and processing performed in communication using EDMGEDA-PPDU according to the second embodiment. This corresponds to FIG. 11 of the first embodiment.
  • the same parts as those in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted.
  • the non-destination EDMG radio station apparatus 3000 sets the NAV 3012 after the busy virtual CCA changes to idle during the nominal data field length L2, waits for the DIFS time after the NAV 3012 ends,
  • the non-destination EDMG radio station apparatus 3000 sets the NAV 3012 after the physical CCA changes from busy to idle in the middle of the nominal data field length L2 in FIG.
  • the DIFS time back-off control 3013 is started.
  • the non-destination EDMG radio station apparatus 3000 When the non-destination EDMG radio station apparatus 3000 detects an error by FCS in all MPDUs obtained by the decoding processes 3007, 3009, and 3011 (see FIG. 22), or when an error is detected by HCS in the decode 3004 (The non-destination EDMG radio station apparatus 3000 waits for an EIFS time after the physical CCA changes from busy to idle, and starts backoff control 3013.
  • FIG. 24 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and an EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 in communication using EDMG A-PPDU according to the second embodiment and processing to be executed. This corresponds to FIG. 14 of the first embodiment.
  • the same parts as those in FIG. 14 are denoted by the same reference numerals, and description thereof will be omitted.
  • the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 sets the NAV 4008 after the busy virtual CCA changes to idle during the nominal data field length L2, and after the NAV 4008 ends, the DIFS time
  • the EDMG wireless station device 4000 that does not support EDMG ⁇ A-PPDU changes the physical CCA from busy to idle in the middle of the nominal data field length L2.
  • the NAV 4008 is set, and after the NAV 4008 ends, the DIFS time is waited and the back-off control 4009 is started.
  • EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 When EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 detects an error by FCS for all MPDUs obtained by decoding 4007 (see FIG. 25), or when an error is detected by HCS at decoding 4004 (see FIG. 25). 26), EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 waits for EIFS time after physical CCA changes from busy to idle, and starts backoff control 4009.
  • FIG. 27 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the Legacy radio station apparatus 5000 and processing to be executed in communication using EDMG A-PPDU according to the second embodiment. This corresponds to FIG.
  • the same parts as those in FIG. 17 are denoted by the same reference numerals, and description thereof will be omitted.
  • the destination EDMG radio station device 2000 does not change the EDMG A-
  • the BA 2012 can be transmitted without being interrupted by another radio station apparatus after the reception of the PPDU 1400 is completed.
  • FIG. 28 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the destination EDMG radio station apparatus 2000 and processing to be executed in communication using the EDMG A-PPDU according to the third embodiment. This corresponds to FIG.
  • the same parts as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • the transmission source EDMG radio station apparatus 1000 has a field length equal to or greater than the total of EDMG-Header-A 1104, EDMG-STF 1105, EDMG-CEF 1106, DATA 1107, EDMG-Header-A 1201, DATA 1202, EDMG-Header-A 1301, and DATA 1302. Is converted into an octet size D2 based on a predetermined calculation method and set in the Length field of the L-Header 1103. However, in FIG. 28, the transmission source EDMG radio station 1000 uses the EDMG-Header-A1104.
  • any time L3 is nominal
  • the nominal data field length L3 is determined based on a predetermined calculation method.
  • the size is converted to D3 and set in the Length field of L-Header 1103. Then, the transmission source EDMG radio station apparatus 1000 does not transmit a new EDMG-PPDU by exceeding the time obtained by subtracting the frame length of the BA 2012 and the SIFS time from the nominal data field length L3.
  • the transmission source EDMG radio station apparatus 1000 when the transmission source EDMG radio station apparatus 1000 normally receives the BA 2012, the transmission source EDMG radio station apparatus 1000 waits for the SIFS time and starts the back-off control 1500. After the virtual CCA changes from busy to idle, the EIFS time is waited and the backoff control 1500 is started.
  • the source EDMG radio station apparatus 1000 will receive the nominal data field length L3. Wait for the PIFS time from the end of the packet and execute the retransmission processing 1600 of the packet including the MPDU that could not be normally received, or wait for the DIFS time and retransmit the packet including the MPDU that was not normally received after the back-off control is completed. .
  • destination EDMG radio station apparatus 2000 When destination EDMG radio station apparatus 2000 detects an error by FCS in all MPDUs obtained by decoding processes 2007, 2009, and 2011 (see FIG. 29), or when an error is detected by HCS in decode 2004 (see FIG. 29). 30), the destination EDMG radio station apparatus 2000 does not transmit the BA 2012. In this case, the source EDMG radio station apparatus 1000 does not receive the BA 2012 within the PIFS time from the completion of transmission of the EDMG A-PPDU 1400, and therefore determines that the EDMG A-PPDU 1400 has not successfully reached the destination EDMG radio station apparatus 2000, Waiting for the PIFS time from the end of the nominal data field length L3, the retransmission processing 1600 of the EDMG A-PPDU 1400 is executed.
  • FIG. 31 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the non-destination EDMG radio station apparatus 3000 and processing to be executed in communication using EDMG A-PPDU according to the third embodiment. This corresponds to FIG.
  • the same parts as those in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted.
  • the non-destination EDMG radio station apparatus 3000 sets the NAV 3012 after the virtual CCA changes from busy to idle, waits for the DIFS time after the NAV 3012 ends, and starts the back-off control 3013. .
  • the non-destination EDMG radio station apparatus 3000 When the non-destination EDMG radio station apparatus 3000 detects an error by FCS in all MPDUs obtained by the decoding processes 3007, 3009, and 3011 (see FIG. 32), or when an error is detected by HCS in the decode 3004 ( 33), the non-destination EDMG radio station apparatus 3000 waits for an EIFS time after the virtual CCA changes from busy to idle, and starts backoff control 3013. These processes are the same as those of non-destination EDMG radio station apparatus 3000 in FIG. 12 and FIG. 13 of the first embodiment.
  • FIG. 34 is a diagram illustrating an example of fields transmitted by the transmission source EDMG radio station apparatus 1000 and the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 in communication using EDMG-A-PPDU according to the third embodiment. This corresponds to FIG. 14 of the first embodiment. The same parts as those in FIG. 14 are denoted by the same reference numerals, and description thereof will be omitted.
  • the EDMG wireless station device 4000 that does not support EDMG ⁇ A-PPDU sets the NAV 4008 after the virtual CCA changes from busy to idle, waits for the DIFS time after the NAV 4008 ends, and performs backoff control. 4009 is started. This process is the same as that of the EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 in FIG. 14 of the first embodiment.
  • EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 When EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 detects errors by FCS for all MPDUs obtained by decoding process 4007 (see FIG. 35), or when errors are detected by HCS in decoding process 4004 (See FIG. 36), EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 waits for EIFS time after virtual CCA changes from busy to idle, and starts backoff control 4009. These processes are the same as those of the EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 in FIG. 15 and FIG. 16 of the first embodiment.
  • FIG. 37 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the Legacy radio station apparatus 5000 and processing to be performed in communication using EDMG A-PPDU according to the third embodiment. This corresponds to FIG.
  • the same parts as those in FIG. 17 are denoted by the same reference numerals, and description thereof will be omitted.
  • the transmission source EDMG radio station apparatus 1000 waits for the EIFS time after the nominal data field length L3 ends, starts the back-off control 1500, and the legacy radio station apparatus 5000 receives the virtual CCA. After changing from busy to idle, the EIFS time is waited and the back-off control 5005 is started, so that the transmission source EDMG radio station apparatus 1000 and the legacy radio station apparatus 5000 have the same timing to start the back-off control.
  • destination EDMG radio station device 2000 uses EDMG ⁇ A-PPDU1400. After completion of reception, interruption by other radio station apparatuses can be suppressed and BA 2012 can be transmitted. Further, the back-off control start timings of the EDMG radio station apparatus and the Legacy radio station apparatus can be aligned, and transmission opportunities can be given equally to the respective radio station apparatuses.
  • transmission source EDMG radio station apparatus 1000 includes EDMG-Header-A 1104, EDMG-STF 1105, EDMG-CEF 1106, DATA 1107, EDMG-Header-A 1201, DATA 1202, EDMG-Header-A 1301, and DATA 1302.
  • Arbitrary time L3 that is equal to or greater than the sum of the total field length, BA2012 frame length, and SIFS time is defined as the nominal data field length, and the nominal data field length L3 minus the BA2012 frame length and SIFS time
  • the transmission source EDMG radio station apparatus 1000 includes the EDMG-Header-A 1104, the EDMG-STF 1105, the EDMG-CEF 1106, and the DATA 1107.
  • EDMG-Header-A1201, DATA1202, EDMG-Header-A1301, and DATA1302 are added to the nominal data field for an arbitrary time longer than the field length.
  • the field length L3 may be used, and the EDMG-PPDU may be newly concatenated and not transmitted beyond the nominal data field length L3.
  • BA 2012 is transmitted beyond the nominal data field length L3.
  • FIG. 38 is a diagram illustrating an example of a field transmitted by a transmission source EDMG radio station apparatus 1000 and a destination EDMG radio station apparatus 2000 and processing to be executed in communication using EDMG A-PPDU according to the fourth embodiment. This corresponds to FIG.
  • the same parts as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • the transmission source EDMG radio station apparatus 1000 in FIG. 8 has a field length greater than or equal to the total length of EDMG-Header-A 1104, EDMG-STF 1105, EDMG-CEF 1106, DATA 1107, EDMG-Header-A 1201, DATA 1202, EDMG-Header-A 1301, and DATA 1302.
  • Arbitrary time L2 is converted into octet size D2 based on a predetermined calculation method and set in the Length field of L-Header 1103.
  • FIG. 8 Arbitrary time L2 is converted into octet size D2 based on a predetermined calculation method and set in the Length field of L-Header 1103.
  • transmission source EDMG radio station apparatus 1000 in EDMG A-PPDU 1400 The nominal data field length L4 for the Legacy radio station device is determined from the data size known in advance before transmission, for example, the data size stored in the buffer, and L4 is the nominal data octet based on a predetermined calculation method. The size is converted to D4 and set in the Length field of the L-Header 1103. In FIG. 38, DATA 1107 and 1202 are accumulated in the buffer.
  • the transmission source EDMG radio station apparatus 1000 does not transmit a new EDMG PPDU in a time exceeding the nominal data field length L2, but in FIG.
  • the third EDMG PPDU 1300 is added after the second EDMG PPDU 1200. Can be connected.
  • destination EDMG radio station apparatus 2000 in FIG. 38 is the same as the operation shown in FIG. 18 of the second embodiment.
  • the transmission source EDMG radio station apparatus 1000 receives the SIFS after completing the reception of the BA2012. Wait for a time and retransmit the packet containing the MPDU that could not be received normally.
  • destination EDMG radio station apparatus 2000 When destination EDMG radio station apparatus 2000 detects an error by FCS in all MPDUs obtained by decoding processes 2007, 2009, and 2011 (see FIG. 39), or when an error is detected by HCS in decode 2004 (see FIG. 40), the destination EDMG radio station apparatus 2000 does not transmit the BA 2012. In this case, the source EDMG radio station apparatus 1000 does not receive the BA 2012 within the PIFS time from the completion of transmission of the EDMG A-PPDU 1400, and therefore determines that the EDMG A-PPDU 1400 has not successfully reached the destination EDMG radio station apparatus 2000, The retransmission processing 1600 of the EDMG A-PPDU 1400 is executed. These processes are the same as those of the destination EDMG radio station apparatus 2000 of FIGS. 19 and 20 of the second embodiment.
  • FIG. 41 is a diagram illustrating an example of a field transmitted by the transmission source EDMG radio station apparatus 1000 and the non-destination EDMG radio station apparatus 3000 and processing to be performed in communication using EDMG A-PPDU according to the fourth embodiment. This corresponds to FIG.
  • the same parts as those in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted.
  • the non-destination EDMG radio station apparatus 3000 sets the NAV 3012 after the busy virtual CCA changes to idle during the nominal data field length L2, waits for the DIFS time after the NAV 3012 ends,
  • the non-destination EDMG radio station apparatus 3000 ends the transmission of the third EDMG PPDU 1300 connected in excess of the nominal data field length L4, and the physical CCA is started.
  • the NAV 3012 is set, and after the NAV 3012 ends, the DIFS time is waited and the back-off control 3013 is started. This operation is the same as that of non-destination EDMG radio station apparatus 3000 in FIG. 21 of the second embodiment.
  • the non-destination EDMG radio station apparatus 3000 When the non-destination EDMG radio station apparatus 3000 detects an error by FCS in all MPDUs obtained by the decoding processes 3007, 3009, and 3011 (see FIG. 42), or when an error is detected by HCS in the decode 3004 ( 43), the non-destination EDMG radio station apparatus 3000 waits for the EIFS time after the physical CCA changes from busy to idle, and starts the back-off control 3013. These processes are the same as those of non-destination EDMG radio station apparatus 3000 in FIGS. 22 and 23 of the second embodiment.
  • FIG. 44 is a diagram illustrating an example of fields transmitted by the transmission source EDMG radio station apparatus 1000 and the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 in communication using EDMG A-PPDU according to the fourth embodiment, and processing to be executed. This corresponds to FIG. 14 of the first embodiment.
  • the same parts as those in FIG. 14 are denoted by the same reference numerals, and description thereof will be omitted.
  • the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 sets the NAV 4008 after the busy virtual CCA changes to idle during the nominal data field length L2, and after the NAV 4008 ends, the DIFS time
  • the EDMG A-PPDU non-compliant EDMG radio station device 4000 is connected to the third EDMG PPDU 1300 that is connected in excess of the nominal data field length L4.
  • the NAV 4008 is set, and after the NAV 4008 ends, the DIFS time is waited and the back-off control 4009 is started. This operation is the same as that of the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 in FIG. 24 of the second embodiment.
  • the EDMGPA-PPDU non-compliant EDMG radio station apparatus 4000 waits for the value of the physical CCA changed from busy to idle, the EIFS time, and starts the backoff control 4009. These operations are the same as the operations of the EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 of FIG. 25 and FIG. 26 of the second embodiment.
  • FIG. 47 is a diagram illustrating an example of fields transmitted and received by the transmission source EDMG radio station apparatus 1000 and the Legacy radio station apparatus 5000 in communication using EDMG A-PPDU according to the fourth embodiment, and processing to be performed. This corresponds to FIG.
  • the same parts as those in FIG. 17 are denoted by the same reference numerals, and description thereof will be omitted.
  • the Legacy radio station apparatus 5000 can determine that the nominal data octet size is D4. Therefore, the virtual CCA is set to busy and the EDMG-Header-A1104
  • the decoding process 5004 is executed using the data field from DATA to DATA 1200 as a data field.
  • the Legacy radio station apparatus 5000 detects an error by FCS in the decoding process 5004.
  • Legacy radio station apparatus 5000 does not perform decoding processing on EDMG-Header-A 1301 and DATA 1302, and sets the virtual CCA to idle. At this time, since the physical CCA is busy, the Legacy wireless station device 5000 determines that a wireless station device (not shown) is using the wireless channel and waits for transmission.
  • the legacy wireless station device 5000 starts the back-off control 5005 after waiting for the EIFS time after the physical CCA changes from busy to idle.
  • the destination EDMG radio station apparatus 2000 can suppress the interruption by other radio station apparatuses after completing the reception of EDMG A-PPDU 1400, and can transmit BA 2012.
  • the device 5000 can reduce power consumption.
  • FIG. 48 is a diagram illustrating an example of fields transmitted and received by the transmission source EDMG radio station apparatus 1000 and the destination EDMG radio station apparatus 2000 in communication using EDMG A-PPDU according to the fifth embodiment, and processing to be executed. This corresponds to FIG.
  • the same parts as those in FIG. 38 are denoted by the same reference numerals, and description thereof will be omitted.
  • the transmission source EDMG radio station apparatus 1000 determines the nominal data field length L4 for the Legacy radio station apparatus from the data size known in advance before transmission of the EDMG A-PPDU 1400, for example, the data size stored in the buffer.
  • the nominal data field length L4 is converted into an octet size D4 based on a predetermined calculation method and set in the Length field of the L-Header 1103, but in FIG. 48, the transmission source EDMG radio station apparatus 1000 Set the Length field of L-Header 1103 to 0.
  • the transmission source EDMG radio station apparatus 1000 receives the SIFS from the completion of the reception of the BA2012. Wait for time and retransmit 1600 packets containing MPDUs that could not be received normally, or wait for DIFS time and perform backoff control, and then retransmit packets containing MPDUs that could not be received normally.
  • destination EDMG radio station apparatus 2000 When destination EDMG radio station apparatus 2000 detects an error by FCS in all of decoding processes 2007, 2009, and 2011 (see FIG. 49), or when an error is detected by HCS in decoding process 2004 (FIG. 50). The destination EDMG radio station apparatus 2000 does not transmit the BA 2012.
  • the source EDMG radio station apparatus 1000 does not receive the BA 2012 within the PIFS time from the completion of transmission of the EDMG A-PPDU 1400, and therefore determines that the EDMG A-PPDU 1400 has not successfully reached the destination EDMG radio station apparatus 2000,
  • the retransmission processing 1600 of the EDMG A-PPDU 1400 is executed. These processes are the same as those of the destination EDMG radio station apparatus 2000 of FIGS. 39 and 40 of the fourth embodiment.
  • FIG. 51 is a diagram illustrating an example of fields transmitted and received by the transmission source EDMG radio station apparatus 1000 and the non-destination EDMG radio station apparatus 3000 in communication using EDMG A-PPDU according to the fifth embodiment, and processing to be performed. This corresponds to FIG. 41 of the fourth embodiment.
  • the same parts as those in FIG. 41 are denoted by the same reference numerals, and description thereof will be omitted.
  • the non-destination EDMG radio station apparatus 3000 sets the NAV 3012 after the physical CCA changes from busy to idle, waits for the DISF time after the NAV 3012 ends, and starts the back-off control 3013. To do.
  • non-destination EDMG radio station apparatus 3000 When the non-destination EDMG radio station apparatus 3000 detects an error by FCS in all MPDUs obtained by the decoding processes 3007, 3009, and 3011 (see FIG. 52), or when an error is detected by HCS in the decode 3004 (The non-destination EDMG radio station apparatus 3000 waits for an EIFS time after the physical CCA changes from busy to idle, and starts the backoff control 3013. These processes are the same as those of non-destination EDMG radio station apparatus 3000 in FIGS. 42 and 43 of the fourth embodiment.
  • FIG. 54 is a diagram illustrating an example of a field transmitted and received by the transmission source EDMG radio station apparatus 1000 and the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 in communication using EDMG-A-PPDU according to the fifth embodiment. This corresponds to FIG. 44 of the fourth embodiment. The same parts as those in FIG. 44 are denoted by the same reference numerals, and description thereof will be omitted.
  • the EDMG A-PPDU non-compliant EDMG wireless station device 4000 sets the NAV 4008 after the physical CCA changes from busy to idle, waits for the DIFS time after the NAV 4008 ends, and performs backoff. Control 4009 is started.
  • EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 detects an error by FCS for all MPDUs at decode 4007 (see FIG. 55), or when an error is detected by HCS at decode 4004 (see FIG. 56).
  • the EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 waits for EIFS time after the physical CCA changes from busy to idle, and starts backoff control 4009. These operations are the same as the operations of the EDMG-A-PPDU non-compliant EDMG radio station device 4000 of FIG. 45 and FIG. 46 of the fourth embodiment.
  • FIG. 57 is a diagram illustrating an example of fields transmitted and received by the transmission source EDMG radio station apparatus 1000 and the Legacy radio station apparatus 5000 and processing to be performed in communication using EDMG ⁇ ⁇ ⁇ A-PPDU according to the fifth embodiment. 4 corresponds to FIG. 47 identical to those in FIG. 47 are assigned the same codes as in FIG. 47, and descriptions thereof are omitted.
  • the Legacy radio station apparatus 5000 acquires “0” as the value of the Length field from the L-Header 1103 when no error is detected by the HCS in the decoding process 5003.
  • the Legacy radio station device 5000 determines that the length is not specified and sets the EDMG-Header-A. Subsequent field decoding processing can be stopped.
  • the legacy wireless station device 5000 waits for the EIFS time after the physical CCA changes from busy to idle as in FIG. 47, and starts backoff control 5005.
  • the destination EDMG radio station apparatus 2000 can suppress the interruption by other radio station apparatuses after completing the reception of the EDMG-A-PPDU 1400, and can transmit the BA 2012. 5000 can further reduce power consumption.
  • FIG. 58 is a diagram illustrating an example of a field transmitted and received by the transmission source EDMG radio station apparatus 1000 and the destination EDMG radio station apparatus 2000 in communication using EDMG A-PPDU according to the sixth embodiment, and processing to be executed.
  • the format of EDMG A-PPDU 1400 is different from the format of EDMG A-PPDU 1400 in the first to fifth embodiments.
  • the second EDMG PPDU 1200 newly includes an L-Header 1203, and the third EDMG PPDU 1300 newly includes an L-Header 1303.
  • the transmission source EDMG radio station apparatus 1000 performs the following processing in transmission of the EDMG A-PPDU 1400.
  • the transmission source EDMG radio station apparatus 1000 has a predetermined field length L5, which is a sum of EDMG-Header-A 1104, EDMG-STF 1105, EDMG-CEF 1106, and DATA 1107, in order to inform the legacy radio station apparatus of the nominal data octet size.
  • the source EDMG radio station apparatus 1000 sets the octet size E2 of DATA 1107 in the Length field of EDMG-Header-A 1104, sets the octet size E3 of DATA 1202 in the Length field of EDMG-Header-A 1201, and sets the octet size E4 of DATA 1302 Is set in the Length field of EDMG-Header-A1301.
  • the transmission source EDMG radio station apparatus 1000 sets the EDMG Indication field of the L-Header 1003, L-Header 1203, and L-Header 1303 to indicate that EDMG-Header-A exists in each EDMG PPDU constituting the EDMG A-PPDU 1400. Set to 1.
  • the source EDMG radio station apparatus 1000 indicates that the first EDMG PPDU 1100, the second EDMG PPDU 1200, and the third EDMG PPDU 1300 are connected to each other, and an Additional PPDU field of the L-Header 1103 and the L-Header 1203. Is set to 1, and the Additional PPDU field of the L-Header 1303 is set to 0.
  • the destination EDMG radio station apparatus 2000 performs the following processing on the received EDMG A-PPDU 1400.
  • the destination EDMG radio station apparatus 2000 performs synchronization processing 2001 using the L-STF 1101.
  • the destination EDMG radio station apparatus 2000 performs channel estimation (CE) processing 2002 using the L-CEF 1102.
  • Destination EDMG radio station apparatus 2000 can use the channel estimation result for field equalization processing after L-Header 1103.
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2003 of the L-Header 1103. If no error is detected in the HCS in the decoding process 2003, the destination EDMG wireless station apparatus 2000 recognizes that the EDMG-Header-A 1104 exists in the first EDMG PPDU 1100, and the second EDMG after the first EDMG PPDU 1100. Recognize that PPDU 1200 exists.
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2004 of the EDMG-Header-A 1104. If no error is detected by the HCS in the decoding process 2004, the destination EDMG radio station apparatus 2000 recognizes that the size of the DATA 1107 is E2 octets.
  • the destination EDMG radio station apparatus 2000 executes the resynchronization process 2005 using the EDMG-STF 1105.
  • the destination EDMG radio station apparatus 2000 executes a re-channel estimation (re-CE) process 2006 using the EDMG-CEF 1106.
  • re-CE re-channel estimation
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2007 of DATA 1107 according to the setting value (E2) of the Length field of EDMG-Header-A1104.
  • the decoding process 2013 of the L-Header 1203 is executed. If no error is detected by the HCS in the decoding process 2013, the destination EDMG radio station apparatus 2000 recognizes that the EDMG-Header-A 1201 exists in the second EDMGPDUPPDU 1200, and the third EDMG after the second EDMG PPDU 1200. Recognize that PPDU 1300 continues.
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2008 of the EDMG-Header-A1201. If no error is detected in the HCS in the decoding process 2008, the destination EDMG radio station apparatus 2000 recognizes that the size of the DATA 1202 is E3 octets.
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2009 of the DATA 1202 according to the setting value (E3) of the Length field of the EDMG-Header-A1201.
  • the destination EDMG radio station apparatus 2000 recognizes the presence of the third EDMG PPDU 1300 from the result of the decoding process 2013, the decoding process 2014 of the L-Header 1303 is executed. If no error is detected by HCS in the decoding process 2014, the destination EDMG radio station apparatus 2000 recognizes that the EDMG-Header-A 1301 exists in the third EDMG PPDU 1300, and adds an additional EDMG after the third EDMG PPDU 1300. Recognize that there is no PPDU.
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2010 of the EDMG-Header-A1301. If no error is detected by the HCS in the decoding process 2010, the destination EDMG radio station apparatus 2000 recognizes that the size of the DATA 1302 is E4 octets.
  • the destination EDMG radio station apparatus 2000 executes the decoding process 2011 of the DATA 1302 according to the setting value (E4) of the Length field of the EDMG-Header-A1301.
  • the destination EDMG radio station apparatus 2000 does not detect an FCS error in one or more MPDUs obtained by the decoding processes 1107, 1202, and 1302, the physical CCA changes from busy to idle or at the end.
  • the virtual CCA for the third EDMG PPDU 1300 located changes from busy to idle, it waits for SIFS time and transmits BA 2012 to the transmission source EDMG radio station apparatus 1000.
  • transmission source EDMG radio station apparatus 1000 After successfully receiving BA 2012, transmission source EDMG radio station apparatus 1000 waits for DIFS time to transmit the next packet and starts back-off control 1500 or waits for DIFS time and performs back-off control.
  • the MPDU that was not normally received later is retransmitted.
  • the transmission source EDMG radio station apparatus 1000 receives the SIFS time from the completion of the reception of the BA2012. It waits and executes a retransmission process 1600 of a packet including an MPDU that has not been normally received.
  • destination EDMG radio station apparatus 2000 When destination EDMG radio station apparatus 2000 detects an error by FCS in all MPDUs obtained by decoding processes 2007, 2009, and 2011 (see FIG. 59), or when an error is detected by HCS in decoding process 2004 (see FIG. 60), the destination EDMG radio station apparatus 2000 does not transmit the BA 2012. In this case, the source EDMG radio station apparatus 1000 does not receive the BA 2012 within the PIFS time from the completion of transmission of the EDMG A-PPDU 1400, and therefore determines that the EDMG A-PPDU 1400 has not successfully reached the destination EDMG radio station apparatus 2000, The retransmission processing 1600 of the EDMG A-PPDU 1400 is executed.
  • FIG. 61 is a diagram illustrating an example of fields transmitted and received by the transmission source EDMG radio station apparatus 1000 and the non-destination EDMG radio station apparatus 3000 in communication using EDMG A-PPDU according to the sixth embodiment, and processing to be executed. 61 transmits EDMG A-PPDU 1400 to destination EDMG radio station apparatus 2000 in FIG. 58 and normally receives BA 2012, and non-destination EDMG radio station apparatus 3000 in FIG. Although it is not the destination station device of A-PPDU 1400, it exists in an environment where EDMG A-PPDU 1400 can be received.
  • the non-destination EDMG radio station apparatus 3000 in FIG. 61 performs the same processing as the destination EDMG radio station apparatus 2000 in FIG. 58 on the received EDMG A-PPDU 1400, but the processing subsequent to the decoding process 3011 in FIG. Different from the destination EDMG radio station apparatus 2000. Specifically, the non-destination EDMG radio station apparatus 3000 in FIG.
  • the destination of the EDMG A-PPDU 1400 is After recognizing that it is not a station device and changing the physical CCA from busy to idle, or after changing the virtual CCA for the third EDMG PPDU 1300 from busy to idle, the NAV 3012 is set, and after the end of the NAV 3012, the DIFS time It waits and the back-off process 3013 is started.
  • non-destination EDMG radio station apparatus 3000 When non-destination EDMG radio station apparatus 3000 detects an error by FCS in all MPDUs obtained by decoding processes 3007, 3009, and 3011 (see FIG. 62), or when an error is detected by HCS in decoding process 3004 The non-destination EDMG radio station apparatus 3000 waits for an EIFS time after the physical CCA changes from busy to idle and starts backoff control 3013 (see FIG. 63).
  • FIG. 64 is a diagram illustrating an example of a field transmitted and received by the transmission source EDMG radio station apparatus 1000 and the EDMG A-PPDU non-compliant EDMG radio station apparatus 4000 in communication using EDMG A-PPDU according to the sixth embodiment. It is. 64 transmits EDMG A-PPDU 1400 to destination EDMG wireless station device 2000 in FIG. 58 and normally receives BA 2012, and EDMG A-PPDU incompatible EDMG wireless station device in FIG. 64. 4000 is not a destination station device of EDMG A-PPDU 1400, but exists in an environment where EDMG A-PPDU 1400 can be received.
  • EDMG A-PPDU non-compliant EDMG wireless station device 4000 does not support EDMG A-PPDU, so executes decoding processing up to DATA 1107 and does not execute decoding processing of fields after L-Header 1203. If no error is detected by FCS in the decoding process 4007, the EDMG A-PPDU non-compliant EDMG wireless station device 4000 recognizes that the destination of the EDMG A-PPDU 1400 is not the EDMG A-PPDU non-compliant EDMG wireless station device 4000. Therefore, after the physical CCA changes from busy to idle, the NAV 4008 is set, and after the NAV 4008 ends, the DIFS time is waited and the back-off control 4009 is started.
  • EDMG-A-PPDU non-compliant EDMG radio station apparatus 4000 detects an error by FCS in all MPDUs obtained by decoding process 4007 (see FIG. 65), or when an error is detected by HCS in decoding process 4004 (see FIG. 65).
  • the EDMGEDA-PPDU non-compliant EDMG radio station apparatus 4000 waits for an EIFS time after the physical CCA changes from busy to idle, and starts backoff control 4009.
  • FIG. 67 is a diagram illustrating an example of fields to be transmitted and received by the transmission source EDMG radio station apparatus 1000 and the Legacy radio station apparatus 5000 in communication using EDMG A-PPDU according to the sixth embodiment.
  • 67 transmits EDMG A-PPDU 1400 to destination EDMG wireless station device 2000 in FIG. 58 and normally receives BA 2012, and Legacy wireless station device 5000 receives the destination of EDMG A-PPDU 1400.
  • the Legacy wireless station device 5000 Since the Legacy wireless station device 5000 does not support EDMG A-PPDU, it processes the received EDMG A-PPDU 1400 as a general Legacy A-PPDU. That is, Legacy radio station apparatus 5000 decodes 5003 L-Header 1103 following synchronization processing 5001 and channel estimation (CE) 5002. If no error is detected in the HCS in the decode 5003, the Legacy radio station apparatus 5000 knows that the second EDMG PPDU 1200 follows immediately after the first EDMG PPDU 1100 because the AdditionalAddPPDU field is set to 1. . Further, the Legacy radio station apparatus can know the octet size D5 of the nominal data field of the first EDMG PPDU 1100 from the Length field of the L-Header 1103.
  • the Legacy radio station apparatus 5000 executes the decoding process 5004 using the fields from EDMG-Header-A 1104 to DAATA 1107 as a data field having a size of D5 octets.
  • Legacy radio station apparatus 5000 detects an error by FCS in decoding process 5004.
  • Legacy radio station apparatus 5000 may be out of synchronization during decoding process 5004. is there.
  • the Legacy radio station apparatus 5000 recognizes the presence of the second EDMG PPDU 1200 from the result of the decoding process 5003, the decoding process 5006 of the L-Header 1203 is executed. However, as described above, the Legacy wireless device 5000 may be out of synchronization during the decoding process 5004. Therefore, there is a high possibility that an error is detected by the HCS in the decoding process 5006.
  • the Legacy wireless station device 5000 When an error is detected in the HCS in the decoding process 5006, the Legacy wireless station device 5000 does not perform the decoding process on the fields after the EDMG-Header-A1201. Legacy radio station apparatus 5000 waits for EIFS time after physical CCA changes from busy to idle and starts backoff control 5005.
  • the destination EDMG radio station apparatus 2000 can suppress interruption by another radio station apparatus after completion of reception of EDMG A-PPDU 1400, and can transmit BA 2012.
  • the Legacy radio station apparatus 5000 can , Power consumption can be reduced.
  • the back-off control start timings of the EDMG radio station apparatus and the Legacy radio station apparatus can be aligned, and transmission opportunities can be evenly given to the radio station apparatuses.
  • FIG. 68 is a diagram illustrating an example of a configuration of an EDMG wireless station apparatus according to the present disclosure.
  • the EDMG radio station apparatus 1000, the EDMG radio station apparatus 2000, the EDMG radio station apparatus 3000, and the EDMG radio station apparatus 4000 have the same configuration.
  • an EDMG radio station apparatus 1000 includes an EDMG PPDU generation unit 1000a, a transmission digital processing unit 1000b, a transmission RF front end 1000c, a reception RF front end 1000d, a reception digital signal processing unit 1000e, a block Ack generation unit 1000f, and a controller 1000g.
  • the EDMG PPDU generation unit 1000a generates each EDMG PPDU constituting the EDMG A-PPDU.
  • the EDMG PPDU generation unit 1000a includes an L-STF generation unit 1000a1, an L-CEF generation unit 1000a2, an L-Header generation unit 1000a3, an EDMG-Header-A generation unit 1000a4, and an EDMG-STF generation unit 1000a5. And an EDMG-CEF generating unit 1000a6, a Data generating unit 1000a7, and a connecting unit 1000a8.
  • the L-STF generation unit 1000a1 generates an L-STF for the legacy radio station apparatus and the EDMG radio station apparatus to perform packet detection, synchronization processing, AGC (Auto Gain Control: automatic gain control), and the like.
  • the L-CEF generation unit 1000a2 generates an L-CEF for the Legacy radio station apparatus and the EDMG radio station apparatus to perform channel estimation.
  • the L-Header generation unit 1000a3 calculates a nominal data octet size for the Legacy radio station apparatus, and sets the calculation result in the Length field of the L-Header. Also, the L-Header generating unit 1000a3 sets the EDMG Indication field of the L-Header to 1. In addition, the L-Header generation unit 1000a3 sets the Additional PPDU field of the L-Header according to the presence / absence of the subsequent EDMG PPDU.
  • the EDMG-Header-A generation unit 1000a4 sets the octet size of the actual data field in the Length field of the EDMG-Header-A. Also, the EDMG-Header-A generation unit 1000a4 sets the Additional PPDU field of the EDMG-Header-A field according to the presence / absence of the subsequent EDMG-Header-PPDU.
  • the EDMG-STF generation unit 1000a5 uses an EDMG for performing resynchronization processing on each MIMO stream and channel bonded broadband signals when transmitting a packet using the MIMO technology and the channel bonding technology. -Generate an STF.
  • the EDMG-CEF generating unit 1000a6 uses an EDMG for performing re-channel estimation for each MIMO stream or channel bonded wideband signal when transmitting a packet using the MIMO technique and the channel bonding technique. -Generate CEF.
  • the data generation unit 1000a7 generates payload data.
  • the concatenation unit 1000a8 is connected to L-STF, L-CEF, L-Header, EDMG-Header-A, EDMG-STF, and EDMG based on the settings of the L-Header's Additional PPDU field and the EDMG-Header-A's Additional PPDU field. -Concatenate CEF and payload data to form EDMG A-PPDU.
  • the transmission digital signal processing unit 1000b is a block that performs aggregation processing on a plurality of EDMG PPDUs according to the setting value of the Additional PPDU field of the L-Headr Additional PPDU field or the EDMG-Header-A field.
  • the transmission RF front end 1000c converts the frequency of the input signal into an RF signal and radiates it from the transmission antenna.
  • the reception RF front end 1000d receives a signal transmitted from another radio station by a reception antenna, and converts the frequency of the received RF signal into a baseband signal. Further, the power of the received signal is measured and the measured value is sent to the controller 1000g.
  • the received digital signal processing unit 1000e performs synchronization processing, channel estimation processing, header decoding processing, and data decoding processing on the received signal.
  • the reception digital signal processing unit 1000e calculates a nominal data field length on the wireless channel from the setting value of the Length field, and outputs the nominal data field length to the controller 1000g.
  • the received digital signal processing unit 1000e also performs the L-Header HCS test result, the EDMG-Header-A HCS test result, the FCS test results of a plurality of MPDUs constituting the data field, and the duplication of the MAC header included in the data field.
  • the field value and the destination address field value are output to the controller 1000g.
  • the received digital signal processing unit outputs the HCS inspection result and the FCS inspection result to the block Ack generation unit 1000f.
  • the block Ack generation unit 1000f generates a block Ack frame based on the HCS inspection result and the FCS inspection result.
  • the controller 1000g controls the operation of the EDMG radio station apparatus 1000.
  • the controller 1000g counts various IFS times and nominal data field length times.
  • the controller 1000g causes the EDMG radio station device 1000 to perform back-off processing or retransmission processing according to the contents of the block Ack when the block Ack is normally received. Is not normally received, the wireless station apparatus 1000 is caused to perform retransmission processing.
  • the controller 1000g sets a physical CCA based on the received signal power level, sets a virtual CCA based on the Length field of the L-Header, and sets an EDMG radio station apparatus 1000 causes block Ack to be transmitted.
  • controller 1000g sets the NAV when the received frame is not addressed to the own station apparatus, stops the transmission processing of the radio station apparatus 1000 or counts a predetermined IFS time during the NAV period, and Let 1000 perform back-off control.
  • the present disclosure uses a wireless communication device, for example, a smart phone, a cellular phone, a tablet terminal, a personal computer, and a television set, and a moving image (movie), a still image (picture), audio (audio), text It is suitable for transmitting and receiving data and control data.
  • a wireless communication device for example, a smart phone, a cellular phone, a tablet terminal, a personal computer, and a television set, and a moving image (movie), a still image (picture), audio (audio), text It is suitable for transmitting and receiving data and control data.
  • a communication apparatus includes a legacy STF, a legacy CEF, a legacy header field, a non-legacy STF and a non-legacy CEF, a plurality of non-legacy header fields, and a plurality of data fields.
  • the nominal data octet size calculated based on the nominal data field length is set in the legacy header field and included in the legacy header field
  • a PPDU generation unit that sets an additional PPDU field to 0, a signal processing unit that configures the A-PPDU below the nominal data field length, and a transmission unit that transmits the configured A-PPDU
  • the nominal data field length is the non-legacy ST And said the sum over time of the non-legacy CEF and the plurality of non-legacy header field and the plurality of data fields.
  • a communication apparatus includes a legacy STF, a legacy CEF, a legacy header field, a non-legacy STF and a non-legacy CEF, a plurality of non-legacy header fields, and a plurality of data fields.
  • a nominal data octet size calculated based on the nominal data field length is set in the legacy header field and included in the legacy header field
  • the nominal data field length is Serial is the sum over time of the non-legacy STF and the the non-legacy CEF and the plurality of non-legacy header field and the plurality of data fields.
  • the communication method includes a legacy STF, a legacy CEF, a legacy header field, a non-legacy STF and a non-legacy CEF, a plurality of non-legacy header fields, and a plurality of data fields.
  • A-PPDU Aggregated Physical Layer Convergence Protocol Data Unit
  • the nominal data octet size calculated based on the nominal data field length is set in the legacy header field and included in the legacy header field
  • the Additional-PPDU field is set to 0, the A-PPDU is configured below the nominal data field length, and the configured A-PPDU is transmitted.
  • the nominal data field length is the same as the non-legacy STF.
  • the non-legacy CEF and the plurality of non-legacy Is the sum over time of Duffield and the plurality of data fields.
  • the communication method includes a legacy STF, a legacy CEF, a legacy header field, a non-legacy STF and a non-legacy CEF, a plurality of non-legacy header fields, and a plurality of data fields.
  • A-PPDU aggregate physical layer convergence protocol data unit
  • a nominal data octet size calculated based on the nominal data field length is set in the legacy header field and included in the legacy header field
  • the Additional-PPDU field is set to 0
  • the A-PPDU configured with the nominal data field length or less is received, an Ack frame is transmitted to the received A-PPDU, and the nominal data
  • the field length is the non-legacy STF and the non-legacy.
  • Gashi is the sum over time of CEF and said plurality of non-legacy header field and the plurality of data fields.
  • the present disclosure has been described with respect to an example configured using hardware.
  • the present disclosure can also be realized by software in cooperation with hardware.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit having an input terminal and an output terminal. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation using a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a Reconfigurable Processor that can reconfigure the connection or setting of circuit cells inside the LSI may be used.
  • the present disclosure can be applied to a method of configuring and transmitting an aggregated PPDU (physical layer convergence protocol data unit) in a wireless communication system.
  • PPDU physical layer convergence protocol data unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

通信装置が、非レガシーSTFと非レガシーCEFと複数の非レガシーヘッダフィールドと複数のデータフィールドとの合計以上の時間を名目上のデータフィールド長として定め、名目上のデータフィールド長に基づいて名目上のデータオクテットサイズを算出し、名目上のデータオクテットサイズをレガシーヘッダに格納し、レガシーヘッダのAdditional PPDUフィールドを0に設定するPPDU生成部と、名目上のデータフィールド長以下においてA-PPDUを構成する信号処理部と、A-PPDUを送信する送信部と、を含む。

Description

集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法
 本開示は、無線通信に関連し、さらに具体的には、無線通信システムにおける集約PPDU(PLCP Protocol Data Unit(物理層収束プロトコルデータユニット))を構成し、通信する装置および方法に関する。
 免許不要の60GHz帯を使用するミリ波ネットワークへの関心が深まっている。ワイヤレスHD(Hi-Definition)技術は、業界初の60GHz帯を使用する無線通信規格であり、コンシューマ電子機器、パーソナルコンピュータ、および携帯機器の間での高精細度のオーディオ、ビデオ、およびデータの数ギガビット毎秒の無線ストリーミング伝送を可能にする。
 60GHz帯で処理する別の無線通信技術にWiGig技術があり、IEEE(Institute of Electrical and Electronic Engineers(米国電気電子技術者協会))によってIEEE802.11ad規格として標準化されている。
 WiGig技術は、2.16GHzの標準帯域幅を使用することで、最大6.7Gbpsまでの物理層データ伝送速度を提供することができる。WiGig技術は、SC(Single Carrier(シングルキャリア))変調およびOFDM(Orthogonal Frequency Division Multiplexing(直交周波数分割多重))変調の両方をサポートする。
 また、伝送効率を向上するために、WiGig技術は、Aggregate-PPDU(集約物理層収束プロトコルデータユニット、以下「A-PPDU」と表記する)をサポートする(非特許文献1参照)。A-PPDUとは、2つ以上のPPDU間にIFS(Inter-frame Spacing(フレーム間隔時間))やプリアンブルを設けずに伝送する技術である。なお、WiGig技術ではA-PPDUが用いられる場合、A-PPDUを構成する各PPDUには、A-MPDU(Aggregate-MPDU(MAC Protocol Data Unit))が用いられている。
 ここで、IEEE802.11ayタスクグループは、既存の(すなわちレガシー)WiGig技術との下位互換性を維持し、次世代の(EDMG(Enhanced Diractional Multi-Gigabit))WiGig技術としてMIMO技術とチャネルボンディング技術を組み合わせることで数十Gbpsに上る物理層データ伝送速度の実現を目指している(非特許文献2参照)。
IEEE 802.11ad-2012 P237 9.13a DMG A-PPDU operation 11-15-1358-05-00ay Spec Framework
 IEEE802.11ayにおいて伝送効率を向上するためには、2つ以上のEDMG PPDU間にIFSやプリアンブルを設けずに伝送する技術(以下、「EDMG A-PPDU」と表記する)をサポートする必要があるが、EDMG A-PPDUを使った通信において、どのようにしてレガシーWiGigデバイスとの下位互換性を維持可能なアクセス制御方法を定義するかは考慮されていない。
 本開示の非限定的な実施例は、レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズを前記レガシーヘッダフィールドに設定し、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドを0に設定するPPDU生成部と、前記名目上のデータフィールド長以下において前記A-PPDUを構成する信号処理部と、前記構成したA-PPDUを送信する送信部と、を含み、前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である、通信装置の提供に資する。
 なお、一般的な、または特定の諸実施形態は、システム、方法、集積回路、コンピュータプログラム、ストレージ媒体、またはこれらの任意の選択的な組み合わせとして実装することが可能である。
 本開示のアクセス制御方法を用いた場合、レガシーWiGig技術と下位互換性を維持可能なEDMG A-PPDUを提供できる。
 本開示の実施形態の更なる利点および効果は、本明細書および図面から明らかになろう。これらの利点および/または効果は、本明細書および図面の様々な実施形態および特徴によって個々に把握することができ、かかる利点および/または効果の一つ以上を把握するために、これらの全てを提示する必要はない。
本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 本開示が前提とするEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 実施の形態1による送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態1による送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態1によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 実施の形態2による送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態2によるによるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態2による送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態2によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 実施の形態3による送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態3による送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態3によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 実施の形態4による送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態4による送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態4によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 実施の形態5による送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態5による送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態5によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 実施の形態6による送信元EDMG無線局装置と宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置の全データフィールドにFCSエラー発生時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置と非宛先EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態6による送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置の正常受信時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のFCSエラー発生時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とEDMG A-PPDU非対応EDMG無線局装置のEDMG-Header-AにHCSエラー発生時の処理の一例を示す図 実施の形態6によるEDMG PPDUを用いた通信における送信元EDMG無線局装置とLegacy無線局装置の処理の一例を示す図 本開示によるEDMG無線局装置の構成の一例を示す図 本開示によるEDMG無線局装置のEDMG PPDU生成部の構成の一例を示す図
 以下に、添付の図面を参照しながら、本開示の様々な実施形態を詳しく説明する。以下の説明において、明瞭さと簡潔さのため、本明細書に組み込まれた周知の機能および構成の詳細な説明は省略されている。
 図1は、本開示が前提とするEDMG PPDUを使った通信における送信元EDMG無線局装置9000と宛先EDMG無線局装置9100の処理の一例を示す図である。図1において送信元EDMG無線局装置9000は、EDMG PPDU9099を宛先EDMG無線局装置9100に送信する。
 EDMG PPDU9099は、L-STF9001とL-CEF9002とL-Header9003とEDMG-Header-A9004とEDMG-STF9005とEDMG-CEF9006とDATA9007を含む。なお、EDMG-STF9005およびEDMG-CEF9006は、EDMG PPDU9099がMIMO技術やチャネルボンディング技術を用いて送信されるときに存在するフィールドである。
 送信元EDMG無線局装置9000は、EDMG PPDU9099の送信において下記の処理を行う。
 送信元EDMG無線局装置9000は、図示しないLegacy無線局装置がEDMG PPDUをサポートしていない、すなわちLegacy無線局装置がEDMG-Header-A9004以降のフィールドをデータフィールドとして解釈することを考慮して、Legacy無線局装置にEDMG PPDU9099を一般的なLegacy PPDUとして処理させる。そのために送信元EDMG無線局装置9000は、EDMG-Header-A9004とEDMG STF9005とEDMG-CEF9006とDATA9007を合わせたフィールドの無線チャネル上でのフィールド長L1時間を所定の計算方法に基づいてオクテットサイズD1に変換しL-Header9003のLengthフィールドに設定する。これにより、Legacy無線局装置がEDMG-Header-A9004とEDMG STF9005とEDMG-CEF9006とDATA9007を合わせたフィールドを名目上のデータフィールドとして処理することができる。
 送信元EDMG無線局装置9000は、EDMG PPDU9099にEDMG-Header-A9004が存在することを示すためにL-Header9003にEDMG Indicationフィールド設けて1に設定する。
 送信元EDMG無線局装置9000は、EDMG-Header-A9004にLengthフィールドを設けて、DATA9007のオクテットサイズE1に設定する。
 宛先EDMG無線局装置9100は、受信したEDMG PPDU9099に対して下記の処理を行う。
 先ず宛先EDMG無線局装置9100は、L-STF9001を使用して同期処理9101を行う。
 次に宛先EDMG無線局装置9100は、L-CEF9002を使用してチャネル推定(CE)9102を行う。宛先EDMG無線局装置9100は、このチャネル推定結果をL-Header9003以降のフィールドの等化処理に使用することができる。
 次に宛先EDMG無線局装置9100は、L-Header9003をデコード9103する。デコード9103においてHCS(Header Check Sequence)によりエラーが検出されない場合、宛先EDMG無線局装置9100は、EDMG PPDU9099にEDMG-Header-A9004が存在することが分かる。また、宛先EDMG無線局装置9100は、Legacy無線局装置に対する名目上のデータフィールドのサイズがD1オクテットであることが分かるので、所定の計算方法によりD1を名目上のデータフィールド長L1に変換し、L1時間の間仮想CCA(Clear Channel Assessment)をビジーに設定する。ここで仮想CCAとは名目上のデータフィールド長に基づいて仮想的に無線チャネルの使用状況をビジーと判断する機能である。
 次に宛先EDMG無線局装置9100は、EDMG-Header-A9004をデコード9104する。デコード9104においてHCSによりエラーが検出されない場合、宛先EDMG無線局装置9100は、DATA9007のサイズがE3オクテットであることが分かる。
 次に宛先EDMG無線局装置9100は、EDMG-STF9005を使用して再同期処理9105を行う。
 次に宛先EDMG無線局装置9100は、MIMO 技術やチャネルボンディング技術を使って送信されるデータフィールドを等化するためにEDMG-CEF9006を使用して再チャネル推定(再CE)9106を行う。
 次に宛先EDMG無線局装置9100は、EDMG-Header-A9004のLengthフィールドの設定値(E1)に従ってData9007をデコード9107する。
 宛先EDMG無線局9100は、デコード9107においてData9007に含まれる1つ以上のMPDUにおいてFCSによるエラーが検出されない場合、宛先EDMG無線局装置9100は、SIFS待機した後、ブロックAck(BA)9108を送信元EDMG無線局装置9000に送信する。
 送信元EDMG無線局装置9000は、BA9108を正常に受信すると次のパケットの送信権を得るためにDIFS時間待機した後、バックオフ制御9008を開始する。
 なお、宛先EDMG無線局装置9100がデコード9107において全てのMPDUについてFCS(Frame Check Sequence)によりエラーを検出した場合(図2参照)、あるいはデコード9104においてHCSによりエラーを検出した場合(図3参照)、つまり、EDMG-Header-A9004にエラーを検出した場合、宛先EDMG無線局装置9100は、データフィールドのサイズが分からないのでDATA9007を正常に受信することは困難であり、宛先EDMG無線局装置9100は、BA9108を送信しないことがある。この場合、送信元EDMG無線局装置9000は、EDMG PPDU9099を送信完了してからPIFS(Point IFS)以内にBA9108を受信しないので、EDMG PPDU9099が宛先EDMG無線局装置9100に正常に届かなかったと判断しEDMG PPDU9099を再送9009する。
 なお、図示しないが送信元EDMG無線局9000は、BA9108を受信しかつ再送が必要と判断した場合、BA9108の受信完了からSIFS時間を待機した後、あるいはDIFS時間を待機した後、バックオフ制御を行った後で再送する。
 なお、バックオフ制御とは、無線チャネルが開放されると、無線チャネルが使用中に待ち状態に入っていた無線局が一斉に送信を開始するため、無線チャネル上でパケットが衝突する確立が非常に高くなることを緩和するために、各無線局において無線チャネルが解放されてから乱数(バックオフ)を発生させ、発生させた乱数に応じて送信を待機する制御である。
 図4は、本開示が前提とするEDMG PPDUを使った通信における送信元EDMG無線局装置9000と非宛先EDMG無線局装置9200の処理の一例を示す図である。図4において送信元EDMG無線局装置9000は、EDMG PPDU9099を図1の宛先EDMG無線局装置9100に送信し、宛先EDMG無線局装置9100からBA9108を正常に受信したものとし、非宛先EDMG無線局装置9200は、EDMG PPDU9099の宛先局装置ではないがEDMG PPDU9099を受信できる環境にあるものとする。
 非宛先EDMG無線局装置9200は、受信したEDMG PPDU9099に対して図1の宛先EDMG無線局装置9100と同様の処理を行うが、デコード9207よりも後の処理が宛先EDMG無線局装置9100と異なる。具体的には非宛先EDMG無線局装置9200は、デコード9207において1つ以上のMPDUについてFCSによりエラーを検出しない場合、EDMG PPDU9099が自局装置宛ではないことが分かるので、物理CCAあるいは仮想CCAがビジーからアイドルに変わってからNAV(Network Allocation Vector)9208を設定する。NAV9208が終了すると非宛先EDMG無線局装置9200は、パケットの送信権を得るために、DIFS時間待機した後、バックオフ制御9209を開始する。ここで物理CCAとは受信信号電力の検出レベルに基づいて無線チャネルの使用状況を判断する機能であり、NAVの値は、DATA9007のMACヘッダのDuration/IDフィールドにより指定され、図4では、NAV=SIFS+BA9108の無線チャネル上での時間としている。
 なお、非宛先EDMG無線局装置9200がデコード9207において全てのMPDUにおいてFCSによりエラーを検出した場合(図5参照)、あるいはデコード9204においてHCSによりエラーを検出した場合(図6参照)、非宛先EDMG無線局装置9200は、物理CCAあるいは仮想CCAがビジーからアイドルに変わってから、EIFS(Extended IFS)時間待機した後、バックオフ制御9209を開始する。ここでEISF=SIFS+BA9108の無線チャネル上での時間+DIFSである。
 図7は、本開示が前提とするEDMG PPDUを使った通信における送信元EDMG無線局装置9000とLegacy無線局装置9400の処理の一例を示す図である。図7において送信元EDMG無線局装置9000は、EDMG PPDU9099を図1の宛先EDMG無線局装置9100に送信し、宛先EDMG無線局装置9100からBA9108を正常に受信したものとし、EDMG無線局装置9400は、EDMG PPDU9099の宛先局装置ではないがEDMG PPDU9099を受信できる環境にあるものとする。
 先述のとおりLegacy無線局装置9400は、EDMG PPDUに対応していないので、EDMG PPDU9099を一般的なLegacy PPDUとして受信する。すなわちLegacy STA9400は、同期処理9401、チャネル推定(CE)9402に続いてL-Header9003をデコード9403する。デコード9403においてHCSによりエラーが検出されない場合、Legacy無線局装置9400は、Lengthフィールドから名目上のデーフィールドのサイズD1を知ることができる。
 そしてLegacy無線局装置9400は、EDMG-Header-A9004以降のフィールドをサイズがD1オクテットのデータフィールドとしてデコード9404する。Legacy無線局装置9400は、本来のデータフィールドであるDATA9007に加えてEDMG-Header-A9004、EDMG-STF9005、EDMG-CEF9006もデコードするので全てのMPDUにおいてFCSによりエラーを検出する可能性が高い。
 デコード9404においてエラーを検出した場合、Legacy無線局装置9400は、物理CCAあるいは仮想CCAがビジーからアイドルに変わってから、EIFS時間待機した後、バックオフ制御9405を開始する。
 (実施の形態1)
 図8は、実施の形態1によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000が送信するフィールドと宛先EDMG無線局装置2000における処理の一例を示す図である。送信元EDMG無線局装置1000は、EDMG A-PPDU1400を宛先EDMG無線局装置2000に送信する。
 EDMG A-PPDU1400は、第1のEDMG PPDU1100、第2のEDMG PPDU1200、第3のEDMG PPDU1300を含む。
 第1のEDMG PPDU1100は、L-STF1101とL-CEF1102とL-Header1103とEDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107を含む。第2のEDMG PPDU1200は、EDMG-Header-A1201とDATA1202を含む。第3のEDMG PPDU1300は、EDMG-Header-A1301とDATA1302を含む。
 送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信において下記の処理を行う。
 送信元EDMG無線局装置1000は、図示しないLegacy無線局装置がEDMG PPDUおよびEDMG A-PPDUをサポートしていないことを考慮して、Legacy無線局装置にEDMG A-PPDU1400を単一のLegacy PPDUとして処理させるために、L-Header1103のAdditional PPDUフィールドを0に設定する。
 また、送信元EDMG無線局装置1000は、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とEDMG-Header-A1201とDATA1202とEDMG-Header-A1301とDATA1302を合わせたフィールドの無線チャネル上で、合計したフィールド長以上の任意の時間L2を名目上のデータフィールド長として定める。送信元EDMG無線局装置1000は、名目上のデータフィールド長L2を、所定の計算方法に基づいて名目上のデータオクテットサイズD2に変換し、L-Header1103のLengthフィールドに設定する。
 送信元EDMG無線局装置1000は、名目上のデータフィールド長L2を超える時間にわたって、新たにEDMG PPDUを連結して送信しない。
 これにより、送信元EDMG無線局装置1000は、名目上のデータオクテットサイズD2をLegacy無線局装置に知らせることができる。
 送信元EDMG無線局装置1000は、DATA1107のオクテットサイズE2をEDMG-Header-A1104のLengthフィールドに設定し、DATA1202のオクテットサイズE3をEDMG-Header-A1201のLengthフィールドに設定し、DATA1302のオクテットサイズE4をEDMG-Header-A1301のLengthフィールドに設定する。
 送信元EDMG無線局装置1000は、EDMG A-PPDU1400を構成する各EDMG PPDUにEDMG-Header-Aが存在することを示すためにL-Header1003のEDMG Indicationフィールドを1に設定する。
 送信元EDMG無線局装置1000は、第1のEDMG PPDU1100と第2のEDMG PPDU1200と第3のEDMG PPDU1300が連結されていることを示すために、EDMG-Header-A1104、1201とEMDG-Header-A1301にAdditional PPDUフィールドを設けて、EDMG-Header-A1104、1201のAdditional PPDUフィールドを1に設定し、EDMG-Header-A1301のAdditional PPDUフィールドを0に設定する。
 宛先EDMG無線局装置2000は、受信したEDMG A-PPDU1400に対して下記の処理を行う。
 先ず宛先EDMG無線局装置2000は、L-STF1101を使用して同期処理2001を行う。
 次に宛先EDMG無線局装置2000は、L-CEF1102を使用してチャネル推定(CE)2002を行う。宛先EDMG無線局装置2000は、チャネル推定結果をL-Header1103以降のフィールドの等化処理に使用することができる。
 次に宛先EDMG無線局装置2000は、L-Header1103のデコード処理2003を実施する。デコード2003においてHCSによりエラーが検出されない場合、宛先EDMG無線局装置2000は、EDMG A-PPDU1400にEDMG Header-A1104が存在すると判断し、Legacy無線局装置に対する名目上のデータフィールドサイズD2オクテットを取得する。このため、宛先EDMG無線局装置2000は、所定の計算方法により、名目上のデータフィールドサイズD2を名目上のデータフィールド長L2に変換し、L2時間の間、仮想CCAをビジーに設定する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1104をデコード2004する。デコード2004においてHCSによりエラーが検出されない場合、宛先EDMG無線局装置2000は、第1のEDMG PPDU1100の後に第2のEDMG PPDU1200が続いて存在すると判断し、DATA1107のサイズE2オクテットを取得する。
 次に宛先EDMG無線局装置2000は、EDMG-STF1105を使用して再同期処理2005を行う。
 次に宛先EDMG無線局装置2000は、EDMG-CEF1106を使用して再チャネル推定(再CE)処理2006を行う。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1104のLengthフィールドの設定値(E2)に従ってDATA1107のデコード処理2007を行う。
 次に宛先EDMG無線局装置2000は、デコード処理2004の結果から第2のEDMG PPDU1200の存在を認識するため、EDMG-Header-A1201のデコード処理2008を実施する。デコード処理2008においてHCSによりエラーが検出されない場合、宛先EDMG無線局装置2000は、第2のEDMG PPDU1200の後に第3のEDMG PPDU1300が存在することを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1202のLengthフィールドの設定値(E3)に従ってDATA1202のデコード処理2009を実施する。
 次に宛先EDMG無線局装置2000は、デコード処理2008の結果から第3のEDMG PPDU1300の存在を認識するので、EDMG-Header-A1301のデコード処理2010を実施する。デコード処理2010においてHCSによりエラーが検出されない場合、宛先EDMG無線局装置2000は、第3のEDMG PPDU1300の後には追加のEDMG PPDUが存在しないことを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1301のLengthフィールドの設定値(E4)に従ってDATA1302をデコード2011する。
 次に宛先EDMG無線局装置2000は、デコード処理2007、2009、2011において一つ以上のMPDUでFCSエラーを検出しなかった場合、仮想CCAがビジーからアイドルに変わってからSIFS時間待機した後、ブロックAck(BA)2012を送信元EDMG無線局装置1000に送信する。
 送信元EDMG無線局装置1000は、BA2012を正常に受信した後、次のパケットを送信するためにDIFS時間待機した後、バックオフ制御1500を開始する。
 なお、図示しないがBA2012が正常受信しなかったMPDUの存在を示していた場合、あるいはBA2012のデコードでHCSエラーまたはFCSエラーが生じた場合、送信元EDMG無線局装置1000は、BA2012の受信完了からSIFS時間待機した後、正常受信されなかったMPDUを再送する、あるいはDIFS時間待機し、バックオフ制御1500を実施した後に、正常受信されなかったMPDUを再送する。
 なお、宛先EDMG無線局装置2000がデコード処理2007、2008、2011の全てのMPDUにおいて、FCSによりエラーを検出した場合(図9参照)、あるいはデコード処理2004においてHCSによりエラーを検出した場合、宛先EDMG無線局装置2000は、BA2012を送信しない。なお、先頭に配置された第1のEDMG PPDU1100のEDMG-Header-A1104にエラーを検出した場合、宛先EDMG無線局装置2000は、DATA1107、1202、1302を正常に受信しない(図10参照)。
 この場合、送信元EDMG無線局装置1000は、名目上のデータフィールド長L2が終わってからPIFS時間以内にBA2012を受信しないので、EDMG A-PPDU1400が宛先EDMG無線局装置2000に正常に届かなかったと判断し、EDMG A-PPDU1400を再送処理1600する。
 図11は、実施の形態1によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000が送信するフィールドおよび実行する処理と非宛先EDMG無線局装置3000が送信するフィールドおよび実行する処理の一例を示す図である。
 図11の送信元EDMG無線局装置1000は、EDMG A-PPDU1400を図8の宛先EDMG無線局装置2000に送信し、宛先EDMG無線局装置2000からのBA2012を正常に受信し、図11の非宛先EDMG無線局装置3000は、図11のEDMG A-PPDU1400の宛先局装置ではないがEDMG A-PPDU1400を受信できる環境に存在する。
 図11の非宛先EDMG無線局装置3000は、受信したEDMG A-PPDU1400に対して図8の宛先EDMG無線局装置2000と同様の処理を行うが、デコード処理3011よりも後の処理が図8の宛先EDMG無線局装置2000と異なる。
 具体的には非宛先EDMG無線局装置3000は、デコード処理3007、3009、3011によって得られる一つ以上のMPDUにおいてFCSによりエラーを検出しない場合、EDMG A-PPDU1400の宛先が非宛先EDMG無線局装置3000ではないと判断し、仮想CCAがビジーからアイドルに変化した後、NAV3012を設定し、更に、NAV3012終了後、DIFS時間待機し、バックオフ制御3013を開始する。
 なお、非宛先EDMG無線局装置3000がデコード処理3007、3009、3011によって得られる全てのMPDUにおいてFCSによりエラーを検出した場合(図12参照)、あるいはデコード処理3004においてHCSによりエラーを検出した場合(図13参照)、非宛先EDMG無線局装置3000は、仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御3013を開始する。
 図14は、実施の形態1によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000の送信するフィールドおよび実行する処理とEDMG A-PPDUに対応していないEDMG無線局装置4000の実行する処理の一例を示す図である。図14の送信元EDMG無線局装置1000は、EDMG A-PPDU1400を図8の宛先EDMG無線局装置2000に送信し、BA2012を正常に受信し、図14のEDMG A-PPDU非対応EDMG無線局装置4000は、EDMG A-PPDU1400の宛先局装置ではないがEDMG A-PPDU1400を受信できる環境に存在する。
 EDMG A-PPDU非対応EDMG無線局装置4000は、EDMG A-PPDUに対応していないためDATA1107までデコード処理4007を実行し、EDMG-Header-A1201以降のフィールドのデコード処理を実行しない。EDMG A-PPDU非対応EDMG無線局装置4000は、デコード処理4007によって得られた一つ以上のMPDUでFCSによりエラーを検出しなかった場合、EDMG A-PPDU1400の宛先がEDMG A-PPDU非対応EDMG無線局装置4000ではないこと判断し、仮想CCAがビジーからアイドルに変化した後、NAV4008を設定し、更にNAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始する。
 なお、EDMG A-PPDU非対応EDMG無線局装置4000がデコード処理4007によって得られた全てのMPDUについてFCSによりエラーを検出した場合(図15参照)、あるいはデコード処理4004においてHCSによりエラーを検出した場合(図16参照)、EDMG A-PPDU非対応EDMG無線局装置4000は、仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御4009を開始する。
 図17は、実施の形態1によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000の送信するフィールドおよび実行する処理とLegacy無線局装置5000の実行する処理の一例を示す図である。
 図17の送信元EDMG無線局装置1000は、EDMG A-PPDU1400を図8の宛先EDMG無線局装置2000に送信し、BA2012を正常に受信し、図17のLegacy無線局装置5000は、EDMG A-PPDU1400の宛先局装置ではないがEDMG A-PPDU1400を受信できる環境に存在する。
 Legacy無線局装置5000は、EDMG A-PPDUに対応していないので受信したEDMG A-PPDU1400を一般的なLegacy PPDUとして処理する。すなわちLegacy無線局装置5000は、同期処理5001、チャネル推定(CE)処理5002に続いてL-Header1103のデコード処理5003を実行する。デコード処理5003においてHCSによりエラーが検出されない場合、Legacy無線局装置5000は、0に設定されるAdditional PPDUフィールドに基づいて、EDMG A-PPDU1400を単一のLegacy PPDUとみなし、さらにLengthフィールドから名目上のデータフィールドのサイズD2を認識する。
 そしてLegacy無線局装置5000は、EDMG-Header-A1104以降のフィールドをサイズがD2オクテットのデータフィールドとしてデコード処理5004を実行する。Legacy無線局装置5000は、デコード処理5004において全てのMPDUに対してFCSによりエラーを検出する。
 デコード処理5004において全てのMPDUに対してエラーを検出した場合、Legacy無線局装置5000は、名目上のデータフィールドのオクテットサイズD2から無線チャネル上でのデータフィールド長L2時間を計算し、仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御5005を開始する。
 以上より、実施の形態1によれば、EDMG無線局装置とLegacy無線局装置のバックオフ制御開始タイミングを揃えることができ、各無線局装置に送信機会を均等に与えることができる。
 (実施の形態2)
 図18は、実施の形態2によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び宛先EDMG無線局装置2000が送信するフィールドおよびの実行する処理の一例を示す図であり、実施の形態1の図8に対応する。図8と同一部分には同一符号を付し、これについての説明を省略する。
 図8では宛先EDMG無線局装置2000は、仮想CCAがビジーからアイドルに変化した後、SIFS時間待機し、BA2012を送信元EDMG無線局装置1000に送信し、送信元EDMG無線局装置1000は、BA2012の受信完了からSIFS時間待機し、バックオフ制御1500を開始していたが、図18では宛先EDMG無線局装置2000は、物理CCAがビジーからアイドルに変化した後、SIFS時間待機し、BA2012を送信し、送信元EDMG無線局装置1000は、BA2012を正常に受信した後、SIFS時間待機し、バックオフ制御1500を開始する。つまり受信局装置であるEDMF無線局装置2000のブロックAckの送信タイミングが実施の形態1と異なる。
 なお、図示しないがBA2012が正常受信されなかったMPDUの存在を示す場合、あるいはBA2012のデコード処理でHCSエラーまたはFCSエラーが生じた場合、送信元EDMG無線局装置1000は、BA2012を受信し、SIFS時間待機した後、正常受信しなかったMPDUを含むパケットを再送する、あるいはDIFS時間待機し、バックオフ制御を実施した後、正常受信できなかったMPDUを含むパケットを再送する。
 なお、宛先EDMG無線局装置2000がデコード処理2007、2008、2011により得た全てのMPDUにおいてFCSによりエラーを検出した場合(図19参照)、あるいはデコード処理2004においてHCSによりエラーを検出した場合(図20参照)、宛先EDMG無線局装置2000は、BA2012を送信しない。この場合、送信元EDMG無線局装置1000は、EDMG A-PPDU1400送信完了からPIFS時間以内にBA2012を受信しないので、EDMG A-PPDU1400が宛先EDMG無線局装置2000に正常に届かなかったと判断し、EDMG A-PPDU1400の再送処理1600を実行する。
 図21は、実施の形態2によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び非宛先EDMG無線局装置3000により送信されるフィールドおよび実行される処理の一例を示す図であり、実施の形態1の図11に対応する。図11と同一部分には同一符号を付し、これについての説明を省略する。
 図11では非宛先EDMG無線局装置3000は、名目上のデータフィールド長L2の間、ビジーである仮想CCAがアイドルに変化した後、NAV3012を設定し、NAV3012の終了後、DIFS時間待機し、バックオフ制御3013を開始していたが、図21では非宛先EDMG無線局装置3000は、名目上のデータフィールド長L2の途中で、物理CCAがビジーからアイドルに変化した後、NAV3012を設定し、更にDIFS時間バックオフ制御3013を開始する。
 なお、非宛先EDMG無線局装置3000がデコード処理3007、3009、3011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図22参照)、あるいはデコード3004においてHCSによりエラーを検出した場合(図23参照)、非宛先EDMG無線局装置3000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御3013を開始する。
 図24は、実施の形態2によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びEDMG A-PPDU非対応EDMG無線局装置4000の送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図14に対応する。図14と同一部分には同一符号を付し、これについての説明を省略する。
 図14ではEDMG A-PPDU非対応EDMG無線局装置4000は、名目上のデータフィールド長L2の間、ビジーである仮想CCAがアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始していたが、図24ではEDMG A-PPDU非対応EDMG無線局装置4000は、名目上のデータフィールド長L2の途中で、物理CCAがビジーからアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始する。
 なお、EDMG A-PPDU非対応EDMG無線局装置4000がデコード4007によって得られた全てのMPDUについてFCSによりエラーを検出した場合(図25参照)、あるいはデコード4004においてHCSによりエラーを検出した場合(図26参照)、EDMG A-PPDU非対応EDMG無線局装置4000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御4009を開始する。
 図27は、実施の形態2によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びLegacy無線局装置5000が送信するフィールド及び実行する処理の一例を示す図であり、実施の形態1の図17に対応する。図17と同一部分には同一符号を付し、これについての説明を省略する。
 図27では送信元EDMG無線局装置1000は、BA2012を名目上のデータフィールド長L2の途中で受信するため、バックオフ制御1500を開始するタイミングが図17に比べて早くなっているが、Legacy無線局装置5000がバックオフ制御5005を開始するタイミングは図17と同じである。その結果、図27ではEDMG無線局装置のバックオフ制御開始タイミングがLegacy無線局装置のバックオフ制御開始タイミングよりも早くなるため、送信機会をEDMG無線局装置に有利に与えられる。
 以上より、実施の形態2によれば、送信元EDMG無線局装置1000が実際のEDMG A-PPDU1400のフレーム長に対してL2を長く設定した場合でも、宛先EDMG無線局装置2000は、EDMG A-PPDU1400の受信完了後に他の無線局装置に割り込まれることなくBA2012を送信することができる。
 (実施の形態3)
 図28は、実施の形態3によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び宛先EDMG無線局装置2000が送信するフィールド及び実行する処理の一例を示す図であり、実施の形態1の図8に対応する。図8と同一部分には同一符号を付し、これについての説明を省略する。
 図8では送信元EDMG無線局装置1000は、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とEDMG-Header-A1201とDATA1202とEDMG-Header-A1301とDATA1302とを合計したフィールド長以上の任意の時間L2を、所定の計算方法に基づいてオクテットサイズD2に変換し、L-Header1103のLengthフィールドに設定していたが、図28では送信元EDMG無線局1000は、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とEDMG-Header-A1201とDATA1202とEDMG-Header-A1301とDATA1302を合計したフィールド長とBA2012のフレーム長とSIFS時間の合計時間以上の任意の時間L3を名目上のデータフィールド長として定め、名目上のデータフィールド長L3を所定の計算方法に基づいて名目上のデータオクテットサイズD3に変換し、L-Header1103のLengthフィールドに設定する。そして送信元EDMG無線局装置1000は、名目上のデータフィールド長L3からBA2012のフレーム長とSIFS時間を引いた時間を超えて、新たにEDMG PPDUを連結して送信しない。
 また、図8では送信元EDMG無線局装置1000は、BA2012を正常に受信した場合、SIFS時間待機し、バックオフ制御1500を開始していたが、図28では送信元EDMG無線局装置1000は、仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御1500を開始する。
 なお、図示しないがBA2012が正常受信できなかったMPDUの存在を示す場合、あるいはBA2012のデコードでHCSエラーまたはFCSエラーが生じた場合、送信元EDMG無線局装置1000は、名目上のデータフィールド長L3の終了からPIFS時間待機し、正常受信できなかったMPDUを含むパケットの再送処理1600を実行する、あるいはDIFS時間待機し、バックオフ制御の終了後に、正常受信しなかったMPDUを含むパケットを再送する。
 なお、宛先EDMG無線局装置2000がデコード処理2007、2009、2011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図29参照)、あるいはデコード2004においてHCSによりエラーを検出した場合(図30参照)、宛先EDMG無線局装置2000は、BA2012を送信しない。この場合、送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信完了からPIFS時間以内にBA2012を受信しないので、EDMG A-PPDU1400が宛先EDMG無線局装置2000に正常に届かなかったと判断し、名目上のデータフィールド長L3の終了からPIFS時間待機し、EDMG A-PPDU1400の再送処理1600を実行する。
 図31は、実施の形態3によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び非宛先EDMG無線局装置3000が送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図11に対応する。図11と同一部分には同一符号を付し、これについての説明を省略する。
 図11と同様に図31でも非宛先EDMG無線局装置3000は、仮想CCAがビジーからアイドルに変化した後、NAV3012を設定し、NAV3012の終了後、DIFS時間待機し、バックオフ制御3013を開始する。
 なお、非宛先EDMG無線局装置3000がデコード処理3007、3009、3011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図32参照)、あるいはデコード3004においてHCSによりエラーを検出した場合(図33参照)、非宛先EDMG無線局装置3000は、仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御3013を開始する。これらの処理は、実施の形態1の図12および図13の非宛先EDMG無線局装置3000の処理と同じである。
 図34は、実施の形態3によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びEDMG A-PPDU非対応EDMG無線局装置4000が送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図14に対応する。図14と同一部分には同一符号を付し、これについての説明を省略する。
 図14と同様に図34でもEDMG A-PPDU非対応EDMG無線局装置4000は、仮想CCAがビジーからアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始する。この処理は、実施の形態1の図14のEDMG A-PPDU非対応EDMG無線局装置4000の処理と同じである。
 なお、EDMG A-PPDU非対応EDMG無線局装置4000がデコード処理4007によって得られた全てのMPDUについてFCSによりエラーを検出した場合(図35参照)、あるいはデコード処理4004においてHCSによりエラーを検出した場合(図36参照)、EDMG A-PPDU非対応EDMG無線局装置4000は、仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御4009を開始する。これらの処理は、実施の形態1の図15および図16のEDMG A-PPDU非対応EDMG無線局装置4000の処理と同じである。
 図37は、実施の形態3によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びLegacy無線局装置5000が送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図17に対応する。図17と同一部分には同一符号を付し、これについての説明を省略する。
 図17と同様に図37では送信元EDMG無線局装置1000は、名目上のデータフィールド長L3が終了した後、EIFS時間待機し、バックオフ制御1500を開始し、Legacy無線局装置5000は仮想CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御5005を開始するので、送信元EDMG無線局装置1000とLegacy無線局装置5000がバックオフ制御を開始するタイミングが揃う。
 以上より、実施の形態3によれば、送信元EDMG無線局装置1000が実際のEDMG A-PPDU1400のフレーム長に対してL3を長く設定した場合でも宛先EDMG無線局装置2000は、EDMG A-PPDU1400の受信完了後に、他の無線局装置による割り込みを抑制し、BA2012を送信することができる。また、EDMG無線局装置とLegacy無線局装置のバックオフ制御開始タイミングを揃えることができ、各無線局装置に送信機会を均等に与えることができる。
 なお、実施の形態3では、送信元EDMG無線局装置1000は、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とEDMG-Header-A1201とDATA1202とEDMG-Header-A1301とDATA1302とを合計したフィールド長とBA2012のフレーム長とSIFS時間の合計時間以上の任意の時間L3を名目上のデータフィールド長として定め、名目上のデータフィールド長L3からBA2012のフレーム長とSIFS時間を引いた時間を超えて新たにEDMG PPDUを連結して送信しないものとしたが、実施の形態1のように、送信元EDMG無線局装置1000は、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とEDMG-Header-A1201とDATA1202とEDMG-Header-A1301とDATA1302を合計したフィールド長以上の任意の時間を名目上のデータフィールド長L3とし、名目上のデータフィールド長L3を超えて新たにEDMG PPDUを連結して送信しないようにしてもよい。この場合、BA2012が名目上のデータフィールド長L3を越えて送信されることを除いては、各無線局装置の振る舞いは同じである。
 (実施の形態4)
 図38は、実施の形態4によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び宛先EDMG無線局装置2000が送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図8に対応する。図8と同一部分には同一符号を付し、これについての説明を省略する。
 図8の送信元EDMG無線局装置1000は、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とEDMG-Header-A1201とDATA1202とEDMG-Header-A1301とDATA1302を合計したフィールド長以上の任意の時間L2を、所定の計算方法に基づいてオクテットサイズD2に変換し、L-Header1103のLengthフィールドに設定していたが、図38では送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信前にあらかじめ分かっているデータサイズ、例えばバッファに蓄積されているデータサイズからLegacy無線局装置にとっての名目上のデータフィールド長L4を定め、L4を所定の計算方法に基づいて名目上のデータオクテットサイズD4に変換し、L-Header1103のLengthフィールドに設定する。図38ではDATA1107、1202がバッファに蓄積される。
 また、図8では送信元EDMG無線局装置1000は、名目上のデータフィールド長L2を超える時間では、新たにEDMG PPDUを連結して送信しなかったが、図38では送信元EDMG無線局装置1000は、送信開始時点で最後尾に配置された第2のEDMG PPDU1200のEDMG-Header-A1201の送信前に追加したいDATA1302がバッファに入力された場合、第2のEDMG PPDU1200の後に第3のEDMG PPDU1300を連結することができる。
 図38における宛先EDMG無線局装置2000の動作は、実施の形態2の図18に示す動作と同じである。
 なお、図示しないがBA2012が正常受信できなかったMPDUの存在を示す場合、あるいはBA2012のデコードでHCSエラーまたはFCSエラーが生じた場合、送信元EDMG無線局装置1000は、BA2012の受信完了後、SIFS時間待機し、正常受信できなかったMPDUを含むパケットを再送する。
 なお、宛先EDMG無線局装置2000がデコード処理2007、2009、2011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図39参照)、あるいはデコード2004においてHCSによりエラーを検出した場合(図40参照)、宛先EDMG無線局装置2000は、BA2012を送信しない。この場合、送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信完了からPIFS時間以内にBA2012を受信しないので、EDMG A-PPDU1400が宛先EDMG無線局装置2000に正常に届かなかったと判断し、EDMG A-PPDU1400の再送処理1600を実行する。これらの処理は、実施の形態2の図19および図20の宛先EDMG無線局装置2000の処理と同じである。
 図41は、実施の形態4によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び非宛先EDMG無線局装置3000が送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図11に対応する。図11と同一部分には同一符号を付し、これについての説明を省略する。
 図11では非宛先EDMG無線局装置3000は、名目上のデータフィールド長L2の間、ビジーである仮想CCAがアイドルに変化した後、NAV3012を設定し、NAV3012の終了後、DIFS時間待機し、バックオフ制御3013を開始していたが、図41では非宛先EDMG無線局装置3000は、名目上のデータフィールド長L4を超過して連結された第3のEDMG PPDU1300の送信が終了し、物理CCAがビジーからアイドルに変化した後、NAV3012を設定し、NAV3012の終了後、DIFS時間待機し、バックオフ制御3013を開始する。この動作は、実施の形態2の図21の非宛先EDMG無線局装置3000の動作と同じである。
 なお、非宛先EDMG無線局装置3000がデコード処理3007、3009、3011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図42参照)、あるいはデコード3004においてHCSによりエラーを検出した場合(図43参照)、非宛先EDMG無線局装置3000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御3013を開始する。これらの処理は、実施の形態2の図22および図23の非宛先EDMG無線局装置3000の処理と同じである。
 図44は、実施の形態4によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びEDMG A-PPDU非対応EDMG無線局装置4000が送信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図14に対応する。図14と同一部分には同一符号を付し、これについての説明を省略する。
 図14ではEDMG A-PPDU非対応EDMG無線局装置4000は、名目上のデータフィールド長L2の間、ビジーである仮想CCAがアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始していたが、図44ではEDMG A-PPDU非対応EDMG無線局装置4000は、名目上のデータフィールド長L4を超過して連結された第3のEDMG PPDU1300の送信が終了し、物理CCAがビジーからアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始する。この動作は、実施の形態2の図24のEDMG A-PPDU非対応EDMG無線局装置4000の動作と同じである。
 なお、EDMG A-PPDU非対応EDMG無線局装置4000がデコード処理4007によって得られた全てのMPDUについてFCSによりエラーを検出した場合(図45参照)、あるいはデコード処理4004においてHCSによりエラーを検出した場合(図46参照)、EDMG A-PPDU非対応EDMG無線局装置4000は、物理CCAがビジーからアイドルに変化した値、EIFS時間待機し、バックオフ制御4009を開始する。これらの動作は、実施の形態2の図25および図26のEDMG A-PPDU非対応EDMG無線局装置4000の動作と同じである。
 図47は、実施の形態4によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びLegacy無線局装置5000が送受信するフィールドおよび実行する処理の一例を示す図であり、実施の形態1の図17に対応する。図17と同一部分には同一符号を付し、これについての説明を省略する。
 図47ではLegacy無線局装置5000は、デコード処理5003においてHCSによりエラーが検出されない場合、名目上のデータオクテットサイズがD4であると判断できるので、仮想CCAをビジーに設定し、EDMG-Header-A1104からDATA1200までをデータフィールドとしてデコード処理5004を実行する。そして図17と同様にLegacy 無線局装置5000は、デコード処理5004においてFCSによりエラーを検出する。
 Legacy無線局装置5000は、EDMG-Header-A1301とDATA1302に対してはデコード処理を行わず、仮想CCAをアイドルに設定する。このときLegacy無線局装置5000は、物理CCAがビジーであるため、図示しない無線局装置が無線チャネルを使用していると判断し、送信待機する。
 Legacy無線局装置5000は、物理CCAがビジーからアイドルに変化してからEIFS時間待機した後、バックオフ制御5005を開始する。
 以上より、実施の形態4によれば、宛先EDMG無線局装置2000は、EDMG A-PPDU1400の受信完了後、他の無線局装置による割り込みを抑制し、BA2012を送信することができ、Legacy無線局装置5000は、消費電力を低減することができる。
 (実施の形態5)
 図48は、実施の形態5によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び宛先EDMG無線局装置2000が送受信するフィールドおよび実行する処理の一例を示す図であり、実施の形態4の図38に対応する。図38と同一部分には同一符号を付し、これについての説明を省略する。
 図38では送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信前にあらかじめ分かっているデータサイズ、例えばバッファに蓄積されているデータサイズからLegacy無線局装置にとっての名目上のデータフィールド長L4を定め、名目上のデータフィールド長L4を所定の計算方法に基づいてオクテットサイズD4に変換し、L-Header1103のLengthフィールドに設定していたが、図48では送信元EDMG無線局装置1000は、L-Header1103のLengthフィールドを0に設定する。
 図48における送信元EDMG無線局装置1000のその他の処理および宛先EDMG無線局装置2000の処理は、図38のそれらと同じである。
 なお、図示しないが、BA2012が正常受信しなかったMPDUの存在を示す場合、あるいはBA2012のデコードでHCSエラーまたはFCSエラーが生じた場合、送信元EDMG無線局装置1000は、BA2012の受信完了からSIFS時間待機し、正常受信できなかったMPDUを含むパケットを再送1600する、あるいはDIFS時間待機し、バックオフ制御を実施した後、正常受信できなかったMPDUを含むパケットを再送する。
 なお、宛先EDMG無線局装置2000がデコード処理2007、2009、2011によって得られた全てにおいてFCSによりエラーを検出した場合(図49参照)、あるいはデコード処理2004においてHCSによりエラーを検出した場合(図50参照)、宛先EDMG無線局装置2000は、BA2012を送信しない。
 この場合、送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信完了からPIFS時間以内にBA2012を受信しないので、EDMG A-PPDU1400が宛先EDMG無線局装置2000に正常に届かなかったと判断し、EDMG A-PPDU1400の再送処理1600を実行する。これらの処理は、実施の形態4の図39および図40の宛先EDMG無線局装置2000の処理と同じである。
 図51は、実施の形態5によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び非宛先EDMG無線局装置3000が送受信するフィールドおよび実行する処理の一例を示す図であり、実施の形態4の図41に対応する。図41と同一部分には同一符号を付し、これについての説明を省略する。
 図51においても図41と同様に非宛先EDMG無線局装置3000は、物理CCAがビジーからアイドルに変化した後、NAV3012を設定し、NAV3012の終了後、DISF時間待機し、バックオフ制御3013を開始する。
 なお、非宛先EDMG無線局装置3000がデコード処理3007、3009、3011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図52参照)、あるいはデコード3004においてHCSによりエラーを検出した場合(図53参照)、非宛先EDMG無線局装置3000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御3013を開始する。これらの処理は、実施の形態4の図42および図43の非宛先EDMG無線局装置3000の処理と同じである。
 図54は、実施の形態5によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びEDMG A-PPDU非対応EDMG無線局装置4000が送受信するフィールドおよび実行する処理の一例を示す図であり、実施の形態4の図44に対応する。図44と同一部分には同一符号を付し、これについての説明を省略する。
 図54においても図44と同様にEDMG A-PPDU非対応EDMG無線局装置4000は、物理CCAがビジーからアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始する。
 なお、EDMG A-PPDU非対応EDMG無線局装置4000がデコード4007において全てのMPDUについてFCSによりエラーを検出した場合(図55参照)、あるいはデコード4004でHCSによりエラーを検出した場合(図56参照)、EDMG A-PPDU非対応EDMG無線局装置4000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御4009を開始する。これらの動作は、実施の形態4の図45および図46のEDMG A-PPDU非対応EDMG無線局装置4000の動作と同じである。
 図57は、実施の形態5によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びLegacy無線局装置5000が送受信するフィールドおよび実行する処理の一例を示す図であり、実施の形態4の図47に対応する。図47と同一部分には同一符号を付し、これについての説明を省略する。
 図57ではLegacy無線局装置5000は、デコード処理5003においてHCSによりエラーが検出しない場合、L-Header1103からLengthフィールドの値として、「0」を取得する。
 しかし、IEEE802.11adではL-HeaderのLengthフィールドを1から262143の範囲に設定することが規定されているので、Legacy無線局装置5000は、規定外のLength設定と判断し、EDMG-Header-A以降のフィールドのデコード処理を止めることができる。
 Legacy無線局装置5000は、図47と同様に物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御5005を開始する。
 以上より、実施の形態5によれば、宛先EDMG無線局装置2000は、EDMG A-PPDU1400の受信完了後に他の無線局装置による割り込みを抑制し、BA2012を送信することができ、Legacy無線局装置5000は、消費電力をより一層低減することができる。
 (実施の形態6)
 図58は、実施の形態6によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び宛先EDMG無線局装置2000が送受信するフィールドおよび実行する処理の一例を示す図である。
 実施の形態6ではEDMG A-PPDU1400のフォーマットが実施の形態1から実施の形態5におけるEDMG A-PPDU1400のフォーマットと異なる。
 具体的には第2のEDMG PPDU1200は、L-Header1203を新たに含み、第3のEDMG PPDU1300は、L-Header1303を新たに含む。
 送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信において下記の処理を行う。
 送信元EDMG無線局装置1000は、Legacy無線局装置に名目上のデータオクテットサイズを知らせるために、EDMG-Header-A1104とEDMG-STF1105とEDMG-CEF1106とDATA1107とを合計したフィールド長L5を、所定の計算方法に基づいて名目上のデータオクテットサイズD5に変換し、L-Header1103のLengthフィールドに設定し、L-Header1203とEDMG-Header-A1201とDATA1202とを合計したフィールド長L6を、所定の計算方法に基づいて名目上のデータオクテットサイズD6に変換し、L-Header1203のLengthフィールドに設定し、L-Header1303とEDMG-Header-A1301とDATA1302とを合計したフィールドの無線チャネル上でのフィールド長L7を所定の計算方法に基づいてデータオクテットサイズに変換しL-Header1303のLengthフィールドに設定する。
 送信元EDMG無線局装置1000は、DATA1107のオクテットサイズE2をEDMG-Header-A1104のLengthフィールドに設定し、DATA1202のオクテットサイズE3をEDMG-Header-A1201のLengthフィールドに設定し、DATA1302のオクテットサイズE4をEDMG-Header-A1301のLengthフィールドに設定する。
 送信元EDMG無線局装置1000は、EDMG A-PPDU1400を構成する各EDMG PPDUにEDMG-Header-Aが存在することを示すためにL-Header1003とL-Header1203とL-Header1303とのEDMG Indicationフィールドを1に設定する。
 送信元EDMG無線局装置1000は、第1のEDMG PPDU1100と第2のEDMG PPDU1200と第3のEDMG PPDU1300とが連結されていることを示すために、L-Header1103とL-Header1203とのAdditional PPDUフィールドを1に設定し、L-Header1303のAdditional PPDUフィールドを0に設定する。
 実施の形態6では複数のEDMG PPDUが連結されていることを示すために、既存のL-HeaderのAdditional PPDUフィールドを使用するので、EDMG-Header-A1104とEDMG-Header-A1201とEDMG-Header-A1301とにはAdditional PPDUフィールドが存在しなくてもよい。
 宛先EDMG無線局装置2000は、受信したEDMG A-PPDU1400に対して下記の処理を行う。
 先ず宛先EDMG無線局装置2000は、L-STF1101を使用して同期処理2001を行う。
 次に宛先EDMG無線局装置2000は、L-CEF1102を使用してチャネル推定(CE)処理2002を行う。宛先EDMG無線局装置2000は、チャネル推定結果をL-Header1103以降のフィールドの等化処理に使用することができる。
 次に宛先EDMG無線局装置2000は、L-Header1103のデコード処理2003を実行する。デコード処理2003においてHCSでエラーが検出しない場合、宛先EDMG無線局装置2000は、第1のEDMG PPDU1100にEDMG-Header-A1104が存在することを認識し、第1のEDMG PPDU1100の後に第2のEDMG PPDU1200が存在することを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1104のデコード処理2004を実行する。デコード処理2004においてHCSでエラーが検出しない場合、宛先EDMG無線局装置2000は、DATA1107のサイズがE2オクテットであることを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-STF1105を使用して再同期処理2005を実行する。
 次に宛先EDMG無線局装置2000は、EDMG-CEF1106を使用して再チャネル推定(再CE)処理2006を実行する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1104のLengthフィールドの設定値(E2)に従ってDATA1107のデコード処理2007を実行する。
 次に宛先EDMG無線局装置2000は、デコード2003の結果から第2のEDMG PPDU1200の存在を認識しているので、L-Header1203のデコード処理2013を実行する。デコード処理2013においてHCSによりエラーが検出しない場合、宛先EDMG無線局装置2000は、第2のEDMG PPDU1200にEDMG-Header-A1201が存在することを認識し、第2のEDMG PPDU1200の後に第3のEDMG PPDU1300が続いていることを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1201のデコード処理2008を実行する。デコード処理2008においてHCSでエラーが検出しない場合、宛先EDMG無線局装置2000は、DATA1202のサイズがE3オクテットであることを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1201のLengthフィールドの設定値(E3)に従ってDATA1202のデコード処理2009を実行する。
 次に宛先EDMG無線局装置2000は、デコード処理2013の結果から第3のEDMG PPDU1300の存在を認識しているので、L-Header1303のデコード処理2014を実行する。デコード処理2014においてHCSによりエラーが検出しない場合、宛先EDMG無線局装置2000は、第3のEDMG PPDU1300にEDMG-Header-A1301が存在することを認識し、第3のEDMG PPDU1300の後には追加のEDMG PPDUが存在しないことを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1301のデコード処理2010を実行する。デコード処理2010においてHCSでエラーが検出しない場合、宛先EDMG無線局装置2000は、DATA1302のサイズがE4オクテットであることを認識する。
 次に宛先EDMG無線局装置2000は、EDMG-Header-A1301のLengthフィールドの設定値(E4)に従ってDATA1302のデコード処理2011を実行する。
 次に宛先EDMG無線局装置2000は、デコード処理1107、1202、1302によって得られる一つ以上のMPDUでFCSエラーを検出しなかった場合、物理CCAがビジーからアイドルに変化した後、あるいは最後尾に位置する第3のEDMG PPDU1300に対する仮想CCAがビジーからアイドルに変化した後、SIFS時間待機し、BA2012を送信元EDMG無線局装置1000に送信する。
 送信元EDMG無線局装置1000は、BA2012を正常に受信した後、次のパケットを送信するためにDIFS時間待機し、バックオフ制御1500を開始する、あるいはDIFS時間待機し、バックオフ制御を実施した後に正常受信されなかったMPDUを再送する。
 なお、図示しないがBA2012が正常受信しなかったMPDUの存在を示す場合、あるいはBA2012のデコードでHCSエラーまたはFCSエラーが生じた場合、送信元EDMG無線局装置1000は、BA2012の受信完了からSIFS時間待機し、正常受信しなかったMPDUを含むパケットの再送処理1600を実行する。
 なお、宛先EDMG無線局装置2000がデコード処理2007、2009、2011によって得られる全てのMPDUにおいてFCSによりエラーを検出した場合(図59参照)、あるいはデコード処理2004においてHCSによりエラーを検出した場合(図60参照)、宛先EDMG無線局装置2000は、BA2012を送信しない。この場合、送信元EDMG無線局装置1000は、EDMG A-PPDU1400の送信完了からPIFS時間以内にBA2012を受信しないので、EDMG A-PPDU1400が宛先EDMG無線局装置2000に正常に届かなかったと判断し、EDMG A-PPDU1400の再送処理1600を実行する。
 図61は、実施の形態6によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及び非宛先EDMG無線局装置3000が送受信するフィールドおよび実行する処理の一例を示す図である。図61の送信元EDMG無線局装置1000は、EDMG A-PPDU1400を図58の宛先EDMG無線局装置2000に送信し、BA2012を正常に受信し、図61の非宛先EDMG無線局装置3000は、EDMG A-PPDU1400の宛先局装置ではないがEDMG A-PPDU1400を受信できる環境に存在する。
 図61の非宛先EDMG無線局装置3000は、受信したEDMG A-PPDU1400に対して図58の宛先EDMG無線局装置2000と同様の処理を行うが、デコード処理3011よりも後の処理が図58の宛先EDMG無線局装置2000と異なる。具体的には、図61の非宛先EDMG無線局装置3000は、デコード処理3007、3009、3011によって得られた一つ以上のMPDUにおいてFCSによりエラーを検出しない場合、EDMG A-PPDU1400の宛先が自局装置ではないことを認識し、物理CCAがビジーからアイドルに変化した後、あるいは第3のEDMG PPDU1300に対する仮想CCAがビジーからアイドルに変化した後、NAV3012を設定し、NAV3012の終了後、DIFS時間待機し、バックオフ処理3013を開始する。
 なお、非宛先EDMG無線局装置3000がデコード処理3007、3009、3011によって得られた全てのMPDUにおいてFCSによりエラーを検出した場合(図62参照)、あるいはデコード処理3004においてHCSによりエラーを検出した場合(図63参照)、非宛先EDMG無線局装置3000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御3013を開始する。
 図64は、実施の形態6によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びEDMG A-PPDU非対応EDMG無線局装置4000が送受信するフィールドおよび実行する処理の一例を示す図である。図64の送信元EDMG無線局装置1000は、EDMG A-PPDU1400を図58の宛先EDMG無線局装置2000に送信し、BA2012を正常に受信し、図64のEDMG A-PPDU非対応EDMG無線局装置4000は、EDMG A-PPDU1400の宛先局装置ではないがEDMG A-PPDU1400を受信できる環境に存在する。
 EDMG A-PPDU非対応EDMG無線局装置4000は、EDMG A-PPDUに対応していないためDATA1107までデコード処理を実行し、L-Header1203以降のフィールドのデコード処理を実行しない。EDMG A-PPDU非対応EDMG無線局装置4000は、デコード処理4007においてFCSによりエラーを検出しなかった場合、EDMG A-PPDU1400の宛先がEDMG A-PPDU非対応EDMG無線局装置4000ではないことを認識するので、物理CCAがビジーからアイドルに変化した後、NAV4008を設定し、NAV4008の終了後、DIFS時間待機し、バックオフ制御4009を開始する。
 なお、EDMG A-PPDU非対応EDMG無線局装置4000がデコード処理4007によって得られる全てのMPDUでFCSによりエラーを検出した場合(図65参照)、あるいはデコード処理4004においてHCSによりエラーを検出した場合(図66参照)、EDMG A-PPDU非対応EDMG無線局装置4000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御4009を開始する。
 図67は、実施の形態6によるEDMG A-PPDUを使った通信における送信元EDMG無線局装置1000及びLegacy無線局装置5000が送受信するフィールドおよび実行する処理の一例を示す図である。図67の送信元EDMG無線局装置1000は、EDMG A-PPDU1400を図58の宛先EDMG無線局装置2000に送信し、BA2012を正常に受信し、Legacy無線局装置5000は、EDMG A-PPDU1400の宛先局装置ではないがEDMG A-PPDU1400を受信できる環境にあるものとする。
 Legacy無線局装置5000は、EDMG A-PPDUに対応していないので受信したEDMG A-PPDU1400を一般的なLegacy A-PPDUとして処理する。すなわちLegacy無線局装置5000は、同期処理5001、チャネル推定(CE)5002に続いてL-Header1103をデコード5003する。デコード5003においてHCSでエラーが検出されない場合、Legacy無線局装置5000は、Additional PPDUフィールドが1に設定されていることから第1のEDMG PPDU1100の直後に第2のEDMG PPDU1200が続いていることが分かる。またLegacy無線局装置は、L-Header1103のLengthフィールドから第1のEDMG PPDU1100の名目上のデータフィールドのオクテットサイズD5を知ることができる。
 そして、Legacy無線局装置5000は、EDMG-Header-A1104からDAATA1107までのフィールドをサイズがD5オクテットのデータフィールドとしてデコード処理5004を実行する。Legacy無線局装置5000は、デコード処理5004においてFCSによりエラーを検出する。
 また、EDMG-STF1105とEDMG-CEF1106とDATA1107とは、チャンネルボンディング技術やMIMO技術を使って送信されることがあるため、Legacy無線局装置5000はデコード処理5004の最中に同期が外れる可能性がある。
 Legacy無線局装置5000は、デコード処理5003の結果から第2のEDMG PPDU1200の存在を認識するのでL-Header1203のデコード処理5006を実行する。しかし前述のようにLegacy無線機5000は、デコード処理5004の最中に同期外れを起こすことがあるので、デコード処理5006においてHCSによりエラーを検出する可能性が高い。
 デコード処理5006においてHCSでエラーが検出された場合、Legacy無線局装置5000は、EDMG-Header-A1201以降のフィールドに対してデコード処理を実行しない。Legacy無線局装置5000は、物理CCAがビジーからアイドルに変化した後、EIFS時間待機し、バックオフ制御5005を開始する。
 実施の形態6によれば、宛先EDMG無線局装置2000は、EDMG A-PPDU1400の受信完了後に、他の無線局装置による割り込みを抑制し、BA2012を送信することができ、Legacy無線局装置5000は、消費電力を低減することができる。またEDMG無線局装置とLegacy無線局装置のバックオフ制御開始タイミングを揃えることができ、各無線局装置に送信機会を均等に与えることができる。
 (EDMG無線局の構成)
 図68は、本開示によるEDMG無線局装置の構成の一例を示す図である。本開示においてEDMG無線局装置1000、EDMG無線局装置2000、EDMG無線局装置3000、EDMG無線局装置4000は同一の構成である。図68においてEDMG無線局装置1000は、EDMG PPDU生成部1000aと送信デジタル処理部1000bと送信RFフロントエンド1000cと受信RFフロントエンド1000dと受信デジタル信号処理部1000eとブロックAck生成部1000fとコントローラ1000gを備える。
 EDMG PPDU生成部1000aは、EDMG A-PPDUを構成する各EDMG PPDUを生成する。
 図69に示すように、EDMG PPDU生成部1000aは、L-STF生成部1000a1とL-CEF生成部1000a2とL-Header生成部1000a3とEDMG-Header-A生成部1000a4とEDMG-STF生成部1000a5とEDMG-CEF生成部1000a6とData生成部1000a7と連結部1000a8を備える。
 L-STF生成部1000a1は、Legacy無線局装置およびEDMG無線局装置がパケット検出、同期処理、AGC(Auto Gain Control:自動利得制御)等を行うためのL-STFを生成する。
 L-CEF生成部1000a2は、Legacy無線局装置およびEDMG無線局装置がチャネル推定を行うためのL-CEFを生成する。
 L-Header生成部1000a3は、Legacy無線局装置に対する名目上のデータオクテットサイズを計算し、計算結果をL-HeaderのLengthフィールドに設定する。また、L-Header生成部1000a3は、L-HeaderのEDMG Indicationフィールドを1に設定する。また、L-Header生成部1000a3は、後続するEDMG PPDUの有無に応じてL-HeaderのAdditional PPDUフィールドの設定を行う。
 EDMG-Header-A生成部1000a4は、実際のデータフィールドのオクテットサイズをEDMG-Header-AのLengthフィールドに設定する。また、EDMG-Header-A生成部1000a4は、後続するEDMG PPDUの有無に応じてEDMG-Header-AフィールドのAdditional PPDUフィールドの設定を行う。
 EDMG-STF生成部1000a5は、MIMO技術およびチャネルボンディング技術を用いてパケットを送信するときに、EDMG無線局装置が各MIMOストリームやチャネルボンディングされた広帯域信号に対して再同期処理を行うためのEDMG-STFを生成する。
 EDMG-CEF生成部1000a6は、MIMO技術およびチャネルボンディング技術を用いてパケットを送信するときに、EDMG無線局装置が各MIMOストリームやチャネルボンディングされた広帯域信号に対して再チャネル推定を行うためのEDMG-CEFを生成する。
 Data生成部1000a7は、ペイロードデータを生成する。
 連結部1000a8は、L-HeaderのAdditional PPDUフィールドおよびEDMG-Header-AのAdditional PPDUフィールドの設定に基づいてL-STF、L-CEF、L-Header、EDMG-Header-A、EDMG-STF、EDMG-CEF、ペイロードデータを連結しEDMG A-PPDUを形成する。
 送信デジタル信号処理部1000bは、L-HeaedrのAdditional PPDUフィールドまたはEDMG-Header-AフィールドのAdditional PPDUフィールドの設定値に従って複数のEDMG PPDUに対してアグリゲーション処理を行うブロックである。
 送信RFフロントエンド1000cは、入力信号をRF信号へと周波数変換し送信アンテナから放射する。
 受信RFフロントエンド1000dは、他の無線局から送信された信号を受信アンテナにより受信し、受信したRF信号をベースバンド信号へと周波数変換する。また、受信信号の電力を測定し測定値をコントローラ1000gに送る。
 受信デジタル信号処理部1000eは、受信信号に対して、同期処理、チャネル推定処理、ヘッダデコード処理、データデコード処理を行う。受信デジタル信号処理部1000eは、L-Headerを正常に受信した場合、Lengthフィールドの設定値から無線チャネル上での名目上のデータフィールド長を算出し、コントローラ1000gに出力する。
 また、受信デジタル信号処理部1000eは、L-HeaderのHCS検査結果、EDMG-Header-AのHCS検査結果、データフィールドを構成する複数のMPDUのFCS検査結果とデータフィールドに含まれるMACヘッダのDurationフィールド値と宛先アドレスフィールド値をコントローラ1000gに出力する。また、受信デジタル信号処理部は、HCS検査結果とFCS検査結果をブロックAck生成部1000fに出力する。
 ブロックAck生成部1000fは、HCS検査結果、FCS検査結果に基づいてブロックAckフレームを生成する。
 コントローラ1000gは、EDMG無線局装置1000の動作を制御する。コントローラ1000gは、各種IFS時間や名目上のデータフィールド長の時間をカウントする。EDMG無線局1000が送信装置として動作する場合、コントローラ1000gは、ブロックAckを正常に受信した場合、ブロックAckの内容に応じてEDMG無線局装置1000にバックオフ処理あるいは再送処理を行わせ、ブロックAckを正常に受信しなかった場合、無線局装置1000に再送処理を行わせる。
 また、コントローラ1000gは、受信フレームが自局装置宛であった場合、受信号電力レベルに基づいて物理CCAを設定し、L-HeaderのLengthフィールドに基づいて仮想CCAを設定し、EDMG無線局装置1000にブロックAckの送信処理を行わせる。
 また、コントローラ1000gは、受信フレームが自局装置宛ではなかった場合、NAVを設定し、NAV期間では、無線局装置1000の送信処理を停止し、または所定のIFS時間をカウントし、無線局装置1000にバックオフ制御を行わせる。
 上記各実施形態では、本開示は、無線通信装置、例えば、スーマートフォン、セルラー、タブレット端末、パソコン、テレビを用いて、動画像(movie)、静止画像(picture)、音声(audio)、テキストデータ、制御データを送受信するのに好適である。
 (実施形態のまとめ)
 本開示の第1の態様に係る通信装置は、レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズを前記レガシーヘッダフィールドに設定し、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドを0に設定するPPDU生成部と、前記名目上のデータフィールド長以下において前記A-PPDUを構成する信号処理部と、前記構成したA-PPDUを送信する送信部と、を含み、前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である。
 本開示の第2の態様に係る通信装置は、レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズが前記レガシーヘッダフィールドに設定され、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドが0に設定され、前記名目上のデータフィールド長以下において構成された前記A-PPDUを受信する受信部と、前記受信したA-PPDUに対して、Ackフレームを送信する送信部と、を含み、前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である。
 本開示の第3の態様に係る通信方法は、レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズを前記レガシーヘッダフィールドに設定し、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドを0に設定し、前記名目上のデータフィールド長以下において前記A-PPDUを構成し、前記構成したA-PPDUを送信し、前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である。
 本開示の第4の態様に係る通信方法は、レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズが前記レガシーヘッダフィールドに設定され、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドが0に設定され、前記名目上のデータフィールド長以下において構成された前記A-PPDUを受信し、前記受信したA-PPDUに対して、Ackフレームを送信し、前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である。
 以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。
 上記各実施形態では、本開示はハードウェアを用いて構成する例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記各実施形態の説明に用いた各機能ブロックは、典型的には、入力端子および出力端子を有する集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサを用いて実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続又は設定を再構成可能なリコンフィギュラブル プロセッサ(Reconfigurable Processor)を利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術により、LSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックを集積化してもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、無線通信システムにおいて、集約PPDU(物理層収束プロトコルデータユニット)を構成し送信する方法に適用することができる。
1000 EDMG無線局
1000a EDMG PPDU生成部
1000a1 L-STF生成部
1000a2 L-CEF生成部
1000a3 L-Header生成部
1000a4 EDMG-Header-A生成部
1000a5 EDMG-STF生成部
1000a6 EDMG-CEF生成部
1000a7 Data生成部
1000a8 連結部
1000b 送信デジタル信号処理部
1000c 送信RFフロントエンド
1000d 受信RFフロントエンド
1000e 受信デジタル信号処理部
1000f ブロックAck生成部
1000g コントローラ

Claims (4)

  1.  レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズを前記レガシーヘッダフィールドに設定し、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドを0に設定するPPDU生成部と、
     前記名目上のデータフィールド長以下において前記A-PPDUを構成する信号処理部と、
     前記構成したA-PPDUを送信する送信部と、
     を含み、
      前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である、
    通信装置。
  2.  レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズが前記レガシーヘッダフィールドに設定され、前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドが0に設定され、前記名目上のデータフィールド長以下において構成された前記A-PPDUを受信する受信部と、
     前記受信したA-PPDUに対して、Ackフレームを送信する送信部と、
     を含み、
      前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である、
    通信装置。
  3.  レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズを前記レガシーヘッダフィールドに設定し、
     前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドを0に設定し、
     前記名目上のデータフィールド長以下において前記A-PPDUを構成し、
     前記構成したA-PPDUを送信する、
     通信方法であって、
     前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である、
     通信方法。
  4.  レガシーSTFと、レガシーCEFと、レガシーヘッダフィールドと、非レガシーSTFと非レガシーCEFと、複数の非レガシーヘッダフィールドと、複数のデータフィールドとを含む集約物理層収束プロトコルデータユニット(A-PPDU)に対して、名目上のデータフィールド長に基づいて算出された名目上のデータオクテットサイズが前記レガシーヘッダフィールドに設定され、
     前記レガシーヘッダフィールドに含まれるAdditional PPDUフィールドが0に設定され、前記名目上のデータフィールド長以下において構成された前記A-PPDUを受信し、
     前記受信したA-PPDUに対して、Ackフレームを送信する、
     通信方法であって、
      前記名目上のデータフィールド長は、前記非レガシーSTFと前記非レガシーCEFと前記複数の非レガシーヘッダフィールドと前記複数のデータフィールドとの合計以上の時間である、
     通信方法。
PCT/JP2017/033393 2016-10-21 2017-09-15 集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法 WO2018074119A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780061821.8A CN109804611B (zh) 2016-10-21 2017-09-15 使用聚合物理层收敛协议数据单元的通信装置和通信方法
EP17862482.1A EP3531665B1 (en) 2016-10-21 2017-09-15 Communication device and communication method that use aggregate physical layer convergence protocol data unit
JP2018546194A JP6892456B2 (ja) 2016-10-21 2017-09-15 集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法
US16/366,338 US10917936B2 (en) 2016-10-21 2019-03-27 Communication apparatus and communication method using aggregate physical layer convergence protocol data unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016207310 2016-10-21
JP2016-207310 2016-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/366,338 Continuation US10917936B2 (en) 2016-10-21 2019-03-27 Communication apparatus and communication method using aggregate physical layer convergence protocol data unit

Publications (1)

Publication Number Publication Date
WO2018074119A1 true WO2018074119A1 (ja) 2018-04-26

Family

ID=62018328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033393 WO2018074119A1 (ja) 2016-10-21 2017-09-15 集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法

Country Status (6)

Country Link
US (1) US10917936B2 (ja)
EP (1) EP3531665B1 (ja)
JP (1) JP6892456B2 (ja)
CN (1) CN109804611B (ja)
TW (1) TWI726156B (ja)
WO (1) WO2018074119A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053710A1 (en) * 2018-09-13 2020-03-19 Marvell World Trade Ltd. Multi-protocol frame format

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11153821B2 (en) * 2017-06-22 2021-10-19 Intel Corporation Apparatus, system and method of acknowledging a multi user (MU) multiple-input-multiple-output (MIMO) (MU-MIMO) transmission
CN110896397A (zh) 2018-09-12 2020-03-20 马维尔国际贸易有限公司 无线站的信号通知能力

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161031A (ja) * 2009-04-09 2014-09-04 Qualcomm Incorporated マルチプルの物理層を使用するワイヤレス通信のためのmacアーキテクチャ
JP2015111829A (ja) * 2010-08-25 2015-06-18 クゥアルコム・インコーポレイテッドQualcomm I マルチユーザmimo送信のための複数の宛先からの確認応答メッセージの管理

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4047836B2 (ja) * 2004-04-02 2008-02-13 株式会社東芝 通信装置、通信システム、通信方法、および通信制御プログラム
KR100605979B1 (ko) * 2004-09-10 2006-07-31 삼성전자주식회사 다중 수신기 응집 전송 기반의 데이터 통신 방법
EP3122150B1 (en) * 2010-09-07 2018-08-29 Intel Corporation Device, system and method of wireless communication
US8855088B2 (en) * 2010-12-22 2014-10-07 Intel Corporation Reverse protocol for low latency wireless applications
US9749975B2 (en) * 2014-04-30 2017-08-29 Marvell World Trade Ltd. Systems and methods for implementing protected access based on a null data packet in a wireless network
BR112017014869B1 (pt) * 2015-02-13 2023-11-21 Panasonic intellectual property Management co., Ltd Dispositivo de comunicação sem fio e método de comunicação sem fio
US10021695B2 (en) * 2015-04-14 2018-07-10 Qualcomm Incorporated Apparatus and method for generating and transmitting data frames
KR20240132385A (ko) * 2015-06-03 2024-09-03 애플 인크. 집약 물리층 프로토콜 데이터 유닛의 전송 장치 및 전송 방법
ES2913823T3 (es) * 2016-02-29 2022-06-06 Panasonic Ip Corp America Dispositivo de transmisión y procedimiento de transmisión

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161031A (ja) * 2009-04-09 2014-09-04 Qualcomm Incorporated マルチプルの物理層を使用するワイヤレス通信のためのmacアーキテクチャ
JP2015111829A (ja) * 2010-08-25 2015-06-18 クゥアルコム・インコーポレイテッドQualcomm I マルチユーザmimo送信のための複数の宛先からの確認応答メッセージの管理

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531665A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053710A1 (en) * 2018-09-13 2020-03-19 Marvell World Trade Ltd. Multi-protocol frame format

Also Published As

Publication number Publication date
EP3531665B1 (en) 2022-01-19
CN109804611A (zh) 2019-05-24
EP3531665A4 (en) 2019-10-30
CN109804611B (zh) 2022-03-01
US20190223253A1 (en) 2019-07-18
TWI726156B (zh) 2021-05-01
JPWO2018074119A1 (ja) 2019-08-15
JP6892456B2 (ja) 2021-06-23
US10917936B2 (en) 2021-02-09
EP3531665A1 (en) 2019-08-28
TW201817210A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
US11653261B2 (en) Wireless communication method using frame aggregation and wireless communication terminal using same
CN107078858B (zh) 在无线lan系统中发送和接收多用户块确认帧的方法及其设备
JP5474963B2 (ja) レガシーwlan受信機との並列通信のためのシステムおよび方法
EP3937408A1 (en) Data transmission method and device
KR20180059858A (ko) 무선 네트워크에서의 가변 길이 블록 확인응답 필드들을 시그널링하고 생성하기 위한 시스템들 및 방법들
CN109510695B (zh) 无线通信装置以及无线通信方法
US20170201905A1 (en) Station (sta) and method for communication in accordance with block acknowledgement (ba)
WO2018074119A1 (ja) 集約物理層収束プロトコルデータユニットを用いる通信装置および通信方法
TW201639333A (zh) 於無線系統中減少通道存取延遲
US11108503B2 (en) Multiple traffic class data aggregation in a wireless local area network
KR20210124917A (ko) 다중 링크를 지원하는 통신 시스템에서 데이터의 송수신 위한 방법 및 장치
EP3289824A1 (en) Transmission opportunity ownership transfer and extension in a wireless local area network (wlan)
KR102445918B1 (ko) 무선 통신 방법 및 무선 통신 단말
WO2020163849A1 (en) Multi-band single mac communication system
US12004144B2 (en) Multi-band single mac communication system
KR20220151556A (ko) 다중 링크를 지원하는 통신 시스템에서 데이터의 송수신을 위한 방법 및 장치
US20080192664A1 (en) Method and related apparatus for enhancing resource utility rate in a wireless communications system
KR20230010600A (ko) 다중 링크를 지원하는 통신 시스템에서 직접 통신을 위한 방법 및 장치
KR20230082592A (ko) 통신 시스템에서 전송 오류의 복구를 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017862482

Country of ref document: EP

Effective date: 20190521