WO2018068756A1 - Genetically modified non-human animal with human or chimeric btla - Google Patents

Genetically modified non-human animal with human or chimeric btla Download PDF

Info

Publication number
WO2018068756A1
WO2018068756A1 PCT/CN2017/106024 CN2017106024W WO2018068756A1 WO 2018068756 A1 WO2018068756 A1 WO 2018068756A1 CN 2017106024 W CN2017106024 W CN 2017106024W WO 2018068756 A1 WO2018068756 A1 WO 2018068756A1
Authority
WO
WIPO (PCT)
Prior art keywords
btla
animal
human
mouse
sequence
Prior art date
Application number
PCT/CN2017/106024
Other languages
French (fr)
Inventor
Yuelei SHEN
yang BAI
Yanan GUO
Rui Huang
Xiaofei Zhou
Meiling Zhang
Original Assignee
Beijing Biocytogen Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710948551.4A external-priority patent/CN107955817B/en
Application filed by Beijing Biocytogen Co., Ltd filed Critical Beijing Biocytogen Co., Ltd
Publication of WO2018068756A1 publication Critical patent/WO2018068756A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Definitions

  • This disclosure relates to genetically modified animal expressing human or chimeric (e.g., humanized) B-and T-Lymphocyte-Associated Protein (BTLA or CD272) , and methods of use thereof.
  • human or chimeric e.g., humanized B-and T-Lymphocyte-Associated Protein (BTLA or CD272)
  • the immune system has developed multiple mechanisms to prevent deleterious activation of T cells.
  • One such mechanism is the intricate balance between positive and negative co-stimulatory signals delivered to T cells.
  • Targeting the inhibitory pathways for the immune system is considered to be a potential approach for the treatment of various diseases, e.g., cancers, and autoimmune diseases.
  • the animal model can express human BTLA or chimeric BTLA (e.g., humanized BTLA) protein in its body. It can be used in the studies on the function of BTLA gene, and can be used in the screening and evaluation of anti-human BTLA antibodies.
  • the animal models prepared by the methods described herein can be used in drug screening, pharmacodynamics studies, treatments for immune-related diseases (e.g., autoimmune disease) , and cancer therapy for human BTLA target sites; in addition, they can be used to facilitate the development and design of new drugs, and save time and cost.
  • this disclosure provides a powerful tool for studying the function of BTLA protein and screening for cancer drugs.
  • mice described in the present disclosure can be mated with the mice containing other human or chimeric genes (e.g., chimeric PD-1 or other immunomodulatory factors) , so as to obtain a mouse expressing two or more human or chimeric proteins.
  • the mice can also, e.g., be used for screening antibodies in the case of a combined use of drugs, as well as evaluating the efficacy of the combination therapy.
  • the disclosure relates to genetically-modified, non-human animals whose genome comprises at least one chromosome comprising a sequence encoding a human or chimeric B and T Lymphocyte Associated (BTLA or CD272) .
  • the sequence encoding the human or chimeric BTLA is operably linked to an endogenous regulatory element at the endogenous BTLA gene locus in the at least one chromosome.
  • the sequence encoding a human or chimeric BTLA comprises a sequence encoding an amino acid sequence that is at least 50%, 55%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100%identical to human BTLA (NP_861445.3 (SEQ ID NO: 27) ) .
  • the sequence encoding a human or chimeric BTLA comprises a sequence encoding an amino acid sequence that is at least 50%, 55%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100%identical to SEQ ID NO: 31.
  • the sequence encoding a human or chimeric BTLA comprises a sequence encoding an amino acid sequence that corresponds to amino acids 34-132 of SEQ ID NO: 27.
  • the animal is a mammal, e.g., a monkey, a rodent or a mouse. In some embodiments, the animal is a C57BL/6 mouse. In some embodiments, the animal does not express endogenous BTLA. In some embodiments, the animal has one or more cells expressing human or chimeric BTLA. In some embodiments, the animal has one or more cells expressing human or chimeric BTLA, and the expressed human or chimeric BTLA can bind to or interact with humanherpes virus entry mediator (HVEM) or V-Set Domain Containing T-Cell Activation Inhibitor 1 (VTCN1 or B7-H4) . In some embodiments, the animal has one or more cells expressing human or chimeric BTLA, and the expressed human or chimeric BTLA can bind to or interact with endogenous HVEM or B7-H4.
  • HVEM humanherpes virus entry mediator
  • VTCN1 or B7-H4 V-Set Domain Contain
  • the disclosure relates to genetically-modified, non-human animals, wherein the genome of the animals comprises a replacement, at an endogenous BTLA gene locus, of a sequence encoding a region of endogenous BTLA with a sequence encoding a corresponding region of human BTLA.
  • the sequence encoding the corresponding region of human BTLA is operably linked to an endogenous regulatory element at the endogenous BTLA locus, and one or more cells of the animal expresses a chimeric BTLA.
  • the animal does not express endogenous BTLA.
  • the region of endogenous BTLA is the extracellular region of BTLA.
  • the animal has one or more cells expressing a chimeric BTLA having an extracellular region, a transmembrane region, and a cytoplasmic region, wherein the extracellular region comprises a sequence that is at least 50%, 60%, 70%, 80%, 90%, 95%, or 99%identical to the extracellular region of human BTLA.
  • the extracellular region of the chimeric BTLA has a sequence that has at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 contiguous amino acids that are identical to a contiguous sequence present in the extracellular region of human BTLA.
  • the animal is a mouse, and the sequence encoding the region of endogenous BTLA is exon 1, exon 2, exon 3, exon 4, exon 5, and/or exon 6 of the endogenous mouse BTLA gene.
  • the animal is heterozygous with respect to the replacement at the endogenous BTLA gene locus. In some embodiments, the animal is homozygous with respect to the replacement at the endogenous BTLA gene locus.
  • the disclosure relates to methods for making a genetically-modified, non-human animal, including: replacing in at least one cell of the animal, at an endogenous BTLA gene locus, a sequence encoding a region of an endogenous BTLA with a sequence encoding a corresponding region of human BTLA.
  • the sequence encoding the corresponding region of human BTLA comprises exon 1, exon 2, exon 3, exon 4, and/or exon 5 of a human BTLA gene.
  • the sequence encoding the corresponding region of BTLA comprises exon 2 of a human BTLA gene, and/or a part of exon 1 and/or exon 3 of a human BTLA gene.
  • the sequence encoding the corresponding region of human BTLA encodes amino acids 34-132 of SEQ ID NO: 27. In some embodiments, the region is located within the extracellular region of BTLA. In some embodiments, the animal is a mouse, and the sequence encoding the region of the endogenous BTLA locus is exon2 of mouse BTLA gene.
  • the disclosure relates to non-human animals comprising at least one cell comprising a nucleotide sequence encoding a chimeric BTLA polypeptide, wherein the chimeric BTLA polypeptide comprises at least 50 contiguous amino acid residues that are identical to the corresponding contiguous amino acid sequence of a human BTLA, wherein the animal expresses the chimeric BTLA.
  • the chimeric BTLA polypeptide has at least 50 contiguous amino acid residues that are identical to the corresponding contiguous amino acid sequence of a human BTLA extracellular region.
  • the chimeric BTLA polypeptide comprises a sequence that is at least 90%, 95%, or 99%identical to amino acids 34-132 of SEQ ID NO: 27.
  • the nucleotide sequence is operably linked to an endogenous BTLA regulatory element of the animal.
  • the chimeric BTLA polypeptide comprises an endogenous BTLAtransmembrane region and/or an endogenous BTLA cytoplasmic region.
  • the nucleotide sequence is integrated to an endogenous BTLA gene locus of the animal.
  • the chimeric BTLA has at least one mouse BTLA activity (e.g., interacting with mouse HVEM, and inhibiting mouse T-cell immune responses) and/or at least one human BTLA activity (e.g., interacting with human HVEM, and inhibiting human T-cell immune responses) .
  • the disclosure relates to methods of making a genetically-modified mouse cell that expresses a chimeric BTLA, the method including: replacing, at an endogenous mouse BTLA gene locus, a nucleotide sequence encoding a region of mouse BTLA with a nucleotide sequence encoding a corresponding region of human BTLA, thereby generating a genetically-modified mouse cell that includes a nucleotide sequence that encodes the chimeric BTLA, wherein the mouse cell expresses the chimeric BTLA.
  • the chimeric BTLA comprises an extracellular region of mouse BTLA comprising a mouse signal peptide sequence, an extracellular region of human BTLA, a transmembrane and/or a cytoplasmic region of a mouse BTLA.
  • the nucleotide sequence encoding the chimeric BTLA is operably linked to an endogenous BTLA regulatory region, e.g., promoter.
  • the animals further comprise a sequence encoding an additional human or chimeric protein.
  • the additional human or chimeric protein is programmed cell death protein 1 (PD-1) , cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) , Lymphocyte Activating 3 (LAG-3) , T-Cell Immunoglobulin And Mucin Domain-Containing Protein 3 (TIM-3) , Programmed Cell Death 1 Ligand 1 (PD-L1) , TNF Receptor Superfamily Member 9 (4-1BB) , CD27, CD28, CD47, T-Cell Immunoreceptor With Ig And ITIM Domains (TIGIT) , CD27, Glucocorticoid-Induced TNFR-Related Protein (GITR) , or TNF Receptor Superfamily Member 4 (TNFRSF4 or OX40) .
  • PD-1BB cytotoxic T-lymphocyte-associated protein 4
  • LAG-3 Lymphocyte Activating 3
  • TIM-3
  • the animal or mouse further comprises a sequence encoding an additional human or chimeric protein.
  • the additional human or chimeric protein is programmed cell death protein 1 (PD-1) , CTLA-4, LAG-3, TIM-3, PD-L1, 4-1BB, CD27, CD28, CD47, TIGIT, CD27, GITR, or OX40.
  • the disclosure relates to methods of determining effectiveness of an anti-BTLA antibody for the treatment of cancer, including: administering the anti-BTLA antibody to the animal as described herein, wherein the animal has a tumor, and determining the inhibitory effects of the anti-BTLA antibody to the tumor.
  • the tumor comprises one or more tumor cells that express HVEM.
  • the tumor comprises one or more cancer cells that are injected into the animal.
  • determining the inhibitory effects of the anti-BTLA antibody to the tumor involves measuring the tumor volume in the animal.
  • the tumor cells are melanoma cells, non-small cell lung carcinoma (NSCLC) cells, small cell lung cancer (SCLC) cells, bladder cancer cells, and/or prostate cancer cells (e.g., metastatic hormone-refractory prostate cancer) .
  • the disclosure relates to methods of determining effectiveness of an anti-BTLA antibody for the treatment of various immune-related disorders, e.g., autoimmune diseases.
  • the disclosure relates to methods of determining effectiveness of an anti-BTLA antibody and an additional therapeutic agent for the treatment of a tumor, including administering the anti-BTLA antibody and the additional therapeutic agent to the animal as described herein, wherein the animal has a tumor, and determining the inhibitory effects on the tumor.
  • the animal further comprises a sequence encoding a human or chimeric programmed cell death protein 1 (PD-1) .
  • the additional therapeutic agent is an anti-PD-1 antibody.
  • the tumor comprises one or more tumor cells that express HVEM.
  • the tumor comprises one or more tumor cells that express PD-L1 or PD-L2.
  • the tumor is caused by injection of one or more cancercellsinto the animal. In some embodiments, determining the inhibitory effects of the treatment involves measuring the tumor volume in the animal.
  • the tumor comprises melanoma cells, non-small cell lung carcinoma (NSCLC) cells, small cell lung cancer (SCLC) cells, bladder cancer cells, and/or prostate cancer cells (e.g., metastatic hormone-refractory prostate cancer cells) .
  • the disclosure relates to proteins comprising an amino acid sequence, wherein the amino acid sequence is one of the following: (a) an amino acid sequence set forth in SEQ ID NO: 31; (b) an amino acid sequence that is at least 90%identical to SEQ ID NO: 31; (c) an amino acid sequence that is at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%identical to SEQ ID NO: 31; (d) an amino acid sequence that is different from the amino acid sequence set forth in SEQ ID NO: 31 by no more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid; and (e) an amino acid sequence that comprises a substitution, a deletion and /or insertion of one, two, three, four, five or more amino acids to the amino acid sequence set forth in SEQ ID NO: 31.
  • cells comprising the proteins disclosed herein.
  • provided herein are animals having the proteins disclosed herein.
  • the disclosure relates to nucleic acids comprising a nucleotide sequence, wherein the nucleotide sequence is one of the following: (a) a sequence that encodes the protein as described herein; (b) SEQ ID NO: 29; (c) SEQ ID NO: 30; (d) a sequence that is at least 90%identical to SEQ ID NO: 29 or SEQ ID NO: 30; (e) a sequence that is at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%identical to SEQ ID NO: 29; and (f) a sequence that is at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%identical to SEQ ID NO: 30.
  • cells comprising the nucleic acids disclosed herein.
  • provided herein are animals having the nucleic acids disclosed herein.
  • the disclosure relates to a targeting vector, including a) a DNA fragment homologous to the 5ā€™ end of a region to be altered (5ā€™ arm) , which is selected from the BTLA gene genomic DNAs in the length of 100 to 10,000 nucleotides; b) a desired/donor DNA sequence encoding a donor region; and c) a second DNA fragment homologous to the 3ā€™ end of the region to be altered (3ā€™ arm) , which is selected from the BTLA gene genomic DNAs in the length of 100 to 10,000 nucleotides.
  • a) the DNA fragment homologous to the 5ā€™ end of a region to be altered (5ā€™ arm/receptor) is selected from the nucleotide sequences that have at least 90%homology to the NCBI accession number NC_000082.6; c) the DNA fragment homologous to the 3ā€™ end of the region to be altered (3ā€™ arm/receptor) is selected from the nucleotide sequences that have at least 90%homology to the NCBI accession number NC_000082.6.
  • a) the DNA fragment homologous to the 5ā€™ end of a region to be altered (5ā€™ arm/receptor) is selected from the nucleotides from the position 45237539 to the position 45239051 of the NCBI accession number NC_000082.6; c) the DNA fragment homologous to the 3ā€™ end of the region to be altered (3ā€™ arm/receptor) is selected from the nucleotides from the position 45239358 to the position 45240854 of the NCBI accession number NC_000082.6.
  • a length of the selected genomic nucleotide sequence is about 1.2kb, 1.5 kb or 1 kb. In some embodiments, the length is about 1513bp or 1497bp. In some embodiments, the region to be altered is exon 2 of BTLAgene.
  • sequence of the 5ā€™ arm is shown in SEQ ID NO: 32. In some embodiments, the sequence of the 3ā€™ arm is shown in SEQ ID NO: 38.
  • the targeting vector further includes a selectable gene marker.
  • the target region is derived from human. In some embodiments, the target region is a part or entirety of the nucleotide sequence of a humanized BTLA. In some embodiments, the nucleotide sequence is shown as one or more of the first exon, the second exon, the third exon, the fourth exon, and the fifth exonof the DNA sequence of the human BTLA.
  • the nucleotide sequence of the human BTLA encodes the human BTLA protein with the NCBI accession number NP_861445.3 (SEQ ID NO: 27) .
  • the disclosure also relates to a cell including the targeting vector as described herein.
  • the disclosure relates to an sgRNA sequence for constructing a humanized animal model, wherein the sgRNA sequence targets the BTLA gene, the sgRNA is unique on the target sequence of the BTLA gene to be altered, and meets the sequence arrangement rule of 5ā€™ -NNN (20) -NGG3ā€™ or 5ā€™ -CCN-N (20) -3ā€™ .
  • the targeting site of the sgRNA in the mouse BTLA gene is located on the exon 2 of the mouse BTLA gene.
  • the disclosure relates to an sgRNA sequence for constructing a humanized animal model, wherein an upstream sequence thereof is shown as SEQ ID NO: 15, and a downstream sequence thereof is shown as SEQ ID NO: 17, and the sgRNA sequence recognizes a 5ā€™ targeting site.
  • the disclosure also relates to an sgRNA sequence for constructing a humanized animal model, wherein an upstream sequence thereof is shown as SEQ ID NO: 16, which is obtained by adding TAGG to the 5ā€™ end of SEQ ID NO: 15; a downstream sequence thereof is shown as SEQ ID NO: 18, which is obtained by adding AAAC to the 5ā€™ end of SEQ ID NO: 17, and the sgRNA sequence recognizes a 5ā€™ targeting site.
  • the disclosure also relates to an sgRNA sequence for constructing a humanized animal model, wherein an upstream sequence thereof is shown as SEQ ID NO: 19, and a downstream sequence thereof is shown as SEQ ID NO: 21, and the sgRNA sequence recognizes a 3ā€™ targeting site.
  • the disclosure further relates to an sgRNA sequence for constructing a humanized animal model, wherein an upstream sequence thereof is shown as SEQ ID NO: 20, which is obtained by adding TAGG to the 5ā€™ end of SEQ ID NO: 19; a downstream sequence thereof is shown as SEQ ID NO: 22, which is obtained by adding AAAC to the 5ā€™ end of SEQ ID NO: 21, and the sgRNA sequence recognizes a 3ā€™ targeting site.
  • the disclosure relates to a construct including the sgRNA sequence as described herein.
  • the disclosure also relates to a cell comprising the construct as described herein.
  • the disclosure relates to a non-human mammalian cell, comprising the targeting vector as described herein, and one or more in vitro transcripts of the sgRNA construct.
  • the cell includes Cas9 mRNA or an in vitro transcript thereof.
  • the genes in the cell are heterozygous. In some embodiments, the genes in the cell are homozygous.
  • the non-human mammalian cell is a mouse cell.
  • the cell is a fertilized egg cell.
  • the cell is a germ cell.
  • the cell is a blastocyst.
  • the cell is a lymphocyte (e.g., a B-cell or a T-cell) .
  • the disclosure relates to methods for establishing a BTLA gene humanized animal model.
  • the methods include the steps of
  • step (d) identifying the germline transmission in the offspring genetically modified humanized non-human mammal of the pregnant female in step (c) .
  • the establishment of a humanized animal model of BTLA gene using a gene editing technique is based on CRISPR /Cas9.
  • the non-human mammal is mouse. In some embodiments, the mouse is a C57BL/6 mouse. In some embodiments, the non-human mammal in step (c) is a female with false pregnancy.
  • the disclosure also relates to a method for establishing a genetically-modified non-human animal expressing two human or chimeric (e.g., humanized) genes.
  • the method includes the steps of
  • step (b) mating the BTLA gene genetically modified humanized mouse obtained in step (a) with another humanized mouse, and then screening to obtain a double humanized mouse model.
  • step (b) the BTLA gene genetically modified humanized mouse obtained in step (a) is mated with a PD-1 humanized mouse to obtain a BTLA and PD-1 double humanized mouse model.
  • the disclosure also relates to non-human mammal generated through the methods as described herein.
  • the genome thereof contains human gene (s) .
  • the non-human mammal is a rodent. In some embodiments, the non-human mammal is a mouse.
  • the non-human mammal expresses a protein encoded by a humanized BTLA gene.
  • the disclosure also relates to an offspring of the non-human mammal.
  • the disclosure relates to a tumor bearing non-human mammal model, characterized in that the non-human mammal model is obtained through the method as described herein.
  • the non-human mammal is a rodent. In some embodiments, the non-human mammal is a mouse.
  • the disclosure also relates to a cell or cell line, or a primary cell culture thereof derived from the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal.
  • the disclosure further relates to the tissue, organ or a culture thereof derived from the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal.
  • the disclosure relates to a tumor tissue derived from the non-human mammal or an offspring thereof when it bears a tumor, or the tumor bearing non-human mammal.
  • the disclosure relates to a BTLA amino acid sequence of a humanized mouse, wherein the amino acid sequence is selected from the group consisting of:
  • nucleic acid sequence an amino acid sequence encoded by a nucleic acid sequence, wherein the nucleic acid sequence is able to hybridize to a nucleotide sequence encoding the amino acid shown in SEQ ID NO: 31 under a low stringency condition;
  • amino acid sequence having a homology of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%with the amino acid sequence shown in SEQ ID NO: 31;
  • amino acid sequence that is different from the amino acid sequence shown in SEQ ID NO: 31 by no more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or no more than 1 amino acid;
  • the disclosure also relates to a BTLA DNA sequence of a humanized mouse, wherein the DNA sequence is selected from the group consisting of:
  • a DNA sequence that encodes an amino acid sequence wherein the amino acid sequence has a homology of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%with the amino acid sequence shown in SEQ ID NO: 31;
  • a DNA sequence that encodes an amino acid sequence wherein the amino acid sequence comprises a substitution, a deletion and /or insertion of 1, 2, 3, 4, 5, 6, 7, 8, 9, or more amino acids to the amino acid sequence shown in SEQ ID NO: 31.
  • the disclosure further relates to a BTLA genomic DNA sequence of a humanized mouse, a DNA sequence obtained by a reverse transcription of the mRNA obtained by transcription thereof is consistent with or complementary to the DNA sequence; a construct expressing the amino acid sequence thereof; a cell comprising the construct thereof; a tissue comprising the cell thereof.
  • the disclosure further relates to the use of the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal, the animal model generated through the method as described herein in the development of a product related to an immunization processes of human cells, the manufacture of a human antibody, or the model system for a research in pharmacology, immunology, microbiology and medicine.
  • the disclosure also relates to the use of the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal, the animal model generated through the method as described herein in the production and utilization of an animal experimental disease model of an immunization processes involving human cells, the study on a pathogen, or the development of a new diagnostic strategy and /or a therapeutic strategy.
  • the disclosure further relates to the use of the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal, the animal model generated through the methods as described herein, in the screening, verifying, evaluating or studying the BTLA gene function, human BTLA antibodies, the drugs or efficacies for human BTLA targeting sites, and the drugs for immune-related diseases and antitumor drugs.
  • FIG. 1A is a graph showing the 5ā€™ terminal target site sgRNA activity test results (sgRNA1-sgRNA8) (Con is a negative control; and PC is a positive control) .
  • FIG. 1B is a graph showing 3ā€™ terminal target site sgRNA activity test results (sgRNA9-sgRNA14) (Con is a negative control; and PC is a positive control) .
  • FIG. 2 is a schematic diagram showing pT7-sgRNA plasmid map.
  • FIG. 3A is a schematic diagram showing comparison of human and mouse BTLA genes.
  • FIG. 3B is a schematic diagram showing humanized BTLA mouse gene map.
  • FIG. 3C is a schematic diagram showing mouse BTLA gene targeting strategy.
  • FIG. 4A shows pClon-4G-BTLA plasmid digestion result (M is the Marker, ck is undigested plasmid. )
  • FIG. 4B shows the fragment sizes for the Marker.
  • FIG. 5 shows PCR identification result of samples collected from tails of F0 generation mice (M is the Marker; WT is wild type; mice labeled with No. 1 and 2 are positive) .
  • FIG. 6 shows PCR identification result of samples collected from tails of F1 generation mice (M is the Marker; WT is wild type; + is positive control; mice labeled with F1-1 to F1-6 are all positive) .
  • FIG. 7A shows Southern blot results for F1 generation mice by P1 probe (WT is wild type) .
  • FIG. 7B shows Southern blot results for F1-4 mouse by P2 probe (WT is wild type) ; the results show that the mouse labeled with F1-4 has no random insertion.
  • FIGS. 8A-8F are graphs of flow cytometry analysis results for C57BL/6 mice and BTLA humanized mice.
  • the anti-mouse CD3 antibody was used to stimulate the T cells in the spleen, and then anti-mouse BTLA antibodies and anti-mTCR ā‡ antibodies (FIGS. 8A-8C) , or anti-human BTLA antibodies and anti-mTCR ā‡ antibodies (FIGS. 8D-8F) , were used to label cells.
  • the cells with the expression of human BTLA protein can be detected in the spleen of BTLA humanized F1 hybrids (FIG. 8F) ; whereas in the spleen of C57BL/6 mice, no cells expressing human BTLA protein were detected (FIG. 8E) .
  • FIG. 9 shows RT-PCR detection results, wherein +/+ is wild type C57BL/6 mouse; H/+ is F1 generation hBTLA heterozygous mouse; and GAPDH is an internal control.
  • FIGS. 10A-10F are graphs of flow cytometry analysis results for C57BL/6 mice and hBTLA homozygous mice.
  • the anti-mouse CD3 antibody was used to stimulate the T cells in the spleen, and then anti-mouse BTLA antibodies (mBTLA PE) and anti-mCD19 antibodies (mCD19 FITC) (FIGS. 10A-10C) , or anti-human BTLA antibodies (hBTLA APC) and anti-mCD19 antibodies (mCD19 FITC) (FIGS. 10D-10F) , were used to label T cells.
  • Mouse BTLA protein can be detected in the spleen of C57BL/6 mice (FIGS. 10A and 10B) .
  • Human BTLA protein can be detected in the spleen of hBTLA homozygous mice (FIG. 10F) .
  • FIG. 11 shows RT-PCR detection results, wherein +/+ is wild type C57BL/6 mouse; H/H is B-hBTLA homozygous mouse; and GAPDH is an internal control.
  • FIG. 12 shows PCR identification results for BTLA gene knockout mice, wherein WT is wild type, M is the maker, + is the positive control, the mice with No. 1-6 are BTLA knockout mice.
  • FIG. 13 Mouse colon cancer cells MC38 were injected into B-hBTLA mice and antitumor efficacy studies were performed for 6 anti-human BTLA antibodies (AB1, AB2, AB3, AB4, AB5, AB6, 10mg/kg) . There was no significant difference in average weight gain between the G1 control group and the G2-G7 treatment groups.
  • FIG. 14 Mouse colon cancer cells MC38 were injected into B-hBTLA mice and antitumor efficacy studies were performed for 6 anti-human BTLA antibodies (AB1, AB2, AB3, AB4, AB5, AB6, 10mg/kg) . There was no significant difference in body weight change percentage among different groups.
  • FIG. 15 Mouse colon cancer cells MC38 were injected into B-hBTLA mice and antitumor efficacy studies were performed for 6 anti-human BTLA antibody (AB1, AB2, AB3, AB4, AB5, AB6, 10mg/kg) .
  • the average volumes of tumors in the G3-G7 treatment groups were smaller than the G1 control group, and the differences were significant.
  • FIGS. 16A-16B Mouse tail PCR identification result, where + is hBTLA homozygous positive control, -is wildtype negative control.
  • the mice numbered 3017-3032 are homozygous for humanized BTLA gene.
  • FIGS. 16C-16D Mouse tail PCR identification result, where WT is wildtype, -/-is humanized PD-1 homozygous mouse, +/-is humanized PD-1 heterozygous mouse.
  • the mice numbered 3017-3032 are homozygous for humanized PD-1 gene
  • FIGS. 17A-17F show flow cytometry analysis results for C57BL/6 mice and double humanized BTLA/PD-1 homozygous mice.
  • Anti-mouse CD3 antibody was used to stimulate T cell activation in the spleens of the mice, and then the mouse BTLA antibody (mBTLAPE) and anti-mCD19 antibodies (mCD19 FITC) (FIGS. 17A, 17B, 17C) , or human BTLA antibody hBTLAAPCand anti-mCD19 antibodies (mCD19 FITC) (FIGS. 17D, 17E, 17F) , were used to label T cell surface proteins.
  • mBTLAPE mouse BTLA antibody
  • mCD19 FITC human BTLA antibody hBTLAAPCand anti-mCD19 antibodies
  • FIGS. 17D, 17E, 17F show that the cells expressing humanized BTLA proteins were detected in the spleens of double humanized BTLA /PD-1 mice, while no cells expressing humanized
  • FIGS. 18A-18F show flow cytometry analysis results for C57BL/6 mice and double humanized BTLA/PD-1 homozygous mice.
  • Anti-mouse CD3 antibody was used to stimulate T cell activation in the spleens of the mice, and then the mouse PD-1 antibody (mPD-1 PE) and mouse T cell surface antibody mTcR ā‡ (FIGS. 18A, 18B, 18C) , or human PD-1 antibody hPD-1 FITC and mouse T cell surface antibody mTcR ā‡ (FIGS. 18D, 18E, 18F) , were used to label T cell proteins.
  • the result show that the cells expressing humanized PD-1 proteins were detected in the spleens of double humanized BTLA /PD-1 mice, while no cells expressing humanized PD-1 protein were detected in the spleen of C57BL/6 control mice.
  • FIG. 19 shows RT-PCR detection results for mBTLA or humanized BTLA (hBTLA) , wherein +/+ is wild type C57BL/6 mouse; H/H is double humanized BTLA/PD-1 homozygous mice; and GAPDH is an internal control.
  • FIG. 20 shows RT-PCR detection results for mPD-1 or humanized PD-1 (hPD-1) , wherein +/+ is wild type C57BL/6 mouse; H/H is double humanized BTLA/PD-1 homozygous mice; and GAPDH is an internal control.
  • FIG. 21 is a schematic diagram of the targeting strategy for embryonic stem cells.
  • FIG. 22 shows the alignment between mouse BTLA amino acid sequence (NP_001032808.2; SEQ ID NO: 25) and human BTLA amino acid sequence (NP_861445.3; SEQ ID NO: 27) by NCBI Basic Local Alignment Search Tool (BLAST) .
  • BLAST NCBI Basic Local Alignment Search Tool
  • This disclosure relates to transgenic non-human animal with human or chimeric (e.g., humanized) B-And T-Lymphocyte-Associated Protein (BTLA or CD272) , and methods of use thereof.
  • human or chimeric e.g., humanized
  • B-And T-Lymphocyte-Associated Protein BTLA or CD272
  • BTLA is a T cell inhibitory receptor. It is expressed on the cell surface of B cells, T cells, and macrophages. BTLA expression is induced during activation of T cells and is expressed on developing TH 1 and TH 2 cells. Expression of BTLA is subsequently lost on highly differentiated TH 2 cells but remains on TH 1 cells. Results show that coligation of BTLA partially inhibitsCD3-induced secretion of IL-2 and that BTLA-deficient T cells haveincreased proliferation to antigen presented by dendritic cells (DCs) , suggesting that BTLA exerts an inhibitory rather than activating influenceon T cells (Watanabe, Norihiko, et al. "BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. " Nature immunology 4.7 (2003) : 670) .
  • BTLA is similar to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) andprogrammed death 1 (PD-1) , two other inhibitory receptors expressed on T lymphocytes. Like PD-1 and CTLA-4, BTLA interacts with a B7 homolog, B7H4. However, BTLA also inhibits T-Cells via interaction with tumor necrosis family receptors (TNF-R) .
  • TNF-R tumor necrosis family receptors
  • BTLA is a ligand for tumor necrosis factor (receptor) superfamily, member 14 (TNFRSF14) , also known as herpes virus entry mediator (HVEM) . BTLA-HVEM complexes negatively regulate T-cell immune responses.
  • BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1, " Nature immunology 4.7 (2003) : 670; Steinberg et al. "BTLA interaction with HVEM expressed on CD8+ T cells promotes survival and memory generation in response to a bacterial infection, " PLoS One 8.10 (2013) : e77992; Murphyet al., "Balancing co-stimulation and inhibition with BTLA and HVEM, " Nature reviews. Immunology 6.9 (2006) : 671; each of which is incorporated by reference in its entirety.
  • the BTLA antibody has great application values, e.g., as a tumor immunotherapy or a treatment for autoimmune disease (e.g., systemic lupus erythematosus, and syndrome) .
  • autoimmune disease e.g., systemic lupus erythematosus, and syndrome
  • the present disclosure provides humanized BTLA genetically modified animal models and methods of establishing such animal models.
  • Experimental animal models are an indispensable research tool for studying the etiology, pathogenesis of the disease, as well as the development of prevention and control techniques and therapeutic drugs for the disease.
  • Common experimental animals include mice, rats, guinea pigs, hamsters, rabbits, dogs, monkeys, pigs, fish and so on.
  • human and animal genes and protein sequences there are many differences between human and animal genes and protein sequences, and many human proteins cannot bind to the animalā€™s homologous proteins to produce biological activity, leading to that the results of many clinical trials do not match the results obtained from animal experiments.
  • a large number of clinical studies are in urgent need of better animal models.
  • the use of human cells or genes to replace or substitute an animalā€™s endogenous similar cells or genes to establish a biological system or disease model closer to human, and establish the humanized experimental animal models (humanized animal model) has provided an important tool for new clinical approaches or means.
  • the genetically engineered animal model that is, the use of genetic manipulation techniques, the use of human normal or mutant genes to replace animal homologous genes, can be used to establish the genetically modified animal models that are closer to human gene systems.
  • the humanized animal models have various important applications. For example, due to the presence of human or humanized genes, the animals can express or express in part of the proteins with human functions, so as to greatly reduce the differences in clinical trials between humans and animals, and provide the possibility of drug screening at animal levels.
  • BTLA B And T Lymphocyte Associated or CD272
  • B And T Lymphocyte Associated is an Ig super family protein with an intermediate type Ig fold in the ectodomain and an ITIM inhibitory signaling domain in the cytosol.
  • BTLA is a ligand for tumor necrosis factor (receptor) superfamily, member 14 (TNFRSF14) , also known as herpes virus entry mediator (HVEM) . Engagement of BTLA by HVEM, induces tyrosine phosphorylation of the ITIM motifs in the cytoplasmic tail of BTLA, allowing the recruitment of the phosphatases SHP-1 and SHP-2, which attenuate signaling.
  • BTLA and its herpesvirus entry mediator are the only pair of molecules that have been found so far to connect the Ig superfamily proteins and TNFR family proteins.
  • HVEM herpesvirus entry mediator
  • BTLA /HVEM is quite unique because BTLA mainly acts as a negative feedback regulator, which attenuates the immune response of T cells after HVEM binds to BTLA.
  • HVEM also binds to LIGHT (TNF Superfamily Member 14; TNFSF14) and plays as a co-stimulatory actor, promoting T cells, B cell proliferation and Ig production.
  • HVEM may bind to BTLA, and LIGHT or LT ā‡ in the same time, and form a trimer.
  • BTLA signaling is involved in preventing autoimmune diseases, reducing inflammation, maintaining peripheral immune tolerance, and inhibiting the immune response.
  • BTLA inhibitors can also enhance TCR signaling and restore T cell function.
  • BTLA can also function as an activating ligand for HVEM promoting NF- ā‡ B activation (Watanabe N, Gavrieli M, Sedy JR, et al.
  • BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature Immunology. 2003; 4 (7) : 670ā€“679) , which can promote cell survival.
  • BTLA gene locus has fiveexons, exon 1, exon 2, exon 3, exon 4, and exon 5 (FIG. 3A) .
  • the BTLA protein also has an extracellular region, a transmembrane region, and a cytoplasmic region, and the signal peptide is located at the extracellular region of BTLA.
  • the nucleotide sequence for human BTLA mRNA is NM_181780.3 (SEQ ID NO: 26)
  • amino acid sequence for human BTLA is NP_861445.3 (SEQ ID NO: 27) .
  • the location for each exon and each region in human BTLA nucleotide sequence and amino acid sequence is listed below:
  • BTLA gene locus has sixexons, exon 1, exon 2, exon 3, exon 4, exon 5, and exon 6 (FIG. 3A) .
  • the BTLA protein also has an extracellular region, a transmembrane region, and a cytoplasmic region, and the signal peptide is located at the extracellular region of BTLA.
  • the nucleotide sequence for mouse BTLA cDNA is NM_001037719.2 (SEQ ID NO: 24)
  • the amino acid sequence for mouse BTLA is NP_001032808.2 (SEQ ID NO: 25) .
  • the location for each exon and each region in the mouse BTLA nucleotide sequence and amino acid sequence is listed below:
  • the mouse BTLA gene (Gene ID: 208154) is located in Chromosome 16 of the mouse genome, which is located from 45,223,545 to 45,252,895 of NC_000082.6 (GRCm38. p4 (GCF_000001635.24) ) .
  • the 5ā€™ -UTR is from 45,224,337 to 45,224,352, exon 1 is from 45,224,353to 45,224,461, the first intron is from 45,224,462 to 45,239,043, exon 2 is from 45,239,044 to 45,239,364, the second intron is from 45,239,365 to 45,242,705, exon 3 is from 45,242,706 to 45,242,741, the third intron is from 45,242,742 to 45,244,152, exon 4 is from 45,244,153 to 45,244,311, the fourth intron is from 45,244,312 to 45,246,250, exon 5 is from 45,246,251 to 45,246,297, the fifth intron is from 45,246,298 to 45,250,348, exon 6 is from 45,250,349 to 45,250,597, the 3ā€™ -UTR is from 45,250,598 to45,252,895 of NC_
  • FIG. 22 shows the alignment between mouse BTLA amino acid sequence (NP_001032808.2; SEQ ID NO: 25) and human BTLA amino acid sequence (NP_861445.3; SEQ ID NO: 27) .
  • mouse BTLA amino acid sequence NP_001032808.2; SEQ ID NO: 25
  • human BTLA amino acid sequence NP_861445.3; SEQ ID NO: 27
  • the corresponding amino acid residue or region between human and mouse BTLAcan also be found in FIG. 22.
  • BTLA genes, proteins, and locus of the other species are also known in the art.
  • the gene ID for BTLA in Rattusnorvegicusis 407756 is 708202
  • the gene ID for BTLA in Susscrofa (pig) is100626925.
  • the relevant information for these genes can be found, e.g., intron sequences, exon sequences, amino acid residues of these proteins.
  • the present disclosure provides human or chimeric (e.g., humanized) BTLA nucleotide sequence and/or amino acid sequences.
  • the entire sequence of mouse exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, signal peptide, extracellular region, transmembrane region, and/or cytoplasmic region are replaced by the corresponding human sequence.
  • a ā€œregionā€ or ā€œportionā€ of mouse exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, signal peptide, extracellular region, transmembrane region, and/or cytoplasmic region are replaced by the corresponding human sequence.
  • region or ā€œportionā€ can refer to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 150, 200, 250, 300, 350, or 400 nucleotides, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, or 150 amino acid residues.
  • the ā€œregionā€ or ā€œportionā€ can be at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%identical to exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, signal peptide, extracellular region, transmembrane region, or cytoplasmic region.
  • a region, a portion, or the entire sequence of mouse exon1, exon 2, exon 3, exon 4, exon 5 and/or exon 6 are replaced by the human exon1, exon 2, exon 3, exon 4, and/or exon 5 (e.g., exon 2) sequence.
  • the present disclosure also provides a chimeric (e.g., humanized) BTLA nucleotide sequence and/or amino acid sequences, wherein in some embodiments, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%of the sequence are identical to or derived from mouse BTLA mRNA sequence (e.g., SEQ ID NO: 24) , or mouse BTLA amino acid sequence (e.g., SEQ ID NO: 25) ; and in some embodiments, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%,
  • sequence encoding amino acids 40-141 of mouse BTLA (SEQ ID NO: 25) is replaced. In some embodiments, the sequence is replaced by a sequence encoding a corresponding region of human BTLA (e.g., amino acids 34-132 of human BTLA (SEQ ID NO: 27) .
  • the nucleic acids as described herein are operably linked to a promotor or regulatory element, e.g., an endogenous mouse BTLA promotor, an inducible promoter, an enhancer, and/or mouse or human regulatory elements.
  • a promotor or regulatory element e.g., an endogenous mouse BTLA promotor, an inducible promoter, an enhancer, and/or mouse or human regulatory elements.
  • the nucleic acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides) that are different from a portion of or the entire mouse BTLA nucleotide sequence (e.g., NM_001037719.2 (SEQ ID NO: 24) ) .
  • NM_001037719.2 SEQ ID NO: 24
  • the nucleic acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides) that is the same as a portion of or the entire mouse BTLA nucleotide sequence (e.g., NM_001037719.2 (SEQ ID NO: 24) ) .
  • NM_001037719.2 SEQ ID NO: 24
  • the nucleic acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides) that is different from a portion of or the entire human BTLA nucleotide sequence (e.g., NM_181780.3 (SEQ ID NO: 26) ) .
  • a portion e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides
  • NM_181780.3 SEQ ID NO: 26
  • the nucleic acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides) that is the same as a portion of or the entire human BTLA nucleotide sequence (e.g., NM_181780.3 (SEQ ID NO: 26) ) .
  • NM_181780.3 SEQ ID NO: 26
  • the amino acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues, e.g., contiguous or non-contiguous amino acid residues) that is different from a portion of or the entire mouse BTLA amino acid sequence (e.g., NP_001032808.2 (SEQ ID NO: 25) ) .
  • the amino acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues, e.g., contiguous or non-contiguous amino acid residues) that is the same as a portion of or the entire mouse BTLA amino acid sequence (e.g., NP_001032808.2 (SEQ ID NO: 25) ) .
  • the amino acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues, e.g., contiguous or non-contiguous amino acid residues) that is different from a portion of or the entire human BTLA amino acid sequence (e.g., NP_861445.3 (SEQ ID NO: 27) ) .
  • NP_861445.3 SEQ ID NO: 27
  • the amino acid sequence has at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues, e.g., contiguous or non-contiguous amino acid residues) that is the same as a portion of or the entire human BTLA amino acid sequence (e.g., NP_861445.3 (SEQ ID NO: 27) ) .
  • NP_861445.3 SEQ ID NO: 27
  • the present disclosure also provides a humanized BTLA mouse amino acid sequence, wherein the amino acid sequence is selected from the group consisting of:
  • nucleic acid sequence an amino acid sequence encoded by a nucleic acid sequence, wherein the nucleic acid sequence is able to hybridize to a nucleotide sequence encoding the amino acid shown in SEQ ID NO: 31 under a low stringency condition;
  • amino acid sequence having a homology of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%identical to the amino acid sequence shown in SEQ ID NO: 31;
  • amino acid sequence that is different from the amino acid sequence shown in SEQ ID NO: 31 by no more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or no more than 1 amino acid;
  • the present disclosure also relates to a BTLA DNA sequence, wherein the DNA sequence can be selected from the group consisting of:
  • a DNA sequence that encodes an amino acid sequence wherein the amino acid sequence has a homology of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%with, or at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%identical to the amino acid sequence shown in SEQ ID NO: 31;
  • h a DNA sequence that encodes an amino acid sequence, wherein the amino acid sequence comprises a substitution, a deletion and /or insertion of one or more amino acids to the amino acid sequence shown in SEQ ID NO: 31.
  • the present disclosure further relates to a BTLA genomic DNA sequence of a humanized mouse.
  • the DNA sequence is obtained by a reverse transcription of the mRNA obtained by transcription thereof is consistent with or complementary to the DNA sequence homologous to the sequence shown in SEQ ID NO: 29 or SEQ ID NO: 30.
  • the disclosure also provides an amino acid sequence that has a homology of at least 90%with, or at least 90%identical to the sequence shown in SEQ ID NO: 31, and has protein activity.
  • the homology with the sequence shown in SEQ ID NO: 31 is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
  • the foregoing homology is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or at least about 59%.
  • the percentage identity with the sequence shown in SEQ ID NO: 31 is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%. In some embodiments, the foregoing percentage identity is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or at least about 59%.
  • the disclosure also provides a nucleotide sequence that has a homology of at least 90%, or at least 90%identical to the sequence shown in SEQ ID NO: 30, and encodes a polypeptide that has protein activity.
  • the homology with the sequence shown in SEQ ID NO: 30 is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
  • the foregoing homology is at least bout 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or at least about 59%.
  • the percentage identity with the sequence shown in SEQ ID NO: 30 is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%. In some embodiments, the foregoing percentage identity is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, or at least about 59%.
  • the disclosure also provides a nucleic acid sequence that is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%identical to any nucleotide sequence as described herein, and an amino acid sequence that is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%identical to any amino acid sequence as described herein.
  • the disclosure relates to nucleotide sequences encoding any peptides that are described herein, or any amino acid sequences that are encoded by any nucleotide sequences as described herein.
  • the nucleic acid sequence is less than 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 150, 200, 250, 300, 350, 400, or 500 nucleotides.
  • the amino acid sequence is less than 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, or 150 amino acid residues.
  • the amino acid sequence (i) comprises an amino acid sequence; or (ii) consists of an amino acid sequence, wherein the amino acid sequence is any one of the sequences as described herein.
  • the nucleic acid sequence (i) comprises a nucleic acid sequence; or (ii) consists of a nucleic acid sequence, wherein the nucleic acid sequence is any one of the sequences as described herein.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes) .
  • the length of a reference sequence aligned for comparison purposes is at least 80%of the length of the reference sequence, and in some embodiments is at least 90%, 95%, or 100%.
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • percent homology is often used to mean ā€œsequence similarity. " The percentage of identical residues (percent identity) and the percentage of residues conserved with similar physicochemical properties (percent similarity) , e.g. leucine and isoleucine, are both used to "quantify the homologyā€ . Residues conserved with similar physicochemical properties are well known in the art. The percent homology, in many cases, is higher than the percent identity.
  • Cells, tissues, and animals are also provided that comprise the nucleotide sequences as described herein, as well as cells, tissues, and animals (e.g., mouse) that express human or chimeric (e.g., humanized) BTLA from an endogenous non-human BTLA locus.
  • the term ā€œgenetically-modified non-human animalā€ refers to a non-human animal having exogenous DNA in at least one chromosome of the animalā€™s genome.
  • at least one or more cells e.g., at least 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%of cells of the genetically-modified non-human animal have the exogenous DNA in its genome.
  • the cell having exogenous DNA can be various kinds of cells, e.g., an endogenous cell, a somatic cell, an immune cell, a T cell, a B cell, a germ cell, a blastocyst, or an endogenous tumor cell.
  • genetically-modified non-human animals comprise a modified endogenous BTLA locus that comprises an exogenous sequence (e.g., a human sequence) , e.g., a replacement of one or more non-human sequences with one or more human sequences.
  • the animals are generally able to pass the modification to progeny, i.e., through germline transmission.
  • chimeric gene or ā€œchimeric nucleic acidā€ refers to a gene or a nucleic acid, wherein two or more portions of the gene or the nucleic acid are from different species, or at least one of the sequences of the gene or the nucleic acid does not correspond to the wildtype nucleic acid in the animal.
  • the chimeric gene or chimeric nucleic acid has at least one portion of the sequence that is derived from two or more different sources, e.g., sequences encoding different proteins or sequences encoding the same (or homologous) protein of two or more different species.
  • the chimeric gene or the chimeric nucleic acid is a humanized gene or humanized nucleic acid.
  • chimeric protein or ā€œchimeric polypeptideā€ refers to a protein or a polypeptide, wherein two or more portions of the protein or the polypeptide are from different species, or at least one of the sequences of the protein or the polypeptide does not correspond to wildtype amino acid sequence in the animal.
  • the chimeric protein or the chimeric polypeptide has at least one portion of the sequence that is derived from two or more different sources, e.g., same (or homologous) proteins of different species.
  • the chimeric protein or the chimeric polypeptide is a humanized protein or a humanized polypeptide.
  • the chimeric gene or the chimeric nucleic acid is a humanized BTLA gene or a humanized BTLA nucleic acid. In some embodiments, at least one or more portions of the gene or the nucleic acid is from the human BTLA gene, at least one or more portions of the gene or the nucleic acid is from a non-human BTLAgene. In some embodiments, the gene or the nucleic acid comprises a sequence that encodes a BTLA protein.
  • the encoded BTLA protein is functional or has at least one activity of the human BTLA protein or the non-human BTLA protein, e.g., binding to human or non-human HVEM and/or B7-H4 (VTCN1) , regulating immune response, promoting NF- ā‡ B activation, and/or promoting cell (e.g., T cell) survival.
  • VTCN1 B7-H4
  • the chimeric protein or the chimeric polypeptide is a humanized BTLA protein or a humanized BTLA polypeptide. In some embodiments, at least one or more portions of the amino acid sequence of the protein or the polypeptide is from a human BTLA protein, and at least one or more portions of the amino acid sequence of the protein or the polypeptide is from a non-human BTLA protein.
  • the humanized BTLA protein or the humanized BTLA polypeptide is functional or has at least one activity of the human BTLA protein or the non-human BTLA protein
  • the genetically modified non-human animal can be various animals, e.g., a mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo) , deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey) .
  • a mouse, rat, rabbit, pig, bovine e.g., cow, bull, buffalo
  • deer sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey)
  • suitable genetically modifiable ES cells are not readily available, other methods are employed to make a non-human animal comprising the genetic modification.
  • Such methods include, e.g., modifying a non-ES cell genome (e.g., a fibroblast or an induced pluripotent cell) and employing nuclear transfer to transfer the modified genome to a suitable cell, e.g., an oocyte, and gestating the modified cell (e.g., the modified oocyte) in a non-human animal under suitable conditions to form an embryo.
  • a suitable cell e.g., an oocyte
  • gestating the modified cell e.g., the modified oocyte
  • the animal is a mammal, e.g., of the superfamily Dipodoidea or Muroidea.
  • the genetically modified animal is a rodent.
  • the rodent can be selected from a mouse, a rat, and a hamster.
  • the rodent is selected from the superfamily Muroidea.
  • the genetically modified animal is from a family selected from Calomyscidae (e.g., mouse-like hamsters) , Cricetidae (e.g., hamster, New World rats and mice, voles) , Muridae (true mice and rats, gerbils, spiny mice, crested rats) , Nesomyidae (climbing mice, rock mice, with-tailed rats, Malagasy rats and mice) , Platacanthomyidae (e.g., spiny dormice) , and Spalacidae (e.g., mole rates, bamboo rats, and zokors) .
  • Calomyscidae e.g., mouse-like hamsters
  • Cricetidae e.g., hamster, New World rats and mice, voles
  • Muridae true mice and rats, gerbils, spiny mice, crested rats
  • the genetically modified rodent is selected from a true mouse or rat (family Muridae) , a gerbil, a spiny mouse, and a crested rat.
  • the non-human animal is a mouse.
  • the animal is a mouse of a C57BL strain selected from C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10, C57BL/10ScSn, C57BL/10Cr, and C57BL/Ola.
  • a C57BL strain selected from C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10, C57BL/10ScSn, C57BL/10Cr, and C57BL/Ola.
  • the mouse is a 129 strain selected from the group consisting of a strain that is 129P1, 129P2, 129P3, 129X1, 129S1 (e.g., 129S1/SV, 129S1/SvIm) , 129S2, 129S4, 129S5, 129S9/SvEvH, 129S6 (129/SvEvTac) , 129S7, 129S8, 129T1, 129T2.
  • a strain that is 129P1, 129P2, 129P3, 129X1, 129S1 (e.g., 129S1/SV, 129S1/SvIm) , 129S2, 129S4, 129S5, 129S9/SvEvH, 129S6 (129/SvEvTac) , 129S7, 129S8, 129T1, 129T2.
  • the genetically modified mouse is a mix of the 129 strain and the C57BL/6 strain.
  • the mouse is a mix of the 129 strains, or a mix of the BL/6 strains.
  • the mouse is a BALB strain, e.g., BALB/c strain.
  • the mouse is a mix of a BALB strain and another strain. In some embodiments, the mouse is from a hybrid line (e.g., 50%BALB/c-50%12954/Sv; or 50%C57BL/6-50%129) .
  • a hybrid line e.g., 50%BALB/c-50%12954/Sv; or 50%C57BL/6-50%129
  • the animal is a rat.
  • the rat can be selected from a Wistar rat, an LEA strain, a Sprague Dawley strain, a Fischer strain, F344, F6, and Dark Agouti.
  • the rat strain is a mix of two or more strains selected from the group consisting of Wistar, LEA, Sprague Dawley, Fischer, F344, F6, and Dark Agouti.
  • the animal can have one or more other genetic modifications, and/or other modifications, that are suitable for the particular purpose for which the humanized BTLA animal is made.
  • suitable mice for maintaining a xenograft e.g., a human cancer or tumor
  • mice for maintaining a xenograft can have one or more modifications that compromise, inactivate, or destroy the immune system of the non-human animal in whole or in part.
  • Compromise, inactivation, or destruction of the immune system of the non-human animal can include, for example, destruction of hematopoietic cells and/or immune cells by chemical means (e.g., administering a toxin) , physical means (e.g., irradiating the animal) , and/or genetic modification (e.g., knocking out one or more genes) .
  • Non-limiting examples of such mice include, e.g., NOD mice, SCID mice, NOD/SCID mice, IL2R ā‡ knockout mice, NOD/SCID/ ā‡ cnull mice (Ito, M.
  • a genetically modified mouse can include a humanization of at least a portion of an endogenous non-human BTLA locus, and further comprises a modification that compromises, inactivates, or destroys the immune system (or one or more cell types of the immune system) of the non-human animal in whole or in part.
  • modification is, e.g., selected from the group consisting of a modification that results in NOD mice, SCID mice, NOD/SCID mice, IL-2R ā‡ knockout mice, NOD/SCID/ ā‡ c null mice, nude mice, Rag1 and/or Rag2 knockout mice, and a combination thereof.
  • NOD mice SCID mice, NOD/SCID mice, IL-2R ā‡ knockout mice, NOD/SCID/ ā‡ c null mice, nude mice, Rag1 and/or Rag2 knockout mice, and a combination thereof.
  • the mouse can include a replacement of all or part of mature BTLA coding sequence with human mature BTLA coding sequence.
  • Genetically modified non-human animals that comprise a modification of an endogenous non-human BTLA locus.
  • the modification can comprise a human nucleic acid sequence encoding at least a portion of a mature BTLA protein (e.g., at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99%identical to the mature BTLA protein sequence) .
  • genetically modified cells are also provided that can comprise the modifications described herein (e.g., ES cells, somatic cells)
  • the genetically modified non-human animals comprise the modification of the endogenous BTLA locus in the germline of the animal.
  • Genetically modified animals can express a human BTLA and/or a chimeric (e.g., humanized) BTLA from endogenous mouse loci, wherein the endogenous mouse BTLA gene has been replaced with a human BTLA gene and/or a nucleotide sequence that encodes a region of human BTLA sequence or an amino acid sequence that is at least 10%, 20%, 30%, 40%, 50%, 60%, 70&, 80%, 90%, 95%, 96%, 97%, 98%, or 99%identical to the human BTLA sequence.
  • an endogenous non-human BTLA locus is modified in whole or in part to comprise human nucleic acid sequence encoding at least one protein-coding sequence of a mature BTLA protein.
  • the genetically modified mice express the human BTLA and/or chimeric BTLA (e.g., humanized BTLA) from endogenous loci that are under control of mouse promoters and/or mouse regulatory elements.
  • the replacement (s) at the endogenous mouse loci provide non-human animals that express human BTLA or chimeric BTLA (e.g., humanized BTLA) in appropriate cell types and in a manner that does not result in the potential pathologies observed in some other transgenic mice known in the art.
  • the human BTLA or the chimeric BTLA (e.g., humanized BTLA) expressed in animal can maintain one or more functions of the wildtype mouse or human BTLA in the animal.
  • human or non-human HVEM can bind to the expressed BTLA and downregulate immune response, e.g., downregulate immune response by at least 10%, 20%, 30%, 40%, or 50%.
  • the animal does not express endogenous BTLA.
  • endogenous BTLA refers to BTLA protein that is expressed from an endogenous BTLA nucleotide sequence of the genetically modified non-human animal (e.g., mouse) before the genetic modification.
  • the genome of the animal can comprise a sequence encoding an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100%identical to human BTLA (NP_861445.3) (SEQ ID NO: 27) .
  • the genome comprises a sequence encoding an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100%identical to SEQ ID NO: 31.
  • the genome of the genetically modified animal can comprise a replacement at an endogenous BTLA gene locus of a sequence encoding a region of endogenous BTLA with a sequence encoding a corresponding region of human BTLA.
  • the sequence that is replaced is any sequence within the endogenous BTLA gene locus, e.g., exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, 5ā€™ -UTR, 3ā€™ UTR, the first intron, the second intron, and the third intron, the fourth intron, the fifth intron, the sixth intron etc.
  • the sequence that is replaced is within the regulatory region of the endogenous BTLA gene.
  • the sequence that is replaced is exon2 of an endogenous mouse BTLA gene locus.
  • the genetically modified animal can have one or more cells expressing a human or chimeric BTLA (e.g., humanized BTLA) having an extracellular region and a cytoplasmic region, wherein the extracellular region comprises a sequence that is at least 50%, 60%, 70%, 80%, 90%, 95%, 99%identical to the extracellular region of human BTLA.
  • the extracellular region of the humanized BTLA has a sequence that has at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acids (e.g., contiguously or non-contiguously) that are identical to human BTLA.
  • human BTLA and non-human BTLA e.g., mouse BTLA sequences
  • antibodies that bind to human BTLA will not necessarily have the same binding affinity with mouse BTLA or have the same effects to mouse BTLA. Therefore, the genetically modified animal having a human or a humanized extracellular region can be used to better evaluate the effects of anti-human BTLA antibodies in an animal model.
  • the genome of the genetically modified animal comprises a sequence encoding an amino acid sequence that corresponds to part or the entire sequence of exon 1, exon 2, exon 3, exon 4, and/or exon 5 of human BTLA, part or the entire sequence of extracellular region of human BTLA (with or without signal peptide) , or part or the entire sequence of amino acids 34-132 of SEQ ID NO: 27.
  • the non-human animal can have, at an endogenous BTLA gene locus, a nucleotide sequence encoding a chimeric human/non-human BTLA polypeptide, wherein a human portion of the chimeric human/non-human BTLA polypeptide comprises a portion of human BTLA extracellular domain, and wherein the animal expresses a functional BTLA on a surface of a cell of the animal.
  • the human portion of the chimeric human/non-human BTLA polypeptide can comprise a portion of exon 1, exon 2, exon 3, exon 4, and/orexon 5 of human BTLA.
  • the human portion of the chimeric human/non-human BTLA polypeptide can comprise a sequence that is at least 80%, 85%, 90%, 95%, or 99%identical to amino acids 34-132 of SEQ ID NO: 27.
  • the non-human portion of the chimeric human/non-human BTLA polypeptide comprises transmembrane and/or cytoplasmic regions of an endogenous non-human BTLA polypeptide.
  • transmembrane and/or cytoplasmic regions of an endogenous non-human BTLA polypeptide There may be several advantages that are associated with the transmembrane and/or cytoplasmic regions of an endogenous non-human BTLA polypeptide. For example, once HVEM binds to BTLA, they can properly transmit extracellular signals into the cells and regulate the downstream pathway. A human or humanized transmembrane and/or cytoplasmic regions may not function properly in non-human animal cells. In some embodiments, a few extracellular amino acids that are close to the transmembrane region of BTLA are also derived from endogenous sequence.
  • the genetically modified animal can be heterozygous with respect to the replacement at the endogenous BTLA locus, or homozygous with respect to the replacement at the endogenous BTLA locus.
  • the humanized BTLA locus lacks a human BTLA 5ā€™ -UTR.
  • the humanized BTLA locus comprises a rodent (e.g., mouse) 5ā€™ -UTR.
  • the humanization comprises a human 3ā€™ -UTR.
  • mouse and human BTLA genes appear to be similarly regulated based on the similarity of their 5ā€™ -flanking sequence.
  • humanized BTLA mice that comprise a replacement at an endogenous mouse BTLA locus, which retain mouse regulatory elements but comprise a humanization of BTLA encoding sequence, do not exhibit pathologies. Both genetically modified mice that are heterozygous or homozygous for human BTLA are grossly normal.
  • the present disclosure further relates to a non-human mammal generated through the method mentioned above.
  • the genome thereof contains human gene (s) .
  • the non-human mammal is a rodent, and preferably, the non-human mammal is a mouse.
  • the non-human mammal expresses a protein encoded by a humanized BTLA gene.
  • the present disclosure also relates to a tumor bearing non-human mammal model, characterized in that the non-human mammal model is obtained through the methods as described herein.
  • the non-human mammal is a rodent (e.g., a mouse) .
  • the present disclosure further relates to a cell or cell line, or a primary cell culture thereof derived from the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal; the tissue, organ or a culture thereof derived from the non-human mammal or an offspring thereof, or the tumor bearing non-human mammal; and the tumor tissue derived from the non-human mammal or an offspring thereof when it bears a tumor, or the tumor bearing non-human mammal.
  • the present disclosure also provides non-human mammals produced by any of the methods described herein.
  • a non-human mammal is provided; and the genetically modified animal contains the DNA encoding human or humanizedBTLA in the genome of the animal.
  • the non-human mammal comprises the genetic construct as shown in FIG. 2.
  • a non-human mammal expressing human or humanized BTLA is provided.
  • the tissue-specific expression of human or humanizedBTLA protein is provided.
  • the expression of human or humanizedBTLA in a genetically modified animal is controllable, as by the addition of a specific inducer or repressor substance.
  • Non-human mammals can be any non-human animal known in the art and which can be used in the methods as described herein.
  • Preferred non-human mammals are mammals, (e.g., rodents) .
  • the non-human mammal is a mouse.
  • the present disclosure also relates to the progeny produced by the non-human mammal provided by the present disclosure mated with the same or other genotypes.
  • the present disclosure also provides a cell line or primary cell culture derived from the non-human mammal or a progeny thereof.
  • a model based on cell culture can be prepared, for example, by the following methods.
  • Cell cultures can be obtained by way of isolation from a non-human mammal, alternatively cell can be obtained from the cell culture established using the same constructs and the standard cell transfection techniques.
  • the integration of genetic constructs containing DNA sequences encoding human BTLA protein can be detected by a variety of methods.
  • RNA quantification approaches using reverse transcriptase polymerase chain reaction (RT-PCR) or Southern blotting, and in situ hybridization
  • protein level including histochemistry, immunoblot analysis and in vitro binding studies
  • RT-PCR reverse transcriptase polymerase chain reaction
  • protein level including histochemistry, immunoblot analysis and in vitro binding studies
  • the expression level of the gene of interest can be quantified by ELISA techniques well known to those skilled in the art.
  • Many standard analysis methods can be used to complete quantitative measurements. For example, transcription levels can be measured using RT-PCR and hybridization methods including RNase protection, Southern blot analysis, RNA dot analysis (RNAdot) analysis. Immunohistochemical staining, flow cytometry, Western blot analysis can also be used to assess the presence of human BTLA protein.
  • the present disclosure relates to a targeting vector, comprising: a) a DNA fragment homologous to the 5ā€™ end of a region to be altered (5ā€™ arm) , which is selected from the BTLA gene genomic DNAs in the length of 100 to 10,000 nucleotides; b) a desired/donor DNA sequence encoding a donor region; and c) a second DNA fragment homologous to the 3ā€™ end of the region to be altered (3ā€™ arm) , which is selected from the BTLA gene genomic DNAs in the length of 100 to 10,000 nucleotides.
  • a) the DNA fragment homologous to the 5ā€™ end of a conversion region to be altered (5ā€™ arm) is selected from the nucleotide sequences that have at least 90%homology to the NCBI accession number NC_000082.6; c) the DNA fragment homologous to the 3ā€™ end of the region to be altered (3ā€™ arm) is selected from the nucleotide sequences that have at least 90%homology to the NCBI accession number NC_000082.6.
  • a) the DNA fragment homologous to the 5ā€™ end of a region to be altered (5ā€™ arm) is selected from the nucleotides from the position 45237539 to the position 45239051 of the NCBI accession number NC_000082.6; c) the DNA fragment homologous to the 3ā€™ end of the region to be altered (3ā€™ arm) is selected from the nucleotides from the position 45239358 to the position 45240854 of the NCBI accession number NC_000082.6.
  • the length of the selected genomic nucleotide sequence in the targeting vector can be about 1.2 kb, about 1.5 kb, or about 1 kb. In some embodiments, the length is about 1513 bp or about 1497 bp.
  • the region to be altered is exon 1, exon 2, exon 3, exon 4, exon 5, and/orexon 6 of BTLA gene (e.g., exon 2of BTLA gene) .
  • the targeting vector can further include a selected gene marker.
  • sequence of the 5ā€™ arm is shown in SEQ ID NO: 32; and the sequence of the 3ā€™ arm is shown in SEQ ID NO: 38.
  • the target region is derived from human.
  • the target region in the targeting vector is a part or entirety of the nucleotide sequence of a human BTLA, preferably the nucleotide sequence is shown as a first exon, a second exon, a third exon, a fourth exon, and/or a fifth exonof the DNA sequence of the human BTLA.
  • the nucleotide sequence of the humanized BTLA encodes the humanized BTLA protein with the NCBI accession number NP_861445.3 (SEQ ID NO: 27) .
  • the disclosure also relates to a cell comprising the targeting vectors as described above.
  • the disclosure also relates to an sgRNA sequence for constructing a humanized animal model, wherein the sgRNA sequence targets the BTLA gene, the sgRNA is unique on the target sequence of the BTLA gene to be altered, and meets the sequence arrangement rule of 5ā€™ -NNN (20) -NGG3ā€™ or 5ā€™ -CCN-N (20) -3ā€™ ; and in some embodiments, the targeting site of the sgRNA in the mouse BTLA gene is located on the exon 1, exon 2, exon 3, exon 4, exon 5, orexon 6 of the mouse BTLA gene (e.g., exon 2of the mouse BTLA gene) .
  • the targeting site of the sgRNA in the mouse BTLA gene is located on the exon 1, exon 2, exon 3, exon 4, exon 5, orexon 6 of the mouse BTLA gene (e.g., exon 2of the mouse BTLA gene) .
  • an upstream sequence thereof is shown as SEQ ID NO: 15, and a downstream sequence thereof is shown as SEQ ID NO: 17, and the sgRNA sequence recognizes a 5ā€™ targeting site.
  • the forward oligonucleotide sequence is obtained by adding TAGG to the 5ā€™ end of SEQ ID NO: 15; and the reverse oligonucleotide sequence is obtained by adding AAAC to the 5ā€™ end of SEQ ID NO: 17.
  • the disclosure provides an sgRNA sequence for constructing a humanized animal model, wherein an upstream sequence thereof is shown as SEQ ID NO: 19, and a downstream sequence thereof is shown as SEQ ID NO: 21, and the sgRNA sequence recognizes a 3ā€™ targeting site.
  • the forward oligonucleotide sequence is obtained by adding TAGG to the 5ā€™ end of SEQ ID NO: 19; and the reverse oligonucleotide sequence is obtained by adding AAAC to the 5ā€™ end of SEQ ID NO: 21.
  • the disclosure relates to a construct including the sgRNA sequence, and/or a cell including the construct.
  • the present disclosure further relates to a non-human mammalian cell, having any one of the foregoing targeting vectors, and one or more in vitro transcripts of the sgRNA construct as described herein.
  • the cell includes Cas9 mRNA or an in vitro transcript thereof.
  • the genes in the cell are heterozygous. In some embodiments, the genes in the cell are homozygous.
  • the non-human mammalian cell is a mouse cell. In some embodiments, the cell is a fertilized egg cell.
  • Genetically modified animals can be made by several techniques that are known in the art, including, e.g., nonhomologous end-joining (NHEJ) , homologous recombination (HR) , zinc finger nucleases (ZFNs) , transcription activator-like effector-based nucleases (TALEN) , and the clustered regularly interspaced short palindromic repeats (CRISPR) -Cas system.
  • NHEJ nonhomologous end-joining
  • HR homologous recombination
  • ZFNs zinc finger nucleases
  • TALEN transcription activator-like effector-based nucleases
  • CRISPR clustered regularly interspaced short palindromic repeats
  • homologous recombination is used.
  • CRISPR-Cas9 genome editing is used to generate genetically modified animals.
  • genome editing techniques are known in the art, and is described, e.g., in Yin et al., "Delivery technologies for genome editing, " Nature Reviews Drug Discovery 16.6 (2017) : 387-399, which is incorporated by reference in its entirety.
  • Many other methods are also provided and can be used in genome editing, e.g., micro- injecting a genetically modified nucleus into an enucleated oocyte, and fusing an enucleated oocyte with another genetically modified cell.
  • the disclosure provides replacing in at least one cell of the animal, at an endogenous BTLA gene locus, a sequence encoding a region of an endogenous BTLA with a sequence encoding a corresponding region of human or chimeric BTLA.
  • the replacement occurs in a germ cell, a somatic cell, a blastocyst, or a fibroblast, etc.
  • the nucleus of a somatic cell or the fibroblast can be inserted into an enucleated oocyte.
  • FIG. 3C shows a humanization strategy for a mouse BTLA locus.
  • the targeting strategy involves a vector comprising the 5ā€™ end homologous arm, human BTLA gene fragment, 3ā€™ homologous arm.
  • the process can involve replacing endogenous BTLA sequence with human sequence by homologous recombination.
  • the cleavage at the upstream and the downstream of the target site e.g., by zinc finger nucleases, TALEN or CRISPR
  • the homologous recombination is used to replace endogenous BTLA sequence with human BTLA sequence.
  • the methods for making a genetically modified, humanized animal can include the step of replacing at an endogenous BTLA locus (or site) , a nucleic acid encoding a sequence encoding a region of endogenous BTLA with a sequence encoding a corresponding region of human BTLA.
  • the sequence can include a region (e.g., a part or the entire region) of exon 1, exon 2, exon 3, exon 4, exon 5, and/or exon 6, of a human BTLA gene.
  • the sequence includes a region of exon 2 of a human BTLA gene (e.g., amino acids 34-132 of SEQ ID NO: 27) .
  • the region is located within the extracellular region of BTLA.
  • the endogenous BTLA locus is exon2 of mouse BTLA.
  • the methods of modifying a BTLA locus of a mouse to express a chimeric human/mouse BTLA peptide can include the steps of replacing at the endogenous mouse BTLA locus a nucleotide sequence encoding a mouse BTLA with a nucleotide sequence encoding a human BTLA, thereby generating a sequence encoding a chimeric human/mouse BTLA.
  • the nucleotide sequence encoding the chimeric human/mouse BTLA can include a first nucleotide sequence encoding an extracellular region of mouse BTLA (with or without the mouse signal peptide sequence) ; a second nucleotide sequence encoding an extracellular region of human BTLA; a third nucleotide sequence encoding a transmembrane and a cytoplasmic region of a mouse BTLA.
  • the nucleotide sequences as described herein do not overlap with each other (e.g., the first nucleotide sequence, the second nucleotide sequence, and/or the third nucleotide sequence do not overlap) .
  • the amino acid sequences as described herein do not overlap with each other.
  • the present disclosure further provides a method for establishing a BTLA gene humanized animal model, involving the following steps:
  • step (d) identifying the germline transmission in the offspring genetically modified humanized non-human mammal of the pregnant female in step (c) .
  • the non-human mammal in the foregoing method is a mouse (e.g., a C57BL/6 mouse) .
  • the non-human mammal in step (c) is a female with pseudopregnancy (or false pregnancy) .
  • the fertilized eggs for the methods described above are C57BL/6 fertilized eggs.
  • Other fertilized eggs that can also be used in the methods as described herein include, but are not limited to, FVB/N fertilized eggs, BALB/c fertilized eggs, DBA/1 fertilized eggs and DBA/2 fertilized eggs.
  • Fertilized eggs can come from any non-human animal, e.g., any non-human animal as described herein.
  • the fertilized egg cells are derived from rodents.
  • the genetic construct can be introduced into a fertilized egg by microinjection of DNA. For example, by way of culturing a fertilized egg after microinjection, a cultured fertilized egg can be transferred to a false pregnant non-human animal, which then gives birth of a non-human mammal, so as to generate the non-human mammal mentioned in the method described above.
  • the transgene with human regulatory elements expresses in a manner that is unphysiological or otherwise unsatisfactory, and can be actually detrimental to the animal.
  • the disclosure demonstrates that a replacement with human sequence at an endogenous locus under control of endogenous regulatory elements provides a physiologically appropriate expression pattern and level that results in a useful humanized animal whose physiology with respect to the replaced gene are meaningful and appropriate in the context of the humanized animal's physiology.
  • Genetically modified animals that express human or humanized BTLA protein provide a variety of uses that include, but are not limited to, developing therapeutics for human diseases and disorders, and assessing the efficacy of these human therapeutics in the animal models.
  • genetically modified animals are provided that express human or humanized BTLA, which are useful for testing agents that can decrease or block the interaction between BTLA and HVEM or the interaction between BTLA and B7-H4, testing whether an agent can increase or decrease the immune response, and/or determining whether an agent is an BTLA agonist or antagonist.
  • the genetically modified animals can be, e.g., an animal model of a human disease, e.g., the disease is induced genetically (aknock-in or knockout) .
  • the genetically modified non-human animals further comprise an impaired immune system, e.g., a non-human animal genetically modified to sustain or maintain a human xenograft, e.g., a human solid tumor or a blood cell tumor (e.g., a lymphocyte tumor, e.g., a B or T cell tumor) .
  • an impaired immune system e.g., a non-human animal genetically modified to sustain or maintain a human xenograft, e.g., a human solid tumor or a blood cell tumor (e.g., a lymphocyte tumor, e.g., a B or T cell tumor) .
  • the genetically modified animals can be used for determining effectiveness of an anti-BTLA antibody for the treatment of cancer.
  • the methods involving administering the anti-BTLA antibody to the animal as described herein, wherein the animal has a tumor; and determining the inhibitory effects of the anti-BTLA antibody to the tumor.
  • the inhibitor effects that can be determined include, e.g., a decrease of tumor size or tumor volume, a decrease of tumor growth, a reduction of the increase rate of tumor volume in a subject (e.g., as compared to the rate of increase in tumor volume in the same subject prior to treatment or in another subject without such treatment) , a decrease in the risk of developing a metastasis or the risk of developing one or more additional metastasis, an increase of survival rate, and an increase of life expectancy, etc.
  • the tumor volume in a subject can be determined by various methods, e.g., as determined by direct measurement, MRI or CT.
  • the tumor comprises one or more tumor cells that express HVEM (DerrĆ©, Laurent, et al. "BTLA mediates inhibition of human tumor-specific CD8+T cells that can be partially reversed by vaccination. " The Journal of clinical investigation 120.1 (2010) : 157) .
  • the tumor comprises one or more cancer cells (e.g., human or mouse cancer cells) that are injected into the animal.
  • the anti-BTLA antibody or anti-HVEM antibody prevents HVEM from binding to BTLA.
  • the anti-BTLA antibody or anti-HVEM antibody does not prevent HVEMfrom binding to BTLA.
  • the genetically modified animals can be used for determining whether an anti-BTLA antibody is anBTLA agonist or antagonist.
  • the methods as described herein are also designed to determine the effects of the agent (e.g., anti-BTLA antibodies) on BTLA, e.g., whether the agent can stimulate T cells or inhibit T cells, whether the agent can upregulate the immune response or downregulate immune response.
  • the genetically modified animals can be used for determining the effective dosage of a therapeutic agent for treating a disease in the subject, e.g., cancer, or autoimmune diseases.
  • the inhibitory effects on tumors can also be determined by methods known in the art, e.g., measuring the tumor volume in the animal, and/or determining tumor (volume) inhibition rate (TGI TV ) .
  • the anti-BTLA antibody is designed for treating various cancers.
  • cancer refers to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth. The term is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness.
  • tumor refers to cancerous cells, e.g., a mass of cancerous cells.
  • Cancers that can be treated or diagnosed using the methods described herein include malignancies of the various organ systems, such as affecting lung, breast, thyroid, lymphoid, gastrointestinal, and genito-urinary tract, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus.
  • the agents described herein are designed for treating or diagnosing a carcinoma in a subject.
  • carcinoma is art recognized and refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas.
  • the cancer is renal carcinoma or melanoma.
  • Exemplary carcinomas include those forming from tissue of the cervix, lung, prostate, breast, head and neck, colon and ovary.
  • carcinosarcomas e.g., which include malignant tumors composed of carcinomatous and sarcomatous tissues.
  • an ā€œadenocarcinomaā€ refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures.
  • the term ā€œsarcomaā€ is art recognized and refers to malignant tumors of mesenchymal derivation.
  • the anti-BTLA antibody is designed for the treating melanoma, non-small cell lung carcinoma (NSCLC) , small cell lung cancer (SCLC) , bladder cancer, and/or prostate cancer (e.g., metastatic hormone-refractory prostate cancer) .
  • NSCLC non-small cell lung carcinoma
  • SCLC small cell lung cancer
  • prostate cancer e.g., metastatic hormone-refractory prostate cancer
  • the present disclosure also relates to the use of the animal model generated through the method as described herein in the development of a product related to an immunization processes of human cells, the manufacturing of a human antibody, or the model system for a research in pharmacology, immunology, microbiology and medicine.
  • the disclosure provides the use of the animal model generated through the method as described herein in the production and utilization of an animal experimental disease model of an immunization processes involving human cells, the study on a pathogen, or the development of a new diagnostic strategy and /or a therapeutic strategy.
  • the disclosure also relates to the use of the animal model generated through the methods as described herein in the screening, verifying, evaluating or studying the BTLA gene function, human BTLA antibodies, drugs for human BTLA targeting sites, the drugs or efficacies for human BTLA targeting sites, the drugs for immune-related diseases and antitumor drugs.
  • the present disclosure further relates to methods for generating genetically modified animal model with two or more human or chimeric genes.
  • the animal can comprise a human or chimeric BTLA gene and a sequence encoding an additional human or chimeric protein.
  • the additional human or chimeric protein can be programmed cell death protein 1 (PD-1) , cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) , Lymphocyte Activating 3 (LAG-3) , T-Cell Immunoglobulin And Mucin Domain-Containing Protein 3 (TIM-3) , Programmed Cell Death 1 Ligand 1 (PD-L1) , TNF Receptor Superfamily Member 9 (4-1BB) , CD27, CD28, CD47, T-Cell Immunoreceptor With Ig And ITIM Domains (TIGIT) , CD27, Glucocorticoid-Induced TNFR-Related Protein (GITR) , or TNF Receptor Superfamily Member 4 (TNFRSF4; or OX40) .
  • PD-1BB cytotoxic T-lymphocyte-associated protein 4
  • LAG-3 Lymphocyte Activating 3
  • TIM-3 T-Cell Immunoglobulin And Mucin Domain-Containing
  • the methods of generating genetically modified animal model with two or more human or chimeric genes can include the following steps:
  • the genetically modified animal in step (b) of the method, can be mated with a genetically modified non-human animal with human or chimeric PD-1, CTLA-4, LAG-3, TIM-3, PD-L1, 4-1BB, CD27, CD28, CD47, TIGIT, CD27, GITR, or OX40.
  • the BTLA humanization is directly performed on a genetically modified animal having a human or chimeric PD-1, CTLA-4, LAG-3, TIM-3, PD-L1, 4-1BB, CD27, CD28, CD47, TIGIT, CD27, GITR, or OX40 gene.
  • the genetically modified animal model with two or more human or humanized genes can be used for determining effectiveness of a combination therapy that targets two or more of these proteins, e.g., an anti-BTLA antibody and an additional therapeutic agent for the treatment of cancer.
  • the methods include administering the anti-BTLA antibody and the additional therapeutic agent to the animal, wherein the animal has a tumor; and determining the inhibitory effects of the combined treatment to the tumor.
  • the animal further comprises a sequence encoding a human or humanized programmed cell death protein 1 (PD-1) .
  • the additional therapeutic agent is an anti-PD-1 antibody (e.g., nivolumab, pembrolizumab) .
  • the tumor comprises one or more tumor cells that express HVEM, B7-H4, CD80, CD86, PD-L1 or PD-L2.
  • the combination treatment is designed for treating various cancer as described herein, e.g., melanoma, non-small cell lung carcinoma (NSCLC) , small cell lung cancer (SCLC) , bladder cancer, and/or prostate cancer (e.g., metastatic hormone-refractory prostate cancer) .
  • NSCLC non-small cell lung carcinoma
  • SCLC small cell lung cancer
  • prostate cancer e.g., metastatic hormone-refractory prostate cancer
  • the methods described herein can be used to evaluate the combination treatment with some other methods.
  • the methods of treating a cancer that can be used alone or in combination with methods described herein, include, e.g., treating the subject with chemotherapy, e.g., campothecin, doxorubicin, cisplatin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, adriamycin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, bleomycin, plicomycin, mitomycin, etoposide, verampil, podophyllotoxin, tamoxifen, taxol, transplatinum, 5-flurouracil, vincristin, vinblastin, and/or methotrexate.
  • the methods can include performing surgery on the subject to remove at least a portion of the subject to remove at least
  • Ambion TM in vitro transcription kit was purchased from Ambion. Catalog number is AM1354.
  • E.coli TOP10 competent cells were purchased from the TiangenBiotech (Beijing) Co. Catalog number is CB104-02.
  • Kanamycin was purchased from Amresco. Catalog number is 0408.
  • Cas9 mRNA was obtained from SIGMA. Catalog number is CAS9MRNA-1EA.
  • AIO kit was obtained from Beijing Biocytogen Co., Ltd. Catalog number is BCG-DX-004.
  • UCA kit was obtained from Beijing Biocytogen Co., Ltd. Catalog number is BCG-DX-001.
  • Reverse Transcription Kit was obtained from TakaRa. Catalog number is 6110A.
  • C57BL/6 mice were purchased from the China Food and Drugs Research Institute National Rodent Experimental Animal Center.
  • B-hPD-1 mice were obtained from Beijing Biocytogen Co., Ltd.
  • Mouse colon cancer cell line MC38 was purchased from Shanghai Enzyme Research Biotechnology Co., Ltd.
  • Mouse CD3 antibody was obtained from BD. Catalog number is 563123.
  • mPD-1 antibody was obtained from BIO X CELL. Catalog number is BE0146.
  • mTcR ā‡ PerCP was obtained from Biolegend. Catalog number is 109228.
  • mPD-1PE was obtained from Biolegend. Catalog number is 109104.
  • mBTLA PE was obtained from Biolegend. Catalog number is 134804.
  • hBTLA APC was obtained from Biolegend. Catalog number is 344510.
  • mCD19 FITC was obtained from Biolegend. Catalog number is 115505.
  • hPD-1 FITC was obtained from Biolegend. Catalog number is 329904.
  • EXAMPLE 1 Construction of pT7-BTLA-1 and pT7-BTLA-14
  • the target sequence determines the targeting specificity of small guide RNA (sgRNA) and the efficiency of Cas9 cleavage at the target gene. Therefore, target sequence selection is important forsgRNA vector construction.
  • sgRNA small guide RNA
  • the 5ā€™ -terminal targeting sites (sgRNA1 to sgRNA8) and the 3ā€™ -terminal targeting sites (sgRNA9 to sgRNA14) were designed and synthesized.
  • the 5ā€™ -terminal targeting sites and the 3ā€™ -terminal targeting sites are located on exon 2 of mouse BTLA gene, and the targeting site sequence on BTLA of each sgRNA is as follows:
  • sgRNA-1 targeting sequence 5ā€™ -CAGTGCAACTTACTATTACG-3ā€™ (SEQ ID NO: 1)
  • sgRNA-2 targeting sequence 5ā€™ -CTCGTAATAGTAAGTTGCAC -3ā€™ (SEQ ID NO: 2)
  • sgRNA-3 targeting sequence 5ā€™ -GTGACTTGGTGTAAGCACAA-3ā€™ (SEQ ID NO: 3)
  • sgRNA-4 targeting sequence 5ā€™ -TCCAAACAGTCTGCCAGGAC-3ā€™ (SEQ ID NO: 4)
  • sgRNA-5 targeting sequence 5ā€™ -TTCATAGACCTAATGTGACT-3ā€™ (SEQ ID NO: 5)
  • sgRNA-6 targeting sequence 5ā€™ -GGAATTCCAAACAGTCTGCC-3ā€™ (SEQ ID NO: 6)
  • sgRNA-7 targeting sequence 5ā€™ -TCCTGTCCTGGCAGACTGTT-3ā€™ (SEQ ID NO: 7)
  • sgRNA-8 targeting sequence 5ā€™ -TTTAAATAACTCTCCTGTCC-3ā€™ (SEQ ID NO: 8)
  • sgRNA-9 targeting sequence 5ā€™ -TCAGTAACCATCCATGTGAC-3ā€™ (SEQ ID NO: 9)
  • sgRNA-10 targeting sequence 5ā€™ -TCACATGGATGGTTACTGAA-3ā€™ (SEQ ID NO: 10)
  • sgRNA-11 targeting sequence 5ā€™ -CCATTATCACTGAGATGTAT-3ā€™ (SEQ ID NO: 11)
  • sgRNA-12 targeting sequence 5ā€™ -CAATACATCTCAGTGATAAT-3ā€™ (SEQ ID NO: 12)
  • sgRNA-13 targeting sequence 5ā€™ -CCAATACATCTCAGTGATAA-3ā€™ (SEQ ID NO: 13)
  • sgRNA-14 targeting sequence 5ā€™ -TGAGATGTATTGGTTTAAAG-3ā€™ (SEQ ID NO: 14)
  • the UCA kit was usedto detect the activitiesofsgRNAs (FIGS. 1A and 1B) .
  • the results show that the guide sgRNAs have different activities.
  • Two of them (sgRNA1 and sgRNA14) were selected for follow-up experiments.
  • TAGG was added to the 5ā€™ end to obtain a forward oligonucleotide sequence
  • its complementary strand was added with AAAC to obtain a reverse oligonucleotide sequence.
  • they were respectively digested by restriction enzyme (BbsI) and ligated to pT7-sgRNA plasmid to obtain the expression vectors pT7-BTLA-1and pT7-BTLA-14.
  • the ligation reaction was carried outat room temperature for 10 to 30 minutes.
  • the ligation product was then transferred to 30 ā‡ L of TOP10 competent cells.
  • the cells were then plated on a petri dish with Kanamycin, and then cultured at 37 Ā°C for at least 12 hours and then two clones were selected and added to LB medium with Kanamycin (5 ml) , and then cultured at 37 Ā°C at 250 rpm for at least 12 hours.
  • Randomly selected clones were sequenced, so as to verify their sequences.
  • the correct expression vectors pT7-B2-6and pT7-B2-10 were selected for subsequent experiments.
  • PT7-sgRNA vector map is shown in FIG. 2.
  • the plasmid backbone was obtainedfrom Takara (Catalog No. 3299) .
  • the DNA fragment containing T7 promoter and sgRNA scaffold was synthesized by a plasmid synthesis company, and linked to the backbone vector by restriction enzyme digestion (EcoRI and BamHI) and ligation.
  • the target plasmid was confirmed by the sequencing results.
  • the DNA fragment containing the T7 promoter and sgRNA scaffold (SEQ ID NO: 23) :
  • a partial coding sequence of the mouse BTLA gene (Gene ID: 208154) from exon 2 (based on the transcript of NCBI accession number NM_001037719.2 ā‡ NP_001032808.2 whose mRNA sequence is shown in SEQ ID NO: 24, and the corresponding protein sequence is shown in SEQ ID NO: 25) was replaced with a corresponding coding sequence of human homologous BTLA gene (Gene ID: 151888) (based on the transcript of NCBI accession number NM_181780.3 ā‡ NP_861445.3, whose mRNA sequence was shown in SEQ ID NO: 26, and the corresponding protein sequence is shown in SEQ ID NO: 27) .
  • the comparison between the mouse BTLA and human BTLAis shown in FIG. 3A, and the finally obtained humanized BTLA gene is shown in FIG. 3B, the humanized mouse BTLA gene DNA sequence (chimeric BTLA gene DNA) is shown in SEQ ID NO: 28.
  • SEQ ID NO: 28 lists only the portion of DNA sequence involved in the modification, wherein the italicized underlined region is the human BTLA gene sequence fragment.
  • the coding region sequence, mRNA sequence and the encoded protein sequence thereof of the modified humanizedBTLA are respectively shown in SEQ ID NO: 29, SEQ ID NO: 30, and SEQ ID NO: 31.
  • human BTLA and mouse BTLA have many isoforms, the methods as described herein can be applied to other isoforms.
  • human BTLA isoform 2 NCBI accession number NM_001085357.1 (SEQ ID NO: 67) ā‡ NP_001078826.1 (SEQ ID NO: 68) ) can be used.
  • a targeting strategy involving a vector comprising the 5ā€™ end homologous arm, human BTLA gene fragment, 3ā€™ homologous arm as shown in FIG. 3C is also developed. The process is as follows:
  • Upstream primer (SEQ ID NO: 33) :
  • Human DNA fragment (SEQ ID NO: 35) is the nucleotide sequence from positions 112479758 to 112479462of the NCBI accession number NC_000003.12.
  • the upstream primer (SEQ ID NO: 36) is:
  • the downstream primer (SEQ ID NO: 37) is:
  • Upstream primer (SEQ ID NO: 39) :
  • C57BL/6 mouse DNA is used as the template to carry out PCR amplification for the 5ā€™ -terminal homologous arm fragment and the 3ā€™ -terminal homologous arm fragment.
  • Human DNA is used as the template to carry out PCR amplification for the DNA fragment, and the AIO kit is used to ligate the fragments to the pClon-4G plasmid provided by the kit, so as to obtain the vector pClon-4G-BTLA.
  • the pre-mixed Cas9 mRNA, pClon-4G-BTLA plasmid and in vitro transcription products of pT7-BTLA-1 , pT7-BTLA-14 plasmids were injected into the cytoplasm or nucleus of mouse fertilized eggs (C57BL/6 background) with a microinjection instrument (usingin vitro transcription kit to carry out the transcription according to the method provided in the product instruction) .
  • the embryo microinjection was carried out according to the method described, e.g., in A. Nagy, et al., ā€œManipulating the Mouse Embryo: ALaboratory Manual (Third Edition) , ā€ Cold Spring Harbor Laboratory Press, 2003.
  • the injected fertilized eggs were then transferred to a culture medium for a short time culture, and then was transplanted into the oviduct of the recipient mouse to produce the genetically modified humanized mice (F0 generation) .
  • the mice population was further expanded by cross-mating and self-mating to establish stable mouse lines.
  • the humanized mouse was named as B-hBTLA mouse.
  • PCR analysis was performed for mouse tail genomic DNA of F0 generationmice.
  • the primers are for exon 2 of mouse BTLA gene.
  • the primersforPCR-1 were located on the left side of the 5ā€™ homologous arm, the primers for PCR-4 were located on the right side of the 3ā€™ homologous arm; in addition, the primers for PCR-2 and PCR-3 were located on the humanized fragment, which are shown below:
  • PCR-1 (SEQ ID NO: 41) : 5ā€™ -acttagtggactgtaggagtgctgg-3ā€™
  • PCR-2 (SEQ ID NO: 42) : 5ā€™ -cagcggtatgacccattgtcattagga-3ā€™
  • PCR-3 (SEQ ID NO: 43) : 5ā€™ -ccatcttagcaggagatccctttga -3ā€™
  • PCR-4 (SEQ ID NO: 44) : 5ā€™ -tagacatgagacaaggttgggcctg -3ā€™
  • the recombinant vector has the correct insertion, there should be only one PCR band.
  • the length of the 5ā€™ terminus product should be 1842bp, and the length of the 3ā€™ terminusproductshould be 2428bp.
  • F1 generation mice were obtained by cross-mating F0 generation mice with C57BL/6 mice. PCR was performed for six F1 generation mice. The results showed that all six F1 generation mice are positive (FIG. 6) .
  • mice were furtherexamined by Southern blotting to determine whether they had a random insertion.
  • the genomic DNA was extracted from the mouse tail, and StuI and PstIwere used to digest the genomic DNA. The digestion products were transferred to membrane and hybridized.
  • the probes P1 and P2 were located respectively outside of the 5ā€™ homologous arm and in the humanized fragment.
  • the primers for probe synthesis are as follows:
  • P1-R (SEQ ID NO: 46) : 5ā€™ -CTCAGAAAGAGATTTCAAGGGGGTA -3ā€™
  • P2-F (SEQ ID NO: 47) : 5ā€™ -GGATGCTCTGATGGGCACACACTTT-3ā€™
  • P2-R (SEQ ID NO: 48) : 5ā€™ -TTAGGGAACCAGTTTCTCAGCAGGG-3ā€™
  • the wild type C56BL/6 mice would havethe11.6kb (P1) and 5.8kb (P2) bands as determined by P1 and P2 probes respectively.
  • the genetically engineered homozygous mice should have the 9.4kb (P1) and 5.8kb (P2) bands ad determined by P1 and P2 probes respectively.
  • the genetically engineered heterozygous mice should have the 11.6kb + 9.4kb (P1) and 5.8kb (P2) bands as determined by P and P2 probes respectively.
  • FIGS. 7A-7B The results were shown in FIGS. 7A-7B.
  • F1-4 had no random insertion (FIG. 7A) .
  • the results from P2 probe confirmed that F1-4 had no random insertions and F1-4 was ahBTLA heterozygous mouse (FIG. 7B) .
  • a humanized heterozygous F1 generation mouse was selected for this experiment.
  • One wild type C57BL/6 mouse was used as the control.
  • mice 7.5 ā‡ g of mouse CD3 antibody was injected intraperitoneally to the mice.
  • the spleens were collected 24 hours after the injection, and the spleen samples were grinded.
  • the ground samples were then passed through 70 ā‡ m cell mesh, the filtered cell suspensions were centrifuged and the supernatants were discarded; the erythrocyte lysis solution was added for lysis of 5 min, and then PBS solution was added to neutralize the lysis reaction. The solution was centrifuged again and the supernatants were discarded. The cells were washed once with PBS.
  • FACS anti-mouse BTLA antibodies (mBTLA PE) and anti-mTCR ā‡ antibodies (TCR ā‡ PerCP) , or anti-human BTLA antibodies (hBTLA APC) and anti-mTCR ā‡ antibodies (TCR ā‡ PerCP) were used for staining extracellular proteins.
  • the cells were washed once again with PBS.
  • Flow cytometry was carried out to detect protein expression.
  • Flow cytometry analysis results show when compared with the C57BL/6 mice without CD3 antibody stimulation (FIGS. 8A and 8D) or withCD3 antibody stimulation (FIGS. 8B and 8E) , the humanized mouse spleen (FIGS.
  • mBTLA RT-PCR F1 (SEQ ID NO: 49) : ACCCCTTGAGGTTAGCCCT, and
  • mBTLA RT-PCR R1 (SEQ ID NO: 50) : TTGTAGAACAGCTATACGACCCA
  • hBTLA RT-PCR F1 (SEQ ID NO: 51) : ATACTGTGCTAACAGGCCTCA, and
  • hBTLA RT-PCR R1 (SEQ ID NO: 52) : ACCCATTGTCATTAGGAAGCACT
  • PCR reaction system was 20 ā‡ L, reaction conditions: 95 Ā°C, 5min; (95 Ā°C, 30 sec; 60 Ā°C, 30 sec; 72 Ā°C, 30 sec, 35 cycles) ; 72 Ā°C, 10 min; and then keeping it at 4 Ā°C.
  • GAPDH was usedas an internal reference.
  • mice BTLA mouse BTLA was detected in the activated cells of wild-type C57BL/6 mice and F1 generation heterozygous mouse; while the mRNA expression of human BTLA was only detected in the activated cells of the F1 generation heterozygous mouse.
  • the B-hBTLAgenetically engineered homozygous mice were obtained by mating the previously obtained heterozygous mice with each other. One homozygous B-hBTLA mouse was selected, and two wild type C57BL/6 mouse were selected as a control. 7.5 ā‡ g of mouse CD3 antibody was injected intraperitoneally to the mice, and the spleens of the mice were collected after 24 h. The spleen samples were ground and then filtered through a 70 ā‡ m cell filter, the obtained cell suspensions were centrifuged and the resulting supernatants were discarded.
  • the cell samples were added with erythrocyte lysis solution for lysis of 5 min, and then added PBS solution to neutralize the lysis reaction, centrifuged again and the supernatants were discarded, the cells were washed once with PBS.
  • the obtained samples were used in FACS detection and RT-PCR detection.
  • FACS The T cells extracellular proteins were simultaneously stained with anti-mouse BTLA antibody (mBTLA PE) and anti-mouse CD19 antibodies (mCD19 FITC) or anti-human BTLA antibody (hBTLA APC) and anti-mouse CD19 antibodies (mCD19 FITC) . The cells were then washed with PBS and then detected for protein expression by FACS. Flow cytometry analysis results are shown in FIGS. 10A-10F. The anti-mouse BTLA antibody was able to detect the cells expressing mouse BTLA protein in the spleen samples from the C57BL/6 control mice (FIG.
  • mBTLA RT-PCR F1 SEQ ID NO: 49
  • mBTLA RT-PCR R1 SEQ ID NO: 50
  • hBTLA RT-PCR F1 SEQ ID NO: 51
  • hBTLA RT-PCR R1 SEQ ID NO: 52
  • the results are shown in FIG. 11.
  • the mRNA expression of mouse BTLA was detected in the activated cells of wild-type C57BL/6 mice (+/+) ; while the mRNA expression of human BTLA was only detected in B-hBTLA homozygotes (H/H) .
  • BTLA knockout mouse when preparing the humanized BTLA mouse.
  • a pair of primers was thus designed. They are located on the left side of the 5ā€™ end target site, and to the right side of the 3ā€™ end target site, which are shown as follows:
  • mice with No. 1-6 are BTLA knockout mice.
  • the treatment groups were randomly selected for anti-human BTLA antibodies (AB1, AB2, AB3, AB4, AB5, AB6) treatment (10 mg/kg) ; the control group was injected with an equal volume of blank solvent.
  • the frequency of administration was twice a week (6 times of administrations in total) .
  • the tumor volume was measured twice a week and the body weight of the mice was weighed as well. Euthanasia was performed when the tumor volume of the mouse reached 3000 mm 3 .
  • Table 7 shows results for this experiment, including the tumor volumes at the day of grouping, 15 days after the grouping, and at the end of the experiment (day 22) , the survival rate of the mice, the Tumor Growth Inhibition value (TGI TV ) , and the statistical differences (P value) in mouse body weights and tumor volume between the treatment and control groups.
  • the body weight of each group increased and there was no significant difference between the groups (p> 0.05) , indicating that the animals tolerated the six anti-hBTLA antibodies well.
  • the average tumor volume was 1542 ā‡ 1618 mm 3 .
  • the average tumor volumes in the treatment groups were1631 ā‡ 1093 mm 3 (G2) , 924 ā‡ 641mm 3 (G3) , 461 ā‡ 488mm 3 (G4) , 624 ā‡ 345mm 3 (G5) , 831 ā‡ 881mm 3 (G6) , 1017 ā‡ 839mm 3 (G7) .
  • the tumor volume in the G2 group is not different from the control group (G1) , but the tumor volumes in the other treatment groups (G3 ā‡ G7) were smaller than those in the control group (G1) with TGI TV 43.8%, 76.5%, 76.5%, 65.0%, 50.4%, 37.2%for each treatment group.
  • the results show that anti-human BTLA antibody AB2, AB3, AB4, AB5, AB6have different tumor inhibitory effects in B-hBTLA mice, and AB1 has no tumor inhibitory effects. Under the same condition, the inhibitory effects of AB3 (G4) and AB4 (G5) are better than AB2, AB5, AB6, and these antibodies have no obvious toxic effects in mice.
  • B-hBTLA mouse model can be used as an in vivo animal model for screening, evaluation and study of human BTLA signaling pathway regulators, and test the efficacy of multiple anti-human BTLA antibodies.
  • mice containing the human BTLA gene can also be used to prepare an animal model with double-humanized or multi-humanized genes.
  • the fertilized egg cells used in the microinjection and embryo transfer process can be selected from the fertilized egg cells of other genetically modified mice or the fertilized egg cells of B-hBTLA mice, so as to obtain double-or multiple-gene modified mouse models.
  • the B-hBTLA animal model homozygote or heterozygote can be mated with other genetically modified homozygous or heterozygous animal models, and the progeny is then screened; according to the Mendelian law, there is a chance to obtain the double-gene or multiple-gene modified heterozygous animal models, and then the obtained heterozygous can be mated with each other to finally obtain the double-gene or multiple-gene modified homozygotes.
  • the double humanized BTLA/PD-1 mouse was obtained by mating the B-hBTLA mouse with B-hPD-1 mouse (mice with humanized PD-1 gene) .
  • FIGS. 16A-16D The results for a number of humanized BTLA/PD-1 mice are shown in FIGS. 16A-16D, wherein FIGS. 16A and 16B show that the mice numbered 3017 to 3032 are BTLA homozygous mice, FIGS. 16C and 16D show that the mice numbered 3017 to 3032 are PD-1 homozygous mice. The results of the two groups indicate that the 16 mice numbered 3017 to 3032 were double-gene homozygotes.
  • mice The expression of the double humanized BTLA/PD-1 mice was further examined.
  • a double humanized BTLA/PD-1 homozygote (9 weeks old) was selected for the study.
  • Two wild type C57BL/6 mice were selected as control.
  • Mice were injected with 7.5 ā‡ g of mouse CD3 antibody intraperitoneally. After 24 hours, the mice were euthanized, and then the spleens of the mice were collected. The spleen samples were ground and the ground samples were filtered through a 70 ā‡ m cell mesh. The filtered cell suspensions were centrifuged and the supernatants were discarded; erythrocyte lysis solution was added for lysis for 5 min, and then PBS solution was added to neutralize the lysis reaction. The solution was centrifuged again and the supernatants were discarded, the cells were washed once with PBS. The obtained spleen cell samples were then subject to FACS and RT-PCR analysis.
  • T cells extracellular proteins were simultaneously stained with the following:
  • anti-mouse BTLA antibody mBTLA PE
  • anti-mouse CD19 antibody mCD19 FITC
  • mPD-1 PE anti-mouse PD-1 antibody
  • mTcR ā‡ mouse T cell surface antibody
  • hPD-1 FITC anti-human PD-1 antibody
  • mTcR ā‡ mouse T cell surface antibody
  • FIGS. 17A-17F and 18A-18F The anti-human BTLA antibody and the anti-human PD-1 antibody detected the cells expressing humanized BTLA and humanized PD-1 in humanized BTLA/PD-1 homozygotes. In contrast, the anti-human BTLA antibody and the anti-human PD-1 antibody did not detect cells expressing humanized BTLA and humanized PD-1 in in the spleen samples from the C57BL/6 control mice.
  • mBTLA RT-PCR F1 (SEQ ID NO: 49) and mBTLA RT-PCR R1 (SEQ ID NO: 50) were used to amplify mouse BTLA fragment of 122 bp.
  • hBTLA RT-PCR F1 (SEQ ID NO: 51) and hBTLA RT-PCR R1 (SEQ ID NO: 52) were used amplify human BTLA fragment of 152 bp.
  • mPD-1 RT-PCR primer F3 5ā€™ -CCTGGCTCACAGTGTCAGAG-3ā€™ (SEQ ID NO: 63)
  • mPD-1 RT-PCR primer R3 5ā€™ -CAGGGCTCTCCTCGATTTTT-3ā€™ (SEQ ID NO: 64) were used to amplify mouse PD-1 fragment of 297bp.
  • hPD-1 RT-PCR primer F3 5ā€™ -CCCTGCTCGTGGTGACCGAA-3ā€™ (SEQ ID NO: 65)
  • hPD-1 RT-PCR primer R3 5ā€™ -GCAGGCTCTCTTTGATCTGC-3ā€™ (SEQ ID NO: 66) were used to amplify human PD-1 fragment of 297bp.
  • PCR reaction system was 20 ā‡ L, reaction conditions: 95 Ā°C, 5min; (95 Ā°C, 30 sec; 60 Ā°C, 30 sec; 72 Ā°C, 30 sec, 35 cycles) ; 72 Ā°C, 10 min; and 4 Ā°C.
  • GAPDH was used as an internal reference.
  • mice BTLA and PD-1 The results are shown in FIGS. 19 and 20.
  • the mRNA expression of mouse BTLA and PD-1 can be detected in the activated cells of wild-type C57BL/6 mice; while the mRNA expression of human BTLA and PD-1 can be detected in the activated cells of humanized BTLA/PD-1 homozygous mice.
  • the non-human mammals can also be prepared through other gene editing systems and approaches, which includes, but is not limited to, gene homologous recombination techniques based on embryonic stem cells (ES) , zinc finger nuclease (ZFN) techniques, transcriptional activator-like effector factor nuclease (TALEN) technique, homing endonuclease (megakable base ribozyme) , or other molecular biology techniques.
  • ES cell gene homologous recombination technique is used as an example to describe how to obtain a BTLA gene humanized mouse by other methods. According to the gene editing strategy of the methods described herein and the humanized mouse BTLA gene map (FIG.
  • FIG. 21 shows the design of the recombinant vector.
  • a recombinant vector that contains a 5ā€™ homologous arm (3812bp) , a 3ā€™ homologous arm (4169bp) and a humanized gene fragment (297bp) is also designed.
  • the vector can also contain a resistance gene for positive clone screening, such as neomycin phosphotransferase coding sequence Neo.
  • a coding gene with a negative screening marker such as the diphtheria toxin A subunit coding gene (DTA)
  • DTA diphtheria toxin A subunit coding gene
  • Vector construction can be carried out using methods known in the art, such as enzyme digestion and so on.
  • the recombinant vector with correct sequence can be next transfected into mouse embryonic stem cells, such as C57BL/6 mouse embryonic stem cells, and then the recombinant vector can be screened by positive clone screening gene.
  • the cells transfected with the recombinant vector are next screened by using the positive clone marker gene, and Southern Blot technique can be used for DNA recombination identification.
  • the positive clonal cells black mice
  • the isolated blastocysts white mice
  • the resulting chimeric blastocysts formed following the injection are transferred to the culture medium for a short time culture and then transplanted into the fallopian tubes of the recipient mice (white mice) to produce F0 generation chimeric mice (black and white) .
  • the F0 generation chimeric mice with correct gene recombination are then selected by extracting the mouse tail genome and detecting by PCR for subsequent breeding and identification.
  • the F1 generation mice are obtained by mating the F0 generation chimeric mice with wild type mice.
  • Stable gene recombination positive F1 heterozygous mice are selected by extracting rat tail genome and PCR detection.
  • the F1 heterozygous mice are mated to each other to obtain genetically recombinant positive F2 generation homozygous mice.
  • the F1 heterozygous mice can also be mated with Flp or Cre mice to remove the positive clone screening marker gene (neo, etc. ) , and then the BTLA gene humanized homozygous mice can be obtained by mating these mice with each other.
  • the methods of genotyping and phenotypic detection of the obtained F1 heterozygous mice or F2 homozygous mice are similar to those used in Example 5 described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Genetically modified non-human animals that express a human or chimeric (e.g., humanized) B-and T-Lymphocyte-Associated Protein (BTLA or CD272), and methods of use thereof are provided.

Description

GENETICALLYĀ MODIFIEDĀ NON-HUMANĀ ANIMALĀ WITHĀ HUMANĀ ORĀ CHIMERICĀ BTLA
CLAIMĀ OFĀ PRIORITY
ThisĀ applicationĀ claimsĀ theĀ benefitĀ ofĀ ChineseĀ PatentĀ ApplicationĀ App.Ā No.Ā 201610895750.9,Ā filedĀ onĀ October14,Ā 2016,Ā andĀ ChineseĀ PatentĀ ApplicationĀ App.Ā No.Ā 201710948551.4,Ā filedĀ onĀ October12,Ā 2017.Ā TheĀ entireĀ contentsĀ ofĀ theĀ foregoingĀ areĀ incorporatedĀ hereinĀ byĀ reference.
TECHNICALĀ FIELD
ThisĀ disclosureĀ relatesĀ toĀ geneticallyĀ modifiedĀ animalĀ expressingĀ humanĀ orĀ chimericĀ (e.g.,Ā humanized)Ā B-andĀ T-Lymphocyte-AssociatedĀ ProteinĀ (BTLAĀ orĀ CD272)Ā ,Ā andĀ methodsĀ ofĀ useĀ thereof.
BACKGROUND
TheĀ immuneĀ systemĀ hasĀ developedĀ multipleĀ mechanismsĀ toĀ preventĀ deleteriousĀ activationĀ ofĀ TĀ cells.Ā OneĀ suchĀ mechanismĀ isĀ theĀ intricateĀ balanceĀ betweenĀ positiveĀ andĀ negativeĀ co-stimulatoryĀ signalsĀ deliveredĀ toĀ TĀ cells.Ā TargetingĀ theĀ inhibitoryĀ pathwaysĀ forĀ theĀ immuneĀ systemisĀ consideredĀ toĀ beĀ aĀ potentialĀ approachĀ forĀ theĀ treatmentĀ ofĀ variousĀ diseases,Ā e.g.,Ā cancers,Ā andĀ autoimmuneĀ diseases.
TheĀ traditionalĀ drugĀ researchĀ andĀ developmentĀ forĀ theseĀ inhibitoryĀ receptorsĀ typicallyĀ useĀ inĀ vitroĀ screeningĀ approaches.Ā However,Ā theseĀ screeningĀ approachesĀ cannotĀ provideĀ theĀ bodyĀ environmentĀ (suchĀ asĀ tumorĀ microenvironment,Ā stromalĀ cells,Ā extracellularĀ matrixĀ componentsĀ andĀ immuneĀ cellĀ interaction,Ā etc.Ā )Ā ,Ā resultingĀ inĀ aĀ higherĀ rateĀ ofĀ failureĀ inĀ drugĀ development.Ā InĀ addition,Ā inĀ viewĀ ofĀ theĀ differencesĀ betweenĀ humansĀ andĀ animals,Ā theĀ testĀ resultsĀ obtainedĀ fromĀ theĀ useĀ ofĀ conventionalĀ experimentalĀ animalsĀ forĀ inĀ vivoĀ pharmacologicalĀ testĀ mayĀ notĀ beĀ ableĀ toĀ reflectĀ theĀ realĀ diseaseĀ stateĀ andĀ theĀ identificationĀ andĀ interactionĀ atĀ theĀ targetingĀ sites,Ā resultingĀ inĀ thatĀ theĀ resultsĀ inĀ manyĀ clinicalĀ trialsĀ areĀ significantlyĀ differentĀ fromĀ theĀ animalĀ experimentalĀ results.Ā Therefore,Ā theĀ developmentĀ ofĀ humanizedĀ animalĀ modelsĀ thatĀ areĀ suitableĀ forĀ humanĀ  antibodyĀ screeningĀ andĀ evaluationĀ willĀ significantlyĀ improveĀ theĀ efficiencyĀ ofĀ newĀ drugĀ developmentĀ andĀ reduceĀ theĀ costsĀ forĀ drugĀ researchĀ andĀ development.
SUMMARY
ThisĀ disclosureĀ isĀ relatedĀ toĀ BTLAĀ humanizedĀ animalĀ model.Ā TheĀ animalĀ modelĀ canĀ expressĀ humanĀ BTLAĀ orĀ chimericĀ BTLAĀ (e.g.,Ā humanizedĀ BTLA)Ā proteinĀ inĀ itsĀ body.Ā ItĀ canĀ beĀ usedĀ inĀ theĀ studiesĀ onĀ theĀ functionĀ ofĀ BTLAĀ gene,Ā andĀ canĀ beĀ usedĀ inĀ theĀ screeningĀ andĀ evaluationĀ ofĀ anti-humanĀ BTLAĀ antibodies.Ā InĀ addition,Ā theĀ animalĀ modelsĀ preparedĀ byĀ theĀ methodsĀ describedĀ hereinĀ canĀ beĀ usedĀ inĀ drugĀ screening,Ā pharmacodynamicsĀ studies,Ā treatmentsĀ forĀ immune-relatedĀ diseasesĀ (e.g.,Ā autoimmuneĀ disease)Ā ,Ā andĀ cancerĀ therapyĀ forĀ humanĀ BTLAĀ targetĀ sitesļ¼›Ā inĀ addition,Ā theyĀ canĀ beĀ usedĀ toĀ facilitateĀ theĀ developmentĀ andĀ designĀ ofĀ newĀ drugs,Ā andĀ saveĀ timeĀ andĀ cost.Ā InĀ summary,Ā thisĀ disclosureĀ providesĀ aĀ powerfulĀ toolĀ forĀ studyingĀ theĀ functionĀ ofĀ BTLAĀ proteinĀ andĀ screeningĀ forĀ cancerĀ drugs.
Furthermore,Ā theĀ disclosureĀ alsoĀ providesĀ BTLAĀ geneĀ knockoutĀ mice.Ā Moreover,Ā theĀ miceĀ describedĀ inĀ theĀ presentĀ disclosureĀ canĀ beĀ matedĀ withĀ theĀ miceĀ containingĀ otherĀ humanĀ orĀ chimericĀ genesĀ (e.g.,Ā chimericĀ PD-1Ā orĀ otherĀ immunomodulatoryĀ factors)Ā ,Ā soĀ asĀ toĀ obtainĀ aĀ mouseĀ expressingĀ twoĀ orĀ moreĀ humanĀ orĀ chimericĀ proteins.Ā TheĀ miceĀ canĀ also,Ā e.g.ļ¼ŒĀ beĀ usedĀ forĀ screeningĀ antibodiesĀ inĀ theĀ caseĀ ofĀ aĀ combinedĀ useĀ ofĀ drugs,Ā asĀ wellĀ asĀ evaluatingĀ theĀ efficacyĀ ofĀ theĀ combinationĀ therapy.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ genetically-modified,Ā non-humanĀ animalsĀ whoseĀ genomeĀ comprisesĀ atĀ leastĀ oneĀ chromosomeĀ comprisingĀ aĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BĀ andĀ TĀ LymphocyteĀ AssociatedĀ (BTLAĀ orĀ CD272)Ā .Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ theĀ humanĀ orĀ chimericĀ BTLAĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ regulatoryĀ elementĀ atĀ theĀ endogenousĀ BTLAĀ geneĀ locusĀ inĀ theĀ atĀ leastĀ oneĀ chromosome.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 50ļ¼…,Ā 55ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…,Ā orĀ 100ļ¼…identicalĀ toĀ humanĀ BTLAĀ (NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā )Ā .Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 50ļ¼…,Ā 55ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…,Ā orĀ 100ļ¼…identicalĀ toĀ  SEQĀ IDĀ NO:Ā 31.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ correspondsĀ toĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.
InĀ someĀ embodiments,Ā theĀ animalĀ isĀ aĀ mammal,Ā e.g.,Ā aĀ monkey,Ā aĀ rodentĀ orĀ aĀ mouse.Ā InĀ someĀ embodiments,Ā theĀ animalĀ isĀ aĀ C57BL/6Ā mouse.Ā InĀ someĀ embodiments,Ā theĀ animalĀ doesĀ notĀ expressĀ endogenousĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ humanĀ orĀ chimericĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ humanĀ orĀ chimericĀ BTLA,Ā andĀ theĀ expressedĀ humanĀ orĀ chimericĀ BTLAĀ canĀ bindĀ toĀ orĀ interactĀ withĀ humanherpesĀ virusĀ entryĀ mediatorĀ (HVEM)Ā orĀ V-SetĀ DomainĀ ContainingĀ T-CellĀ ActivationĀ InhibitorĀ 1Ā (VTCN1Ā orĀ B7-H4)Ā .Ā InĀ someĀ embodiments,Ā theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ humanĀ orĀ chimericĀ BTLA,Ā andĀ theĀ expressedĀ humanĀ orĀ chimericĀ BTLAĀ canĀ bindĀ toĀ orĀ interactĀ withĀ endogenousĀ HVEMĀ orĀ B7-H4.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ genetically-modified,Ā non-humanĀ animals,Ā whereinĀ theĀ genomeĀ ofĀ theĀ animalsĀ comprisesĀ aĀ replacement,Ā atĀ anĀ endogenousĀ BTLAĀ geneĀ locus,Ā ofĀ aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ regulatoryĀ elementĀ atĀ theĀ endogenousĀ BTLAĀ locus,Ā andĀ oneĀ orĀ moreĀ cellsĀ ofĀ theĀ animalĀ expressesĀ aĀ chimericĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ animalĀ doesĀ notĀ expressĀ endogenousĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ regionĀ ofĀ endogenousĀ BTLAĀ isĀ theĀ extracellularĀ regionĀ ofĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ aĀ chimericĀ BTLAĀ havingĀ anĀ extracellularĀ region,Ā aĀ transmembraneĀ region,Ā andĀ aĀ cytoplasmicĀ region,Ā whereinĀ theĀ extracellularĀ regionĀ comprisesĀ aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 50ļ¼…,Ā 60ļ¼…,Ā 70ļ¼…,Ā 80ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ theĀ extracellularĀ regionĀ ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ extracellularĀ regionĀ ofĀ theĀ chimericĀ BTLAĀ hasĀ aĀ sequenceĀ thatĀ hasĀ atĀ leastĀ 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā contiguousĀ aminoĀ acidsĀ thatĀ areĀ identicalĀ toĀ aĀ contiguousĀ sequenceĀ presentĀ inĀ theĀ extracellularĀ regionĀ ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ animalĀ isĀ aĀ mouse,Ā andĀ theĀ sequenceĀ encodingĀ theĀ regionĀ ofĀ endogenousĀ BTLAĀ isĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā and/orĀ exonĀ 6Ā ofĀ theĀ endogenousĀ mouseĀ BTLAĀ gene.Ā InĀ someĀ embodiments,Ā theĀ animalĀ isĀ heterozygousĀ withĀ respectĀ toĀ theĀ replacementĀ atĀ theĀ endogenousĀ BTLAĀ geneĀ locus.Ā InĀ someĀ  embodiments,Ā theĀ animalĀ isĀ homozygousĀ withĀ respectĀ toĀ theĀ replacementĀ atĀ theĀ endogenousĀ BTLAĀ geneĀ locus.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ methodsĀ forĀ makingĀ aĀ genetically-modified,Ā non-humanĀ animal,Ā including:Ā replacingĀ inĀ atĀ leastĀ oneĀ cellĀ ofĀ theĀ animal,Ā atĀ anĀ endogenousĀ BTLAĀ geneĀ locus,Ā aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ anĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ comprisesĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā and/orĀ exonĀ 5Ā ofĀ aĀ humanĀ BTLAĀ gene.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ BTLAĀ comprisesĀ exonĀ 2Ā ofĀ aĀ humanĀ BTLAĀ gene,Ā and/orĀ aĀ partĀ ofĀ exonĀ 1Ā and/orĀ exonĀ 3Ā ofĀ aĀ humanĀ BTLAĀ gene.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ encodesĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.Ā InĀ someĀ embodiments,Ā theĀ regionĀ isĀ locatedĀ withinĀ theĀ extracellularĀ regionĀ ofĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ animalĀ isĀ aĀ mouse,Ā andĀ theĀ sequenceĀ encodingĀ theĀ regionĀ ofĀ theĀ endogenousĀ BTLAĀ locusĀ isĀ exon2Ā ofĀ mouseĀ BTLAĀ gene.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ non-humanĀ animalsĀ comprisingĀ atĀ leastĀ oneĀ cellĀ comprisingĀ aĀ nucleotideĀ sequenceĀ encodingĀ aĀ chimericĀ BTLAĀ polypeptide,Ā whereinĀ theĀ chimericĀ BTLAĀ polypeptideĀ comprisesĀ atĀ leastĀ 50Ā contiguousĀ aminoĀ acidĀ residuesĀ thatĀ areĀ identicalĀ toĀ theĀ correspondingĀ contiguousĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanĀ BTLA,Ā whereinĀ theĀ animalĀ expressesĀ theĀ chimericĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ BTLAĀ polypeptideĀ hasĀ atĀ leastĀ 50Ā contiguousĀ aminoĀ acidĀ residuesĀ thatĀ areĀ identicalĀ toĀ theĀ correspondingĀ contiguousĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanĀ BTLAĀ extracellularĀ region.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ BTLAĀ polypeptideĀ comprisesĀ aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 90ļ¼…,Ā 95ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.Ā InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ BTLAĀ regulatoryĀ elementĀ ofĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ BTLAĀ polypeptideĀ comprisesĀ anĀ endogenousĀ BTLAtransmembraneĀ regionĀ and/orĀ anĀ endogenousĀ BTLAĀ cytoplasmicĀ region.Ā InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ isĀ integratedĀ toĀ anĀ endogenousĀ BTLAĀ geneĀ locusĀ ofĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ BTLAĀ hasĀ atĀ leastĀ oneĀ mouseĀ BTLAĀ activityĀ (e.g.,Ā interactingĀ withĀ mouseĀ HVEM,Ā andĀ inhibitingĀ mouseĀ T-cellĀ immuneĀ responses)Ā and/orĀ atĀ leastĀ oneĀ humanĀ BTLAĀ activityĀ (e.g.,Ā interactingĀ withĀ humanĀ HVEM,Ā andĀ inhibitingĀ humanĀ T-cellĀ immuneĀ responses)Ā .
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ methodsĀ ofĀ makingĀ aĀ genetically-modifiedĀ mouseĀ cellĀ thatĀ expressesĀ aĀ chimericĀ BTLA,Ā theĀ methodĀ including:Ā replacing,Ā atĀ anĀ endogenousĀ mouseĀ BTLAĀ geneĀ locus,Ā aĀ nucleotideĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ mouseĀ BTLAĀ withĀ aĀ nucleotideĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA,Ā therebyĀ generatingĀ aĀ genetically-modifiedĀ mouseĀ cellĀ thatĀ includesĀ aĀ nucleotideĀ sequenceĀ thatĀ encodesĀ theĀ chimericĀ BTLA,Ā whereinĀ theĀ mouseĀ cellĀ expressesĀ theĀ chimericĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ BTLAĀ comprisesĀ anĀ extracellularĀ regionĀ ofĀ mouseĀ BTLAĀ comprisingĀ aĀ mouseĀ signalĀ peptideĀ sequence,Ā anĀ extracellularĀ regionĀ ofĀ humanĀ BTLA,Ā aĀ transmembraneĀ and/orĀ aĀ cytoplasmicĀ regionĀ ofĀ aĀ mouseĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ encodingĀ theĀ chimericĀ BTLAĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ BTLAĀ regulatoryĀ region,Ā e.g.,Ā promoter.
InĀ someĀ embodiments,Ā theĀ animalsĀ furtherĀ compriseĀ aĀ sequenceĀ encodingĀ anĀ additionalĀ humanĀ orĀ chimericĀ protein.Ā InĀ someĀ embodiments,Ā theĀ additionalĀ humanĀ orĀ chimericĀ proteinĀ isĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā ,Ā cytotoxicĀ T-lymphocyte-associatedĀ proteinĀ 4Ā (CTLA-4)Ā ,Ā LymphocyteĀ ActivatingĀ 3Ā (LAG-3)Ā ,Ā T-CellĀ ImmunoglobulinĀ AndĀ MucinĀ Domain-ContainingĀ ProteinĀ 3Ā (TIM-3)Ā ,Ā ProgrammedĀ CellĀ DeathĀ 1Ā LigandĀ 1Ā (PD-L1)Ā ,Ā TNFĀ ReceptorĀ SuperfamilyĀ MemberĀ 9Ā (4-1BB)Ā ,Ā CD27,Ā CD28,Ā CD47,Ā T-CellĀ ImmunoreceptorĀ WithĀ IgĀ AndĀ ITIMĀ DomainsĀ (TIGIT)Ā ,Ā CD27,Ā Glucocorticoid-InducedĀ TNFR-RelatedĀ ProteinĀ (GITR)Ā ,Ā orĀ TNFĀ ReceptorĀ SuperfamilyĀ MemberĀ 4Ā (TNFRSF4Ā orĀ OX40)Ā .Ā InĀ someĀ embodiments,Ā theĀ animalĀ orĀ mouseĀ furtherĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ additionalĀ humanĀ orĀ chimericĀ protein.Ā InĀ someĀ embodiments,Ā theĀ additionalĀ humanĀ orĀ chimericĀ proteinĀ isĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā ,Ā CTLA-4,Ā LAG-3,Ā TIM-3,Ā PD-L1,Ā 4-1BB,Ā CD27,Ā CD28,Ā CD47,Ā TIGIT,Ā CD27,Ā GITR,Ā orĀ OX40.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ methodsĀ ofĀ determiningĀ effectivenessĀ ofĀ anĀ anti-BTLAĀ antibodyĀ forĀ theĀ treatmentĀ ofĀ cancer,Ā including:Ā administeringĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ animalĀ asĀ describedĀ herein,Ā whereinĀ theĀ animalĀ hasĀ aĀ tumor,Ā andĀ determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ tumor.Ā InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ HVEM.
InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ cancerĀ cellsĀ thatĀ areĀ injectedĀ intoĀ theĀ animal.Ā InĀ someĀ embodiments,Ā determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ tumorĀ involvesĀ measuringĀ theĀ tumorĀ volumeĀ inĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ tumorĀ cellsĀ areĀ melanomaĀ cells,Ā non-smallĀ cellĀ lungĀ carcinomaĀ (NSCLC)Ā cells,Ā smallĀ cellĀ lungĀ cancerĀ (SCLC)Ā cells,Ā bladderĀ cancerĀ cells,Ā and/orĀ prostateĀ cancerĀ cellsĀ (e.g.,Ā metastaticĀ hormone-refractoryĀ prostateĀ cancer)Ā .
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ methodsĀ ofĀ determiningĀ effectivenessĀ ofĀ anĀ anti-BTLAĀ antibodyĀ forĀ theĀ treatmentĀ ofĀ variousĀ immune-relatedĀ disorders,Ā e.g.,Ā autoimmuneĀ diseases.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ methodsĀ ofĀ determiningĀ effectivenessĀ ofĀ anĀ anti-BTLAĀ antibodyĀ andĀ anĀ additionalĀ therapeuticĀ agentĀ forĀ theĀ treatmentĀ ofĀ aĀ tumor,Ā includingĀ administeringĀ theĀ anti-BTLAĀ antibodyĀ andĀ theĀ additionalĀ therapeuticĀ agentĀ toĀ theĀ animalĀ asĀ describedĀ herein,Ā whereinĀ theĀ animalĀ hasĀ aĀ tumor,Ā andĀ determiningĀ theĀ inhibitoryĀ effectsĀ onĀ theĀ tumor.Ā InĀ someĀ embodiments,Ā theĀ animalĀ furtherĀ comprisesĀ aĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā .Ā InĀ someĀ embodiments,Ā theĀ additionalĀ therapeuticĀ agentĀ isĀ anĀ anti-PD-1Ā antibody.Ā InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ HVEM.Ā InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ PD-L1Ā orĀ PD-L2.Ā InĀ someĀ embodiments,Ā theĀ tumorĀ isĀ causedĀ byĀ injectionĀ ofĀ oneĀ orĀ moreĀ cancercellsintoĀ theĀ animal.Ā InĀ someĀ embodiments,Ā determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ treatmentĀ involvesĀ measuringĀ theĀ tumorĀ volumeĀ inĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ melanomaĀ cells,Ā non-smallĀ cellĀ lungĀ carcinomaĀ (NSCLC)Ā cells,Ā smallĀ cellĀ lungĀ cancerĀ (SCLC)Ā cells,Ā bladderĀ cancerĀ cells,Ā and/orĀ prostateĀ cancerĀ cellsĀ (e.g.,Ā metastaticĀ hormone-refractoryĀ prostateĀ cancerĀ cells)Ā .
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ proteinsĀ comprisingĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ oneĀ ofĀ theĀ following:Ā (a)Ā anĀ aminoĀ acidĀ sequenceĀ setĀ forthĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›Ā (b)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 31ļ¼›Ā (c)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 31ļ¼›Ā (d)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ differentĀ fromĀ theĀ aminoĀ acidĀ sequenceĀ setĀ forthĀ inĀ SEQĀ IDĀ NO:Ā 31Ā byĀ noĀ moreĀ thanĀ 10,Ā 9,Ā 8,Ā 7,Ā 6,Ā 5,Ā 4,Ā 3,Ā 2Ā orĀ 1Ā aminoĀ acidļ¼›Ā andĀ (e)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ comprisesĀ aĀ substitution,Ā aĀ deletionĀ andĀ /orĀ insertionĀ ofĀ one,Ā two,Ā three,Ā four,Ā fiveĀ orĀ moreĀ aminoĀ acidsĀ toĀ theĀ aminoĀ acidĀ sequenceĀ setĀ forthĀ inĀ SEQĀ IDĀ NO:Ā 31.InĀ someĀ embodiments,Ā providedĀ hereinĀ areĀ cellsĀ comprisingĀ theĀ proteinsĀ disclosedĀ herein.Ā InĀ someĀ embodiments,Ā providedĀ hereinĀ areĀ animalsĀ havingĀ theĀ proteinsĀ disclosedĀ herein.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ nucleicĀ acidsĀ comprisingĀ aĀ nucleotideĀ sequence,Ā whereinĀ theĀ nucleotideĀ sequenceĀ isĀ oneĀ ofĀ theĀ following:Ā (a)Ā aĀ sequenceĀ thatĀ encodesĀ theĀ proteinĀ asĀ describedĀ hereinļ¼›Ā (b)Ā SEQĀ IDĀ NO:Ā 29ļ¼›Ā (c)Ā SEQĀ IDĀ NO:Ā 30ļ¼›Ā (d)Ā aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 29Ā orĀ SEQĀ IDĀ NO:Ā 30ļ¼›Ā (e)Ā aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 29ļ¼›Ā andĀ (f)Ā aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 30.Ā InĀ someĀ  embodiments,Ā providedĀ hereinĀ areĀ cellsĀ comprisingĀ theĀ nucleicĀ acidsĀ disclosedĀ herein.Ā InĀ someĀ embodiments,Ā providedĀ hereinĀ areĀ animalsĀ havingĀ theĀ nucleicĀ acidsĀ disclosedĀ herein.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ aĀ targetingĀ vector,Ā includingĀ a)Ā aĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 5ā€™Ā endĀ ofĀ aĀ regionĀ toĀ beĀ alteredĀ (5ā€™Ā arm)Ā ,Ā whichĀ isĀ selectedĀ fromĀ theĀ BTLAĀ geneĀ genomicĀ DNAsĀ inĀ theĀ lengthĀ ofĀ 100Ā toĀ 10,000Ā nucleotidesļ¼›Ā b)Ā aĀ desired/donorĀ DNAĀ sequenceĀ encodingĀ aĀ donorĀ regionļ¼›Ā andĀ c)Ā aĀ secondĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 3ā€™Ā endĀ ofĀ theĀ regionĀ toĀ beĀ alteredĀ (3ā€™Ā arm)Ā ,Ā whichĀ isĀ selectedĀ fromĀ theĀ BTLAĀ geneĀ genomicĀ DNAsĀ inĀ theĀ lengthĀ ofĀ 100Ā toĀ 10,000Ā nucleotides.
InĀ someĀ embodiments,Ā a)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 5ā€™Ā endĀ ofĀ aĀ regionĀ toĀ beĀ alteredĀ (5ā€™Ā arm/receptor)Ā isĀ selectedĀ fromĀ theĀ nucleotideĀ sequencesĀ thatĀ haveĀ atĀ leastĀ 90ļ¼…homologyĀ toĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6ļ¼›Ā c)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 3ā€™Ā endĀ ofĀ theĀ regionĀ toĀ beĀ alteredĀ (3ā€™Ā arm/receptor)Ā isĀ selectedĀ fromĀ theĀ nucleotideĀ sequencesĀ thatĀ haveĀ atĀ leastĀ 90ļ¼…homologyĀ toĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6.
InĀ someĀ embodiments,Ā a)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 5ā€™Ā endĀ ofĀ aĀ regionĀ toĀ beĀ alteredĀ (5ā€™Ā arm/receptor)Ā isĀ selectedĀ fromĀ theĀ nucleotidesĀ fromĀ theĀ positionĀ 45237539Ā toĀ theĀ positionĀ 45239051Ā ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6ļ¼›Ā c)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 3ā€™Ā endĀ ofĀ theĀ regionĀ toĀ beĀ alteredĀ (3ā€™Ā arm/receptor)Ā isĀ selectedĀ fromĀ theĀ nucleotidesĀ fromĀ theĀ positionĀ 45239358Ā toĀ theĀ positionĀ 45240854Ā ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6.
InĀ someĀ embodiments,Ā aĀ lengthĀ ofĀ theĀ selectedĀ genomicĀ nucleotideĀ sequenceĀ isĀ aboutĀ 1.2kb,Ā 1.5Ā kbĀ orĀ 1Ā kb.Ā InĀ someĀ embodiments,Ā theĀ lengthĀ isĀ aboutĀ 1513bpĀ orĀ 1497bp.Ā InĀ someĀ embodiments,Ā theĀ regionĀ toĀ beĀ alteredĀ isĀ exonĀ 2Ā ofĀ BTLAgene.
InĀ someĀ embodiments,Ā theĀ sequenceĀ ofĀ theĀ 5ā€™Ā armĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 32.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ ofĀ theĀ 3ā€™Ā armĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 38.
InĀ someĀ embodiments,Ā theĀ targetingĀ vectorĀ furtherĀ includesĀ aĀ selectableĀ geneĀ marker.
InĀ someĀ embodiments,Ā theĀ targetĀ regionĀ isĀ derivedĀ fromĀ human.Ā InĀ someĀ embodiments,Ā theĀ targetĀ regionĀ isĀ aĀ partĀ orĀ entiretyĀ ofĀ theĀ nucleotideĀ sequenceĀ ofĀ aĀ humanizedĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ isĀ shownĀ asĀ oneĀ orĀ  moreĀ ofĀ theĀ firstĀ exon,Ā theĀ secondĀ exon,Ā theĀ thirdĀ exon,Ā theĀ fourthĀ exon,Ā andĀ theĀ fifthĀ exonofĀ theĀ DNAĀ sequenceĀ ofĀ theĀ humanĀ BTLA.
InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ ofĀ theĀ humanĀ BTLAĀ encodesĀ theĀ humanĀ BTLAĀ proteinĀ withĀ theĀ NCBIĀ accessionĀ numberĀ NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā .
TheĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ cellĀ includingĀ theĀ targetingĀ vectorĀ asĀ describedĀ herein.
InĀ anotherĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ theĀ sgRNAĀ sequenceĀ targetsĀ theĀ BTLAĀ gene,Ā theĀ sgRNAĀ isĀ uniqueĀ onĀ theĀ targetĀ sequenceĀ ofĀ theĀ BTLAĀ geneĀ toĀ beĀ altered,Ā andĀ meetsĀ theĀ sequenceĀ arrangementĀ ruleĀ ofĀ 5ā€™Ā -NNNĀ (20)Ā -NGG3ā€™Ā orĀ 5ā€™Ā -CCN-NĀ (20)Ā -3ā€™Ā .Ā InĀ someĀ embodiments,Ā theĀ targetingĀ siteĀ ofĀ theĀ sgRNAĀ inĀ theĀ mouseĀ BTLAĀ geneĀ isĀ locatedĀ onĀ theĀ exonĀ 2Ā ofĀ theĀ mouseĀ BTLAĀ gene.
InĀ anotherĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ anĀ upstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 15,Ā andĀ aĀ downstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 17,Ā andĀ theĀ sgRNAĀ sequenceĀ recognizesĀ aĀ 5ā€™Ā targetingĀ site.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ anĀ upstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 16,Ā whichĀ isĀ obtainedĀ byĀ addingĀ TAGGĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 15ļ¼›Ā aĀ downstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 18,Ā whichĀ isĀ obtainedĀ byĀ addingĀ AAACĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 17,Ā andĀ theĀ sgRNAĀ sequenceĀ recognizesĀ aĀ 5ā€™Ā targetingĀ site.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ anĀ upstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 19,Ā andĀ aĀ downstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 21,Ā andĀ theĀ sgRNAĀ sequenceĀ recognizesĀ aĀ 3ā€™Ā targetingĀ site.
TheĀ disclosureĀ furtherĀ relatesĀ toĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ anĀ upstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 20,Ā whichĀ isĀ obtainedĀ byĀ addingĀ TAGGĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 19ļ¼›Ā aĀ downstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 22,Ā whichĀ isĀ obtainedĀ byĀ addingĀ AAACĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 21,Ā andĀ theĀ sgRNAĀ sequenceĀ recognizesĀ aĀ 3ā€™Ā targetingĀ site.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ aĀ constructĀ includingĀ theĀ sgRNAĀ sequenceĀ asĀ describedĀ herein.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ cellĀ comprisingĀ theĀ constructĀ asĀ describedĀ herein.
InĀ anotherĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ aĀ non-humanĀ mammalianĀ cell,Ā comprisingĀ theĀ targetingĀ vectorĀ asĀ describedĀ herein,Ā andĀ oneĀ orĀ moreĀ inĀ vitroĀ transcriptsĀ ofĀ theĀ sgRNAĀ construct.
InĀ someĀ embodiments,Ā theĀ cellĀ includesĀ Cas9Ā mRNAĀ orĀ anĀ inĀ vitroĀ transcriptĀ thereof.
InĀ someĀ embodiments,Ā theĀ genesĀ inĀ theĀ cellĀ areĀ heterozygous.Ā InĀ someĀ embodiments,Ā theĀ genesĀ inĀ theĀ cellĀ areĀ homozygous.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalianĀ cellĀ isĀ aĀ mouseĀ cell.Ā InĀ someĀ embodiments,Ā theĀ cellĀ isĀ aĀ fertilizedĀ eggĀ cell.Ā InĀ someĀ embodiments,Ā theĀ cellĀ isĀ aĀ germĀ cell.Ā InĀ someĀ embodiments,Ā theĀ cellĀ isĀ aĀ blastocyst.Ā InĀ someĀ embodiments,Ā theĀ cellĀ isĀ aĀ lymphocyteĀ (e.g.,Ā aĀ B-cellĀ orĀ aĀ T-cell)Ā .
InĀ anotherĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ methodsĀ forĀ establishingĀ aĀ BTLAĀ geneĀ humanizedĀ animalĀ model.Ā TheĀ methodsĀ includeĀ theĀ stepsĀ of
(a)Ā providingĀ theĀ cell,Ā andĀ preferablyĀ theĀ cellĀ isĀ aĀ fertilizedĀ eggĀ cellļ¼›
(b)Ā culturingĀ theĀ cellĀ inĀ aĀ liquidĀ cultureĀ mediumļ¼›
(c)Ā transplantingĀ theĀ culturedĀ cellĀ toĀ theĀ fallopianĀ tubeĀ orĀ uterusĀ ofĀ theĀ recipientĀ femaleĀ non-humanĀ mammal,Ā allowingĀ theĀ cellĀ toĀ developĀ inĀ theĀ uterusĀ ofĀ theĀ femaleĀ non-humanĀ mammalļ¼›
(d)Ā identifyingĀ theĀ germlineĀ transmissionĀ inĀ theĀ offspringĀ geneticallyĀ modifiedĀ humanizedĀ non-humanĀ mammalĀ ofĀ theĀ pregnantĀ femaleĀ inĀ stepĀ (c)Ā .
InĀ someĀ embodiments,Ā theĀ establishmentĀ ofĀ aĀ humanizedĀ animalĀ modelĀ ofĀ BTLAĀ geneĀ usingĀ aĀ geneĀ editingĀ techniqueĀ isĀ basedĀ onĀ CRISPRĀ /Cas9.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ mouse.Ā InĀ someĀ embodiments,Ā theĀ mouseĀ isĀ aĀ C57BL/6Ā mouse.Ā InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ inĀ stepĀ (c)Ā isĀ aĀ femaleĀ withĀ falseĀ pregnancy.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ methodĀ forĀ establishingĀ aĀ genetically-modifiedĀ non-humanĀ animalĀ expressingĀ twoĀ humanĀ orĀ chimericĀ (e.g.,Ā humanized)Ā genes.Ā TheĀ methodĀ includesĀ theĀ stepsĀ of
(a)Ā usingĀ theĀ methodĀ forĀ establishingĀ aĀ BTLAĀ geneĀ humanizedĀ animalĀ modelĀ toĀ obtainĀ aĀ BTLAĀ geneĀ geneticallyĀ modifiedĀ humanizedĀ mouseļ¼›
(b)Ā matingĀ theĀ BTLAĀ geneĀ geneticallyĀ modifiedĀ humanizedĀ mouseĀ obtainedĀ inĀ stepĀ (a)Ā withĀ anotherĀ humanizedĀ mouse,Ā andĀ thenĀ screeningĀ toĀ obtainĀ aĀ doubleĀ humanizedĀ mouseĀ model.
InĀ someĀ embodiments,Ā inĀ stepĀ (b)Ā ,Ā theĀ BTLAĀ geneĀ geneticallyĀ modifiedĀ humanizedĀ mouseĀ obtainedĀ inĀ stepĀ (a)Ā isĀ matedĀ withĀ aĀ PD-1Ā humanizedĀ mouseĀ toĀ obtainĀ aĀ BTLAĀ andĀ PD-1Ā doubleĀ humanizedĀ mouseĀ model.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ non-humanĀ mammalĀ generatedĀ throughĀ theĀ methodsĀ asĀ describedĀ herein.
InĀ someĀ embodiments,Ā theĀ genomeĀ thereofĀ containsĀ humanĀ geneĀ (s)Ā .
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ rodent.Ā InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ mouse.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ expressesĀ aĀ proteinĀ encodedĀ byĀ aĀ humanizedĀ BTLAĀ gene.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ anĀ offspringĀ ofĀ theĀ non-humanĀ mammal.
InĀ anotherĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ aĀ tumorĀ bearingĀ non-humanĀ mammalĀ model,Ā characterizedĀ inĀ thatĀ theĀ non-humanĀ mammalĀ modelĀ isĀ obtainedĀ throughĀ theĀ methodĀ asĀ describedĀ herein.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ rodent.Ā InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ mouse.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ cellĀ orĀ cellĀ line,Ā orĀ aĀ primaryĀ cellĀ cultureĀ thereofĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal.
TheĀ disclosureĀ furtherĀ relatesĀ toĀ theĀ tissue,Ā organĀ orĀ aĀ cultureĀ thereofĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal.
InĀ anotherĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ aĀ tumorĀ tissueĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereofĀ whenĀ itĀ bearsĀ aĀ tumor,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal.
InĀ oneĀ aspect,Ā theĀ disclosureĀ relatesĀ toĀ aĀ BTLAĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanizedĀ mouse,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ selectedĀ fromĀ theĀ groupĀ consistingĀ of:
a)Ā anĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
b)Ā anĀ aminoĀ acidĀ sequenceĀ havingĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…withĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
c)Ā anĀ aminoĀ acidĀ sequenceĀ encodedĀ byĀ aĀ nucleicĀ acidĀ sequence,Ā whereinĀ theĀ nucleicĀ acidĀ sequenceĀ isĀ ableĀ toĀ hybridizeĀ toĀ aĀ nucleotideĀ sequenceĀ encodingĀ theĀ aminoĀ acidĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā underĀ aĀ lowĀ stringencyĀ conditionļ¼›
d)Ā anĀ aminoĀ acidĀ sequenceĀ havingĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ atĀ leastĀ 99ļ¼…withĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
e)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ differentĀ fromĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā byĀ noĀ moreĀ thanĀ 10,Ā 9,Ā 8,Ā 7,Ā 6,Ā 5,Ā 4,Ā 3,Ā 2Ā orĀ noĀ moreĀ thanĀ 1Ā aminoĀ acidļ¼›Ā or
f)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ comprisesĀ aĀ substitution,Ā aĀ deletionĀ andĀ /orĀ insertionĀ ofĀ oneĀ orĀ moreĀ aminoĀ acidsĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ BTLAĀ DNAĀ sequenceĀ ofĀ aĀ humanizedĀ mouse,Ā whereinĀ theĀ DNAĀ sequenceĀ isĀ selectedĀ fromĀ theĀ groupĀ consistingĀ of:
a)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ theĀ BTLAĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanizedĀ mouseļ¼›
b)Ā aĀ DNAĀ sequenceĀ thatĀ isĀ setĀ forthinSEQĀ IDĀ NO:Ā 35ļ¼›
c)Ā aĀ DNAĀ sequenceĀ havingĀ aĀ codingĀ DNAĀ sequenceĀ (CDS)Ā asĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29ļ¼›
d)Ā aĀ DNAĀ sequenceĀ thatĀ isĀ ableĀ toĀ hybridizeĀ toĀ theĀ nucleotideĀ sequenceĀ asĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 35Ā orĀ SEQĀ IDĀ NO:Ā 29Ā underĀ aĀ lowĀ stringencyĀ conditionļ¼›
e)Ā aĀ DNAĀ sequenceĀ thatĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…withĀ theĀ nucleotideĀ sequenceĀ asĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29Ā orĀ SEQĀ IDĀ NO:Ā 30ļ¼›
f)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…withĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
g)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ atĀ leastĀ 99ļ¼…withĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
h)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ differentĀ fromĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā byĀ noĀ moreĀ thanĀ 10,Ā 9,Ā 8,Ā 7,Ā 6,Ā 5,Ā 4,Ā 3,Ā 2Ā orĀ noĀ moreĀ thanĀ 1Ā aminoĀ acidļ¼›Ā and/or
i)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ comprisesĀ aĀ substitution,Ā aĀ deletionĀ andĀ /orĀ insertionĀ ofĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā orĀ moreĀ aminoĀ acidsĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31.
j)Ā andĀ optimizedĀ SEQĀ IDĀ NO:Ā 35.
TheĀ disclosureĀ furtherĀ relatesĀ toĀ aĀ BTLAĀ genomicĀ DNAĀ sequenceĀ ofĀ aĀ humanizedĀ mouse,Ā aĀ DNAĀ sequenceĀ obtainedĀ byĀ aĀ reverseĀ transcriptionĀ ofĀ theĀ mRNAĀ obtainedĀ byĀ transcriptionĀ thereofĀ isĀ consistentĀ withĀ orĀ complementaryĀ toĀ theĀ DNAĀ sequenceļ¼›Ā aĀ constructĀ expressingĀ theĀ aminoĀ acidĀ sequenceĀ thereofļ¼›Ā aĀ cellĀ comprisingĀ theĀ constructĀ thereofļ¼›Ā aĀ tissueĀ comprisingĀ theĀ cellĀ thereof.
TheĀ disclosureĀ furtherĀ relatesĀ toĀ theĀ useĀ ofĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal,Ā theĀ animalĀ modelĀ generatedĀ throughĀ theĀ methodĀ asĀ describedĀ hereinĀ inĀ theĀ developmentĀ ofĀ aĀ productĀ relatedĀ toĀ anĀ immunizationĀ processesĀ ofĀ humanĀ cells,Ā theĀ manufactureĀ ofĀ aĀ humanĀ antibody,Ā orĀ theĀ modelĀ systemĀ forĀ aĀ researchĀ inĀ pharmacology,Ā immunology,Ā microbiologyĀ andĀ medicine.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ theĀ useĀ ofĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal,Ā theĀ animalĀ modelĀ generatedĀ throughĀ theĀ methodĀ asĀ describedĀ hereinĀ inĀ theĀ productionĀ andĀ utilizationĀ ofĀ anĀ animalĀ experimentalĀ diseaseĀ modelĀ ofĀ anĀ immunizationĀ processesĀ involvingĀ humanĀ cells,Ā theĀ studyĀ onĀ aĀ pathogen,Ā orĀ theĀ developmentĀ ofĀ aĀ newĀ diagnosticĀ strategyĀ andĀ /orĀ aĀ therapeuticĀ strategy.
TheĀ disclosureĀ furtherĀ relatesĀ toĀ theĀ useĀ ofĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal,Ā theĀ animalĀ modelĀ generatedĀ  throughĀ theĀ methodsĀ asĀ describedĀ herein,Ā inĀ theĀ screening,Ā verifying,Ā evaluatingĀ orĀ studyingĀ theĀ BTLAĀ geneĀ function,Ā humanĀ BTLAĀ antibodies,Ā theĀ drugsĀ orĀ efficaciesĀ forĀ humanĀ BTLAĀ targetingĀ sites,Ā andĀ theĀ drugsĀ forĀ immune-relatedĀ diseasesĀ andĀ antitumorĀ drugs.
UnlessĀ otherwiseĀ defined,Ā allĀ technicalĀ andĀ scientificĀ termsĀ usedĀ hereinĀ haveĀ theĀ sameĀ meaningĀ asĀ commonlyĀ understoodĀ byĀ oneĀ ofĀ ordinaryĀ skillĀ inĀ theĀ artĀ toĀ whichĀ thisĀ inventionĀ belongs.Ā MethodsĀ andĀ materialsĀ areĀ describedĀ hereinĀ forĀ useĀ inĀ theĀ presentĀ inventionļ¼›Ā other,Ā suitableĀ methodsĀ andĀ materialsĀ knownĀ inĀ theĀ artĀ canĀ alsoĀ beĀ used.Ā TheĀ materials,Ā methods,Ā andĀ examplesĀ areĀ illustrativeĀ onlyĀ andĀ notĀ intendedĀ toĀ beĀ limiting.Ā AllĀ publications,Ā patentĀ applications,Ā patents,Ā sequences,Ā databaseĀ entries,Ā andĀ otherĀ referencesĀ mentionedĀ hereinĀ areĀ incorporatedĀ byĀ referenceĀ inĀ theirĀ entirety.Ā InĀ caseĀ ofĀ conflict,Ā theĀ presentĀ specification,Ā includingĀ definitions,Ā willĀ control.
OtherĀ featuresĀ andĀ advantagesĀ ofĀ theĀ inventionĀ willĀ beĀ apparentĀ fromĀ theĀ followingĀ detailedĀ descriptionĀ andĀ figures,Ā andĀ fromĀ theĀ claims.
DESCRIPTIONĀ OFĀ DRAWINGS
FIG.Ā 1AĀ isĀ aĀ graphĀ showingĀ theĀ 5ā€™Ā terminalĀ targetĀ siteĀ sgRNAĀ activityĀ testĀ resultsĀ (sgRNA1-sgRNA8)Ā (ConĀ isĀ aĀ negativeĀ controlļ¼›Ā andĀ PCĀ isĀ aĀ positiveĀ control)Ā .
FIG.Ā 1BĀ isĀ aĀ graphĀ showingĀ 3ā€™Ā terminalĀ targetĀ siteĀ sgRNAĀ activityĀ testĀ resultsĀ (sgRNA9-sgRNA14)Ā (ConĀ isĀ aĀ negativeĀ controlļ¼›Ā andĀ PCĀ isĀ aĀ positiveĀ control)Ā .
FIG.Ā 2Ā isĀ aĀ schematicĀ diagramĀ showingĀ pT7-sgRNAĀ plasmidĀ map.
FIG.Ā 3AĀ isĀ aĀ schematicĀ diagramĀ showingĀ comparisonĀ ofĀ humanĀ andĀ mouseĀ BTLAĀ genes.
FIG.Ā 3BĀ isĀ aĀ schematicĀ diagramĀ showingĀ humanizedĀ BTLAĀ mouseĀ geneĀ map.
FIG.Ā 3CĀ isĀ aĀ schematicĀ diagramĀ showingĀ mouseĀ BTLAĀ geneĀ targetingĀ strategy.
FIG.Ā 4AĀ showsĀ pClon-4G-BTLAĀ plasmidĀ digestionĀ resultĀ (MĀ isĀ theĀ Marker,Ā ckĀ isĀ undigestedĀ plasmid.Ā )
FIG.Ā 4BĀ showsĀ theĀ fragmentĀ sizesĀ forĀ theĀ Marker.
FIG.Ā 5Ā showsĀ PCRĀ identificationĀ resultĀ ofĀ samplesĀ collectedĀ fromĀ tailsĀ ofĀ F0Ā generationĀ miceĀ (MĀ isĀ theĀ Markerļ¼›Ā WTĀ isĀ wildĀ typeļ¼›Ā miceĀ labeledĀ withĀ No.Ā 1Ā andĀ 2Ā areĀ positive)Ā .
FIG.Ā 6Ā showsĀ PCRĀ identificationĀ resultĀ ofĀ samplesĀ collectedĀ fromĀ tailsĀ ofĀ F1Ā generationĀ miceĀ (MĀ isĀ theĀ Markerļ¼›Ā WTĀ isĀ wildĀ typeļ¼›Ā +Ā isĀ positiveĀ controlļ¼›Ā miceĀ labeledĀ withĀ F1-1Ā toĀ F1-6Ā areĀ allĀ positive)Ā .
FIG.Ā 7AĀ showsĀ SouthernĀ blotĀ resultsĀ forĀ F1Ā generationĀ miceĀ byĀ P1Ā probeĀ (WTĀ isĀ wildĀ type)Ā .
FIG.Ā 7BĀ showsĀ SouthernĀ blotĀ resultsĀ forĀ F1-4Ā mouseĀ byĀ P2Ā probeĀ (WTĀ isĀ wildĀ type)Ā ļ¼›Ā theĀ resultsĀ showĀ thatĀ theĀ mouseĀ labeledĀ withĀ F1-4Ā hasĀ noĀ randomĀ insertion.
FIGS.Ā 8A-8FĀ areĀ graphsĀ ofĀ flowĀ cytometryĀ analysisĀ resultsĀ forĀ C57BL/6Ā miceĀ andĀ BTLAĀ humanizedĀ mice.Ā TheĀ anti-mouseĀ CD3Ā antibodyĀ wasĀ usedĀ toĀ stimulateĀ theĀ TĀ cellsĀ inĀ theĀ spleen,Ā andĀ thenĀ anti-mouseĀ BTLAĀ antibodiesĀ andĀ anti-mTCRĪ²Ā antibodiesĀ (FIGS.Ā 8A-8C)Ā ,Ā orĀ anti-humanĀ BTLAĀ antibodiesĀ andĀ anti-mTCRĪ²Ā antibodiesĀ (FIGS.Ā 8D-8F)Ā ,Ā wereĀ usedĀ toĀ labelĀ cells.Ā ComparedĀ toĀ theĀ controlĀ groupĀ (FIGS.Ā 8AĀ andĀ 8D)Ā ,Ā theĀ cellsĀ withĀ theĀ expressionĀ ofĀ humanĀ BTLAĀ proteinĀ canĀ beĀ detectedĀ inĀ theĀ spleenĀ ofĀ BTLAĀ humanizedĀ F1Ā hybridsĀ (FIG.Ā 8F)Ā ļ¼›Ā whereasĀ inĀ theĀ spleenĀ ofĀ C57BL/6Ā mice,Ā noĀ cellsĀ expressingĀ humanĀ BTLAĀ proteinĀ wereĀ detectedĀ (FIG.Ā 8E)Ā .
FIG.Ā 9Ā showsĀ RT-PCRĀ detectionĀ results,Ā whereinĀ +/+Ā isĀ wildĀ typeĀ C57BL/6Ā mouseļ¼›Ā H/+Ā isĀ F1Ā generationĀ hBTLAĀ heterozygousĀ mouseļ¼›Ā andĀ GAPDHĀ isĀ anĀ internalĀ control.
FIGS.Ā 10A-10FĀ areĀ graphsĀ ofĀ flowĀ cytometryĀ analysisĀ resultsĀ forĀ C57BL/6Ā miceĀ andĀ hBTLAĀ homozygousĀ mice.Ā TheĀ anti-mouseĀ CD3Ā antibodyĀ wasĀ usedĀ toĀ stimulateĀ theĀ TĀ cellsĀ inĀ theĀ spleen,Ā andĀ thenĀ anti-mouseĀ BTLAĀ antibodiesĀ (mBTLAĀ PE)Ā andĀ anti-mCD19Ā antibodiesĀ (mCD19Ā FITC)Ā (FIGS.Ā 10A-10C)Ā ,Ā orĀ anti-humanĀ BTLAĀ antibodiesĀ (hBTLAĀ APC)Ā andĀ anti-mCD19Ā antibodiesĀ (mCD19Ā FITC)Ā (FIGS.Ā 10D-10F)Ā ,Ā wereĀ usedĀ toĀ labelĀ TĀ cells.Ā MouseĀ BTLAĀ proteinĀ canĀ beĀ detectedĀ inĀ theĀ spleenĀ ofĀ C57BL/6Ā miceĀ (FIGS.Ā 10AĀ andĀ 10B)Ā .Ā HumanĀ BTLAĀ proteinĀ canĀ beĀ detectedĀ inĀ theĀ spleenĀ ofĀ hBTLAĀ homozygousĀ miceĀ (FIG.Ā 10F)Ā .
FIG.Ā 11Ā showsĀ RT-PCRĀ detectionĀ results,Ā whereinĀ +/+Ā isĀ wildĀ typeĀ C57BL/6Ā mouseļ¼›Ā H/HĀ isĀ B-hBTLAĀ homozygousĀ mouseļ¼›Ā andĀ GAPDHĀ isĀ anĀ internalĀ control.
FIG.Ā 12Ā showsĀ PCRĀ identificationĀ resultsĀ forĀ BTLAĀ geneĀ knockoutĀ mice,Ā whereinĀ WTĀ isĀ wildĀ type,Ā MĀ isĀ theĀ maker,Ā +Ā isĀ theĀ positiveĀ control,Ā theĀ miceĀ withĀ No.Ā 1-6Ā areĀ BTLAĀ knockoutĀ mice.
FIG.Ā 13.Ā MouseĀ colonĀ cancerĀ cellsĀ MC38Ā wereĀ injectedĀ intoĀ B-hBTLAĀ miceĀ andĀ antitumorĀ efficacyĀ studiesĀ wereĀ performedĀ forĀ 6Ā anti-humanĀ BTLAĀ antibodiesĀ (AB1,Ā AB2,Ā AB3,Ā AB4,Ā AB5,Ā AB6,Ā 10mg/kg)Ā .Ā ThereĀ wasĀ noĀ significantĀ differenceĀ inĀ averageĀ weightĀ gainĀ betweenĀ theĀ G1Ā controlĀ groupĀ andĀ theĀ G2-G7Ā treatmentĀ groups.
FIG.Ā 14.Ā MouseĀ colonĀ cancerĀ cellsĀ MC38Ā wereĀ injectedĀ intoĀ B-hBTLAĀ miceĀ andĀ antitumorĀ efficacyĀ studiesĀ wereĀ performedĀ forĀ 6Ā anti-humanĀ BTLAĀ antibodiesĀ (AB1,Ā AB2,Ā AB3,Ā AB4,Ā AB5,Ā AB6,Ā 10mg/kg)Ā .Ā ThereĀ wasĀ noĀ significantĀ differenceĀ inĀ bodyĀ weightĀ changeĀ percentageĀ amongĀ differentĀ groups.
FIG.Ā 15.Ā MouseĀ colonĀ cancerĀ cellsĀ MC38Ā wereĀ injectedĀ intoĀ B-hBTLAĀ miceĀ andĀ antitumorĀ efficacyĀ studiesĀ wereĀ performedĀ forĀ 6Ā anti-humanĀ BTLAĀ antibodyĀ (AB1,Ā AB2,Ā AB3,Ā AB4,Ā AB5,Ā AB6,Ā 10mg/kg)Ā .Ā TheĀ averageĀ volumesĀ ofĀ tumorsĀ inĀ theĀ G3-G7Ā treatmentĀ groupswereĀ smallerĀ thanĀ theĀ G1Ā controlĀ group,Ā andĀ theĀ differencesĀ wereĀ significant.
FIGS.Ā 16A-16B.Ā MouseĀ tailĀ PCRĀ identificationĀ result,Ā whereĀ +Ā isĀ hBTLAĀ homozygousĀ positiveĀ control,Ā -isĀ wildtypeĀ negativeĀ control.Ā TheĀ miceĀ numberedĀ 3017-3032Ā areĀ homozygousĀ forĀ humanizedĀ BTLAĀ gene.
FIGS.Ā 16C-16D.Ā MouseĀ tailĀ PCRĀ identificationĀ result,Ā whereĀ WTĀ isĀ wildtype,Ā -/-isĀ humanizedĀ PD-1Ā homozygousĀ mouse,Ā +/-isĀ humanizedĀ PD-1Ā heterozygousĀ mouse.Ā TheĀ miceĀ numberedĀ 3017-3032Ā areĀ homozygousĀ forĀ humanizedĀ PD-1Ā gene
FIGS.Ā 17A-17FĀ showĀ flowĀ cytometryĀ analysisĀ resultsĀ forĀ C57BL/6Ā miceĀ andĀ doubleĀ humanizedĀ BTLA/PD-1Ā homozygousĀ mice.Ā Anti-mouseĀ CD3Ā antibodyĀ wasĀ usedĀ toĀ stimulateĀ TĀ cellĀ activationĀ inĀ theĀ spleensĀ ofĀ theĀ mice,Ā andĀ thenĀ theĀ mouseĀ BTLAĀ antibodyĀ (mBTLAPE)Ā andĀ anti-mCD19Ā antibodiesĀ (mCD19Ā FITC)Ā (FIGS.Ā 17A,Ā 17B,Ā 17C)Ā ,Ā orĀ humanĀ BTLAĀ antibodyĀ hBTLAAPCandĀ anti-mCD19Ā antibodiesĀ (mCD19Ā FITC)Ā (FIGS.Ā 17D,Ā 17E,Ā 17F)Ā ,Ā wereĀ usedĀ toĀ labelĀ TĀ cellĀ surfaceĀ proteins.Ā TheĀ resultĀ showĀ thatĀ theĀ cellsĀ expressingĀ humanizedĀ BTLAĀ proteinsĀ wereĀ detectedĀ inĀ theĀ spleensĀ ofĀ doubleĀ humanizedĀ BTLAĀ /PD-1Ā mice,Ā whileĀ noĀ cellsĀ expressingĀ humanizedĀ BTLAĀ proteinĀ wereĀ detectedĀ inĀ theĀ spleenĀ ofĀ C57BL/6Ā controlĀ mice.
FIGS.Ā 18A-18FĀ showĀ flowĀ cytometryĀ analysisĀ resultsĀ forĀ C57BL/6Ā miceĀ andĀ doubleĀ humanizedĀ BTLA/PD-1Ā homozygousĀ mice.Ā Anti-mouseĀ CD3Ā antibodyĀ wasĀ usedĀ toĀ stimulateĀ TĀ cellĀ activationĀ inĀ theĀ spleensĀ ofĀ theĀ mice,Ā andĀ thenĀ theĀ mouseĀ PD-1Ā antibodyĀ (mPD-1Ā PE)Ā andĀ mouseĀ TĀ cellĀ surfaceĀ antibodyĀ mTcRĪ²Ā (FIGS.Ā 18A,Ā 18B,Ā 18C)Ā ,Ā orĀ humanĀ PD-1Ā antibodyĀ hPD-1Ā FITCĀ andĀ mouseĀ TĀ cellĀ surfaceĀ antibodyĀ mTcRĪ²Ā (FIGS.Ā 18D,Ā 18E,Ā 18F)Ā ,Ā wereĀ usedĀ toĀ labelĀ TĀ cellĀ proteins.Ā TheĀ resultĀ showĀ thatĀ theĀ cellsĀ expressingĀ humanizedĀ PD-1Ā proteinsĀ wereĀ detectedĀ inĀ theĀ spleensĀ ofĀ doubleĀ humanizedĀ BTLAĀ /PD-1Ā mice,Ā whileĀ noĀ cellsĀ expressingĀ humanizedĀ PD-1Ā proteinĀ wereĀ detectedĀ inĀ theĀ spleenĀ ofĀ C57BL/6Ā controlĀ mice.
FIG.Ā 19Ā showsĀ RT-PCRĀ detectionĀ resultsĀ forĀ mBTLAĀ orĀ humanizedĀ BTLAĀ (hBTLA)Ā ,Ā whereinĀ +/+Ā isĀ wildĀ typeĀ C57BL/6Ā mouseļ¼›Ā H/HĀ isĀ doubleĀ humanizedĀ BTLA/PD-1Ā homozygousĀ miceļ¼›Ā andĀ GAPDHĀ isĀ anĀ internalĀ control.
FIG.Ā 20Ā showsĀ RT-PCRĀ detectionĀ resultsĀ forĀ mPD-1Ā orĀ humanizedĀ PD-1Ā (hPD-1)Ā ,Ā whereinĀ +/+Ā isĀ wildĀ typeĀ C57BL/6Ā mouseļ¼›Ā H/HĀ isĀ doubleĀ humanizedĀ BTLA/PD-1Ā homozygousĀ miceļ¼›Ā andĀ GAPDHĀ isĀ anĀ internalĀ control.
FIG.Ā 21Ā isĀ aĀ schematicĀ diagramĀ ofĀ theĀ targetingĀ strategyĀ forĀ embryonicĀ stemĀ cells.
FIG.Ā 22Ā showsĀ theĀ alignmentĀ betweenĀ mouseĀ BTLAĀ aminoĀ acidĀ sequenceĀ (NP_001032808.2ļ¼›Ā SEQĀ IDĀ NO:Ā 25)Ā andĀ humanĀ BTLAĀ aminoĀ acidĀ sequenceĀ (NP_861445.3ļ¼›Ā SEQĀ IDĀ NO:Ā 27)Ā byĀ NCBIĀ BasicĀ LocalĀ AlignmentĀ SearchĀ ToolĀ (BLAST)Ā .
DETAILEDĀ DESCRIPTION
ThisĀ disclosureĀ relatesĀ toĀ transgenicĀ non-humanĀ animalĀ withĀ humanĀ orĀ chimericĀ (e.g.,Ā humanized)Ā B-AndĀ T-Lymphocyte-AssociatedĀ ProteinĀ (BTLAĀ orĀ CD272)Ā ,Ā andĀ methodsĀ ofĀ useĀ thereof.
BTLAĀ isĀ aĀ TĀ cellĀ inhibitoryĀ receptor.Ā ItĀ isĀ expressedĀ onĀ theĀ cellĀ surfaceĀ ofĀ BĀ cells,Ā TĀ cells,Ā andĀ macrophages.Ā BTLAĀ expressionĀ isĀ inducedĀ duringĀ activationĀ ofĀ TĀ cellsĀ andĀ isĀ expressedĀ onĀ developingĀ TH1Ā andĀ TH2Ā cells.Ā ExpressionĀ ofĀ BTLAĀ isĀ subsequentlyĀ lostĀ onĀ highlyĀ differentiatedĀ TH2Ā cellsĀ butĀ remainsĀ onĀ TH1Ā cells.Ā ResultsĀ showĀ thatĀ coligationĀ ofĀ BTLAĀ partiallyĀ inhibitsCD3-inducedĀ secretionĀ ofĀ IL-2Ā andĀ thatĀ BTLA-deficientĀ TĀ cellsĀ haveincreasedĀ proliferationĀ toĀ antigenĀ presentedĀ byĀ dendriticĀ cellsĀ (DCs)Ā ,Ā suggestingĀ thatĀ BTLAĀ exertsĀ anĀ inhibitoryĀ ratherĀ thanĀ activatingĀ influenceonĀ TĀ cellsĀ (Watanabe,Ā Norihiko,Ā  etĀ al.Ā "BTLAĀ isĀ aĀ lymphocyteĀ inhibitoryĀ receptorĀ withĀ similaritiesĀ toĀ CTLA-4Ā andĀ PD-1.Ā "Ā NatureĀ immunologyĀ 4.7Ā (2003)Ā :Ā 670)Ā .
BTLAĀ isĀ similarĀ toĀ cytotoxicĀ T-lymphocyte-associatedĀ proteinĀ 4Ā (CTLA-4)Ā andprogrammedĀ deathĀ 1Ā (PD-1)Ā ,Ā twoĀ otherĀ inhibitoryĀ receptorsĀ expressedĀ onĀ TĀ lymphocytes.Ā LikeĀ PD-1Ā andĀ CTLA-4,Ā BTLAĀ interactsĀ withĀ aĀ B7Ā homolog,Ā B7H4.Ā However,Ā BTLAĀ alsoĀ inhibitsĀ T-CellsĀ viaĀ interactionĀ withĀ tumorĀ necrosisĀ familyĀ receptorsĀ (TNF-R)Ā .Ā BTLAĀ isĀ aĀ ligandĀ forĀ tumorĀ necrosisĀ factorĀ (receptor)Ā superfamily,Ā memberĀ 14Ā (TNFRSF14)Ā ,Ā alsoĀ knownĀ asĀ herpesĀ virusĀ entryĀ mediatorĀ (HVEM)Ā .Ā BTLA-HVEMĀ complexesĀ negativelyĀ regulateĀ T-cellĀ immuneĀ responses.Ā TheĀ functionĀ andĀ theĀ structureĀ ofĀ BTLAĀ isĀ described,Ā e.g.,Ā inĀ Watanabe,Ā etĀ al.Ā "BTLAĀ isĀ aĀ lymphocyteĀ inhibitoryĀ receptorĀ withĀ similaritiesĀ toĀ CTLA-4Ā andĀ PD-1,Ā "Ā NatureĀ immunologyĀ 4.7Ā (2003)Ā :Ā 670ļ¼›Ā SteinbergĀ etĀ al.Ā "BTLAĀ interactionĀ withĀ HVEMĀ expressedĀ onĀ CD8+Ā TĀ cellsĀ promotesĀ survivalĀ andĀ memoryĀ generationĀ inĀ responseĀ toĀ aĀ bacterialĀ infection,Ā "Ā PLoSĀ OneĀ 8.10Ā (2013)Ā :Ā e77992ļ¼›Ā MurphyetĀ al.,Ā "BalancingĀ co-stimulationĀ andĀ inhibitionĀ withĀ BTLAĀ andĀ HVEM,Ā "Ā NatureĀ reviews.Ā ImmunologyĀ 6.9Ā (2006)Ā :Ā 671ļ¼›Ā eachĀ ofĀ whichĀ isĀ incorporatedĀ byĀ referenceĀ inĀ itsĀ entirety.
AsĀ BTLAĀ isĀ involvedĀ inĀ TĀ cellĀ inhibitoryĀ pathway,Ā itĀ thusĀ canĀ beĀ expectedĀ thatĀ theĀ BTLAĀ antibodyĀ hasĀ greatĀ applicationĀ values,Ā e.g.,Ā asĀ aĀ tumorĀ immunotherapyĀ orĀ aĀ treatmentĀ forĀ autoimmuneĀ diseaseĀ (e.g.,Ā systemicĀ lupusĀ erythematosus,Ā and
Figure PCTCN2017106024-appb-000001
syndrome)Ā .Ā InĀ orderĀ toĀ makeĀ theĀ animalĀ experimentsĀ moreĀ effectiveĀ andĀ moreĀ relevant,Ā theĀ presentĀ disclosureĀ providesĀ humanizedĀ BTLAĀ geneticallyĀ modifiedĀ animalĀ modelsĀ andĀ methodsĀ ofĀ establishingĀ suchĀ animalĀ models.
ExperimentalĀ animalĀ modelsĀ areĀ anĀ indispensableĀ researchĀ toolĀ forĀ studyingĀ theĀ etiology,Ā pathogenesisĀ ofĀ theĀ disease,Ā asĀ wellĀ asĀ theĀ developmentĀ ofĀ preventionĀ andĀ controlĀ techniquesĀ andĀ therapeuticĀ drugsĀ forĀ theĀ disease.Ā CommonĀ experimentalĀ animalsĀ includeĀ mice,Ā rats,Ā guineaĀ pigs,Ā hamsters,Ā rabbits,Ā dogs,Ā monkeys,Ā pigs,Ā fishĀ andĀ soĀ on.Ā However,Ā thereĀ areĀ manyĀ differencesĀ betweenĀ humanĀ andĀ animalĀ genesĀ andĀ proteinĀ sequences,Ā andĀ manyĀ humanĀ proteinsĀ cannotĀ bindĀ toĀ theĀ animalā€™sĀ homologousĀ proteinsĀ toĀ produceĀ biologicalĀ activity,Ā leadingĀ toĀ thatĀ theĀ resultsĀ ofĀ manyĀ clinicalĀ trialsĀ doĀ notĀ matchĀ theĀ resultsĀ obtainedĀ fromĀ animalĀ experiments.Ā AĀ largeĀ numberĀ ofĀ clinicalĀ studiesĀ areĀ inĀ urgentĀ needĀ ofĀ betterĀ animalĀ models.Ā WithĀ theĀ continuousĀ developmentĀ andĀ maturationĀ ofĀ  geneticĀ engineeringĀ technologies,Ā theĀ useĀ ofĀ humanĀ cellsĀ orĀ genesĀ toĀ replaceĀ orĀ substituteĀ anĀ animalā€™sĀ endogenousĀ similarĀ cellsĀ orĀ genesĀ toĀ establishĀ aĀ biologicalĀ systemĀ orĀ diseaseĀ modelĀ closerĀ toĀ human,Ā andĀ establishĀ theĀ humanizedĀ experimentalĀ animalĀ modelsĀ (humanizedĀ animalĀ model)Ā hasĀ providedĀ anĀ importantĀ toolĀ forĀ newĀ clinicalĀ approachesĀ orĀ means.Ā InĀ thisĀ context,Ā theĀ geneticallyĀ engineeredĀ animalĀ model,Ā thatĀ is,Ā theĀ useĀ ofĀ geneticĀ manipulationĀ techniques,Ā theĀ useĀ ofĀ humanĀ normalĀ orĀ mutantĀ genesĀ toĀ replaceĀ animalĀ homologousĀ genes,Ā canĀ beĀ usedĀ toĀ establishĀ theĀ geneticallyĀ modifiedĀ animalĀ modelsĀ thatĀ areĀ closerĀ toĀ humanĀ geneĀ systems.Ā TheĀ humanizedĀ animalĀ modelsĀ haveĀ variousĀ importantĀ applications.Ā ForĀ example,Ā dueĀ toĀ theĀ presenceĀ ofĀ humanĀ orĀ humanizedĀ genes,Ā theĀ animalsĀ canĀ expressĀ orĀ expressĀ inĀ partĀ ofĀ theĀ proteinsĀ withĀ humanĀ functions,Ā soĀ asĀ toĀ greatlyĀ reduceĀ theĀ differencesĀ inĀ clinicalĀ trialsĀ betweenĀ humansĀ andĀ animals,Ā andĀ provideĀ theĀ possibilityĀ ofĀ drugĀ screeningĀ atĀ animalĀ levels.
UnlessĀ otherwiseĀ specified,Ā theĀ practiceĀ ofĀ theĀ methodsĀ describedĀ hereinĀ canĀ takeĀ advantageĀ ofĀ theĀ techniquesĀ ofĀ cellĀ biology,Ā cellĀ culture,Ā molecularĀ biology,Ā transgenicĀ biology,Ā microbiology,Ā recombinantĀ DNAĀ andĀ immunology.Ā TheseĀ techniquesĀ areĀ explainedĀ inĀ detailĀ inĀ theĀ followingĀ literature,Ā forĀ examples:Ā MolecularĀ CloningĀ AĀ LaboratoryĀ Manual,Ā 2ndĀ Ed.,Ā ed.Ā ByĀ Sambrook,Ā FritschĀ andĀ ManiatisĀ (ColdĀ SpringĀ HarborĀ LaboratoryĀ Press:Ā 1989)Ā ļ¼›Ā DNAĀ Cloning,Ā VolumesĀ IĀ andĀ IIĀ (D.N.Ā Glovered.,Ā 1985)Ā ļ¼›Ā OligonucleotideĀ SynthesisĀ (M.J.Ā Gaited.,Ā 1984)Ā ļ¼›Ā MullisetalĀ U.S.Ā Pat.Ā No.Ā 4,683,195ļ¼›Ā NucleicĀ AcidĀ HybridizationĀ (B.D.Ā Hames&S.J.Ā Higginseds.Ā 1984)Ā ļ¼›Ā TranscriptionĀ AndĀ TranslationĀ (B.D.Ā Hames&S.J.Ā Higginseds.Ā 1984)Ā ļ¼›Ā CultureĀ OfĀ AnimalĀ CellĀ (R.I.Ā Freshney,Ā AlanĀ R.Ā Liss,Ā Inc.,Ā 1987)Ā ļ¼›Ā ImmobilizedĀ CellsĀ AndĀ EnzymesĀ (IRLĀ Press,Ā 1986)Ā ļ¼›Ā B.Ā Perbal,Ā AĀ PracticalĀ GuideĀ ToĀ MolecularĀ CloningĀ (1984)Ā ,Ā theĀ series,Ā MethodsĀ InĀ ENZYMOLOGYĀ (J.Ā AbelsonĀ andĀ M.Ā Simon,Ā eds.Ā -in-chief,Ā AcademicĀ Press,Ā Inc.,Ā NewĀ York)Ā ,Ā specifically,Ā Vols.Ā 154Ā andĀ 155Ā (Wuetal.Ā eds.Ā )Ā andĀ Vol.Ā 185,Ā ā€œGeneĀ ExpressionĀ Technologyā€Ā (D.Ā Goeddel,Ā ed.Ā )Ā ļ¼›Ā GeneĀ TransferĀ VectorsĀ ForĀ MammalianĀ CellsĀ (J.H.Ā MillerĀ andĀ M.P.Ā Caloseds.,Ā 1987,Ā ColdĀ SpringĀ HarborĀ Laboratory)Ā ļ¼›Ā ImmunochemicalĀ MethodsĀ InĀ CellĀ AndĀ MolecularĀ BiologyĀ (MayerĀ andĀ Walker,Ā eds.,Ā AcademicĀ Press,Ā London,Ā 1987)Ā ļ¼›Ā HandĀ bookĀ OfĀ ExperimentalĀ Immunology,Ā VolumesĀ VĀ (D.M.Ā WeirĀ andĀ C.C.Ā Blackwell,Ā eds.,Ā 1986)Ā ļ¼›Ā andĀ ManipulatingĀ theĀ MouseĀ Embryo,Ā (ColdĀ SpringĀ HarborĀ  LaboratoryĀ Press,Ā ColdĀ SpringĀ Harbor,Ā N.Y.,Ā 1986)Ā ,Ā eachĀ ofĀ whichĀ isĀ incorporatedĀ hereinĀ inĀ itsĀ entiretyĀ byĀ reference.
BTLAĀ (BĀ AndĀ TĀ LymphocyteĀ AssociatedĀ orĀ CD272)
BĀ AndĀ TĀ LymphocyteĀ AssociatedĀ (BTLA)Ā ,Ā alsoĀ knownĀ asĀ CD272Ā orĀ B-AndĀ T-LymphocyteĀ Attenuator,Ā isĀ anĀ IgĀ superĀ familyĀ proteinĀ withĀ anĀ intermediateĀ typeĀ IgĀ foldĀ inĀ theĀ ectodomainĀ andĀ anĀ ITIMĀ inhibitoryĀ signalingĀ domainĀ inĀ theĀ cytosol.Ā BTLAĀ isĀ aĀ ligandĀ forĀ tumorĀ necrosisĀ factorĀ (receptor)Ā superfamily,Ā memberĀ 14Ā (TNFRSF14)Ā ,Ā alsoĀ knownĀ asĀ herpesĀ virusĀ entryĀ mediatorĀ (HVEM)Ā .Ā EngagementĀ ofĀ BTLAĀ byĀ HVEM,Ā inducesĀ tyrosineĀ phosphorylationĀ ofĀ theĀ ITIMĀ motifsĀ inĀ theĀ cytoplasmicĀ tailĀ ofĀ BTLA,Ā allowingĀ theĀ recruitmentĀ ofĀ theĀ phosphatasesĀ SHP-1Ā andĀ SHP-2,Ā whichĀ attenuateĀ signaling.
BTLAĀ andĀ itsĀ herpesvirusĀ entryĀ mediatorĀ (HVEM)Ā areĀ theĀ onlyĀ pairĀ ofĀ moleculesĀ thatĀ haveĀ beenĀ foundĀ soĀ farĀ toĀ connectĀ theĀ IgĀ superfamilyĀ proteinsĀ andĀ TNFRĀ familyĀ proteins.Ā BTLAĀ /HVEMĀ isĀ quiteĀ uniqueĀ becauseĀ BTLAĀ mainlyĀ actsĀ asĀ aĀ negativeĀ feedbackĀ regulator,Ā whichĀ attenuatesĀ theĀ immuneĀ responseĀ ofĀ TĀ cellsĀ afterĀ HVEMĀ bindsĀ toĀ BTLA.Ā InĀ addition,Ā HVEMĀ alsoĀ bindsĀ toĀ LIGHTĀ (TNFĀ SuperfamilyĀ MemberĀ 14ļ¼›Ā TNFSF14)Ā andĀ playsĀ asĀ aĀ co-stimulatoryĀ actor,Ā promotingĀ TĀ cells,Ā BĀ cellĀ proliferationĀ andĀ IgĀ production.Ā InĀ addition,Ā HVEMĀ mayĀ bindĀ toĀ BTLA,Ā andĀ LIGHTĀ orĀ LTĪ±Ā inĀ theĀ sameĀ time,Ā andĀ formĀ aĀ trimer.Ā RecentĀ studiesĀ haveĀ shownĀ thatĀ BTLAĀ signalingĀ isĀ involvedĀ inĀ preventingĀ autoimmuneĀ diseases,Ā reducingĀ inflammation,Ā maintainingĀ peripheralĀ immuneĀ tolerance,Ā andĀ inhibitingĀ theĀ immuneĀ response.Ā BTLAĀ inhibitorsĀ canĀ alsoĀ enhanceĀ TCRĀ signalingĀ andĀ restoreĀ TĀ cellĀ function.Ā BTLAĀ canĀ alsoĀ functionĀ asĀ anĀ activatingĀ ligandĀ forĀ HVEMĀ promotingĀ NF-ĪŗBĀ activationĀ (WatanabeĀ N,Ā GavrieliĀ M,Ā SedyĀ JR,Ā etĀ al.Ā BTLAĀ isĀ aĀ lymphocyteĀ inhibitoryĀ receptorĀ withĀ similaritiesĀ toĀ CTLA-4Ā andĀ PD-1.Ā NatureĀ Immunology.Ā 2003ļ¼›Ā 4Ā (7)Ā :Ā 670ā€“679)Ā ,Ā whichĀ canĀ promoteĀ cellĀ survival.
InĀ humanĀ genomes,Ā BTLAĀ geneĀ locusĀ hasĀ fiveexons,Ā exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā andĀ exonĀ 5Ā (FIG.Ā 3A)Ā .Ā TheĀ BTLAĀ proteinĀ alsoĀ hasĀ anĀ extracellularĀ region,Ā aĀ transmembraneĀ region,Ā andĀ aĀ cytoplasmicĀ region,Ā andĀ theĀ signalĀ peptideĀ isĀ locatedĀ atĀ theĀ extracellularĀ regionĀ ofĀ BTLA.Ā TheĀ nucleotideĀ sequenceĀ forĀ humanĀ BTLAĀ mRNAĀ isĀ NM_181780.3Ā (SEQĀ IDĀ NO:Ā 26)Ā ,Ā andĀ theĀ aminoĀ acidĀ sequenceĀ forĀ humanĀ BTLAĀ isĀ  NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā .Ā TheĀ locationĀ forĀ eachĀ exonĀ andĀ eachĀ regionĀ inĀ humanĀ BTLAĀ nucleotideĀ sequenceĀ andĀ aminoĀ acidĀ sequenceĀ isĀ listedĀ below:
TableĀ 1
Figure PCTCN2017106024-appb-000002
Similarly,Ā inĀ mice,Ā BTLAĀ geneĀ locusĀ hasĀ sixexons,Ā exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā andĀ exonĀ 6Ā (FIG.Ā 3A)Ā .Ā TheĀ BTLAĀ proteinĀ alsoĀ hasĀ anĀ extracellularĀ region,Ā aĀ transmembraneĀ region,Ā andĀ aĀ cytoplasmicĀ region,Ā andĀ theĀ signalĀ peptideĀ isĀ locatedĀ atĀ theĀ extracellularĀ regionĀ ofĀ BTLA.Ā TheĀ nucleotideĀ sequenceĀ forĀ mouseĀ BTLAĀ cDNAĀ isĀ NM_001037719.2Ā (SEQĀ IDĀ NO:Ā 24)Ā ,Ā theĀ aminoĀ acidĀ sequenceĀ forĀ mouseĀ BTLAĀ isĀ NP_001032808.2Ā (SEQĀ IDĀ NO:Ā 25)Ā .Ā TheĀ locationĀ forĀ eachĀ exonĀ andĀ eachĀ regionĀ inĀ theĀ mouseĀ BTLAĀ nucleotideĀ sequenceĀ andĀ aminoĀ acidĀ sequenceĀ isĀ listedĀ below:
TableĀ 2
Figure PCTCN2017106024-appb-000003
Figure PCTCN2017106024-appb-000004
TheĀ mouseĀ BTLAĀ geneĀ (GeneĀ ID:Ā 208154)Ā isĀ locatedĀ inĀ ChromosomeĀ 16Ā ofĀ theĀ mouseĀ genome,Ā whichĀ isĀ locatedĀ fromĀ 45,223,545Ā toĀ 45,252,895Ā ofĀ NC_000082.6Ā (GRCm38.Ā p4Ā (GCF_000001635.24)Ā )Ā .Ā TheĀ 5ā€™Ā -UTRĀ isĀ fromĀ 45,224,337Ā toĀ 45,224,352,Ā exonĀ 1Ā isĀ fromĀ 45,224,353toĀ 45,224,461,Ā theĀ firstĀ intronĀ isĀ fromĀ 45,224,462Ā toĀ 45,239,043,Ā exonĀ 2Ā isĀ fromĀ 45,239,044Ā toĀ 45,239,364,Ā theĀ secondĀ intronĀ isĀ fromĀ 45,239,365Ā toĀ 45,242,705,Ā exonĀ 3Ā isĀ fromĀ 45,242,706Ā toĀ 45,242,741,Ā theĀ thirdĀ intronĀ isĀ fromĀ 45,242,742Ā toĀ 45,244,152,Ā exonĀ 4Ā isĀ fromĀ 45,244,153Ā toĀ 45,244,311,Ā theĀ fourthĀ intronĀ isĀ fromĀ 45,244,312Ā toĀ 45,246,250,Ā exonĀ 5Ā isĀ fromĀ 45,246,251Ā toĀ 45,246,297,Ā theĀ fifthĀ intronĀ isĀ fromĀ 45,246,298Ā toĀ 45,250,348,Ā exonĀ 6Ā isĀ fromĀ 45,250,349Ā toĀ 45,250,597,Ā theĀ 3ā€™Ā -UTRĀ isĀ fromĀ 45,250,598Ā to45,252,895Ā ofĀ NC_000082.6,Ā basedĀ onĀ transcriptNM_001037719.2.Ā AllĀ relevantĀ informationĀ formouseBTLAlocusĀ canĀ beĀ foundĀ inĀ theĀ NCBIĀ websiteĀ withĀ GeneĀ ID:Ā 208154,Ā whichĀ isĀ incorporatedĀ byĀ referenceĀ hereinĀ inĀ itsĀ entirety.
FIG.Ā 22Ā showsĀ theĀ alignmentĀ betweenĀ mouseĀ BTLAĀ aminoĀ acidĀ sequenceĀ (NP_001032808.2ļ¼›Ā SEQĀ IDĀ NO:Ā 25)Ā andĀ humanĀ BTLAĀ aminoĀ acidĀ sequenceĀ (NP_861445.3ļ¼›Ā SEQĀ IDĀ NO:Ā 27)Ā .Ā Thus,Ā theĀ correspondingĀ aminoĀ acidĀ residueĀ orĀ regionĀ betweenĀ humanĀ andĀ mouseĀ BTLAcanĀ alsoĀ beĀ foundĀ inĀ FIG.Ā 22.
BTLAĀ genes,Ā proteins,Ā andĀ locusĀ ofĀ theĀ otherĀ speciesĀ areĀ alsoĀ knownĀ inĀ theĀ art.Ā ForĀ example,Ā theĀ geneĀ IDĀ forĀ BTLAĀ inĀ RattusnorvegicusisĀ 407756,Ā theĀ geneĀ IDĀ forĀ BTLAĀ inĀ MacacamulattaĀ (RhesusĀ monkey)Ā isĀ 708202,Ā theĀ geneĀ IDĀ forĀ BTLAĀ inĀ SusscrofaĀ (pig)Ā is100626925.Ā TheĀ relevantĀ informationĀ forĀ theseĀ genesĀ (e.g.,Ā intronĀ sequences,Ā exonĀ sequences,Ā aminoĀ acidĀ residuesĀ ofĀ theseĀ proteins)Ā canĀ beĀ found,Ā e.g.,Ā inĀ NCBIĀ database.
TheĀ presentĀ disclosureĀ providesĀ humanĀ orĀ chimericĀ (e.g.,Ā humanized)Ā BTLAĀ nucleotideĀ sequenceĀ and/orĀ aminoĀ acidĀ sequences.Ā InĀ someĀ embodiments,Ā theĀ entireĀ sequenceĀ ofĀ mouseĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā exonĀ 6,Ā signalĀ peptide,Ā extracellularĀ region,Ā transmembraneĀ region,Ā and/orĀ cytoplasmicĀ regionĀ areĀ replacedĀ byĀ theĀ correspondingĀ humanĀ sequence.Ā InĀ someĀ embodiments,Ā aĀ ā€œregionā€Ā orĀ ā€œportionā€Ā ofĀ  mouseĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā exonĀ 6,Ā signalĀ peptide,Ā extracellularĀ region,Ā transmembraneĀ region,Ā and/orĀ cytoplasmicĀ regionĀ areĀ replacedĀ byĀ theĀ correspondingĀ humanĀ sequence.Ā TheĀ termĀ ā€œregionā€Ā orĀ ā€œportionā€Ā canĀ referĀ toĀ atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā 100,Ā 110,Ā 120,Ā 130,Ā 150,Ā 200,Ā 250,Ā 300,Ā 350,Ā orĀ 400Ā nucleotides,Ā orĀ atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā 100,Ā 110,Ā 120,Ā 130,Ā orĀ 150Ā aminoĀ acidĀ residues.Ā InĀ someĀ embodiments,Ā theĀ ā€œregionā€Ā orĀ ā€œportionā€Ā canĀ beĀ atĀ leastĀ 50ļ¼…,Ā 55ļ¼…,Ā 60ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā exonĀ 6,Ā signalĀ peptide,Ā extracellularĀ region,Ā transmembraneĀ region,Ā orĀ cytoplasmicĀ region.Ā InĀ someĀ embodiments,Ā aĀ region,Ā aĀ portion,Ā orĀ theĀ entireĀ sequenceĀ ofĀ mouseĀ exon1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5Ā and/orĀ exonĀ 6Ā (e.g.,Ā exonĀ 2)Ā areĀ replacedĀ byĀ theĀ humanĀ exon1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā and/orĀ exonĀ 5Ā (e.g.,Ā exonĀ 2)Ā sequence.
InĀ someĀ embodiments,Ā theĀ presentĀ disclosureĀ alsoĀ providesĀ aĀ chimericĀ (e.g.,Ā humanized)Ā BTLAĀ nucleotideĀ sequenceĀ and/orĀ aminoĀ acidĀ sequences,Ā whereinĀ inĀ someĀ embodiments,Ā atĀ leastĀ 1ļ¼…,Ā 2ļ¼…,Ā 3ļ¼…,Ā 4ļ¼…,Ā 5ļ¼…,Ā 6ļ¼…,Ā 7ļ¼…,Ā 8ļ¼…,Ā 9ļ¼…,Ā 10ļ¼…,Ā 15ļ¼…,Ā 20ļ¼…,Ā 25ļ¼…,Ā 30ļ¼…,Ā 35ļ¼…,Ā 40ļ¼…,Ā 45ļ¼…,Ā 50ļ¼…,Ā 55ļ¼…,Ā 60ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā 99ļ¼…ofĀ theĀ sequenceĀ areĀ identicalĀ toĀ orĀ derivedĀ fromĀ mouseĀ BTLAĀ mRNAĀ sequenceĀ (e.g.,Ā SEQĀ IDĀ NO:Ā 24)Ā ,Ā orĀ mouseĀ BTLAĀ aminoĀ acidĀ sequenceĀ (e.g.,Ā SEQĀ IDĀ NO:Ā 25)Ā ļ¼›Ā andĀ inĀ someĀ embodiments,Ā atĀ leastĀ 1ļ¼…,Ā 2ļ¼…,Ā 3ļ¼…,Ā 4ļ¼…,Ā 5ļ¼…,Ā 6ļ¼…,Ā 7ļ¼…,Ā 8ļ¼…,Ā 9ļ¼…,Ā 10ļ¼…,Ā 15ļ¼…,Ā 20ļ¼…,Ā 25ļ¼…,Ā 30ļ¼…,Ā 35ļ¼…,Ā 40ļ¼…,Ā 45ļ¼…,Ā 50ļ¼…,Ā 55ļ¼…,Ā 60ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā 99ļ¼…ofĀ theĀ sequenceĀ areĀ identicalĀ toĀ orĀ derivedĀ fromĀ humanĀ BTLAĀ mRNAĀ sequenceĀ (e.g.,Ā SEQĀ IDĀ NO:Ā 26)Ā ,Ā orĀ humanĀ BTLAĀ aminoĀ acidĀ sequenceĀ (e.g.,Ā SEQĀ IDĀ NO:Ā 27)Ā .
InĀ someĀ embodiments,Ā theĀ sequenceĀ encodingĀ aminoĀ acidsĀ 40-141Ā ofĀ mouseĀ BTLAĀ (SEQĀ IDĀ NO:Ā 25)Ā isĀ replaced.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ isĀ replacedĀ byĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ (e.g.,Ā aminoĀ acidsĀ 34-132Ā ofĀ humanĀ BTLAĀ (SEQĀ IDĀ NO:Ā 27)Ā .
InĀ someĀ embodiments,Ā theĀ nucleicĀ acidsĀ asĀ describedĀ hereinĀ areĀ operablyĀ linkedĀ toĀ aĀ promotorĀ orĀ regulatoryĀ element,Ā e.g.,Ā anĀ endogenousĀ mouseĀ BTLAĀ promotor,Ā anĀ inducibleĀ promoter,Ā anĀ enhancer,Ā and/orĀ mouseĀ orĀ humanĀ regulatoryĀ elements.
InĀ someĀ embodiments,Ā theĀ nucleicĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā nucleotides,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ nucleotides)Ā thatĀ areĀ differentĀ fromĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ mouseĀ BTLAĀ nucleotideĀ sequenceĀ (e.g.,Ā NM_001037719.2Ā (SEQĀ IDĀ NO:Ā 24)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ nucleicĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā nucleotides,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ nucleotides)Ā thatĀ isĀ theĀ sameĀ asĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ mouseĀ BTLAĀ nucleotideĀ sequenceĀ (e.g.,Ā NM_001037719.2Ā (SEQĀ IDĀ NO:Ā 24)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ nucleicĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā nucleotides,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ nucleotides)Ā thatĀ isĀ differentĀ fromĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ humanĀ BTLAĀ nucleotideĀ sequenceĀ (e.g.,Ā NM_181780.3Ā (SEQĀ IDĀ NO:Ā 26)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ nucleicĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā nucleotides,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ nucleotides)Ā thatĀ isĀ theĀ sameĀ asĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ humanĀ BTLAĀ nucleotideĀ sequenceĀ (e.g.,Ā NM_181780.3Ā (SEQĀ IDĀ NO:Ā 26)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā aminoĀ acidĀ residues,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ aminoĀ acidĀ residues)Ā thatĀ isĀ differentĀ fromĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ mouseĀ BTLAĀ aminoĀ acidĀ sequenceĀ (e.g.,Ā NP_001032808.2Ā (SEQĀ IDĀ NO:Ā 25)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā aminoĀ acidĀ residues,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ aminoĀ acidĀ residues)Ā thatĀ isĀ theĀ sameĀ asĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ mouseĀ BTLAĀ aminoĀ acidĀ sequenceĀ (e.g.,Ā NP_001032808.2Ā (SEQĀ IDĀ NO:Ā 25)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā aminoĀ acidĀ residues,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ aminoĀ acidĀ residues)Ā thatĀ isĀ differentĀ fromĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ humanĀ BTLAĀ aminoĀ acidĀ sequenceĀ (e.g.,Ā NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā )Ā .
InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequenceĀ hasĀ atĀ leastĀ aĀ portionĀ (e.g.,Ā atĀ leastĀ 1,Ā 2,Ā 3,Ā 4,Ā 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 11,Ā 12,Ā 13,Ā 14,Ā 15,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā aminoĀ acidĀ residues,Ā e.g.,Ā contiguousĀ orĀ non-contiguousĀ aminoĀ acidĀ residues)Ā thatĀ isĀ theĀ sameĀ asĀ aĀ portionĀ ofĀ orĀ theĀ entireĀ humanĀ BTLAĀ aminoĀ acidĀ sequenceĀ (e.g.,Ā NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā )Ā .
TheĀ presentĀ disclosureĀ alsoĀ providesĀ aĀ humanizedĀ BTLAĀ mouseĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ selectedĀ fromĀ theĀ groupĀ consistingĀ of:
a)Ā anĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
b)Ā anĀ aminoĀ acidĀ sequenceĀ havingĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…withĀ orĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
c)Ā anĀ aminoĀ acidĀ sequenceĀ encodedĀ byĀ aĀ nucleicĀ acidĀ sequence,Ā whereinĀ theĀ nucleicĀ acidĀ sequenceĀ isĀ ableĀ toĀ hybridizeĀ toĀ aĀ nucleotideĀ sequenceĀ encodingĀ theĀ aminoĀ acidĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā underĀ aĀ lowĀ stringencyĀ conditionļ¼›
d)Ā anĀ aminoĀ acidĀ sequenceĀ havingĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…,Ā orĀ atĀ leastĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
e)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ differentĀ fromĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā byĀ noĀ moreĀ thanĀ 10,Ā 9,Ā 8,Ā 7,Ā 6,Ā 5,Ā 4,Ā 3,Ā 2Ā orĀ noĀ moreĀ thanĀ 1Ā aminoĀ acidļ¼›Ā or
f)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ comprisesĀ aĀ substitution,Ā aĀ deletionĀ andĀ /orĀ insertionĀ ofĀ oneĀ orĀ moreĀ aminoĀ acidsĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31.
TheĀ presentĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ BTLAĀ DNAĀ sequence,Ā whereinĀ theĀ DNAĀ sequenceĀ canĀ beĀ selectedĀ fromĀ theĀ groupĀ consistingĀ of:
a)Ā aĀ DNAĀ sequenceĀ asĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29,Ā orĀ aĀ DNAĀ sequenceĀ encodingĀ aĀ homologousĀ BTLAĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanizedĀ mouseļ¼›
b)Ā aĀ DNAĀ sequenceĀ thatĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 30ļ¼›
c)Ā aĀ DNAĀ sequenceĀ thatĀ isĀ ableĀ toĀ hybridizeĀ toĀ theĀ nucleotideĀ sequenceĀ asĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29Ā orĀ SEQĀ IDĀ NO:Ā 30Ā underĀ aĀ lowĀ stringencyĀ conditionļ¼›
d)Ā aĀ DNAĀ sequenceĀ thatĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…orĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ theĀ nucleotideĀ sequenceĀ asĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29Ā orĀ SEQĀ IDĀ NO:Ā 30ļ¼›
e)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…withĀ orĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ theĀ aminoĀ acidsequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
f)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…with,Ā orĀ atĀ leastĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
g)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ differentĀ fromĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā byĀ noĀ moreĀ thanĀ 10,Ā 9,Ā 8,Ā 7,Ā 6,Ā 5,Ā 4,Ā 3,Ā 2Ā orĀ noĀ moreĀ thanĀ 1Ā aminoĀ acidļ¼›Ā and/or
h)Ā aĀ DNAĀ sequenceĀ thatĀ encodesĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ comprisesĀ aĀ substitution,Ā aĀ deletionĀ andĀ /orĀ insertionĀ ofĀ oneĀ orĀ moreĀ aminoĀ acidsĀ toĀ theĀ aminoĀ acidĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31.
TheĀ presentĀ disclosureĀ furtherĀ relatesĀ toĀ aĀ BTLAĀ genomicĀ DNAĀ sequenceĀ ofĀ aĀ humanizedĀ mouse.Ā TheĀ DNAĀ sequenceĀ isĀ obtainedĀ byĀ aĀ reverseĀ transcriptionĀ ofĀ theĀ mRNAĀ obtainedĀ byĀ transcriptionĀ thereofĀ isĀ consistentĀ withĀ orĀ complementaryĀ toĀ theĀ DNAĀ sequenceĀ homologousĀ toĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29Ā orĀ SEQĀ IDĀ NO:Ā 30.
TheĀ disclosureĀ alsoĀ providesĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…with,Ā orĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31,Ā andĀ hasĀ proteinĀ activity.Ā InĀ someĀ embodiments,Ā theĀ homologyĀ withĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā isĀ atĀ leastĀ aboutĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ atĀ leastĀ 99ļ¼….Ā InĀ someĀ embodiments,Ā theĀ foregoingĀ homologyĀ isĀ atĀ leastĀ aboutĀ 50ļ¼…,Ā 51ļ¼…,Ā 52ļ¼…,Ā 53ļ¼…,Ā 54ļ¼…,Ā 55ļ¼…,Ā 56ļ¼…,Ā 57ļ¼…,Ā 58ļ¼…,Ā orĀ atĀ leastĀ aboutĀ 59ļ¼….
InĀ someĀ embodiments,Ā theĀ percentageĀ identityĀ withĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 31Ā isĀ atĀ leastĀ aboutĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ atĀ leastĀ  99ļ¼….Ā InĀ someĀ embodiments,Ā theĀ foregoingĀ percentageĀ identityĀ isĀ atĀ leastĀ aboutĀ 50ļ¼…,Ā 51ļ¼…,Ā 52ļ¼…,Ā 53ļ¼…,Ā 54ļ¼…,Ā 55ļ¼…,Ā 56ļ¼…,Ā 57ļ¼…,Ā 58ļ¼…,Ā orĀ atĀ leastĀ aboutĀ 59ļ¼….
TheĀ disclosureĀ alsoĀ providesĀ aĀ nucleotideĀ sequenceĀ thatĀ hasĀ aĀ homologyĀ ofĀ atĀ leastĀ 90ļ¼…,Ā orĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 30,Ā andĀ encodesĀ aĀ polypeptideĀ thatĀ hasĀ proteinĀ activity.Ā InĀ someĀ embodiments,Ā theĀ homologyĀ withĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 30Ā isĀ atĀ leastĀ aboutĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ atĀ leastĀ 99ļ¼….Ā InĀ someĀ embodiments,Ā theĀ foregoingĀ homologyĀ isĀ atĀ leastĀ boutĀ 50ļ¼…,Ā 51ļ¼…,Ā 52ļ¼…,Ā 53ļ¼…,Ā 54ļ¼…,Ā 55ļ¼…,Ā 56ļ¼…,Ā 57ļ¼…,Ā 58ļ¼…,Ā orĀ atĀ leastĀ aboutĀ 59ļ¼….
InĀ someĀ embodiments,Ā theĀ percentageĀ identityĀ withĀ theĀ sequenceĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 30Ā isĀ atĀ leastĀ aboutĀ 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ atĀ leastĀ 99ļ¼….Ā InĀ someĀ embodiments,Ā theĀ foregoingĀ percentageĀ identityĀ isĀ atĀ leastĀ aboutĀ 50ļ¼…,Ā 51ļ¼…,Ā 52ļ¼…,Ā 53ļ¼…,Ā 54ļ¼…,Ā 55ļ¼…,Ā 56ļ¼…,Ā 57ļ¼…,Ā 58ļ¼…,Ā orĀ atĀ leastĀ aboutĀ 59ļ¼….
TheĀ disclosureĀ alsoĀ providesĀ aĀ nucleicĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 1ļ¼…,Ā 2ļ¼…,Ā 3ļ¼…,Ā 4ļ¼…,Ā 5ļ¼…,Ā 6ļ¼…,Ā 7ļ¼…,Ā 8ļ¼…,Ā 9ļ¼…,Ā 10ļ¼…,Ā 15ļ¼…,Ā 20ļ¼…,Ā 25ļ¼…,Ā 30ļ¼…,Ā 35ļ¼…,Ā 40ļ¼…,Ā 45ļ¼…,Ā 50ļ¼…,Ā 55ļ¼…,Ā 60ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā 99ļ¼…identicalĀ toĀ anyĀ nucleotideĀ sequenceĀ asĀ describedĀ herein,Ā andĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 1ļ¼…,Ā 2ļ¼…,Ā 3ļ¼…,Ā 4ļ¼…,Ā 5ļ¼…,Ā 6ļ¼…,Ā 7ļ¼…,Ā 8ļ¼…,Ā 9ļ¼…,Ā 10ļ¼…,Ā 15ļ¼…,Ā 20ļ¼…,Ā 25ļ¼…,Ā 30ļ¼…,Ā 35ļ¼…,Ā 40ļ¼…,Ā 45ļ¼…,Ā 50ļ¼…,Ā 55ļ¼…,Ā 60ļ¼…,Ā 65ļ¼…,Ā 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā 99ļ¼…identicalĀ toĀ anyĀ aminoĀ acidĀ sequenceĀ asĀ describedĀ herein.Ā InĀ someĀ embodiments,Ā theĀ disclosureĀ relatesĀ toĀ nucleotideĀ sequencesĀ encodingĀ anyĀ peptidesĀ thatĀ areĀ describedĀ herein,Ā orĀ anyĀ aminoĀ acidĀ sequencesĀ thatĀ areĀ encodedĀ byĀ anyĀ nucleotideĀ sequencesĀ asĀ describedĀ herein.Ā InĀ someĀ embodiments,Ā theĀ nucleicĀ acidĀ sequenceĀ isĀ lessĀ thanĀ 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā 100,Ā 110,Ā 120,Ā 130,Ā 150,Ā 200,Ā 250,Ā 300,Ā 350,Ā 400,Ā orĀ 500Ā nucleotides.Ā InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequenceĀ isĀ lessĀ thanĀ 5,Ā 6,Ā 7,Ā 8,Ā 9,Ā 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā 100,Ā 110,Ā 120,Ā 130,Ā orĀ 150Ā aminoĀ acidĀ residues.
InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequenceĀ (i)Ā comprisesĀ anĀ aminoĀ acidĀ sequenceļ¼›Ā orĀ (ii)Ā consistsĀ ofĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ anyĀ oneĀ ofĀ theĀ sequencesĀ asĀ describedĀ herein.
InĀ someĀ embodiments,Ā theĀ nucleicĀ acidĀ sequenceĀ (i)Ā comprisesĀ aĀ nucleicĀ acidĀ sequenceļ¼›Ā orĀ (ii)Ā consistsĀ ofĀ aĀ nucleicĀ acidĀ sequence,Ā whereinĀ theĀ nucleicĀ acidĀ sequenceĀ isĀ anyĀ oneĀ ofĀ theĀ sequencesĀ asĀ describedĀ herein.
ToĀ determineĀ theĀ percentĀ identityĀ ofĀ twoĀ aminoĀ acidĀ sequences,Ā orĀ ofĀ twoĀ nucleicĀ acidĀ sequences,Ā theĀ sequencesĀ areĀ alignedĀ forĀ optimalĀ comparisonĀ purposesĀ (e.g.,Ā gapsĀ canĀ beĀ introducedĀ inĀ oneĀ orĀ bothĀ ofĀ aĀ firstĀ andĀ aĀ secondĀ aminoĀ acidĀ orĀ nucleicĀ acidĀ sequenceĀ forĀ optimalĀ alignmentĀ andĀ non-homologousĀ sequencesĀ canĀ beĀ disregardedĀ forĀ comparisonĀ purposes)Ā .Ā TheĀ lengthĀ ofĀ aĀ referenceĀ sequenceĀ alignedĀ forĀ comparisonĀ purposesĀ isĀ atĀ leastĀ 80ļ¼…ofĀ theĀ lengthĀ ofĀ theĀ referenceĀ sequence,Ā andĀ inĀ someĀ embodimentsĀ isĀ atĀ leastĀ 90ļ¼…,Ā 95ļ¼…,Ā orĀ 100ļ¼….Ā TheĀ aminoĀ acidĀ residuesĀ orĀ nucleotidesĀ atĀ correspondingĀ aminoĀ acidĀ positionsĀ orĀ nucleotideĀ positionsĀ areĀ thenĀ compared.Ā WhenĀ aĀ positionĀ inĀ theĀ firstĀ sequenceĀ isĀ occupiedĀ byĀ theĀ sameĀ aminoĀ acidĀ residueĀ orĀ nucleotideĀ asĀ theĀ correspondingĀ positionĀ inĀ theĀ secondĀ sequence,Ā thenĀ theĀ moleculesĀ areĀ identicalĀ atĀ thatĀ position.Ā TheĀ percentĀ identityĀ betweenĀ theĀ twoĀ sequencesĀ isĀ aĀ functionĀ ofĀ theĀ numberĀ ofĀ identicalĀ positionsĀ sharedĀ byĀ theĀ sequences,Ā takingĀ intoĀ accountĀ theĀ numberĀ ofĀ gaps,Ā andĀ theĀ lengthĀ ofĀ eachĀ gap,Ā whichĀ needĀ toĀ beĀ introducedĀ forĀ optimalĀ alignmentĀ ofĀ theĀ twoĀ sequences.Ā ForĀ purposesĀ ofĀ theĀ presentĀ disclosure,Ā theĀ comparisonĀ ofĀ sequencesĀ andĀ determinationĀ ofĀ percentĀ identityĀ betweenĀ twoĀ sequencesĀ canĀ beĀ accomplishedĀ usingĀ aĀ BlossumĀ 62Ā scoringĀ matrixĀ withĀ aĀ gapĀ penaltyĀ ofĀ 12,Ā aĀ gapĀ extendĀ penaltyĀ ofĀ 4,Ā andĀ aĀ frameshiftĀ gapĀ penaltyĀ ofĀ 5.
TheĀ termĀ "percentĀ homology"Ā isĀ oftenĀ usedĀ toĀ meanĀ "sequenceĀ similarity.Ā "Ā TheĀ percentageĀ ofĀ identicalĀ residuesĀ (percentĀ identity)Ā andĀ theĀ percentageĀ ofĀ residuesĀ conservedĀ withĀ similarĀ physicochemicalĀ propertiesĀ (percentĀ similarity)Ā ,Ā e.g.Ā leucineĀ andĀ isoleucine,Ā areĀ bothĀ usedĀ toĀ "quantifyĀ theĀ homology"Ā .Ā ResiduesĀ conservedĀ withĀ similarĀ physicochemicalĀ propertiesĀ areĀ wellĀ knownĀ inĀ theĀ art.Ā TheĀ percentĀ homology,Ā inĀ manyĀ cases,Ā isĀ higherĀ thanĀ theĀ percentĀ identity.
Cells,Ā tissues,Ā andĀ animalsĀ (e.g.,Ā mouse)Ā areĀ alsoĀ providedĀ thatĀ compriseĀ theĀ nucleotideĀ sequencesĀ asĀ describedĀ herein,Ā asĀ wellĀ asĀ cells,Ā tissues,Ā andĀ animalsĀ (e.g.,Ā mouse)Ā thatĀ expressĀ humanĀ orĀ chimericĀ (e.g.,Ā humanized)Ā BTLAĀ fromĀ anĀ endogenousĀ non-humanĀ BTLAĀ locus.
GeneticallyĀ modifiedĀ animals
AsĀ usedĀ herein,Ā theĀ termĀ ā€œgenetically-modifiedĀ non-humanĀ animalā€Ā refersĀ toĀ aĀ non-humanĀ animalĀ havingĀ exogenousĀ DNAĀ inĀ atĀ leastĀ oneĀ chromosomeĀ ofĀ theĀ animalā€™sĀ  genome.Ā InĀ someĀ embodiments,Ā atĀ leastĀ oneĀ orĀ moreĀ cells,Ā e.g.,Ā atĀ leastĀ 1ļ¼…,Ā 2ļ¼…,Ā 3ļ¼…,Ā 4ļ¼…,Ā 5ļ¼…,Ā 10ļ¼…,Ā 20ļ¼…,Ā 30ļ¼…,Ā 40ļ¼…,Ā 50ļ¼…ofĀ cellsĀ ofĀ theĀ genetically-modifiedĀ non-humanĀ animalĀ haveĀ theĀ exogenousĀ DNAĀ inĀ itsĀ genome.Ā TheĀ cellĀ havingĀ exogenousĀ DNAĀ canĀ beĀ variousĀ kindsĀ ofĀ cells,Ā e.g.,Ā anĀ endogenousĀ cell,Ā aĀ somaticĀ cell,Ā anĀ immuneĀ cell,Ā aĀ TĀ cell,Ā aĀ BĀ cell,Ā aĀ germĀ cell,Ā aĀ blastocyst,Ā orĀ anĀ endogenousĀ tumorĀ cell.Ā InĀ someĀ embodiments,Ā genetically-modifiedĀ non-humanĀ animalsĀ areĀ providedĀ thatĀ compriseĀ aĀ modifiedĀ endogenousĀ BTLAĀ locusĀ thatĀ comprisesĀ anĀ exogenousĀ sequenceĀ (e.g.,Ā aĀ humanĀ sequence)Ā ,Ā e.g.,Ā aĀ replacementĀ ofĀ oneĀ orĀ moreĀ non-humanĀ sequencesĀ withĀ oneĀ orĀ moreĀ humanĀ sequences.Ā TheĀ animalsĀ areĀ generallyĀ ableĀ toĀ passĀ theĀ modificationĀ toĀ progeny,Ā i.e.,Ā throughĀ germlineĀ transmission.
AsĀ usedĀ herein,Ā theĀ termĀ ā€œchimericĀ geneā€Ā orĀ ā€œchimericĀ nucleicĀ acidā€Ā refersĀ toĀ aĀ geneĀ orĀ aĀ nucleicĀ acid,Ā whereinĀ twoĀ orĀ moreĀ portionsĀ ofĀ theĀ geneĀ orĀ theĀ nucleicĀ acidĀ areĀ fromĀ differentĀ species,Ā orĀ atĀ leastĀ oneĀ ofĀ theĀ sequencesĀ ofĀ theĀ geneĀ orĀ theĀ nucleicĀ acidĀ doesĀ notĀ correspondĀ toĀ theĀ wildtypeĀ nucleicĀ acidĀ inĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ geneĀ orĀ chimericĀ nucleicĀ acidĀ hasĀ atĀ leastĀ oneĀ portionĀ ofĀ theĀ sequenceĀ thatĀ isĀ derivedĀ fromĀ twoĀ orĀ moreĀ differentĀ sources,Ā e.g.,Ā sequencesĀ encodingĀ differentĀ proteinsĀ orĀ sequencesĀ encodingĀ theĀ sameĀ (orĀ homologous)Ā proteinĀ ofĀ twoĀ orĀ moreĀ differentĀ species.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ geneĀ orĀ theĀ chimericĀ nucleicĀ acidĀ isĀ aĀ humanizedĀ geneĀ orĀ humanizedĀ nucleicĀ acid.
AsĀ usedĀ herein,Ā theĀ termĀ ā€œchimericĀ proteinā€Ā orĀ ā€œchimericĀ polypeptideā€Ā refersĀ toĀ aĀ proteinĀ orĀ aĀ polypeptide,Ā whereinĀ twoĀ orĀ moreĀ portionsĀ ofĀ theĀ proteinĀ orĀ theĀ polypeptideĀ areĀ fromĀ differentĀ species,Ā orĀ atĀ leastĀ oneĀ ofĀ theĀ sequencesĀ ofĀ theĀ proteinĀ orĀ theĀ polypeptideĀ doesĀ notĀ correspondĀ toĀ wildtypeĀ aminoĀ acidĀ sequenceĀ inĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ proteinĀ orĀ theĀ chimericĀ polypeptideĀ hasĀ atĀ leastĀ oneĀ portionĀ ofĀ theĀ sequenceĀ thatĀ isĀ derivedĀ fromĀ twoĀ orĀ moreĀ differentĀ sources,Ā e.g.,Ā sameĀ (orĀ homologous)Ā proteinsĀ ofĀ differentĀ species.Ā InĀ someĀ embodiments,Ā theĀ chimericĀ proteinĀ orĀ theĀ chimericĀ polypeptideĀ isĀ aĀ humanizedĀ proteinĀ orĀ aĀ humanizedĀ polypeptide.
InĀ someĀ embodiments,Ā theĀ chimericĀ geneĀ orĀ theĀ chimericĀ nucleicĀ acidĀ isĀ aĀ humanizedĀ BTLAĀ geneĀ orĀ aĀ humanizedĀ BTLAĀ nucleicĀ acid.Ā InĀ someĀ embodiments,Ā atĀ leastĀ oneĀ orĀ moreĀ portionsĀ ofĀ theĀ geneĀ orĀ theĀ nucleicĀ acidĀ isĀ fromĀ theĀ humanĀ BTLAĀ gene,Ā atĀ leastĀ oneĀ orĀ moreĀ portionsĀ ofĀ theĀ geneĀ orĀ theĀ nucleicĀ acidĀ isĀ fromĀ aĀ non-humanĀ  BTLAgene.Ā InĀ someĀ embodiments,Ā theĀ geneĀ orĀ theĀ nucleicĀ acidĀ comprisesĀ aĀ sequenceĀ thatĀ encodesĀ aĀ BTLAĀ protein.Ā TheĀ encodedĀ BTLAĀ proteinĀ isĀ functionalĀ orĀ hasĀ atĀ leastĀ oneĀ activityĀ ofĀ theĀ humanĀ BTLAĀ proteinĀ orĀ theĀ non-humanĀ BTLAĀ protein,Ā e.g.,Ā bindingĀ toĀ humanĀ orĀ non-humanĀ HVEMĀ and/orĀ B7-H4Ā (VTCN1)Ā ,Ā regulatingĀ immuneĀ response,Ā promotingĀ NF-ĪŗBĀ activation,Ā and/orĀ promotingĀ cellĀ (e.g.,Ā TĀ cell)Ā survival.
InĀ someĀ embodiments,Ā theĀ chimericĀ proteinĀ orĀ theĀ chimericĀ polypeptideĀ isĀ aĀ humanizedĀ BTLAĀ proteinĀ orĀ aĀ humanizedĀ BTLAĀ polypeptide.Ā InĀ someĀ embodiments,Ā atĀ leastĀ oneĀ orĀ moreĀ portionsĀ ofĀ theĀ aminoĀ acidĀ sequenceĀ ofĀ theĀ proteinĀ orĀ theĀ polypeptideĀ isĀ fromĀ aĀ humanĀ BTLAĀ protein,Ā andĀ atĀ leastĀ oneĀ orĀ moreĀ portionsĀ ofĀ theĀ aminoĀ acidĀ sequenceĀ ofĀ theĀ proteinĀ orĀ theĀ polypeptideĀ isĀ fromĀ aĀ non-humanĀ BTLAĀ protein.Ā TheĀ humanizedĀ BTLAĀ proteinĀ orĀ theĀ humanizedĀ BTLAĀ polypeptideĀ isĀ functionalĀ orĀ hasĀ atĀ leastĀ oneĀ activityĀ ofĀ theĀ humanĀ BTLAĀ proteinĀ orĀ theĀ non-humanĀ BTLAĀ protein
TheĀ geneticallyĀ modifiedĀ non-humanĀ animalĀ canĀ beĀ variousĀ animals,Ā e.g.,Ā aĀ mouse,Ā rat,Ā rabbit,Ā pig,Ā bovineĀ (e.g.,Ā cow,Ā bull,Ā buffalo)Ā ,Ā deer,Ā sheep,Ā goat,Ā chicken,Ā cat,Ā dog,Ā ferret,Ā primateĀ (e.g.,Ā marmoset,Ā rhesusĀ monkey)Ā .Ā ForĀ theĀ non-humanĀ animalsĀ whereĀ suitableĀ geneticallyĀ modifiableĀ ESĀ cellsĀ areĀ notĀ readilyĀ available,Ā otherĀ methodsĀ areĀ employedĀ toĀ makeĀ aĀ non-humanĀ animalĀ comprisingĀ theĀ geneticĀ modification.Ā SuchĀ methodsĀ include,Ā e.g.,Ā modifyingĀ aĀ non-ESĀ cellĀ genomeĀ (e.g.,Ā aĀ fibroblastĀ orĀ anĀ inducedĀ pluripotentĀ cell)Ā andĀ employingĀ nuclearĀ transferĀ toĀ transferĀ theĀ modifiedĀ genomeĀ toĀ aĀ suitableĀ cell,Ā e.g.,Ā anĀ oocyte,Ā andĀ gestatingĀ theĀ modifiedĀ cellĀ (e.g.,Ā theĀ modifiedĀ oocyte)Ā inĀ aĀ non-humanĀ animalĀ underĀ suitableĀ conditionsĀ toĀ formĀ anĀ embryo.Ā TheseĀ methodsĀ areĀ knownĀ inĀ theĀ art,Ā andĀ areĀ described,Ā e.g.,Ā inĀ A.Ā Nagy,Ā etĀ al.,Ā ā€œManipulatingĀ theĀ MouseĀ Embryo:Ā AĀ LaboratoryĀ ManualĀ (ThirdĀ Edition)Ā ,Ā ā€Ā ColdĀ SpringĀ HarborĀ LaboratoryĀ Press,Ā 2003,Ā whichĀ isĀ incorporatedĀ byĀ referenceĀ hereinĀ inĀ itsĀ entirety.
InĀ oneĀ aspect,Ā theĀ animalĀ isĀ aĀ mammal,Ā e.g.,Ā ofĀ theĀ superfamilyĀ DipodoideaĀ orĀ Muroidea.Ā InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ animalĀ isĀ aĀ rodent.Ā TheĀ rodentĀ canĀ beĀ selectedĀ fromĀ aĀ mouse,Ā aĀ rat,Ā andĀ aĀ hamster.Ā InĀ someĀ embodiment,Ā theĀ rodentĀ isĀ selectedĀ fromĀ theĀ superfamilyĀ Muroidea.Ā InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ animalĀ isĀ fromĀ aĀ familyĀ selectedĀ fromĀ CalomyscidaeĀ (e.g.,Ā mouse-likeĀ hamsters)Ā ,Ā CricetidaeĀ (e.g.,Ā hamster,Ā NewĀ WorldĀ ratsĀ andĀ mice,Ā voles)Ā ,Ā MuridaeĀ (trueĀ miceĀ andĀ rats,Ā gerbils,Ā spinyĀ mice,Ā crestedĀ rats)Ā ,Ā NesomyidaeĀ (climbingĀ mice,Ā rockĀ mice,Ā with-tailedĀ rats,Ā  MalagasyĀ ratsĀ andĀ mice)Ā ,Ā PlatacanthomyidaeĀ (e.g.,Ā spinyĀ dormice)Ā ,Ā andĀ SpalacidaeĀ (e.g.,Ā moleĀ rates,Ā bambooĀ rats,Ā andĀ zokors)Ā .Ā InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ rodentĀ isĀ selectedĀ fromĀ aĀ trueĀ mouseĀ orĀ ratĀ (familyĀ Muridae)Ā ,Ā aĀ gerbil,Ā aĀ spinyĀ mouse,Ā andĀ aĀ crestedĀ rat.Ā InĀ oneĀ embodiment,Ā theĀ non-humanĀ animalĀ isĀ aĀ mouse.
InĀ someĀ embodiments,Ā theĀ animalĀ isĀ aĀ mouseĀ ofĀ aĀ C57BLĀ strainĀ selectedĀ fromĀ C57BL/A,Ā C57BL/An,Ā C57BL/GrFa,Ā C57BL/KaLwN,Ā C57BL/6,Ā C57BL/6J,Ā C57BL/6ByJ,Ā C57BL/6NJ,Ā C57BL/10,Ā C57BL/10ScSn,Ā C57BL/10Cr,Ā andĀ C57BL/Ola.Ā InĀ someĀ embodiments,Ā theĀ mouseĀ isĀ aĀ 129Ā strainĀ selectedĀ fromĀ theĀ groupĀ consistingĀ ofĀ aĀ strainĀ thatĀ isĀ 129P1,Ā 129P2,Ā 129P3,Ā 129X1,Ā 129S1Ā (e.g.,Ā 129S1/SV,Ā 129S1/SvIm)Ā ,Ā 129S2,Ā 129S4,Ā 129S5,Ā 129S9/SvEvH,Ā 129S6Ā (129/SvEvTac)Ā ,Ā 129S7,Ā 129S8,Ā 129T1,Ā 129T2.Ā TheseĀ miceĀ areĀ described,Ā e.g.,Ā inĀ FestingĀ etĀ al.,Ā RevisedĀ nomenclatureĀ forĀ strainĀ 129Ā mice,Ā MammalianĀ GenomeĀ 10:Ā 836Ā (1999)Ā ļ¼›Ā AuerbachĀ etĀ al.,Ā EstablishmentĀ andĀ ChimeraĀ AnalysisĀ ofĀ 129/SvEv-andĀ C57BL/6-DerivedĀ MouseĀ EmbryonicĀ StemĀ CellĀ LinesĀ (2000)Ā ,Ā bothĀ ofĀ whichĀ areĀ incorporatedĀ hereinĀ byĀ referenceĀ inĀ theĀ entirety.Ā InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ mouseĀ isĀ aĀ mixĀ ofĀ theĀ 129Ā strainĀ andĀ theĀ C57BL/6Ā strain.Ā InĀ someĀ embodiments,Ā theĀ mouseĀ isĀ aĀ mixĀ ofĀ theĀ 129Ā strains,Ā orĀ aĀ mixĀ ofĀ theĀ BL/6Ā strains.Ā InĀ someĀ embodiment,Ā theĀ mouseĀ isĀ aĀ BALBĀ strain,Ā e.g.,Ā BALB/cĀ strain.Ā InĀ someĀ embodiments,Ā theĀ mouseĀ isĀ aĀ mixĀ ofĀ aĀ BALBĀ strainĀ andĀ anotherĀ strain.Ā InĀ someĀ embodiments,Ā theĀ mouseĀ isĀ fromĀ aĀ hybridĀ lineĀ (e.g.,Ā 50ļ¼…BALB/c-50ļ¼…12954/Svļ¼›Ā orĀ 50ļ¼…C57BL/6-50ļ¼…129)Ā .
InĀ someĀ embodiments,Ā theĀ animalĀ isĀ aĀ rat.Ā TheĀ ratĀ canĀ beĀ selectedĀ fromĀ aĀ WistarĀ rat,Ā anĀ LEAĀ strain,Ā aĀ SpragueĀ DawleyĀ strain,Ā aĀ FischerĀ strain,Ā F344,Ā F6,Ā andĀ DarkĀ Agouti.Ā InĀ someĀ embodiments,Ā theĀ ratĀ strainĀ isĀ aĀ mixĀ ofĀ twoĀ orĀ moreĀ strainsĀ selectedĀ fromĀ theĀ groupĀ consistingĀ ofĀ Wistar,Ā LEA,Ā SpragueĀ Dawley,Ā Fischer,Ā F344,Ā F6,Ā andĀ DarkĀ Agouti.
TheĀ animalĀ canĀ haveĀ oneĀ orĀ moreĀ otherĀ geneticĀ modifications,Ā and/orĀ otherĀ modifications,Ā thatĀ areĀ suitableĀ forĀ theĀ particularĀ purposeĀ forĀ whichĀ theĀ humanizedĀ BTLAĀ animalĀ isĀ made.Ā ForĀ example,Ā suitableĀ miceĀ forĀ maintainingĀ aĀ xenograftĀ (e.g.,Ā aĀ humanĀ cancerĀ orĀ tumor)Ā ,Ā canĀ haveĀ oneĀ orĀ moreĀ modificationsĀ thatĀ compromise,Ā inactivate,Ā orĀ destroyĀ theĀ immuneĀ systemĀ ofĀ theĀ non-humanĀ animalĀ inĀ wholeĀ orĀ inĀ part.Ā Compromise,Ā inactivation,Ā orĀ destructionĀ ofĀ theĀ immuneĀ systemĀ ofĀ theĀ non-humanĀ animalĀ canĀ include,Ā forĀ example,Ā destructionĀ ofĀ hematopoieticĀ cellsĀ and/orĀ immuneĀ cellsĀ byĀ chemicalĀ meansĀ  (e.g.,Ā administeringĀ aĀ toxin)Ā ,Ā physicalĀ meansĀ (e.g.,Ā irradiatingĀ theĀ animal)Ā ,Ā and/orĀ geneticĀ modificationĀ (e.g.,Ā knockingĀ outĀ oneĀ orĀ moreĀ genes)Ā .Ā Non-limitingĀ examplesĀ ofĀ suchĀ miceĀ include,Ā e.g.,Ā NODĀ mice,Ā SCIDĀ mice,Ā NOD/SCIDĀ mice,Ā IL2RĪ³Ā knockoutĀ mice,Ā NOD/SCID/Ī³cnullĀ miceĀ (Ito,Ā M.Ā etĀ al.,Ā NOD/SCID/Ī³cnullĀ mouse:Ā anĀ excellentĀ recipientĀ mouseĀ modelĀ forĀ engraftmentĀ ofĀ humanĀ cells,Ā BloodĀ 100Ā (9)Ā :Ā 3175-3182,Ā 2002)Ā ,Ā nudeĀ mice,Ā andĀ Rag1Ā and/orĀ Rag2Ā knockoutĀ mice.Ā TheseĀ miceĀ canĀ optionallyĀ beĀ irradiated,Ā orĀ otherwiseĀ treatedĀ toĀ destroyĀ oneĀ orĀ moreĀ immuneĀ cellĀ type.Ā Thus,Ā inĀ variousĀ embodiments,Ā aĀ geneticallyĀ modifiedĀ mouseĀ isĀ providedĀ thatĀ canĀ includeĀ aĀ humanizationĀ ofĀ atĀ leastĀ aĀ portionĀ ofĀ anĀ endogenousĀ non-humanĀ BTLAĀ locus,Ā andĀ furtherĀ comprisesĀ aĀ modificationĀ thatĀ compromises,Ā inactivates,Ā orĀ destroysĀ theĀ immuneĀ systemĀ (orĀ oneĀ orĀ moreĀ cellĀ typesĀ ofĀ theĀ immuneĀ system)Ā ofĀ theĀ non-humanĀ animalĀ inĀ wholeĀ orĀ inĀ part.Ā InĀ someĀ embodiments,Ā modificationĀ is,Ā e.g.,Ā selectedĀ fromĀ theĀ groupĀ consistingĀ ofĀ aĀ modificationĀ thatĀ resultsĀ inĀ NODĀ mice,Ā SCIDĀ mice,Ā NOD/SCIDĀ mice,Ā IL-2RĪ³Ā knockoutĀ mice,Ā NOD/SCID/Ī³cĀ nullĀ mice,Ā nudeĀ mice,Ā Rag1Ā and/orĀ Rag2Ā knockoutĀ mice,Ā andĀ aĀ combinationĀ thereof.Ā TheseĀ geneticallyĀ modifiedĀ animalsĀ areĀ described,Ā e.g.,Ā inĀ US20150106961,Ā whichĀ isĀ incorporatedĀ hereinĀ byĀ referenceĀ inĀ itsĀ entirety.Ā InĀ someĀ embodiments,Ā theĀ mouseĀ canĀ includeĀ aĀ replacementĀ ofĀ allĀ orĀ partĀ ofĀ matureĀ BTLAĀ codingĀ sequenceĀ withĀ humanĀ matureĀ BTLAĀ codingĀ sequence.
GeneticallyĀ modifiedĀ non-humanĀ animalsĀ thatĀ compriseĀ aĀ modificationĀ ofĀ anĀ endogenousĀ non-humanĀ BTLAĀ locus.Ā InĀ someĀ embodiments,Ā theĀ modificationĀ canĀ compriseĀ aĀ humanĀ nucleicĀ acidĀ sequenceĀ encodingĀ atĀ leastĀ aĀ portionĀ ofĀ aĀ matureĀ BTLAĀ proteinĀ (e.g.,Ā atĀ leastĀ 10ļ¼…,Ā 20ļ¼…,Ā 30ļ¼…,Ā 40ļ¼…,Ā 50ļ¼…,Ā 60ļ¼…,Ā 70ļ¼…,Ā 80ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ theĀ matureĀ BTLAĀ proteinĀ sequence)Ā .Ā AlthoughĀ geneticallyĀ modifiedĀ cellsĀ areĀ alsoĀ providedĀ thatĀ canĀ compriseĀ theĀ modificationsĀ describedĀ hereinĀ (e.g.,Ā ESĀ cells,Ā somaticĀ cells)Ā ,Ā inĀ manyĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ non-humanĀ animalsĀ compriseĀ theĀ modificationĀ ofĀ theĀ endogenousĀ BTLAĀ locusĀ inĀ theĀ germlineĀ ofĀ theĀ animal.
GeneticallyĀ modifiedĀ animalsĀ canĀ expressĀ aĀ humanĀ BTLAĀ and/orĀ aĀ chimericĀ (e.g.,Ā humanized)Ā BTLAĀ fromĀ endogenousĀ mouseĀ loci,Ā whereinĀ theĀ endogenousĀ mouseĀ BTLAĀ geneĀ hasĀ beenĀ replacedĀ withĀ aĀ humanĀ BTLAĀ geneĀ and/orĀ aĀ nucleotideĀ sequenceĀ thatĀ encodesĀ aĀ regionĀ ofĀ humanĀ BTLAĀ sequenceĀ orĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ  10ļ¼…,Ā 20ļ¼…,Ā 30ļ¼…,Ā 40ļ¼…,Ā 50ļ¼…,Ā 60ļ¼…,Ā 70&,Ā 80ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ theĀ humanĀ BTLAĀ sequence.Ā InĀ variousĀ embodiments,Ā anĀ endogenousĀ non-humanĀ BTLAĀ locusĀ isĀ modifiedĀ inĀ wholeĀ orĀ inĀ partĀ toĀ compriseĀ humanĀ nucleicĀ acidĀ sequenceĀ encodingĀ atĀ leastĀ oneĀ protein-codingĀ sequenceĀ ofĀ aĀ matureĀ BTLAĀ protein.
InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ miceĀ expressĀ theĀ humanĀ BTLAĀ and/orĀ chimericĀ BTLAĀ (e.g.,Ā humanizedĀ BTLA)Ā fromĀ endogenousĀ lociĀ thatĀ areĀ underĀ controlĀ ofĀ mouseĀ promotersĀ and/orĀ mouseĀ regulatoryĀ elements.Ā TheĀ replacementĀ (s)Ā atĀ theĀ endogenousĀ mouseĀ lociĀ provideĀ non-humanĀ animalsĀ thatĀ expressĀ humanĀ BTLAĀ orĀ chimericĀ BTLAĀ (e.g.,Ā humanizedĀ BTLA)Ā inĀ appropriateĀ cellĀ typesĀ andĀ inĀ aĀ mannerĀ thatĀ doesĀ notĀ resultĀ inĀ theĀ potentialĀ pathologiesĀ observedĀ inĀ someĀ otherĀ transgenicĀ miceĀ knownĀ inĀ theĀ art.Ā TheĀ humanĀ BTLAĀ orĀ theĀ chimericĀ BTLAĀ (e.g.,Ā humanizedĀ BTLA)Ā expressedĀ inĀ animalĀ canĀ maintainĀ oneĀ orĀ moreĀ functionsĀ ofĀ theĀ wildtypeĀ mouseĀ orĀ humanĀ BTLAĀ inĀ theĀ animal.Ā ForĀ example,Ā humanĀ orĀ non-humanĀ HVEMĀ canĀ bindĀ toĀ theĀ expressedĀ BTLAĀ andĀ downregulateĀ immuneĀ response,Ā e.g.,Ā downregulateĀ immuneĀ responseĀ byĀ atĀ leastĀ 10ļ¼…,Ā 20ļ¼…,Ā 30ļ¼…,Ā 40ļ¼…,Ā orĀ 50ļ¼….Ā Furthermore,Ā inĀ someĀ embodiments,Ā theĀ animalĀ doesĀ notĀ expressĀ endogenousĀ BTLA.Ā AsĀ usedĀ herein,Ā theĀ termĀ ā€œendogenousĀ BTLAā€Ā refersĀ toĀ BTLAĀ proteinĀ thatĀ isĀ expressedĀ fromĀ anĀ endogenousĀ BTLAĀ nucleotideĀ sequenceĀ ofĀ theĀ geneticallyĀ modifiedĀ non-humanĀ animalĀ (e.g.,Ā mouse)Ā beforeĀ theĀ geneticĀ modification.
TheĀ genomeĀ ofĀ theĀ animalĀ canĀ compriseĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…,Ā orĀ 100ļ¼…identicalĀ toĀ humanĀ BTLAĀ (NP_861445.3)Ā (SEQĀ IDĀ NO:Ā 27)Ā .Ā InĀ someĀ embodiments,Ā theĀ genomeĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…,Ā orĀ 100ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 31.
TheĀ genomeĀ ofĀ theĀ geneticallyĀ modifiedĀ animalĀ canĀ compriseĀ aĀ replacementĀ atĀ anĀ endogenousĀ BTLAĀ geneĀ locusĀ ofĀ aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ thatĀ isĀ replacedĀ isĀ anyĀ sequenceĀ withinĀ theĀ endogenousĀ BTLAĀ geneĀ locus,Ā e.g.,Ā exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā exonĀ 6,Ā 5ā€™Ā -UTR,Ā 3ā€™Ā UTR,Ā theĀ firstĀ intron,Ā theĀ secondĀ intron,Ā andĀ theĀ thirdĀ intron,Ā theĀ fourthĀ intron,Ā theĀ fifthĀ intron,Ā theĀ sixthĀ intronĀ etc.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ thatĀ isĀ replacedĀ isĀ withinĀ theĀ  regulatoryĀ regionĀ ofĀ theĀ endogenousĀ BTLAĀ gene.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ thatĀ isĀ replacedĀ isĀ exon2Ā ofĀ anĀ endogenousĀ mouseĀ BTLAĀ geneĀ locus.
TheĀ geneticallyĀ modifiedĀ animalĀ canĀ haveĀ oneĀ orĀ moreĀ cellsĀ expressingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ (e.g.,Ā humanizedĀ BTLA)Ā havingĀ anĀ extracellularĀ regionĀ andĀ aĀ cytoplasmicĀ region,Ā whereinĀ theĀ extracellularĀ regionĀ comprisesĀ aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 50ļ¼…,Ā 60ļ¼…,Ā 70ļ¼…,Ā 80ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…identicalĀ toĀ theĀ extracellularĀ regionĀ ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ extracellularĀ regionĀ ofĀ theĀ humanizedĀ BTLAĀ hasĀ aĀ sequenceĀ thatĀ hasĀ atĀ leastĀ 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā aminoĀ acidsĀ (e.g.,Ā contiguouslyĀ orĀ non-contiguously)Ā thatĀ areĀ identicalĀ toĀ humanĀ BTLA.Ā BecauseĀ humanĀ BTLAĀ andĀ non-humanĀ BTLAĀ (e.g.,Ā mouseĀ BTLA)Ā sequences,Ā inĀ manyĀ cases,Ā areĀ different,Ā antibodiesĀ thatĀ bindĀ toĀ humanĀ BTLAĀ willĀ notĀ necessarilyĀ haveĀ theĀ sameĀ bindingĀ affinityĀ withĀ mouseĀ BTLAĀ orĀ haveĀ theĀ sameĀ effectsĀ toĀ mouseĀ BTLA.Ā Therefore,Ā theĀ geneticallyĀ modifiedĀ animalĀ havingĀ aĀ humanĀ orĀ aĀ humanizedĀ extracellularĀ regionĀ canĀ beĀ usedĀ toĀ betterĀ evaluateĀ theĀ effectsĀ ofĀ anti-humanĀ BTLAĀ antibodiesĀ inĀ anĀ animalĀ model.Ā InĀ someĀ embodiments,Ā theĀ genomeĀ ofĀ theĀ geneticallyĀ modifiedĀ animalĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ correspondsĀ toĀ partĀ orĀ theĀ entireĀ sequenceĀ ofĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā and/orĀ exonĀ 5Ā ofĀ humanĀ BTLA,Ā partĀ orĀ theĀ entireĀ sequenceĀ ofĀ extracellularĀ regionĀ ofĀ humanĀ BTLAĀ (withĀ orĀ withoutĀ signalĀ peptide)Ā ,Ā orĀ partĀ orĀ theĀ entireĀ sequenceĀ ofĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.
InĀ someĀ embodiments,Ā theĀ non-humanĀ animalĀ canĀ have,Ā atĀ anĀ endogenousĀ BTLAĀ geneĀ locus,Ā aĀ nucleotideĀ sequenceĀ encodingĀ aĀ chimericĀ human/non-humanĀ BTLAĀ polypeptide,Ā whereinĀ aĀ humanĀ portionĀ ofĀ theĀ chimericĀ human/non-humanĀ BTLAĀ polypeptideĀ comprisesĀ aĀ portionĀ ofĀ humanĀ BTLAĀ extracellularĀ domain,Ā andĀ whereinĀ theĀ animalĀ expressesĀ aĀ functionalĀ BTLAĀ onĀ aĀ surfaceĀ ofĀ aĀ cellĀ ofĀ theĀ animal.Ā TheĀ humanĀ portionĀ ofĀ theĀ chimericĀ human/non-humanĀ BTLAĀ polypeptideĀ canĀ compriseĀ aĀ portionĀ ofĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā and/orexonĀ 5Ā ofĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ humanĀ portionĀ ofĀ theĀ chimericĀ human/non-humanĀ BTLAĀ polypeptideĀ canĀ compriseĀ aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.
InĀ someĀ embodiments,Ā theĀ non-humanĀ portionĀ ofĀ theĀ chimericĀ human/non-humanĀ BTLAĀ polypeptideĀ comprisesĀ transmembraneĀ and/orĀ cytoplasmicĀ regionsĀ ofĀ anĀ  endogenousĀ non-humanĀ BTLAĀ polypeptide.Ā ThereĀ mayĀ beĀ severalĀ advantagesĀ thatĀ areĀ associatedĀ withĀ theĀ transmembraneĀ and/orĀ cytoplasmicĀ regionsĀ ofĀ anĀ endogenousĀ non-humanĀ BTLAĀ polypeptide.Ā ForĀ example,Ā onceĀ HVEMĀ bindsĀ toĀ BTLA,Ā theyĀ canĀ properlyĀ transmitĀ extracellularĀ signalsĀ intoĀ theĀ cellsĀ andĀ regulateĀ theĀ downstreamĀ pathway.Ā AĀ humanĀ orĀ humanizedĀ transmembraneĀ and/orĀ cytoplasmicĀ regionsĀ mayĀ notĀ functionĀ properlyĀ inĀ non-humanĀ animalĀ cells.Ā InĀ someĀ embodiments,Ā aĀ fewĀ extracellularĀ aminoĀ acidsĀ thatĀ areĀ closeĀ toĀ theĀ transmembraneĀ regionĀ ofĀ BTLAĀ areĀ alsoĀ derivedĀ fromĀ endogenousĀ sequence.
Furthermore,Ā theĀ geneticallyĀ modifiedĀ animalĀ canĀ beĀ heterozygousĀ withĀ respectĀ toĀ theĀ replacementĀ atĀ theĀ endogenousĀ BTLAĀ locus,Ā orĀ homozygousĀ withĀ respectĀ toĀ theĀ replacementĀ atĀ theĀ endogenousĀ BTLAĀ locus.
InĀ someĀ embodiments,Ā theĀ humanizedĀ BTLAĀ locusĀ lacksĀ aĀ humanĀ BTLAĀ 5ā€™Ā -UTR.Ā InĀ someĀ embodiment,Ā theĀ humanizedĀ BTLAĀ locusĀ comprisesĀ aĀ rodentĀ (e.g.,Ā mouse)Ā 5ā€™Ā -UTR.Ā InĀ someĀ embodiments,Ā theĀ humanizationĀ comprisesĀ aĀ humanĀ 3ā€™Ā -UTR.Ā InĀ appropriateĀ cases,Ā itĀ mayĀ beĀ reasonableĀ toĀ presumeĀ thatĀ theĀ mouseĀ andĀ humanĀ BTLAĀ genesĀ appearĀ toĀ beĀ similarlyĀ regulatedĀ basedĀ onĀ theĀ similarityĀ ofĀ theirĀ 5ā€™Ā -flankingĀ sequence.Ā AsĀ shownĀ inĀ theĀ presentĀ disclosure,Ā humanizedĀ BTLAĀ miceĀ thatĀ compriseĀ aĀ replacementĀ atĀ anĀ endogenousĀ mouseĀ BTLAĀ locus,Ā whichĀ retainĀ mouseĀ regulatoryĀ elementsĀ butĀ compriseĀ aĀ humanizationĀ ofĀ BTLAĀ encodingĀ sequence,Ā doĀ notĀ exhibitĀ pathologies.Ā BothĀ geneticallyĀ modifiedĀ miceĀ thatĀ areĀ heterozygousĀ orĀ homozygousĀ forĀ humanĀ BTLAĀ areĀ grosslyĀ normal.
TheĀ presentĀ disclosureĀ furtherĀ relatesĀ toĀ aĀ non-humanĀ mammalĀ generatedĀ throughĀ theĀ methodĀ mentionedĀ above.Ā InĀ someĀ embodiments,Ā theĀ genomeĀ thereofĀ containsĀ humanĀ geneĀ (s)Ā .
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ rodent,Ā andĀ preferably,Ā theĀ non-humanĀ mammalĀ isĀ aĀ mouse.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ expressesĀ aĀ proteinĀ encodedĀ byĀ aĀ humanizedĀ BTLAĀ gene.
InĀ addition,Ā theĀ presentĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ tumorĀ bearingĀ non-humanĀ mammalĀ model,Ā characterizedĀ inĀ thatĀ theĀ non-humanĀ mammalĀ modelĀ isĀ obtainedĀ throughĀ  theĀ methodsĀ asĀ describedĀ herein.Ā InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ rodentĀ (e.g.,Ā aĀ mouse)Ā .
TheĀ presentĀ disclosureĀ furtherĀ relatesĀ toĀ aĀ cellĀ orĀ cellĀ line,Ā orĀ aĀ primaryĀ cellĀ cultureĀ thereofĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammalļ¼›Ā theĀ tissue,Ā organĀ orĀ aĀ cultureĀ thereofĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereof,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammalļ¼›Ā andĀ theĀ tumorĀ tissueĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ anĀ offspringĀ thereofĀ whenĀ itĀ bearsĀ aĀ tumor,Ā orĀ theĀ tumorĀ bearingĀ non-humanĀ mammal.
TheĀ presentĀ disclosureĀ alsoĀ providesĀ non-humanĀ mammalsĀ producedĀ byĀ anyĀ ofĀ theĀ methodsĀ describedĀ herein.Ā InĀ someĀ embodiments,Ā aĀ non-humanĀ mammalĀ isĀ providedļ¼›Ā andĀ theĀ geneticallyĀ modifiedĀ animalĀ containsĀ theĀ DNAĀ encodingĀ humanĀ orĀ humanizedBTLAĀ inĀ theĀ genomeĀ ofĀ theĀ animal.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ comprisesĀ theĀ geneticĀ constructĀ asĀ shownĀ inĀ FIG.Ā 2.Ā InĀ someĀ embodiments,Ā aĀ non-humanĀ mammalĀ expressingĀ humanĀ orĀ humanizedĀ BTLAĀ isĀ provided.Ā InĀ someĀ embodiments,Ā theĀ tissue-specificĀ expressionĀ ofĀ humanĀ orĀ humanizedBTLAĀ proteinĀ isĀ provided.
InĀ someĀ embodiments,Ā theĀ expressionĀ ofĀ humanĀ orĀ humanizedBTLAĀ inĀ aĀ geneticallyĀ modifiedĀ animalĀ isĀ controllable,Ā asĀ byĀ theĀ additionĀ ofĀ aĀ specificĀ inducerĀ orĀ repressorĀ substance.
Non-humanĀ mammalsĀ canĀ beĀ anyĀ non-humanĀ animalĀ knownĀ inĀ theĀ artĀ andĀ whichĀ canĀ beĀ usedĀ inĀ theĀ methodsĀ asĀ describedĀ herein.Ā PreferredĀ non-humanĀ mammalsĀ areĀ mammals,Ā (e.g.,Ā rodents)Ā .Ā InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ isĀ aĀ mouse.
Genetic,Ā molecularĀ andĀ behavioralĀ analysesĀ forĀ theĀ non-humanĀ mammalsĀ describedĀ aboveĀ canĀ performed.Ā TheĀ presentĀ disclosureĀ alsoĀ relatesĀ toĀ theĀ progenyĀ producedĀ byĀ theĀ non-humanĀ mammalĀ providedĀ byĀ theĀ presentĀ disclosureĀ matedĀ withĀ theĀ sameĀ orĀ otherĀ genotypes.
TheĀ presentĀ disclosureĀ alsoĀ providesĀ aĀ cellĀ lineĀ orĀ primaryĀ cellĀ cultureĀ derivedĀ fromĀ theĀ non-humanĀ mammalĀ orĀ aĀ progenyĀ thereof.Ā AĀ modelĀ basedĀ onĀ cellĀ cultureĀ canĀ beĀ prepared,Ā forĀ example,Ā byĀ theĀ followingĀ methods.Ā CellĀ culturesĀ canĀ beĀ obtainedĀ byĀ wayĀ ofĀ isolationĀ fromĀ aĀ non-humanĀ mammal,Ā alternativelyĀ cellĀ canĀ beĀ obtainedĀ fromĀ theĀ cellĀ cultureĀ establishedĀ usingĀ theĀ sameĀ constructsĀ andĀ theĀ standardĀ cellĀ transfectionĀ techniques.Ā  TheĀ integrationĀ ofĀ geneticĀ constructsĀ containingĀ DNAĀ sequencesĀ encodingĀ humanĀ BTLAĀ proteinĀ canĀ beĀ detectedĀ byĀ aĀ varietyĀ ofĀ methods.
ThereĀ areĀ manyĀ analyticalĀ methodsĀ thatĀ canĀ beĀ usedĀ toĀ detectĀ exogenousĀ DNAĀ expression,Ā includingĀ methodsĀ atĀ theĀ levelĀ ofĀ RNAĀ (includingĀ theĀ mRNAĀ quantificationĀ approachesĀ usingĀ reverseĀ transcriptaseĀ polymeraseĀ chainĀ reactionĀ (RT-PCR)Ā orĀ SouthernĀ blotting,Ā andĀ inĀ situĀ hybridization)Ā andĀ methodsĀ atĀ theĀ proteinĀ levelĀ (includingĀ histochemistry,Ā immunoblotĀ analysisĀ andĀ inĀ vitroĀ bindingĀ studies)Ā .Ā InĀ addition,Ā theĀ expressionĀ levelĀ ofĀ theĀ geneĀ ofĀ interestĀ canĀ beĀ quantifiedĀ byĀ ELISAĀ techniquesĀ wellĀ knownĀ toĀ thoseĀ skilledĀ inĀ theĀ art.Ā ManyĀ standardĀ analysisĀ methodsĀ canĀ beĀ usedĀ toĀ completeĀ quantitativeĀ measurements.Ā ForĀ example,Ā transcriptionĀ levelsĀ canĀ beĀ measuredĀ usingĀ RT-PCRĀ andĀ hybridizationĀ methodsĀ includingĀ RNaseĀ protection,Ā SouthernĀ blotĀ analysis,Ā RNAĀ dotĀ analysisĀ (RNAdot)Ā analysis.Ā ImmunohistochemicalĀ staining,Ā flowĀ cytometry,Ā WesternĀ blotĀ analysisĀ canĀ alsoĀ beĀ usedĀ toĀ assessĀ theĀ presenceĀ ofĀ humanĀ BTLAĀ protein.
Vectors
TheĀ presentĀ disclosureĀ relatesĀ toĀ aĀ targetingĀ vector,Ā comprising:Ā a)Ā aĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 5ā€™Ā endĀ ofĀ aĀ regionĀ toĀ beĀ alteredĀ (5ā€™Ā arm)Ā ,Ā whichĀ isĀ selectedĀ fromĀ theĀ BTLAĀ geneĀ genomicĀ DNAsĀ inĀ theĀ lengthĀ ofĀ 100Ā toĀ 10,000Ā nucleotidesļ¼›Ā b)Ā aĀ desired/donorĀ DNAĀ sequenceĀ encodingĀ aĀ donorĀ regionļ¼›Ā andĀ c)Ā aĀ secondĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 3ā€™Ā endĀ ofĀ theĀ regionĀ toĀ beĀ alteredĀ (3ā€™Ā arm)Ā ,Ā whichĀ isĀ selectedĀ fromĀ theĀ BTLAĀ geneĀ genomicĀ DNAsĀ inĀ theĀ lengthĀ ofĀ 100Ā toĀ 10,000Ā nucleotides.
InĀ someĀ embodiments,Ā a)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 5ā€™Ā endĀ ofĀ aĀ conversionĀ regionĀ toĀ beĀ alteredĀ (5ā€™Ā arm)Ā isĀ selectedĀ fromĀ theĀ nucleotideĀ sequencesĀ thatĀ haveĀ atĀ leastĀ 90ļ¼…homologyĀ toĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6ļ¼›Ā c)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 3ā€™Ā endĀ ofĀ theĀ regionĀ toĀ beĀ alteredĀ (3ā€™Ā arm)Ā isĀ selectedĀ fromĀ theĀ nucleotideĀ sequencesĀ thatĀ haveĀ atĀ leastĀ 90ļ¼…homologyĀ toĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6.
InĀ someĀ embodiments,Ā a)Ā theĀ DNAĀ fragmentĀ homologousĀ toĀ theĀ 5ā€™Ā endĀ ofĀ aĀ regionĀ toĀ beĀ alteredĀ (5ā€™Ā arm)Ā isĀ selectedĀ fromĀ theĀ nucleotidesĀ fromĀ theĀ positionĀ 45237539Ā toĀ theĀ positionĀ 45239051Ā ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6ļ¼›Ā c)Ā theĀ DNAĀ fragmentĀ  homologousĀ toĀ theĀ 3ā€™Ā endĀ ofĀ theĀ regionĀ toĀ beĀ alteredĀ (3ā€™Ā arm)Ā isĀ selectedĀ fromĀ theĀ nucleotidesĀ fromĀ theĀ positionĀ 45239358Ā toĀ theĀ positionĀ 45240854Ā ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6.
InĀ someĀ embodiments,Ā theĀ lengthĀ ofĀ theĀ selectedĀ genomicĀ nucleotideĀ sequenceĀ inĀ theĀ targetingĀ vectorĀ canĀ beĀ aboutĀ 1.2Ā kb,Ā aboutĀ 1.5Ā kb,Ā orĀ aboutĀ 1Ā kb.Ā InĀ someĀ embodiments,Ā theĀ lengthĀ isĀ aboutĀ 1513Ā bpĀ orĀ aboutĀ 1497Ā bp.
InĀ someĀ embodiments,Ā theĀ regionĀ toĀ beĀ alteredĀ isĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā and/orexonĀ 6Ā ofĀ BTLAĀ geneĀ (e.g.,Ā exonĀ 2ofĀ BTLAĀ gene)Ā .
TheĀ targetingĀ vectorĀ canĀ furtherĀ includeĀ aĀ selectedĀ geneĀ marker.
InĀ someĀ embodiments,Ā theĀ sequenceĀ ofĀ theĀ 5ā€™Ā armĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 32ļ¼›Ā andĀ theĀ sequenceĀ ofĀ theĀ 3ā€™Ā armĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 38.
InĀ someĀ embodiments,Ā theĀ targetĀ regionĀ isĀ derivedĀ fromĀ human.Ā ForĀ example,Ā theĀ targetĀ regionĀ inĀ theĀ targetingĀ vectorĀ isĀ aĀ partĀ orĀ entiretyĀ ofĀ theĀ nucleotideĀ sequenceĀ ofĀ aĀ humanĀ BTLA,Ā preferablyĀ theĀ nucleotideĀ sequenceĀ isĀ shownĀ asĀ aĀ firstĀ exon,Ā aĀ secondĀ exon,Ā aĀ thirdĀ exon,Ā aĀ fourthĀ exon,Ā and/orĀ aĀ fifthĀ exonofĀ theĀ DNAĀ sequenceĀ ofĀ theĀ humanĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ ofĀ theĀ humanizedĀ BTLAĀ encodesĀ theĀ humanizedĀ BTLAĀ proteinĀ withĀ theĀ NCBIĀ accessionĀ numberĀ NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā .
TheĀ disclosureĀ alsoĀ relatesĀ toĀ aĀ cellĀ comprisingĀ theĀ targetingĀ vectorsĀ asĀ describedĀ above.
Moreover,Ā theĀ disclosureĀ alsoĀ relatesĀ toĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ theĀ sgRNAĀ sequenceĀ targetsĀ theĀ BTLAĀ gene,Ā theĀ sgRNAĀ isĀ uniqueĀ onĀ theĀ targetĀ sequenceĀ ofĀ theĀ BTLAĀ geneĀ toĀ beĀ altered,Ā andĀ meetsĀ theĀ sequenceĀ arrangementĀ ruleĀ ofĀ 5ā€™Ā -NNNĀ (20)Ā -NGG3ā€™Ā orĀ 5ā€™Ā -CCN-NĀ (20)Ā -3ā€™Ā ļ¼›Ā andĀ inĀ someĀ embodiments,Ā theĀ targetingĀ siteĀ ofĀ theĀ sgRNAĀ inĀ theĀ mouseĀ BTLAĀ geneĀ isĀ locatedĀ onĀ theĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā orexonĀ 6Ā ofĀ theĀ mouseĀ BTLAĀ geneĀ (e.g.,Ā exonĀ 2ofĀ theĀ mouseĀ BTLAĀ gene)Ā .
InĀ someĀ embodiments,Ā anĀ upstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 15,Ā andĀ aĀ downstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 17,Ā andĀ theĀ sgRNAĀ sequenceĀ recognizesĀ aĀ 5ā€™Ā targetingĀ site.Ā InĀ someĀ embodiments,Ā theĀ forwardĀ oligonucleotideĀ sequenceĀ isĀ obtainedĀ byĀ addingĀ TAGGĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 15ļ¼›Ā  andĀ theĀ reverseĀ oligonucleotideĀ sequenceĀ isĀ obtainedĀ byĀ addingĀ AAACĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 17.
InĀ someĀ embodiments,Ā theĀ disclosureĀ providesĀ anĀ sgRNAĀ sequenceĀ forĀ constructingĀ aĀ humanizedĀ animalĀ model,Ā whereinĀ anĀ upstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 19,Ā andĀ aĀ downstreamĀ sequenceĀ thereofĀ isĀ shownĀ asĀ SEQĀ IDĀ NO:Ā 21,Ā andĀ theĀ sgRNAĀ sequenceĀ recognizesĀ aĀ 3ā€™Ā targetingĀ site.Ā InĀ someĀ embodiments,Ā theĀ forwardĀ oligonucleotideĀ sequenceĀ isĀ obtainedĀ byĀ addingĀ TAGGĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 19ļ¼›Ā andĀ theĀ reverseĀ oligonucleotideĀ sequenceĀ isĀ obtainedĀ byĀ addingĀ AAACĀ toĀ theĀ 5ā€™Ā endĀ ofĀ SEQĀ IDĀ NO:Ā 21.
InĀ someĀ embodiments,Ā theĀ disclosureĀ relatesĀ toĀ aĀ constructĀ includingĀ theĀ sgRNAĀ sequence,Ā and/orĀ aĀ cellĀ includingĀ theĀ construct.
InĀ addition,Ā theĀ presentĀ disclosureĀ furtherĀ relatesĀ toĀ aĀ non-humanĀ mammalianĀ cell,Ā havingĀ anyĀ oneĀ ofĀ theĀ foregoingĀ targetingĀ vectors,Ā andĀ oneĀ orĀ moreĀ inĀ vitroĀ transcriptsĀ ofĀ theĀ sgRNAĀ constructĀ asĀ describedĀ herein.Ā InĀ someĀ embodiments,Ā theĀ cellĀ includesĀ Cas9Ā mRNAĀ orĀ anĀ inĀ vitroĀ transcriptĀ thereof.
InĀ someĀ embodiments,Ā theĀ genesĀ inĀ theĀ cellĀ areĀ heterozygous.Ā InĀ someĀ embodiments,Ā theĀ genesĀ inĀ theĀ cellĀ areĀ homozygous.
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalianĀ cellĀ isĀ aĀ mouseĀ cell.Ā InĀ someĀ embodiments,Ā theĀ cellĀ isĀ aĀ fertilizedĀ eggĀ cell.
MethodsĀ ofĀ makingĀ geneticallyĀ modifiedĀ animals
GeneticallyĀ modifiedĀ animalsĀ canĀ beĀ madeĀ byĀ severalĀ techniquesĀ thatĀ areĀ knownĀ inĀ theĀ art,Ā including,Ā e.g.,Ā nonhomologousĀ end-joiningĀ (NHEJ)Ā ,Ā homologousĀ recombinationĀ (HR)Ā ,Ā zincĀ fingerĀ nucleasesĀ (ZFNs)Ā ,Ā transcriptionĀ activator-likeĀ effector-basedĀ nucleasesĀ (TALEN)Ā ,Ā andĀ theĀ clusteredĀ regularlyĀ interspacedĀ shortĀ palindromicĀ repeatsĀ (CRISPR)Ā -CasĀ system.Ā InĀ someĀ embodiments,Ā homologousĀ recombinationĀ isĀ used.Ā InĀ someĀ embodiments,Ā CRISPR-Cas9Ā genomeĀ editingĀ isĀ usedĀ toĀ generateĀ geneticallyĀ modifiedĀ animals.Ā ManyĀ ofĀ theseĀ genomeĀ editingĀ techniquesĀ areĀ knownĀ inĀ theĀ art,Ā andĀ isĀ described,Ā e.g.,Ā inĀ YinĀ etĀ al.,Ā "DeliveryĀ technologiesĀ forĀ genomeĀ editing,Ā "Ā NatureĀ ReviewsĀ DrugĀ DiscoveryĀ 16.6Ā (2017)Ā :Ā 387-399,Ā whichĀ isĀ incorporatedĀ byĀ referenceĀ inĀ itsĀ entirety.Ā ManyĀ otherĀ methodsĀ areĀ alsoĀ providedĀ andĀ canĀ beĀ usedĀ inĀ genomeĀ editing,Ā e.g.,Ā micro- injectingĀ aĀ geneticallyĀ modifiedĀ nucleusĀ intoĀ anĀ enucleatedĀ oocyte,Ā andĀ fusingĀ anĀ enucleatedĀ oocyteĀ withĀ anotherĀ geneticallyĀ modifiedĀ cell.
Thus,Ā inĀ someĀ embodiments,Ā theĀ disclosureĀ providesĀ replacingĀ inĀ atĀ leastĀ oneĀ cellĀ ofĀ theĀ animal,Ā atĀ anĀ endogenousĀ BTLAĀ geneĀ locus,Ā aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ anĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ orĀ chimericĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ replacementĀ occursĀ inĀ aĀ germĀ cell,Ā aĀ somaticĀ cell,Ā aĀ blastocyst,Ā orĀ aĀ fibroblast,Ā etc.Ā TheĀ nucleusĀ ofĀ aĀ somaticĀ cellĀ orĀ theĀ fibroblastĀ canĀ beĀ insertedĀ intoĀ anĀ enucleatedĀ oocyte.
FIG.Ā 3CĀ showsĀ aĀ humanizationĀ strategyĀ forĀ aĀ mouseĀ BTLAĀ locus.Ā InĀ FIG.Ā 3C,Ā theĀ targetingĀ strategyĀ involvesĀ aĀ vectorĀ comprisingĀ theĀ 5ā€™Ā endĀ homologousĀ arm,Ā humanĀ BTLAĀ geneĀ fragment,Ā 3ā€™Ā homologousĀ arm.Ā TheĀ processĀ canĀ involveĀ replacingĀ endogenousĀ BTLAĀ sequenceĀ withĀ humanĀ sequenceĀ byĀ homologousĀ recombination.Ā InĀ someĀ embodiments,Ā theĀ cleavageĀ atĀ theĀ upstreamĀ andĀ theĀ downstreamĀ ofĀ theĀ targetĀ siteĀ (e.g.,Ā byĀ zincĀ fingerĀ nucleases,Ā TALENĀ orĀ CRISPR)Ā canĀ resultĀ inĀ DNAĀ doubleĀ strandsĀ break,Ā andĀ theĀ homologousĀ recombinationĀ isĀ usedĀ toĀ replaceĀ endogenousĀ BTLAĀ sequenceĀ withĀ humanĀ BTLAĀ sequence.
Thus,Ā inĀ someĀ embodiments,Ā theĀ methodsĀ forĀ makingĀ aĀ geneticallyĀ modified,Ā humanizedĀ animal,Ā canĀ includeĀ theĀ stepĀ ofĀ replacingĀ atĀ anĀ endogenousĀ BTLAĀ locusĀ (orĀ site)Ā ,Ā aĀ nucleicĀ acidĀ encodingĀ aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA.Ā TheĀ sequenceĀ canĀ includeĀ aĀ regionĀ (e.g.,Ā aĀ partĀ orĀ theĀ entireĀ region)Ā ofĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā and/orĀ exonĀ 6,Ā ofĀ aĀ humanĀ BTLAĀ gene.Ā InĀ someĀ embodiments,Ā theĀ sequenceĀ includesĀ aĀ regionĀ ofĀ exonĀ 2Ā ofĀ aĀ humanĀ BTLAĀ geneĀ (e.g.,Ā aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27)Ā .Ā InĀ someĀ embodiments,Ā theĀ regionĀ isĀ locatedĀ withinĀ theĀ extracellularĀ regionĀ ofĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ endogenousĀ BTLAĀ locusĀ isĀ exon2Ā ofĀ mouseĀ BTLA.
InĀ someĀ embodiments,Ā theĀ methodsĀ ofĀ modifyingĀ aĀ BTLAĀ locusĀ ofĀ aĀ mouseĀ toĀ expressĀ aĀ chimericĀ human/mouseĀ BTLAĀ peptideĀ canĀ includeĀ theĀ stepsĀ ofĀ replacingĀ atĀ theĀ endogenousĀ mouseĀ BTLAĀ locusĀ aĀ nucleotideĀ sequenceĀ encodingĀ aĀ mouseĀ BTLAĀ withĀ aĀ nucleotideĀ sequenceĀ encodingĀ aĀ humanĀ BTLA,Ā therebyĀ generatingĀ aĀ sequenceĀ encodingĀ aĀ chimericĀ human/mouseĀ BTLA.
InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequenceĀ encodingĀ theĀ chimericĀ human/mouseĀ BTLAĀ canĀ includeĀ aĀ firstĀ nucleotideĀ sequenceĀ encodingĀ anĀ extracellularĀ regionĀ ofĀ mouseĀ BTLAĀ (withĀ orĀ withoutĀ theĀ mouseĀ signalĀ peptideĀ sequence)Ā ļ¼›Ā aĀ secondĀ nucleotideĀ sequenceĀ encodingĀ anĀ extracellularĀ regionĀ ofĀ humanĀ BTLAļ¼›Ā aĀ thirdĀ nucleotideĀ sequenceĀ encodingĀ aĀ transmembraneĀ andĀ aĀ cytoplasmicĀ regionĀ ofĀ aĀ mouseĀ BTLA.
InĀ someĀ embodiments,Ā theĀ nucleotideĀ sequencesĀ asĀ describedĀ hereinĀ doĀ notĀ overlapĀ withĀ eachĀ otherĀ (e.g.,Ā theĀ firstĀ nucleotideĀ sequence,Ā theĀ secondĀ nucleotideĀ sequence,Ā and/orĀ theĀ thirdĀ nucleotideĀ sequenceĀ doĀ notĀ overlap)Ā .Ā InĀ someĀ embodiments,Ā theĀ aminoĀ acidĀ sequencesĀ asĀ describedĀ hereinĀ doĀ notĀ overlapĀ withĀ eachĀ other.
TheĀ presentĀ disclosureĀ furtherĀ providesĀ aĀ methodĀ forĀ establishingĀ aĀ BTLAĀ geneĀ humanizedĀ animalĀ model,Ā involvingĀ theĀ followingĀ steps:
(a)Ā providingĀ theĀ cellĀ (e.g.Ā aĀ fertilizedĀ eggĀ cell)Ā basedĀ onĀ theĀ methodsĀ describedĀ hereinļ¼›
(b)Ā culturingĀ theĀ cellĀ inĀ aĀ liquidĀ cultureĀ mediumļ¼›
(c)Ā transplantingĀ theĀ culturedĀ cellĀ toĀ theĀ fallopianĀ tubeĀ orĀ uterusĀ ofĀ theĀ recipientĀ femaleĀ non-humanĀ mammal,Ā allowingĀ theĀ cellĀ toĀ developĀ inĀ theĀ uterusĀ ofĀ theĀ femaleĀ non-humanĀ mammalļ¼›
(d)Ā identifyingĀ theĀ germlineĀ transmissionĀ inĀ theĀ offspringĀ geneticallyĀ modifiedĀ humanizedĀ non-humanĀ mammalĀ ofĀ theĀ pregnantĀ femaleĀ inĀ stepĀ (c)Ā .
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ inĀ theĀ foregoingĀ methodĀ isĀ aĀ mouseĀ (e.g.,Ā aĀ C57BL/6Ā mouse)Ā .
InĀ someĀ embodiments,Ā theĀ non-humanĀ mammalĀ inĀ stepĀ (c)Ā isĀ aĀ femaleĀ withĀ pseudopregnancyĀ (orĀ falseĀ pregnancy)Ā .
InĀ someĀ embodiments,Ā theĀ fertilizedĀ eggsĀ forĀ theĀ methodsĀ describedĀ aboveĀ areĀ C57BL/6Ā fertilizedĀ eggs.Ā OtherĀ fertilizedĀ eggsĀ thatĀ canĀ alsoĀ beĀ usedĀ inĀ theĀ methodsĀ asĀ describedĀ hereinĀ include,Ā butĀ areĀ notĀ limitedĀ to,Ā FVB/NĀ fertilizedĀ eggs,Ā BALB/cĀ fertilizedĀ eggs,Ā DBA/1Ā fertilizedĀ eggsĀ andĀ DBA/2Ā fertilizedĀ eggs.
FertilizedĀ eggsĀ canĀ comeĀ fromĀ anyĀ non-humanĀ animal,Ā e.g.,Ā anyĀ non-humanĀ animalĀ asĀ describedĀ herein.Ā InĀ someĀ embodiments,Ā theĀ fertilizedĀ eggĀ cellsĀ areĀ derivedĀ fromĀ rodents.Ā TheĀ geneticĀ constructĀ canĀ beĀ introducedĀ intoĀ aĀ fertilizedĀ eggĀ byĀ microinjectionĀ ofĀ DNA.Ā ForĀ example,Ā byĀ wayĀ ofĀ culturingĀ aĀ fertilizedĀ eggĀ afterĀ  microinjection,Ā aĀ culturedĀ fertilizedĀ eggĀ canĀ beĀ transferredĀ toĀ aĀ falseĀ pregnantĀ non-humanĀ animal,Ā whichĀ thenĀ givesĀ birthĀ ofĀ aĀ non-humanĀ mammal,Ā soĀ asĀ toĀ generateĀ theĀ non-humanĀ mammalĀ mentionedĀ inĀ theĀ methodĀ describedĀ above.
MethodsĀ ofĀ usingĀ geneticallyĀ modifiedĀ animals
ReplacementĀ ofĀ non-humanĀ genesĀ inĀ aĀ non-humanĀ animalĀ withĀ homologousĀ orĀ orthologousĀ humanĀ genesĀ orĀ humanĀ sequences,Ā atĀ theĀ endogenousĀ non-humanĀ locusĀ andĀ underĀ controlĀ ofĀ endogenousĀ promotersĀ and/orĀ regulatoryĀ elements,Ā canĀ resultĀ inĀ aĀ non-humanĀ animalĀ withĀ qualitiesĀ andĀ characteristicsĀ thatĀ mayĀ beĀ substantiallyĀ differentĀ fromĀ aĀ typicalĀ knockout-plus-transgeneĀ animal.Ā InĀ theĀ typicalĀ knockout-plus-transgeneĀ animal,Ā anĀ endogenousĀ locusĀ isĀ removedĀ orĀ damagedĀ andĀ aĀ fullyĀ humanĀ transgeneĀ isĀ insertedĀ intoĀ theĀ animal'sĀ genomeĀ andĀ presumablyĀ integratesĀ atĀ randomĀ intoĀ theĀ genome.Ā Typically,Ā theĀ locationĀ ofĀ theĀ integratedĀ transgeneĀ isĀ unknownļ¼›Ā expressionĀ ofĀ theĀ humanĀ proteinĀ isĀ measuredĀ byĀ transcriptionĀ ofĀ theĀ humanĀ geneĀ and/orĀ proteinĀ assayĀ and/orĀ functionalĀ assay.Ā InclusionĀ inĀ theĀ humanĀ transgeneĀ ofĀ upstreamĀ and/orĀ downstreamĀ humanĀ sequencesĀ areĀ apparentlyĀ presumedĀ toĀ beĀ sufficientĀ toĀ provideĀ suitableĀ supportĀ forĀ expressionĀ and/orĀ regulationĀ ofĀ theĀ transgene.
InĀ someĀ cases,Ā theĀ transgeneĀ withĀ humanĀ regulatoryĀ elementsĀ expressesĀ inĀ aĀ mannerĀ thatĀ isĀ unphysiologicalĀ orĀ otherwiseĀ unsatisfactory,Ā andĀ canĀ beĀ actuallyĀ detrimentalĀ toĀ theĀ animal.Ā TheĀ disclosureĀ demonstratesĀ thatĀ aĀ replacementĀ withĀ humanĀ sequenceĀ atĀ anĀ endogenousĀ locusĀ underĀ controlĀ ofĀ endogenousĀ regulatoryĀ elementsĀ providesĀ aĀ physiologicallyĀ appropriateĀ expressionĀ patternĀ andĀ levelĀ thatĀ resultsĀ inĀ aĀ usefulĀ humanizedĀ animalĀ whoseĀ physiologyĀ withĀ respectĀ toĀ theĀ replacedĀ geneĀ areĀ meaningfulĀ andĀ appropriateĀ inĀ theĀ contextĀ ofĀ theĀ humanizedĀ animal'sĀ physiology.
GeneticallyĀ modifiedĀ animalsĀ thatĀ expressĀ humanĀ orĀ humanizedĀ BTLAĀ protein,Ā e.g.,Ā inĀ aĀ physiologicallyĀ appropriateĀ manner,Ā provideĀ aĀ varietyĀ ofĀ usesĀ thatĀ include,Ā butĀ areĀ notĀ limitedĀ to,Ā developingĀ therapeuticsĀ forĀ humanĀ diseasesĀ andĀ disorders,Ā andĀ assessingĀ theĀ efficacyĀ ofĀ theseĀ humanĀ therapeuticsĀ inĀ theĀ animalĀ models.
InĀ variousĀ aspects,Ā geneticallyĀ modifiedĀ animalsĀ areĀ providedĀ thatĀ expressĀ humanĀ orĀ humanizedĀ BTLA,Ā whichĀ areĀ usefulĀ forĀ testingĀ agentsĀ thatĀ canĀ decreaseĀ orĀ blockĀ theĀ interactionĀ betweenĀ BTLAĀ andĀ HVEMĀ orĀ theĀ interactionĀ betweenĀ BTLAĀ andĀ B7-H4,Ā  testingĀ whetherĀ anĀ agentĀ canĀ increaseĀ orĀ decreaseĀ theĀ immuneĀ response,Ā and/orĀ determiningĀ whetherĀ anĀ agentĀ isĀ anĀ BTLAĀ agonistĀ orĀ antagonist.Ā TheĀ geneticallyĀ modifiedĀ animalsĀ canĀ be,Ā e.g.,Ā anĀ animalĀ modelĀ ofĀ aĀ humanĀ disease,Ā e.g.,Ā theĀ diseaseĀ isĀ inducedĀ geneticallyĀ (aknock-inĀ orĀ knockout)Ā .Ā InĀ variousĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ non-humanĀ animalsĀ furtherĀ compriseĀ anĀ impairedĀ immuneĀ system,Ā e.g.,Ā aĀ non-humanĀ animalĀ geneticallyĀ modifiedĀ toĀ sustainĀ orĀ maintainĀ aĀ humanĀ xenograft,Ā e.g.,Ā aĀ humanĀ solidĀ tumorĀ orĀ aĀ bloodĀ cellĀ tumorĀ (e.g.,Ā aĀ lymphocyteĀ tumor,Ā e.g.,Ā aĀ BĀ orĀ TĀ cellĀ tumor)Ā .
InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ animalsĀ canĀ beĀ usedĀ forĀ determiningĀ effectivenessĀ ofĀ anĀ anti-BTLAĀ antibodyĀ forĀ theĀ treatmentĀ ofĀ cancer.Ā TheĀ methodsĀ involvingĀ administeringĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ animalĀ asĀ describedĀ herein,Ā whereinĀ theĀ animalĀ hasĀ aĀ tumorļ¼›Ā andĀ determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ tumor.Ā TheĀ inhibitorĀ effectsĀ thatĀ canĀ beĀ determinedĀ include,Ā e.g.,Ā aĀ decreaseĀ ofĀ tumorĀ sizeĀ orĀ tumorĀ volume,Ā aĀ decreaseĀ ofĀ tumorĀ growth,Ā aĀ reductionĀ ofĀ theĀ increaseĀ rateĀ ofĀ tumorĀ volumeĀ inĀ aĀ subjectĀ (e.g.,Ā asĀ comparedĀ toĀ theĀ rateĀ ofĀ increaseĀ inĀ tumorĀ volumeĀ inĀ theĀ sameĀ subjectĀ priorĀ toĀ treatmentĀ orĀ inĀ anotherĀ subjectĀ withoutĀ suchĀ treatment)Ā ,Ā aĀ decreaseĀ inĀ theĀ riskĀ ofĀ developingĀ aĀ metastasisĀ orĀ theĀ riskĀ ofĀ developingĀ oneĀ orĀ moreĀ additionalĀ metastasis,Ā anĀ increaseĀ ofĀ survivalĀ rate,Ā andĀ anĀ increaseĀ ofĀ lifeĀ expectancy,Ā etc.Ā TheĀ tumorĀ volumeĀ inĀ aĀ subjectĀ canĀ beĀ determinedĀ byĀ variousĀ methods,Ā e.g.,Ā asĀ determinedĀ byĀ directĀ measurement,Ā MRIĀ orĀ CT.
InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ HVEMĀ (DerrĆ©,Ā Laurent,Ā etĀ al.Ā "BTLAĀ mediatesĀ inhibitionĀ ofĀ humanĀ tumor-specificĀ CD8+TĀ cellsĀ thatĀ canĀ beĀ partiallyĀ reversedĀ byĀ vaccination.Ā "Ā TheĀ JournalĀ ofĀ clinicalĀ investigationĀ 120.1Ā (2010)Ā :Ā 157)Ā .Ā InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ cancerĀ cellsĀ (e.g.,Ā humanĀ orĀ mouseĀ cancerĀ cells)Ā thatĀ areĀ injectedĀ intoĀ theĀ animal.Ā InĀ someĀ embodiments,Ā theĀ anti-BTLAĀ antibodyĀ orĀ anti-HVEMĀ antibodyĀ preventsĀ HVEMĀ fromĀ bindingĀ toĀ BTLA.Ā InĀ someĀ embodiments,Ā theĀ anti-BTLAĀ antibodyĀ orĀ anti-HVEMĀ antibodyĀ doesĀ notĀ preventĀ HVEMfromĀ bindingĀ toĀ BTLA.
InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ animalsĀ canĀ beĀ usedĀ forĀ determiningĀ whetherĀ anĀ anti-BTLAĀ antibodyĀ isĀ anBTLAĀ agonistĀ orĀ antagonist.Ā InĀ someĀ embodiments,Ā theĀ methodsĀ asĀ describedĀ hereinĀ areĀ alsoĀ designedĀ toĀ determineĀ theĀ effectsĀ  ofĀ theĀ agentĀ (e.g.,Ā anti-BTLAĀ antibodies)Ā onĀ BTLA,Ā e.g.,Ā whetherĀ theĀ agentĀ canĀ stimulateĀ TĀ cellsĀ orĀ inhibitĀ TĀ cells,Ā whetherĀ theĀ agentĀ canĀ upregulateĀ theĀ immuneĀ responseĀ orĀ downregulateĀ immuneĀ response.Ā InĀ someĀ embodiments,Ā theĀ geneticallyĀ modifiedĀ animalsĀ canĀ beĀ usedĀ forĀ determiningĀ theĀ effectiveĀ dosageĀ ofĀ aĀ therapeuticĀ agentĀ forĀ treatingĀ aĀ diseaseĀ inĀ theĀ subject,Ā e.g.,Ā cancer,Ā orĀ autoimmuneĀ diseases.
TheĀ inhibitoryĀ effectsĀ onĀ tumorsĀ canĀ alsoĀ beĀ determinedĀ byĀ methodsĀ knownĀ inĀ theĀ art,Ā e.g.,Ā measuringĀ theĀ tumorĀ volumeĀ inĀ theĀ animal,Ā and/orĀ determiningĀ tumorĀ (volume)Ā inhibitionĀ rateĀ (TGITV)Ā .Ā TheĀ tumorĀ growthĀ inhibitionĀ rateĀ canĀ beĀ calculatedĀ usingĀ theĀ formulaĀ TGITVĀ (ļ¼…)Ā ļ¼Ā (1Ā ā€“TVt/TVc)Ā xĀ 100,Ā whereĀ TVtĀ andĀ TVcĀ areĀ theĀ meanĀ tumorĀ volumeĀ (orĀ weight)Ā ofĀ treatedĀ andĀ controlĀ groups.
InĀ someĀ embodiments,Ā theĀ anti-BTLAĀ antibodyĀ isĀ designedĀ forĀ treatingĀ variousĀ cancers.Ā AsĀ usedĀ herein,Ā theĀ termĀ ā€œcancerā€Ā refersĀ toĀ cellsĀ havingĀ theĀ capacityĀ forĀ autonomousĀ growth,Ā i.e.,Ā anĀ abnormalĀ stateĀ orĀ conditionĀ characterizedĀ byĀ rapidlyĀ proliferatingĀ cellĀ growth.Ā TheĀ termĀ isĀ meantĀ toĀ includeĀ allĀ typesĀ ofĀ cancerousĀ growthsĀ orĀ oncogenicĀ processes,Ā metastaticĀ tissuesĀ orĀ malignantlyĀ transformedĀ cells,Ā tissues,Ā orĀ organs,Ā irrespectiveĀ ofĀ histopathologicĀ typeĀ orĀ stageĀ ofĀ invasiveness.Ā TheĀ termĀ ā€œtumorā€Ā asĀ usedĀ hereinĀ refersĀ toĀ cancerousĀ cells,Ā e.g.,Ā aĀ massĀ ofĀ cancerousĀ cells.Ā CancersĀ thatĀ canĀ beĀ treatedĀ orĀ diagnosedĀ usingĀ theĀ methodsĀ describedĀ hereinĀ includeĀ malignanciesĀ ofĀ theĀ variousĀ organĀ systems,Ā suchĀ asĀ affectingĀ lung,Ā breast,Ā thyroid,Ā lymphoid,Ā gastrointestinal,Ā andĀ genito-urinaryĀ tract,Ā asĀ wellĀ asĀ adenocarcinomasĀ whichĀ includeĀ malignanciesĀ suchĀ asĀ mostĀ colonĀ cancers,Ā renal-cellĀ carcinoma,Ā prostateĀ cancerĀ and/orĀ testicularĀ tumors,Ā non-smallĀ cellĀ carcinomaĀ ofĀ theĀ lung,Ā cancerĀ ofĀ theĀ smallĀ intestineĀ andĀ cancerĀ ofĀ theĀ esophagus.Ā InĀ someĀ embodiments,Ā theĀ agentsĀ describedĀ hereinĀ areĀ designedĀ forĀ treatingĀ orĀ diagnosingĀ aĀ carcinomaĀ inĀ aĀ subject.Ā TheĀ termĀ ā€œcarcinomaā€Ā isĀ artĀ recognizedĀ andĀ refersĀ toĀ malignanciesĀ ofĀ epithelialĀ orĀ endocrineĀ tissuesĀ includingĀ respiratoryĀ systemĀ carcinomas,Ā gastrointestinalĀ systemĀ carcinomas,Ā genitourinaryĀ systemĀ carcinomas,Ā testicularĀ carcinomas,Ā breastĀ carcinomas,Ā prostaticĀ carcinomas,Ā endocrineĀ systemĀ carcinomas,Ā andĀ melanomas.Ā InĀ someĀ embodiments,Ā theĀ cancerĀ isĀ renalĀ carcinomaĀ orĀ melanoma.Ā ExemplaryĀ carcinomasĀ includeĀ thoseĀ formingĀ fromĀ tissueĀ ofĀ theĀ cervix,Ā lung,Ā prostate,Ā breast,Ā headĀ andĀ neck,Ā colonĀ andĀ ovary.Ā TheĀ termĀ alsoĀ includesĀ carcinosarcomas,Ā e.g.,Ā whichĀ includeĀ malignantĀ tumorsĀ composedĀ ofĀ carcinomatousĀ andĀ sarcomatousĀ tissues.Ā AnĀ  ā€œadenocarcinomaā€Ā refersĀ toĀ aĀ carcinomaĀ derivedĀ fromĀ glandularĀ tissueĀ orĀ inĀ whichĀ theĀ tumorĀ cellsĀ formĀ recognizableĀ glandularĀ structures.Ā TheĀ termĀ ā€œsarcomaā€Ā isĀ artĀ recognizedĀ andĀ refersĀ toĀ malignantĀ tumorsĀ ofĀ mesenchymalĀ derivation.
InĀ someĀ embodiments,Ā theĀ anti-BTLAĀ antibodyĀ isĀ designedĀ forĀ theĀ treatingĀ melanoma,Ā non-smallĀ cellĀ lungĀ carcinomaĀ (NSCLC)Ā ,Ā smallĀ cellĀ lungĀ cancerĀ (SCLC)Ā ,Ā bladderĀ cancer,Ā and/orĀ prostateĀ cancerĀ (e.g.,Ā metastaticĀ hormone-refractoryĀ prostateĀ cancer)Ā .Ā Anti-BTLAĀ antibodiesĀ areĀ knownĀ inĀ theĀ art,Ā andĀ areĀ describedĀ in,Ā e.g.,Ā USĀ 8580259,Ā USĀ 8642033,Ā andĀ WO/2016/161415,Ā eachĀ ofĀ whichĀ isĀ incorporatedĀ byĀ referenceĀ inĀ itsĀ entirety.
TheĀ presentĀ disclosureĀ alsoĀ relatesĀ toĀ theĀ useĀ ofĀ theĀ animalĀ modelĀ generatedĀ throughĀ theĀ methodĀ asĀ describedĀ hereinĀ inĀ theĀ developmentĀ ofĀ aĀ productĀ relatedĀ toĀ anĀ immunizationĀ processesĀ ofĀ humanĀ cells,Ā theĀ manufacturingĀ ofĀ aĀ humanĀ antibody,Ā orĀ theĀ modelĀ systemĀ forĀ aĀ researchĀ inĀ pharmacology,Ā immunology,Ā microbiologyĀ andĀ medicine.
InĀ someĀ embodiments,Ā theĀ disclosureĀ providesĀ theĀ useĀ ofĀ theĀ animalĀ modelĀ generatedĀ throughĀ theĀ methodĀ asĀ describedĀ hereinĀ inĀ theĀ productionĀ andĀ utilizationĀ ofĀ anĀ animalĀ experimentalĀ diseaseĀ modelĀ ofĀ anĀ immunizationĀ processesĀ involvingĀ humanĀ cells,Ā theĀ studyĀ onĀ aĀ pathogen,Ā orĀ theĀ developmentĀ ofĀ aĀ newĀ diagnosticĀ strategyĀ andĀ /orĀ aĀ therapeuticĀ strategy.
TheĀ disclosureĀ alsoĀ relatesĀ toĀ theĀ useĀ ofĀ theĀ animalĀ modelĀ generatedĀ throughĀ theĀ methodsĀ asĀ describedĀ hereinĀ inĀ theĀ screening,Ā verifying,Ā evaluatingĀ orĀ studyingĀ theĀ BTLAĀ geneĀ function,Ā humanĀ BTLAĀ antibodies,Ā drugsĀ forĀ humanĀ BTLAĀ targetingĀ sites,Ā theĀ drugsĀ orĀ efficaciesĀ forĀ humanĀ BTLAĀ targetingĀ sites,Ā theĀ drugsĀ forĀ immune-relatedĀ diseasesĀ andĀ antitumorĀ drugs.
GeneticallyĀ modifiedĀ animalĀ modelĀ withĀ twoĀ orĀ moreĀ humanĀ orĀ chimericĀ genes
TheĀ presentĀ disclosureĀ furtherĀ relatesĀ toĀ methodsĀ forĀ generatingĀ geneticallyĀ modifiedĀ animalĀ modelĀ withĀ twoĀ orĀ moreĀ humanĀ orĀ chimericĀ genes.Ā TheĀ animalĀ canĀ compriseĀ aĀ humanĀ orĀ chimericĀ BTLAĀ geneĀ andĀ aĀ sequenceĀ encodingĀ anĀ additionalĀ humanĀ orĀ chimericĀ protein.
InĀ someĀ embodiments,Ā theĀ additionalĀ humanĀ orĀ chimericĀ proteinĀ canĀ beĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā ,Ā cytotoxicĀ T-lymphocyte-associatedĀ proteinĀ 4Ā  (CTLA-4)Ā ,Ā LymphocyteĀ ActivatingĀ 3Ā (LAG-3)Ā ,Ā T-CellĀ ImmunoglobulinĀ AndĀ MucinĀ Domain-ContainingĀ ProteinĀ 3Ā (TIM-3)Ā ,Ā ProgrammedĀ CellĀ DeathĀ 1Ā LigandĀ 1Ā (PD-L1)Ā ,Ā TNFĀ ReceptorĀ SuperfamilyĀ MemberĀ 9Ā (4-1BB)Ā ,Ā CD27,Ā CD28,Ā CD47,Ā T-CellĀ ImmunoreceptorĀ WithĀ IgĀ AndĀ ITIMĀ DomainsĀ (TIGIT)Ā ,Ā CD27,Ā Glucocorticoid-InducedĀ TNFR-RelatedĀ ProteinĀ (GITR)Ā ,Ā orĀ TNFĀ ReceptorĀ SuperfamilyĀ MemberĀ 4Ā (TNFRSF4ļ¼›Ā orĀ OX40)Ā .
TheĀ methodsĀ ofĀ generatingĀ geneticallyĀ modifiedĀ animalĀ modelĀ withĀ twoĀ orĀ moreĀ humanĀ orĀ chimericĀ genesĀ (e.g.,Ā humanizedĀ genes)Ā canĀ includeĀ theĀ followingĀ steps:
(a)Ā usingĀ theĀ methodsĀ ofĀ introducingĀ humanĀ BTLAĀ geneĀ orĀ chimericĀ BTLAĀ geneĀ asĀ describedĀ hereinĀ toĀ obtainĀ aĀ geneticallyĀ modifiedĀ non-humanĀ animalļ¼›
(b)Ā matingĀ theĀ geneticallyĀ modifiedĀ non-humanĀ animalĀ withĀ anotherĀ geneticallyĀ modifiedĀ non-humanĀ animal,Ā andĀ thenĀ screeningĀ theĀ progenyĀ toĀ obtainĀ aĀ geneticallyĀ modifiedĀ non-humanĀ animalĀ withĀ twoĀ orĀ moreĀ humanĀ orĀ chimericĀ genes.
InĀ someĀ embodiments,Ā inĀ stepĀ (b)Ā ofĀ theĀ method,Ā theĀ geneticallyĀ modifiedĀ animalĀ canĀ beĀ matedĀ withĀ aĀ geneticallyĀ modifiedĀ non-humanĀ animalĀ withĀ humanĀ orĀ chimericĀ PD-1,Ā CTLA-4,Ā LAG-3,Ā TIM-3,Ā PD-L1,Ā 4-1BB,Ā CD27,Ā CD28,Ā CD47,Ā TIGIT,Ā CD27,Ā GITR,Ā orĀ OX40.
InĀ someĀ embodiments,Ā theĀ BTLAĀ humanizationĀ isĀ directlyĀ performedĀ onĀ aĀ geneticallyĀ modifiedĀ animalĀ havingĀ aĀ humanĀ orĀ chimericĀ PD-1,Ā CTLA-4,Ā LAG-3,Ā TIM-3,Ā PD-L1,Ā 4-1BB,Ā CD27,Ā CD28,Ā CD47,Ā TIGIT,Ā CD27,Ā GITR,Ā orĀ OX40Ā gene.
AsĀ theseĀ proteinsĀ mayĀ involveĀ differentĀ mechanisms,Ā aĀ combinationĀ therapyĀ thatĀ targetsĀ twoĀ orĀ moreĀ ofĀ theseĀ proteinsĀ thereofĀ mayĀ beĀ aĀ moreĀ effectiveĀ treatment.Ā InĀ fact,Ā manyĀ relatedĀ clinicalĀ trialsĀ areĀ inĀ progressĀ andĀ haveĀ shownĀ aĀ goodĀ effect.Ā TheĀ geneticallyĀ modifiedĀ animalĀ modelĀ withĀ twoĀ orĀ moreĀ humanĀ orĀ humanizedĀ genesĀ canĀ beĀ usedĀ forĀ determiningĀ effectivenessĀ ofĀ aĀ combinationĀ therapyĀ thatĀ targetsĀ twoĀ orĀ moreĀ ofĀ theseĀ proteins,Ā e.g.,Ā anĀ anti-BTLAĀ antibodyĀ andĀ anĀ additionalĀ therapeuticĀ agentĀ forĀ theĀ treatmentĀ ofĀ cancer.Ā TheĀ methodsĀ includeĀ administeringĀ theĀ anti-BTLAĀ antibodyĀ andĀ theĀ additionalĀ therapeuticĀ agentĀ toĀ theĀ animal,Ā whereinĀ theĀ animalĀ hasĀ aĀ tumorļ¼›Ā andĀ determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ combinedĀ treatmentĀ toĀ theĀ tumor.
InĀ someĀ embodiments,Ā theĀ animalĀ furtherĀ comprisesĀ aĀ sequenceĀ encodingĀ aĀ humanĀ orĀ humanizedĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā .Ā InĀ someĀ embodiments,Ā theĀ  additionalĀ therapeuticĀ agentĀ isĀ anĀ anti-PD-1Ā antibodyĀ (e.g.,Ā nivolumab,Ā pembrolizumab)Ā .Ā InĀ someĀ embodiments,Ā theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ HVEM,Ā B7-H4,Ā CD80,Ā CD86,Ā PD-L1Ā orĀ PD-L2.
InĀ someĀ embodiments,Ā theĀ combinationĀ treatmentĀ isĀ designedĀ forĀ treatingĀ variousĀ cancerĀ asĀ describedĀ herein,Ā e.g.,Ā melanoma,Ā non-smallĀ cellĀ lungĀ carcinomaĀ (NSCLC)Ā ,Ā smallĀ cellĀ lungĀ cancerĀ (SCLC)Ā ,Ā bladderĀ cancer,Ā and/orĀ prostateĀ cancerĀ (e.g.,Ā metastaticĀ hormone-refractoryĀ prostateĀ cancer)Ā .
InĀ someĀ embodiments,Ā theĀ methodsĀ describedĀ hereinĀ canĀ beĀ usedĀ toĀ evaluateĀ theĀ combinationĀ treatmentĀ withĀ someĀ otherĀ methods.Ā TheĀ methodsĀ ofĀ treatingĀ aĀ cancerĀ thatĀ canĀ beĀ usedĀ aloneĀ orĀ inĀ combinationĀ withĀ methodsĀ describedĀ herein,Ā include,Ā e.g.,Ā treatingĀ theĀ subjectĀ withĀ chemotherapy,Ā e.g.,Ā campothecin,Ā doxorubicin,Ā cisplatin,Ā carboplatin,Ā procarbazine,Ā mechlorethamine,Ā cyclophosphamide,Ā adriamycin,Ā ifosfamide,Ā melphalan,Ā chlorambucil,Ā bisulfan,Ā nitrosurea,Ā dactinomycin,Ā daunorubicin,Ā bleomycin,Ā plicomycin,Ā mitomycin,Ā etoposide,Ā verampil,Ā podophyllotoxin,Ā tamoxifen,Ā taxol,Ā transplatinum,Ā 5-flurouracil,Ā vincristin,Ā vinblastin,Ā and/orĀ methotrexate.Ā AlternativelyĀ orĀ inĀ addition,Ā theĀ methodsĀ canĀ includeĀ performingĀ surgeryĀ onĀ theĀ subjectĀ toĀ removeĀ atĀ leastĀ aĀ portionĀ ofĀ theĀ cancer,Ā e.g.,Ā toĀ removeĀ aĀ portionĀ ofĀ orĀ allĀ ofĀ aĀ tumorĀ (s)Ā ,Ā fromĀ theĀ patient.
EXAMPLES
TheĀ inventionĀ isĀ furtherĀ describedĀ inĀ theĀ followingĀ examples,Ā whichĀ doĀ notĀ limitĀ theĀ scopeĀ ofĀ theĀ inventionĀ describedĀ inĀ theĀ claims.
MaterialsĀ andĀ Methods
TheĀ followingĀ materialsĀ wereĀ usedĀ inĀ theĀ followingĀ examples.
AmbionTMinĀ vitroĀ transcriptionĀ kitĀ wasĀ purchasedĀ fromĀ Ambion.Ā CatalogĀ numberĀ isĀ AM1354.
E.coliĀ TOP10Ā competentĀ cellsĀ wereĀ purchasedĀ fromĀ theĀ TiangenBiotechĀ (Beijing)Ā Co.Ā CatalogĀ numberĀ isĀ CB104-02.
EcoRI,Ā ScaI,Ā BamHI,Ā BbsI,Ā SacI,Ā StuI,Ā NcoIwereĀ purchasedĀ fromĀ NEB.Ā CatalogĀ numbersĀ areĀ R3101M,Ā R3122M,Ā R3136M,Ā R0539L,Ā R3156M,Ā R0187M,Ā R3193M.
KanamycinĀ wasĀ purchasedĀ fromĀ Amresco.Ā CatalogĀ numberĀ isĀ 0408.
Cas9Ā mRNAĀ wasĀ obtainedĀ fromĀ SIGMA.Ā CatalogĀ numberĀ isĀ CAS9MRNA-1EA.
AIOĀ kitĀ wasĀ obtainedĀ fromĀ BeijingĀ BiocytogenĀ Co.,Ā Ltd.Ā CatalogĀ numberĀ isĀ BCG-DX-004.
UCAĀ kitĀ wasĀ obtainedĀ fromĀ BeijingĀ BiocytogenĀ Co.,Ā Ltd.Ā CatalogĀ numberĀ isĀ BCG-DX-001.
ReverseĀ TranscriptionĀ KitĀ wasĀ obtainedĀ fromĀ TakaRa.Ā CatalogĀ numberĀ isĀ 6110A.
C57BL/6Ā miceĀ wereĀ purchasedĀ fromĀ theĀ ChinaĀ FoodĀ andĀ DrugsĀ ResearchĀ InstituteĀ NationalĀ RodentĀ ExperimentalĀ AnimalĀ Center.
B-hPD-1Ā miceĀ wereĀ obtainedĀ fromĀ BeijingĀ BiocytogenĀ Co.,Ā Ltd.
MouseĀ colonĀ cancerĀ cellĀ lineĀ MC38Ā wasĀ purchasedĀ fromĀ ShanghaiĀ EnzymeĀ ResearchĀ BiotechnologyĀ Co.,Ā Ltd.
MouseĀ CD3Ā antibodyĀ wasĀ obtainedĀ fromĀ BD.Ā CatalogĀ numberĀ isĀ 563123.
mPD-1Ā antibodyĀ wasĀ obtainedĀ fromĀ BIOĀ XĀ CELL.Ā CatalogĀ numberĀ isĀ BE0146.
mTcRĪ²PerCPĀ wasĀ obtainedĀ fromĀ Biolegend.Ā CatalogĀ numberĀ isĀ 109228.
mPD-1PEĀ wasĀ obtainedĀ fromĀ Biolegend.Ā CatalogĀ numberĀ isĀ 109104.
mBTLAĀ PEĀ wasĀ obtainedĀ fromĀ Biolegend.Ā CatalogĀ numberĀ isĀ 134804.
hBTLAĀ APCĀ wasĀ obtainedĀ fromĀ Biolegend.Ā CatalogĀ numberĀ isĀ 344510.
mCD19Ā FITCĀ wasĀ obtainedĀ fromĀ Biolegend.Ā CatalogĀ numberĀ isĀ 115505.
hPD-1Ā FITCĀ wasĀ obtainedĀ fromĀ Biolegend.Ā CatalogĀ numberĀ isĀ 329904.
EXAMPLEĀ 1:Ā ConstructionĀ ofĀ pT7-BTLA-1Ā andĀ pT7-BTLA-14
TheĀ targetĀ sequenceĀ determinesĀ theĀ targetingĀ specificityĀ ofĀ smallĀ guideĀ RNAĀ (sgRNA)Ā andĀ theĀ efficiencyĀ ofĀ Cas9Ā cleavageĀ atĀ theĀ targetĀ gene.Ā Therefore,Ā targetĀ sequenceĀ selectionĀ isĀ importantĀ forsgRNAĀ vectorĀ construction.
TheĀ 5ā€™Ā -terminalĀ targetingĀ sitesĀ (sgRNA1Ā toĀ sgRNA8)Ā andĀ theĀ 3ā€™Ā -terminalĀ targetingĀ sitesĀ (sgRNA9Ā toĀ sgRNA14)Ā wereĀ designedĀ andĀ synthesized.Ā TheĀ 5ā€™Ā -terminalĀ targetingĀ sitesĀ andĀ theĀ 3ā€™Ā -terminalĀ targetingĀ sitesĀ areĀ locatedĀ onĀ exonĀ 2Ā ofĀ mouseĀ BTLAĀ gene,Ā andĀ theĀ targetingĀ siteĀ sequenceĀ onĀ BTLAĀ ofĀ eachĀ sgRNAĀ isĀ asĀ follows:
sgRNA-1Ā targetingĀ sequence:Ā 5ā€™Ā -CAGTGCAACTTACTATTACG-3ā€™Ā (SEQĀ IDĀ NO:Ā 1)
sgRNA-2Ā targetingĀ sequence:Ā 5ā€™Ā -CTCGTAATAGTAAGTTGCACĀ -3ā€™Ā (SEQĀ IDĀ NO:Ā 2)
sgRNA-3Ā targetingĀ sequence:Ā 5ā€™Ā -GTGACTTGGTGTAAGCACAA-3ā€™Ā (SEQĀ IDĀ NO:Ā 3)
sgRNA-4Ā targetingĀ sequence:Ā 5ā€™Ā -TCCAAACAGTCTGCCAGGAC-3ā€™Ā (SEQĀ IDĀ NO:Ā 4)
sgRNA-5Ā targetingĀ sequence:Ā 5ā€™Ā -TTCATAGACCTAATGTGACT-3ā€™Ā (SEQĀ IDĀ NO:Ā 5)
sgRNA-6Ā targetingĀ sequence:Ā 5ā€™Ā -GGAATTCCAAACAGTCTGCC-3ā€™Ā (SEQĀ IDĀ NO:Ā 6)
sgRNA-7Ā targetingĀ sequence:Ā 5ā€™Ā -TCCTGTCCTGGCAGACTGTT-3ā€™Ā (SEQĀ IDĀ NO:Ā 7)
sgRNA-8Ā targetingĀ sequence:Ā 5ā€™Ā -TTTAAATAACTCTCCTGTCC-3ā€™Ā (SEQĀ IDĀ NO:Ā 8)
sgRNA-9Ā targetingĀ sequence:Ā 5ā€™Ā -TCAGTAACCATCCATGTGAC-3ā€™Ā (SEQĀ IDĀ NO:Ā 9)
sgRNA-10Ā targetingĀ sequence:Ā 5ā€™Ā -TCACATGGATGGTTACTGAA-3ā€™Ā (SEQĀ IDĀ NO:Ā 10)
sgRNA-11Ā targetingĀ sequence:Ā 5ā€™Ā -CCATTATCACTGAGATGTAT-3ā€™Ā (SEQĀ IDĀ NO:Ā 11)
sgRNA-12Ā targetingĀ sequence:Ā 5ā€™Ā -CAATACATCTCAGTGATAAT-3ā€™Ā (SEQĀ IDĀ NO:Ā 12)
sgRNA-13Ā targetingĀ sequence:Ā 5ā€™Ā -CCAATACATCTCAGTGATAA-3ā€™Ā (SEQĀ IDĀ NO:Ā 13)
sgRNA-14Ā targetingĀ sequence:Ā 5ā€™Ā -TGAGATGTATTGGTTTAAAG-3ā€™Ā (SEQĀ IDĀ NO:Ā 14)
TheĀ UCAĀ kitĀ wasĀ usedtoĀ detectĀ theĀ activitiesofsgRNAsĀ (FIGS.Ā 1AĀ andĀ 1B)Ā .Ā TheĀ resultsĀ showĀ thatĀ theĀ guideĀ sgRNAsĀ haveĀ differentĀ activities.Ā TwoĀ ofĀ themĀ (sgRNA1Ā andĀ sgRNA14)Ā wereĀ selectedĀ forĀ follow-upĀ experiments.Ā TAGGĀ wasĀ addedĀ toĀ theĀ 5ā€™Ā endĀ toĀ obtainĀ aĀ forwardĀ oligonucleotideĀ sequence,Ā andĀ itsĀ complementaryĀ strandĀ wasĀ addedĀ withĀ AAACĀ toĀ obtainĀ aĀ reverseĀ oligonucleotideĀ sequence.Ā AfterĀ annealing,Ā theyĀ wereĀ respectivelyĀ digestedĀ byĀ restrictionĀ enzymeĀ (BbsI)Ā andĀ ligatedĀ toĀ pT7-sgRNAĀ plasmidĀ toĀ obtainĀ theĀ expressionĀ vectorsĀ pT7-BTLA-1andĀ pT7-BTLA-14.
TableĀ 3.Ā sgRNA1andĀ sgRNA14Ā sequences
Figure PCTCN2017106024-appb-000005
Figure PCTCN2017106024-appb-000006
TableĀ 4.Ā TheĀ ligationĀ reactionĀ conditionsĀ (10Ī¼L)
DoubleĀ strandedĀ fragment 1Ī¼LĀ (0.5Ī¼M)
pT7-sgRNAĀ vector 1Ī¼LĀ (10Ā ng)
T4Ā DNAĀ Ligase 1Ī¼LĀ (5U)
10ƗT4Ā DNAĀ LigaseĀ buffer 1Ī¼L
50ļ¼…PEG4000 1Ī¼L
H2O AddĀ toĀ 10Ī¼L
ReactionĀ conditions:
TheĀ ligationĀ reactionĀ wasĀ carriedĀ outatĀ roomĀ temperatureĀ forĀ 10Ā toĀ 30Ā minutes.Ā TheĀ ligationĀ productĀ wasĀ thenĀ transferredĀ toĀ 30Ā Ī¼LĀ ofĀ TOP10Ā competentĀ cells.Ā TheĀ cellsĀ wereĀ thenĀ platedĀ onĀ aĀ petriĀ dishĀ withĀ Kanamycin,Ā andĀ thenĀ culturedĀ atĀ 37Ā ā„ƒĀ forĀ atĀ leastĀ 12Ā hoursĀ andĀ thenĀ twoĀ clonesĀ wereĀ selectedĀ andĀ addedĀ toĀ LBĀ mediumĀ withĀ KanamycinĀ (5Ā ml)Ā ,Ā andĀ thenĀ culturedĀ atĀ 37Ā ā„ƒĀ atĀ 250Ā rpmĀ forĀ atĀ leastĀ 12Ā hours.
RandomlyĀ selectedĀ clonesĀ wereĀ sequenced,Ā soĀ asĀ toĀ verifyĀ theirĀ sequences.Ā TheĀ correctĀ expressionĀ vectorsĀ pT7-B2-6andĀ pT7-B2-10Ā wereĀ selectedĀ forĀ subsequentĀ experiments.
SourceĀ ofĀ pT7-sgRNAĀ plasmid
PT7-sgRNAĀ vectorĀ mapĀ isĀ shownĀ inĀ FIG.Ā 2.Ā TheĀ plasmidĀ backboneĀ wasĀ obtainedfromĀ TakaraĀ (CatalogĀ No.Ā 3299)Ā .Ā TheĀ DNAĀ fragmentĀ containingĀ T7Ā promoterĀ andĀ sgRNAĀ scaffoldĀ wasĀ synthesizedĀ byĀ aĀ plasmidĀ synthesisĀ company,Ā andĀ linkedĀ toĀ theĀ backboneĀ vectorĀ byĀ restrictionĀ enzymeĀ digestionĀ (EcoRIĀ andĀ BamHI)Ā andĀ ligation.Ā TheĀ targetĀ plasmidĀ wasĀ confirmedĀ byĀ theĀ sequencingĀ results.
TheĀ DNAĀ fragmentĀ containingĀ theĀ T7Ā promoterĀ andĀ sgRNAĀ scaffoldĀ (SEQĀ IDĀ NO:Ā 23)Ā :
Figure PCTCN2017106024-appb-000007
EXAMPLEĀ 2.Ā ConstructionĀ ofĀ vectorĀ pClon-4G-BTLA
AĀ partialĀ codingĀ sequenceĀ ofĀ theĀ mouseĀ BTLAĀ geneĀ (GeneĀ ID:Ā 208154)Ā fromĀ exonĀ 2Ā (basedĀ onĀ theĀ transcriptĀ ofĀ NCBIĀ accessionĀ numberĀ NM_001037719.2Ā ā†’NP_001032808.2Ā whoseĀ mRNAĀ sequenceĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 24,Ā andĀ theĀ correspondingĀ proteinĀ sequenceĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 25)Ā wasĀ replacedĀ withĀ aĀ correspondingĀ codingĀ sequenceĀ ofĀ humanĀ homologousĀ BTLAĀ geneĀ (GeneĀ ID:Ā 151888)Ā (basedĀ onĀ theĀ transcriptĀ ofĀ NCBIĀ accessionĀ numberĀ NM_181780.3Ā ā†’NP_861445.3,Ā whoseĀ mRNAĀ sequenceĀ wasĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 26,Ā andĀ theĀ correspondingĀ proteinĀ sequenceĀ isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 27)Ā .Ā TheĀ comparisonĀ betweenĀ theĀ mouseĀ BTLAĀ andĀ humanĀ BTLAisĀ shownĀ inĀ FIG.Ā 3A,Ā andĀ theĀ finallyĀ obtainedĀ humanizedĀ BTLAĀ geneĀ isĀ shownĀ inĀ FIG.Ā 3B,Ā theĀ humanizedĀ mouseĀ BTLAĀ geneĀ DNAĀ sequenceĀ (chimericĀ BTLAĀ geneĀ DNA)Ā isĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 28.
Figure PCTCN2017106024-appb-000008
SEQĀ IDĀ NO:Ā 28Ā listsĀ onlyĀ theĀ portionĀ ofĀ DNAĀ sequenceĀ involvedĀ inĀ theĀ modification,Ā whereinĀ theĀ italicizedĀ underlinedĀ regionĀ isĀ theĀ humanĀ BTLAĀ geneĀ sequenceĀ fragment.
TheĀ codingĀ regionĀ sequence,Ā mRNAĀ sequenceĀ andĀ theĀ encodedĀ proteinĀ sequenceĀ thereofĀ ofĀ theĀ modifiedĀ humanizedBTLAĀ areĀ respectivelyĀ shownĀ inĀ SEQĀ IDĀ NO:Ā 29,Ā SEQĀ IDĀ NO:Ā 30,Ā andĀ SEQĀ IDĀ NO:Ā 31.
BecauseĀ humanĀ BTLAĀ andĀ mouseĀ BTLAĀ haveĀ manyĀ isoforms,Ā theĀ methodsĀ asĀ describedĀ hereinĀ canĀ beĀ appliedĀ toĀ otherĀ isoforms.Ā ForĀ example,Ā humanĀ BTLAĀ isoformĀ 2Ā (NCBIĀ accessionĀ numberĀ NM_001085357.1Ā (SEQĀ IDĀ NO:Ā 67)Ā ā†’NP_001078826.1Ā (SEQĀ IDĀ NO:Ā 68)Ā )Ā canĀ beĀ used.
AĀ targetingĀ strategyĀ involvingĀ aĀ vectorĀ comprisingĀ theĀ 5ā€™Ā endĀ homologousĀ arm,Ā humanĀ BTLAĀ geneĀ fragment,Ā 3ā€™Ā homologousĀ armĀ asĀ shownĀ inĀ FIG.Ā 3CĀ isĀ alsoĀ developed.Ā TheĀ processĀ isĀ asĀ follows:
(1)Ā .Ā DesignĀ upstreamĀ primersĀ ofĀ homologousĀ recombinationĀ fragments,Ā andĀ downstreamĀ primersĀ matchingĀ therewith,Ā asĀ wellĀ asĀ otherĀ relatedĀ sequences.Ā Specifically:
5ā€™Ā endĀ homologousĀ armĀ (SEQĀ IDĀ NO:Ā 32)Ā ,Ā nucleotideĀ sequenceĀ ofĀ theĀ positionsĀ fromĀ 45237539Ā toĀ 45239051ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6Ā asĀ follows:
UpstreamĀ primerĀ (SEQĀ IDĀ NO:Ā 33)Ā :
F:Ā 5ā€™Ā -tttaagaaggagatatacatggatatcatacagcaacgacctcgttaagactĀ -3ā€™
DownstreamĀ primerĀ (SEQĀ IDĀ NO:Ā 34)Ā :
R:Ā 5ā€™Ā -taaagctgtacatcacactcttcatctaaaacaaaaacaaaactgg-3ā€™
(2)Ā .Ā DesignĀ theĀ primersĀ andĀ relatedĀ sequencesĀ ofĀ theĀ desiredĀ conversionĀ region.Ā HumanĀ DNAĀ fragmentĀ (SEQĀ IDĀ NO:Ā 35)Ā isĀ theĀ nucleotideĀ sequenceĀ fromĀ positionsĀ 112479758Ā toĀ 112479462ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000003.12.
TheĀ upstreamĀ primerĀ (SEQĀ IDĀ NO:Ā 36)Ā is:
F:Ā 5ā€™Ā -gttttagatgaagagtgtgatgtacagctttatataaagagacaa-3ā€™
TheĀ downstreamĀ primerĀ (SEQĀ IDĀ NO:Ā 37)Ā is:
R:Ā 5ā€™Ā -atcacttacctgtcacataaagagttgttgagtggctttcaatg-3ā€™
(3)Ā .Ā DesignĀ theĀ upstreamĀ primersĀ ofĀ theĀ homologousĀ recombinationĀ fragmentĀ andĀ theĀ downstreamĀ primersĀ matchingĀ therewith,Ā asĀ wellĀ asĀ otherĀ relatedĀ sequences.
Specifically:
3ā€™Ā homologousĀ armĀ (SEQĀ IDĀ NO:Ā 38)Ā ,Ā whichĀ wasĀ theĀ nucleotideĀ sequenceĀ fromĀ positionsĀ 45239358Ā toĀ 45240854Ā ofĀ theĀ NCBIĀ accessionĀ numberĀ NC_000082.6:
UpstreamĀ primerĀ (SEQĀ IDĀ NO:Ā 39)Ā :
F:Ā 5ā€™Ā -cactcaacaactctttatgtgacaggtaagtgatctaccccag-3ā€™
DownstreamĀ primerĀ (SEQĀ IDĀ NO:Ā 40)Ā :
R:Ā 5ā€™Ā -ttgttagcagccggatctcaggtcgacgctagactatcaattctaccatgttgat-3ā€™
C57BL/6Ā mouseĀ DNAĀ isĀ usedĀ asĀ theĀ templateĀ toĀ carryĀ outĀ PCRĀ amplificationĀ forĀ theĀ 5ā€™Ā -terminalĀ homologousĀ armĀ fragmentĀ andĀ theĀ 3ā€™Ā -terminalĀ homologousĀ armĀ fragment.Ā HumanĀ DNAĀ isĀ usedĀ asĀ theĀ templateĀ toĀ carryĀ outĀ PCRĀ amplificationĀ forĀ theĀ DNAĀ fragment,Ā andĀ theĀ AIOĀ kitĀ isĀ usedĀ toĀ ligateĀ theĀ fragmentsĀ toĀ theĀ pClon-4GĀ plasmidĀ providedĀ byĀ theĀ kit,Ā soĀ asĀ toĀ obtainĀ theĀ vectorĀ pClon-4G-BTLA.
EXAMPLEĀ 3.Ā VerificationĀ ofĀ vectorĀ pClon-4G-BTLA
ThreeĀ pClon-4G-BTLAĀ clonesĀ wereĀ randomlyĀ selectedĀ andĀ identifiedĀ byĀ threeĀ setsĀ ofĀ enzymes.Ā AmongĀ them,Ā EcoRIshouldĀ generateĀ 5779bp+1043bpĀ fragments,Ā SacIĀ shouldĀ generateĀ 4130bp+2692bpĀ fragments,Ā ScaIĀ shouldĀ generateĀ 5579bp+1243bpĀ fragments.Ā TheĀ resultsĀ wereĀ inĀ lineĀ withĀ theĀ expectationsĀ (FIG.Ā 4A)Ā .Ā TheĀ sequencesĀ ofĀ  Plasmids Ā 1,Ā 2,Ā andĀ 3wereĀ furtherĀ verifiedbyĀ sequencing.Ā PlasmidĀ 2Ā wasĀ selectedĀ forĀ subsequentĀ experiments.
EXAMPLEĀ 4.Ā MicroinjectionĀ andĀ embryoĀ transfer
TheĀ pre-mixedĀ Cas9Ā mRNA,Ā pClon-4G-BTLAĀ plasmidĀ andĀ inĀ vitroĀ transcriptionĀ productsĀ ofĀ pT7-BTLA-1Ā ,Ā pT7-BTLA-14Ā plasmidsĀ wereĀ injectedĀ intoĀ theĀ cytoplasmĀ orĀ  nucleusĀ ofĀ mouseĀ fertilizedĀ eggsĀ (C57BL/6Ā background)Ā withĀ aĀ microinjectionĀ instrumentĀ (usinginĀ vitroĀ transcriptionĀ kitĀ toĀ carryĀ outĀ theĀ transcriptionĀ accordingĀ toĀ theĀ methodĀ providedĀ inĀ theĀ productĀ instruction)Ā .Ā TheĀ embryoĀ microinjectionĀ wasĀ carriedĀ outĀ accordingĀ toĀ theĀ methodĀ described,Ā e.g.,Ā inĀ A.Ā Nagy,Ā etĀ al.,Ā ā€œManipulatingĀ theĀ MouseĀ Embryo:Ā ALaboratoryĀ ManualĀ (ThirdĀ Edition)Ā ,Ā ā€Ā ColdĀ SpringĀ HarborĀ LaboratoryĀ Press,Ā 2003.Ā TheĀ injectedĀ fertilizedĀ eggsĀ wereĀ thenĀ transferredĀ toĀ aĀ cultureĀ mediumĀ forĀ aĀ shortĀ timeĀ culture,Ā andĀ thenĀ wasĀ transplantedĀ intoĀ theĀ oviductĀ ofĀ theĀ recipientĀ mouseĀ toĀ produceĀ theĀ geneticallyĀ modifiedĀ humanizedĀ miceĀ (F0Ā generation)Ā .Ā TheĀ miceĀ populationĀ wasĀ furtherĀ expandedĀ byĀ cross-matingĀ andĀ self-matingĀ toĀ establishĀ stableĀ mouseĀ lines.Ā TheĀ humanizedĀ mousewasĀ namedĀ asĀ B-hBTLAĀ mouse.
EXAMPLEĀ 5.Ā VerificationĀ ofĀ geneticallyĀ modifiedĀ humanizedĀ mouseĀ model
1.Ā GenotypeĀ determinationĀ forĀ F0Ā generationĀ mice
PCRĀ analysisĀ wasĀ performedĀ forĀ mouseĀ tailĀ genomicĀ DNAĀ ofĀ F0Ā generationmice.Ā TheĀ primersĀ areĀ forĀ exonĀ 2Ā ofĀ mouseĀ BTLAĀ gene.Ā TheĀ primersforPCR-1Ā wereĀ locatedĀ onĀ theĀ leftĀ sideĀ ofĀ theĀ 5ā€™Ā homologousĀ arm,Ā theĀ primersĀ forĀ PCR-4Ā wereĀ locatedĀ onĀ theĀ rightĀ sideĀ ofĀ theĀ 3ā€™Ā homologousĀ armļ¼›Ā inĀ addition,Ā theĀ primersĀ forĀ PCR-2Ā andĀ PCR-3Ā wereĀ locatedĀ onĀ theĀ humanizedĀ fragment,Ā whichĀ areĀ shownĀ below:
5ā€™Ā terminusĀ primers:
PCR-1Ā (SEQĀ IDĀ NO:Ā 41)Ā ļ¼šĀ 5ā€™Ā -acttagtggactgtaggagtgctgg-3ā€™
PCR-2Ā (SEQĀ IDĀ NO:Ā 42)Ā ļ¼šĀ 5ā€™Ā -cagcggtatgacccattgtcattagga-3ā€™
3ā€™Ā terminusĀ primers:
PCR-3Ā (SEQĀ IDĀ NO:Ā 43)Ā ļ¼šĀ 5ā€™Ā -ccatcttagcaggagatccctttgaĀ -3ā€™
PCR-4Ā (SEQĀ IDĀ NO:Ā 44)Ā ļ¼šĀ 5ā€™Ā -tagacatgagacaaggttgggcctgĀ -3ā€™
IfĀ theĀ recombinantĀ vectorĀ hasĀ theĀ correctĀ insertion,Ā thereĀ shouldĀ beĀ onlyĀ oneĀ PCRĀ band.Ā TheĀ lengthĀ ofĀ theĀ 5ā€™Ā terminusĀ productĀ shouldĀ beĀ 1842bp,Ā andĀ theĀ lengthĀ ofĀ theĀ 3ā€™Ā terminusproductshouldĀ beĀ 2428bp.
TableĀ 5.Ā TheĀ PCRĀ reactionĀ systemĀ (20Ā Ī¼L)
10ƗĀ buffer 2Ī¼L
dNTPĀ (2mM) 2Ī¼L
MgSO4Ā (25mM) 0.8Ī¼L
UpstreamĀ primerĀ (10Ī¼M) 0.6Ī¼L
DownstreamĀ primerĀ (10Ī¼M) 0.6Ī¼L
MouseĀ tailgenomicDNA 200ng
KOD-Plus-Ā (1U/Ī¼L) 0.6Ī¼L
TableĀ 6.Ā TheĀ PCRĀ reactionĀ conditions
Figure PCTCN2017106024-appb-000009
TheĀ verificationĀ resultsĀ forĀ twoĀ F0Ā generationĀ miceĀ areĀ shownĀ inĀ FIG.Ā 5.
2.Ā GenotypeĀ determinationĀ forĀ F1Ā generationĀ mice
F1Ā generationĀ miceĀ wereĀ obtainedĀ byĀ cross-matingĀ F0Ā generationĀ miceĀ withĀ C57BL/6Ā mice.Ā PCRĀ wasĀ performedĀ forĀ sixĀ F1Ā generationĀ mice.Ā TheĀ resultsĀ showedĀ thatĀ allĀ sixĀ F1Ā generationĀ miceĀ areĀ positiveĀ (FIG.Ā 6)Ā .
TheseĀ sixĀ miceĀ wereĀ furtherexaminedĀ byĀ SouthernĀ blottingĀ toĀ determineĀ whetherĀ theyĀ hadĀ aĀ randomĀ insertion.Ā TheĀ genomicĀ DNAĀ wasĀ extractedĀ fromĀ theĀ mouseĀ tail,Ā andĀ StuIĀ andĀ PstIwereĀ usedĀ toĀ digestĀ theĀ genomicĀ DNA.Ā TheĀ digestionĀ productsĀ wereĀ transferredĀ toĀ membraneĀ andĀ hybridized.Ā TheĀ probesĀ P1Ā andĀ P2Ā wereĀ locatedĀ respectivelyĀ outsideĀ ofĀ theĀ 5ā€™Ā homologousĀ armĀ andĀ inĀ theĀ humanizedĀ fragment.Ā TheĀ primersĀ forĀ probeĀ synthesisĀ areĀ asĀ follows:
P1-FĀ (SEQĀ IDĀ NO:Ā 45)Ā :Ā 5ā€™Ā -TGATTTGCTTGCTGTTTAAGGTCATĀ -3ā€™
P1-RĀ (SEQĀ IDĀ NO:Ā 46)Ā :Ā 5ā€™Ā -CTCAGAAAGAGATTTCAAGGGGGTAĀ -3ā€™
P2-FĀ (SEQĀ IDĀ NO:Ā 47)Ā :Ā 5ā€™Ā -GGATGCTCTGATGGGCACACACTTT-3ā€™
P2-RĀ (SEQĀ IDĀ NO:Ā 48)Ā :Ā 5ā€™Ā -TTAGGGAACCAGTTTCTCAGCAGGG-3ā€™
TheĀ wildĀ typeĀ C56BL/6Ā miceĀ wouldĀ havethe11.6kbĀ (P1)Ā andĀ 5.8kbĀ (P2)Ā bandsĀ asĀ determinedĀ byĀ P1Ā andĀ P2Ā probesĀ respectively.Ā TheĀ geneticallyĀ engineeredĀ homozygousĀ miceĀ shouldĀ haveĀ theĀ 9.4kbĀ (P1)Ā andĀ 5.8kbĀ (P2)Ā bandsĀ adĀ determinedĀ byĀ P1Ā andĀ P2Ā probesĀ respectively.Ā TheĀ geneticallyĀ engineeredĀ heterozygousĀ miceĀ shouldĀ haveĀ theĀ 11.6kbĀ +Ā 9.4kbĀ (P1)Ā andĀ 5.8kbĀ (P2)Ā bandsĀ asĀ determinedĀ byĀ PĀ andĀ P2Ā probesĀ respectively.
TheĀ resultsĀ wereĀ shownĀ inĀ FIGS.Ā 7A-7B.Ā AmongĀ theĀ sixĀ F1Ā generationĀ miceĀ asĀ determinedĀ byĀ P1Ā probe,Ā F1-4Ā hadĀ noĀ randomĀ insertionĀ (FIG.Ā 7A)Ā .Ā TheĀ resultsĀ fromĀ P2Ā probeĀ confirmedĀ thatĀ F1-4Ā hadĀ noĀ randomĀ insertionsĀ andĀ F1-4Ā wasĀ ahBTLAĀ heterozygousĀ mouseĀ (FIG.Ā 7B)Ā .
ItĀ thusĀ showsĀ thatĀ thisĀ methodĀ canĀ beĀ usedĀ toĀ generateĀ humanizedĀ B-hBTLAmiceĀ thathaveĀ noĀ randomĀ insertion.
3.Ā ProteinĀ expressionĀ analysisĀ forĀ heterozygousĀ F1Ā generationĀ mouse
AĀ humanizedĀ heterozygousĀ F1Ā generationĀ mouseĀ wasĀ selectedĀ forĀ thisĀ experiment.Ā OneĀ wildĀ typeĀ C57BL/6Ā mouseĀ wasĀ usedĀ asĀ theĀ control.
7.5Ā Ī¼gĀ ofĀ mouseĀ CD3Ā antibodyĀ wasĀ injectedĀ intraperitoneallyĀ toĀ theĀ mice.Ā TheĀ spleensĀ wereĀ collectedĀ 24Ā hoursĀ afterĀ theĀ injection,Ā andĀ theĀ spleenĀ samplesĀ wereĀ grinded.Ā TheĀ groundĀ samplesĀ wereĀ thenĀ passedĀ throughĀ 70Ā Ī¼mĀ cellĀ mesh,Ā theĀ filteredĀ cellĀ suspensionsĀ wereĀ centrifugedĀ andĀ theĀ supernatantsĀ wereĀ discardedļ¼›Ā theĀ erythrocyteĀ lysisĀ solutionĀ wasĀ addedĀ forĀ lysisĀ ofĀ 5Ā min,Ā andĀ thenĀ PBSĀ solutionĀ wasĀ addedĀ toĀ neutralizeĀ theĀ lysisĀ reaction.Ā TheĀ solutionĀ wasĀ centrifugedĀ againĀ andĀ theĀ supernatantsĀ wereĀ discarded.Ā TheĀ cellsĀ wereĀ washedĀ onceĀ withĀ PBS.
FACS:Ā anti-mouseĀ BTLAĀ antibodiesĀ (mBTLAĀ PE)Ā andĀ anti-mTCRĪ²Ā antibodiesĀ (TCRĪ²Ā PerCP)Ā ,Ā orĀ anti-humanĀ BTLAĀ antibodiesĀ (hBTLAĀ APC)Ā andĀ anti-mTCRĪ²antibodiesĀ (TCRĪ²Ā PerCP)Ā wereĀ usedĀ forĀ stainingĀ extracellularĀ proteins.Ā TheĀ cellsĀ wereĀ washedĀ onceĀ againĀ withĀ PBS.Ā FlowĀ cytometryĀ wasĀ carriedĀ outĀ toĀ detectĀ proteinĀ expression.Ā FlowĀ cytometryĀ analysisĀ resultsĀ (FIGS.Ā 8A-8F)Ā showĀ whenĀ comparedĀ withĀ  theĀ C57BL/6Ā miceĀ withoutĀ CD3Ā antibodyĀ stimulationĀ (FIGS.Ā 8AĀ andĀ 8D)Ā orĀ withCD3Ā antibodyĀ stimulationĀ (FIGS.Ā 8BĀ andĀ 8E)Ā ,Ā theĀ humanizedĀ mouseĀ spleenĀ (FIGS.Ā 8CĀ andĀ 8F)Ā hasĀ theĀ cellsĀ ofĀ humanĀ BTLAĀ proteinĀ expressionĀ asĀ detectedĀ byĀ anti-humanĀ BTLAĀ antibody,Ā whileĀ theĀ spleenĀ ofĀ theĀ C57BL/6Ā controlĀ miceĀ doesĀ notĀ haveĀ detectableĀ cellsĀ ofĀ humanĀ BTLAĀ proteinĀ expression.Ā TheĀ foregoingĀ resultsĀ indicateĀ thatĀ theĀ BTLAĀ geneticallyĀ modifiedĀ humanizedĀ mouseĀ isĀ ableĀ toĀ expressĀ humanĀ BTLAĀ protein,Ā whichĀ canĀ beĀ detectedĀ byĀ anĀ anti-humanĀ antibody.Ā InĀ contrast,Ā humanĀ BTLAĀ proteinĀ expressionĀ cannotĀ beĀ detectedĀ inĀ theĀ C57BL/6Ā mice.
RT-PCRĀ detection:Ā RNAĀ wasĀ extractedĀ fromĀ theĀ spleenĀ cells,Ā andĀ cDNAĀ wereĀ thenĀ obtainedĀ byĀ reverseĀ transcriptionĀ usingĀ aĀ reverseĀ transcriptionĀ kit.
PrimersĀ forĀ mBTLAĀ RT-PCR:
mBTLAĀ RT-PCRĀ F1Ā (SEQĀ IDĀ NO:Ā 49)Ā ļ¼šĀ ACCCCTTGAGGTTAGCCCT,Ā and
mBTLAĀ RT-PCRĀ R1Ā (SEQĀ IDĀ NO:Ā 50)Ā ļ¼šĀ TTGTAGAACAGCTATACGACCCA
wereĀ usedĀ toĀ amplifyĀ mouseĀ BTLAĀ fragmentĀ ofĀ 122Ā bp.
PrimersĀ forĀ hBTLAĀ RT-PCR:
hBTLAĀ RT-PCRĀ F1Ā (SEQĀ IDĀ NO:Ā 51)Ā ļ¼šĀ ATACTGTGCTAACAGGCCTCAļ¼ŒĀ and
hBTLAĀ RT-PCRĀ R1Ā (SEQĀ IDĀ NO:Ā 52)Ā ļ¼šĀ ACCCATTGTCATTAGGAAGCACT
wereĀ usedĀ amplifyĀ humanĀ BTLAĀ fragmentĀ ofĀ 152Ā bp.
PCRĀ reactionĀ systemĀ wasĀ 20Ā Ī¼L,Ā reactionĀ conditions:Ā 95Ā ā„ƒ,Ā 5minļ¼›Ā (95Ā ā„ƒ,Ā 30Ā secļ¼›Ā 60Ā ā„ƒ,Ā 30Ā secļ¼›Ā 72Ā ā„ƒ,Ā 30Ā sec,Ā 35Ā cycles)Ā ļ¼›Ā 72Ā ā„ƒ,Ā 10Ā minļ¼›Ā andĀ thenĀ keepingĀ itĀ atĀ 4Ā ā„ƒ.Ā GAPDHĀ wasĀ usedasĀ anĀ internalĀ reference.
TheĀ resultsĀ areĀ shownĀ inĀ FIG.Ā 9.Ā TheĀ mRNAĀ expressionĀ ofĀ mouseĀ BTLAĀ wasĀ detectedĀ inĀ theĀ activatedĀ cellsĀ ofĀ wild-typeĀ C57BL/6Ā miceĀ andĀ F1Ā generationĀ heterozygousĀ mouseļ¼›Ā whileĀ theĀ mRNAĀ expressionĀ ofĀ humanĀ BTLAĀ wasĀ onlyĀ detectedĀ inĀ theĀ activatedĀ cellsĀ ofĀ theĀ F1Ā generationĀ heterozygousĀ mouse.
4.Ā ProteinĀ expressionĀ analysisĀ forĀ B-hBTLAĀ homozygousĀ mice
TheĀ B-hBTLAgeneticallyĀ engineeredĀ homozygousĀ miceĀ wereĀ obtainedĀ byĀ matingĀ theĀ previouslyĀ obtainedĀ heterozygousĀ miceĀ withĀ eachĀ other.Ā OneĀ homozygousĀ B-hBTLAĀ mouseĀ wasĀ selected,Ā andĀ twoĀ wildĀ typeĀ C57BL/6Ā mouseĀ wereĀ selectedĀ asĀ aĀ control.Ā 7.5Ā Ī¼gĀ ofĀ mouseĀ CD3Ā antibodyĀ wasĀ injectedĀ intraperitoneallyĀ toĀ theĀ mice,Ā andĀ theĀ spleensĀ ofĀ theĀ miceĀ wereĀ collectedĀ afterĀ 24Ā h.Ā TheĀ spleenĀ samplesĀ wereĀ groundĀ andĀ thenĀ filteredĀ throughĀ aĀ 70Ā Ī¼mĀ cellĀ filter,Ā theĀ obtainedĀ cellĀ suspensionsĀ wereĀ centrifugedĀ andĀ theĀ resultingĀ supernatantsĀ wereĀ discarded.Ā TheĀ cellĀ samplesĀ wereĀ addedĀ withĀ erythrocyteĀ lysisĀ solutionĀ forĀ lysisĀ ofĀ 5Ā min,Ā andĀ thenĀ addedĀ PBSĀ solutionĀ toĀ neutralizeĀ theĀ lysisĀ reaction,Ā centrifugedĀ againĀ andĀ theĀ supernatantsĀ wereĀ discarded,Ā theĀ cellsĀ wereĀ washedĀ onceĀ withĀ PBS.Ā TheĀ obtainedĀ samplesĀ wereĀ usedĀ inĀ FACSĀ detectionĀ andĀ RT-PCRĀ detection.
FACS:Ā TheĀ TĀ cellsĀ extracellularĀ proteinsĀ wereĀ simultaneouslyĀ stainedĀ withĀ anti-mouseĀ BTLAĀ antibodyĀ (mBTLAĀ PE)Ā andĀ anti-mouseĀ CD19Ā antibodiesĀ (mCD19Ā FITC)Ā orĀ anti-humanĀ BTLAĀ antibodyĀ (hBTLAĀ APC)Ā andĀ anti-mouseĀ CD19Ā antibodiesĀ (mCD19Ā FITC)Ā .Ā TheĀ cellsĀ wereĀ thenĀ washedĀ withĀ PBSĀ andĀ thenĀ detectedĀ forĀ proteinĀ expressionĀ byĀ FACS.Ā FlowĀ cytometryĀ analysisĀ resultsĀ areĀ shownĀ inĀ FIGS.Ā 10A-10F.Ā TheĀ anti-mouseĀ BTLAĀ antibodyĀ wasĀ ableĀ toĀ detectĀ theĀ cellsĀ expressingĀ mouseĀ BTLAĀ proteinĀ inĀ theĀ spleenĀ samplesĀ fromĀ theĀ C57BL/6Ā controlĀ miceĀ (FIG.Ā 10B)Ā ļ¼›Ā whileĀ theĀ mouseĀ BTLAĀ antibodyĀ wasĀ unableĀ toĀ detectĀ mouseĀ BTLAĀ proteinĀ inĀ theĀ spleenĀ samplesĀ fromĀ B-hBTLAĀ homozygoteĀ (FIG.Ā 10C)Ā .Ā Moreover,Ā theĀ humanĀ BTLAĀ antibodyĀ wasĀ ableĀ toĀ detectĀ theĀ cellsĀ expressingĀ humanĀ BTLAĀ proteinĀ inĀ theĀ spleenĀ samplesĀ fromĀ B-hBTLAĀ homozygoteĀ (FIG.Ā 10F)Ā ļ¼›Ā whileĀ theĀ humanĀ BTLAĀ antibodyĀ wasĀ unableĀ toĀ detectĀ humanĀ BTLAĀ proteinĀ inĀ theĀ spleenĀ samplesĀ fromĀ theĀ C57BL/6Ā controlĀ miceĀ (FIG.Ā 10E)Ā .
RT-PCRĀ detection:Ā RNAĀ wasĀ extractedĀ fromĀ theĀ spleenĀ cellsĀ ofĀ C57BL/6Ā miceĀ andĀ B-hBTLAĀ homozygotes,Ā andĀ cDNAĀ wereĀ thenĀ obtainedĀ byĀ reverseĀ transcriptionĀ usingĀ aĀ reverseĀ transcriptionĀ kit.Ā mBTLAĀ RT-PCRĀ F1Ā (SEQĀ IDĀ NO:Ā 49)Ā andĀ mBTLAĀ RT-PCRĀ R1Ā (SEQĀ IDĀ NO:Ā 50)Ā wereĀ usedĀ toĀ amplifyĀ mouseĀ BTLAĀ fragmentĀ ofĀ 122Ā bp.Ā hBTLAĀ RT-PCRĀ F1Ā (SEQĀ IDĀ NO:Ā 51)Ā andĀ hBTLAĀ RT-PCRĀ R1Ā (SEQĀ IDĀ NO:Ā 52)Ā wereĀ usedĀ amplifyĀ humanĀ BTLAĀ fragmentĀ ofĀ 152Ā bp.
TheĀ resultsĀ areĀ shownĀ inĀ FIG.Ā 11.Ā TheĀ mRNAĀ expressionĀ ofĀ mouseĀ BTLAĀ wasĀ detectedĀ inĀ theĀ activatedĀ cellsĀ ofĀ wild-typeĀ C57BL/6Ā miceĀ (+/+)Ā ļ¼›Ā whileĀ theĀ mRNAĀ expressionĀ ofĀ humanĀ BTLAĀ wasĀ onlyĀ detectedĀ inĀ B-hBTLAĀ homozygotesĀ (H/H)Ā .
EXAMPLEĀ 6.Ā BTLAĀ knockoutĀ mice
SinceĀ theĀ cleavageĀ ofĀ Cas9Ā resultsĀ inĀ DNAĀ doubleĀ strandsĀ break,Ā andĀ theĀ homologousĀ recombinationĀ repairĀ mayĀ resultĀ inĀ insertionĀ /deletionĀ mutations,Ā itĀ isĀ possibleĀ toĀ obtainĀ BTLAĀ knockoutĀ mouseĀ whenĀ preparingĀ theĀ humanizedĀ BTLAĀ mouse.Ā AĀ pairĀ ofĀ primersĀ wasĀ thusĀ designed.Ā TheyĀ areĀ locatedĀ onĀ theĀ leftĀ sideĀ ofĀ theĀ 5ā€™Ā endĀ targetĀ site,Ā andĀ toĀ theĀ rightĀ sideĀ ofĀ theĀ 3ā€™Ā endĀ targetĀ site,Ā whichĀ areĀ shownĀ asĀ follows:
F:Ā 5ā€™Ā -TGAAGAGTGTCCAGTGCAACTTACT-3ā€™Ā (SEQĀ IDĀ NO:Ā 53)
R:Ā 5ā€™Ā -TGTGGTGGACTGTGGATGTGACAAA-3ā€™Ā (SEQĀ IDĀ NO:Ā 54)
TheĀ PRCĀ reactionĀ systemsĀ andĀ conditionsĀ areĀ listedĀ inĀ TableĀ 5Ā andĀ TableĀ 6.Ā UnderĀ thisĀ condition,Ā theĀ wideĀ typeĀ miceĀ shouldĀ haveĀ onlyĀ oneĀ PCRĀ band,Ā andĀ theĀ productĀ lengthĀ shouldĀ beĀ aboutĀ 452bp.Ā TheĀ heterozygousĀ miceĀ shouldĀ haveĀ oneĀ additionalĀ band.Ā TheĀ productĀ lengthĀ shouldĀ beĀ aboutĀ 260Ā bp.Ā TheĀ resultsĀ areĀ shownĀ inĀ FIG.Ā 12.Ā TheĀ miceĀ withĀ No.Ā 1-6Ā areĀ BTLAĀ knockoutĀ mice.
EXAMPLEĀ 7.Ā PharmacologicalĀ validationĀ ofĀ B-hBTLAĀ humanizedĀ animalĀ model
B-hBTLAĀ homozygousĀ miceĀ (4-8Ā weeks)Ā wereĀ subcutaneouslyĀ injectedĀ withĀ mouseĀ colonĀ cancerĀ cellĀ MC38Ā (5Ā Ć—Ā 105/100Ā Ī¼lĀ PBS)Ā ,Ā andĀ whenĀ theĀ tumorĀ volumeĀ grewĀ toĀ aboutĀ 100Ā mm3,Ā theĀ miceĀ wereĀ dividedĀ toĀ aĀ controlĀ groupĀ andĀ sixĀ treatmentĀ groupsĀ basedĀ onĀ tumorĀ sizeĀ (nĀ ļ¼Ā 5/group)Ā .Ā TheĀ treatmentĀ groupsĀ wereĀ randomlyĀ selectedĀ forĀ anti-humanĀ BTLAĀ antibodiesĀ (AB1,Ā AB2,Ā AB3,Ā AB4,Ā AB5,Ā AB6)Ā treatmentĀ (10Ā mg/kg)Ā ļ¼›Ā theĀ controlĀ groupĀ wasĀ injectedĀ withĀ anĀ equalĀ volumeĀ ofĀ blankĀ solvent.Ā TheĀ frequencyĀ ofĀ administrationĀ wasĀ twiceĀ aĀ weekĀ (6Ā timesĀ ofĀ administrationsĀ inĀ total)Ā .Ā TheĀ tumorĀ volumeĀ wasĀ measuredĀ twiceĀ aĀ weekĀ andĀ theĀ bodyĀ weightĀ ofĀ theĀ miceĀ wasĀ weighedĀ asĀ well.Ā EuthanasiaĀ wasĀ performedĀ whenĀ theĀ tumorĀ volumeĀ ofĀ theĀ mouseĀ reachedĀ 3000Ā mm3.
Overall,Ā theĀ animalsĀ inĀ eachĀ groupĀ wereĀ healthy,Ā andĀ theĀ bodyĀ weightsĀ ofĀ allĀ theĀ treatmentĀ andĀ controlĀ groupĀ miceĀ increased,Ā andĀ wereĀ notĀ significantlyĀ differentĀ fromĀ eachĀ otherĀ (FIGS.Ā 13Ā andĀ 14)Ā .Ā TheĀ tumorĀ inĀ theĀ controlĀ groupĀ continuedĀ growingĀ duringĀ  theĀ experimentalĀ periodļ¼›Ā whenĀ comparedĀ withĀ theĀ controlĀ groupĀ mice,Ā theĀ tumorĀ volumesĀ inĀ theĀ G3,Ā G4,Ā G5,Ā G6,Ā G7Ā treatmentĀ groupsĀ wereĀ smallerĀ thanĀ theĀ controlĀ groupĀ G1Ā (FIG.Ā 15)Ā .Ā ItĀ thusĀ canĀ beĀ determinedĀ thatĀ theĀ useĀ ofĀ anti-BTLAĀ antibodiesĀ (AB2,Ā AB3,Ā AB4,Ā AB5Ā andĀ AB6)Ā areĀ wellĀ toleratedĀ andĀ canĀ inhibitĀ theĀ tumorĀ growthĀ inĀ mice.
TableĀ 7Ā showsĀ resultsĀ forĀ thisĀ experiment,Ā includingĀ theĀ tumorĀ volumesĀ atĀ theĀ dayĀ ofĀ grouping,Ā 15Ā daysĀ afterĀ theĀ grouping,Ā andĀ atĀ theĀ endĀ ofĀ theĀ experimentĀ (dayĀ 22)Ā ,Ā theĀ survivalĀ rateĀ ofĀ theĀ mice,Ā theĀ TumorĀ GrowthĀ InhibitionĀ valueĀ (TGITV)Ā ,Ā andĀ theĀ statisticalĀ differencesĀ (PĀ value)Ā inĀ mouseĀ bodyĀ weightsĀ andĀ tumorĀ volumeĀ betweenĀ theĀ treatmentĀ andĀ controlĀ groups.
TableĀ 7
Figure PCTCN2017106024-appb-000010
AtĀ theĀ endĀ ofĀ theĀ experimentĀ (dayĀ 22)Ā ,Ā theĀ bodyĀ weightĀ ofĀ eachĀ groupĀ increasedĀ andĀ thereĀ wasĀ noĀ significantĀ differenceĀ betweenĀ theĀ groupsĀ (p>Ā 0.05)Ā ,Ā indicatingĀ thatĀ theĀ animalsĀ toleratedĀ theĀ sixĀ anti-hBTLAĀ antibodiesĀ well.Ā WithĀ respectĀ toĀ theĀ tumorĀ volume,Ā inĀ theĀ controlĀ groupĀ (G1)Ā ,Ā theĀ averageĀ tumorĀ volumeĀ wasĀ 1542Ā±1618Ā mm3.Ā TheĀ averageĀ tumorĀ volumesĀ inĀ theĀ treatmentĀ groupsĀ were1631Ā±1093Ā mm3Ā (G2)Ā ,Ā 924Ā±641mm3Ā (G3)Ā ,Ā 461Ā±488mm3Ā (G4)Ā ,Ā 624Ā±345mm3Ā (G5)Ā ,Ā 831Ā±881mm3Ā (G6)Ā ,Ā 1017Ā±839mm3Ā (G7)Ā .
TheĀ tumorĀ volumeĀ inĀ theĀ G2Ā groupĀ isĀ notĀ differentĀ fromĀ theĀ controlĀ groupĀ (G1)Ā ,Ā butĀ theĀ tumorĀ volumesĀ inĀ theĀ otherĀ treatmentĀ groupsĀ (G3ļ½žG7)Ā wereĀ smallerĀ thanĀ thoseĀ inĀ theĀ controlĀ groupĀ (G1)Ā withĀ TGITVĀ 43.8ļ¼…,Ā 76.5ļ¼…,Ā 76.5ļ¼…,Ā 65.0ļ¼…,Ā 50.4ļ¼…,Ā 37.2ļ¼…forĀ eachĀ treatmentĀ group.Ā TheĀ resultsĀ showĀ thatĀ anti-humanĀ BTLAĀ antibodyĀ AB2,Ā AB3,Ā AB4,Ā AB5,Ā AB6haveĀ differentĀ tumorĀ inhibitoryĀ effectsĀ inĀ B-hBTLAĀ mice,Ā andĀ AB1Ā hasĀ noĀ tumorĀ inhibitoryĀ effects.Ā UnderĀ theĀ sameĀ condition,Ā theĀ inhibitoryĀ effectsĀ ofĀ AB3Ā (G4)Ā andĀ AB4Ā (G5)Ā areĀ betterĀ thanĀ AB2,Ā AB5,Ā AB6,Ā andĀ theseĀ antibodiesĀ haveĀ noĀ obviousĀ toxicĀ effectsĀ inĀ mice.
TheĀ aboveĀ exampleĀ hasĀ demonstratedĀ thatĀ theĀ B-hBTLAĀ mouseĀ modelĀ canĀ beĀ usedĀ asĀ anĀ inĀ vivoĀ animalĀ modelĀ forĀ screening,Ā evaluationĀ andĀ studyĀ ofĀ humanĀ BTLAĀ signalingĀ pathwayĀ regulators,Ā andĀ testĀ theĀ efficacyĀ ofĀ multipleĀ anti-humanĀ BTLAĀ antibodies.
EXAMPLEĀ 8.Ā PreparationĀ andĀ identificationĀ ofĀ miceĀ withĀ doubleĀ humanizedĀ orĀ multipleĀ humanizedĀ genes
MiceĀ containingĀ theĀ humanĀ BTLAĀ geneĀ (suchĀ asĀ theĀ B-hBTLAĀ animalĀ modelĀ preparedĀ usingĀ theĀ methodsĀ asĀ describedĀ inĀ theĀ presentĀ disclosure)Ā canĀ alsoĀ beĀ usedĀ toĀ prepareĀ anĀ animalĀ modelĀ withĀ double-humanizedĀ orĀ multi-humanizedĀ genes.Ā ForĀ example,Ā inĀ ExampleĀ 4,Ā theĀ fertilizedĀ eggĀ cellsĀ usedĀ inĀ theĀ microinjectionĀ andĀ embryoĀ transferĀ processĀ canĀ beĀ selectedĀ fromĀ theĀ fertilizedĀ eggĀ cellsĀ ofĀ otherĀ geneticallyĀ modifiedĀ miceĀ orĀ theĀ fertilizedĀ eggĀ cellsĀ ofĀ B-hBTLAĀ mice,Ā soĀ asĀ toĀ obtainĀ double-orĀ multiple-geneĀ modifiedĀ mouseĀ models.
InĀ addition,Ā theĀ B-hBTLAĀ animalĀ modelĀ homozygoteĀ orĀ heterozygoteĀ canĀ beĀ matedĀ withĀ otherĀ geneticallyĀ modifiedĀ homozygousĀ orĀ heterozygousĀ animalĀ models,Ā andĀ theĀ progenyĀ isĀ thenĀ screenedļ¼›Ā accordingĀ toĀ theĀ MendelianĀ law,Ā thereĀ isĀ aĀ chanceĀ toĀ obtainĀ theĀ double-geneĀ orĀ multiple-geneĀ modifiedĀ heterozygousĀ animalĀ models,Ā andĀ thenĀ theĀ obtainedĀ heterozygousĀ canĀ beĀ matedĀ withĀ eachĀ otherĀ toĀ finallyĀ obtainĀ theĀ double-geneĀ orĀ multiple-geneĀ modifiedĀ homozygotes.
InĀ theĀ caseĀ ofĀ theĀ generatingĀ doubleĀ humanizedĀ BTLA/PD-1Ā mouse,Ā sinceĀ theĀ mouseĀ BTLAĀ geneĀ andĀ Pd-1Ā geneĀ areĀ locatedĀ onĀ differentĀ chromosomes,Ā theĀ doubleĀ  humanizedĀ BTLA/PD-1Ā mouseĀ wasĀ obtainedĀ byĀ matingĀ theĀ B-hBTLAĀ mouseĀ withĀ B-hPD-1Ā mouseĀ (miceĀ withĀ humanizedĀ PD-1Ā gene)Ā .
PCRĀ analysisĀ wasĀ performedĀ onĀ theĀ mouseĀ tailĀ genomicĀ DNAĀ ofĀ doubleĀ humanizedĀ BTLA/PD-1Ā miceĀ usingĀ fourĀ pairsĀ ofĀ primers.Ā TheĀ specificĀ sequencesĀ andĀ productĀ lengthsĀ areĀ shownĀ inĀ TableĀ 8.Ā TheĀ reactionĀ systemĀ andĀ reactionĀ conditionsĀ areĀ shownĀ inĀ TableĀ 9Ā andĀ TableĀ 10.Ā TheĀ resultsĀ forĀ aĀ numberĀ ofĀ humanizedĀ BTLA/PD-1Ā miceĀ areĀ shownĀ inĀ FIGS.Ā 16A-16D,Ā whereinĀ FIGS.Ā 16AĀ andĀ 16BĀ showĀ thatĀ theĀ miceĀ numberedĀ 3017Ā toĀ 3032Ā areĀ BTLAĀ homozygousĀ mice,Ā FIGS.Ā 16CĀ andĀ 16DĀ showĀ thatĀ theĀ miceĀ numberedĀ 3017Ā toĀ 3032Ā areĀ PD-1Ā homozygousĀ mice.Ā TheĀ resultsĀ ofĀ theĀ twoĀ groupsĀ indicateĀ thatĀ theĀ 16Ā miceĀ numberedĀ 3017Ā toĀ 3032Ā wereĀ double-geneĀ homozygotes.
TableĀ 8.Ā PrimerĀ sequences
Figure PCTCN2017106024-appb-000011
TableĀ 9.Ā PCTĀ reaction
2ƗĀ MasterĀ Mix 10Ī¼L
UpstreamĀ primerĀ (10Ā Ī¼M) 0.5Ī¼L
DownstreamĀ primerĀ (10Ī¼M) 0.5Ī¼L
MouseĀ tailĀ genomicĀ DNAĀ (100-200Ā ng/20ml) 2Ā Ī¼L
ddH2O AddĀ toĀ toĀ 20Ī¼L
TableĀ 10.Ā PCRĀ amplificationĀ reactionĀ condition
Figure PCTCN2017106024-appb-000012
Figure PCTCN2017106024-appb-000013
TheĀ expressionĀ ofĀ theĀ doubleĀ humanizedĀ BTLA/PD-1Ā miceĀ wasĀ furtherĀ examined.Ā AĀ doubleĀ humanizedĀ BTLA/PD-1Ā homozygoteĀ (9Ā weeksĀ old)Ā wasĀ selectedĀ forĀ theĀ study.Ā TwoĀ wildĀ typeĀ C57BL/6Ā miceĀ wereĀ selectedĀ asĀ control.Ā MiceĀ wereĀ injectedĀ withĀ 7.5Ā Ī¼gĀ ofĀ mouseĀ CD3Ā antibodyĀ intraperitoneally.Ā AfterĀ 24Ā hours,Ā theĀ miceĀ wereĀ euthanized,Ā andĀ thenĀ theĀ spleensĀ ofĀ theĀ miceĀ wereĀ collected.Ā TheĀ spleenĀ samplesĀ wereĀ groundĀ andĀ theĀ groundĀ samplesĀ wereĀ filteredĀ throughĀ aĀ 70Ā Ī¼mĀ cellĀ mesh.Ā TheĀ filteredĀ cellĀ suspensionsĀ wereĀ centrifugedĀ andĀ theĀ supernatantsĀ wereĀ discardedļ¼›Ā erythrocyteĀ lysisĀ solutionĀ wasĀ addedĀ forĀ lysisĀ forĀ 5Ā min,Ā andĀ thenĀ PBSĀ solutionĀ wasĀ addedĀ toĀ neutralizeĀ theĀ lysisĀ reaction.Ā TheĀ solutionĀ wasĀ centrifugedĀ againĀ andĀ theĀ supernatantsĀ wereĀ discarded,Ā theĀ cellsĀ wereĀ washedĀ onceĀ withĀ PBS.Ā TheĀ obtainedĀ spleenĀ cellĀ samplesĀ wereĀ thenĀ subjectĀ toĀ FACSĀ andĀ RT-PCRĀ analysis.
FACS:Ā TheĀ TĀ cellsĀ extracellularĀ proteinsĀ wereĀ simultaneouslyĀ stainedĀ withĀ theĀ following:
(1)Ā anti-mouseĀ BTLAĀ antibodyĀ (mBTLAĀ PE)Ā andĀ anti-mouseĀ CD19Ā antibodyĀ (mCD19Ā FITC)Ā (FIGS.Ā 17A,Ā 17B,Ā 17C)Ā ļ¼›
(2)Ā anti-humanĀ BTLAĀ antibodyĀ (hBTLAĀ APC)Ā andĀ anti-mouseĀ CD19Ā antibodyĀ (mCD19Ā FITC)Ā (FIGS.Ā 17D,Ā 17E,Ā 17F)Ā ļ¼›
(3)Ā anti-mouseĀ PD-1Ā antibodyĀ (mPD-1Ā PE)Ā andĀ mouseĀ TĀ cellĀ surfaceĀ antibodyĀ mTcRĪ²Ā (FIGS.Ā 18A,Ā 18B,Ā andĀ 18C)Ā ļ¼›Ā or
(4)Ā anti-humanĀ PD-1Ā antibodyĀ (hPD-1Ā FITC)Ā andĀ mouseĀ TĀ cellĀ surfaceĀ antibodyĀ mTcRĪ²Ā (FIGS.Ā 18D,Ā 18E,Ā andĀ 18F)Ā .
TheĀ cellsĀ wereĀ thenĀ washedĀ withĀ PBSĀ andĀ thenĀ detectedĀ forĀ proteinĀ expressionĀ byĀ FACS.Ā FlowĀ cytometryĀ analysisĀ resultsĀ areĀ shownĀ inĀ FIGS.Ā 17A-17FĀ andĀ 18A-18F.Ā TheĀ anti-humanĀ BTLAĀ antibodyĀ andĀ theĀ anti-humanĀ PD-1Ā antibodyĀ detectedĀ theĀ cellsĀ  expressingĀ humanizedĀ BTLAĀ andĀ humanizedĀ PD-1Ā inĀ humanizedĀ BTLA/PD-1Ā homozygotes.Ā InĀ contrast,Ā theĀ anti-humanĀ BTLAĀ antibodyĀ andĀ theĀ anti-humanĀ PD-1Ā antibodyĀ didĀ notĀ detectĀ cellsĀ expressingĀ humanizedĀ BTLAĀ andĀ humanizedĀ PD-1Ā inĀ inĀ theĀ spleenĀ samplesĀ fromĀ theĀ C57BL/6Ā controlĀ mice.
RT-PCRĀ detection:Ā RNAĀ wasĀ extractedĀ fromĀ theĀ spleenĀ cellsĀ ofĀ wild-typeĀ C57BL/6Ā miceĀ andĀ humanizedĀ BTLA/PD-1Ā homozygotes.Ā cDNAsĀ wereĀ thenĀ obtainedĀ byĀ reverseĀ transcriptionĀ usingĀ aĀ reverseĀ transcriptionĀ kit.
mBTLAĀ RT-PCRĀ F1Ā (SEQĀ IDĀ NO:Ā 49)Ā andĀ mBTLAĀ RT-PCRĀ R1Ā (SEQĀ IDĀ NO:Ā 50)Ā wereĀ usedĀ toĀ amplifyĀ mouseĀ BTLAĀ fragmentĀ ofĀ 122Ā bp.
hBTLAĀ RT-PCRĀ F1Ā (SEQĀ IDĀ NO:Ā 51)Ā andĀ hBTLAĀ RT-PCRĀ R1Ā (SEQĀ IDĀ NO:Ā 52)Ā wereĀ usedĀ amplifyĀ humanĀ BTLAĀ fragmentĀ ofĀ 152Ā bp.
mPD-1Ā RT-PCRĀ primerĀ F3:Ā 5ā€™Ā -CCTGGCTCACAGTGTCAGAG-3ā€™Ā (SEQĀ IDĀ NO:Ā 63)Ā ,Ā andĀ mPD-1Ā RT-PCRĀ primerĀ R3ļ¼šĀ 5ā€™Ā -CAGGGCTCTCCTCGATTTTT-3ā€™Ā (SEQĀ IDĀ NO:Ā 64)Ā wereĀ usedĀ toĀ amplifyĀ mouseĀ PD-1Ā fragmentĀ ofĀ 297bp.
hPD-1Ā RT-PCRĀ primerĀ F3ļ¼šĀ 5ā€™Ā -CCCTGCTCGTGGTGACCGAA-3ā€™Ā (SEQĀ IDĀ NO:Ā 65)Ā ļ¼ŒĀ andĀ hPD-1Ā RT-PCRĀ primerĀ R3ļ¼šĀ 5ā€™Ā -GCAGGCTCTCTTTGATCTGC-3ā€™Ā (SEQĀ IDĀ NO:Ā 66)Ā wereĀ usedĀ toĀ amplifyĀ humanĀ PD-1Ā fragmentĀ ofĀ 297bp.
PCRĀ reactionĀ systemĀ wasĀ 20Ā Ī¼L,Ā reactionĀ conditions:Ā 95Ā ā„ƒ,Ā 5minļ¼›Ā (95Ā ā„ƒ,Ā 30Ā secļ¼›Ā 60Ā ā„ƒ,Ā 30Ā secļ¼›Ā 72Ā ā„ƒ,Ā 30Ā sec,Ā 35Ā cycles)Ā ļ¼›Ā 72Ā ā„ƒ,Ā 10Ā minļ¼›Ā andĀ 4Ā ā„ƒ.Ā GAPDHĀ wasĀ usedĀ asĀ anĀ internalĀ reference.
TheĀ resultsĀ areĀ shownĀ inĀ FIGS.Ā 19Ā andĀ 20.Ā TheĀ mRNAĀ expressionĀ ofĀ mouseĀ BTLAĀ andĀ PD-1Ā canĀ beĀ detectedĀ inĀ theĀ activatedĀ cellsĀ ofĀ wild-typeĀ C57BL/6Ā miceļ¼›Ā whileĀ theĀ mRNAĀ expressionĀ ofĀ humanĀ BTLAĀ andĀ PD-1Ā canĀ beĀ detectedĀ inĀ theĀ activatedĀ cellsĀ ofĀ humanizedĀ BTLA/PD-1Ā homozygousĀ mice.
EXAMPLEĀ 11.Ā EmbryonicĀ stemĀ cellĀ basedĀ preparationĀ methods
TheĀ non-humanĀ mammalsĀ canĀ alsoĀ beĀ preparedĀ throughĀ otherĀ geneĀ editingĀ systemsĀ andĀ approaches,Ā whichĀ includes,Ā butĀ isĀ notĀ limitedĀ to,Ā geneĀ homologousĀ  recombinationĀ techniquesĀ basedĀ onĀ embryonicĀ stemĀ cellsĀ (ES)Ā ,Ā zincĀ fingerĀ nucleaseĀ (ZFN)Ā techniques,Ā transcriptionalĀ activator-likeĀ effectorĀ factorĀ nucleaseĀ (TALEN)Ā technique,Ā homingĀ endonucleaseĀ (megakableĀ baseĀ ribozyme)Ā ,Ā orĀ otherĀ molecularĀ biologyĀ techniques.Ā InĀ thisĀ example,Ā theĀ conventionalĀ ESĀ cellĀ geneĀ homologousĀ recombinationĀ techniqueĀ isĀ usedĀ asĀ anĀ exampleĀ toĀ describeĀ howĀ toĀ obtainĀ aĀ BTLAĀ geneĀ humanizedĀ mouseĀ byĀ otherĀ methods.Ā AccordingĀ toĀ theĀ geneĀ editingĀ strategyĀ ofĀ theĀ methodsĀ describedĀ hereinĀ andĀ theĀ humanizedĀ mouseĀ BTLAĀ geneĀ mapĀ (FIG.Ā 4)Ā ,Ā aĀ targetingĀ strategyĀ hasĀ beenĀ developedĀ asĀ shownĀ inĀ FIG.Ā 21.Ā FIG.Ā 21Ā showsĀ theĀ designĀ ofĀ theĀ recombinantĀ vector.Ā InĀ viewĀ ofĀ theĀ factĀ thatĀ oneĀ ofĀ theĀ objectsĀ isĀ toĀ replaceĀ theĀ exonĀ 2Ā ofĀ theĀ mouseĀ BTLAĀ geneĀ inĀ wholeĀ orĀ inĀ partĀ withĀ theĀ humanĀ BTLAĀ geneĀ fragment,Ā aĀ recombinantĀ vectorĀ thatĀ containsĀ aĀ 5ā€™Ā homologousĀ armĀ (3812bp)Ā ,Ā aĀ 3ā€™Ā homologousĀ armĀ (4169bp)Ā andĀ aĀ humanizedĀ geneĀ fragmentĀ (297bp)Ā isĀ alsoĀ designed.Ā TheĀ vectorĀ canĀ alsoĀ containĀ aĀ resistanceĀ geneĀ forĀ positiveĀ cloneĀ screening,Ā suchĀ asĀ neomycinĀ phosphotransferaseĀ codingĀ sequenceĀ Neo.Ā OnĀ bothĀ sidesĀ ofĀ theĀ resistanceĀ gene,Ā twoĀ site-specificĀ recombinationĀ systemsĀ inĀ theĀ sameĀ orientation,Ā suchĀ asĀ FrtĀ orĀ LoxP,Ā canĀ beĀ added.Ā Furthermore,Ā aĀ codingĀ geneĀ withĀ aĀ negativeĀ screeningĀ marker,Ā suchĀ asĀ theĀ diphtheriaĀ toxinĀ AĀ subunitĀ codingĀ geneĀ (DTA)Ā ,Ā canĀ beĀ constructedĀ downstreamĀ ofĀ theĀ recombinantĀ vectorĀ 3ā€™Ā homologousĀ arm.Ā VectorĀ constructionĀ canĀ beĀ carriedĀ outĀ usingĀ methodsĀ knownĀ inĀ theĀ art,Ā suchĀ asĀ enzymeĀ digestionĀ andĀ soĀ on.Ā TheĀ recombinantĀ vectorĀ withĀ correctĀ sequenceĀ canĀ beĀ nextĀ transfectedĀ intoĀ mouseĀ embryonicĀ stemĀ cells,Ā suchĀ asĀ C57BL/6Ā mouseĀ embryonicĀ stemĀ cells,Ā andĀ thenĀ theĀ recombinantĀ vectorĀ canĀ beĀ screenedĀ byĀ positiveĀ cloneĀ screeningĀ gene.Ā TheĀ cellsĀ transfectedĀ withĀ theĀ recombinantĀ vectorĀ areĀ nextĀ screenedĀ byĀ usingĀ theĀ positiveĀ cloneĀ markerĀ gene,Ā andĀ SouthernĀ BlotĀ techniqueĀ canĀ beĀ usedĀ forĀ DNAĀ recombinationĀ identification.Ā ForĀ theĀ selectedĀ correctĀ positiveĀ clones,Ā theĀ positiveĀ clonalĀ cellsĀ (blackĀ mice)Ā areĀ injectedĀ intoĀ theĀ isolatedĀ blastocystsĀ (whiteĀ mice)Ā byĀ microinjectionĀ accordingĀ toĀ theĀ methodĀ describedĀ inĀ theĀ bookĀ A.Ā Nagy,Ā etĀ al.,Ā ā€œManipulatingĀ theĀ MouseĀ Embryo:Ā AĀ LaboratoryĀ ManualĀ (ThirdĀ Edition)Ā ,Ā ā€Ā ColdĀ SpringĀ HarborĀ LaboratoryĀ Press,Ā 2003.Ā TheĀ resultingĀ chimericĀ blastocystsĀ formedĀ followingĀ theĀ injectionĀ areĀ transferredĀ toĀ theĀ cultureĀ mediumĀ forĀ aĀ shortĀ timeĀ cultureĀ andĀ thenĀ transplantedĀ intoĀ theĀ fallopianĀ tubesĀ ofĀ theĀ recipientĀ miceĀ (whiteĀ mice)Ā toĀ produceĀ F0Ā generationĀ chimericĀ miceĀ (blackĀ andĀ white)Ā .Ā TheĀ F0Ā generationĀ chimericĀ miceĀ withĀ correctĀ geneĀ recombinationĀ areĀ thenĀ selectedĀ byĀ  extractingĀ theĀ mouseĀ tailĀ genomeĀ andĀ detectingĀ byĀ PCRĀ forĀ subsequentĀ breedingĀ andĀ identification.Ā TheĀ F1Ā generationĀ miceĀ areĀ obtainedĀ byĀ matingĀ theĀ F0Ā generationĀ chimericĀ miceĀ withĀ wildĀ typeĀ mice.Ā StableĀ geneĀ recombinationĀ positiveĀ F1Ā heterozygousĀ miceĀ areĀ selectedĀ byĀ extractingĀ ratĀ tailĀ genomeĀ andĀ PCRĀ detection.Ā Next,Ā theĀ F1Ā heterozygousĀ miceĀ areĀ matedĀ toĀ eachĀ otherĀ toĀ obtainĀ geneticallyĀ recombinantĀ positiveĀ F2Ā generationĀ homozygousĀ mice.Ā InĀ addition,Ā theĀ F1Ā heterozygousĀ miceĀ canĀ alsoĀ beĀ matedĀ withĀ FlpĀ orĀ CreĀ miceĀ toĀ removeĀ theĀ positiveĀ cloneĀ screeningĀ markerĀ geneĀ (neo,Ā etc.Ā )Ā ,Ā andĀ thenĀ theĀ BTLAĀ geneĀ humanizedĀ homozygousĀ miceĀ canĀ beĀ obtainedĀ byĀ matingĀ theseĀ miceĀ withĀ eachĀ other.Ā TheĀ methodsĀ ofĀ genotypingĀ andĀ phenotypicĀ detectionĀ ofĀ theĀ obtainedĀ F1Ā heterozygousĀ miceĀ orĀ F2Ā homozygousĀ miceĀ areĀ similarĀ toĀ thoseĀ usedĀ inĀ ExampleĀ 5Ā describedĀ above.
OTHERĀ EMBODIMENTS
ItĀ isĀ toĀ beĀ understoodĀ thatĀ whileĀ theĀ inventionĀ hasĀ beenĀ describedĀ inĀ conjunctionĀ withĀ theĀ detailedĀ descriptionĀ thereof,Ā theĀ foregoingĀ descriptionĀ isĀ intendedĀ toĀ illustrateĀ andĀ notĀ limitĀ theĀ scopeĀ ofĀ theĀ invention,Ā whichĀ isĀ definedĀ byĀ theĀ scopeĀ ofĀ theĀ appendedĀ claims.Ā OtherĀ aspects,Ā advantages,Ā andĀ modificationsĀ areĀ withinĀ theĀ scopeĀ ofĀ theĀ followingĀ claims.
Figure PCTCN2017106024-appb-000014
Figure PCTCN2017106024-appb-000015
Figure PCTCN2017106024-appb-000016
Figure PCTCN2017106024-appb-000017
Figure PCTCN2017106024-appb-000018
Figure PCTCN2017106024-appb-000019
Figure PCTCN2017106024-appb-000020
Figure PCTCN2017106024-appb-000021
Figure PCTCN2017106024-appb-000022
Figure PCTCN2017106024-appb-000023
Figure PCTCN2017106024-appb-000024
Figure PCTCN2017106024-appb-000025
Figure PCTCN2017106024-appb-000026
Figure PCTCN2017106024-appb-000027
Figure PCTCN2017106024-appb-000028
Figure PCTCN2017106024-appb-000029
Figure PCTCN2017106024-appb-000030
Figure PCTCN2017106024-appb-000031
Figure PCTCN2017106024-appb-000032
Figure PCTCN2017106024-appb-000033
Figure PCTCN2017106024-appb-000034
Figure PCTCN2017106024-appb-000035
Figure PCTCN2017106024-appb-000036
Figure PCTCN2017106024-appb-000037
Figure PCTCN2017106024-appb-000038
Figure PCTCN2017106024-appb-000039
Figure PCTCN2017106024-appb-000040
Figure PCTCN2017106024-appb-000041
Figure PCTCN2017106024-appb-000042
Figure PCTCN2017106024-appb-000043
Figure PCTCN2017106024-appb-000044
Figure PCTCN2017106024-appb-000045
Figure PCTCN2017106024-appb-000046

Claims (57)

  1. AĀ genetically-modified,Ā non-humanĀ animalĀ whoseĀ genomeĀ comprisesĀ atĀ leastĀ oneĀ chromosomeĀ comprisingĀ aĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BĀ andĀ TĀ LymphocyteĀ AssociatedĀ (BTLA)Ā .
  2. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ sequenceĀ encodingĀ theĀ humanĀ orĀ chimericĀ BTLAĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ regulatoryĀ elementĀ atĀ theĀ endogenousĀ BTLAĀ geneĀ locusĀ inĀ theĀ atĀ leastĀ oneĀ chromosome.
  3. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…,Ā orĀ 100ļ¼…identicalĀ toĀ humanĀ BTLAĀ (NP_861445.3Ā (SEQĀ IDĀ NO:Ā 27)Ā )Ā .
  4. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 70ļ¼…,Ā 75ļ¼…,Ā 80ļ¼…,Ā 85ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā 99ļ¼…,Ā orĀ 100ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 31.
  5. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ BTLAĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ aminoĀ acidĀ sequenceĀ thatĀ correspondsĀ toĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.
  6. TheĀ animalĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 1-5,Ā whereinĀ theĀ animalĀ isĀ aĀ mammal,Ā e.g.,Ā aĀ monkey,Ā aĀ rodentĀ orĀ aĀ mouse.
  7. TheĀ animalĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 1-5,Ā whereinĀ theĀ animalĀ isĀ aĀ C57BL/6Ā mouse.
  8. TheĀ animalĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 1-7,Ā whereinĀ theĀ animalĀ doesĀ notĀ expressĀ endogenousĀ BTLA.
  9. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ humanĀ orĀ chimericĀ BTLA.
  10. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ humanĀ orĀ chimericĀ BTLA,Ā andĀ humanĀ HVEMĀ canĀ bindĀ toĀ theĀ expressedĀ humanĀ orĀ chimericĀ BTLA.
  11. TheĀ animalĀ ofĀ claimĀ 1,Ā whereinĀ theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ humanĀ orĀ chimericĀ BTLA,Ā andĀ endogenousĀ HVEMĀ canĀ bindĀ toĀ theĀ expressedĀ humanĀ orĀ chimericĀ BTLA.
  12. AĀ genetically-modified,Ā non-humanĀ animal,Ā whereinĀ theĀ genomeĀ ofĀ theĀ animalĀ comprisesĀ aĀ replacement,Ā atĀ anĀ endogenousĀ BTLAĀ geneĀ locus,Ā ofĀ aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA.
  13. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ regulatoryĀ elementĀ atĀ theĀ endogenousĀ BTLAĀ locus,Ā andĀ oneĀ orĀ moreĀ cellsĀ ofĀ theĀ animalĀ expressesĀ aĀ chimericĀ BTLA.
  14. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ animalĀ doesĀ notĀ expressĀ endogenousĀ BTLA.
  15. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ regionĀ ofĀ endogenousĀ BTLAĀ isĀ theĀ extracellularĀ regionĀ ofĀ BTLA.
  16. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ animalĀ hasĀ oneĀ orĀ moreĀ cellsĀ expressingĀ aĀ chimericĀ BTLAĀ havingĀ anĀ extracellularĀ region,Ā aĀ transmembraneĀ region,Ā andĀ aĀ cytoplasmicĀ region,Ā whereinĀ theĀ extracellularĀ regionĀ comprisesĀ aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 50ļ¼…,Ā 60ļ¼…,Ā 70ļ¼…,Ā 80ļ¼…,Ā 90ļ¼…,Ā 95ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ theĀ extracellularĀ regionĀ ofĀ humanĀ BTLA.
  17. TheĀ animalĀ ofĀ claimĀ 16,Ā whereinĀ theĀ extracellularĀ regionĀ ofĀ theĀ chimericĀ BTLAĀ hasĀ aĀ sequenceĀ thatĀ hasĀ atĀ leastĀ 10,Ā 20,Ā 30,Ā 40,Ā 50,Ā 60,Ā 70,Ā 80,Ā 90,Ā orĀ 100Ā contiguousĀ aminoĀ acidsĀ thatĀ areĀ identicalĀ toĀ aĀ contiguousĀ sequenceĀ presentĀ inĀ theĀ extracellularĀ regionĀ ofĀ humanĀ BTLA.
  18. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ animalĀ isĀ aĀ mouse,Ā andĀ theĀ sequenceĀ encodingĀ theĀ regionĀ ofĀ endogenousĀ BTLAĀ isĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā exonĀ 5,Ā and/orexonĀ 6Ā ofĀ theĀ endogenousĀ mouseĀ BTLAĀ gene.
  19. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ animalĀ isĀ heterozygousĀ withĀ respectĀ toĀ theĀ replacementĀ atĀ theĀ endogenousĀ BTLAĀ geneĀ locus.
  20. TheĀ animalĀ ofĀ claimĀ 12,Ā whereinĀ theĀ animalĀ isĀ homozygousĀ withĀ respectĀ toĀ theĀ replacementĀ atĀ theĀ endogenousĀ BTLAĀ geneĀ locus.
  21. AĀ methodĀ forĀ makingĀ aĀ genetically-modified,Ā non-humanĀ animal,Ā comprising:
    replacingĀ inĀ atĀ leastĀ oneĀ cellĀ ofĀ theĀ animal,Ā atĀ anĀ endogenousĀ BTLAĀ geneĀ locus,Ā aĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ anĀ endogenousĀ BTLAĀ withĀ aĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA.
  22. TheĀ methodĀ ofĀ claimĀ 21,Ā whereinĀ theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ comprisesĀ exonĀ 1,Ā exonĀ 2,Ā exonĀ 3,Ā exonĀ 4,Ā and/orĀ exonĀ 5Ā ofĀ aĀ humanĀ BTLAĀ gene.
  23. TheĀ methodĀ ofĀ claimĀ 21,Ā whereinĀ theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ BTLAĀ comprisesĀ aĀ partĀ ofĀ exonĀ 2Ā ofĀ aĀ humanĀ BTLAĀ gene.
  24. TheĀ methodĀ ofĀ claimĀ 21,Ā whereinĀ theĀ sequenceĀ encodingĀ theĀ correspondingĀ regionĀ ofĀ humanĀ BTLAĀ encodesĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.
  25. TheĀ methodĀ ofĀ claimĀ 21,Ā whereinĀ theĀ regionĀ isĀ locatedĀ withinĀ theĀ extracellularĀ regionĀ ofĀ BTLA.
  26. TheĀ methodĀ ofĀ claimĀ 21,Ā whereinĀ theĀ animalĀ isĀ aĀ mouse,Ā andĀ theĀ sequenceĀ encodingĀ theĀ regionĀ ofĀ theĀ endogenousĀ BTLAĀ locusĀ isĀ exon2Ā ofĀ theĀ mouseĀ BTLAĀ gene.
  27. AĀ non-humanĀ animalĀ comprisingĀ atĀ leastĀ oneĀ cellĀ comprisingĀ aĀ nucleotideĀ sequenceĀ encodingĀ aĀ chimericĀ BTLAĀ polypeptide,Ā whereinĀ theĀ chimericĀ BTLAĀ polypeptideĀ comprisesĀ atĀ leastĀ 50Ā contiguousĀ aminoĀ acidĀ residuesĀ thatĀ areĀ identicalĀ toĀ theĀ correspondingĀ contiguousĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanĀ BTLA,Ā whereinĀ theĀ animalĀ expressesĀ theĀ chimericĀ BTLA.
  28. TheĀ animalĀ ofĀ claimĀ 27,Ā whereinĀ theĀ chimericĀ BTLAĀ polypeptideĀ hasĀ atĀ leastĀ 50Ā contiguousĀ aminoĀ acidĀ residuesĀ thatĀ areĀ identicalĀ toĀ theĀ correspondingĀ contiguousĀ aminoĀ acidĀ sequenceĀ ofĀ aĀ humanĀ BTLAĀ extracellularĀ region.
  29. TheĀ animalĀ ofĀ claimĀ 27,Ā whereinĀ theĀ chimericĀ BTLAĀ polypeptideĀ comprisesĀ aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 90ļ¼…,Ā 95ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ aminoĀ acidsĀ 34-132Ā ofĀ SEQĀ IDĀ NO:Ā 27.
  30. TheĀ animalĀ ofĀ claimĀ 27,Ā whereinĀ theĀ nucleotideĀ sequenceĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ BTLAĀ regulatoryĀ elementĀ ofĀ theĀ animal.
  31. TheĀ animalĀ ofĀ claimĀ 27,Ā whereinĀ theĀ chimericĀ BTLAĀ polypeptideĀ comprisesĀ anĀ endogenousĀ BTLAtransmembraneĀ regionĀ and/orĀ anĀ endogenousĀ BTLAĀ cytoplasmicĀ region.
  32. TheĀ animalĀ ofĀ claimĀ 27,Ā whereinĀ theĀ nucleotideĀ sequenceĀ isĀ integratedĀ toĀ anĀ endogenousĀ BTLAĀ geneĀ locusĀ ofĀ theĀ animal.
  33. TheĀ animalĀ ofĀ claimĀ 27,Ā whereinĀ theĀ chimericĀ BTLAĀ hasĀ atĀ leastĀ oneĀ mouseĀ BTLAĀ activityĀ and/orĀ atĀ leastĀ oneĀ humanĀ BTLAĀ activity.
  34. AĀ methodĀ ofĀ makingĀ aĀ genetically-modifiedĀ mouseĀ cellĀ thatĀ expressesĀ aĀ chimericĀ BTLA,Ā theĀ methodĀ comprising:
    replacing,Ā atĀ anĀ endogenousĀ mouseĀ BTLAĀ geneĀ locus,Ā aĀ nucleotideĀ sequenceĀ encodingĀ aĀ regionĀ ofĀ mouseĀ BTLAĀ withĀ aĀ nucleotideĀ sequenceĀ encodingĀ aĀ correspondingĀ regionĀ ofĀ humanĀ BTLA,Ā therebyĀ generatingĀ aĀ genetically-modifiedĀ mouseĀ cellĀ thatĀ includesĀ aĀ nucleotideĀ sequenceĀ thatĀ encodesĀ theĀ chimericĀ BTLA,Ā whereinĀ theĀ mouseĀ cellĀ expressesĀ theĀ chimericĀ BTLA.
  35. TheĀ methodĀ ofĀ claimĀ 34,Ā whereinĀ theĀ chimericĀ BTLAĀ comprises
    anĀ extracellularĀ regionĀ ofĀ mouseĀ BTLAĀ comprisingĀ aĀ mouseĀ signalĀ peptideĀ sequenceļ¼›
    anĀ extracellularĀ regionĀ ofĀ humanĀ BTLAļ¼›
    aĀ transmembraneĀ and/orĀ aĀ cytoplasmicĀ regionĀ ofĀ aĀ mouseĀ BTLA.
  36. TheĀ methodĀ ofĀ claimĀ 35,Ā whereinĀ theĀ nucleotideĀ sequenceĀ encodingĀ theĀ chimericĀ BTLAĀ isĀ operablyĀ linkedĀ toĀ anĀ endogenousĀ BTLAĀ regulatoryĀ region,Ā e.g.,Ā promoter.
  37. TheĀ animalĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 1-20Ā andĀ 27-33,Ā whereinĀ theĀ animalĀ furtherĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ additionalĀ humanĀ orĀ chimericĀ protein.
  38. TheĀ animalĀ ofĀ claimĀ 37,Ā whereinĀ theĀ additionalĀ humanĀ orĀ chimericĀ proteinĀ isĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā ,Ā cytotoxicĀ T-lymphocyte-associatedĀ proteinĀ 4Ā (CTLA-4)Ā ,Ā LymphocyteĀ ActivatingĀ 3Ā (LAG-3)Ā ,Ā T-CellĀ ImmunoglobulinĀ AndĀ MucinĀ Domain-ContainingĀ ProteinĀ 3Ā (TIM-3)Ā ,Ā ProgrammedĀ CellĀ DeathĀ 1Ā LigandĀ 1Ā (PD-L1)Ā ,Ā TNFĀ ReceptorĀ SuperfamilyĀ MemberĀ 9Ā (4-1BB)Ā ,Ā CD27,Ā CD28,Ā CD47,Ā T-CellĀ ImmunoreceptorĀ WithĀ IgĀ AndĀ ITIMĀ DomainsĀ (TIGIT)Ā ,Ā CD27,Ā Glucocorticoid-Ā InducedĀ TNFR-RelatedĀ ProteinĀ (GITR)Ā ,Ā orĀ TNFĀ ReceptorĀ SuperfamilyĀ MemberĀ 4Ā (OX40)Ā .
  39. TheĀ methodĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 21-26Ā andĀ 34-36,Ā whereinĀ theĀ animalĀ orĀ mouseĀ furtherĀ comprisesĀ aĀ sequenceĀ encodingĀ anĀ additionalĀ humanĀ orĀ chimericĀ protein.
  40. TheĀ methodĀ ofĀ claimĀ 39,Ā whereinĀ theĀ additionalĀ humanĀ orĀ chimericĀ proteinĀ isĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā ,Ā CTLA-4,Ā LAG-3,Ā TIM-3,Ā PD-L1,Ā 4-1BB,Ā CD27,Ā CD28,Ā CD47,Ā TIGIT,Ā CD27,Ā GITR,Ā orĀ OX40.
  41. AĀ methodĀ ofĀ determiningĀ effectivenessĀ ofĀ anĀ anti-BTLAĀ antibodyĀ forĀ theĀ treatmentĀ ofĀ cancer,Ā comprising:
    administeringĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ animalĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 1-20Ā andĀ 27-33,Ā whereinĀ theĀ animalĀ hasĀ aĀ tumorļ¼›Ā and
    determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ tumor.
  42. TheĀ methodĀ ofĀ claimĀ 41,Ā whereinĀ theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ HVEMĀ orĀ B7-H4.
  43. TheĀ methodĀ ofĀ claimĀ 41,Ā whereinĀ theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ cancerĀ cellsĀ thatĀ areĀ injectedĀ intoĀ theĀ animal.
  44. TheĀ methodĀ ofĀ claimĀ 41,Ā whereinĀ determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ anti-BTLAĀ antibodyĀ toĀ theĀ tumorĀ involvesĀ measuringĀ theĀ tumorĀ volumeĀ inĀ theĀ animal.
  45. TheĀ methodĀ ofĀ claimĀ 41,Ā whereinĀ theĀ tumorĀ cellsĀ areĀ melanomaĀ cells,Ā non-smallĀ cellĀ lungĀ carcinomaĀ (NSCLC)Ā cells,Ā smallĀ cellĀ lungĀ cancerĀ (SCLC)Ā cells,Ā bladderĀ cancerĀ cells,Ā and/orĀ prostateĀ cancerĀ cellsĀ (e.g.,Ā metastaticĀ hormone-refractoryĀ prostateĀ cancer)Ā .
  46. AĀ methodĀ ofĀ determiningĀ effectivenessĀ ofĀ anĀ anti-BTLAĀ antibodyĀ andĀ anĀ additionalĀ therapeuticĀ agentĀ forĀ theĀ treatmentĀ ofĀ aĀ tumor,Ā comprising
    administeringĀ theĀ anti-BTLAĀ antibodyĀ andĀ theĀ additionalĀ therapeuticĀ agentĀ toĀ theĀ animalĀ ofĀ anyĀ oneĀ ofĀ claimsĀ 1-20Ā andĀ 27-33,Ā whereinĀ theĀ animalĀ hasĀ aĀ tumorļ¼›Ā andĀ  determiningĀ theĀ inhibitoryĀ effectsĀ onĀ theĀ tumor.
  47. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ theĀ animalĀ furtherĀ comprisesĀ aĀ sequenceĀ encodingĀ aĀ humanĀ orĀ chimericĀ programmedĀ cellĀ deathĀ proteinĀ 1Ā (PD-1)Ā .
  48. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ theĀ additionalĀ therapeuticĀ agentĀ isĀ anĀ anti-PD-1Ā antibody.
  49. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ HVEMĀ orĀ B7-H4.
  50. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ theĀ tumorĀ comprisesĀ oneĀ orĀ moreĀ tumorĀ cellsĀ thatĀ expressĀ PD-L1Ā orĀ PD-L2.
  51. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ theĀ tumorĀ isĀ causedĀ byĀ injectionĀ ofĀ oneĀ orĀ moreĀ cancercellsintoĀ theĀ animal.
  52. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ determiningĀ theĀ inhibitoryĀ effectsĀ ofĀ theĀ treatmentĀ involvesĀ measuringĀ theĀ tumorĀ volumeĀ inĀ theĀ animal.
  53. TheĀ methodĀ ofĀ claimĀ 46,Ā whereinĀ theĀ tumorĀ comprisesĀ melanomaĀ cells,Ā non-smallĀ cellĀ lungĀ carcinomaĀ (NSCLC)Ā cells,Ā smallĀ cellĀ lungĀ cancerĀ (SCLC)Ā cells,Ā bladderĀ cancerĀ cells,Ā and/orĀ prostateĀ cancerĀ cellsĀ (e.g.,Ā metastaticĀ hormone-refractoryĀ prostateĀ cancerĀ cells)Ā .
  54. AĀ proteinĀ comprisingĀ anĀ aminoĀ acidĀ sequence,Ā whereinĀ theĀ aminoĀ acidĀ sequenceĀ isĀ oneĀ ofĀ theĀ following:
    (a)Ā anĀ aminoĀ acidĀ sequenceĀ setĀ forthĀ inĀ SEQĀ IDĀ NO:Ā 31ļ¼›
    (b)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 31ļ¼›
    (c)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ atĀ leastĀ 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 31ļ¼›
    (d)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ isĀ differentĀ fromĀ theĀ aminoĀ acidĀ sequenceĀ setĀ forthĀ inĀ SEQĀ IDĀ NO:Ā 31Ā byĀ noĀ moreĀ thanĀ 10,Ā 9,Ā 8,Ā 7,Ā 6,Ā 5,Ā 4,Ā 3,Ā 2Ā orĀ 1Ā aminoĀ acidļ¼›Ā and
    (e)Ā anĀ aminoĀ acidĀ sequenceĀ thatĀ comprisesĀ aĀ substitution,Ā aĀ deletionĀ andĀ /orĀ insertionĀ ofĀ one,Ā two,Ā three,Ā four,Ā fiveĀ orĀ moreĀ aminoĀ acidsĀ toĀ theĀ aminoĀ acidĀ sequenceĀ setĀ forthĀ inĀ SEQĀ IDĀ NO:Ā 31.
  55. AĀ nucleicĀ acidĀ comprisingĀ aĀ nucleotideĀ sequence,Ā whereinĀ theĀ nucleotideĀ sequenceĀ isĀ oneĀ ofĀ theĀ following:
    (a)Ā aĀ sequenceĀ thatĀ encodesĀ theĀ proteinĀ ofĀ claimĀ 54ļ¼›
    (b)Ā SEQĀ IDĀ NO:Ā 29ļ¼›
    (c)Ā SEQĀ IDĀ NO:Ā 30ļ¼›
    (d)Ā aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 90ļ¼…identicalĀ toĀ SEQĀ IDĀ NO:Ā 29Ā orĀ SEQĀ IDĀ NO:Ā 30ļ¼›
    (e)Ā aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…Ā identicalĀ toĀ SEQĀ IDĀ NO:Ā 29ļ¼›Ā and
    (f)Ā aĀ sequenceĀ thatĀ isĀ atĀ leastĀ 91ļ¼…,Ā 92ļ¼…,Ā 93ļ¼…,Ā 94ļ¼…,Ā 95ļ¼…,Ā 96ļ¼…,Ā 97ļ¼…,Ā 98ļ¼…,Ā orĀ 99ļ¼…Ā identicalĀ toĀ SEQĀ IDĀ NO:Ā 30ļ¼›
  56. AĀ cellĀ comprisingĀ theĀ proteinĀ ofĀ claimĀ 54Ā and/orĀ theĀ nucleicĀ acidĀ ofĀ claimĀ 55.
  57. AnĀ animalĀ comprisingĀ theĀ proteinĀ ofĀ claimĀ 54Ā and/orĀ theĀ nucleicĀ acidĀ ofĀ claimĀ 55.
PCT/CN2017/106024 2016-10-14 2017-10-13 Genetically modified non-human animal with human or chimeric btla WO2018068756A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610895750.9 2016-10-14
CN201610895750 2016-10-14
CN201710948551.4 2017-10-12
CN201710948551.4A CN107955817B (en) 2016-10-14 2017-10-12 Preparation method and application of humanized gene modified animal model

Publications (1)

Publication Number Publication Date
WO2018068756A1 true WO2018068756A1 (en) 2018-04-19

Family

ID=61906104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106024 WO2018068756A1 (en) 2016-10-14 2017-10-13 Genetically modified non-human animal with human or chimeric btla

Country Status (1)

Country Link
WO (1) WO2018068756A1 (en)

Cited By (20)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211370A1 (en) * 2018-05-03 2019-11-07 INSERM (Institut National de la SantƩ et de la Recherche MƩdicale) Methods and pharmaceutical compositions for treating cancer
CN111837036A (en) * 2018-12-17 2020-10-27 ē™¾å„„čµ›å›¾ę±Ÿč‹åŸŗ因ē”Ÿē‰©ęŠ€ęœÆęœ‰é™å…¬åø Genetically modified non-human animals with human or chimeric genes
US10820580B2 (en) 2017-03-17 2020-11-03 Beijing Biocytogen Co., Ltd Immunodeficient non-human animal
US10912287B2 (en) 2016-06-28 2021-02-09 Biocytogen Pharmaceuticals (Beijing) Co., Ltd Genetically modified mice expressing humanized PD-1
US10918095B2 (en) 2017-03-31 2021-02-16 Beijing Biocytogen Co., Ltd Genetically modified mice expressing humanized CD47
US10925264B2 (en) 2016-11-11 2021-02-23 Biocytogen Pharmaceuticals (Beijing) Co., Ltd Genetically modified non-human animal with human or chimeric LAG-3
US10945420B2 (en) 2017-12-12 2021-03-16 BiocytogenPharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD3e
US10945419B2 (en) 2017-06-19 2021-03-16 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric GITR
US10973212B2 (en) 2017-03-31 2021-04-13 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric SIRPa
US10980222B2 (en) 2016-12-23 2021-04-20 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD27
US11154041B2 (en) 2018-10-12 2021-10-26 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric genes
US11154040B2 (en) 2016-12-30 2021-10-26 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD137
US11234421B2 (en) 2018-12-25 2022-02-01 Biocytogen Jiangsu Co., Ltd. Genetically modified non-human animal with human or chimeric IL15
US11240995B2 (en) 2016-11-11 2022-02-08 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric TIM-3
US11272695B2 (en) 2017-10-13 2022-03-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric PD-1
US11350614B2 (en) 2017-06-19 2022-06-07 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD28
US11497198B2 (en) 2017-06-19 2022-11-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified mice expressing humanized CD40
US11564381B2 (en) 2018-12-20 2023-01-31 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric LAG3
US11730151B2 (en) 2019-02-18 2023-08-22 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animals with humanized immunoglobulin locus
US11997994B2 (en) 2020-06-02 2024-06-04 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animals with common light chain immunoglobulin locus

Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578296A (en) * 2006-11-15 2009-11-11 ę¢…č¾¾é›·å…‹ę–Æ公åø Human monoclonal antibodies to BTLA and methods of use

Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578296A (en) * 2006-11-15 2009-11-11 ę¢…č¾¾é›·å…‹ę–Æ公åø Human monoclonal antibodies to BTLA and methods of use

Non-Patent Citations (4)

* Cited by examiner, ā€  Cited by third party
Title
DATABASE Nucleotide [O] 1 September 2016 (2016-09-01), BRELOER M ET AL.: "Mus musculus B and T lymphocyte attenuator(Btla), transcript variant 1, mRNA", XP055502213, Database accession no. NM_001037719 *
DATABASE Nucleotide [O] 18 June 2003 (2003-06-18), WATANABE ET AL.: "Mus musculus B and T lymphocyte attenuator(Btla) mRNA. complete cds", XP055502212, Database accession no. AY293285 *
DATABASE Protein [O] 1 September 2016 (2016-09-01), GHAZAVI F ET AL.: "B- and t-lymphocyte attenuator isoform 1 precursor[Homo sapiens", XP055502209, Database accession no. NP_861445 *
DATABASE Protein [O] 4 October 2006 (2006-10-04), STRUSBERG, R.L. ET AL.: "Btla protein[Mus musculus", XP055502217, Database accession no. AAI08965 *

Cited By (24)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US11234420B2 (en) 2016-06-28 2022-02-01 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Method for constructing PD-1 gene modified humanized animal model and use thereof
US10912287B2 (en) 2016-06-28 2021-02-09 Biocytogen Pharmaceuticals (Beijing) Co., Ltd Genetically modified mice expressing humanized PD-1
US10925264B2 (en) 2016-11-11 2021-02-23 Biocytogen Pharmaceuticals (Beijing) Co., Ltd Genetically modified non-human animal with human or chimeric LAG-3
US11240995B2 (en) 2016-11-11 2022-02-08 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric TIM-3
US10980222B2 (en) 2016-12-23 2021-04-20 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD27
US11154040B2 (en) 2016-12-30 2021-10-26 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD137
US10820580B2 (en) 2017-03-17 2020-11-03 Beijing Biocytogen Co., Ltd Immunodeficient non-human animal
US10918095B2 (en) 2017-03-31 2021-02-16 Beijing Biocytogen Co., Ltd Genetically modified mice expressing humanized CD47
US10973212B2 (en) 2017-03-31 2021-04-13 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric SIRPa
US11723348B2 (en) 2017-03-31 2023-08-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified mice expressing humanized CD47
US11497198B2 (en) 2017-06-19 2022-11-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified mice expressing humanized CD40
US10945419B2 (en) 2017-06-19 2021-03-16 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric GITR
US11350614B2 (en) 2017-06-19 2022-06-07 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD28
US11272695B2 (en) 2017-10-13 2022-03-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric PD-1
US10945420B2 (en) 2017-12-12 2021-03-16 BiocytogenPharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD3e
US12016315B2 (en) 2017-12-12 2024-06-25 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric CD3e
WO2019211370A1 (en) * 2018-05-03 2019-11-07 INSERM (Institut National de la SantƩ et de la Recherche MƩdicale) Methods and pharmaceutical compositions for treating cancer
US11154041B2 (en) 2018-10-12 2021-10-26 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric genes
CN111837036A (en) * 2018-12-17 2020-10-27 ē™¾å„„čµ›å›¾ę±Ÿč‹åŸŗ因ē”Ÿē‰©ęŠ€ęœÆęœ‰é™å…¬åø Genetically modified non-human animals with human or chimeric genes
US11564381B2 (en) 2018-12-20 2023-01-31 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric LAG3
US11234421B2 (en) 2018-12-25 2022-02-01 Biocytogen Jiangsu Co., Ltd. Genetically modified non-human animal with human or chimeric IL15
US11730151B2 (en) 2019-02-18 2023-08-22 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animals with humanized immunoglobulin locus
US12004495B2 (en) 2019-02-18 2024-06-11 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animals with humanized immunoglobulin locus
US11997994B2 (en) 2020-06-02 2024-06-04 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animals with common light chain immunoglobulin locus

Similar Documents

Publication Publication Date Title
US11723348B2 (en) Genetically modified mice expressing humanized CD47
US10945418B2 (en) Genetically modified non-human animal with human or chimeric PD-L1
WO2018068756A1 (en) Genetically modified non-human animal with human or chimeric btla
US11279948B2 (en) Genetically modified non-human animal with human or chimeric OX40
US11317611B2 (en) Genetically modified non-human animal with human or chimeric PD-L1
US11071290B2 (en) Genetically modified non-human animal with human or chimeric CTLA-4
US11240995B2 (en) Genetically modified non-human animal with human or chimeric TIM-3
WO2018041121A1 (en) Genetically modified non-human animal with human or chimeric ctla-4
US11505806B2 (en) Genetically modified non-human animal with human or chimeric OX40
WO2018041120A1 (en) Genetically modified non-human animal with human or chimeric tigit
US20190373867A1 (en) GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC SIRPa
US11497198B2 (en) Genetically modified mice expressing humanized CD40
WO2018086583A1 (en) Genetically modified non-human animal with human or chimeric lag-3
US11464876B2 (en) Genetically modified mouse comprising a chimeric TIGIT
US11350614B2 (en) Genetically modified non-human animal with human or chimeric CD28
US11272695B2 (en) Genetically modified non-human animal with human or chimeric PD-1
WO2018113774A1 (en) Genetically modified non-human animal with human or chimeric cd27
US10945419B2 (en) Genetically modified non-human animal with human or chimeric GITR
WO2020103830A1 (en) Genetically modified animal with canine or chimeric pd-1
WO2018233607A1 (en) Genetically modified non-human animal with human or chimeric cd40
US10925264B2 (en) Genetically modified non-human animal with human or chimeric LAG-3
WO2018233606A1 (en) Genetically modified non-human animal with human or chimeric gitr
WO2018233608A1 (en) Genetically modified non-human animal with human or chimeric cd28
WO2023083250A1 (en) Genetically modified non-human animal with human or chimeric cd2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859956

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17859956

Country of ref document: EP

Kind code of ref document: A1