WO2018003087A1 - Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method - Google Patents

Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method Download PDF

Info

Publication number
WO2018003087A1
WO2018003087A1 PCT/JP2016/069519 JP2016069519W WO2018003087A1 WO 2018003087 A1 WO2018003087 A1 WO 2018003087A1 JP 2016069519 W JP2016069519 W JP 2016069519W WO 2018003087 A1 WO2018003087 A1 WO 2018003087A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chlorine
carbon dioxide
fine bubbles
based disinfectant
Prior art date
Application number
PCT/JP2016/069519
Other languages
French (fr)
Japanese (ja)
Inventor
広明 佐野
啓司 庵原
洋介 田島
理絵 外川
Original Assignee
マルハニチロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルハニチロ株式会社 filed Critical マルハニチロ株式会社
Priority to PCT/JP2016/069519 priority Critical patent/WO2018003087A1/en
Priority to JP2018524683A priority patent/JPWO2018003087A1/en
Publication of WO2018003087A1 publication Critical patent/WO2018003087A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases

Definitions

  • the present invention relates to a bactericide having improved bactericidal effect of a chlorine-based bactericide and a bactericidal method.
  • Microbes include a wide variety of bacteria, molds, and viruses, and there are a wide variety of microorganisms that cause food poisoning and spoilage when mixed in food.
  • Various preservatives and preservatives are used to control food damage caused by microorganisms, and these are used to suppress the growth of bacteria, but the effect is also affected by the type and initial number of microorganisms. Therefore, sterilization / disinfection of microorganisms in foods is a problem.
  • resistance to sterilization and disinfection increases in the order of bacterial vegetative cells (proliferating cells) ⁇ virus ⁇ mold spores ⁇ bacterial spores (dormant cells). This means that any sterilization method or disinfectant capable of sterilizing bacterial spores is also effective against bacterial vegetative cells, molds and viruses.
  • hypochlorous acid is not very toxic to the human body compared to ozone, and is also widely used in the food industry since it has a high inactivation effect of microorganisms.
  • the effect is strongly influenced by the concentration of hypochlorous acid, so the sterilization effect can be enhanced by adjusting the concentration to a high concentration, but there is a concern about safety issues.
  • a method for improving the bactericidal effect of a chlorine-based bactericidal agent a method for improving the bactericidal power directly or indirectly by utilizing fine bubbles has been reported in recent years.
  • a method for directly improving the sterilizing power there is a method in which the sterilizing effect is improved by mixing fine bubbles of chlorine gas with a chlorine-based sterilizing agent (Patent Document 1).
  • chlorinated germicides are effective germicides for sterilizing microorganisms, but hypochlorous acid concentration is increased in order to increase the effective germicidal power against spores. Must be raised.
  • hypochlorous acid concentration is increased in order to increase the effective germicidal power against spores.
  • a bactericidal agent that maintains a higher bactericidal effect on spores with the same concentration of hypochlorous acid is desired.
  • the present invention is effective for bacterial spores by combining a chlorinated disinfectant and a single gas of carbon dioxide or nitrogen gas, or a fine bubble of a mixed gas of nitrogen gas and carbon dioxide for sterilization and disinfection at food processing sites.
  • An object is to provide an effective disinfectant and a disinfecting method.
  • a chlorine-based disinfectant according to one embodiment of the present invention is characterized by containing fine bubbles of a single gas of nitrogen gas or carbon dioxide, or a mixed gas of nitrogen gas and carbon dioxide.
  • the method for producing a chlorine-based disinfectant according to one aspect of the present invention is as follows.
  • a method for producing a chlorine-based disinfectant containing fine bubbles of a single gas of nitrogen gas or carbon dioxide or a mixed gas of nitrogen gas and carbon dioxide, wherein nitrogen gas or carbon dioxide is added to an aqueous solution containing hypochlorous acid It is characterized by containing fine bubbles of a single gas or a mixed gas of nitrogen gas and carbon dioxide gas.
  • the method for producing a chlorine-based disinfectant according to another aspect of the present invention is a method for producing a chlorine-based disinfectant containing a single gas fine bubble of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas.
  • a raw material obtained by adding hydrogen chloride (HCl) or sodium chloride (NaCl) to water containing fine bubbles of a single gas of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas Obtaining a chlorine-based disinfectant containing fine bubbles of a single gas of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas by electrolyzing the raw material water after obtaining water It is characterized by.
  • a sterilization method is a method for sterilizing bacterial spores, wherein the chlorinated germicide is brought into contact with cell spores.
  • a food sterilization method is a food sterilization method, characterized by using the above-described chlorine-based disinfectant.
  • the use of the chlorine-based disinfectant according to one aspect of the present invention that is, the method of use is the above-mentioned chlorine-based disinfectant or the chlorine-based disinfectant manufactured by the above-mentioned manufacturing method in food production having a sterilization step. Characterized by use in sterilization processes.
  • a bactericidal agent and a bactericidal method effective for bacterial spores by enhancing the effect of a chlorine-based bactericidal agent containing hypochlorous acid as a main component.
  • Chlorine disinfectants include solid sodium hypochlorite (also called sodium hypochlorite), aqueous sodium hypochlorite solution, or electrolyzed water, slightly acidic electrolyzed water, Acidic electrolyzed water, strongly acidic electrolyzed water, etc. are used.
  • the mechanism of action up to sterilization is that irreversible changes occur when non-dissociated hypochlorous acid penetrates into the cells of microorganisms by passive diffusion and oxidizes various enzymes and nucleic acids. It is supposed to cause death.
  • non-dissociative hypochlorous acid in order to increase the sterilizing power of the chlorine-based disinfectant, it is effective to increase the abundance ratio of non-dissociative hypochlorous acid and to increase the hypochlorous acid concentration itself.
  • the non-dissociation type abundance ratio can be increased by adjusting the pH to the acidic range, and electrolyzed water, slightly acidic electrolyzed water, weakly acidic electrolyzed water, and strongly acidic electrolyzed water are used as pH-adjusted chlorinated disinfectants.
  • the pH is less than 6.5, there is no difference in the bactericidal effect.
  • the chlorine-based disinfectant according to one embodiment of the present invention is an aqueous solution of hypochlorous acid containing fine bubbles of a single gas of nitrogen gas or carbon dioxide, or a mixed gas of nitrogen gas and carbon dioxide.
  • Hypochlorous acid may be contained in the chlorine-based disinfectant in the form of a salt.
  • hypochlorous acid salts include sodium hypochlorite and calcium hypochlorite.
  • the aqueous solution of hypochlorous acid which is a chlorine-based disinfectant, is obtained by dissolving strong acidic electrolyzed water, weakly acidic electrolyzed water, slightly acidic electrolyzed water, hypochlorous acid or hypochlorous acid salt in water. Examples thereof include a chlorous acid aqueous solution and a hypochlorous acid aqueous solution obtained by dissolving chlorine in water. One of these, or a mixture of two or more can be used as necessary.
  • the method for producing fine bubbles is not particularly limited, and any method can be used as long as fine bubbles capable of obtaining the intended bactericidal effect in the present invention can be contained in an aqueous solution of hypochlorous acid.
  • Examples of the method for generating fine bubbles include a pressure dissolution type generation method and a pressure shear type generation method.
  • Generation of fine bubbles by a pressure dissolution type or pressure shear type fine bubble generation apparatus can be performed by the following process.
  • the fine bubble generating unit connected to the fine bubble generating device is inserted into an aqueous solution containing water or hypochlorous acid prepared in the container according to the target volume, and the fine bubble generating device is operated at room temperature.
  • the microbubble generator is supplied with water or a hypochlorous acid aqueous solution and a connecting section to which a gas of nitrogen or carbon dioxide or a mixed gas thereof is supplied. After mixing gas and water or hypochlorous acid aqueous solution inside the microbubble generator, the mixture thus obtained is discharged from the connection section to which the microbubble generator is connected, Are supplied into water or a hypochlorous acid aqueous solution to generate fine bubbles. If necessary, the water prepared in the container or an aqueous solution containing hypochlorous acid is supplied to the microbubble generator, the water containing the microbubbles obtained in the container, or the hypochlorous acid containing the microbubbles.
  • the aqueous solution may be supplied to the fine bubble generating device to circulate the inside of the container and the fine bubble generating device.
  • the pump of the microbubble generator for preparing a mixture of gas and water or hypochlorous acid aqueous solution may be of any type, and preferably has a high gas-liquid mixing capability.
  • the fine bubble generating device includes a pressure-dissolving method that generates fine bubbles by applying pressure when mixing gas and water or an aqueous hypochlorous acid solution, and then reducing the pressure during discharge, and shearing of bubbles.
  • a shearing type for generating fine bubbles is known, and a fine bubble generating device capable of obtaining the desired fine bubbles can be selected and used.
  • the size of the fine bubbles is preferably 1000 nm or less, and more preferably in the range of 50 nm to 500 nm.
  • the average size of the fine bubbles is more preferably in the range of 50 nm to 200 nm.
  • the number of fine bubbles contained in the chlorine-based disinfectant is not particularly limited as long as the desired disinfecting effect is obtained.
  • the lower limit of the gas component content may be at least 10 6 per mL, more preferably at least 10 7 per mL, and more preferably at least 10 8 per mL.
  • the upper limit of the number of microbubbles is not particularly limited, and the change in the sterilization effect with respect to the increase in the number of microbubbles is confirmed by experiments, and the increase in the number of microbubbles does not give further improvement in the sterilization effect. Can be set as the upper limit. Alternatively, the upper limit of the number of fine bubbles can be set from the viewpoint of the manufacturing apparatus and manufacturing cost.
  • the gas contained in the fine bubbles is a single gas of carbon dioxide gas or nitrogen gas, or a mixed gas of carbon dioxide gas and nitrogen gas. Air and oxygen gas are not used for the generation of fine bubbles, and air and oxygen gas are not included in the fine bubbles, or within the range where the effects of the present invention can be obtained by using carbon dioxide gas and / or nitrogen gas. Is practically not included.
  • the method for preparing the chlorine-based disinfectant containing fine bubbles is not particularly limited as long as the method can obtain the intended chlorine-based disinfectant containing fine bubbles.
  • the following method can be used.
  • B A method of incorporating fine bubbles in a chlorine-based disinfectant. At least one of the method (A) and the method (B) can be used.
  • At least one of chlorine, hypochlorous acid and hypochlorous acid salt is added to water containing fine bubbles, or hypochlorous acid or hypochlorous acid salt
  • a method for preparing a chlorine-based disinfectant by mixing an aqueous solution containing at least one of the above, hypochlorous acid by electrolysis by adding at least one of hydrogen chloride (HCl) and sodium chloride (NaCl) to water containing fine bubbles A method for preparing a chlorine-based disinfectant containing fine bubbles by generating an acid is mentioned.
  • a method of generating fine bubbles in an aqueous solution of hypochlorous acid as a chlorine-based disinfectant using the fine bubble generating apparatus mentioned above can be used.
  • an aqueous solution containing hypochlorous acid is supplied to a microbubble generator, fine bubbles are generated in an aqueous solution containing hypochlorous acid, and the obtained aqueous solution containing microbubbles and hypochlorous acid is used as it is.
  • the disinfectant according to the present invention can be obtained by adjusting the composition with water or an aqueous solution containing hypochlorous acid.
  • the microorganism to be sterilized is not particularly limited as long as the sterilizing effect by hypochlorous acid is obtained.
  • the bacterium include Bacillus genus (Bacillus genus), Alicyclobacillus genus (Alycyclobacillus genus), Clostridium genus (Clostridium genus) bacteria, and the like.
  • bacteria belonging to a genus independent of the genus Bacillus such as the genus Paenibacillus, the genus Geobacillus, and the genus Oceanobacillus are also included.
  • bacteria belonging to the genus Bacillus include bacteria belonging to B. subtilis, B. cereus, B. anthracis, B.
  • the chlorinated fungicide containing fine bubbles of the present invention is also effective against these bacterial spores.
  • the effective chlorine concentration in the chlorine-based disinfectant containing fine bubbles of the present invention is not particularly limited as long as the intended disinfecting effect is obtained. Regarding the lower limit of the effective chlorine concentration, the effective chlorine concentration is preferably at least 10 ppm.
  • the upper limit of the effective chlorine concentration is not particularly limited, and there is an effective chlorine concentration at which the increase in the effective chlorine concentration does not give a further improvement in the bactericidal effect by confirming the change in the bactericidal effect with respect to the increase in the effective chlorine concentration by experiment etc.
  • the upper limit of the density can be set.
  • the upper limit of effective chlorine concentration can be set from a viewpoint of a manufacturing apparatus or manufacturing cost. From these viewpoints, the effective chlorine concentration can be selected from the range of 10 to 200 ppm.
  • the chlorine-based disinfectant containing fine bubbles according to the present invention can be suitably used as a disinfectant that is brought into contact with a bacterial spore in a method for sterilizing a bacterial spore to sterilize it.
  • the chlorine-type disinfectant containing the microbubble concerning this invention can be used as a disinfectant used at the disinfection process in the foodstuff manufacturing method which has a disinfection process.
  • a chlorine-based disinfectant containing fine bubbles according to the present invention can be used as the disinfectant applied by the method.
  • Example 1 Examination of gas species used for microbubble formation
  • a Method Hypochlorous acid water containing microbubbles was prepared by the following method. Fine bubbles were generated in tap water for 7.5 minutes per liter using a pressure dissolution type fine bubble generator (IDEC Corporation). Carbon dioxide gas, nitrogen gas, oxygen and air were used individually as the gas for generating fine bubbles. The gas component in tap water is sufficiently substituted with the gas for generating fine bubbles by the fine bubble generating process taking a sufficient time, and the fine gas composed of the gas for generating fine gas is generated in the tap water. After adding hydrochloric acid to the water containing fine bubbles thus obtained, electrolysis was performed using a slightly acidic electrolyzed water generator to generate hypochlorous acid.
  • FIG. 7 is a diagram showing the particle size distribution of fine bubbles quoted from catalog information manufactured by IDEC Corporation (see https://jp.idec.com/en/technology/finebubble/ultrafineGALF.html). It can be seen that the water containing fine bubbles obtained by this pressure dissolution type fine bubble generating apparatus has a fine bubble density of 10 6 or more per mL and an average particle diameter in the range of 50 nm to 200 nm.
  • each microbubble-containing electrolyzed water was confirmed by using spores of Bacillus subtilis, which is one kind of spore-forming bacteria.
  • Bacillus subtilis spores were cultured in an agar medium, suspended in purified water, collected by centrifugation, suspended in 70% ethanol, and collected by centrifugation. After resuspending with purified water and collecting by centrifugation, the number of bacteria per mL was adjusted to about 1 ⁇ 10 8 . After adding and mixing 0.1 mL of bacterial solution to 100 mL of each microbubble-containing electrolyzed water at 25 ° C.
  • the number of viable cells after 5 minutes from the addition was measured.
  • the number of viable bacteria after 5 minutes was measured in the same manner as described above using electrolyzed water prepared by the same method as described above except that fine bubbles were not contained.
  • tap water before the production of fine bubbles tap water not containing fine bubbles
  • tap water containing fine bubbles prepared by the above method including hypochlorous acid
  • Example 2 Comparison of bactericidal power between microbubble gas and non-microbubble gas
  • a Method Preparation of electrolyzed water and Bacillus subtilis spores containing microbubble gas and confirmation of bactericidal power are the same as in Example 1. The method was used. The electrolyzed water containing the non-microbubble gas was obtained by producing slightly acidic electrolyzed water in the same manner as in Example 1 after aeration of carbon dioxide gas or nitrogen gas into tap water.
  • Example 3 Examination of combination order of microbubbles and electrolyzed water
  • a Method Preparation of electrolyzed water containing microbubble gas (microbubble formation ⁇ electrolyzed water) and Bacillus subtilis spore and confirmation of bactericidal activity are examples The same method as in No. 1 was used. Furthermore, as this example, electrolyzed water was prepared by the same method as in Example 1 except that tap water was used instead of the fine bubble-containing tap water, and this electrolyzed water was fined by the same method as in Example 1. Bubbles were generated to obtain a fine bubble-containing chlorine-based disinfectant (electrolyzed water ⁇ fine bubbles).
  • FIG. 4 shows the results obtained using nitrogen gas
  • FIG. 4 shows the results obtained using nitrogen gas
  • FIG. 5 shows the results obtained using carbon dioxide gas. Even when nitrogen gas or carbon dioxide fine bubbles were included after electrolyzing, the number of viable bacteria was reduced as compared with electrolyzed water not containing fine bubbles (FIGS. 4 and 5: electrolyzed water ⁇ fine). Aeration). On the other hand, in the case of both fine bubbles of carbon dioxide gas and nitrogen gas, the viable cell count was most reduced by containing fine bubbles before electrolyzing (FIGS. 4 and 5: microbubble formation ⁇ electrolyzed water). From the above results, it is shown that the microbiculation before electrolyzing can retain the strongest bactericidal power, but the bactericidal power is improved even when microbubbles are contained after electrolyzing. It was.
  • Example 4 (A) Method Using electrolyzed water (nitrogen gas + electrolyzed water) containing nitrogen gas fine bubbles prepared by the same method as in Example 1, aerobic bacterial spores (Cereus spores, Rikeniformis spores) And bactericidal tests against anaerobic bacterial spores (Clostridial spores).
  • tap water before generation of fine bubbles (tap water not containing fine bubbles: no treatment) instead of electrolyzed water containing fine bubbles, tap water containing fine bubbles prepared by the above method (including hypochlorous acid) No: Electrolytic water) was used for the same experiment.
  • B Results The results obtained are shown in FIG.
  • microbubbles and chlorinated germicides are effective against a wide range of bacterial spores, and may also be effective against bacterial spores that are difficult to sterilize with conventional chlorinated germicides alone. It became clear.
  • Example 5 (A) Method Electrolyzed water containing fine bubble gas prepared by the same method as in Example 1 is stored indoors in a sealed container at 25 ° C. for 7 days, and the Bacillus subtilis spores are prepared and sterilized. The confirmation was performed using the same method as in Example 1. (B) Results Table 1 shows the results obtained. It can be seen that the bactericidal effect is sustained by making each of the nitrogen gas and the carbon dioxide gas into fine bubbles as compared with electrolyzed water not containing fine bubbles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The purpose of the present invention is to provide a disinfection product and a disinfection method for disinfecting and sterilizing a food processing site, said product and method being also efficacious against bacterial spores, by combining a chlorine-based disinfectant with microbubbles of a single gas such as carbon dioxide gas or nitrogen gas or a mixed gas comprising nitrogen gas and carbon dioxide gas. This purpose can be achieved by incorporating microbubbles of a single gas such as nitrogen gas or carbon dioxide gas or a mixed gas comprising nitrogen gas and carbon dioxide gas into a chlorine-based disinfectant comprising an aqueous hypochlorous acid solution.

Description

塩素系殺菌剤と微細気泡を組み合わせた殺菌剤、及び殺菌方法Disinfectant combining chlorine-based disinfectant and fine bubbles, and disinfecting method
 本発明は塩素系殺菌剤の殺菌効果を向上させた殺菌剤、および殺菌方法に関する。 The present invention relates to a bactericide having improved bactericidal effect of a chlorine-based bactericide and a bactericidal method.
 微生物には極めて多様な種類の細菌、カビ、ウイルスが含まれ、食品に混入することによって食中毒や腐敗を引き起こす原因となる多種多様な微生物が存在する。
 微生物による食品への危害を抑えるために様々な保存料や防腐剤が用いられており、これらは菌の増殖を抑制するために利用されるものの、その効果は微生物の種類や初期数によっても影響されるため、食品における微生物の殺菌・消毒は課題となる。
 一般的には、微生物の中でも細菌栄養細胞(増殖細胞)<ウイルス<カビ胞子<細菌芽胞(休眠細胞)の順に殺菌や消毒に対する抵抗性が強くなる。このことは、細菌芽胞を殺菌可能な殺菌方法や殺菌剤であれば、細菌栄養細胞やカビ、ウイルスにも有効であること意味する。
Microbes include a wide variety of bacteria, molds, and viruses, and there are a wide variety of microorganisms that cause food poisoning and spoilage when mixed in food.
Various preservatives and preservatives are used to control food damage caused by microorganisms, and these are used to suppress the growth of bacteria, but the effect is also affected by the type and initial number of microorganisms. Therefore, sterilization / disinfection of microorganisms in foods is a problem.
In general, among microorganisms, resistance to sterilization and disinfection increases in the order of bacterial vegetative cells (proliferating cells) <virus <mold spores <bacterial spores (dormant cells). This means that any sterilization method or disinfectant capable of sterilizing bacterial spores is also effective against bacterial vegetative cells, molds and viruses.
 塩素系殺菌剤やオゾンが芽胞に対しても殺菌に有効な方法として知られているが、オゾンは人体への影響が強く、機器や容器に広く使用される金属、プラスチック、樹脂を腐食するため、普及には至っていない。
 一方、塩素は水に溶解すると次亜塩素酸となり、殺菌主成分は次亜塩素酸である。
 次亜塩素酸はオゾンに比較して人体への毒性もさほど強くなく、なおかつ微生物の不活化効果も高いことから食品工業分野では広く利用されている。
 塩素系殺菌剤による殺菌の場合、次亜塩素酸濃度によりその効果が強く影響を受けるため、高濃度に調整することで殺菌効果を高めることができるが、安全性の問題が危惧される。
 塩素系殺菌剤の殺菌効果を向上させる方法として、近年、微細気泡を利用することで、直接的または間接的に殺菌力を向上させる方法が報告されている。直接的に殺菌力を向上させる方法としては、塩素系殺菌剤に塩素ガスの微細気泡を混合させることで殺菌効果を向上させた方法がある(特許文献1)。間接的な方法には塩素系殺菌剤に空気の微細気泡を含有させることで卵の殻への浸透性を向上させて殺菌力を向上させた方法(特許文献2)、および予め炭酸ガスを溶解させた塩素系殺菌剤にマイクロバブル発生装置によって空気を主体とする微細気泡を生成することで、次亜塩素酸の自然消失を安定させ、殺菌力の保持時間を向上させた方法(特許文献3)がある。
 しかし、直接的な殺菌力向上では塩素濃度の上昇による安全性が問題である。間接的方法は、浸透性および保持時間を向上させた細菌の栄養細胞を対象とした方法であることから、殺菌に対して強い抵抗性を保持する細菌の芽胞に対する効果を生じえない場合があることが問題点として挙げられる。特に、製造工程上に加熱殺菌工程が含まれる加工食品では、細菌の芽胞に汚染されている原料を利用するほど、過度な条件にて製品の加熱殺菌を行う必要性が高くなる。加工食品の製品品質の上でも、過度な条件での細菌芽胞に対する殺菌方法は強く望まれており、上記直接的・間接的方法では細菌の芽胞を殺菌するには十分とは言い難い。
Although chlorine-based disinfectants and ozone are known as effective methods for sterilizing spores, ozone has a strong influence on the human body and corrodes metals, plastics and resins widely used in equipment and containers. It has not reached widespread use.
On the other hand, when chlorine dissolves in water, it becomes hypochlorous acid, and the main sterilizing agent is hypochlorous acid.
Hypochlorous acid is not very toxic to the human body compared to ozone, and is also widely used in the food industry since it has a high inactivation effect of microorganisms.
In the case of sterilization with a chlorine-based disinfectant, the effect is strongly influenced by the concentration of hypochlorous acid, so the sterilization effect can be enhanced by adjusting the concentration to a high concentration, but there is a concern about safety issues.
As a method for improving the bactericidal effect of a chlorine-based bactericidal agent, a method for improving the bactericidal power directly or indirectly by utilizing fine bubbles has been reported in recent years. As a method for directly improving the sterilizing power, there is a method in which the sterilizing effect is improved by mixing fine bubbles of chlorine gas with a chlorine-based sterilizing agent (Patent Document 1). As an indirect method, a method of improving the sterilizing power by improving the permeability to the egg shell by adding fine air bubbles to the chlorine-based disinfectant (Patent Document 2), and dissolving carbon dioxide in advance A method of stabilizing the spontaneous disappearance of hypochlorous acid and improving the retention time of sterilizing power by generating fine bubbles mainly composed of air with a microbubble generator in the chlorinated disinfectant (Patent Document 3) )
However, in order to improve sterilization power directly, safety due to an increase in chlorine concentration is a problem. The indirect method is directed to bacterial vegetative cells with improved permeability and retention time, and may not have an effect on bacterial spores that retain strong resistance to sterilization. This is a problem. In particular, in processed foods that include a heat sterilization step in the manufacturing process, the need to heat sterilize products under excessive conditions increases as raw materials contaminated with bacterial spores are used. In view of product quality of processed foods, a method for sterilizing bacterial spores under excessive conditions is strongly desired, and the direct and indirect methods are not sufficient to sterilize bacterial spores.
特開2011-109581号公報JP 2011-109581 A 特開2013-010758号公報JP2013-010758A 特開2013-240742号公報JP 2013-240742 A
 上述した通り、微生物の殺菌において塩素系殺菌剤は有効な殺菌剤であることはよく知られた事実であるが、芽胞に対しても有効な殺菌力を高めるためには次亜塩素酸濃度を高めなければならない。しかし、安全性と利用性を考慮すると同濃度の次亜塩素酸で芽胞に対してもより高い殺菌効果を保持した殺菌剤が望まれる。
 本発明は、食品加工現場における殺菌や消毒に塩素系殺菌剤と炭酸ガスまたは窒素ガスの単一気体、あるいは窒素ガスと炭酸ガスの混合ガスの微細気泡を組み合わせることで細菌芽胞に対しても効果的な殺菌剤、及び殺菌方法を提供することを目的とする。
As mentioned above, it is a well-known fact that chlorinated germicides are effective germicides for sterilizing microorganisms, but hypochlorous acid concentration is increased in order to increase the effective germicidal power against spores. Must be raised. However, in view of safety and availability, a bactericidal agent that maintains a higher bactericidal effect on spores with the same concentration of hypochlorous acid is desired.
The present invention is effective for bacterial spores by combining a chlorinated disinfectant and a single gas of carbon dioxide or nitrogen gas, or a fine bubble of a mixed gas of nitrogen gas and carbon dioxide for sterilization and disinfection at food processing sites. An object is to provide an effective disinfectant and a disinfecting method.
 本発明の一態様にかかる塩素系殺菌剤は、窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有することを特徴とする。
 本発明の一態様にかかる塩素系殺菌剤の製造方法は、
 窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有する塩素系殺菌剤の製造方法であって、次亜塩素酸を含む水溶液に窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有させることを特徴とする。
 本発明の他の態様にかかる塩素系殺菌剤の製造方法は、窒素ガスまたは炭酸ガスの単一気体の微細気泡、または、窒素ガスと炭酸ガスの混合ガスを含有する塩素系殺菌剤の製造方法であって、窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有させた水に、塩化水素(HCl)または塩化ナトリウム(NaCl)を添加して原料水を得た後、該原料水の電気分解を行うことにより窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有する塩素系殺菌剤を得る、ことを特徴とする。
 本発明の一態様にかかる殺菌方法は、細菌芽胞の殺菌方法であって、上記の塩素系殺菌剤を細胞芽胞に接触させることを特徴とする。
 本発明の一態様にかかる食品の殺菌方法は、食品の殺菌方法であって、上記の塩素系殺菌剤を用いることを特徴とする。
 更に、本発明の一態様にかかる塩素系殺菌剤の使用、すなわち使用方法は、殺菌工程を有する食品製造における、上記の塩素系殺菌剤または上記の製造方法により製造された塩素系殺菌剤の前記殺菌工程での使用に特徴を有する。
A chlorine-based disinfectant according to one embodiment of the present invention is characterized by containing fine bubbles of a single gas of nitrogen gas or carbon dioxide, or a mixed gas of nitrogen gas and carbon dioxide.
The method for producing a chlorine-based disinfectant according to one aspect of the present invention is as follows.
A method for producing a chlorine-based disinfectant containing fine bubbles of a single gas of nitrogen gas or carbon dioxide or a mixed gas of nitrogen gas and carbon dioxide, wherein nitrogen gas or carbon dioxide is added to an aqueous solution containing hypochlorous acid It is characterized by containing fine bubbles of a single gas or a mixed gas of nitrogen gas and carbon dioxide gas.
The method for producing a chlorine-based disinfectant according to another aspect of the present invention is a method for producing a chlorine-based disinfectant containing a single gas fine bubble of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas. A raw material obtained by adding hydrogen chloride (HCl) or sodium chloride (NaCl) to water containing fine bubbles of a single gas of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas Obtaining a chlorine-based disinfectant containing fine bubbles of a single gas of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas by electrolyzing the raw material water after obtaining water It is characterized by.
A sterilization method according to one embodiment of the present invention is a method for sterilizing bacterial spores, wherein the chlorinated germicide is brought into contact with cell spores.
A food sterilization method according to one embodiment of the present invention is a food sterilization method, characterized by using the above-described chlorine-based disinfectant.
Furthermore, the use of the chlorine-based disinfectant according to one aspect of the present invention, that is, the method of use is the above-mentioned chlorine-based disinfectant or the chlorine-based disinfectant manufactured by the above-mentioned manufacturing method in food production having a sterilization step. Characterized by use in sterilization processes.
 本発明によれば、次亜塩素酸を主成分とする塩素系殺菌剤の効果を高めて細菌芽胞にも効果的な殺菌剤、及び殺菌方法を提供することできる。また、食品製造の現場において、使用者への安全性や使用後の食品への残留性の問題がなく、効果的な食品の殺菌が可能となる殺菌剤、及び殺菌方法を提供することができる。 According to the present invention, it is possible to provide a bactericidal agent and a bactericidal method effective for bacterial spores by enhancing the effect of a chlorine-based bactericidal agent containing hypochlorous acid as a main component. In addition, it is possible to provide a bactericidal agent and a bactericidal method capable of effectively sterilizing food without causing problems of safety to the user and persistence in food after use in the field of food production. .
実施例1における各種ガスの微細気泡と電解水を併用した際の殺菌効果を示す図である。It is a figure which shows the bactericidal effect at the time of using together the fine bubble of various gas in Example 1, and electrolyzed water. 実施例2における窒素ガスを微細気泡化した際の殺菌効果を示す図である。It is a figure which shows the bactericidal effect at the time of making the nitrogen gas in Example 2 microbubble. 実施例2における炭酸ガスを微細気泡化した際の殺菌効果を示す図である。It is a figure which shows the bactericidal effect at the time of making the carbon dioxide gas in Example 2 microbubble. 実施例3における電解水生成処理前後での窒素ガス微細気泡の殺菌効果を示す図である。It is a figure which shows the bactericidal effect of the nitrogen gas fine bubble before and behind the electrolyzed water production | generation process in Example 3. FIG. 実施例3における電解水生成処理前後での炭酸ガス微細気泡の殺菌効果を示す図である。It is a figure which shows the bactericidal effect of the carbon dioxide fine bubble before and behind the electrolyzed water production | generation process in Example 3. FIG. 実施例4における3種類の細菌芽胞に対する窒素ガス微細気泡と電解水の殺菌効果を示す図である。It is a figure which shows the bactericidal effect of the nitrogen gas fine bubble and electrolysis water with respect to three types of bacterial spores in Example 4. FIG. 微細気泡サイズの分布を示す図である。It is a figure which shows distribution of fine bubble size.
 上述のように、塩素系殺菌剤による微生物の殺菌方法は、広く利用されている手法である。塩素系殺菌剤としては、固体状の次亜塩素酸ナトリウム(次亜塩素酸ソーダともいう)、次亜塩素酸ナトリウムの水溶液、あるいは次亜塩素酸を含む、電解水、微酸性電解水、弱酸性電解水、強酸性電解水等が利用されている。いずれも殺菌に至るまでの作用機序は、非解離型の次亜塩素酸が受動拡散により微生物の細胞内部に侵入し、種々の酵素群や核酸に酸化作用を及ぼすことで不可逆的な変化をもたらし、死滅を引き起こすとされている。このため、塩素系殺菌剤の殺菌力を高めるためには非解離型次亜塩素酸の存在比を高めるとともに、次亜塩素酸濃度そのものを高めることが有効である。
 非解離型の存在比はpHを酸性領域に調整することで高めることができ、電解水、微酸性電解水、弱酸性電解水、強酸性電解水がpH調整型の塩素系殺菌剤として利用されているが、同濃度の塩素を含む場合はpH6.5未満であれば殺菌効果に違いは生じない。
 一方、殺菌効果を高めるために高濃度型装置の開発も進められているが使用者への安全性や使用後の食品での残留性が問題となる。
 しかし、本発明者が鋭意研究を重ねた結果、塩素系殺菌剤、主に次亜塩素酸を含む水溶液と炭酸ガスまたは窒素ガスの単一ガス、あるいは、窒素ガスと炭酸ガスの混合ガスの微細気泡を組み合わせることで、塩素濃度を上げることなく細菌芽胞に対しても殺菌効果を向上させることができることを見出した。
 本発明は、本発明者によるかかる新たな知見に基づいて完成されたものである。
As described above, the method of sterilizing microorganisms using a chlorine-based disinfectant is a widely used technique. Chlorine disinfectants include solid sodium hypochlorite (also called sodium hypochlorite), aqueous sodium hypochlorite solution, or electrolyzed water, slightly acidic electrolyzed water, Acidic electrolyzed water, strongly acidic electrolyzed water, etc. are used. In any case, the mechanism of action up to sterilization is that irreversible changes occur when non-dissociated hypochlorous acid penetrates into the cells of microorganisms by passive diffusion and oxidizes various enzymes and nucleic acids. It is supposed to cause death. For this reason, in order to increase the sterilizing power of the chlorine-based disinfectant, it is effective to increase the abundance ratio of non-dissociative hypochlorous acid and to increase the hypochlorous acid concentration itself.
The non-dissociation type abundance ratio can be increased by adjusting the pH to the acidic range, and electrolyzed water, slightly acidic electrolyzed water, weakly acidic electrolyzed water, and strongly acidic electrolyzed water are used as pH-adjusted chlorinated disinfectants. However, in the case of containing the same concentration of chlorine, if the pH is less than 6.5, there is no difference in the bactericidal effect.
On the other hand, in order to enhance the sterilizing effect, development of a high-concentration type device is also in progress, but safety to the user and persistence in food after use become problems.
However, as a result of intensive studies by the inventor, a fine gas sterilizing agent, an aqueous solution mainly containing hypochlorous acid and a single gas of carbon dioxide or nitrogen gas, or a mixed gas of nitrogen gas and carbon dioxide is fine. It has been found that the bactericidal effect can be improved against bacterial spores without increasing the chlorine concentration by combining bubbles.
The present invention has been completed based on the new knowledge obtained by the present inventors.
 本発明の一態様にかかる塩素系殺菌剤は、窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有する次亜塩素酸の水溶液である。
 次亜塩素酸は、塩の形態で塩素系殺菌剤に含まれていてもよい。次亜塩素酸の塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等を挙げることができる。
 塩素系殺菌剤である次亜塩素酸の水溶液としては、強酸性電解水、弱酸性電解水、微酸性電解水、次亜塩素酸または次亜塩素酸の塩を水に溶解して得た次亜塩素酸水溶液、塩素を水に溶解させて得た次亜塩素酸水溶液等を挙げることができる。これらの1種を、あるいは必要に応じてまたは2種以上の混合物を用いることができる。
The chlorine-based disinfectant according to one embodiment of the present invention is an aqueous solution of hypochlorous acid containing fine bubbles of a single gas of nitrogen gas or carbon dioxide, or a mixed gas of nitrogen gas and carbon dioxide.
Hypochlorous acid may be contained in the chlorine-based disinfectant in the form of a salt. Examples of hypochlorous acid salts include sodium hypochlorite and calcium hypochlorite.
The aqueous solution of hypochlorous acid, which is a chlorine-based disinfectant, is obtained by dissolving strong acidic electrolyzed water, weakly acidic electrolyzed water, slightly acidic electrolyzed water, hypochlorous acid or hypochlorous acid salt in water. Examples thereof include a chlorous acid aqueous solution and a hypochlorous acid aqueous solution obtained by dissolving chlorine in water. One of these, or a mixture of two or more can be used as necessary.
 微細気泡の生成法は特に限定されず、本発明において目的とする殺菌効果を得ることができる微細気泡を次亜塩素酸の水溶液中に含有させることができる方法であればよい。微細気泡の生成法としては、加圧溶解式生成法及び加圧せん断式生成法等を挙げることができる。
 加圧溶解式または加圧せん断式の微細気泡生成装置による微細気泡の生成は以下のプロセスにより行うことができる。
 目的容量に合わせて容器内に準備した水または次亜塩素酸を含む水溶液中に、微細気泡生成装置に接続されている微細気泡生成部を差し込み、室温にて微細気泡生成装置を稼働させる。微細気泡生成装置には微細気泡生成部が接続されている箇所以外に、窒素や二酸化炭素のガス、あるいはこれらの混合ガスが供給される接続部と、水、または次亜塩素酸水溶液が供給される接続部があり、微細気泡生成装置内部にてガスと水、または次亜塩素酸水溶液を混合した後、こうして得られた混合物は微細気泡生成部が接続された接続部から排出され、容器内の水または次亜塩素酸水溶液中に供給されて、微細気泡が発生する。
 必要に応じて、容器内に準備した水または次亜塩素酸を含む水溶液を微細気泡生成装置に供給したり、容器内に得られた微細気泡を含む水、または微細気泡を含む次亜塩素酸の水溶液を微細気泡生成装置に供給して容器内と微細気泡生成装置を循環させてもよい。
 ガスと水または次亜塩素酸水溶液の混合物の調製のための微細気泡生成装置の有するポンプについてはどのような形式でもよく、気液混合能力が高いものが好適である。
 上述した通り、微細気泡生成装置としては、ガスと水または次亜塩素酸水溶液を混合する際に加圧した後、排出時に減圧させることで微細気泡を生成させる加圧溶解式や、気泡のせん断により微細気泡を生成するせん断式などが知られており、これらから目的とする微細気泡を得ることができる微細気泡生成装置を選択して用いることができる。
The method for producing fine bubbles is not particularly limited, and any method can be used as long as fine bubbles capable of obtaining the intended bactericidal effect in the present invention can be contained in an aqueous solution of hypochlorous acid. Examples of the method for generating fine bubbles include a pressure dissolution type generation method and a pressure shear type generation method.
Generation of fine bubbles by a pressure dissolution type or pressure shear type fine bubble generation apparatus can be performed by the following process.
The fine bubble generating unit connected to the fine bubble generating device is inserted into an aqueous solution containing water or hypochlorous acid prepared in the container according to the target volume, and the fine bubble generating device is operated at room temperature. In addition to the location where the microbubble generator is connected, the microbubble generator is supplied with water or a hypochlorous acid aqueous solution and a connecting section to which a gas of nitrogen or carbon dioxide or a mixed gas thereof is supplied. After mixing gas and water or hypochlorous acid aqueous solution inside the microbubble generator, the mixture thus obtained is discharged from the connection section to which the microbubble generator is connected, Are supplied into water or a hypochlorous acid aqueous solution to generate fine bubbles.
If necessary, the water prepared in the container or an aqueous solution containing hypochlorous acid is supplied to the microbubble generator, the water containing the microbubbles obtained in the container, or the hypochlorous acid containing the microbubbles. The aqueous solution may be supplied to the fine bubble generating device to circulate the inside of the container and the fine bubble generating device.
The pump of the microbubble generator for preparing a mixture of gas and water or hypochlorous acid aqueous solution may be of any type, and preferably has a high gas-liquid mixing capability.
As described above, the fine bubble generating device includes a pressure-dissolving method that generates fine bubbles by applying pressure when mixing gas and water or an aqueous hypochlorous acid solution, and then reducing the pressure during discharge, and shearing of bubbles. A shearing type for generating fine bubbles is known, and a fine bubble generating device capable of obtaining the desired fine bubbles can be selected and used.
 微細気泡のサイズは1000nm以下が好ましく、50nm~500nmの範囲にあることがより好ましい。また、微細気泡の平均サイズは、50nm~200nmの範囲にあることが更に好ましい。
 塩素系殺菌剤に含まれる微細気泡の個数は、目的とする殺菌効果が得られる範囲内であれば、特に限定されない。この気体成分含有量の下限に関しては、1mLあたりに少なくとも10個であればよく、更に、1mLあたりに少なくとも10個であることが好ましく、1mLあたり少なくとも10個であることがより好ましい。
 微細気泡の個数の上限は、特に限定されず、微細気泡の個数の上昇に対する殺菌効果の変化を実験等により確認して、微細気泡の個数の上昇が殺菌効果の更なる向上を与えない微細気泡の個数がある場合にはこの微細気泡の個数を上限として設定することができる。あるいは、製造装置や製造コストの観点から、微細気泡の個数の上限を設定することができる。
 微細気泡に含まれる気体は、炭酸ガスまたは窒素ガスの単一気体、あるいは炭酸ガスと窒素ガスの混合気体である。空気および酸素ガスは微細気泡の生成には利用されず、空気及び酸素ガスは微細気泡には含まれないか、あるいは炭酸ガス及び/または窒素ガスを用いることによる本発明の効果が得られる範囲内で実質的に含まれない。
The size of the fine bubbles is preferably 1000 nm or less, and more preferably in the range of 50 nm to 500 nm. The average size of the fine bubbles is more preferably in the range of 50 nm to 200 nm.
The number of fine bubbles contained in the chlorine-based disinfectant is not particularly limited as long as the desired disinfecting effect is obtained. The lower limit of the gas component content may be at least 10 6 per mL, more preferably at least 10 7 per mL, and more preferably at least 10 8 per mL.
The upper limit of the number of microbubbles is not particularly limited, and the change in the sterilization effect with respect to the increase in the number of microbubbles is confirmed by experiments, and the increase in the number of microbubbles does not give further improvement in the sterilization effect. Can be set as the upper limit. Alternatively, the upper limit of the number of fine bubbles can be set from the viewpoint of the manufacturing apparatus and manufacturing cost.
The gas contained in the fine bubbles is a single gas of carbon dioxide gas or nitrogen gas, or a mixed gas of carbon dioxide gas and nitrogen gas. Air and oxygen gas are not used for the generation of fine bubbles, and air and oxygen gas are not included in the fine bubbles, or within the range where the effects of the present invention can be obtained by using carbon dioxide gas and / or nitrogen gas. Is practically not included.
 微細気泡を含有する塩素系殺菌剤の調製方法は、目的とする微細気泡を含有する塩素系殺菌剤が得られる方法であれば、特に限定されない。例えば、以下の方法が利用できる。
(A)微細気泡を含有した水を用いて塩素系殺菌剤を調製する方法。
(B)塩素系殺菌剤中で微細気泡を含有させる方法。
 方法(A)及び方法(B)の少なくとも一方を用いることができる。
 方法(A)としては、微細気泡を含む水に、塩素、または次亜塩素酸及び次亜塩素酸の塩の少なくとも1種を添加して、あるいは、次亜塩素酸または次亜塩素酸の塩の少なくとも1種を含む水溶液を混合して塩素系殺菌剤を調製する方法、微細気泡を含む水に塩化水素(HCl)及び塩化ナトリウム(NaCl)の少なくとも一方を添加して電気分解により次亜塩素酸を生成して微細気泡を含有した塩素系殺菌剤を調製する方法が挙げられる。
 微細気泡含有水に殺菌有効成分を混合させる際には微細気泡の破裂を抑えるため、おだやかに混合させることが好ましい。
 方法(B)としては、塩素系殺菌剤としての次亜塩素酸の水溶液中に、先に挙げた微細気泡生成装置を用いて微細気泡を発生させる方法を利用することができる。例えば、次亜塩素酸を含む水溶液を微細気泡生成装置に供給して、次亜塩素酸を含む水溶液中で微細気泡を発生させ、得られた微細気泡及び次亜塩素酸を含む水溶液を、そのまま、あるいは、水または次亜塩素酸を含む水溶液によってその組成を調整して本発明にかかる殺菌剤を得ることができる。
The method for preparing the chlorine-based disinfectant containing fine bubbles is not particularly limited as long as the method can obtain the intended chlorine-based disinfectant containing fine bubbles. For example, the following method can be used.
(A) A method of preparing a chlorine-based disinfectant using water containing fine bubbles.
(B) A method of incorporating fine bubbles in a chlorine-based disinfectant.
At least one of the method (A) and the method (B) can be used.
As the method (A), at least one of chlorine, hypochlorous acid and hypochlorous acid salt is added to water containing fine bubbles, or hypochlorous acid or hypochlorous acid salt A method for preparing a chlorine-based disinfectant by mixing an aqueous solution containing at least one of the above, hypochlorous acid by electrolysis by adding at least one of hydrogen chloride (HCl) and sodium chloride (NaCl) to water containing fine bubbles A method for preparing a chlorine-based disinfectant containing fine bubbles by generating an acid is mentioned.
When mixing the sterilizing active ingredient in the water containing fine bubbles, it is preferable to mix gently to suppress the bursting of the fine bubbles.
As the method (B), a method of generating fine bubbles in an aqueous solution of hypochlorous acid as a chlorine-based disinfectant using the fine bubble generating apparatus mentioned above can be used. For example, an aqueous solution containing hypochlorous acid is supplied to a microbubble generator, fine bubbles are generated in an aqueous solution containing hypochlorous acid, and the obtained aqueous solution containing microbubbles and hypochlorous acid is used as it is. Alternatively, the disinfectant according to the present invention can be obtained by adjusting the composition with water or an aqueous solution containing hypochlorous acid.
 殺菌の対象となる微生物は、次亜塩素酸による殺菌効果が得られるものであれば、特に限定されない。細菌としては、バチルス属 (Bacillus属)、アリサイクロバチルス属(Alycyclobacillus属)、クロストリジウム属 (Clostridium属)細菌、などが挙げられる。また、パエニバチルス属(Paenibacillus属)、ゲオバチルス属(Geobacillus属)、オセアノバチルス属(Oceanobacillus属)など、バチルス属から独立した属の細菌も含まれる。バチルス属細菌としては、枯草菌(B. subtilis) 、セレウス菌(B. cereus)のほか、B. anthracis、B. thuringiensis、B. megaterium、B. coagulansなどに属する細菌が挙げられる。
 アリサイクロバチルス属細菌としては、A. acidoterrestris、A. acidiphilusなどが挙げられる。
 クロストリジウム細菌としては、ボツリヌス菌(C. botulinus)のほか、Clostridium sporogenes、C. perfringensなどが挙げられる。
 これらの細菌の芽胞に対しても本発明の微細気泡を含有する塩素系殺菌剤は有効である。
 本発明の微細気泡を含有する塩素系殺菌剤における有効塩素濃度は、目的とする殺菌効果が得られる範囲内であれば、特に限定されない。この有効塩素濃度の下限に関しては、有効塩素濃度が少なくとも10ppmであることが好ましい。有効塩素濃度の上限は、特に限定されず、有効塩素濃度の上昇に対する殺菌効果の変化を実験等により確認して、有効塩素濃度の上昇が殺菌効果の更なる向上を与えない有効塩素濃度がある場合にはこの濃度上限として設定することができる。あるいは、製造装置や製造コストの観点から、有効塩素濃度の上限を設定することができる。これらの観点から、有効塩素濃度は、10~200ppmの範囲から選択することができる。
The microorganism to be sterilized is not particularly limited as long as the sterilizing effect by hypochlorous acid is obtained. Examples of the bacterium include Bacillus genus (Bacillus genus), Alicyclobacillus genus (Alycyclobacillus genus), Clostridium genus (Clostridium genus) bacteria, and the like. In addition, bacteria belonging to a genus independent of the genus Bacillus such as the genus Paenibacillus, the genus Geobacillus, and the genus Oceanobacillus are also included. Examples of bacteria belonging to the genus Bacillus include bacteria belonging to B. subtilis, B. cereus, B. anthracis, B. thuringiensis, B. megaterium, B. coagulans, and the like.
Examples of Alicyclobacillus bacteria include A. acidoterrestris and A. acidiphilus.
Examples of Clostridium bacteria include Clostridium sporogenes and C. perfringens, as well as C. botulinus.
The chlorinated fungicide containing fine bubbles of the present invention is also effective against these bacterial spores.
The effective chlorine concentration in the chlorine-based disinfectant containing fine bubbles of the present invention is not particularly limited as long as the intended disinfecting effect is obtained. Regarding the lower limit of the effective chlorine concentration, the effective chlorine concentration is preferably at least 10 ppm. The upper limit of the effective chlorine concentration is not particularly limited, and there is an effective chlorine concentration at which the increase in the effective chlorine concentration does not give a further improvement in the bactericidal effect by confirming the change in the bactericidal effect with respect to the increase in the effective chlorine concentration by experiment etc. In this case, the upper limit of the density can be set. Or the upper limit of effective chlorine concentration can be set from a viewpoint of a manufacturing apparatus or manufacturing cost. From these viewpoints, the effective chlorine concentration can be selected from the range of 10 to 200 ppm.
 本発明にかかる微細気泡を含有する塩素系殺菌剤は、細菌芽胞の殺菌方法おける細菌芽胞に接触させてこれを殺菌する殺菌剤として好適に利用することができる。
 また、本発明にかかる微細気泡を含有する塩素系殺菌剤は、殺菌工程を有する食品製造方法における殺菌工程で用いる殺菌剤として使用することができる。例えば、加工食品製造用素材としての野菜、肉または魚などを殺菌してから加工食品を製造する際に、素材及び/または加工食品を殺菌する工程において素材及び/または加工食品に散布、浸漬等の方法により付与する殺菌剤として本発明にかかる微細気泡を含む塩素系殺菌剤を使用することができる。
The chlorine-based disinfectant containing fine bubbles according to the present invention can be suitably used as a disinfectant that is brought into contact with a bacterial spore in a method for sterilizing a bacterial spore to sterilize it.
Moreover, the chlorine-type disinfectant containing the microbubble concerning this invention can be used as a disinfectant used at the disinfection process in the foodstuff manufacturing method which has a disinfection process. For example, when manufacturing processed foods after sterilizing vegetables, meat or fish as processed food manufacturing materials, spraying, immersing, etc. in the materials and / or processed foods in the process of sterilizing the raw materials and / or processed foods A chlorine-based disinfectant containing fine bubbles according to the present invention can be used as the disinfectant applied by the method.
 (実施例1)微細気泡化に用いるガス種の検討
(a)方法
 微細気泡を含有する次亜塩素酸水は以下の方法にて調整した。
 水道水中に微細気泡を、加圧溶解式微細気泡生成装置(IDEC株式会社製)を用いて1Lあたり7.5分間発生させた。微細気泡発生用の気体としては、炭酸ガス、窒素ガス、酸素及び空気をそれぞれ個々に用いた。十分な時間をかけた微細気泡発生処理により、水道水中の気体成分は微細気泡発生用の気体に十分に置換され、微細気体発生用の気体からなる微細気体が水道水に生成する。こうして得られた微細気泡含有水に、塩酸を添加した後に微酸性電解水生成装置を用いて電気分解し、次亜塩素酸を生成した。
 なお、本実施例において用いた加圧溶解式微細気泡生成装置(IDEC株式会社製)により得られる微細気泡は、図7に示す微細気泡の分布を得ることができる。図7は、IDEC株式会社製のカタログ情報から引用した微細気泡の粒子径サイズ分布を示す図である(https://jp.idec.com/ja/technology/finebubble/ultrafineGALF.html参照)。この加圧溶解式微細気泡生成装置により得られる微細気泡を含む水は、1mLあたりの微細気泡密度が10個以上であり、なおかつ平均粒径が50nm~200nmの範囲内となることがわかる。
 各微細気泡含有電解水の殺菌力は芽胞形成細菌の1種であるバチルスサブチリスの芽胞を用いて確認した。この際、バチルスサブチリス芽胞は寒天培地を用いて培養して得られた菌体を精製水に懸濁させ、遠心分離により回収した後、70%エタノールに懸濁、遠心分離により回収した。精製水で再度懸濁、遠心分離による回収を行った後、1mL当たりの菌数が約1×10個となるように調整した。25℃の各微細気泡含有電解水100mLに菌液0.1mLを添加して混合後(初発菌数:約1×10個/mL)、添加5分経過後の生菌数を測定した。
 比較実験として、微細気泡を含有しない以外は上記と同様の方法で調製した電解水を用い、上記と同様にして5分経過後の生菌数を測定した。また、対照実験として、微細気泡含有電解水の代わりに、微細気泡生成前の水道水(微細気泡を含有しない水道水)、上記の方法により調製した微細気泡含有水道水(次亜塩素酸を含まない)を用いて同様の実験を行った。
(Example 1) Examination of gas species used for microbubble formation (a) Method Hypochlorous acid water containing microbubbles was prepared by the following method.
Fine bubbles were generated in tap water for 7.5 minutes per liter using a pressure dissolution type fine bubble generator (IDEC Corporation). Carbon dioxide gas, nitrogen gas, oxygen and air were used individually as the gas for generating fine bubbles. The gas component in tap water is sufficiently substituted with the gas for generating fine bubbles by the fine bubble generating process taking a sufficient time, and the fine gas composed of the gas for generating fine gas is generated in the tap water. After adding hydrochloric acid to the water containing fine bubbles thus obtained, electrolysis was performed using a slightly acidic electrolyzed water generator to generate hypochlorous acid.
In addition, the fine bubble obtained by the pressure dissolution type | formula fine bubble production | generation apparatus (made by IDEC Corporation) used in the present Example can obtain distribution of the fine bubble shown in FIG. FIG. 7 is a diagram showing the particle size distribution of fine bubbles quoted from catalog information manufactured by IDEC Corporation (see https://jp.idec.com/en/technology/finebubble/ultrafineGALF.html). It can be seen that the water containing fine bubbles obtained by this pressure dissolution type fine bubble generating apparatus has a fine bubble density of 10 6 or more per mL and an average particle diameter in the range of 50 nm to 200 nm.
The bactericidal power of each microbubble-containing electrolyzed water was confirmed by using spores of Bacillus subtilis, which is one kind of spore-forming bacteria. At this time, Bacillus subtilis spores were cultured in an agar medium, suspended in purified water, collected by centrifugation, suspended in 70% ethanol, and collected by centrifugation. After resuspending with purified water and collecting by centrifugation, the number of bacteria per mL was adjusted to about 1 × 10 8 . After adding and mixing 0.1 mL of bacterial solution to 100 mL of each microbubble-containing electrolyzed water at 25 ° C. (initial number of bacteria: about 1 × 10 5 cells / mL), the number of viable cells after 5 minutes from the addition was measured.
As a comparative experiment, the number of viable bacteria after 5 minutes was measured in the same manner as described above using electrolyzed water prepared by the same method as described above except that fine bubbles were not contained. In addition, as a control experiment, instead of electrolyzed water containing fine bubbles, tap water before the production of fine bubbles (tap water not containing fine bubbles), tap water containing fine bubbles prepared by the above method (including hypochlorous acid) The same experiment was conducted using
(b)結果
 炭酸ガスまたは窒素ガスを微細気泡化した電解水で、微細気泡を含有していない電解水よりも芽胞に対して明らかな生菌数の減少が見られた(図1:炭酸ガス+電解水、窒素ガス+電解水、電解水)。
 一方、酸素を微細気泡化させた電解水及び空気を微細気泡化させた電解水は生菌数の減少は微細気泡を含有していない電解水と同じであった(図1:酸素+電解水、空気+電解水、電解水)。
 微細気泡を含有する水道水(図1:無処理)では、通常の水道水と同様に生菌数の減少は見られなかった。
 以上のことより、窒素ガスと炭酸ガスを微細気泡化することで、電解水の殺菌力を向上させる効果があることが分かった。
(B) Results In the electrolyzed water in which carbon dioxide gas or nitrogen gas was made into fine bubbles, a clear decrease in the number of viable bacteria with respect to spores was observed compared to the electrolyzed water not containing fine bubbles (FIG. 1: carbon dioxide gas). + Electrolyzed water, nitrogen gas + electrolyzed water, electrolyzed water).
On the other hand, the decrease in the number of viable bacteria in the electrolyzed water in which oxygen was made into fine bubbles and the electrolyzed water in which air was made into fine bubbles was the same as the electrolyzed water containing no fine bubbles (FIG. 1: oxygen + electrolyzed water). , Air + electrolyzed water, electrolyzed water).
In tap water containing fine bubbles (FIG. 1: untreated), the number of viable bacteria was not reduced as in normal tap water.
From the above, it was found that there is an effect of improving the sterilizing power of the electrolyzed water by making fine bubbles of nitrogen gas and carbon dioxide gas.
(実施例2)微細気泡化ガスと非微細気泡化ガスの殺菌力比較
(a)方法
 微細気泡ガスを含有する電解水とバチルスサブチリス芽胞の調製と殺菌力の確認は実施例1と同様の方法を用いて行った。
 非微細気泡化ガスを含有する電解水は、水道水中に炭酸ガスまたは窒素ガスを通気した後、実施例1と同様に微酸性電解水を生成することにより得た。対照実験として、微細気泡含有電解水の代わりに微細気泡生成前の水道水(微細気泡を含有しない水道水:無処理)、上記の方法により調製した微細気泡含有水道水(次亜塩素酸を含まない:微細気泡のみ)を用いて同様の実験を行った。
(b)結果
 得られた結果を図2及び図3に示す。
 窒素ガス、炭酸ガスともに微細気泡化することで各ガスを通気処理した際に比較して生菌数の減少が見られた。また、窒素ガスおよび炭酸ガスともに微細気泡のみでは生菌数の変化は認められなかった。以上より、窒素ガスと炭酸ガスを微細気泡は電解水と併用することで殺菌効果を向上させ、特に微細気泡化の工程が電解水の殺菌力を向上する際に必要であることが分かった。
(Example 2) Comparison of bactericidal power between microbubble gas and non-microbubble gas (a) Method Preparation of electrolyzed water and Bacillus subtilis spores containing microbubble gas and confirmation of bactericidal power are the same as in Example 1. The method was used.
The electrolyzed water containing the non-microbubble gas was obtained by producing slightly acidic electrolyzed water in the same manner as in Example 1 after aeration of carbon dioxide gas or nitrogen gas into tap water. As control experiments, tap water before generation of fine bubbles (tap water not containing fine bubbles: no treatment) instead of electrolyzed water containing fine bubbles, tap water containing fine bubbles prepared by the above method (including hypochlorous acid) No: only fine bubbles) were used for the same experiment.
(B) Results The results obtained are shown in FIGS.
Nitrogen gas and carbon dioxide gas were microbubbled to reduce the number of viable bacteria compared to when each gas was aerated. Moreover, no change in the number of viable bacteria was observed with only fine bubbles in both nitrogen gas and carbon dioxide gas. From the above, it was found that the fine bubbles of nitrogen gas and carbon dioxide gas are used together with the electrolyzed water to improve the sterilizing effect, and in particular, the step of making microbubbles is necessary for improving the sterilizing power of the electrolyzed water.
(実施例3)微細気泡と電解水の組み合わせ順序の検討
(a)方法
 微細気泡ガスを含有する電解水(微細気泡化→電解水)とバチルスサブチリス芽胞の調製と殺菌力の確認は実施例1と同様の方法を用いて行った。
 更に、本実施例として、微細気泡含有水道水の代わりに、水道水を用いた以外は実施例1と同様の方法で電解水を調製し、この電解水中に実施例1と同様の方法により微細気泡を生成して、微細気泡含有塩素系殺菌剤(電解水→微細気泡化)を得た。
(b)結果
 窒素ガスを用いて得られた結果を図4に、炭酸ガスを用いて得られた結果を図5に示す。
 電解水化の後、窒素ガスまたは炭酸ガスの微細気泡を含有させた場合でも、微細気泡を含まない電解水よりも生菌数の減少が見られた(図4、図5:電解水→微細気泡化)。
 一方、炭酸ガス、窒素ガスの微細気泡の両方の場合において、電解水化前に微細気泡を含有させることで最も生菌数が減少した(図4、図5:微細気泡化→電解水)。
 以上の結果より、電解水化前に微細気泡化を行うことが最も強い殺菌力を保持させることができるが、電解水化後に微細気泡を含有させた場合でも殺菌力は向上することが示された。
(実施例4)
(a)方法
 実施例1と同様の方法にて調製した窒素ガス微細気泡を含有した電解水(窒素ガス+電解水)を利用して、好気性細菌の芽胞(セレウス菌芽胞、リケニフォルミス菌芽胞)および嫌気性細菌の芽胞(クロストリジウム菌芽胞)に対する殺菌試験を実施した。
 対照実験として、微細気泡含有電解水の代わりに微細気泡生成前の水道水(微細気泡を含有しない水道水:無処理)、上記の方法により調製した微細気泡含有水道水(次亜塩素酸を含まない:電解水)を用いて同様の実験を行った。
(b)結果
 得られた結果を図6に示す。
 好気性細菌の芽胞(セレウス菌芽胞、リケニフォルミス菌芽胞)ともに微細気泡と電解水を併用することで、電解水のみでの処理に比べて生菌数の減少が認められた。特にリケニフォルミス菌芽胞に対しては電解水のみでは殆んど殺菌できないが、微細気泡を併用することで殺菌が可能となることが分かる。一方、嫌気性細菌の芽胞に対しては電解水のみで検出限界以下まで減少させることが可能であった。このことから、微細気泡と塩素系殺菌剤の併用は幅広く細菌の芽胞に対して効果を示すとともに、従来の塩素系殺菌剤のみでは殺菌が困難な細菌の芽胞に対しても効果を示すことが明らかとなった。
(Example 3) Examination of combination order of microbubbles and electrolyzed water (a) Method Preparation of electrolyzed water containing microbubble gas (microbubble formation → electrolyzed water) and Bacillus subtilis spore and confirmation of bactericidal activity are examples The same method as in No. 1 was used.
Furthermore, as this example, electrolyzed water was prepared by the same method as in Example 1 except that tap water was used instead of the fine bubble-containing tap water, and this electrolyzed water was fined by the same method as in Example 1. Bubbles were generated to obtain a fine bubble-containing chlorine-based disinfectant (electrolyzed water → fine bubbles).
(B) Results FIG. 4 shows the results obtained using nitrogen gas, and FIG. 5 shows the results obtained using carbon dioxide gas.
Even when nitrogen gas or carbon dioxide fine bubbles were included after electrolyzing, the number of viable bacteria was reduced as compared with electrolyzed water not containing fine bubbles (FIGS. 4 and 5: electrolyzed water → fine). Aeration).
On the other hand, in the case of both fine bubbles of carbon dioxide gas and nitrogen gas, the viable cell count was most reduced by containing fine bubbles before electrolyzing (FIGS. 4 and 5: microbubble formation → electrolyzed water).
From the above results, it is shown that the microbiculation before electrolyzing can retain the strongest bactericidal power, but the bactericidal power is improved even when microbubbles are contained after electrolyzing. It was.
(Example 4)
(A) Method Using electrolyzed water (nitrogen gas + electrolyzed water) containing nitrogen gas fine bubbles prepared by the same method as in Example 1, aerobic bacterial spores (Cereus spores, Rikeniformis spores) And bactericidal tests against anaerobic bacterial spores (Clostridial spores).
As control experiments, tap water before generation of fine bubbles (tap water not containing fine bubbles: no treatment) instead of electrolyzed water containing fine bubbles, tap water containing fine bubbles prepared by the above method (including hypochlorous acid) No: Electrolytic water) was used for the same experiment.
(B) Results The results obtained are shown in FIG.
The use of microbubbles and electrolyzed water in combination with aerobic bacterial spores (Cereus spores, Rikeniformis spores) resulted in a reduction in the number of viable bacteria compared to treatment with electrolyzed water alone. In particular, it can be seen that Rikeniformis spores can hardly be sterilized only with electrolyzed water, but can be sterilized by using microbubbles in combination. On the other hand, it was possible to reduce the anaerobic bacterial spores to below the detection limit with electrolyzed water alone. Therefore, the combined use of microbubbles and chlorinated germicides is effective against a wide range of bacterial spores, and may also be effective against bacterial spores that are difficult to sterilize with conventional chlorinated germicides alone. It became clear.
(実施例5)
(a)方法
 実施例1と同様の方法にて調製した微細気泡ガスを含有する電解水を25℃で、密閉容器内で、室内で7日間保存し、バチルスサブチリス芽胞の調製と殺菌力の確認は実施例1と同様の方法を用いて行った。
(b)結果
 得られた結果を表1に示す。
 窒素ガスおよび炭酸ガスのそれぞれを微細気泡化させることで、微細気泡を含有しない電解水に比べて殺菌効果が持続することが分かる。
(Example 5)
(A) Method Electrolyzed water containing fine bubble gas prepared by the same method as in Example 1 is stored indoors in a sealed container at 25 ° C. for 7 days, and the Bacillus subtilis spores are prepared and sterilized. The confirmation was performed using the same method as in Example 1.
(B) Results Table 1 shows the results obtained.
It can be seen that the bactericidal effect is sustained by making each of the nitrogen gas and the carbon dioxide gas into fine bubbles as compared with electrolyzed water not containing fine bubbles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (13)

  1.  次亜塩素酸の水溶液に、窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有することを特徴とする塩素系殺菌剤。 A chlorine-based disinfectant characterized in that the aqueous solution of hypochlorous acid contains fine bubbles of a single gas of nitrogen gas or carbon dioxide, or a mixed gas of nitrogen gas and carbon dioxide.
  2.  微細気泡のサイズが1000nm以下である、請求項1記載の塩素系殺菌剤。 The chlorine-based disinfectant according to claim 1, wherein the size of fine bubbles is 1000 nm or less.
  3.  次亜塩素酸の水溶液が塩化水素(HCl)または塩化ナトリウム(NaCl)を含む水の電気分解生成物である、請求項1または2に記載の塩素系殺菌剤。 The chlorine-based disinfectant according to claim 1 or 2, wherein the aqueous solution of hypochlorous acid is an electrolysis product of water containing hydrogen chloride (HCl) or sodium chloride (NaCl).
  4.  細胞芽胞の殺菌用である請求項1乃至3のいずれか1項に記載の塩素系殺菌剤。 The chlorine-based disinfectant according to any one of claims 1 to 3, which is used for disinfecting cell spores.
  5.  食品に含まれる細胞芽胞の殺菌用である請求項4に記載の塩素系殺菌剤。 The chlorine-based disinfectant according to claim 4, which is used for disinfecting cell spores contained in food.
  6.  窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有する塩素系殺菌剤の製造方法であって、次亜塩素酸を含む水溶液に窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有させることを特徴とする塩素系殺菌剤の製造方法。 A method for producing a chlorine-based disinfectant containing fine bubbles of a single gas of nitrogen gas or carbon dioxide or a mixed gas of nitrogen gas and carbon dioxide, wherein nitrogen gas or carbon dioxide is added to an aqueous solution containing hypochlorous acid A method for producing a chlorine-based disinfectant characterized by containing fine bubbles of a single gas or a mixed gas of nitrogen gas and carbon dioxide gas.
  7.  次亜塩素酸を含む水溶液中で、窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を発生させる工程を有する請求項6に記載の塩素系殺菌剤の製造方法。 The chlorine-based disinfectant according to claim 6, further comprising a step of generating fine bubbles of nitrogen gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas in an aqueous solution containing hypochlorous acid. Production method.
  8.  微細気泡を含む水中で、次亜塩素酸を発生させる工程を有する請求項6に記載の塩素系殺菌剤の製造方法。 The method for producing a chlorine-based disinfectant according to claim 6, comprising a step of generating hypochlorous acid in water containing fine bubbles.
  9.  次亜塩素酸を発生させる工程が、微細気泡を含む水に、塩素、または次亜塩素酸及び次亜塩素酸の塩の少なくとも1種、あるいは、次亜塩素酸または次亜塩素酸の塩の少なくとも1種を含む水溶液を混合する工程を含む請求項8に記載の塩素系殺菌剤の製造方法。 The step of generating hypochlorous acid is carried out by adding at least one of chlorine, hypochlorous acid and hypochlorous acid salt, or hypochlorous acid or hypochlorous acid salt to water containing fine bubbles. The manufacturing method of the chlorine-type disinfectant of Claim 8 including the process of mixing the aqueous solution containing at least 1 sort (s).
  10.  窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有する塩素系殺菌剤の製造方法であって、窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有させた水に、塩化水素(HCl)または塩化ナトリウム(NaCl)を添加して原料水を得た後、該原料水の電気分解を行うことにより窒素ガスまたは炭酸ガスの単一気体、または、窒素ガスと炭酸ガスの混合ガスの微細気泡を含有する塩素系殺菌剤を得ることを特徴とする塩素系殺菌剤の製造方法。 A method for producing a chlorine-based disinfectant containing fine bubbles of a single gas of nitrogen gas or carbon dioxide or a mixed gas of nitrogen gas and carbon dioxide, wherein the single gas of nitrogen gas or carbon dioxide or nitrogen After adding raw material water by adding hydrogen chloride (HCl) or sodium chloride (NaCl) to water containing fine bubbles of a mixed gas of gas and carbon dioxide, nitrogen is obtained by electrolyzing the raw material water. A method for producing a chlorine-based disinfectant comprising obtaining a chlorine-based disinfectant containing fine bubbles of a single gas or carbon dioxide gas or a mixed gas of nitrogen gas and carbon dioxide gas.
  11.  細菌芽胞の殺菌方法であって、請求項4または5に記載の塩素系殺菌剤を細胞芽胞に接触させることを特徴とする殺菌方法。 A method for sterilizing bacterial spores, wherein the chlorinated germicide according to claim 4 or 5 is brought into contact with cell spores.
  12.  食品の殺菌方法であって、請求項1乃至3のいずれか1項に記載の塩素系殺菌剤を用いることを特徴とする食品の殺菌方法。 A food sterilization method, wherein the chlorinated fungicide according to any one of claims 1 to 3 is used.
  13.  殺菌工程を有する食品製造における、請求項1乃至4のいずれか1項に記載の塩素系殺菌剤または請求項6乃至10のいずれか1項に記載の製造方法により製造された塩素系殺菌剤の前記殺菌工程での使用。 In the manufacture of food having a sterilization step, the chlorine-based disinfectant according to any one of claims 1 to 4 or the chlorine-based disinfectant manufactured by the production method according to any one of claims 6 to 10. Use in the sterilization process.
PCT/JP2016/069519 2016-06-30 2016-06-30 Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method WO2018003087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/069519 WO2018003087A1 (en) 2016-06-30 2016-06-30 Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method
JP2018524683A JPWO2018003087A1 (en) 2016-06-30 2016-06-30 Bactericidal agent combining chlorine-based germicidal agent and microbubbles, and sterilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069519 WO2018003087A1 (en) 2016-06-30 2016-06-30 Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method

Publications (1)

Publication Number Publication Date
WO2018003087A1 true WO2018003087A1 (en) 2018-01-04

Family

ID=60786273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069519 WO2018003087A1 (en) 2016-06-30 2016-06-30 Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method

Country Status (2)

Country Link
JP (1) JPWO2018003087A1 (en)
WO (1) WO2018003087A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019230764A1 (en) * 2018-05-30 2021-08-26 株式会社アクアソリューション Fruit antifungal method and fruit antifungal composition
WO2022271953A1 (en) * 2021-06-23 2022-12-29 Biomist, Inc. Nitrogen generation and sanitizing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240742A (en) * 2012-05-18 2013-12-05 Shinwa:Kk Slightly acidic hypochlorous acid water containing fine bubble methods for producing and using the same
US20150010604A1 (en) * 2012-02-29 2015-01-08 Sunstar Engineering Inc. Bactericidal agent composition
WO2015071995A1 (en) * 2013-11-14 2015-05-21 古米 保 Slightly-acidic aqueous hypochlorous acid solution containing ultrafine bubbles, method for producing same, and method for using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150010604A1 (en) * 2012-02-29 2015-01-08 Sunstar Engineering Inc. Bactericidal agent composition
JP2013240742A (en) * 2012-05-18 2013-12-05 Shinwa:Kk Slightly acidic hypochlorous acid water containing fine bubble methods for producing and using the same
WO2015071995A1 (en) * 2013-11-14 2015-05-21 古米 保 Slightly-acidic aqueous hypochlorous acid solution containing ultrafine bubbles, method for producing same, and method for using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATSURO UEKI ET AL.: "Bactericidal Activity of Nano-Bubble Slightly Acidic Hypochlorous Water against Heat Resistant Bacterial Spores and its Application for Koji-making Plant washing", JOURNAL OF SOY SAUCE RESEARCH AND TECHNOLOGY, vol. 40, no. 4, 2014, pages 211 - 217 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019230764A1 (en) * 2018-05-30 2021-08-26 株式会社アクアソリューション Fruit antifungal method and fruit antifungal composition
WO2022271953A1 (en) * 2021-06-23 2022-12-29 Biomist, Inc. Nitrogen generation and sanitizing system

Also Published As

Publication number Publication date
JPWO2018003087A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
Patange et al. Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling
JP3004958B2 (en) Disinfectant preparation
US20100189805A1 (en) Electrochemically treated water, method and device for the production thereof, and the use thereof as a disinfection agent
CN111569683B (en) High-concentration long-acting ozone nano bubble aqueous solution and preparation method thereof
CN107018990A (en) A kind of disinfectant of decomposable asymmetric choice net formaldehyde
US20150119245A1 (en) Method for Producing Shelf Stable Hypochlorous Acid Solutions
CN110952108A (en) Production method for improving stability of hypochlorous acid solution
JP2008507399A (en) Water treatment
CN103503922A (en) Disinfection powder for hospital wastewater disinfection
WO2018003087A1 (en) Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method
US10993448B2 (en) Method for sanitizing fresh produce
JP2002249407A (en) Sterilizing disinfectant
US20040171687A1 (en) Sporicidal composition
US20200056293A1 (en) Electrolysis apparatus capable of producing disinfectant or cleaning agent, and electrolysis method therefor
JP6310745B2 (en) Bactericidal composition
KR102447491B1 (en) composition for kiling endospores containing hypochlorous acid and phytic acid
CN105010333A (en) Bactericide and use thereof
JP2010057429A (en) Method for sterilizing food
Kim et al. Application sanitizer for the control of microorganisms in food
JP4925215B2 (en) Method for sterilization or inactivation of spore bacteria
JP2000107265A (en) Alkaline ion agent for sterilization and disinfection
CN113907072A (en) Preparation method of high-precision weak acid hypochlorite disinfectant
CN111657274A (en) Activation-free pure chlorine dioxide solution and preparation method thereof
JP2008088062A (en) Bactericide composition
JP2001253803A (en) Bactericidal composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907320

Country of ref document: EP

Kind code of ref document: A1