WO2018066196A1 - Method for producing packaging material - Google Patents
Method for producing packaging material Download PDFInfo
- Publication number
- WO2018066196A1 WO2018066196A1 PCT/JP2017/025289 JP2017025289W WO2018066196A1 WO 2018066196 A1 WO2018066196 A1 WO 2018066196A1 JP 2017025289 W JP2017025289 W JP 2017025289W WO 2018066196 A1 WO2018066196 A1 WO 2018066196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminate
- electron beam
- resin film
- metal foil
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 102
- 239000005022 packaging material Substances 0.000 title claims abstract description 72
- 229920005989 resin Polymers 0.000 claims abstract description 207
- 239000011347 resin Substances 0.000 claims abstract description 207
- 239000011888 foil Substances 0.000 claims abstract description 157
- 238000010894 electron beam technology Methods 0.000 claims abstract description 135
- 229910052751 metal Inorganic materials 0.000 claims abstract description 123
- 239000002184 metal Substances 0.000 claims abstract description 123
- 239000011342 resin composition Substances 0.000 claims abstract description 109
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 35
- 230000001678 irradiating effect Effects 0.000 claims description 27
- 229920006015 heat resistant resin Polymers 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 229920005672 polyolefin resin Polymers 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 224
- -1 polybutylene terephthalate Polymers 0.000 description 36
- 238000003860 storage Methods 0.000 description 35
- 229910052782 aluminium Inorganic materials 0.000 description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 34
- 238000000465 moulding Methods 0.000 description 32
- 239000012790 adhesive layer Substances 0.000 description 21
- 230000005611 electricity Effects 0.000 description 20
- 239000000126 substance Substances 0.000 description 17
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 238000010030 laminating Methods 0.000 description 16
- 239000004743 Polypropylene Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 230000032798 delamination Effects 0.000 description 15
- 229920001155 polypropylene Polymers 0.000 description 15
- 238000001035 drying Methods 0.000 description 14
- 238000007789 sealing Methods 0.000 description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 239000000178 monomer Substances 0.000 description 11
- 229920006284 nylon film Polymers 0.000 description 10
- 229920001187 thermosetting polymer Polymers 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000003505 polymerization initiator Substances 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000001227 electron beam curing Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 150000008065 acid anhydrides Chemical class 0.000 description 5
- 238000010538 cationic polymerization reaction Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000010526 radical polymerization reaction Methods 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical class [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- VUIWJRYTWUGOOF-UHFFFAOYSA-N 2-ethenoxyethanol Chemical compound OCCOC=C VUIWJRYTWUGOOF-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920013716 polyethylene resin Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- WULAHPYSGCVQHM-UHFFFAOYSA-N 2-(2-ethenoxyethoxy)ethanol Chemical compound OCCOCCOC=C WULAHPYSGCVQHM-UHFFFAOYSA-N 0.000 description 2
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical class [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 2
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052755 nonmetal Chemical class 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- LFRDHGNFBLIJIY-UHFFFAOYSA-N trimethoxy(prop-2-enyl)silane Chemical compound CO[Si](OC)(OC)CC=C LFRDHGNFBLIJIY-UHFFFAOYSA-N 0.000 description 2
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- VKLYZBPBDRELST-UHFFFAOYSA-N ethene;methyl 2-methylprop-2-enoate Chemical compound C=C.COC(=O)C(C)=C VKLYZBPBDRELST-UHFFFAOYSA-N 0.000 description 1
- HGVPOWOAHALJHA-UHFFFAOYSA-N ethene;methyl prop-2-enoate Chemical compound C=C.COC(=O)C=C HGVPOWOAHALJHA-UHFFFAOYSA-N 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- NBFRQCOZERNGEX-UHFFFAOYSA-N n,n,3,5-tetramethylaniline Chemical compound CN(C)C1=CC(C)=CC(C)=C1 NBFRQCOZERNGEX-UHFFFAOYSA-N 0.000 description 1
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000005440 p-toluyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C(*)=O)C([H])([H])[H] 0.000 description 1
- 239000011129 pharmaceutical packaging material Substances 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- VMJFYMAHEGJHFH-UHFFFAOYSA-M triphenylsulfanium;bromide Chemical compound [Br-].C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 VMJFYMAHEGJHFH-UHFFFAOYSA-M 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000012953 triphenylsulfonium Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C69/00—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0866—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/10—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/082—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/088—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/18—Handling of layers or the laminate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is for batteries and capacitors used for mobile electric devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, and power storage devices such as batteries and capacitors used for power storage for night electricity.
- the present invention relates to a method for producing a packaging material used as a food packaging material, a pharmaceutical packaging material, or the like.
- Lithium ion secondary batteries are widely used as power sources for notebook computers, video cameras, mobile phones, electric vehicles, and the like.
- this lithium ion secondary battery one having a configuration in which the periphery of a battery main body (a main body including a positive electrode, a negative electrode, and an electrolyte) is surrounded by a case is used.
- a case material exterior material
- a material having a structure in which an outer layer made of a heat-resistant resin film, an aluminum foil layer, and an inner layer made of a thermoplastic resin film are bonded and integrated in this order is known.
- a battery exterior material in which a base material layer (outer layer), a first adhesive layer, a metal foil layer, a second adhesive layer, and a sealant layer (inner layer) are laminated in this order, the first adhesive
- a battery exterior material having a structure in which both the layer and the second adhesive layer are formed by thermosetting (heat aging) is known (see Patent Document 1).
- thermosetting In order to form the first and second adhesive layers by the thermosetting, it is necessary to perform a heat aging treatment at 40 ° C. for 5 days or 10 days after applying the adhesive (paragraph 0097 of Patent Document 1).
- the present invention has been made in view of such a technical background, and provides a method for manufacturing a packaging material that can significantly reduce the lead time and improve productivity, and can also ensure excellent moldability. With the goal.
- the present invention provides the following means.
- a heat-bonding resin layer is formed on one surface of the metal foil by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil to form a first laminate.
- An inner layer forming step to obtain; After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer.
- a base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base is applied to the first laminate.
- a base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base is applied to the first laminate.
- a heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation.
- a method for producing a packaging material comprising: forming an inner layer.
- a heat-fusible resin layer is formed on one surface of the metal foil to form a first laminate.
- An inner layer forming step to obtain; After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side.
- a method for producing a packaging material comprising: forming an inner layer.
- thermosetting resin is not used as an adhesive or the like (since a thermosetting resin that requires heat aging for several days is not used), that is, “electron beam Adhesion of curable resin composition using electron beam curing or formation of substrate layer by electron beam curing of electron beam curable resin composition "and” Adhesion using extruded molten resin film or using extruded molten resin film " “The formation of the heat-fusible resin layer” can be performed in a much shorter time compared to the curing of the thermosetting resin that requires heat aging for several days. Time) and cost can be reduced.
- the electron beam curable resin composition and the extruded molten resin film do not need to contain a solvent, and can be made free of a solvent in this way, so that there is an advantage that an environmental load is small.
- a drying furnace is not required, so that the manufacturing equipment can be made compact.
- the molding material is deeply molded by cold (room temperature) molding such as deep drawing molding or overhang molding, pinholes and cracks do not occur, ensuring excellent moldability. it can.
- the production efficiency can be improved.
- the inner layer forming step is performed before the outer layer forming step (the electron beam is formed after the inner layer is formed first). Since the outer layer forming step to be irradiated is performed), there is an advantage that the curling phenomenon hardly occurs in the packaging material.
- the heat-resistant resin film having a hot water shrinkage of 1.5% to 12% is used as the resin film for the base layer, even if molding is performed at a deep molding depth or at a high temperature Even when used under severe environments such as high humidity, delamination (peeling) between the outer layer (base material layer) and the metal foil layer can be sufficiently prevented.
- the extruded molten resin film is an extruded molten acid-modified polyolefin resin film, the adhesive strength between the metal foil layer and the heat-fusible resin layer can be improved.
- FIG. 6 It is a schematic side view which shows an example of the 1st manufacturing method which concerns on this invention. It is sectional drawing which shows one Embodiment of the packaging material obtained by the 1st or 2nd manufacturing method which concerns on this invention. It is sectional drawing which shows one Embodiment of the packaging material obtained by the 3rd or 4th manufacturing method which concerns on this invention. It is sectional drawing which shows one Embodiment of the packaging material obtained by the 5th or 6th manufacturing method which concerns on this invention. It is sectional drawing which shows one Embodiment of the packaging material obtained by the 7th or 8th manufacturing method which concerns on this invention. It is sectional drawing which shows one Embodiment of the electrical storage device which concerns on this invention. It is a perspective view shown in the separated state before heat-sealing the packaging material (planar thing) which comprises the electrical storage device of FIG. 6, the electrical storage device main-body part, and the shaping
- the manufacturing method of the packaging material according to the present invention will be described.
- Examples of the production method of the present invention include the following first to eighth production methods.
- a manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the first manufacturing method is reversed is the second manufacturing method. That is, in the second production method, after the base layer resin film 2 is bonded to one surface of the metal foil 4 via the electron beam curable resin composition to obtain the first laminate, An outer layer forming step of irradiating an electron beam from the base layer resin film 2 side to one laminate, and the other surface of the metal foil 4 of the first laminate after the electron beam irradiation from an extruder An inner layer forming step of bonding the heat-fusible resin film 3 through the extruded extruded resin film.
- the packaging material 1 having the configuration shown in FIG. 2 is obtained.
- the packaging material 1 shown in FIG. 2 has the above-mentioned base via an outer adhesive layer (first adhesive layer) 5 made of a cured film of an electron beam curable resin composition on one surface (upper surface) of the metal foil layer 4.
- a base material layer (outer layer) 2 made of a resin film for material layers is laminated and integrated, and an inner adhesive layer (second adhesive) made of an extruded resin film 47 on the other surface (lower surface) of the metal foil layer 4.
- the heat-fusible resin layer (inner layer) 3 is laminated and integrated through an agent layer 6.
- the heat-fusible resin layer 3 is formed on one surface of the metal foil 4 to form the first laminate.
- the inner layer forming step to be obtained and the base layer resin film 2 was adhered to the other surface of the metal foil 4 of the first laminate through an electron beam curable resin composition to obtain a second laminate.
- the heat-fusible resin layer 3 is formed on one surface of the metal foil 4 by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil 4.
- one layer of extruded molten resin film extruded from one extruder may be superposed on one surface of the metal foil 4 (single laminating method), or a plurality of extruders may be extruded.
- a plurality of layers of extruded molten resin films extruded from a machine may be superposed on one surface of the metal foil 4 (tandem laminating method).
- a manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the third manufacturing method is reversed is the fourth manufacturing method. That is, in the fourth production method, after the base layer resin film 2 is adhered to one surface of the metal foil 4 via the electron beam curable resin composition to obtain the first laminate, An outer layer forming step of irradiating an electron beam from the base layer resin film 2 side to one laminate, and the other surface of the metal foil 4 of the first laminate after the electron beam irradiation from an extruder And an inner layer forming step of forming the heat-fusible resin layer 3 on the other surface of the metal foil 4 by overlapping the extruded molten resin films.
- the packaging material 1 having the configuration shown in FIG. 3 is obtained.
- the other surface of the metal foil 4 is overlapped with the other surface of the metal foil 4 of the first laminate after irradiation with the electron beam by overlapping an extruded molten resin film extruded from an extruder.
- the heat-fusible resin layer 3 is formed on the surface, one layer of the extruded molten resin film extruded from one extruder may be superposed on the other surface of the metal foil 4.
- Single laminating method A plurality of layers of extruded molten resin films extruded from a plurality of extruders may be superposed on the other surface of the metal foil 4 (tandem laminating method).
- the packaging material 1 shown in FIG. 3 is a base material through the outer side adhesive layer (1st adhesive layer) 5 which consists of a cured film of an electron beam curable resin composition on one side (upper surface) of the metal foil layer 4.
- a base material layer (outer layer) 2 made of a resin film for layers is laminated and integrated, and a heat-fusible resin layer (inner layer) made of an extruded resin film 47 on the other surface (lower surface) of the metal foil layer 4.
- ) 3 is a laminated and integrated structure.
- the packaging material 1 having the configuration shown in FIG. 4 is obtained.
- a manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the fifth manufacturing method is reversed is a sixth manufacturing method. That is, in the sixth production method, after the electron beam curable resin composition is applied to one surface of the metal foil 4 to obtain the first laminate, the electron beam curing is performed on the first laminate. An outer layer forming step of irradiating an electron beam from the conductive resin composition side, and an extruded molten resin film extruded from an extruder on the other surface of the metal foil 4 of the first laminate after the electron beam irradiation And an inner layer forming step for adhering the heat-fusible resin film 3.
- the packaging material 1 having the configuration shown in FIG. 4 is obtained.
- the packaging material 1 shown in FIG. 4 has a base material layer (outer layer) 2 made of a cured film of an electron beam curable resin composition laminated and integrated on one surface (upper surface) of the metal foil layer 4.
- a heat-fusible resin layer (inner layer) made of a heat-fusible resin film via an inner adhesive layer (second adhesive layer) 6 made of an extruded resin film 47 on the other surface (lower surface) of the metal foil layer 4. ) 3 is a laminated and integrated structure.
- the heat-fusible resin layer 3 is formed on one surface of the metal foil 4 by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil 4.
- one layer of extruded molten resin film extruded from one extruder may be superposed on one surface of the metal foil 4 (single laminating method), or a plurality of extruders may be extruded.
- a plurality of layers of extruded molten resin films extruded from a machine may be superposed on one surface of the metal foil 4 (tandem laminating method).
- a manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the seventh manufacturing method is reversed is an eighth manufacturing method. That is, in the eighth manufacturing method, after the electron beam curable resin composition is applied to one surface of the metal foil 4 to obtain the first laminate, the electron beam curing is performed on the first laminate. An outer layer forming step of irradiating an electron beam from the conductive resin composition side and an extruded molten resin film extruded from an extruder are superimposed on the other surface of the metal foil 4 of the first laminate after the electron beam irradiation. And an inner layer forming step of forming a heat-fusible resin layer on the other surface of the metal foil 4.
- the packaging material 1 having the configuration shown in FIG. 5 is obtained.
- the other surface of the metal foil 4 is overlapped with the other surface of the metal foil 4 of the first laminate after irradiation with the electron beam by overlapping an extruded molten resin film extruded from an extruder.
- the heat-fusible resin layer 3 is formed on the surface, one layer of the extruded molten resin film extruded from one extruder may be superposed on the other surface of the metal foil 4.
- Single laminating method A plurality of layers of extruded molten resin films extruded from a plurality of extruders may be superposed on the other surface of the metal foil 4 (tandem laminating method).
- the packaging material 1 shown in FIG. 5 has a base material layer (outer layer) 2 made of a cured film of an electron beam curable resin composition laminated and integrated on one surface (upper surface) of the metal foil layer 4.
- the heat-fusing resin layer (inner layer) 3 made of the extruded resin film 47 is laminated and integrated on the other surface (lower surface) of the metal foil layer 4.
- the heat-fusible resin film 3 is bonded to one surface of the metal foil 4 through the extruded molten resin film extruded from the extruder in the inner layer forming step.
- a sandwich lamination method or the like is preferably used.
- the melted resin film extruded from the extruder is superposed on one surface of the metal foil 4 and heat-sealed by the extruded resin film.
- the conductive resin layer 3 it is not particularly limited, but for example, a single laminating method or a tandem laminating method may be used.
- the packaging material 1 obtained by the first to eighth manufacturing methods according to the present invention is suitably used as a battery exterior material such as a lithium ion secondary battery, but is particularly limited to such applications. is not.
- the packaging material 1 may be used as the packaging material 1 as it is without being molded (see FIG. 7), or used as a molding case 10 after being subjected to molding such as deep drawing molding or overhang molding. (See FIG. 7).
- the base material layer (outer layer) 2 is a member mainly responsible for ensuring good formability as the packaging material 1, that is, the role of preventing breakage due to necking of the aluminum foil during molding. The main responsibility.
- the base layer resin film 2 is preferably formed of a heat resistant resin film.
- a heat resistant resin that does not melt at the heat sealing temperature when the packaging material 1 is heat sealed is used.
- the heat-resistant resin it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the heat-fusible resin constituting the heat-fusible resin layer 3, and 20 higher than the melting point of the heat-fusible resin. It is particularly preferable to use a heat resistant resin having a melting point higher by at least ° C.
- the heat-resistant resin film 2 is not particularly limited, and examples thereof include a stretched polyamide film such as a stretched nylon film and a stretched polyester film.
- the heat resistant resin film 2 includes a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film, or a biaxially stretched polyethylene film. It is preferable to use a phthalate (PEN) film.
- PEN phthalate
- the heat resistant resin film 2 it is preferable to use a heat resistant resin biaxially stretched film stretched by a simultaneous biaxial stretching method.
- the heat-resistant resin film 2 may be formed of a single layer (single stretched film) or a multilayer (stretched PET film / stretched nylon film) made of, for example, a stretched polyester film / stretched polyamide film. Etc.).
- the heat resistant resin film 2 is preferably composed of a heat resistant resin film having a hot water shrinkage of 1.5% to 12%.
- the hot water shrinkage rate is 1.5% or more, it is possible to further prevent the occurrence of cracks and cracks during molding, and when the hot water shrinkage rate is 12% or less, between the outer layer 2 and the metal foil layer 4 The occurrence of delamination can be further prevented.
- a heat resistant resin film having a hot water shrinkage of 1.8% to 6% As the heat resistant resin film, a stretched heat resistant resin film is preferably used.
- the “hot water shrinkage ratio” means the dimensional change in the stretching direction of the test piece before and after immersion when the test piece (10 cm ⁇ 10 cm) of the heat resistant resin stretched film is immersed in hot water at 95 ° C. for 30 minutes. It is a rate and is calculated
- Hot water shrinkage (%) ⁇ (XY) / X ⁇ ⁇ 100
- X Dimensions in the stretching direction before the immersion treatment
- Y Dimensions in the stretching direction after the immersion treatment.
- adopting a biaxially stretched film is an average value of the dimensional change rate in two extending directions.
- the hot water shrinkage rate of the heat-resistant resin stretched film can be controlled, for example, by adjusting the heat setting temperature during stretching.
- the base layer resin film 2 is bonded to one surface of the metal foil 4 via the electron beam curable resin composition.
- the electron beam curable resin composition includes the following: Use a configuration.
- the electron beam curable resin composition is applied to one side of the metal foil 4 by applying the electron beam curable resin composition to one side of the metal foil 4 and irradiating the electron beam.
- a substrate layer (outer layer) 2 made of a cured film is laminated, and the electron beam curable resin composition having the following configuration is used.
- the electron beam curable resin composition is a composition containing a polymerizable oligomer and an electron beam polymerization initiator, among which a polymerizable oligomer, a polymerizable A composition containing a monomer and an electron beam polymerization initiator is preferred.
- the electron beam curable resin composition may be a radical polymerization resin composition, a cationic polymerization resin composition, a radical polymerization and a cationic polymerization resin composition (radical). It may be a mixture of a polymerization system and a cationic polymerization system, and is not particularly limited. Among them, it is preferable to use an acrylic ultraviolet curable resin composition as the electron beam curable resin composition.
- radical polymerization type oligomers such as a urethane acrylate oligomer, an epoxy acrylate oligomer, and a polyester acrylate oligomer, a vinyl ether oligomer, an alicyclic epoxy oligomer (resin), etc.
- examples include cationic polymerization type oligomers.
- the electron beam polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator and a photo cationic polymerization initiator.
- the radical photopolymerization initiator is not particularly limited, and examples thereof include benzophenone, benzoin alkyl ether (benzoethyl ether, benzobutyl ether, etc.), benzyldimethyl ketal, acetophenone, thioxanthone, and the like.
- the photocationic polymerization initiator is not particularly limited, and examples thereof include onium salts.
- the onium salt is not particularly limited, and examples thereof include a sulfonium salt, an iodonium salt, a bromonium salt, a diazonium salt, and a chloronium salt.
- the sulfonium salt is not particularly limited.
- triphenylsulfonium hexafluorophosphate triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [ Diphenylsulfonio] diphenylsulfide-bishexafluorophosphate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide-bishexafluoroantimonate, 4,4′-bis [di ( ⁇ - Hydroxyethoxy) phenylsulfonio] diphenyl sulfide-bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexa
- the iodonium salt is not particularly limited.
- diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluoro A phosphate etc. are mentioned.
- the polymerizable monomer is not particularly limited, and examples thereof include an acrylate monomer and a vinyl ether monomer.
- the acrylate monomer is not particularly limited, and examples thereof include pentaerythritol triacrylate, neopentyl glycol diacrylate, and phosphoric acid-containing (meth) acrylate.
- the phosphoric acid-containing (meth) acrylate is not particularly limited, and examples thereof include monomers such as acryloyloxyethyl acid phosphate and bis (2- (meth) acryloyloxyethyl) acid phosphate.
- the vinyl ether monomer is not particularly limited, and examples thereof include 2-hydroxyethyl vinyl ether (HEVE), diethylene glycol monovinyl ether (DEGV), 4-hydroxybutyl vinyl ether (HBVE) and the like.
- HEVE 2-hydroxyethyl vinyl ether
- DEGV diethylene glycol monovinyl ether
- HBVE 4-hydroxybutyl vinyl ether
- the electron beam curable resin composition may contain a silane coupling agent, an acid anhydride, a sensitizer, various additives, and the like.
- the silane coupling agent is not particularly limited. For example, methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, 3- (methacryloyloxy) propyltrimethoxysilane, etc. Is mentioned.
- a silane coupling agent having a carbon-carbon double bond such as vinyltriethoxysilane or allyltrimethoxysilane is preferably used. In this case, a radical polymerization reaction is particularly used. Bonding with the adhesive can be strengthened.
- the acid anhydride is not particularly limited, and examples thereof include maleic anhydride, methyl maleic anhydride, itaconic anhydride, anhydrous hymic acid, and anhydrous methyl hymic acid.
- the acid anhydride is preferably an acid anhydride having a carbon-carbon double bond such as maleic anhydride, and the radical polymerization reaction is further promoted by the acid anhydride having such a double bond. be able to.
- the sensitizer is not particularly limited, and examples thereof include a tertiary amine.
- the tertiary amine is not particularly limited, and examples thereof include N, N-dimethylethylamine, N, N-dimethylethanolamine, N, N, 3,5-tetramethylaniline and the like.
- the content of the polymerizable monomer in the electron beam curable resin composition is preferably 0.01% by mass to 5% by mass.
- the content of the polymerizable oligomer in the electron beam curable resin composition is preferably 85% by mass to 99% by mass.
- the content of the electron beam polymerization initiator in the electron beam curable resin composition is preferably 0.1% by mass to 10% by mass.
- the method for applying the electron beam curable resin composition to the metal foil 4 or the base layer resin film 2 is not particularly limited.
- a gravure roll coating method Screen coating, inkjet coating, die coating, and the like, and an optimal coating method may be selected according to the material to be coated (electron beam curable resin composition).
- the electron beam curable resin composition may be applied to the metal foil 4, the electron beam curable resin composition may be applied to the base layer resin film 2, or the metal foil 4 and You may apply
- the technique for applying the electron beam curable resin composition to the metal foil 4 is not particularly limited, but the same technique as exemplified above. Can be mentioned.
- the thickness (the thickness after drying) of the outer adhesive layer (first adhesive layer) 5 of the resulting packaging material 1 is preferably set to 1 ⁇ m to 6 ⁇ m.
- the thickness of the base material layer 2 is preferably 10 ⁇ m to 50 ⁇ m. It is possible to secure sufficient strength as a packaging material by setting it to the above preferred lower limit value or more and to improve the formability by reducing the stress at the time of stretch molding or drawing by setting the preferred lower limit value or less. Can do.
- the metal foil layer (metal foil) 4 plays a role of providing the packaging material 1 with a gas barrier property that prevents oxygen and moisture from entering.
- a gas barrier property that prevents oxygen and moisture from entering.
- aluminum foil copper foil, SUS foil (stainless steel foil), nickel foil, titanium foil etc. are mentioned, Aluminum foil is generally used.
- the thickness of the metal foil 4 is preferably 10 ⁇ m to 200 ⁇ m. When it is 10 ⁇ m or more, it is possible to prevent the occurrence of pinholes during rolling when manufacturing metal foil, and when it is 200 ⁇ m or less, it is possible to reduce the stress during forming such as stretch forming and draw forming, thereby improving formability. be able to.
- the thickness of the metal foil 4 is particularly preferably 20 ⁇ m to 100 ⁇ m.
- the metal foil 4 is preferably subjected to chemical conversion treatment on at least the inner surface (the surface on the inner layer 3 side). By performing such chemical conversion treatment, corrosion of the metal foil surface by the contents (battery electrolyte or the like) can be sufficiently prevented.
- the metal foil is subjected to chemical conversion treatment by the following treatment.
- the chemical conversion film preferably has a chromium adhesion amount (per one surface) of 0.1 mg / m 2 to 50 mg / m 2 , particularly preferably 2 mg / m 2 to 20 mg / m 2 .
- the heat-fusible resin layer (inner layer) 3 has excellent chemical resistance against a highly corrosive electrolytic solution used in a lithium ion secondary battery or the like, and a packaging material. It plays a role of imparting heat-sealing properties.
- the heat-fusible resin film 3 is bonded to one surface of the metal foil 4 through the extruded molten resin film (inner adhesive 6) extruded from the extruder.
- the resin constituting the heat-fusible resin film and the extruded molten resin film the following are used.
- the extruded molten resin film extruded from the extruder is superposed on one side of the metal foil 4, so that the extruded resin film is formed on one side of the metal foil 4.
- the heat-fusible resin layer (inner layer) 3 is laminated, and the following resins are used as the resin constituting the extruded molten resin film.
- the resin constituting the heat-fusible resin film 3 is not particularly limited, and examples thereof include polyethylene, polypropylene, ionomer, and ethylene acrylic acid. Examples include ethyl (EEA), ethylene methyl acrylate (EAA), ethylene methyl methacrylate resin (EMMA), ethylene-vinyl acetate copolymer resin (EVA), maleic anhydride-modified polypropylene, maleic anhydride-modified polyethylene, and polyester resin. It is done.
- the heat-fusible resin film 3 is preferably formed of a heat-fusible resin unstretched film.
- the resin constituting the extruded molten resin film is not particularly limited.
- maleic anhydride-modified polypropylene, maleic acid-modified polypropylene, maleic anhydride-modified polyethylene, maleic acid-modified polyethylene, polypropylene resin, A polyethylene resin etc. are mentioned.
- examples of the resin constituting the extruded molten resin film include maleic anhydride-modified polypropylene, maleic acid-modified polypropylene, maleic anhydride-modified polyethylene, and maleic acid-modified polyethylene. It is desirable to use a heat-fusible resin such as polypropylene resin or polyethylene resin.
- the thickness of the extruded molten resin film immediately before sandwiching between the metal foil 4 and the heat-fusible resin film 3 by the sandwich lamination method or the like is particularly although not limited, it is preferably set to 5 ⁇ m to 40 ⁇ m.
- the thickness (the thickness after drying) of the inner adhesive layer (second adhesive layer) 6 of the resulting packaging material 1 is set to 5 ⁇ m to 40 ⁇ m. Preferably it is done.
- the thickness of the heat-fusible resin layer (inner layer) 3 is preferably set to 20 ⁇ m to 100 ⁇ m. When the thickness is 20 ⁇ m or more, sufficient heat seal strength can be secured, and by setting the thickness to 100 ⁇ m or less, it contributes to a reduction in thickness and weight.
- the heat-fusible resin layer 3 may be a single layer or a multilayer. When the heat-fusible resin layer 3 is formed of a plurality of layers, the innermost layer of the heat-fusible resin layer 3 is an ethylene-propylene random copolymer or / and a propylene block copolymer (elastomer modified). Propylene resin) is preferable, and by adopting such a configuration, the sealing characteristics after heat sealing (after heat sealing) can be improved (high heat sealing strength and the like can be obtained).
- examples of the electron beam include ultraviolet light, visible light, X-ray, and ⁇ -ray.
- the ultraviolet light when irradiated with visible light, the irradiation amount of light, but are not particularly limited, preferably set to one side per 50mJ / cm 2 ⁇ 1000mJ / cm 2.
- An outer case (such as an outer case for an electricity storage device) 10 can be obtained by molding (deep drawing molding, overhang molding, etc.) the packaging material 1 obtained by the manufacturing method of the present invention (see FIG. 7).
- the packaging material 1 obtained with the manufacturing method of this invention can also be used as it is, without using for shaping
- FIG. 6 shows an embodiment of an electricity storage device 30 configured using the packaging material 1 obtained by the manufacturing method of the present invention.
- the electricity storage device 30 is a lithium ion secondary battery.
- a packaging member 15 is configured by a case 10 obtained by molding the packaging material 1 and a planar packaging material 1 that has not been used for molding. Yes.
- a substantially rectangular parallelepiped power storage device body (electrochemical element or the like) 31 is housed.
- the packaging material 1 obtained by the production method of the present invention is disposed without forming the inner layer 3 side inward (lower side), and the planar packaging material 1 and the inner layer 3 of the flange portion (sealing peripheral portion) 29 of the molded case 10 are sealed and sealed by heat sealing, whereby the electricity storage device of the present invention.
- 30 is configured (see FIGS. 6 and 7).
- the inner surface of the housing recess of the molded case 10 is an inner layer (heat-fusible resin layer) 3, and the outer surface of the housing recess is an outer layer (base material layer) 2 (FIG. 7).
- reference numeral 39 denotes a heat seal part in which the peripheral part of the packaging material 1 and the flange part (sealing peripheral part) 29 of the molded case 10 are joined (fused). Note that, in the electricity storage device 30, the tip end portion of the tab lead connected to the electricity storage device main body 31 is led out of the packaging member 15, but the illustration is omitted.
- the power storage device main body 31 is not particularly limited, and examples thereof include a battery main body, a capacitor main body, and a capacitor main body.
- the width of the heat seal portion 39 is preferably set to 0.5 mm or more. Sealing can be reliably performed by setting it as 0.5 mm or more.
- the width of the heat seal portion 39 is preferably set to 3 mm to 15 mm.
- the packaging member 15 was the structure which consists of the shaping
- the packaging member 15 may be composed of a pair of packaging materials 1 or may be composed of a pair of molded cases 10.
- Example 1 Chemical conversion consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water and alcohol on both sides of 40 ⁇ m thick aluminum foil (A8021H-O aluminum foil specified in JIS H4160) 4 After apply
- Extruded molten resin film 47 After bonding an unstretched polypropylene film (heat-fusible resin film) 3 having a thickness of 40 ⁇ m that has been supplied from the supply roll 52, between the pair of rolls 41, 41
- the first laminated body 48 was obtained by sandwiching (by sandwich lamination method) (inner layer forming step).
- a urethane acrylate oligomer (polymerized) having two acryloyl groups on the other surface of the metal foil 4 of the first laminated body 48 continuously (in a continuous process) with the inner layer forming process.
- Curable oligomer 94 parts by weight, 1 part by weight of pentaerythritol triacrylate (polymerizable monomer) and 5 parts by weight of benzophenone (photoradical polymerization initiator), photocurable resin composition A (electron beam curable resin composition) 44 was applied with an application roll 42 so that the mass after drying was 2.0 g / m 2 , and then the hot water shrinkage supplied from the supply roll 53 to the application surface was 5.0%.
- the second laminate 49 is obtained by sandwiching between a pair of rolls 45, 45.
- UV light ultraviolet light
- the electricity storage device having the configuration shown in FIG.
- the exterior packaging material 1 was obtained.
- 43 is an electron beam curable resin composition containing tank (container).
- Example 2 In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after superposing an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 55 ⁇ m extruded from an extruder on one surface of the chemical conversion treated aluminum foil 4, a cooling roll and a room temperature By cooling and pinching between rolls (by a single laminating method), a first laminate in which a 55 ⁇ m thick heat-fusible resin layer 3 made of maleic acid-modified polyolefin resin is laminated on one surface of an aluminum foil Obtained (inner layer forming step).
- a urethane acrylate oligomer (polymerizable oligomer) having two acryloyl groups on the other surface of the metal foil 4 of the first laminate continuously with the inner layer forming step (in the continuous step)
- the weight after drying a photocurable resin composition A (electron beam curable resin composition) containing 1 part by mass of pentaerythritol triacrylate (polymerizable monomer) and 5 parts by mass of benzophenone (photopolymerization initiator) is 2.
- a biaxially stretched nylon film (resin film for substrate layer) 2 having a hot water shrinkage of 5.0% and a thickness of 25 ⁇ m is applied to the coated surface.
- the second ultraviolet light from substrate layer for the resin film side of the laminate 100 mJ / cm 2 UV light; By irradiating length 365 nm) (outer layer forming step), to give the outer package 1 for a power storage device having the structure shown in FIG. 3.
- Example 3 In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the mass after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treated aluminum foil 4 is 2.0 g / m 2. Then, a biaxially stretched nylon film (resin film for substrate layer) 2 having a hot water shrinkage of 5.0% and a thickness of 25 ⁇ m is bonded to the coated surface. of by nipping between rolls, to obtain a first laminate, thereafter, the first ultraviolet light from substrate layer for the resin film side of the laminate 100 mJ / cm 2; (wavelength 365nm electron beam) Irradiation (outer layer forming step).
- photocurable resin composition A electron beam curable resin composition
- the other surface of the aluminum foil 4 of the first laminate after the electron beam irradiation is extruded and melted with a thickness of 15 ⁇ m extruded from an extruder.
- An unstretched polypropylene film (heat-fusible resin film) 3 having a thickness of 40 ⁇ m is bonded through a maleic acid-modified polyolefin resin film (extruded molten resin film), and then sandwiched between a pair of rolls (sandwich) (By the laminating method) (inner layer forming step), an exterior material 1 for an electricity storage device having the configuration shown in FIG. 2 was obtained.
- Example 4 In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Then, the chemical conversion treated on one surface of the aluminum foil 4, Example 1 and the same light-curable resin composition A mass after drying (electron beam-curable resin composition) is 2.0 g / m 2 Then, a biaxially stretched nylon film (resin film for substrate layer) 2 having a hot water shrinkage of 5.0% and a thickness of 25 ⁇ m is bonded to the coated surface. By sandwiching between the rolls, a first laminate is obtained, and then 100 mJ / cm 2 of ultraviolet light (wavelength 365 nm; electron beam) is applied to the first laminate from the resin film side of the base layer. Irradiation (outer layer forming step).
- ultraviolet light wavelength 365 nm; electron beam
- the other surface of the aluminum foil 4 of the first laminate after the electron beam irradiation is extruded from an extruder with a thickness of 55 ⁇ m.
- the maleic acid-modified polyolefin resin film extruded molten resin film
- the maleic acid-modified polyolefin is formed on the other surface of the aluminum foil 4 by cooling and clamping between a cooling roll and a room temperature roll (by a single laminating method).
- a heat-fusible resin layer 3 made of resin and having a thickness of 55 ⁇ m was laminated (inner layer forming step) to obtain an electricity storage device exterior material 1 having the configuration shown in FIG.
- Example 5 In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, non-stretched with a thickness of 40 ⁇ m on one surface of the chemically treated aluminum foil 4 through an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 15 ⁇ m extruded from an extruder. After bonding the polypropylene film (heat-fusible resin film) 3 together, the first laminate was obtained by sandwiching between a pair of rolls (by sandwich lamination method) (inner layer forming step).
- the same photocurable resin composition A (electron beam curable resin composition as in Example 1) is formed on the other surface of the metal foil 4 of the first laminate. ) Is applied so that the mass after drying is 10 g / m 2 , to obtain a second laminate, and then 100 mJ / cm from the electron beam curable resin composition side to the second laminate.
- 2 ultraviolet light wavelength 365 nm; electron beam
- an exterior material 1 for an electricity storage device having the configuration shown in FIG. 4 was obtained.
- Example 6> In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after superposing an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 55 ⁇ m extruded from an extruder on one surface of the chemical conversion treated aluminum foil 4, a cooling roll and a room temperature A first laminate in which a 55 ⁇ m-thick heat-fusible resin layer 3 made of maleic acid-modified polyolefin resin is laminated on one surface of the aluminum foil 4 by cooling and clamping between rolls (by a single laminating method). (Inner layer forming step).
- the same photocurable resin composition A (electron beam curable resin composition as in Example 1) is formed on the other surface of the metal foil 4 of the first laminate.
- Product is applied so that the mass after drying is 10 g / m 2 , to obtain a second laminate, and then 100 mJ / from the electron beam curable resin composition side to the second laminate.
- cm 2 ultraviolet light wavelength 365 nm; electron beam
- the electricity storage device exterior material 1 having the configuration shown in FIG. 5 was obtained.
- Example 7 In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the weight after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treated aluminum foil 4 becomes 10 g / m 2 . After the first laminated body is obtained by coating in this manner, the first laminated body is irradiated with 100 mJ / cm 2 of ultraviolet light (wavelength 365 nm; electron beam) from the electron beam curable resin composition side. (Outer layer forming step).
- UV light wavelength 365 nm; electron beam
- the other surface of the metal foil 4 of the first laminate after irradiation with the electron beam was extruded from an extruder with a 15 ⁇ m thick extruded melt maleic acid modified.
- an unstretched polypropylene film (heat-fusible resin film) 3 having a thickness of 40 ⁇ m through a polyolefin resin film (extruded molten resin film) it is sandwiched between a pair of rolls (by sandwich lamination method) ) (Inner layer forming step), an exterior material 1 for an electricity storage device having the configuration shown in FIG. 4 was obtained.
- Example 8> In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the weight after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treated aluminum foil 4 becomes 10 g / m 2 . by applying such, after obtaining the first laminated body, wherein with respect to the first laminate electron beam-curable resin composition side from 100 mJ / cm 2 of ultraviolet light; illumination (wavelength 365nm electron beam) (Outer layer forming step).
- illumination wavelength 365nm electron beam
- the other surface of the metal foil 4 of the first laminate after the electron beam irradiation was extruded from an extruder with a thickness of 55 ⁇ m by extrusion melt maleic acid modification.
- the polyolefin resin film extruded molten resin film
- it is made of maleic acid-modified polyolefin resin on the other surface of the aluminum foil 4 by cooling and pressing between the cooling roll and the room temperature roll (by a single laminating method).
- a heat-fusible resin layer 3 having a thickness of 55 ⁇ m was laminated (inner layer forming step) to obtain a power storage device exterior material 1 having the configuration shown in FIG.
- Example 9 As the photocurable resin composition (electron beam curable resin composition) 44, instead of the photocurable resin composition A, 96.0 parts by mass of a vinyl ether oligomer (polymerizable oligomer) having two vinyl groups, 2- Except for using a photocurable resin composition B containing 3.0 parts by mass of hydroxyethyl vinyl ether (polymerizable monomer) and 1.0 part by mass of triphenylsulfonium hexafluorophosphate (sulfonium salt; photocationic polymerization initiator) In the same manner as in Example 1, an exterior material 1 for an electricity storage device having the configuration shown in FIG. 2 was obtained.
- a photocurable resin composition B containing 3.0 parts by mass of hydroxyethyl vinyl ether (polymerizable monomer) and 1.0 part by mass of triphenylsulfonium hexafluorophosphate (sulfonium salt; photocationic polymerization initiator
- Example 10 Example 2 except that instead of the photocurable resin composition A, the photocurable resin composition B used in Example 9 was used as the photocurable resin composition (electron beam curable resin composition). In the same manner as described above, an electricity storage device exterior material 1 having the configuration shown in FIG. 3 was obtained.
- Example 11 Example 5 except that instead of the photocurable resin composition A, the photocurable resin composition B used in Example 9 was used as the photocurable resin composition (electron beam curable resin composition). In the same manner as above, an exterior device 1 for an electricity storage device having the configuration shown in FIG. 4 was obtained.
- Example 12 Example 6 except that the photocurable resin composition B used in Example 9 was used in place of the photocurable resin composition A as the photocurable resin composition (electron beam curable resin composition). In the same manner as above, an exterior device 1 for an electricity storage device having the configuration shown in FIG. 5 was obtained.
- Example 13 As the irradiation light (electron beam), in place of the ultraviolet light 100 mJ / cm 2, except for using the ultraviolet light of 250 mJ / cm 2, in the same manner as in Example 1, exterior storage device having the structure shown in FIG. 2 Material 1 was obtained.
- irradiation light electron beam
- Example 14 The exterior for an electricity storage device having the configuration shown in FIG. 2 is the same as that of Example 1, except that 500 mJ / cm 2 ultraviolet light is used instead of 100 mJ / cm 2 ultraviolet light as irradiation light (electron beam). Material 1 was obtained.
- Example 15 In the inner layer forming step of Example 2, an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 10 ⁇ m extruded from the first extruder is overlaid on one surface of the chemically treated aluminum foil 4. Then, after cooling and clamping between a cooling roll and a room temperature roll, an extruded molten polypropylene resin film (extruded molten resin film) having a thickness of 45 ⁇ m extruded from the second extruder is further applied on the resin film.
- the first heat-resisting resin layer 3 having a total thickness of 55 ⁇ m is laminated on one surface of the aluminum foil by cooling and pressing between the cooling roll and the room temperature roll (by tandem laminating method). Except having obtained the laminated body, it carried out similarly to Example 2, and obtained the exterior material 1 for electrical storage devices of the structure shown in FIG.
- Example 2 In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after applying the urethane adhesive (outer adhesive) 5 on one surface of the chemical conversion treated aluminum foil 4 so that the thickness after drying becomes 2 ⁇ m, on the outer adhesive application surface, A biaxially stretched nylon film 2 having a hot water shrinkage of 5.0% and a thickness of 25 ⁇ m was superposed and bonded to obtain a first laminate. The first laminate was left to stand in a 60 ° C. environment for 7 days and subjected to a heat aging treatment, whereby the outer adhesive was cured to form an outer adhesive layer.
- the urethane adhesive outer adhesive
- the inner adhesive 6 made of a thermosetting acid-modified polypropylene adhesive was applied to the other surface of the aluminum foil 4 of the first laminate so that the mass after drying was 2.0 g / m 2 . Then, the 2nd laminated body was obtained by bonding the 40 micrometer-thick unstretched polypropylene film 3 to this inner side adhesive application surface.
- the second laminate is left to stand in a 40 ° C. environment for 7 days and subjected to a heat aging treatment, whereby the inner adhesive is cured to form the inner adhesive layer 6, thereby storing the structure shown in FIG. A device exterior material was obtained.
- the biaxially stretched nylon film having a hot water shrinkage of 5.0% is obtained when the nylon film is biaxially stretched. It was obtained by setting the heat setting temperature to 191 ° C.
- Examples 1, 9, 13, and 14 are examples corresponding to the first manufacturing method, and Examples 2, 10, and 15 are examples corresponding to the third manufacturing method.
- Example 3 is an example corresponding to the second manufacturing method
- Example 4 is an example corresponding to the fourth manufacturing method
- Examples 5 and 11 are examples corresponding to the fifth manufacturing method.
- Examples 6 and 12 correspond to the seventh manufacturing method
- Example 7 corresponds to the sixth manufacturing method
- Example 8 corresponds to the above-described seventh manufacturing method. It is an Example corresponding to the 8th manufacturing method.
- Evaluation was performed based on the following measurement method and evaluation method for each of the electricity storage device packaging materials (packaging materials) obtained as described above.
- a test piece having a width of 15 mm and a length of 150 mm was cut out from the obtained exterior material and peeled between the aluminum foil and the base material layer in a region extending from one end in the length direction of the test piece to a position 10 mm inward. It was.
- a laminated body containing an aluminum foil is sandwiched and fixed with one chuck using a strut (AGS-5kNX) manufactured by Shimadzu Corporation, and the above-mentioned peeling is performed with the other chuck.
- the substrate layer is sandwiched and fixed, held for 1 minute in a temperature environment of 120 ° C., and then measured for peel strength when peeled at a tensile rate of 100 mm / min.
- the value at which the value was stabilized was defined as “lamination strength at high temperature (N / 15 mm width)”.
- a laminate having a laminate strength of “2.0 N / 15 mm width” or more was regarded as acceptable.
- ⁇ Formability (maximum forming depth) evaluation method> Using a deep drawing tool manufactured by Amada Co., Ltd., deep-drawing into an exterior material of approximately 55 mm length ⁇ 35 mm width ⁇ approximately cuboid shape (approximately cuboid shape with one surface open; see Fig. 7). In other words, deep molding is performed by changing the molding depth in increments of 0.5 mm, and the presence or absence of pinholes and cracks at the corners in the obtained molded body is examined, and such pinholes and cracks do not occur. The maximum forming depth (mm) was examined. The presence or absence of pinholes or cracks was examined by a light transmission method in a dark room. Those having a maximum molding depth of 5.0 mm or more were regarded as acceptable.
- ⁇ Sealability evaluation method> Evaluation of the presence or absence of delamination when forming with a deep forming depth
- a substantially rectangular parallelepiped shape having a length of 55 mm ⁇ width of 35 mm ⁇ 5.0 mm with respect to the exterior material using the above-described deep drawing tool (a substantially rectangular parallelepiped shape with one surface opened; see FIG. 7) Deep drawing was performed.
- Two molded bodies are produced for each example and each comparative example, and the flange portions (sealing peripheral portion; see FIG.
- ⁇ Heat-resistant water evaluation method> Evaluation of the occurrence of delamination when used in harsh environments such as high temperature and high humidity
- the exterior material By performing deep drawing on the exterior material using the above-mentioned deep drawing tool, it is formed into a substantially rectangular parallelepiped shape (length 55 mm ⁇ width 35 mm ⁇ 5 mm) (refer to FIG. 7). did.
- Two molded bodies were produced for each example and each comparative example, and the flange portions (sealing peripheral portions; see FIG. 7) 29 of the two molded bodies 10 were brought into contact with each other and overlapped to 170 ° C.
- Heat seal strength measurement method After cutting out two test bodies having a width of 15 mm and a length of 200 mm from the obtained exterior material, the two test bodies were overlapped so as to be in contact with each other of the inner sealant layers. Using a heat seal device (TP-701-A), heat seal temperature is 200 ° C, seal pressure is 0.2 MPa (gauge display pressure), and seal time is 2 seconds. went.
- TP-701-A heat seal temperature is 200 ° C
- seal pressure is 0.2 MPa (gauge display pressure)
- seal time is 2 seconds. went.
- thermosetting resin requiring heat aging for several days was not used, but “electron beam curable resin composition of "Adhesion using electron beam curing or formation of substrate layer by electron beam curing of electron beam curable resin composition” and “Heat bonding resin layer using adhesion or extrusion molten resin film using extrusion molten resin film”
- the packaging materials (exterior materials for power storage devices) of Examples 1 to 15 obtained by the production method of the present invention are: Pinholes and cracks do not occur even when molding is performed at a deep molding depth, and excellent moldability is provided, and delamination can be suppressed even when molding is performed at a deep molding depth.
- the packaging materials (exterior for power storage devices) of Examples 1 to 15 obtained by the production method of the present invention are also shown.
- the material has a performance equivalent to that of the packaging material of the reference example using a conventional thermosetting resin as an adhesive.
- a specific example of the packaging material according to the present invention is, for example, -It is used suitably as exterior materials (exterior material for electrical storage devices) of various electrical storage devices, such as electrical storage devices, such as a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.), a lithium ion capacitor, and an electric double layer capacitor.
- electrical storage devices such as a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.), a lithium ion capacitor, and an electric double layer capacitor.
- the packaging material which concerns on this invention can be used as a packaging material for foodstuffs, a packaging material for pharmaceuticals, etc.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Provided is a method for producing a packaging material, which is capable of greatly reducing the lead time, thereby improving the productivity, and which is also capable of ensuring excellent formability. This production method comprises: an inner layer formation step wherein a first laminate 48 is obtained by bonding a thermally fusible resin film 3 on one surface of a metal foil 4, with a molten resin film 47 extruded from an extruder 40 being interposed therebetween; and an outer layer formation step wherein a second laminate 49 is obtained by bonding a resin film 2 for substrate layers on the other surface of the metal foil 4 of the first laminate 48, with an electron beam curable resin composition 44 being interposed therebetween, and the second laminate 49 is subsequently irradiated with an electron beam 46 from the resin film for substrate layers side.
Description
本発明は、スマートフォン、タブレット等のモバイル電気機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイス用の外装材(包装材)の他、食品用包装材、医薬品用包装材等として用いられる包装材の製造方法に関する。
The present invention is for batteries and capacitors used for mobile electric devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, and power storage devices such as batteries and capacitors used for power storage for night electricity. In addition to the outer packaging material (packaging material), the present invention relates to a method for producing a packaging material used as a food packaging material, a pharmaceutical packaging material, or the like.
リチウムイオン2次電池は、例えばノートパソコン、ビデオカメラ、携帯電話、電気自動車等の電源として広く用いられている。このリチウムイオン2次電池としては、電池本体部(正極、負極及び電解質を含む本体部)の周囲をケースで包囲した構成のものが用いられている。このケース用材料(外装材)としては、耐熱性樹脂フィルムからなる外層、アルミニウム箔層、熱可塑性樹脂フィルムからなる内層がこの順に接着一体化された構成のものが公知である。
Lithium ion secondary batteries are widely used as power sources for notebook computers, video cameras, mobile phones, electric vehicles, and the like. As this lithium ion secondary battery, one having a configuration in which the periphery of a battery main body (a main body including a positive electrode, a negative electrode, and an electrolyte) is surrounded by a case is used. As this case material (exterior material), a material having a structure in which an outer layer made of a heat-resistant resin film, an aluminum foil layer, and an inner layer made of a thermoplastic resin film are bonded and integrated in this order is known.
例えば、基材層(外側層)、第1接着剤層、金属箔層、第2接着剤層、シーラント層(内側層)がこの順に積層された電池用外装材であって、第1接着剤層および第2接着剤層がともに熱硬化(加熱エージング)により形成された構成の電池用外装材が知られている(特許文献1参照)。
For example, a battery exterior material in which a base material layer (outer layer), a first adhesive layer, a metal foil layer, a second adhesive layer, and a sealant layer (inner layer) are laminated in this order, the first adhesive A battery exterior material having a structure in which both the layer and the second adhesive layer are formed by thermosetting (heat aging) is known (see Patent Document 1).
上記熱硬化により第1及び第2接着剤層を形成させるには、接着剤を塗布した後に加熱エージング処理を40℃で5日間または10日間行う必要がある(特許文献1の段落0097)。
形成 In order to form the first and second adhesive layers by the thermosetting, it is necessary to perform a heat aging treatment at 40 ° C. for 5 days or 10 days after applying the adhesive (paragraph 0097 of Patent Document 1).
このように少なくとも5日間以上、加熱エージング処理を行わなければならないので、リードタイム(資材投入から製品完成までに要する時間)が相当に長いという問題、即ち生産性に劣るという問題があった。
As described above, since the heat aging treatment must be performed for at least 5 days or more, there is a problem that the lead time (time required from material input to product completion) is considerably long, that is, the productivity is inferior.
本発明は、かかる技術的背景に鑑みてなされたものであって、リードタイムを大幅に短縮できて生産性を向上できると共に、優れた成形性も確保し得る包装材の製造方法を提供することを目的とする。
The present invention has been made in view of such a technical background, and provides a method for manufacturing a packaging material that can significantly reduce the lead time and improve productivity, and can also ensure excellent moldability. With the goal.
前記目的を達成するために、本発明は以下の手段を提供する。
In order to achieve the above object, the present invention provides the following means.
[1]金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [1] An inner layer forming step of bonding a heat-fusible resin film to one surface of a metal foil via an extruded molten resin film extruded from an extruder to obtain a first laminate,
After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer.
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [1] An inner layer forming step of bonding a heat-fusible resin film to one surface of a metal foil via an extruded molten resin film extruded from an extruder to obtain a first laminate,
After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer.
[2]金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔の一方の面に熱融着性樹脂層を形成して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [2] A heat-bonding resin layer is formed on one surface of the metal foil by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil to form a first laminate. An inner layer forming step to obtain;
After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer.
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [2] A heat-bonding resin layer is formed on one surface of the metal foil by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil to form a first laminate. An inner layer forming step to obtain;
After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer.
[3]金属箔の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [3] A base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base is applied to the first laminate. An outer layer forming step of irradiating an electron beam from the resin film side of the material layer;
An inner layer forming step of adhering a heat-fusible resin film to the other surface of the metal foil of the first laminate after the electron beam irradiation via an extruded molten resin film extruded from an extruder. A method for producing a packaging material characterized by the above.
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [3] A base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base is applied to the first laminate. An outer layer forming step of irradiating an electron beam from the resin film side of the material layer;
An inner layer forming step of adhering a heat-fusible resin film to the other surface of the metal foil of the first laminate after the electron beam irradiation via an extruded molten resin film extruded from an extruder. A method for producing a packaging material characterized by the above.
[4]金属箔の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔層の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [4] A base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base is applied to the first laminate. An outer layer forming step of irradiating an electron beam from the resin film side of the material layer;
A heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation. A method for producing a packaging material, comprising: forming an inner layer.
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔層の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [4] A base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base is applied to the first laminate. An outer layer forming step of irradiating an electron beam from the resin film side of the material layer;
A heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation. A method for producing a packaging material, comprising: forming an inner layer.
[5]金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [5] An inner layer forming step of obtaining a first laminate by adhering a heat-fusible resin film to one surface of a metal foil via an extruded molten resin film extruded from an extruder,
After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side.
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [5] An inner layer forming step of obtaining a first laminate by adhering a heat-fusible resin film to one surface of a metal foil via an extruded molten resin film extruded from an extruder,
After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side.
[6]金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔の一方の面に熱融着性樹脂層を形成して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [6] By superposing an extruded molten resin film extruded from an extruder on one surface of the metal foil, a heat-fusible resin layer is formed on one surface of the metal foil to form a first laminate. An inner layer forming step to obtain;
After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side.
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 [6] By superposing an extruded molten resin film extruded from an extruder on one surface of the metal foil, a heat-fusible resin layer is formed on one surface of the metal foil to form a first laminate. An inner layer forming step to obtain;
After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side.
[7]金属箔の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [7] After applying the electron beam curable resin composition to one surface of the metal foil to obtain the first laminate, the electrons from the electron beam curable resin composition side to the first laminate are obtained. An outer layer forming step of irradiating a line;
An inner layer forming step of adhering a heat-fusible resin film to the other surface of the metal foil of the first laminate after the electron beam irradiation via an extruded molten resin film extruded from an extruder. A method for producing a packaging material characterized by the above.
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [7] After applying the electron beam curable resin composition to one surface of the metal foil to obtain the first laminate, the electrons from the electron beam curable resin composition side to the first laminate are obtained. An outer layer forming step of irradiating a line;
An inner layer forming step of adhering a heat-fusible resin film to the other surface of the metal foil of the first laminate after the electron beam irradiation via an extruded molten resin film extruded from an extruder. A method for producing a packaging material characterized by the above.
[8]金属箔の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔層の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [8] After applying an electron beam curable resin composition to one surface of the metal foil to obtain a first laminate, electrons from the electron beam curable resin composition side with respect to the first laminate are obtained. An outer layer forming step of irradiating a line;
A heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation. A method for producing a packaging material, comprising: forming an inner layer.
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔層の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 [8] After applying an electron beam curable resin composition to one surface of the metal foil to obtain a first laminate, electrons from the electron beam curable resin composition side with respect to the first laminate are obtained. An outer layer forming step of irradiating a line;
A heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation. A method for producing a packaging material, comprising: forming an inner layer.
[9]前記内側層形成工程および前記外側層形成工程を連続して行う前項1、2、5、6に記載の包装材の製造方法。
[9] The method for manufacturing a packaging material according to the above 1, 2, 5, or 6, wherein the inner layer forming step and the outer layer forming step are successively performed.
[10]前記基材層用樹脂フィルムとして、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムを用いる前項1~4のいずれか1項に記載の包装材の製造方法。
[10] The method for producing a packaging material according to any one of items 1 to 4, wherein a heat-resistant resin film having a hot water shrinkage of 1.5% to 12% is used as the base layer resin film.
[11]前記押出溶融樹脂膜が、押出溶融酸変性ポリオレフィン樹脂膜である前項1~10のいずれか1項に記載の包装材の製造方法。
[11] The method for producing a packaging material according to any one of items 1 to 10, wherein the extruded molten resin film is an extruded molten acid-modified polyolefin resin film.
[1]~[8]の発明では、接着剤等として熱硬化性樹脂を用いていないので(数日間の加熱エージングを必要とする熱硬化性樹脂を使用していないので)、即ち「電子線硬化性樹脂組成物の電子線硬化を用いた接着又は電子線硬化性樹脂組成物の電子線硬化による基材層の形成」および「押出溶融樹脂膜を用いた接着又は押出溶融樹脂膜を用いた熱融着性樹脂層の形成」は、数日間の加熱エージングを必要とする熱硬化性樹脂の硬化と比較して格段に短い時間で行い得るので、リードタイム(資材投入から製品完成までに要する時間)を大幅に短縮できて、コスト低減を図ることができる。更に、電子線硬化性樹脂組成物および押出溶融樹脂膜には、溶剤を含有せしめる必要がなく、このように溶剤非含有とできるので環境負荷が小さくて済む利点がある。また、熱硬化性樹脂を用いていないので乾燥炉を必要としないことから、製造設備をコンパクトなものにできる。また、得られた包装材に対し深絞り成形、張り出し成形等の冷間(常温)成形により、成形深さの深い成形を行っても、ピンホールやクラックが発生せず優れた成形性を確保できる。
In the inventions [1] to [8], a thermosetting resin is not used as an adhesive or the like (since a thermosetting resin that requires heat aging for several days is not used), that is, “electron beam Adhesion of curable resin composition using electron beam curing or formation of substrate layer by electron beam curing of electron beam curable resin composition "and" Adhesion using extruded molten resin film or using extruded molten resin film " “The formation of the heat-fusible resin layer” can be performed in a much shorter time compared to the curing of the thermosetting resin that requires heat aging for several days. Time) and cost can be reduced. Further, the electron beam curable resin composition and the extruded molten resin film do not need to contain a solvent, and can be made free of a solvent in this way, so that there is an advantage that an environmental load is small. In addition, since no thermosetting resin is used, a drying furnace is not required, so that the manufacturing equipment can be made compact. In addition, even if the molding material is deeply molded by cold (room temperature) molding such as deep drawing molding or overhang molding, pinholes and cracks do not occur, ensuring excellent moldability. it can.
[9]の発明は、内側層形成工程および外側層形成工程を連続して行うので、生産効率を向上させることができる。このように内側層形成工程および外側層形成工程を連続して行うに際し、内側層形成工程を外側層形成工程よりも先に実施する方法であるので(先に内側層を形成した後に電子線を照射する外側層形成工程を実施するので)、包装材においてカール現象が生じ難くなる利点がある。
[9] Since the inner layer forming step and the outer layer forming step are continuously performed, the production efficiency can be improved. In this way, when the inner layer forming step and the outer layer forming step are continuously performed, the inner layer forming step is performed before the outer layer forming step (the electron beam is formed after the inner layer is formed first). Since the outer layer forming step to be irradiated is performed), there is an advantage that the curling phenomenon hardly occurs in the packaging material.
[10]の発明では、基材層用樹脂フィルムとして熱水収縮率が1.5%~12%である耐熱性樹脂フィルムを用いているので、成形深さの深い成形を行っても或いは高温多湿等の苛酷な環境下で使用しても、外側層(基材層)と金属箔層の間のデラミネーション(剥離)を十分に防止することができる。
In the invention of [10], since the heat-resistant resin film having a hot water shrinkage of 1.5% to 12% is used as the resin film for the base layer, even if molding is performed at a deep molding depth or at a high temperature Even when used under severe environments such as high humidity, delamination (peeling) between the outer layer (base material layer) and the metal foil layer can be sufficiently prevented.
[11]の発明では、押出溶融樹脂膜が、押出溶融酸変性ポリオレフィン樹脂膜であるので、金属箔層と熱融着性樹脂層との接着強度を向上させることができる。
In the invention of [11], since the extruded molten resin film is an extruded molten acid-modified polyolefin resin film, the adhesive strength between the metal foil layer and the heat-fusible resin layer can be improved.
本発明に係る、包装材の製造方法について説明する。本発明の製造方法として、以下の第1~8の各製造方法が挙げられる。
The manufacturing method of the packaging material according to the present invention will be described. Examples of the production method of the present invention include the following first to eighth production methods.
(第1の製造方法)
金属箔4の一方の面に、押出機40から押し出された押出溶融樹脂膜47を介して熱融着性樹脂フィルム3を接着して第1積層体48を得る内側層形成工程と、前記第1積層体48の金属箔4の他方の面に、電子線硬化性樹脂組成物44を介して基材層用樹脂フィルム2を接着して第2積層体49を得た後、該第2積層体49に対して前記基材層用樹脂フィルム2側から電子線46を照射する外側層形成工程と、を含むことを特徴とする(図1参照)。この第1の製造方法により、図2に示す構成の包装材1が得られる。 (First manufacturing method)
An inner layer forming step of obtaining afirst laminate 48 by bonding the heat-fusible resin film 3 to one surface of the metal foil 4 via an extruded molten resin film 47 extruded from an extruder 40; After the base layer resin film 2 is bonded to the other surface of the metal foil 4 of the one laminate 48 via the electron beam curable resin composition 44 to obtain the second laminate 49, the second laminate 49 is obtained. And an outer layer forming step of irradiating the electron beam 46 from the base layer resin film 2 side to the body 49 (see FIG. 1). By this first manufacturing method, the packaging material 1 having the configuration shown in FIG. 2 is obtained.
金属箔4の一方の面に、押出機40から押し出された押出溶融樹脂膜47を介して熱融着性樹脂フィルム3を接着して第1積層体48を得る内側層形成工程と、前記第1積層体48の金属箔4の他方の面に、電子線硬化性樹脂組成物44を介して基材層用樹脂フィルム2を接着して第2積層体49を得た後、該第2積層体49に対して前記基材層用樹脂フィルム2側から電子線46を照射する外側層形成工程と、を含むことを特徴とする(図1参照)。この第1の製造方法により、図2に示す構成の包装材1が得られる。 (First manufacturing method)
An inner layer forming step of obtaining a
(第2の製造方法)
上記第1の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第2の製造方法である。即ち、第2の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム2側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着する内側層形成工程と、を含むことを特徴とする。この第2の製造方法により、図2に示す構成の包装材1が得られる。 (Second manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the first manufacturing method is reversed is the second manufacturing method. That is, in the second production method, after the baselayer resin film 2 is bonded to one surface of the metal foil 4 via the electron beam curable resin composition to obtain the first laminate, An outer layer forming step of irradiating an electron beam from the base layer resin film 2 side to one laminate, and the other surface of the metal foil 4 of the first laminate after the electron beam irradiation from an extruder An inner layer forming step of bonding the heat-fusible resin film 3 through the extruded extruded resin film. By this second manufacturing method, the packaging material 1 having the configuration shown in FIG. 2 is obtained.
上記第1の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第2の製造方法である。即ち、第2の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム2側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着する内側層形成工程と、を含むことを特徴とする。この第2の製造方法により、図2に示す構成の包装材1が得られる。 (Second manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the first manufacturing method is reversed is the second manufacturing method. That is, in the second production method, after the base
図2に示す包装材1は、金属箔層4の一方の面(上面)に電子線硬化性樹脂組成物の硬化膜からなる外側接着剤層(第1接着剤層)5を介して前記基材層用樹脂フィルムからなる基材層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に押出樹脂膜47からなる内側接着剤層(第2接着剤層)6を介して熱融着性樹脂層(内側層)3が積層一体化された構成である。
The packaging material 1 shown in FIG. 2 has the above-mentioned base via an outer adhesive layer (first adhesive layer) 5 made of a cured film of an electron beam curable resin composition on one surface (upper surface) of the metal foil layer 4. A base material layer (outer layer) 2 made of a resin film for material layers is laminated and integrated, and an inner adhesive layer (second adhesive) made of an extruded resin film 47 on the other surface (lower surface) of the metal foil layer 4. The heat-fusible resin layer (inner layer) 3 is laminated and integrated through an agent layer 6.
(第3の製造方法)
金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の一方の面に熱融着性樹脂層3を形成して第1積層体を得る内側層形成工程と、前記第1積層体の金属箔4の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム2側から電子線を照射する外側層形成工程と、を含むことを特徴とする。この第3の製造方法により、図3に示す構成の包装材1が得られる。 (Third production method)
By superposing an extruded molten resin film extruded from an extruder on one surface of themetal foil 4, the heat-fusible resin layer 3 is formed on one surface of the metal foil 4 to form the first laminate. The inner layer forming step to be obtained and the base layer resin film 2 was adhered to the other surface of the metal foil 4 of the first laminate through an electron beam curable resin composition to obtain a second laminate. And an outer layer forming step of irradiating the second laminate with an electron beam from the base layer resin film 2 side. By this third manufacturing method, the packaging material 1 having the configuration shown in FIG. 3 is obtained.
金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の一方の面に熱融着性樹脂層3を形成して第1積層体を得る内側層形成工程と、前記第1積層体の金属箔4の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム2側から電子線を照射する外側層形成工程と、を含むことを特徴とする。この第3の製造方法により、図3に示す構成の包装材1が得られる。 (Third production method)
By superposing an extruded molten resin film extruded from an extruder on one surface of the
前記第3の製造方法において、金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の一方の面に熱融着性樹脂層3を形成する際には、1台の押出機から押し出された1層の押出溶融樹脂膜を前記金属箔4の一方の面に重ね合わせるようにしてもよいし(シングルラミネート法)、複数台の押出機から押し出された複数層の押出溶融樹脂膜を前記金属箔4の一方の面に重ね合わせるようにしてもよい(タンデムラミネート法)。
In the third manufacturing method, the heat-fusible resin layer 3 is formed on one surface of the metal foil 4 by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil 4. When forming, one layer of extruded molten resin film extruded from one extruder may be superposed on one surface of the metal foil 4 (single laminating method), or a plurality of extruders may be extruded. A plurality of layers of extruded molten resin films extruded from a machine may be superposed on one surface of the metal foil 4 (tandem laminating method).
(第4の製造方法)
上記第3の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第4の製造方法である。即ち、第4の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム2側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の他方の面に熱融着性樹脂層3を形成する内側層形成工程と、を含むことを特徴とする。この第4の製造方法により、図3に示す構成の包装材1が得られる。 (Fourth manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the third manufacturing method is reversed is the fourth manufacturing method. That is, in the fourth production method, after the baselayer resin film 2 is adhered to one surface of the metal foil 4 via the electron beam curable resin composition to obtain the first laminate, An outer layer forming step of irradiating an electron beam from the base layer resin film 2 side to one laminate, and the other surface of the metal foil 4 of the first laminate after the electron beam irradiation from an extruder And an inner layer forming step of forming the heat-fusible resin layer 3 on the other surface of the metal foil 4 by overlapping the extruded molten resin films. By the fourth manufacturing method, the packaging material 1 having the configuration shown in FIG. 3 is obtained.
上記第3の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第4の製造方法である。即ち、第4の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム2側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の他方の面に熱融着性樹脂層3を形成する内側層形成工程と、を含むことを特徴とする。この第4の製造方法により、図3に示す構成の包装材1が得られる。 (Fourth manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the third manufacturing method is reversed is the fourth manufacturing method. That is, in the fourth production method, after the base
前記第4の製造方法において、電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の他方の面に熱融着性樹脂層3を形成する際には、1台の押出機から押し出された1層の押出溶融樹脂膜を前記金属箔4の他方の面に重ね合わせるようにしてもよいし(シングルラミネート法)、複数台の押出機から押し出された複数層の押出溶融樹脂膜を前記金属箔4の他方の面に重ね合わせるようにしてもよい(タンデムラミネート法)。
In the fourth manufacturing method, the other surface of the metal foil 4 is overlapped with the other surface of the metal foil 4 of the first laminate after irradiation with the electron beam by overlapping an extruded molten resin film extruded from an extruder. When the heat-fusible resin layer 3 is formed on the surface, one layer of the extruded molten resin film extruded from one extruder may be superposed on the other surface of the metal foil 4. (Single laminating method) A plurality of layers of extruded molten resin films extruded from a plurality of extruders may be superposed on the other surface of the metal foil 4 (tandem laminating method).
図3に示す包装材1は、金属箔層4の一方の面(上面)に電子線硬化性樹脂組成物の硬化膜からなる外側接着剤層(第1接着剤層)5を介して基材層用樹脂フィルムからなる基材層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に押出樹脂膜47からなる熱融着性樹脂層(内側層)3が積層一体化された構成である。
The packaging material 1 shown in FIG. 3 is a base material through the outer side adhesive layer (1st adhesive layer) 5 which consists of a cured film of an electron beam curable resin composition on one side (upper surface) of the metal foil layer 4. A base material layer (outer layer) 2 made of a resin film for layers is laminated and integrated, and a heat-fusible resin layer (inner layer) made of an extruded resin film 47 on the other surface (lower surface) of the metal foil layer 4. ) 3 is a laminated and integrated structure.
(第5の製造方法)
金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着して第1積層体を得る内側層形成工程と、前記第1積層体の金属箔4の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする。この第5の製造方法により、図4に示す構成の包装材1が得られる。 (Fifth manufacturing method)
An inner layer forming step for obtaining a first laminate by adhering the heat-fusible resin film 3 to one surface of the metal foil 4 via an extruded molten resin film extruded from an extruder, and the first laminate After applying an electron beam curable resin composition to the other surface of the metal foil 4 to obtain a second laminate, an electron beam is applied from the electron beam curable resin composition side to the second laminate. And an outer layer forming step of irradiating the substrate. By the fifth manufacturing method, the packaging material 1 having the configuration shown in FIG. 4 is obtained.
金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着して第1積層体を得る内側層形成工程と、前記第1積層体の金属箔4の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする。この第5の製造方法により、図4に示す構成の包装材1が得られる。 (Fifth manufacturing method)
An inner layer forming step for obtaining a first laminate by adhering the heat-
(第6の製造方法)
上記第5の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第6の製造方法である。即ち、第6の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着する内側層形成工程と、を含むことを特徴とする。この第6の製造方法により、図4に示す構成の包装材1が得られる。 (Sixth manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the fifth manufacturing method is reversed is a sixth manufacturing method. That is, in the sixth production method, after the electron beam curable resin composition is applied to one surface of themetal foil 4 to obtain the first laminate, the electron beam curing is performed on the first laminate. An outer layer forming step of irradiating an electron beam from the conductive resin composition side, and an extruded molten resin film extruded from an extruder on the other surface of the metal foil 4 of the first laminate after the electron beam irradiation And an inner layer forming step for adhering the heat-fusible resin film 3. By the sixth manufacturing method, the packaging material 1 having the configuration shown in FIG. 4 is obtained.
上記第5の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第6の製造方法である。即ち、第6の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着する内側層形成工程と、を含むことを特徴とする。この第6の製造方法により、図4に示す構成の包装材1が得られる。 (Sixth manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the fifth manufacturing method is reversed is a sixth manufacturing method. That is, in the sixth production method, after the electron beam curable resin composition is applied to one surface of the
図4に示す包装材1は、金属箔層4の一方の面(上面)に電子線硬化性樹脂組成物の硬化膜からなる基材層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に押出樹脂膜47からなる内側接着剤層(第2接着剤層)6を介して熱融着性樹脂フィルムからなる熱融着性樹脂層(内側層)3が積層一体化された構成である。
The packaging material 1 shown in FIG. 4 has a base material layer (outer layer) 2 made of a cured film of an electron beam curable resin composition laminated and integrated on one surface (upper surface) of the metal foil layer 4. A heat-fusible resin layer (inner layer) made of a heat-fusible resin film via an inner adhesive layer (second adhesive layer) 6 made of an extruded resin film 47 on the other surface (lower surface) of the metal foil layer 4. ) 3 is a laminated and integrated structure.
(第7の製造方法)
金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔の一方の面に熱融着性樹脂層3を形成して第1積層体を得る内側層形成工程と、前記第1積層体の金属箔4の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする。この第7の製造方法により、図5に示す構成の包装材1が得られる。 (Seventh manufacturing method)
By superposing an extruded molten resin film extruded from an extruder on one surface of themetal foil 4, a heat-fusible resin layer 3 is formed on one surface of the metal foil to obtain a first laminate. After the inner layer forming step and applying the electron beam curable resin composition to the other surface of the metal foil 4 of the first laminated body to obtain a second laminated body, An outer layer forming step of irradiating an electron beam from the electron beam curable resin composition side. By the seventh manufacturing method, the packaging material 1 having the configuration shown in FIG. 5 is obtained.
金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔の一方の面に熱融着性樹脂層3を形成して第1積層体を得る内側層形成工程と、前記第1積層体の金属箔4の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする。この第7の製造方法により、図5に示す構成の包装材1が得られる。 (Seventh manufacturing method)
By superposing an extruded molten resin film extruded from an extruder on one surface of the
前記第7の製造方法において、金属箔4の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の一方の面に熱融着性樹脂層3を形成する際には、1台の押出機から押し出された1層の押出溶融樹脂膜を前記金属箔4の一方の面に重ね合わせるようにしてもよいし(シングルラミネート法)、複数台の押出機から押し出された複数層の押出溶融樹脂膜を前記金属箔4の一方の面に重ね合わせるようにしてもよい(タンデムラミネート法)。
In the seventh manufacturing method, the heat-fusible resin layer 3 is formed on one surface of the metal foil 4 by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil 4. When forming, one layer of extruded molten resin film extruded from one extruder may be superposed on one surface of the metal foil 4 (single laminating method), or a plurality of extruders may be extruded. A plurality of layers of extruded molten resin films extruded from a machine may be superposed on one surface of the metal foil 4 (tandem laminating method).
(第8の製造方法)
上記第7の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第8の製造方法である。即ち、第8の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする。この第8の製造方法により、図5に示す構成の包装材1が得られる。 (Eighth manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the seventh manufacturing method is reversed is an eighth manufacturing method. That is, in the eighth manufacturing method, after the electron beam curable resin composition is applied to one surface of themetal foil 4 to obtain the first laminate, the electron beam curing is performed on the first laminate. An outer layer forming step of irradiating an electron beam from the conductive resin composition side and an extruded molten resin film extruded from an extruder are superimposed on the other surface of the metal foil 4 of the first laminate after the electron beam irradiation. And an inner layer forming step of forming a heat-fusible resin layer on the other surface of the metal foil 4. By the eighth manufacturing method, the packaging material 1 having the configuration shown in FIG. 5 is obtained.
上記第7の製造方法における内側層形成工程と外側層形成工程の実施順序を逆転させた製造方法が第8の製造方法である。即ち、第8の製造方法は、金属箔4の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする。この第8の製造方法により、図5に示す構成の包装材1が得られる。 (Eighth manufacturing method)
A manufacturing method in which the execution order of the inner layer forming step and the outer layer forming step in the seventh manufacturing method is reversed is an eighth manufacturing method. That is, in the eighth manufacturing method, after the electron beam curable resin composition is applied to one surface of the
前記第8の製造方法において、電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の他方の面に熱融着性樹脂層3を形成する際には、1台の押出機から押し出された1層の押出溶融樹脂膜を前記金属箔4の他方の面に重ね合わせるようにしてもよいし(シングルラミネート法)、複数台の押出機から押し出された複数層の押出溶融樹脂膜を前記金属箔4の他方の面に重ね合わせるようにしてもよい(タンデムラミネート法)。
In the eighth manufacturing method, the other surface of the metal foil 4 is overlapped with the other surface of the metal foil 4 of the first laminate after irradiation with the electron beam by overlapping an extruded molten resin film extruded from an extruder. When the heat-fusible resin layer 3 is formed on the surface, one layer of the extruded molten resin film extruded from one extruder may be superposed on the other surface of the metal foil 4. (Single laminating method) A plurality of layers of extruded molten resin films extruded from a plurality of extruders may be superposed on the other surface of the metal foil 4 (tandem laminating method).
図5に示す包装材1は、金属箔層4の一方の面(上面)に電子線硬化性樹脂組成物の硬化膜からなる基材層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に押出樹脂膜47からなる熱融着性樹脂層(内側層)3が積層一体化された構成である。
The packaging material 1 shown in FIG. 5 has a base material layer (outer layer) 2 made of a cured film of an electron beam curable resin composition laminated and integrated on one surface (upper surface) of the metal foil layer 4. The heat-fusing resin layer (inner layer) 3 made of the extruded resin film 47 is laminated and integrated on the other surface (lower surface) of the metal foil layer 4.
上記第1、2、5、6の製造方法において、内側層形成工程で、金属箔4の片面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルム3を接着する際には、特に限定されるものではないが、例えば、サンドイッチラミネート法等を用いて行うのがよい。
In the first, second, fifth, and sixth manufacturing methods, the heat-fusible resin film 3 is bonded to one surface of the metal foil 4 through the extruded molten resin film extruded from the extruder in the inner layer forming step. In this case, although not particularly limited, for example, a sandwich lamination method or the like is preferably used.
上記第3、4、7、8の製造方法において、内側層形成工程で、金属箔4の片面に、押出機から押し出された押出溶融樹脂膜を重ね合わせて該押出樹脂膜からなる熱融着性樹脂層3を形成する際には、特に限定されるものではないが、例えば、シングルラミネート法、タンデムラミネート法等を用いて行うのがよい。
In the above third, fourth, seventh, and eighth manufacturing methods, in the inner layer forming step, the melted resin film extruded from the extruder is superposed on one surface of the metal foil 4 and heat-sealed by the extruded resin film. When forming the conductive resin layer 3, it is not particularly limited, but for example, a single laminating method or a tandem laminating method may be used.
本発明に係る第1~8の製造方法により得られた包装材1は、例えば、リチウムイオン2次電池等の電池用外装材として好適に用いられるが、特にこのような用途に限定されるものではない。前記包装材1は、成形を施されることなくそのまま包装材1として使用されてもよいし(図7参照)、例えば、深絞り成形、張り出し成形等の成形に供されて成形ケース10として使用されてもよい(図7参照)。
The packaging material 1 obtained by the first to eighth manufacturing methods according to the present invention is suitably used as a battery exterior material such as a lithium ion secondary battery, but is particularly limited to such applications. is not. The packaging material 1 may be used as the packaging material 1 as it is without being molded (see FIG. 7), or used as a molding case 10 after being subjected to molding such as deep drawing molding or overhang molding. (See FIG. 7).
本発明において、前記基材層(外側層)2は、包装材1として良好な成形性を確保する役割を主に担う部材である、即ち成形時のアルミニウム箔のネッキングによる破断を防止する役割を主に担うものである。
In the present invention, the base material layer (outer layer) 2 is a member mainly responsible for ensuring good formability as the packaging material 1, that is, the role of preventing breakage due to necking of the aluminum foil during molding. The main responsibility.
第1~4の製造方法において、前記基材層用樹脂フィルム2は、耐熱性樹脂フィルムで形成されているのが好ましい。前記耐熱性樹脂フィルム2を構成する耐熱性樹脂としては、包装材1をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱融着性樹脂層3を構成する熱融着性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱融着性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。
In the first to fourth manufacturing methods, the base layer resin film 2 is preferably formed of a heat resistant resin film. As the heat resistant resin constituting the heat resistant resin film 2, a heat resistant resin that does not melt at the heat sealing temperature when the packaging material 1 is heat sealed is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the heat-fusible resin constituting the heat-fusible resin layer 3, and 20 higher than the melting point of the heat-fusible resin. It is particularly preferable to use a heat resistant resin having a melting point higher by at least ° C.
前記耐熱性樹脂フィルム2としては、特に限定されるものではないが、例えば、延伸ナイロンフィルム等の延伸ポリアミドフィルム、延伸ポリエステルフィルム等が挙げられる。中でも、前記耐熱性樹脂フィルム2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが好ましい。また、前記耐熱性樹脂フィルム2としては、同時2軸延伸法により延伸された耐熱性樹脂2軸延伸フィルムを用いるのが好ましい。前記ナイロンとしては、特に限定されるものではないが、例えば、6ナイロン、6,6ナイロン、MXDナイロン等が挙げられる。なお、前記耐熱性樹脂フィルム2は、単層(単一の延伸フィルム)で形成されていても良いし、或いは、例えば延伸ポリエステルフィルム/延伸ポリアミドフィルムからなる複層(延伸PETフィルム/延伸ナイロンフィルムからなる複層等)で形成されていても良い。
The heat-resistant resin film 2 is not particularly limited, and examples thereof include a stretched polyamide film such as a stretched nylon film and a stretched polyester film. Among them, the heat resistant resin film 2 includes a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film, or a biaxially stretched polyethylene film. It is preferable to use a phthalate (PEN) film. Moreover, as the heat resistant resin film 2, it is preferable to use a heat resistant resin biaxially stretched film stretched by a simultaneous biaxial stretching method. Although it does not specifically limit as said nylon, For example, 6 nylon, 6, 6 nylon, MXD nylon etc. are mentioned. The heat-resistant resin film 2 may be formed of a single layer (single stretched film) or a multilayer (stretched PET film / stretched nylon film) made of, for example, a stretched polyester film / stretched polyamide film. Etc.).
第1~4の製造方法において、前記耐熱性樹脂フィルム2は、熱水収縮率が1.5%~12%の耐熱性樹脂フィルムにより構成されているのが好ましい。熱水収縮率が1.5%以上であることで成形時の割れやクラックの発生をより防止できるし、熱水収縮率が12%以下であることで外側層2と金属箔層4の間のデラミネーション(剥離)の発生をより防止できる。中でも、前記耐熱性樹脂フィルム2として、熱水収縮率が1.8~11%の耐熱性樹脂フィルムを用いるのがより好ましい。更に、熱水収縮率が1.8%~6%の耐熱性樹脂フィルムを用いるのがさらに好ましい。前記耐熱性樹脂フィルムとしては、耐熱性樹脂延伸フィルムを用いるのが好ましい。
In the first to fourth manufacturing methods, the heat resistant resin film 2 is preferably composed of a heat resistant resin film having a hot water shrinkage of 1.5% to 12%. When the hot water shrinkage rate is 1.5% or more, it is possible to further prevent the occurrence of cracks and cracks during molding, and when the hot water shrinkage rate is 12% or less, between the outer layer 2 and the metal foil layer 4 The occurrence of delamination can be further prevented. Among them, it is more preferable to use a heat resistant resin film having a hot water shrinkage of 1.8 to 11% as the heat resistant resin film 2. Further, it is more preferable to use a heat resistant resin film having a hot water shrinkage of 1.8% to 6%. As the heat resistant resin film, a stretched heat resistant resin film is preferably used.
なお、前記「熱水収縮率」とは、耐熱性樹脂延伸フィルムの試験片(10cm×10cm)を95℃の熱水中に30分間浸漬した際の浸漬前後の試験片の延伸方向における寸法変化率であり、次式で求められる。
The “hot water shrinkage ratio” means the dimensional change in the stretching direction of the test piece before and after immersion when the test piece (10 cm × 10 cm) of the heat resistant resin stretched film is immersed in hot water at 95 ° C. for 30 minutes. It is a rate and is calculated | required by following Formula.
熱水収縮率(%)={(X-Y)/X}×100
X:浸漬処理前の延伸方向の寸法
Y:浸漬処理後の延伸方向の寸法。 Hot water shrinkage (%) = {(XY) / X} × 100
X: Dimensions in the stretching direction before the immersion treatment Y: Dimensions in the stretching direction after the immersion treatment.
X:浸漬処理前の延伸方向の寸法
Y:浸漬処理後の延伸方向の寸法。 Hot water shrinkage (%) = {(XY) / X} × 100
X: Dimensions in the stretching direction before the immersion treatment Y: Dimensions in the stretching direction after the immersion treatment.
なお、2軸延伸フィルムを採用する場合におけるその熱水収縮率は、2つの延伸方向における寸法変化率の平均値である。
In addition, the hot water shrinkage | contraction rate in the case of employ | adopting a biaxially stretched film is an average value of the dimensional change rate in two extending directions.
前記耐熱性樹脂延伸フィルムの熱水収縮率は、例えば、延伸加工時の熱固定温度を調整することにより制御することができる。
The hot water shrinkage rate of the heat-resistant resin stretched film can be controlled, for example, by adjusting the heat setting temperature during stretching.
第1~4の製造方法では、金属箔4の片面に電子線硬化性樹脂組成物を介して基材層用樹脂フィルム2を接着するが、前記電子線硬化性樹脂組成物としては、以下の構成のものを使用する。また、第5~8の製造方法では、金属箔4の片面に電子線硬化性樹脂組成物を塗布して電子線を照射することによって、金属箔4の片面に電子線硬化性樹脂組成物の硬化膜からなる基材層(外側層)2を積層するが、該電子線硬化性樹脂組成物としては、以下の構成のものを使用する。
In the first to fourth production methods, the base layer resin film 2 is bonded to one surface of the metal foil 4 via the electron beam curable resin composition. The electron beam curable resin composition includes the following: Use a configuration. In the fifth to eighth manufacturing methods, the electron beam curable resin composition is applied to one side of the metal foil 4 by applying the electron beam curable resin composition to one side of the metal foil 4 and irradiating the electron beam. A substrate layer (outer layer) 2 made of a cured film is laminated, and the electron beam curable resin composition having the following configuration is used.
即ち、本発明に係る第1~8の製造方法において、前記電子線硬化性樹脂組成物は、重合性オリゴマーおよび電子線重合開始剤を含有する組成物であり、中でも、重合性オリゴマー、重合性モノマーおよび電子線重合開始剤を含有する組成物であるのが好ましい。前記電子線硬化性樹脂組成物は、いずれも、ラジカル重合系樹脂組成物であってもよいし、カチオン重合系樹脂組成物であってもよいし、ラジカル重合及びカチオン重合系樹脂組成物(ラジカル重合系とカチオン重合系が混在しているもの)であってもよく、特に限定されない。中でも、前記電子線硬化性樹脂組成物として、アクリル系紫外線硬化性樹脂組成物を用いるのが好ましい。
That is, in the first to eighth production methods according to the present invention, the electron beam curable resin composition is a composition containing a polymerizable oligomer and an electron beam polymerization initiator, among which a polymerizable oligomer, a polymerizable A composition containing a monomer and an electron beam polymerization initiator is preferred. The electron beam curable resin composition may be a radical polymerization resin composition, a cationic polymerization resin composition, a radical polymerization and a cationic polymerization resin composition (radical). It may be a mixture of a polymerization system and a cationic polymerization system, and is not particularly limited. Among them, it is preferable to use an acrylic ultraviolet curable resin composition as the electron beam curable resin composition.
前記重合性オリゴマーとしては、特に限定されるものではないが、例えば、ウレタンアクリレートオリゴマー、エポキシアクリレートオリゴマー、ポリエステルアクリレートオリゴマー等のラジカル重合型のオリゴマー、ビニルエーテルオリゴマー、脂環式エポキシオリゴマー(樹脂)等のカチオン重合型のオリゴマー等が挙げられる。
Although it does not specifically limit as said polymerizable oligomer, For example, radical polymerization type oligomers, such as a urethane acrylate oligomer, an epoxy acrylate oligomer, and a polyester acrylate oligomer, a vinyl ether oligomer, an alicyclic epoxy oligomer (resin), etc. Examples include cationic polymerization type oligomers.
前記電子線重合開始剤としては、特に限定されるものではないが、例えば、光ラジカル重合開始剤、光カチオン重合開始剤等が挙げられる。前記光ラジカル重合開始剤としては、特に限定されるものではないが、例えば、ベンゾフェノン、ベンゾインアルキルエーテル(ベンゾエチルエーテル、ベンゾブチルエーテル等)、ベンジルジメチルケタール、アセトフェノン、チオキサントン等が挙げられる。
The electron beam polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator and a photo cationic polymerization initiator. The radical photopolymerization initiator is not particularly limited, and examples thereof include benzophenone, benzoin alkyl ether (benzoethyl ether, benzobutyl ether, etc.), benzyldimethyl ketal, acetophenone, thioxanthone, and the like.
前記光カチオン重合開始剤としては、特に限定されるものではないが、例えば、オニウム塩等が挙げられる。前記オニウム塩としては、特に限定されるものではないが、例えば、スルホニウム塩、ヨードニウム塩、ブロモニウム塩、ジアゾニウム塩、クロロニウム塩等が挙げられる。
The photocationic polymerization initiator is not particularly limited, and examples thereof include onium salts. The onium salt is not particularly limited, and examples thereof include a sulfonium salt, an iodonium salt, a bromonium salt, a diazonium salt, and a chloronium salt.
前記スルホニウム塩としては、特に限定されるものではないが、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド-ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、4-(p-ter-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-(p-ter-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド-テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムブロミド等が挙げられる。
The sulfonium salt is not particularly limited. For example, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [ Diphenylsulfonio] diphenylsulfide-bishexafluorophosphate, 4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide-bishexafluoroantimonate, 4,4′-bis [di (β- Hydroxyethoxy) phenylsulfonio] diphenyl sulfide-bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenyl sulfide-hexafluorophosphate, 4- (p- ter-butylphenylcarbonyl) -4′-diphenylsulfonio-diphenylsulfide-hexafluoroantimonate, 4- (p-ter-butylphenylcarbonyl) -4′-di (p-toluyl) sulfonio-diphenylsulfide-tetrakis ( Pentafluorophenyl) borate, triphenylsulfonium bromide and the like.
前記ヨードニウム塩としては、特に限定されるものではないが、例えば、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート等が挙げられる。
The iodonium salt is not particularly limited. For example, diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluoro A phosphate etc. are mentioned.
また、前記重合性モノマーとしては、特に限定されるものではないが、例えば、アクリレートモノマー、ビニルエーテルモノマー等が挙げられる。前記アクリレートモノマーとしては、特に限定されるものではないが、例えば、ペンタエリスリトールトリアクリレート、ネオペンチルグリコールジアクリレート、リン酸含有(メタ)アクリレート等が挙げられる。前記リン酸含有(メタ)アクリレートとしては、特に限定されるものではないが、例えば、アクリロイルオキシエチルアシッドホスフェート、ビス(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート等のモノマーが挙げられる。
The polymerizable monomer is not particularly limited, and examples thereof include an acrylate monomer and a vinyl ether monomer. The acrylate monomer is not particularly limited, and examples thereof include pentaerythritol triacrylate, neopentyl glycol diacrylate, and phosphoric acid-containing (meth) acrylate. The phosphoric acid-containing (meth) acrylate is not particularly limited, and examples thereof include monomers such as acryloyloxyethyl acid phosphate and bis (2- (meth) acryloyloxyethyl) acid phosphate.
前記ビニルエーテルモノマーとしては、特に限定されるものではないが、例えば、2-ヒドロキシエチルビニルエーテル(HEVE)、ジエチレングリコールモノビニルエーテル(DEGV)、4-ヒドロキシブチルビニルエーテル(HBVE)等が挙げられる。
The vinyl ether monomer is not particularly limited, and examples thereof include 2-hydroxyethyl vinyl ether (HEVE), diethylene glycol monovinyl ether (DEGV), 4-hydroxybutyl vinyl ether (HBVE) and the like.
前記電子線硬化性樹脂組成物には、シランカップリング剤、酸無水物、増感剤、各種添加剤等を含有せしめてもよい。
The electron beam curable resin composition may contain a silane coupling agent, an acid anhydride, a sensitizer, various additives, and the like.
前記シランカップリング剤としては、特に限定されるものではないが、例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、3-(メタクリロイルオキシ)プロピルトリメトキシシラン等が挙げられる。中でも、前記シランカップリング剤としては、ビニルトリエトキシシラン、アリルトリメトキシシラン等の炭素-炭素二重結合を有するシランカップリング剤を用いるのが好ましく、この場合には特にラジカル重合反応を利用する接着剤との結合を強化させることができる。
The silane coupling agent is not particularly limited. For example, methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, 3- (methacryloyloxy) propyltrimethoxysilane, etc. Is mentioned. Among them, as the silane coupling agent, a silane coupling agent having a carbon-carbon double bond such as vinyltriethoxysilane or allyltrimethoxysilane is preferably used. In this case, a radical polymerization reaction is particularly used. Bonding with the adhesive can be strengthened.
前記酸無水物としては、特に限定されるものではないが、例えば、無水マレイン酸、メチル無水マレイン酸、無水イタコン酸、無水ハイミック酸、無水メチルハイミック酸等が挙げられる。中でも、前記酸無水物としては、無水マレイン酸等の炭素-炭素二重結合を有する酸無水物を用いるのが好ましく、このような二重結合を有する酸無水物によりラジカル重合反応をより促進させることができる。
The acid anhydride is not particularly limited, and examples thereof include maleic anhydride, methyl maleic anhydride, itaconic anhydride, anhydrous hymic acid, and anhydrous methyl hymic acid. Among them, the acid anhydride is preferably an acid anhydride having a carbon-carbon double bond such as maleic anhydride, and the radical polymerization reaction is further promoted by the acid anhydride having such a double bond. be able to.
前記増感剤としては、特に限定されるものではないが、例えば、3級アミン等が挙げられる。前記3級アミンとしては、特に限定されるものではないが、例えば、N,N-ジメチルエチルアミン、N,N-ジメチルエタノールアミン、N,N,3,5-テトラメチルアニリン等が挙げられる。
The sensitizer is not particularly limited, and examples thereof include a tertiary amine. The tertiary amine is not particularly limited, and examples thereof include N, N-dimethylethylamine, N, N-dimethylethanolamine, N, N, 3,5-tetramethylaniline and the like.
前記電子線硬化性樹脂組成物において前記重合性モノマーの含有率は、0.01質量%~5質量%であるのが好ましい。また、前記電子線硬化性樹脂組成物において前記重合性オリゴマーの含有率は、85質量%~99質量%であるのが好ましい。また、また、前記電子線硬化性樹脂組成物において前記電子線重合開始剤の含有率が0.1質量%~10質量%であるのが好ましい。
に お い て The content of the polymerizable monomer in the electron beam curable resin composition is preferably 0.01% by mass to 5% by mass. The content of the polymerizable oligomer in the electron beam curable resin composition is preferably 85% by mass to 99% by mass. In addition, the content of the electron beam polymerization initiator in the electron beam curable resin composition is preferably 0.1% by mass to 10% by mass.
第1~4の製造方法において、金属箔4又は基材層用樹脂フィルム2に電子線硬化性樹脂組成物を塗布する手法としては、特に限定されるものではないが、例えば、グラビアロール塗工法、スクリーン塗工法、インクジェット方式による塗工、ダイ塗工等が挙げられ、塗工する材料(電子線硬化性樹脂組成物)に応じて最適な塗工法を選択するのがよい。この時、金属箔4に電子線硬化性樹脂組成物を塗布してもよいし、基材層用樹脂フィルム2に電子線硬化性樹脂組成物を塗布してもよいし、或いは金属箔4及び基材層用樹脂フィルム2の両方に電子線硬化性樹脂組成物を塗布してもよい。また、本発明に係る第5~8の製造方法において、金属箔4に電子線硬化性樹脂組成物を塗布する手法としては、特に限定されるものではないが、上記例示したものと同様の手法を挙げることができる。
In the first to fourth production methods, the method for applying the electron beam curable resin composition to the metal foil 4 or the base layer resin film 2 is not particularly limited. For example, a gravure roll coating method , Screen coating, inkjet coating, die coating, and the like, and an optimal coating method may be selected according to the material to be coated (electron beam curable resin composition). At this time, the electron beam curable resin composition may be applied to the metal foil 4, the electron beam curable resin composition may be applied to the base layer resin film 2, or the metal foil 4 and You may apply | coat an electron beam curable resin composition to both the resin films 2 for base materials layers. Further, in the fifth to eighth production methods according to the present invention, the technique for applying the electron beam curable resin composition to the metal foil 4 is not particularly limited, but the same technique as exemplified above. Can be mentioned.
第1~4の製造方法において、得られる包装材1の外側接着剤層(第1接着剤層)5の厚さ(乾燥後の厚さ)は、1μm~6μmに設定されるのが好ましい。
In the first to fourth manufacturing methods, the thickness (the thickness after drying) of the outer adhesive layer (first adhesive layer) 5 of the resulting packaging material 1 is preferably set to 1 μm to 6 μm.
本発明において、前記基材層2の厚さは、10μm~50μmであるのが好ましい。上記好適下限値以上に設定することで包装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形時や絞り成形時の応力を小さくできて成形性を向上させることができる。
In the present invention, the thickness of the base material layer 2 is preferably 10 μm to 50 μm. It is possible to secure sufficient strength as a packaging material by setting it to the above preferred lower limit value or more and to improve the formability by reducing the stress at the time of stretch molding or drawing by setting the preferred lower limit value or less. Can do.
本発明において、前記金属箔層(金属箔)4は、包装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔4としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、SUS箔(ステンレス箔)、ニッケル箔、チタン箔等が挙げられ、アルミニウム箔が一般的に用いられる。前記金属箔4の厚さは、10μm~200μmであるのが好ましい。10μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、200μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記金属箔4の厚さは、20μm~100μmであるのが特に好ましい。
In the present invention, the metal foil layer (metal foil) 4 plays a role of providing the packaging material 1 with a gas barrier property that prevents oxygen and moisture from entering. Although it does not specifically limit as said metal foil 4, For example, aluminum foil, copper foil, SUS foil (stainless steel foil), nickel foil, titanium foil etc. are mentioned, Aluminum foil is generally used. The thickness of the metal foil 4 is preferably 10 μm to 200 μm. When it is 10 μm or more, it is possible to prevent the occurrence of pinholes during rolling when manufacturing metal foil, and when it is 200 μm or less, it is possible to reduce the stress during forming such as stretch forming and draw forming, thereby improving formability. be able to. In particular, the thickness of the metal foil 4 is particularly preferably 20 μm to 100 μm.
前記金属箔4は、少なくとも内側の面(内側層3側の面)に、化成処理が施されているのが好ましい。このような化成処理が施されていることで内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)~3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。 Themetal foil 4 is preferably subjected to chemical conversion treatment on at least the inner surface (the surface on the inner layer 3 side). By performing such chemical conversion treatment, corrosion of the metal foil surface by the contents (battery electrolyte or the like) can be sufficiently prevented. For example, the metal foil is subjected to chemical conversion treatment by the following treatment. That is, for example, on the surface of the metal foil that has been degreased,
1) phosphoric acid;
Chromic acid,
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride; 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of chromic acid and a chromium (III) salt, 3) phosphoric acid,
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and a chromium (III) salt;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a fluoride metal salt and a fluoride non-metal salt, and after drying an aqueous solution of any one of the above 1) to 3) Then, chemical conversion treatment is performed.
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)~3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。 The
1) phosphoric acid;
Chromic acid,
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride; 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of chromic acid and a chromium (III) salt, 3) phosphoric acid,
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and a chromium (III) salt;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a fluoride metal salt and a fluoride non-metal salt, and after drying an aqueous solution of any one of the above 1) to 3) Then, chemical conversion treatment is performed.
前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2~50mg/m2が好ましく、特に2mg/m2~20mg/m2が好ましい。
The chemical conversion film preferably has a chromium adhesion amount (per one surface) of 0.1 mg / m 2 to 50 mg / m 2 , particularly preferably 2 mg / m 2 to 20 mg / m 2 .
本発明において、前記熱融着性樹脂層(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液等に対しても優れた耐薬品性を具備させるとともに、包装材にヒートシール性を付与する役割を担うものである。
In the present invention, the heat-fusible resin layer (inner layer) 3 has excellent chemical resistance against a highly corrosive electrolytic solution used in a lithium ion secondary battery or the like, and a packaging material. It plays a role of imparting heat-sealing properties.
第1、2、5、6の製造方法では、金属箔4の片面に、押出機から押し出された押出溶融樹脂膜(内側接着剤6)を介して熱融着性樹脂フィルム3を接着するが、該熱融着性樹脂フィルムおよび前記押出溶融樹脂膜を構成する樹脂としては、以下のものを使用する。また、第3、4、7、8の製造方法では、金属箔4の片面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔4の片面に該押出樹脂膜からなる熱融着性樹脂層(内側層)3を積層するが、前記押出溶融樹脂膜を構成する樹脂としては、以下のものを使用する。
In the first, second, fifth, and sixth manufacturing methods, the heat-fusible resin film 3 is bonded to one surface of the metal foil 4 through the extruded molten resin film (inner adhesive 6) extruded from the extruder. As the resin constituting the heat-fusible resin film and the extruded molten resin film, the following are used. In the third, fourth, seventh, and eighth manufacturing methods, the extruded molten resin film extruded from the extruder is superposed on one side of the metal foil 4, so that the extruded resin film is formed on one side of the metal foil 4. The heat-fusible resin layer (inner layer) 3 is laminated, and the following resins are used as the resin constituting the extruded molten resin film.
即ち、第1、2、5、6の製造方法において、前記熱融着性樹脂フィルム3を構成する樹脂としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、アイオノマー、エチレンアクリル酸エチル(EEA)、エチレンアクリル酸メチル(EAA)、エチレンメタクリル酸メチル樹脂(EMMA)、エチレン-酢酸ビニル共重合樹脂(EVA)、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン、ポリエステル樹脂等が挙げられる。なお、前記熱融着性樹脂フィルム3は、熱融着性樹脂無延伸フィルムで形成されているのが好ましい。
That is, in the first, second, fifth, and sixth manufacturing methods, the resin constituting the heat-fusible resin film 3 is not particularly limited, and examples thereof include polyethylene, polypropylene, ionomer, and ethylene acrylic acid. Examples include ethyl (EEA), ethylene methyl acrylate (EAA), ethylene methyl methacrylate resin (EMMA), ethylene-vinyl acetate copolymer resin (EVA), maleic anhydride-modified polypropylene, maleic anhydride-modified polyethylene, and polyester resin. It is done. The heat-fusible resin film 3 is preferably formed of a heat-fusible resin unstretched film.
また、前記押出溶融樹脂膜を構成する樹脂としては、特に限定されるものではないが、例えば、無水マレイン酸変性ポリプロピレン、マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン、マレイン酸変性ポリエチレン、ポリプロピレン樹脂、ポリエチレン樹脂等が挙げられる。中でも、第3、4、7、8の製造方法では、前記押出溶融樹脂膜を構成する樹脂としては、例えば、無水マレイン酸変性ポリプロピレン、マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン、マレイン酸変性ポリエチレン、ポリプロピレン樹脂、ポリエチレン樹脂等の熱融着性樹脂を用いるのが望ましい。
The resin constituting the extruded molten resin film is not particularly limited. For example, maleic anhydride-modified polypropylene, maleic acid-modified polypropylene, maleic anhydride-modified polyethylene, maleic acid-modified polyethylene, polypropylene resin, A polyethylene resin etc. are mentioned. In particular, in the third, fourth, seventh, and eighth manufacturing methods, examples of the resin constituting the extruded molten resin film include maleic anhydride-modified polypropylene, maleic acid-modified polypropylene, maleic anhydride-modified polyethylene, and maleic acid-modified polyethylene. It is desirable to use a heat-fusible resin such as polypropylene resin or polyethylene resin.
第1、2、5、6の製造方法において、サンドイッチラミネート法等により金属箔4と熱融着性樹脂フィルム3の間に挟み込む直前(接触する直前)の押出溶融樹脂膜の厚さは、特に限定されないが、5μm~40μmに設定するのが好ましい。また、第1、2、5、6の製造方法において、得られる包装材1の内側接着剤層(第2接着剤層)6の厚さ(乾燥後の厚さ)は、5μm~40μmに設定されるのが好ましい。
In the first, second, fifth and sixth production methods, the thickness of the extruded molten resin film immediately before sandwiching between the metal foil 4 and the heat-fusible resin film 3 by the sandwich lamination method or the like (immediately before contact) is particularly Although not limited, it is preferably set to 5 μm to 40 μm. In the first, second, fifth, and sixth manufacturing methods, the thickness (the thickness after drying) of the inner adhesive layer (second adhesive layer) 6 of the resulting packaging material 1 is set to 5 μm to 40 μm. Preferably it is done.
本発明において、前記熱融着性樹脂層(内側層)3の厚さは、20μm~100μmに設定されるのが好ましい。20μm以上とすることで十分なヒートシール強度を確保できるとともに、100μm以下に設定することで薄膜化、軽量化に資する。前記熱融着性樹脂層3は、単層であっても良いし、複層であっても良い。前記熱融着性樹脂層3が複層で形成される場合には、該熱融着性樹脂層3の最内層が、エチレン-プロピレンランダム共重合体または/およびプロピレンブロック共重合体(エラストマー変性プロピレン樹脂)で形成されているのが好ましく、このような構成を採用することで熱融着後(ヒートシール後)のシール特性を向上できる(高いヒートシール強度等が得られる)。
In the present invention, the thickness of the heat-fusible resin layer (inner layer) 3 is preferably set to 20 μm to 100 μm. When the thickness is 20 μm or more, sufficient heat seal strength can be secured, and by setting the thickness to 100 μm or less, it contributes to a reduction in thickness and weight. The heat-fusible resin layer 3 may be a single layer or a multilayer. When the heat-fusible resin layer 3 is formed of a plurality of layers, the innermost layer of the heat-fusible resin layer 3 is an ethylene-propylene random copolymer or / and a propylene block copolymer (elastomer modified). Propylene resin) is preferable, and by adopting such a configuration, the sealing characteristics after heat sealing (after heat sealing) can be improved (high heat sealing strength and the like can be obtained).
本発明の製造方法において、前記電子線としては、例えば、紫外光、可視光、X線、γ線等が挙げられる。前記紫外光、可視光を照射する場合において、その照射光量は、特に限定されるものではないが、片面あたり50mJ/cm2~1000mJ/cm2に設定するのが好ましい。
In the production method of the present invention, examples of the electron beam include ultraviolet light, visible light, X-ray, and γ-ray. The ultraviolet light, when irradiated with visible light, the irradiation amount of light, but are not particularly limited, preferably set to one side per 50mJ / cm 2 ~ 1000mJ / cm 2.
本発明の製造方法で得られた包装材1を成形(深絞り成形、張り出し成形等)することにより、外装ケース(蓄電デバイス用外装ケース等)10を得ることができる(図7参照)。なお、本発明の製造方法で得られた包装材1は、成形に供されずにそのまま使用することもできる(図7参照)。
An outer case (such as an outer case for an electricity storage device) 10 can be obtained by molding (deep drawing molding, overhang molding, etc.) the packaging material 1 obtained by the manufacturing method of the present invention (see FIG. 7). In addition, the packaging material 1 obtained with the manufacturing method of this invention can also be used as it is, without using for shaping | molding (refer FIG. 7).
本発明の製造方法で得られた包装材1を用いて構成された蓄電デバイス30の一実施形態を図6に示す。この蓄電デバイス30は、リチウムイオン2次電池である。本実施形態では、図6、7に示すように、包装材1を成形して得られたケース10と、成形に供されなかった平面状の包装材1とにより、包装部材15が構成されている。しかして、本発明の製造方法で得られた包装材1を成形して得られた成形ケース10の収容凹部内に、略直方体形状の蓄電デバイス本体部(電気化学素子等)31が収容され、該蓄電デバイス本体部31の上に、本発明の製造方法で得られた包装材1が成形されることなくその内側層3側を内方(下側)にして配置され、該平面状包装材1の内側層3の周縁部と、前記成形ケース10のフランジ部(封止用周縁部)29の内側層3とがヒートシールによりシール接合されて封止されることによって、本発明の蓄電デバイス30が構成されている(図6、図7参照)。なお、前記成形ケース10の収容凹部の内側の表面は、内側層(熱融着性樹脂層)3になっており、収容凹部の外面が外側層(基材層)2になっている(図7参照)。
FIG. 6 shows an embodiment of an electricity storage device 30 configured using the packaging material 1 obtained by the manufacturing method of the present invention. The electricity storage device 30 is a lithium ion secondary battery. In this embodiment, as shown in FIGS. 6 and 7, a packaging member 15 is configured by a case 10 obtained by molding the packaging material 1 and a planar packaging material 1 that has not been used for molding. Yes. Thus, in the housing recess of the molding case 10 obtained by molding the packaging material 1 obtained by the manufacturing method of the present invention, a substantially rectangular parallelepiped power storage device body (electrochemical element or the like) 31 is housed. On the electricity storage device main body 31, the packaging material 1 obtained by the production method of the present invention is disposed without forming the inner layer 3 side inward (lower side), and the planar packaging material 1 and the inner layer 3 of the flange portion (sealing peripheral portion) 29 of the molded case 10 are sealed and sealed by heat sealing, whereby the electricity storage device of the present invention. 30 is configured (see FIGS. 6 and 7). The inner surface of the housing recess of the molded case 10 is an inner layer (heat-fusible resin layer) 3, and the outer surface of the housing recess is an outer layer (base material layer) 2 (FIG. 7).
図6において、39は、前記包装材1の周縁部と、前記成形ケース10のフランジ部(封止用周縁部)29とが接合(融着)されたヒートシール部である。なお、前記蓄電デバイス30において、蓄電デバイス本体部31に接続されたタブリードの先端部が、包装部材15の外部に導出されているが、図示は省略している。
In FIG. 6, reference numeral 39 denotes a heat seal part in which the peripheral part of the packaging material 1 and the flange part (sealing peripheral part) 29 of the molded case 10 are joined (fused). Note that, in the electricity storage device 30, the tip end portion of the tab lead connected to the electricity storage device main body 31 is led out of the packaging member 15, but the illustration is omitted.
前記蓄電デバイス本体部31としては、特に限定されるものではないが、例えば、電池本体部、キャパシタ本体部、コンデンサ本体部等が挙げられる。
The power storage device main body 31 is not particularly limited, and examples thereof include a battery main body, a capacitor main body, and a capacitor main body.
前記ヒートシール部39の幅は、0.5mm以上に設定するのが好ましい。0.5mm以上とすることで封止を確実に行うことができる。中でも、前記ヒートシール部39の幅は、3mm~15mmに設定するのが好ましい。
The width of the heat seal portion 39 is preferably set to 0.5 mm or more. Sealing can be reliably performed by setting it as 0.5 mm or more. In particular, the width of the heat seal portion 39 is preferably set to 3 mm to 15 mm.
上記実施形態では、包装部材15が、包装材1を成形して得られた成形ケース10と、平面状の包装材1と、からなる構成であったが(図6、7参照)、特にこのような組み合わせに限定されるものではなく、例えば、包装部材15が、一対の包装材1からなる構成であってもよいし、或いは、一対の成形ケース10からなる構成であってもよい。
In the said embodiment, although the packaging member 15 was the structure which consists of the shaping | molding case 10 obtained by shape | molding the packaging material 1, and the planar packaging material 1 (refer FIG. 6, 7), especially this For example, the packaging member 15 may be composed of a pair of packaging materials 1 or may be composed of a pair of molded cases 10.
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<実施例1>
厚さ40μmのアルミニウム箔(JIS H4160に規定されるA8021H-Oのアルミニウム箔)4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は、片面当たり10mg/m2であった。 <Example 1>
Chemical conversion consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water and alcohol on both sides of 40 μm thick aluminum foil (A8021H-O aluminum foil specified in JIS H4160) 4 After apply | coating a process liquid, it dried at 180 degreeC and formed the chemical conversion film. The amount of chromium deposited on this chemical film was 10 mg / m 2 per side.
厚さ40μmのアルミニウム箔(JIS H4160に規定されるA8021H-Oのアルミニウム箔)4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は、片面当たり10mg/m2であった。 <Example 1>
Chemical conversion consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water and alcohol on both sides of 40 μm thick aluminum foil (A8021H-O aluminum foil specified in JIS H4160) 4 After apply | coating a process liquid, it dried at 180 degreeC and formed the chemical conversion film. The amount of chromium deposited on this chemical film was 10 mg / m 2 per side.
次に、図1に示すように、供給ロール51から供給されてきた前記化成処理済みアルミニウム箔4の一方の面に、押出機40から押し出された厚さ15μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)47を介して、供給ロール52から供給されてきた厚さ40μmの無延伸ポリプロピレンフィルム(熱融着性樹脂フィルム)3を貼り合わせた後、一対のロール41、41間で挟圧することにより(サンドイッチラミネート法により)、第1積層体48を得た(内側層形成工程)。
Next, as shown in FIG. 1, an extruded molten maleic acid-modified polyolefin resin film having a thickness of 15 μm extruded from an extruder 40 on one surface of the chemical conversion-treated aluminum foil 4 supplied from a supply roll 51. (Extruded molten resin film) 47 After bonding an unstretched polypropylene film (heat-fusible resin film) 3 having a thickness of 40 μm that has been supplied from the supply roll 52, between the pair of rolls 41, 41 The first laminated body 48 was obtained by sandwiching (by sandwich lamination method) (inner layer forming step).
次いで、図1に示すように、前記内側層形成工程に連続して(連続工程で)、第1積層体48の金属箔4の他方の面に、アクリロイル基を2つ有するウレタンアクリレートオリゴマー(重合性オリゴマー)94質量部、ペンタエリスリトールトリアクリレート(重合性モノマー)1質量部およびベンゾフェノン(光ラジカル重合開始剤)5質量部を含有する光硬化性樹脂組成物A(電子線硬化性樹脂組成物)44を乾燥後の質量が2.0g/m2になるように塗布ロール42で塗布した後、該塗布面に、供給ロール53から供給されてきた熱水収縮率が5.0%であり、厚さ25μmの2軸延伸ナイロンフィルム(基材層用樹脂フィルム)2を貼り合わせた後、一対のロール45、45間で挟圧することにより、第2積層体49を得、該第2積層体49に対して基材層用樹脂フィルム2側から100mJ/cm2の紫外光(UV光;波長365nm)46を照射することによって(外側層形成工程)、図2に示す構成の蓄電デバイス用外装材1を得た。なお、図1において、43は、電子線硬化性樹脂組成物含有槽(容器)である。
Next, as shown in FIG. 1, a urethane acrylate oligomer (polymerized) having two acryloyl groups on the other surface of the metal foil 4 of the first laminated body 48 continuously (in a continuous process) with the inner layer forming process. Curable oligomer) 94 parts by weight, 1 part by weight of pentaerythritol triacrylate (polymerizable monomer) and 5 parts by weight of benzophenone (photoradical polymerization initiator), photocurable resin composition A (electron beam curable resin composition) 44 was applied with an application roll 42 so that the mass after drying was 2.0 g / m 2 , and then the hot water shrinkage supplied from the supply roll 53 to the application surface was 5.0%. After the biaxially stretched nylon film (resin film for base material layer) 2 having a thickness of 25 μm is bonded, the second laminate 49 is obtained by sandwiching between a pair of rolls 45, 45. By irradiating the layer body 49 with 100 mJ / cm 2 of ultraviolet light (UV light; wavelength 365 nm) 46 from the side of the base layer resin film 2 side (outer layer forming step), the electricity storage device having the configuration shown in FIG. The exterior packaging material 1 was obtained. In addition, in FIG. 1, 43 is an electron beam curable resin composition containing tank (container).
<実施例2>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、押出機から押し出された厚さ55μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(シングルラミネート法により)、アルミニウム箔の一方の面にマレイン酸変性ポリオレフィン樹脂からなる厚さ55μmの熱融着性樹脂層3が積層された第1積層体を得た(内側層形成工程)。 <Example 2>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after superposing an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 55 μm extruded from an extruder on one surface of the chemical conversion treatedaluminum foil 4, a cooling roll and a room temperature By cooling and pinching between rolls (by a single laminating method), a first laminate in which a 55 μm thick heat-fusible resin layer 3 made of maleic acid-modified polyolefin resin is laminated on one surface of an aluminum foil Obtained (inner layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、押出機から押し出された厚さ55μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(シングルラミネート法により)、アルミニウム箔の一方の面にマレイン酸変性ポリオレフィン樹脂からなる厚さ55μmの熱融着性樹脂層3が積層された第1積層体を得た(内側層形成工程)。 <Example 2>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after superposing an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 55 μm extruded from an extruder on one surface of the chemical conversion treated
次に、前記内側層形成工程に連続して(連続工程で)、第1積層体の金属箔4の他方の面に、アクリロイル基を2つ有するウレタンアクリレートオリゴマー(重合性オリゴマー)94質量部、ペンタエリスリトールトリアクリレート(重合性モノマー)1質量部およびベンゾフェノン(光重合開始剤)5質量部を含有する光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が2.0g/m2になるように塗布ロールで塗布した後、該塗布面に、熱水収縮率が5.0%であり、厚さ25μmの2軸延伸ナイロンフィルム(基材層用樹脂フィルム)2を貼り合わせた後、一対のロール間で挟圧することにより、第2積層体を得、しかる後、前記第2積層体に対して基材層用樹脂フィルム側から100mJ/cm2の紫外光(UV光;波長365nm)を照射することによって(外側層形成工程)、図3に示す構成の蓄電デバイス用外装材1を得た。
Next, 94 parts by mass of a urethane acrylate oligomer (polymerizable oligomer) having two acryloyl groups on the other surface of the metal foil 4 of the first laminate continuously with the inner layer forming step (in the continuous step), The weight after drying a photocurable resin composition A (electron beam curable resin composition) containing 1 part by mass of pentaerythritol triacrylate (polymerizable monomer) and 5 parts by mass of benzophenone (photopolymerization initiator) is 2. After coating with a coating roll so as to be 0 g / m 2 , a biaxially stretched nylon film (resin film for substrate layer) 2 having a hot water shrinkage of 5.0% and a thickness of 25 μm is applied to the coated surface. after bonding to, by nipping between a pair of rolls to obtain a second laminate, and thereafter, the second ultraviolet light from substrate layer for the resin film side of the laminate 100 mJ / cm 2 ( UV light; By irradiating length 365 nm) (outer layer forming step), to give the outer package 1 for a power storage device having the structure shown in FIG. 3.
<実施例3>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が2.0g/m2になるように塗布した後、該塗布面に、熱水収縮率が5.0%であり、厚さ25μmの2軸延伸ナイロンフィルム(基材層用樹脂フィルム)2を貼り合わせた後、一対のロール間で挟圧することにより、第1積層体を得、しかる後、前記第1積層体に対して基材層用樹脂フィルム側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 3>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the mass after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treatedaluminum foil 4 is 2.0 g / m 2. Then, a biaxially stretched nylon film (resin film for substrate layer) 2 having a hot water shrinkage of 5.0% and a thickness of 25 μm is bonded to the coated surface. of by nipping between rolls, to obtain a first laminate, thereafter, the first ultraviolet light from substrate layer for the resin film side of the laminate 100 mJ / cm 2; (wavelength 365nm electron beam) Irradiation (outer layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が2.0g/m2になるように塗布した後、該塗布面に、熱水収縮率が5.0%であり、厚さ25μmの2軸延伸ナイロンフィルム(基材層用樹脂フィルム)2を貼り合わせた後、一対のロール間で挟圧することにより、第1積層体を得、しかる後、前記第1積層体に対して基材層用樹脂フィルム側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 3>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the mass after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treated
次に、前記外側層形成工程に連続して(連続工程で)、前記電子線照射後の第1積層体のアルミニウム箔4の他方の面に、押出機から押し出された厚さ15μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を介して、厚さ40μmの無延伸ポリプロピレンフィルム(熱融着性樹脂フィルム)3を貼り合わせた後、一対のロール間で挟圧することにより(サンドイッチラミネート法により)(内側層形成工程)、図2に示す構成の蓄電デバイス用外装材1を得た。
Next, continuously with the outer layer forming step (in the continuous step), the other surface of the aluminum foil 4 of the first laminate after the electron beam irradiation is extruded and melted with a thickness of 15 μm extruded from an extruder. An unstretched polypropylene film (heat-fusible resin film) 3 having a thickness of 40 μm is bonded through a maleic acid-modified polyolefin resin film (extruded molten resin film), and then sandwiched between a pair of rolls (sandwich) (By the laminating method) (inner layer forming step), an exterior material 1 for an electricity storage device having the configuration shown in FIG. 2 was obtained.
<実施例4>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が2.0g/m2になるように塗布した後、該塗布面に、熱水収縮率が5.0%であり、厚さ25μmの2軸延伸ナイロンフィルム(基材層用樹脂フィルム)2を貼り合わせた後、一対のロール間で挟圧することにより、第1積層体を得、しかる後、前記第1積層体に対して基材層用樹脂フィルム側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 4>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Then, the chemical conversion treated on one surface of thealuminum foil 4, Example 1 and the same light-curable resin composition A mass after drying (electron beam-curable resin composition) is 2.0 g / m 2 Then, a biaxially stretched nylon film (resin film for substrate layer) 2 having a hot water shrinkage of 5.0% and a thickness of 25 μm is bonded to the coated surface. By sandwiching between the rolls, a first laminate is obtained, and then 100 mJ / cm 2 of ultraviolet light (wavelength 365 nm; electron beam) is applied to the first laminate from the resin film side of the base layer. Irradiation (outer layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が2.0g/m2になるように塗布した後、該塗布面に、熱水収縮率が5.0%であり、厚さ25μmの2軸延伸ナイロンフィルム(基材層用樹脂フィルム)2を貼り合わせた後、一対のロール間で挟圧することにより、第1積層体を得、しかる後、前記第1積層体に対して基材層用樹脂フィルム側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 4>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Then, the chemical conversion treated on one surface of the
次に、前記外側層形成工程に連続して(連続工程で)、前記電子線照射後の第1積層体のアルミニウム箔4の他方の面に、押出機から押し出された厚さ55μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(シングルラミネート法により)、アルミニウム箔4の他方の面にマレイン酸変性ポリオレフィン樹脂からなる厚さ55μmの熱融着性樹脂層3を積層して(内側層形成工程)、図3に示す構成の蓄電デバイス用外装材1を得た。
Next, in succession to the outer layer forming step (in a continuous step), the other surface of the aluminum foil 4 of the first laminate after the electron beam irradiation is extruded from an extruder with a thickness of 55 μm. After the maleic acid-modified polyolefin resin film (extruded molten resin film) is overlaid, the maleic acid-modified polyolefin is formed on the other surface of the aluminum foil 4 by cooling and clamping between a cooling roll and a room temperature roll (by a single laminating method). A heat-fusible resin layer 3 made of resin and having a thickness of 55 μm was laminated (inner layer forming step) to obtain an electricity storage device exterior material 1 having the configuration shown in FIG.
<実施例5>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、押出機から押し出された厚さ15μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を介して、厚さ40μmの無延伸ポリプロピレンフィルム(熱融着性樹脂フィルム)3を貼り合わせた後、一対のロール間で挟圧することにより(サンドイッチラミネート法により)、第1積層体を得た(内側層形成工程)。 <Example 5>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, non-stretched with a thickness of 40 μm on one surface of the chemically treatedaluminum foil 4 through an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 15 μm extruded from an extruder. After bonding the polypropylene film (heat-fusible resin film) 3 together, the first laminate was obtained by sandwiching between a pair of rolls (by sandwich lamination method) (inner layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、押出機から押し出された厚さ15μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を介して、厚さ40μmの無延伸ポリプロピレンフィルム(熱融着性樹脂フィルム)3を貼り合わせた後、一対のロール間で挟圧することにより(サンドイッチラミネート法により)、第1積層体を得た(内側層形成工程)。 <Example 5>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, non-stretched with a thickness of 40 μm on one surface of the chemically treated
前記内側層形成工程に連続して(連続工程で)、第1積層体の金属箔4の他方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が10g/m2になるように塗布することにより、第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から100mJ/cm2の紫外光(波長365nm;電子線)を照射することによって(外側層形成工程)、図4に示す構成の蓄電デバイス用外装材1を得た。
Continuously with the inner layer forming step (in a continuous step), the same photocurable resin composition A (electron beam curable resin composition as in Example 1) is formed on the other surface of the metal foil 4 of the first laminate. ) Is applied so that the mass after drying is 10 g / m 2 , to obtain a second laminate, and then 100 mJ / cm from the electron beam curable resin composition side to the second laminate. By irradiating 2 ultraviolet light (wavelength 365 nm; electron beam) (outer layer forming step), an exterior material 1 for an electricity storage device having the configuration shown in FIG. 4 was obtained.
<実施例6>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、押出機から押し出された厚さ55μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(シングルラミネート法により)、アルミニウム箔4の一方の面にマレイン酸変性ポリオレフィン樹脂からなる厚さ55μmの熱融着性樹脂層3が積層された第1積層体を得た(内側層形成工程)。 <Example 6>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after superposing an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 55 μm extruded from an extruder on one surface of the chemical conversion treatedaluminum foil 4, a cooling roll and a room temperature A first laminate in which a 55 μm-thick heat-fusible resin layer 3 made of maleic acid-modified polyolefin resin is laminated on one surface of the aluminum foil 4 by cooling and clamping between rolls (by a single laminating method). (Inner layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、押出機から押し出された厚さ55μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(シングルラミネート法により)、アルミニウム箔4の一方の面にマレイン酸変性ポリオレフィン樹脂からなる厚さ55μmの熱融着性樹脂層3が積層された第1積層体を得た(内側層形成工程)。 <Example 6>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after superposing an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 55 μm extruded from an extruder on one surface of the chemical conversion treated
前記内側層形成工程に連続して(連続工程で)、前記第1積層体の金属箔4の他方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が10g/m2になるように塗布することにより、第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から100mJ/cm2の紫外光(波長365nm;電子線)を照射することによって(外側層形成工程)、図5に示す構成の蓄電デバイス用外装材1を得た。
Continuously with the inner layer forming step (in a continuous step), the same photocurable resin composition A (electron beam curable resin composition as in Example 1) is formed on the other surface of the metal foil 4 of the first laminate. Product) is applied so that the mass after drying is 10 g / m 2 , to obtain a second laminate, and then 100 mJ / from the electron beam curable resin composition side to the second laminate. By irradiating with cm 2 ultraviolet light (wavelength 365 nm; electron beam) (outer layer forming step), the electricity storage device exterior material 1 having the configuration shown in FIG. 5 was obtained.
<実施例7>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が10g/m2になるように塗布することにより、第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 7>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the weight after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treatedaluminum foil 4 becomes 10 g / m 2 . After the first laminated body is obtained by coating in this manner, the first laminated body is irradiated with 100 mJ / cm 2 of ultraviolet light (wavelength 365 nm; electron beam) from the electron beam curable resin composition side. (Outer layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が10g/m2になるように塗布することにより、第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 7>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the weight after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treated
前記外側層形成工程に連続して(連続工程で)、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された厚さ15μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を介して、厚さ40μmの無延伸ポリプロピレンフィルム(熱融着性樹脂フィルム)3を貼り合わせた後、一対のロール間で挟圧することにより(サンドイッチラミネート法により)(内側層形成工程)、図4に示す構成の蓄電デバイス用外装材1を得た。
Continuously with the outer layer forming step (in the continuous step), the other surface of the metal foil 4 of the first laminate after irradiation with the electron beam was extruded from an extruder with a 15 μm thick extruded melt maleic acid modified. After pasting together an unstretched polypropylene film (heat-fusible resin film) 3 having a thickness of 40 μm through a polyolefin resin film (extruded molten resin film), it is sandwiched between a pair of rolls (by sandwich lamination method) ) (Inner layer forming step), an exterior material 1 for an electricity storage device having the configuration shown in FIG. 4 was obtained.
<実施例8>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が10g/m2になるように塗布することにより、第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 8>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the weight after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treatedaluminum foil 4 becomes 10 g / m 2 . by applying such, after obtaining the first laminated body, wherein with respect to the first laminate electron beam-curable resin composition side from 100 mJ / cm 2 of ultraviolet light; illumination (wavelength 365nm electron beam) (Outer layer forming step).
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、実施例1と同一の光硬化性樹脂組成物A(電子線硬化性樹脂組成物)を乾燥後の質量が10g/m2になるように塗布することにより、第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から100mJ/cm2の紫外光(波長365nm;電子線)を照射した(外側層形成工程)。 <Example 8>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, the weight after drying the same photocurable resin composition A (electron beam curable resin composition) as in Example 1 on one surface of the chemical conversion treated
前記外側層形成工程に連続して(連続工程で)、前記電子線照射後の第1積層体の金属箔4の他方の面に、押出機から押し出された厚さ55μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(シングルラミネート法により)、アルミニウム箔4の他方の面にマレイン酸変性ポリオレフィン樹脂からなる厚さ55μmの熱融着性樹脂層3を積層して(内側層形成工程)、図5に示す構成の蓄電デバイス用外装材1を得た。
Continuously with the outer layer forming step (in a continuous step), the other surface of the metal foil 4 of the first laminate after the electron beam irradiation was extruded from an extruder with a thickness of 55 μm by extrusion melt maleic acid modification. After superposing the polyolefin resin film (extruded molten resin film), it is made of maleic acid-modified polyolefin resin on the other surface of the aluminum foil 4 by cooling and pressing between the cooling roll and the room temperature roll (by a single laminating method). A heat-fusible resin layer 3 having a thickness of 55 μm was laminated (inner layer forming step) to obtain a power storage device exterior material 1 having the configuration shown in FIG.
<実施例9>
光硬化性樹脂組成物(電子線硬化性樹脂組成物)44として、光硬化性樹脂組成物Aに代えて、ビニル基を2つ有するビニルエーテルオリゴマー(重合性オリゴマー)96.0質量部、2-ヒドロキシエチルビニルエーテル(重合性モノマー)3.0質量部およびトリフェニルスルホニウムヘキサフルオロホスフェート(スルホニウム塩;光カチオン重合開始剤)1.0質量部を含有する光硬化性樹脂組成物Bを使用した以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。 <Example 9>
As the photocurable resin composition (electron beam curable resin composition) 44, instead of the photocurable resin composition A, 96.0 parts by mass of a vinyl ether oligomer (polymerizable oligomer) having two vinyl groups, 2- Except for using a photocurable resin composition B containing 3.0 parts by mass of hydroxyethyl vinyl ether (polymerizable monomer) and 1.0 part by mass of triphenylsulfonium hexafluorophosphate (sulfonium salt; photocationic polymerization initiator) In the same manner as in Example 1, anexterior material 1 for an electricity storage device having the configuration shown in FIG. 2 was obtained.
光硬化性樹脂組成物(電子線硬化性樹脂組成物)44として、光硬化性樹脂組成物Aに代えて、ビニル基を2つ有するビニルエーテルオリゴマー(重合性オリゴマー)96.0質量部、2-ヒドロキシエチルビニルエーテル(重合性モノマー)3.0質量部およびトリフェニルスルホニウムヘキサフルオロホスフェート(スルホニウム塩;光カチオン重合開始剤)1.0質量部を含有する光硬化性樹脂組成物Bを使用した以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。 <Example 9>
As the photocurable resin composition (electron beam curable resin composition) 44, instead of the photocurable resin composition A, 96.0 parts by mass of a vinyl ether oligomer (polymerizable oligomer) having two vinyl groups, 2- Except for using a photocurable resin composition B containing 3.0 parts by mass of hydroxyethyl vinyl ether (polymerizable monomer) and 1.0 part by mass of triphenylsulfonium hexafluorophosphate (sulfonium salt; photocationic polymerization initiator) In the same manner as in Example 1, an
<実施例10>
光硬化性樹脂組成物(電子線硬化性樹脂組成物)として、光硬化性樹脂組成物Aに代えて、実施例9で使用した光硬化性樹脂組成物Bを使用した以外は、実施例2と同様にして、図3に示す構成の蓄電デバイス用外装材1を得た。 <Example 10>
Example 2 except that instead of the photocurable resin composition A, the photocurable resin composition B used in Example 9 was used as the photocurable resin composition (electron beam curable resin composition). In the same manner as described above, an electricity storagedevice exterior material 1 having the configuration shown in FIG. 3 was obtained.
光硬化性樹脂組成物(電子線硬化性樹脂組成物)として、光硬化性樹脂組成物Aに代えて、実施例9で使用した光硬化性樹脂組成物Bを使用した以外は、実施例2と同様にして、図3に示す構成の蓄電デバイス用外装材1を得た。 <Example 10>
Example 2 except that instead of the photocurable resin composition A, the photocurable resin composition B used in Example 9 was used as the photocurable resin composition (electron beam curable resin composition). In the same manner as described above, an electricity storage
<実施例11>
光硬化性樹脂組成物(電子線硬化性樹脂組成物)として、光硬化性樹脂組成物Aに代えて、実施例9で使用した光硬化性樹脂組成物Bを使用した以外は、実施例5と同様にして、図4に示す構成の蓄電デバイス用外装材1を得た。 <Example 11>
Example 5 except that instead of the photocurable resin composition A, the photocurable resin composition B used in Example 9 was used as the photocurable resin composition (electron beam curable resin composition). In the same manner as above, anexterior device 1 for an electricity storage device having the configuration shown in FIG. 4 was obtained.
光硬化性樹脂組成物(電子線硬化性樹脂組成物)として、光硬化性樹脂組成物Aに代えて、実施例9で使用した光硬化性樹脂組成物Bを使用した以外は、実施例5と同様にして、図4に示す構成の蓄電デバイス用外装材1を得た。 <Example 11>
Example 5 except that instead of the photocurable resin composition A, the photocurable resin composition B used in Example 9 was used as the photocurable resin composition (electron beam curable resin composition). In the same manner as above, an
<実施例12>
光硬化性樹脂組成物(電子線硬化性樹脂組成物)として、光硬化性樹脂組成物Aに代えて、実施例9で使用した光硬化性樹脂組成物Bを使用した以外は、実施例6と同様にして、図5に示す構成の蓄電デバイス用外装材1を得た。 <Example 12>
Example 6 except that the photocurable resin composition B used in Example 9 was used in place of the photocurable resin composition A as the photocurable resin composition (electron beam curable resin composition). In the same manner as above, anexterior device 1 for an electricity storage device having the configuration shown in FIG. 5 was obtained.
光硬化性樹脂組成物(電子線硬化性樹脂組成物)として、光硬化性樹脂組成物Aに代えて、実施例9で使用した光硬化性樹脂組成物Bを使用した以外は、実施例6と同様にして、図5に示す構成の蓄電デバイス用外装材1を得た。 <Example 12>
Example 6 except that the photocurable resin composition B used in Example 9 was used in place of the photocurable resin composition A as the photocurable resin composition (electron beam curable resin composition). In the same manner as above, an
<実施例13>
照射光(電子線)として、100mJ/cm2の紫外光に代えて、250mJ/cm2の紫外光を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。 <Example 13>
As the irradiation light (electron beam), in place of the ultraviolet light 100 mJ / cm 2, except for using the ultraviolet light of 250 mJ / cm 2, in the same manner as in Example 1, exterior storage device having the structure shown in FIG. 2Material 1 was obtained.
照射光(電子線)として、100mJ/cm2の紫外光に代えて、250mJ/cm2の紫外光を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。 <Example 13>
As the irradiation light (electron beam), in place of the ultraviolet light 100 mJ / cm 2, except for using the ultraviolet light of 250 mJ / cm 2, in the same manner as in Example 1, exterior storage device having the structure shown in FIG. 2
<実施例14>
照射光(電子線)として、100mJ/cm2の紫外光に代えて、500mJ/cm2の紫外光を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。 <Example 14>
The exterior for an electricity storage device having the configuration shown in FIG. 2 is the same as that of Example 1, except that 500 mJ / cm 2 ultraviolet light is used instead of 100 mJ / cm 2 ultraviolet light as irradiation light (electron beam).Material 1 was obtained.
照射光(電子線)として、100mJ/cm2の紫外光に代えて、500mJ/cm2の紫外光を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。 <Example 14>
The exterior for an electricity storage device having the configuration shown in FIG. 2 is the same as that of Example 1, except that 500 mJ / cm 2 ultraviolet light is used instead of 100 mJ / cm 2 ultraviolet light as irradiation light (electron beam).
<実施例15>
実施例2の内側層形成工程において、化成処理済みアルミニウム箔4の一方の面に、第1押出機から押し出された厚さ10μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧した後、該樹脂膜の上にさらに、第2押出機から押し出された厚さ45μmの押出溶融ポリプロピレン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(タンデムラミネート法により)、アルミニウム箔の一方の面に総厚さ55μmの熱融着性樹脂層3が積層された第1積層体を得た以外は、実施例2と同様にして図3に示す構成の蓄電デバイス用外装材1を得た。 <Example 15>
In the inner layer forming step of Example 2, an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 10 μm extruded from the first extruder is overlaid on one surface of the chemically treatedaluminum foil 4. Then, after cooling and clamping between a cooling roll and a room temperature roll, an extruded molten polypropylene resin film (extruded molten resin film) having a thickness of 45 μm extruded from the second extruder is further applied on the resin film. After the superposition, the first heat-resisting resin layer 3 having a total thickness of 55 μm is laminated on one surface of the aluminum foil by cooling and pressing between the cooling roll and the room temperature roll (by tandem laminating method). Except having obtained the laminated body, it carried out similarly to Example 2, and obtained the exterior material 1 for electrical storage devices of the structure shown in FIG.
実施例2の内側層形成工程において、化成処理済みアルミニウム箔4の一方の面に、第1押出機から押し出された厚さ10μmの押出溶融マレイン酸変性ポリオレフィン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧した後、該樹脂膜の上にさらに、第2押出機から押し出された厚さ45μmの押出溶融ポリプロピレン樹脂膜(押出溶融樹脂膜)を重ね合わせた後、冷却ロールと常温ロール間で冷却及び挟圧することにより(タンデムラミネート法により)、アルミニウム箔の一方の面に総厚さ55μmの熱融着性樹脂層3が積層された第1積層体を得た以外は、実施例2と同様にして図3に示す構成の蓄電デバイス用外装材1を得た。 <Example 15>
In the inner layer forming step of Example 2, an extruded molten maleic acid-modified polyolefin resin film (extruded molten resin film) having a thickness of 10 μm extruded from the first extruder is overlaid on one surface of the chemically treated
<参考例>
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、ウレタン系接着剤(外側接着剤)5を乾燥後の厚さが2μmになるように塗布した後、該外側接着剤塗布面に、熱水収縮率が5.0%であり、厚さが25μmの2軸延伸ナイロンフィルム2を重ね合わせて貼り合わせて第1積層体を得た。前記第1積層体を60℃環境下に7日間静置して加熱エージング処理を行うことにより、外側接着剤を硬化させて外側接着剤層を形成した。 <Reference example>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after applying the urethane adhesive (outer adhesive) 5 on one surface of the chemical conversion treatedaluminum foil 4 so that the thickness after drying becomes 2 μm, on the outer adhesive application surface, A biaxially stretched nylon film 2 having a hot water shrinkage of 5.0% and a thickness of 25 μm was superposed and bonded to obtain a first laminate. The first laminate was left to stand in a 60 ° C. environment for 7 days and subjected to a heat aging treatment, whereby the outer adhesive was cured to form an outer adhesive layer.
実施例1と同様にして化成処理済みアルミニウム箔を得た。次に、前記化成処理済みアルミニウム箔4の一方の面に、ウレタン系接着剤(外側接着剤)5を乾燥後の厚さが2μmになるように塗布した後、該外側接着剤塗布面に、熱水収縮率が5.0%であり、厚さが25μmの2軸延伸ナイロンフィルム2を重ね合わせて貼り合わせて第1積層体を得た。前記第1積層体を60℃環境下に7日間静置して加熱エージング処理を行うことにより、外側接着剤を硬化させて外側接着剤層を形成した。 <Reference example>
In the same manner as in Example 1, a chemically treated aluminum foil was obtained. Next, after applying the urethane adhesive (outer adhesive) 5 on one surface of the chemical conversion treated
次に、前記第1積層体のアルミニウム箔4の他方の面に、熱硬化型酸変性ポリプロピレン接着剤からなる内側接着剤6を乾燥後の質量が2.0g/m2になるように塗布した後、該内側接着剤塗布面に、厚さ40μmの無延伸ポリプロピレンフィルム3を貼り合わせることによって、第2積層体を得た。
Next, the inner adhesive 6 made of a thermosetting acid-modified polypropylene adhesive was applied to the other surface of the aluminum foil 4 of the first laminate so that the mass after drying was 2.0 g / m 2 . Then, the 2nd laminated body was obtained by bonding the 40 micrometer-thick unstretched polypropylene film 3 to this inner side adhesive application surface.
前記第2積層体を40℃環境下に7日間静置して加熱エージング処理を行うことにより、内側接着剤を硬化させて内側接着剤層6を形成することによって、図2に示す構成の蓄電デバイス用外装材を得た。
The second laminate is left to stand in a 40 ° C. environment for 7 days and subjected to a heat aging treatment, whereby the inner adhesive is cured to form the inner adhesive layer 6, thereby storing the structure shown in FIG. A device exterior material was obtained.
なお、実施例1~4、9、10、13、14、15および参考例において、前記熱水収縮率が5.0%の2軸延伸ナイロンフィルムは、ナイロンフィルムを2軸延伸加工する際の熱固定温度を191℃に設定することにより得たものである。
In Examples 1 to 4, 9, 10, 13, 14, 15 and the reference examples, the biaxially stretched nylon film having a hot water shrinkage of 5.0% is obtained when the nylon film is biaxially stretched. It was obtained by setting the heat setting temperature to 191 ° C.
なお、表1、2において、光硬化性樹脂組成物の種類の欄で、「A」は光ラジカル重合系樹脂組成物を示し、「B」は光カチオン重合系樹脂組成物を示す。
In Tables 1 and 2, in the column of the type of photocurable resin composition, “A” represents a photoradical polymerization resin composition, and “B” represents a photocationic polymerization resin composition.
また、実施例1、9、13、14は、上記第1の製造方法に対応する実施例であり、実施例2、10、15は、上記第3の製造方法に対応する実施例であり、実施例3は上記第2の製造方法に対応する実施例であり、実施例4は上記第4の製造方法に対応する実施例であり、実施例5、11は、上記第5の製造方法に対応する実施例であり、実施例6、12は、上記第7の製造方法に対応する実施例であり、実施例7は第6の製造方法に対応する実施例であり、実施例8は上記第8の製造方法に対応する実施例である。
Examples 1, 9, 13, and 14 are examples corresponding to the first manufacturing method, and Examples 2, 10, and 15 are examples corresponding to the third manufacturing method. Example 3 is an example corresponding to the second manufacturing method, Example 4 is an example corresponding to the fourth manufacturing method, and Examples 5 and 11 are examples corresponding to the fifth manufacturing method. Examples 6 and 12 correspond to the seventh manufacturing method, Example 7 corresponds to the sixth manufacturing method, and Example 8 corresponds to the above-described seventh manufacturing method. It is an Example corresponding to the 8th manufacturing method.
上記のようにして得られた各蓄電デバイス用外装材(包装材)について、下記測定法、評価法に基づいて評価を行った。
Evaluation was performed based on the following measurement method and evaluation method for each of the electricity storage device packaging materials (packaging materials) obtained as described above.
<高温でのラミネート強度測定法>
得られた外装材から幅15mm×長さ150mmの試験体を切り出し、この試験体の長さ方向の一端から10mm内方に入った位置までの領域においてアルミニウム箔と基材層の間で剥離せしめた。 <Method for measuring laminate strength at high temperature>
A test piece having a width of 15 mm and a length of 150 mm was cut out from the obtained exterior material and peeled between the aluminum foil and the base material layer in a region extending from one end in the length direction of the test piece to aposition 10 mm inward. It was.
得られた外装材から幅15mm×長さ150mmの試験体を切り出し、この試験体の長さ方向の一端から10mm内方に入った位置までの領域においてアルミニウム箔と基材層の間で剥離せしめた。 <Method for measuring laminate strength at high temperature>
A test piece having a width of 15 mm and a length of 150 mm was cut out from the obtained exterior material and peeled between the aluminum foil and the base material layer in a region extending from one end in the length direction of the test piece to a
JIS K6854-3(1999年)に準拠し、島津製作所製ストログラフ(AGS-5kNX)を使用して,一方のチャックでアルミニウム箔を含む積層体を挟着固定し、他方のチャックで前記剥離した基材層を挟着固定し、120℃の温度環境下で1分間保持した後、そのまま120℃温度環境下で引張速度100mm/分でT型剥離させた時の剥離強度を測定し、この測定値が安定したところの値を「高温でのラミネート強度(N/15mm幅)」とした。ラミネート強度が「2.0N/15mm幅」以上であるものを合格とした。
In accordance with JIS K6854-3 (1999), a laminated body containing an aluminum foil is sandwiched and fixed with one chuck using a strut (AGS-5kNX) manufactured by Shimadzu Corporation, and the above-mentioned peeling is performed with the other chuck. The substrate layer is sandwiched and fixed, held for 1 minute in a temperature environment of 120 ° C., and then measured for peel strength when peeled at a tensile rate of 100 mm / min. The value at which the value was stabilized was defined as “lamination strength at high temperature (N / 15 mm width)”. A laminate having a laminate strength of “2.0 N / 15 mm width” or more was regarded as acceptable.
<成形性(最大成形深さ)評価法>
株式会社アマダ製の深絞り成形具を用いて外装材に対して縦55mm×横35mm×各深さの略直方体形状(1つの面が開放された略直方体形状;図7参照)に深絞り成形を行い、即ち成形深さを0.5mm単位で変えて深絞り成形を行い、得られた成形体におけるコーナー部におけるピンホール及び割れの有無を調べ、このようなピンホール及び割れが発生しない「最大成形深さ(mm)」を調べた。なお、ピンホールや割れの有無は、暗室にて光透過法で調べた。最大成形深さが5.0mm以上であるものを合格とした。 <Formability (maximum forming depth) evaluation method>
Using a deep drawing tool manufactured by Amada Co., Ltd., deep-drawing into an exterior material of approximately 55 mm length × 35 mm width × approximately cuboid shape (approximately cuboid shape with one surface open; see Fig. 7). In other words, deep molding is performed by changing the molding depth in increments of 0.5 mm, and the presence or absence of pinholes and cracks at the corners in the obtained molded body is examined, and such pinholes and cracks do not occur. The maximum forming depth (mm) was examined. The presence or absence of pinholes or cracks was examined by a light transmission method in a dark room. Those having a maximum molding depth of 5.0 mm or more were regarded as acceptable.
株式会社アマダ製の深絞り成形具を用いて外装材に対して縦55mm×横35mm×各深さの略直方体形状(1つの面が開放された略直方体形状;図7参照)に深絞り成形を行い、即ち成形深さを0.5mm単位で変えて深絞り成形を行い、得られた成形体におけるコーナー部におけるピンホール及び割れの有無を調べ、このようなピンホール及び割れが発生しない「最大成形深さ(mm)」を調べた。なお、ピンホールや割れの有無は、暗室にて光透過法で調べた。最大成形深さが5.0mm以上であるものを合格とした。 <Formability (maximum forming depth) evaluation method>
Using a deep drawing tool manufactured by Amada Co., Ltd., deep-drawing into an exterior material of approximately 55 mm length × 35 mm width × approximately cuboid shape (approximately cuboid shape with one surface open; see Fig. 7). In other words, deep molding is performed by changing the molding depth in increments of 0.5 mm, and the presence or absence of pinholes and cracks at the corners in the obtained molded body is examined, and such pinholes and cracks do not occur. The maximum forming depth (mm) was examined. The presence or absence of pinholes or cracks was examined by a light transmission method in a dark room. Those having a maximum molding depth of 5.0 mm or more were regarded as acceptable.
<シール性評価法>(成形深さの深い成形を行った場合のデラミネーション発生の有無の評価)
成形深さの深い成形として、上記深絞り成形具を用いて外装材に対して縦55mm×横35mm×5.0mmの略直方体形状(1つの面が開放された略直方体形状;図7参照)に深絞り成形を行った。この時、基材層2が成形体の外側になるように成形を行った。各実施例、各比較例毎にそれぞれ2個の成形体を作製し、2個の成形体(成形ケース)10のフランジ部(封止用周縁部;図7参照)29同士を接触させて重ね合わせて170℃×6秒間ヒートシールを行った後、目視観察によりヒートシール部39におけるデラミネーション(剥離)発生の有無および外観の浮きの有無を調べ下記判定基準に基づいて評価した。
(判定基準)
「○」…デラミネーション(剥離)が認められず、且つ外観の浮きも認められなかった(合格)
「△」…僅かなデラミネーション(剥離)が稀に発生することがあるが、実質的にはデラミネーション(剥離)が無く、且つ外観の浮きもなかった(合格)
「×」…デラミネーション(剥離)が発生しており、外観の浮きもあった(不合格)。 <Sealability evaluation method> (Evaluation of the presence or absence of delamination when forming with a deep forming depth)
As a molding with a deep molding depth, a substantially rectangular parallelepiped shape having a length of 55 mm × width of 35 mm × 5.0 mm with respect to the exterior material using the above-described deep drawing tool (a substantially rectangular parallelepiped shape with one surface opened; see FIG. 7) Deep drawing was performed. At this time, it shape | molded so that thebase material layer 2 might become the outer side of a molded object. Two molded bodies are produced for each example and each comparative example, and the flange portions (sealing peripheral portion; see FIG. 7) 29 of the two molded bodies (molded cases) 10 are brought into contact with each other and stacked. In addition, after heat sealing at 170 ° C. for 6 seconds, the presence or absence of delamination (peeling) in the heat seal portion 39 and the presence or absence of floating of the appearance were examined by visual observation and evaluated based on the following criteria.
(Criteria)
“○”: No delamination was observed, and no appearance was observed (pass)
“△”: Slight delamination (peeling) may occur rarely, but virtually no delamination (exfoliation) and appearance did not float (pass)
“X”: Delamination occurred, and the appearance was also lifted (failed).
成形深さの深い成形として、上記深絞り成形具を用いて外装材に対して縦55mm×横35mm×5.0mmの略直方体形状(1つの面が開放された略直方体形状;図7参照)に深絞り成形を行った。この時、基材層2が成形体の外側になるように成形を行った。各実施例、各比較例毎にそれぞれ2個の成形体を作製し、2個の成形体(成形ケース)10のフランジ部(封止用周縁部;図7参照)29同士を接触させて重ね合わせて170℃×6秒間ヒートシールを行った後、目視観察によりヒートシール部39におけるデラミネーション(剥離)発生の有無および外観の浮きの有無を調べ下記判定基準に基づいて評価した。
(判定基準)
「○」…デラミネーション(剥離)が認められず、且つ外観の浮きも認められなかった(合格)
「△」…僅かなデラミネーション(剥離)が稀に発生することがあるが、実質的にはデラミネーション(剥離)が無く、且つ外観の浮きもなかった(合格)
「×」…デラミネーション(剥離)が発生しており、外観の浮きもあった(不合格)。 <Sealability evaluation method> (Evaluation of the presence or absence of delamination when forming with a deep forming depth)
As a molding with a deep molding depth, a substantially rectangular parallelepiped shape having a length of 55 mm × width of 35 mm × 5.0 mm with respect to the exterior material using the above-described deep drawing tool (a substantially rectangular parallelepiped shape with one surface opened; see FIG. 7) Deep drawing was performed. At this time, it shape | molded so that the
(Criteria)
“○”: No delamination was observed, and no appearance was observed (pass)
“△”: Slight delamination (peeling) may occur rarely, but virtually no delamination (exfoliation) and appearance did not float (pass)
“X”: Delamination occurred, and the appearance was also lifted (failed).
<耐熱水性評価法>(高温多湿等の苛酷な環境下で使用した場合のデラミネーション発生の有無の評価)
上記深絞り成形具を用いて外装材に対して深絞り成形を行うことにより、縦55mm×横35mm×5mmの略直方体形状(1つの面が開放された略直方体形状;図7参照)に成形した。この時、外側層(基材層)2が成形体の外側になるように成形を行った。各実施例、各比較例毎にそれぞれ2個の成形体を作製し、2個の成形体10のフランジ部(封止用周縁部;図7参照)29同士を接触させて重ね合わせて170℃×6秒間ヒートシールを行い、次にヒートシール物を85℃の熱水中に240時間浸漬した後、取り出して、目視観察によりヒートシール部39におけるデラミネーション(剥離)発生の有無および外観の浮きの有無を調べ、下記判定基準に基づいて評価した。
(判定基準)
「○」…デラミネーション(剥離)が認められず、且つ外観の浮きも認められなかった(合格)
「△」…僅かなデラミネーション(剥離)が稀に発生することがあるが、実質的にはデラミネーション(剥離)が無く、且つ外観の浮きもなかった(合格)
「×」…デラミネーション(剥離)が発生しており、外観の浮きもあった(不合格)。 <Heat-resistant water evaluation method> (Evaluation of the occurrence of delamination when used in harsh environments such as high temperature and high humidity)
By performing deep drawing on the exterior material using the above-mentioned deep drawing tool, it is formed into a substantially rectangular parallelepiped shape (length 55 mm × width 35 mm × 5 mm) (refer to FIG. 7). did. At this time, it shape | molded so that the outer side layer (base material layer) 2 might become the outer side of a molded object. Two molded bodies were produced for each example and each comparative example, and the flange portions (sealing peripheral portions; see FIG. 7) 29 of the two moldedbodies 10 were brought into contact with each other and overlapped to 170 ° C. X Heat seal is performed for 6 seconds, and then the heat-sealed product is immersed in hot water at 85 ° C. for 240 hours, then taken out and visually observed, the presence or absence of delamination (peeling) in the heat-sealed portion 39 and the appearance floating The presence or absence of was examined and evaluated based on the following criteria.
(Criteria)
“○”: No delamination was observed, and no appearance was observed (pass)
“△”: Slight delamination (peeling) may occur rarely, but virtually no delamination (exfoliation) and appearance did not float (pass)
“X”: Delamination occurred, and the appearance was also lifted (failed).
上記深絞り成形具を用いて外装材に対して深絞り成形を行うことにより、縦55mm×横35mm×5mmの略直方体形状(1つの面が開放された略直方体形状;図7参照)に成形した。この時、外側層(基材層)2が成形体の外側になるように成形を行った。各実施例、各比較例毎にそれぞれ2個の成形体を作製し、2個の成形体10のフランジ部(封止用周縁部;図7参照)29同士を接触させて重ね合わせて170℃×6秒間ヒートシールを行い、次にヒートシール物を85℃の熱水中に240時間浸漬した後、取り出して、目視観察によりヒートシール部39におけるデラミネーション(剥離)発生の有無および外観の浮きの有無を調べ、下記判定基準に基づいて評価した。
(判定基準)
「○」…デラミネーション(剥離)が認められず、且つ外観の浮きも認められなかった(合格)
「△」…僅かなデラミネーション(剥離)が稀に発生することがあるが、実質的にはデラミネーション(剥離)が無く、且つ外観の浮きもなかった(合格)
「×」…デラミネーション(剥離)が発生しており、外観の浮きもあった(不合格)。 <Heat-resistant water evaluation method> (Evaluation of the occurrence of delamination when used in harsh environments such as high temperature and high humidity)
By performing deep drawing on the exterior material using the above-mentioned deep drawing tool, it is formed into a substantially rectangular parallelepiped shape (length 55 mm × width 35 mm × 5 mm) (refer to FIG. 7). did. At this time, it shape | molded so that the outer side layer (base material layer) 2 might become the outer side of a molded object. Two molded bodies were produced for each example and each comparative example, and the flange portions (sealing peripheral portions; see FIG. 7) 29 of the two molded
(Criteria)
“○”: No delamination was observed, and no appearance was observed (pass)
“△”: Slight delamination (peeling) may occur rarely, but virtually no delamination (exfoliation) and appearance did not float (pass)
“X”: Delamination occurred, and the appearance was also lifted (failed).
<ヒートシール強度測定法>
得られた外装材から幅15mm×長さ200mmの試験体を2枚切り出した後、これら2枚の試験体を互いの内側シーラント層同士で接触するように重ね合わせた状態で、テスター産業株式会社製のヒートシール装置(TP-701-A)を用いて、ヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒の条件にて片面加熱によりヒートシールを行った。 <Heat seal strength measurement method>
After cutting out two test bodies having a width of 15 mm and a length of 200 mm from the obtained exterior material, the two test bodies were overlapped so as to be in contact with each other of the inner sealant layers. Using a heat seal device (TP-701-A), heat seal temperature is 200 ° C, seal pressure is 0.2 MPa (gauge display pressure), and seal time is 2 seconds. went.
得られた外装材から幅15mm×長さ200mmの試験体を2枚切り出した後、これら2枚の試験体を互いの内側シーラント層同士で接触するように重ね合わせた状態で、テスター産業株式会社製のヒートシール装置(TP-701-A)を用いて、ヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒の条件にて片面加熱によりヒートシールを行った。 <Heat seal strength measurement method>
After cutting out two test bodies having a width of 15 mm and a length of 200 mm from the obtained exterior material, the two test bodies were overlapped so as to be in contact with each other of the inner sealant layers. Using a heat seal device (TP-701-A), heat seal temperature is 200 ° C, seal pressure is 0.2 MPa (gauge display pressure), and seal time is 2 seconds. went.
次に、上記のようにして内側シーラント層同士がヒートシール接合された一対の外装材について、JIS K7127-1998に準拠して、島津アクセス社製ストログラフ(引張試験装置)(AGS-5kNX)を使用して該外装材(試験体)をシール部分の内側シーラント層同士で引張速度100mm/分で180度剥離させた時の剥離強度を測定し、これをヒートシール強度(N/15mm幅)とした。ヒートシール強度が50N/15mm幅以上であるものを合格とする。
Next, for the pair of exterior materials in which the inner sealant layers are heat-sealed as described above, in accordance with JIS K7127-1998, a strograph (tensile test device) (AGS-5kNX) manufactured by Shimadzu Access Co., Ltd. is used. The peel strength when the exterior material (test body) was peeled 180 degrees between the sealant inner sealant layers at a tensile speed of 100 mm / min was measured, and this was determined as the heat seal strength (N / 15 mm width). did. Those having a heat seal strength of 50 N / 15 mm width or more are considered acceptable.
表から明らかなように、本発明の製造方法を適用した実施例1~15では、数日間の加熱エージングを必要とする熱硬化性樹脂を使用せずに、「電子線硬化性樹脂組成物の電子線硬化を用いた接着又は電子線硬化性樹脂組成物の電子線硬化による基材層の形成」および「押出溶融樹脂膜を用いた接着又は押出溶融樹脂膜を用いた熱融着性樹脂層の形成」を行っているので、リードタイムを大幅に短縮できて生産性を向上できると共に、本発明の製造方法で得られた実施例1~15の包装材(蓄電デバイス用外装材)は、成形深さの深い成形を行ってもピンホールやクラックが発生せず優れた成形性を備え、成形深さの深い成形を行ってもデラミネーション(剥離)を抑制できる。
As is apparent from the table, in Examples 1 to 15 to which the production method of the present invention was applied, a thermosetting resin requiring heat aging for several days was not used, but “electron beam curable resin composition of "Adhesion using electron beam curing or formation of substrate layer by electron beam curing of electron beam curable resin composition" and "Heat bonding resin layer using adhesion or extrusion molten resin film using extrusion molten resin film" In addition to being able to significantly reduce the lead time and improve productivity, the packaging materials (exterior materials for power storage devices) of Examples 1 to 15 obtained by the production method of the present invention are: Pinholes and cracks do not occur even when molding is performed at a deep molding depth, and excellent moldability is provided, and delamination can be suppressed even when molding is performed at a deep molding depth.
また、本発明の製造方法を適用した実施例1~15と、参考例との対比から明らかなように、本発明の製造方法で得られた実施例1~15の包装材(蓄電デバイス用外装材)は、従来の熱硬化性樹脂を接着剤として使用した参考例の包装材と同等程度の性能が得られている。
Further, as is clear from the comparison between Examples 1 to 15 to which the production method of the present invention is applied and the reference examples, the packaging materials (exterior for power storage devices) of Examples 1 to 15 obtained by the production method of the present invention are also shown. The material) has a performance equivalent to that of the packaging material of the reference example using a conventional thermosetting resin as an adhesive.
本発明に係る包装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)等の蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材(蓄電デバイス用外装材)として好適に用いられる。また、本発明に係る包装材は、食品用包装材、医薬品用包装材等として使用できる。 A specific example of the packaging material according to the present invention is, for example,
-It is used suitably as exterior materials (exterior material for electrical storage devices) of various electrical storage devices, such as electrical storage devices, such as a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.), a lithium ion capacitor, and an electric double layer capacitor. Moreover, the packaging material which concerns on this invention can be used as a packaging material for foodstuffs, a packaging material for pharmaceuticals, etc.
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)等の蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材(蓄電デバイス用外装材)として好適に用いられる。また、本発明に係る包装材は、食品用包装材、医薬品用包装材等として使用できる。 A specific example of the packaging material according to the present invention is, for example,
-It is used suitably as exterior materials (exterior material for electrical storage devices) of various electrical storage devices, such as electrical storage devices, such as a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.), a lithium ion capacitor, and an electric double layer capacitor. Moreover, the packaging material which concerns on this invention can be used as a packaging material for foodstuffs, a packaging material for pharmaceuticals, etc.
本出願は、2016年10月3日付で出願された日本国特許出願特願2016-195469号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
This application is accompanied by the priority claim of Japanese Patent Application No. 2016-195469 filed on Oct. 3, 2016, the disclosure of which constitutes part of the present application as it is. .
ここで用いられた用語及び説明は、本発明に係る実施形態を説明するために用いられたものであって、本発明はこれに限定されるものではない。本発明は、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。
The terms and explanations used here are used to describe the embodiments according to the present invention, and the present invention is not limited thereto. The present invention allows any design changes within the scope of the claims without departing from the spirit thereof.
1…包装材
2…基材層(外側層)(基材層用樹脂フィルム等)
3…熱融着性樹脂層(内側層)(熱融着性樹脂フィルム等)
4…金属箔層(金属箔)
5…外側接着剤層(第1接着剤層)
6…内側接着剤層(第2接着剤層)
40…押出機
44…電子線硬化性樹脂組成物
46…電子線(紫外光等)
47…押出溶融樹脂膜
48…第1積層体
49…第2積層体 DESCRIPTION OFSYMBOLS 1 ... Packaging material 2 ... Base material layer (outer layer) (resin film for base material layers, etc.)
3. Heat-sealable resin layer (inner layer) (heat-sealable resin film, etc.)
4 ... Metal foil layer (metal foil)
5 ... Outer adhesive layer (first adhesive layer)
6 ... Inner adhesive layer (second adhesive layer)
40 ...Extruder 44 ... Electron beam curable resin composition 46 ... Electron beam (ultraviolet light, etc.)
47 ... extrudedmolten resin film 48 ... first laminate 49 ... second laminate
2…基材層(外側層)(基材層用樹脂フィルム等)
3…熱融着性樹脂層(内側層)(熱融着性樹脂フィルム等)
4…金属箔層(金属箔)
5…外側接着剤層(第1接着剤層)
6…内側接着剤層(第2接着剤層)
40…押出機
44…電子線硬化性樹脂組成物
46…電子線(紫外光等)
47…押出溶融樹脂膜
48…第1積層体
49…第2積層体 DESCRIPTION OF
3. Heat-sealable resin layer (inner layer) (heat-sealable resin film, etc.)
4 ... Metal foil layer (metal foil)
5 ... Outer adhesive layer (first adhesive layer)
6 ... Inner adhesive layer (second adhesive layer)
40 ...
47 ... extruded
Claims (11)
- 金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 An inner layer forming step of obtaining a first laminate by adhering a heat-fusible resin film to one surface of the metal foil via an extruded molten resin film extruded from an extruder;
After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer. - 金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔の一方の面に熱融着性樹脂層を形成して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第2積層体を得た後、該第2積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 An inner layer to obtain a first laminate by forming a heat-fusible resin layer on one surface of the metal foil by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil Forming process;
After bonding the resin film for base material layers to the other surface of the metal foil of the first laminate through an electron beam curable resin composition to obtain a second laminate, the second laminate is applied to the second laminate And an outer layer forming step of irradiating an electron beam from the resin film side for the base material layer. - 金属箔の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 A base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base layer is used for the first laminate. An outer layer forming step of irradiating an electron beam from the resin film side;
An inner layer forming step of adhering a heat-fusible resin film to the other surface of the metal foil of the first laminate after the electron beam irradiation via an extruded molten resin film extruded from an extruder. A method for producing a packaging material characterized by the above. - 金属箔の一方の面に、電子線硬化性樹脂組成物を介して基材層用樹脂フィルムを接着して第1積層体を得た後、該第1積層体に対して前記基材層用樹脂フィルム側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔層の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 A base layer resin film is adhered to one surface of a metal foil via an electron beam curable resin composition to obtain a first laminate, and then the base layer is used for the first laminate. An outer layer forming step of irradiating an electron beam from the resin film side;
A heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation. A method for producing a packaging material, comprising: forming an inner layer. - 金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 An inner layer forming step of obtaining a first laminate by adhering a heat-fusible resin film to one surface of the metal foil via an extruded molten resin film extruded from an extruder;
After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side. - 金属箔の一方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔の一方の面に熱融着性樹脂層を形成して第1積層体を得る内側層形成工程と、
前記第1積層体の金属箔の他方の面に、電子線硬化性樹脂組成物を塗布して第2積層体を得た後、該第2積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、を含むことを特徴とする包装材の製造方法。 An inner layer to obtain a first laminate by forming a heat-fusible resin layer on one surface of the metal foil by superimposing an extruded molten resin film extruded from an extruder on one surface of the metal foil Forming process;
After applying an electron beam curable resin composition to the other surface of the metal foil of the first laminate to obtain a second laminate, the electron beam curable resin composition is applied to the second laminate. And an outer layer forming step of irradiating an electron beam from the side. - 金属箔の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を介して熱融着性樹脂フィルムを接着する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 After applying the electron beam curable resin composition to one surface of the metal foil to obtain the first laminate, the electron beam is irradiated from the electron beam curable resin composition side to the first laminate. An outer layer forming step,
An inner layer forming step of adhering a heat-fusible resin film to the other surface of the metal foil of the first laminate after the electron beam irradiation via an extruded molten resin film extruded from an extruder. A method for producing a packaging material characterized by the above. - 金属箔の一方の面に、電子線硬化性樹脂組成物を塗布して第1積層体を得た後、該第1積層体に対して前記電子線硬化性樹脂組成物側から電子線を照射する外側層形成工程と、
前記電子線照射後の第1積層体の金属箔の他方の面に、押出機から押し出された押出溶融樹脂膜を重ね合わせることによって、前記金属箔層の他方の面に熱融着性樹脂層を形成する内側層形成工程と、を含むことを特徴とする包装材の製造方法。 After applying the electron beam curable resin composition to one surface of the metal foil to obtain the first laminate, the electron beam is irradiated from the electron beam curable resin composition side to the first laminate. An outer layer forming step,
A heat-fusible resin layer is formed on the other surface of the metal foil layer by superimposing an extruded molten resin film extruded from an extruder on the other surface of the metal foil of the first laminate after the electron beam irradiation. A method for producing a packaging material, comprising: forming an inner layer. - 前記内側層形成工程および前記外側層形成工程を連続して行う請求項1、2、5、6に記載の包装材の製造方法。 The manufacturing method of the packaging material of Claim 1, 2, 5, 6 which performs the said inner side layer formation process and the said outer side layer formation process continuously.
- 前記基材層用樹脂フィルムとして、熱水収縮率が1.5%~12%である耐熱性樹脂フィルムを用いる請求項1~4のいずれか1項に記載の包装材の製造方法。 The method for producing a packaging material according to any one of claims 1 to 4, wherein a heat-resistant resin film having a hot water shrinkage of 1.5% to 12% is used as the resin film for the base material layer.
- 前記押出溶融樹脂膜が、押出溶融酸変性ポリオレフィン樹脂膜である請求項1~10のいずれか1項に記載の包装材の製造方法。 The method for producing a packaging material according to any one of claims 1 to 10, wherein the extruded molten resin film is an extruded molten acid-modified polyolefin resin film.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310900825.8A CN116922805A (en) | 2016-10-03 | 2017-07-11 | Method for producing packaging material |
CN201780057408.4A CN109715392A (en) | 2016-10-03 | 2017-07-11 | The manufacturing method of packaging material |
CN202410031564.5A CN117885367A (en) | 2016-10-03 | 2017-07-11 | Method for producing packaging material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016195469A JP2018058230A (en) | 2016-10-03 | 2016-10-03 | Method for producing packaging material |
JP2016-195469 | 2016-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066196A1 true WO2018066196A1 (en) | 2018-04-12 |
Family
ID=61831669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025289 WO2018066196A1 (en) | 2016-10-03 | 2017-07-11 | Method for producing packaging material |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018058230A (en) |
CN (3) | CN117885367A (en) |
WO (1) | WO2018066196A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005053109A (en) * | 2003-08-05 | 2005-03-03 | Toyo Ink Mfg Co Ltd | Packaging material for blister pack and its manufacturing method |
WO2014208518A1 (en) * | 2013-06-24 | 2014-12-31 | 大日本印刷株式会社 | Resin composition |
JP2015135739A (en) * | 2014-01-16 | 2015-07-27 | 凸版印刷株式会社 | exterior material for power storage device |
US20160056421A1 (en) * | 2013-06-18 | 2016-02-25 | Lg Chem, Ltd. | Cell packing material and method of manufacturing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648036A (en) * | 1987-07-01 | 1989-01-12 | Nippon Foil Mfg | Thermally bondable laminate |
JP4957319B2 (en) * | 2006-03-27 | 2012-06-20 | 大日本印刷株式会社 | Decorative sheet for steel plate and decorative steel plate using the same |
JP5287077B2 (en) * | 2007-09-28 | 2013-09-11 | 大日本印刷株式会社 | Decorative sheet for steel plate and decorative steel plate using the same |
TWI501446B (en) * | 2010-09-08 | 2015-09-21 | Toppan Printing Co Ltd | Exterior material for lithium-ion battery |
EP2980881B1 (en) * | 2013-03-25 | 2018-10-24 | Dai Nippon Printing Co., Ltd. | Battery packaging material |
WO2015033958A1 (en) * | 2013-09-03 | 2015-03-12 | 大日本印刷株式会社 | Resin composition for sealant layer of battery packaging material |
CN105794012B (en) * | 2013-12-02 | 2019-06-25 | 大日本印刷株式会社 | Battery use packing material |
WO2016153059A1 (en) * | 2015-03-25 | 2016-09-29 | 大日本印刷株式会社 | Cell packaging material and cell |
-
2016
- 2016-10-03 JP JP2016195469A patent/JP2018058230A/en active Pending
-
2017
- 2017-07-11 CN CN202410031564.5A patent/CN117885367A/en active Pending
- 2017-07-11 CN CN202310900825.8A patent/CN116922805A/en active Pending
- 2017-07-11 WO PCT/JP2017/025289 patent/WO2018066196A1/en active Application Filing
- 2017-07-11 CN CN201780057408.4A patent/CN109715392A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005053109A (en) * | 2003-08-05 | 2005-03-03 | Toyo Ink Mfg Co Ltd | Packaging material for blister pack and its manufacturing method |
US20160056421A1 (en) * | 2013-06-18 | 2016-02-25 | Lg Chem, Ltd. | Cell packing material and method of manufacturing the same |
WO2014208518A1 (en) * | 2013-06-24 | 2014-12-31 | 大日本印刷株式会社 | Resin composition |
JP2015135739A (en) * | 2014-01-16 | 2015-07-27 | 凸版印刷株式会社 | exterior material for power storage device |
Also Published As
Publication number | Publication date |
---|---|
CN109715392A (en) | 2019-05-03 |
JP2018058230A (en) | 2018-04-12 |
CN117885367A (en) | 2024-04-16 |
CN116922805A (en) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6935991B2 (en) | Exterior materials for power storage devices and power storage devices | |
JP4422171B2 (en) | Battery case packaging and battery case | |
KR101272542B1 (en) | Laminate for cell exterior | |
CN107768553B (en) | Outer packaging material for electricity storage device and electricity storage device | |
JP5164786B2 (en) | Battery case packaging and battery case | |
JP2013012469A (en) | Laminate for battery exterior package | |
WO2018061375A1 (en) | Packaging material, and method for producing same | |
JP2008130436A (en) | Package material for battery case, and case for the battery | |
JP5254663B2 (en) | Manufacturing method of packaging material for battery case | |
JP7257568B2 (en) | Exterior materials for power storage devices | |
JP6595634B2 (en) | Packaging materials and molded cases | |
WO2018066196A1 (en) | Method for producing packaging material | |
JP7303160B2 (en) | Method for manufacturing exterior material for power storage device | |
JP7126405B2 (en) | Exterior material for power storage device and power storage device | |
JP7113699B2 (en) | Method for manufacturing exterior material for power storage device | |
JP6680526B2 (en) | Laminate packaging | |
JP2023093511A (en) | Exterior materials for power storage devices | |
JP6948776B2 (en) | Manufacturing method of packaging material | |
JP5449505B2 (en) | Battery case packaging and battery case | |
JP2018187819A (en) | Laminate material | |
JP2022095541A (en) | Exterior material for power storage device and power storage device | |
JP2019139832A (en) | Jacket material for power storage device and power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858036 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17858036 Country of ref document: EP Kind code of ref document: A1 |