WO2017212571A1 - Air-conditioning system and relay unit - Google Patents
Air-conditioning system and relay unit Download PDFInfo
- Publication number
- WO2017212571A1 WO2017212571A1 PCT/JP2016/067054 JP2016067054W WO2017212571A1 WO 2017212571 A1 WO2017212571 A1 WO 2017212571A1 JP 2016067054 W JP2016067054 W JP 2016067054W WO 2017212571 A1 WO2017212571 A1 WO 2017212571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indoor unit
- flow path
- water
- unit
- heat source
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
Definitions
- the present invention relates to a technique for air conditioning in a building.
- a water-type air conditioning system that performs air conditioning by circulating cold water or hot water to an indoor unit (for example, Patent Document 1), it is about 7 ° C. in summer (that is, cooling operation) and in winter (that is, heating operation) by a heat source unit. , Cold / hot water whose temperature is adjusted to about 45 ° C. is generated and sent to the indoor unit.
- the indoor air temperature (room temperature) is lowered by the heat exchange of the cold / hot water of 7 ° C. with the indoor air in the indoor unit.
- the temperature of the cold / hot water after heat exchange rises to about 12 ° C., and is returned from the indoor unit to the heat source unit.
- the indoor unit has a flow rate adjustment valve on the inflow side of the cold / hot water (inlet side of the heat exchanger), and reduces the air conditioning capacity by reducing the amount of cold / warm water flow as the room temperature approaches the set temperature.
- the cold / hot water flowing into the indoor unit at 7 ° C. rises to a temperature higher than 12 ° C. and returns to the heat source unit.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system or the like that can prevent the occurrence of dew dripping or dew jumping.
- an air conditioning system includes: A heat source unit, a relay unit, and a first indoor unit and a second indoor unit connected to the relay unit,
- the repeater is A parallel flow path for guiding water from the heat source unit in parallel to the first indoor unit and the second indoor unit; A series flow path for guiding the water to the first indoor unit and the second indoor unit in a predetermined order; Switching means for switching the flow path of the water from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path.
- the relay unit guides the water from the heat source unit to the first indoor unit and the second indoor unit in parallel, and the water from the heat source unit to the first indoor unit and the second indoor unit.
- a switching means for switching the flow path of water from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path.
- FIG. 1 is a diagram showing a configuration of an air conditioning system according to an embodiment of the present invention.
- This air conditioning system is a system that performs air conditioning of a building such as an office building with cold water or hot water (hereinafter referred to as cold / hot water), and includes a heat source unit 1, a relay unit 2, and a plurality of indoor units 3 (indoor units 3a, An indoor unit 3b), a temperature sensor 4, and a remote controller 5 are included.
- the heat source device 1 is connected to the relay device 2 via the pipe 6, and sends cold / hot water whose temperature is controlled by a heat pump to the relay device 2.
- the heat source device 1 includes a compressor 10, a four-way valve 11, a first heat exchanger 12, an expansion valve 13, a second heat exchanger 14, a fan 15, and a pump 16.
- the control board 17 is provided.
- the compressor 10, the four-way valve 11, the first heat exchanger 12, the expansion valve 13, and the second heat exchanger 14 are connected in an annular shape so that a refrigerant such as CO 2 or HFC (hydrofluorocarbon) is circulated.
- the refrigerant circuit also referred to as a refrigeration cycle circuit
- the refrigerant circuit also referred to as a refrigeration cycle circuit
- the compressor 10 compresses the refrigerant to increase the temperature and pressure.
- the compressor 10 includes an inverter circuit that can change a capacity (a delivery amount per unit) according to a driving frequency.
- the compressor 10 changes the drive frequency according to a command from the control board 17.
- the four-way valve 11 is a valve for switching the refrigerant circulation direction.
- the four-way valve 11 is switched as shown by the solid line in FIG. 2 during the cooling operation. Accordingly, the refrigerant circulates in the order of the compressor 10, the four-way valve 11, the first heat exchanger 12, the expansion valve 13, and the second heat exchanger 14.
- the four-way valve 11 is switched as indicated by a broken line. Accordingly, the refrigerant circulates in the order of the compressor 10, the four-way valve 11, the second heat exchanger 14, the expansion valve 13, and the first heat exchanger 12.
- the first heat exchanger 12 is a fin-and-tube heat exchanger of a cross fin type configured by, for example, a heat transfer tube and a large number of fins, which exchange heat between the outside air and the refrigerant.
- the fan 15 is, for example, a centrifugal fan or a multiblade fan driven by a DC fan motor or the like, and supplies outside air to the first heat exchanger 12.
- the rotational speed of the fan 15, that is, the flow rate of the outside air supplied to the first heat exchanger 12 is changed according to a command from the control board 17.
- the expansion valve 13 is a flow rate adjustment valve for adjusting the flow rate of the refrigerant, and is, for example, an electronic expansion valve capable of adjusting the opening of the throttle by a stepping motor (not shown).
- a mechanical expansion valve, a capillary tube, or the like that employs a diaphragm for the pressure receiving portion may be employed.
- the opening degree of the expansion valve 13 is changed according to a command from the control board 17.
- the second heat exchanger 14 is a plate-type or double-tube type heat exchanger, and performs heat exchange between the refrigerant and the cold / hot water.
- the pump 16 conveys the cold / hot water heat-exchanged by the 2nd heat exchanger 14 to the relay machine 2.
- FIG. The pump 16 includes an inverter circuit, and the drive rotational speed is changed in accordance with a command from the control board 17. Thereby, the flow volume of the cold / hot water conveyed to the relay machine 2, ie, the amount of water flow, can be changed.
- the control board 17 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication interface, a readable / writable nonvolatile semiconductor memory, and the like (none of which are shown).
- the control board 17 is communicably connected to the compressor 10, the four-way valve 11, the expansion valve 13, the fan 15, and the pump 16 via a communication line (not shown). Further, the control board 17 is communicably connected to the control board 28 of the repeater 2 shown in FIG. 3 via a communication line (not shown).
- control board 17 When the control board 17 receives a command to start operation from the repeater 2, the control board 17 controls the four-way valve 11 and switches the refrigerant circulation direction according to the type of operation mode (cooling operation or heating operation). Moreover, the control board 17 controls each of the compressor 10, the expansion valve 13, and the fan 15 so that the cold / hot water supplied to the relay machine 2 becomes preset temperature according to the operation mode. In the present embodiment, the control board 17 controls each of the above components so that the cool / warm water supplied to the relay unit 2 is 7 ° C. in the cooling operation and 45 ° C. in the heating operation.
- control board 17 adjusts the flow rate of the cold / warm water conveyed to the relay unit 2 by controlling the pump 16 based on the information on the water flow amount notified from the relay unit 2 during the cooling operation or the heating operation.
- the relay unit 2 is connected to the heat source unit 1 through the pipe 6 and to the indoor unit 3a and the indoor unit 3b through the pipe 7a and the pipe 7b.
- the relay unit 2 relays the cold / hot water supplied from the heat source unit 1 and supplies it to the indoor unit 3a and the indoor unit 3b.
- the repeater 2 includes flow rate adjusting valves 20 and 21, on-off valves 22 to 25, temperature sensors 26a, 26b, and 27, and a control board 28.
- the flow rate adjusting valves 20 and 21 change the flow rate of the cold / hot water supplied to the indoor unit 3a and the indoor unit 3b in accordance with a command from the control board 28.
- the on-off valves 22 to 25 are opened or closed according to a command from the control board 28.
- the flow rate adjusting valves 20 and 21 and the on-off valves 22 to 25 constitute switching means in the present invention.
- the temperature sensor 26a measures the temperature of the cold / hot water discharged from the indoor unit 3a (the outlet temperature of the indoor unit 3a).
- the temperature sensor 26b measures the temperature of the cold / hot water discharged from the indoor unit 3b (the outlet temperature of the indoor unit 3b).
- the temperature sensor 27 measures the temperature (inlet temperature) of cold / hot water that has entered from the relay unit 2.
- the temperature sensors 26a, 26b, and 27 transmit data indicating the measured temperatures to the control board 28 at a predetermined timing (for example, every predetermined time).
- the control board 28 includes a CPU, a ROM, a RAM, a communication interface, a readable / writable non-volatile semiconductor memory, and the like (all not shown).
- the control board 28 is communicably connected to each of the flow rate adjusting valves 20 and 21, the on-off valves 22 to 25, and the temperature sensors 26a, 26b, and 27 via a communication line (not shown), and as described above,
- the control board 17 is communicably connected via a communication line (not shown). Further, as shown in FIG. 1, the control board 28 is communicably connected to the temperature sensor 4 that measures the indoor air temperature (room temperature) via the communication line 8 and communicates with the remote controller 5 via the communication line 9. Connect as possible.
- control board 28 When an operation for starting operation is performed by the user via the remote controller 5, the control board 28 instructs the indoor unit 3a and the indoor unit 3b to start operation, and also instructs the heat source unit 1 to start cooling operation or heating operation. . In addition, the control board 28 controls the flow rate adjusting valves 20 and 21 and the on-off valves 22 to 25 to start supplying cold / hot water to the indoor unit 3a and the indoor unit 3b. Details of the operation of the repeater 2 will be described later.
- the indoor unit 3a (for example, the first indoor unit) and the indoor unit 3b (for example, the second indoor unit) are so-called fan coil units and have the same functions.
- the indoor unit 3a (3b) includes a heat exchanger 30a (30b), a fan 31a (31b), and a control board 32a (32b).
- the heat exchanger 30a (30b) performs heat exchange between the cold / hot water supplied from the relay 2 and the indoor air.
- the fan 31a (31b) sends the air after heat exchange into the room.
- the control board 32a (32b) includes a CPU, a ROM, a RAM, a communication interface, a readable / writable nonvolatile semiconductor memory, and the like (all not shown).
- the control board 32a (32b) starts or stops driving the fan 31a (31b) in accordance with a command from the control board 28 of the repeater 2.
- the remote controller 5 When the user performs a cooling operation start operation via the remote controller 5, the remote controller 5 obtains information indicating the start of operation, the type of operation mode (here, cooling operation), and the set temperature (target temperature). The included control data is transmitted to the control board 28 of the repeater 2.
- control board 28 When the control board 28 receives the control data from the remote controller 5, the control board 28 transmits control data including information indicating the start of operation and the type of operation mode to the control board 17 of the heat source unit 1. Thereby, the heat source unit 1 generates 7 ° C. cold water and starts supplying the relay unit 2 with the cold water.
- control board 28 transmits control data including information indicating the start of operation to the control boards 32a and 32b of the indoor unit 3a and the indoor unit 3b. Thereby, the indoor unit 3a and the indoor unit 3b start driving the fans 31a and 31b.
- the control board 28 includes the temperature of the cold water (inlet temperature) measured by the temperature sensor 27, the temperature of the cold water (outlet temperature of the indoor units 3a and 3b) measured by the temperature sensor 26a and the temperature sensor 26b, and the temperature. Based on the room temperature measured by the sensor 4 and the target temperature set by the user, the flow rate of cold water passing through the indoor unit 3a and the indoor unit 3b is adjusted.
- control board 28 includes a temperature difference between the outlet temperature and the inlet temperature of the indoor unit 3a (first inlet / outlet temperature difference), and a temperature difference between the outlet temperature and the inlet temperature of the indoor unit 3b (second inlet / outlet temperature difference).
- the throttle opening of 21 is adjusted.
- FIG. 4 shows the relationship between the target value ( ⁇ Tw [K]) and the temperature deviation ( ⁇ Ta [K]).
- ⁇ Tw is determined to be 5 [K].
- the control board 28 switches the flow path of the cold water for passing through the indoor unit 3a and the indoor unit 3b based on ⁇ Tw in addition to the adjustment of the flow rate of the cold water as described above.
- the relay unit 2 has a parallel flow path (see FIG. 5) for guiding cold water from the heat source unit 1 to the indoor unit 3a and the indoor unit 3b in parallel, and cold water from the heat source unit 1 to the indoor unit 3a and the indoor unit 3b in advance.
- the serial flow path (see FIG. 6) guided in a predetermined order can be switched.
- the flow rate adjustment valve 20 is controlled by the control board 28 so that the temperature difference (first inlet / outlet temperature difference) of the cold water measured by the temperature sensor 27 and the temperature sensor 26a becomes ⁇ Tw.
- the flow rate adjusting valve 21 is controlled by the control board 28 so that the temperature difference (second inlet / outlet temperature difference) of the cold water measured by the temperature sensor 27 and the temperature sensor 26b becomes ⁇ Tw.
- the control board 28 notifies the control board 17 of the heat source apparatus 1 of the control results of the flow rate adjusting valves 20 and 21 as information on the water flow rate. Thereby, the rotation speed of the pump 16 of the heat source device 1 is adjusted so that the differential pressure across the flow rate adjusting valves 20 and 21 is constant.
- the control board 28 performs control to switch from the parallel flow path to the serial flow path as shown in FIG. Specifically, the control board 28 performs control to close the flow rate adjustment valve 21 and the on-off valve 22 and open the on-off valve 25. Thereby, as shown in FIG. 6, the cold water flowing into the relay unit 2 is first sent to the indoor unit 3 a via the flow rate adjustment valve 20.
- the control board 28 adjusts the throttle opening degree of the flow rate adjustment valve 20 based on the temperature difference ( ⁇ Tw) between the temperature sensor 27 and the temperature sensor 26b, and passes cold water. Adjust the flow rate.
- FIG. 8 is a flowchart showing the procedure of the air conditioning control process executed by the control board 28 of the repeater 2. This air conditioning control process is started by the user performing an operation for starting the cooling operation or starting the heating operation via the remote controller 5 and ends when the operation for stopping the operation is performed by the user.
- the control board 28 commands the indoor unit 3a and the indoor unit 3b to start operation (step S101). Accordingly, the fans 31a and 31b of the indoor unit 3a and the indoor unit 3b start to drive.
- control board 28 commands the heat source unit 1 to start a cooling operation or a heating operation (step S102).
- the heat source device 1 generates cold water of 7 ° C. in the cooling operation, generates hot water of 45 ° C. in the heating operation, and starts supplying the relay device 2.
- the control board 28 opens the on-off valves 22 and 23, closes the on-off valves 24 and 25, and performs water flow control to the indoor units 3a and 3b through the parallel flow path (see FIG. 5) (step). S103).
- step S104 determines that switching to the serial flow path is necessary (step S104). YES), the flow rate adjusting valve 21 and the on-off valve 22 are closed, the on-off valve 25 is opened, and water flow control to the indoor unit 3a and the indoor unit 3b is performed through the series flow path (see FIG. 6) (step) S105).
- a predetermined value for example, 10 [K] in the cooling operation
- step S106 determines that switching to the parallel flow path is necessary (step S106; YES), and adjusts the flow rate.
- the valve 21 and the on-off valve 22 are opened, the on-off valve 25 is closed, and water flow control to the indoor unit 3a and the indoor unit 3b is performed through the parallel flow path (see FIG. 5) (step S103). Thereafter, the control board 28 repeatedly executes the processes of steps S103 to S106 described above until the operation for stopping the operation is performed by the user.
- the relay device 2 is configured such that the temperature difference between the cold / warm water returning to the heat source device 1 and the cold / warm water flowing from the heat source device 1 is a predetermined threshold (10 [K]) If it becomes above, it switches from a parallel flow path to a serial flow path, and water flow control to the indoor unit 3a and the indoor unit 3b is performed. Thereby, the temperature distribution in one indoor unit can be suppressed to 10 [K] or less, and it is possible to prevent so-called dew dripping and occurrence of dew jumping.
- the indoor unit 3a and the indoor unit 3b only need to have a simple configuration that, when receiving an operation start command, drives the fans 31a and 31b at a constant rotation speed regardless of the type of operation mode. For this reason, as the indoor unit 3a and the indoor unit 3b, an air conditioner of a generally distributed fan coil unit can be adopted instead of a dedicated air conditioner, and the versatility is excellent.
- the relay unit 2 may perform control to lower the air blowing capability of the upstream indoor unit (indoor unit 3a) than the downstream indoor unit (indoor unit 3b) in the air conditioning operation in the series flow path.
- this control will be described.
- the temperature difference between the indoor air and the cold / hot water is larger in the upstream indoor unit (indoor unit 3a) than in the downstream indoor unit (indoor unit 3b). Therefore, the air conditioning capacity of the indoor unit 3a is larger. If it does so, temperature distribution will arise in indoor air and there exists a possibility of giving a user discomfort. Then, the difference of the air-conditioning capability of the indoor unit 3a and the indoor unit 3b is made small by reducing the ventilation capability of the indoor unit 3a.
- the indoor unit 3a that is the upstream indoor unit is added to the information indicating the start of operation. Then, control data including information instructing a decrease in the blowing capacity is transmitted. Thereby, the indoor unit 3a can drive the fan 31a with a lower capacity than usual to reduce the blowing capacity.
- the cooling operation has an effect of increasing the latent heat treatment capacity (latent heat ratio) as compared with the operation in the parallel flow path. Such an effect is particularly effective during the rainy season when the cooling load is not relatively high but the humidity is high.
- the relay unit 2 may be able to appropriately select either the indoor unit 3a or the indoor unit 3b on the upstream side in the series flow path according to the condition of the air conditioning load or the like.
- FIG. 9 is a diagram showing a series flow path when the indoor unit 3b is selected on the upstream side.
- the control board 28 performs control to close the flow rate adjusting valve 20 and the on-off valves 23 and 25 and to open the on-off valves 22 and 24. Thereby, the cold / hot water flowing into the relay unit 2 is first sent to the indoor unit 3b via the flow rate adjustment valve 21.
- the cold / hot water that has exchanged heat with the indoor air by the heat exchanger 30 a of the indoor unit 3 a is returned to the heat source unit 1 via the on-off valve 22.
- the control board 28 adjusts the throttle opening of the flow rate adjustment valve 21 based on the temperature difference ( ⁇ Tw) between the temperature sensor 27 and the temperature sensor 26a, and allows water to flow. Adjust the flow rate of cold / hot water.
- FIG. 10 a case is assumed in which an indoor unit 3a is installed in one perimeter zone of an office building and an indoor unit 3b is installed in an interior zone.
- the relay unit 2 performs water flow control through a series flow path with the indoor unit 3a on the upstream side.
- the perimeter zone is heated with the 45 ° C. hot water supplied from the heat source unit 1, and the interior zone is heated with the hot water whose temperature has dropped to about 40 ° C.
- the heating load of the perimeter zone becomes low, so the indoor unit 3b is selected upstream. Thereby, the interior zone is heated with hot water of 45 ° C., and the perimeter zone is heated with hot water of about 40 ° C.
- the upstream side and the downstream side are selected according to the condition of the air conditioning load in the air conditioning target space that each indoor unit bears, local overheating and overcooling in the room can be suppressed.
- the air conditioning system is connected to the heat source unit 1 in series with relay units 2a and 2b having functions equivalent to those of the relay unit 2, and the relay unit 2b includes the indoor unit 3a and the indoor unit 3b.
- the indoor unit 3c may be connected to the relay unit 2a.
- the indoor unit 3c is a radiation panel.
- the relay 2a when the air-conditioning operation is started, the relay 2a performs water flow control in a serial flow path that guides the cold / hot water from the heat source unit 1 in the order of the relay 2b to the indoor unit 3c, and the relay 2b Then, water flow control is performed in a series flow path that guides the cold / hot water from the relay unit 2a in the order of the indoor unit 3a to the indoor unit 3b.
- the temperature of the cold water flowing from the heat source unit 1 at 7 ° C. rises to about 12 ° C. in the indoor unit 3a, and further rises to about 17 ° C. in the indoor unit 3b. It flows into 3c (radiation panel) and the room is further cooled.
- the present invention can be suitably employed in an air conditioning system that performs air conditioning in a building using a water system.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
This air-conditioning system is provided with a heat source unit (1), a relay unit (2), and an indoor unit (3a) and an indoor unit (3b) which are connected to the relay unit (2). The relay unit (2) is provided with a parallel flow path through which the water from the heat source unit (1) is guided, in parallel, to the indoor unit (3a) and the indoor unit (3b) and a series flow path through which the water from the heat source unit (1) is guided, in a predetermined order, to the indoor unit (3a) and the indoor unit (3b). The flow path of water from the heat source unit (1) is switched from the parallel flow path to the series flow path and from the series flow path to the parallel flow path by flow rate adjusting valves (20, 21) and opening-closing valves (22 to 25).
Description
本発明は、建物内の空調を行う技術に関する。
The present invention relates to a technique for air conditioning in a building.
冷水又は温水を室内機に循環させて空調を行う水方式の空調システム(例えば特許文献1)では、熱源機により、夏期(即ち、冷房運転)においては7℃程度、冬期(即ち、暖房運転)においては45℃程度に温度調整した冷温水が生成され、室内機に送出される。
In a water-type air conditioning system that performs air conditioning by circulating cold water or hot water to an indoor unit (for example, Patent Document 1), it is about 7 ° C. in summer (that is, cooling operation) and in winter (that is, heating operation) by a heat source unit. , Cold / hot water whose temperature is adjusted to about 45 ° C. is generated and sent to the indoor unit.
例えば、冷房運転では、室内機において7℃の冷温水が室内の空気と熱交換されることで、室内の空気温度(室温)が低下する。熱交換後の冷温水は12℃程度まで温度が上昇し、室内機から熱源機へ戻される。
For example, in the cooling operation, the indoor air temperature (room temperature) is lowered by the heat exchange of the cold / hot water of 7 ° C. with the indoor air in the indoor unit. The temperature of the cold / hot water after heat exchange rises to about 12 ° C., and is returned from the indoor unit to the heat source unit.
室内機は、冷温水の流入側(熱交換器の入口側)に流量調整弁を設けており、室温が設定温度に近づくにつれて冷温水の通水量を減らすことで空調能力を低下させている。これにより、例えば7℃で室内機に流入した冷温水は12℃よりも高い温度まで上昇して熱源機に戻ることになる。このように、近年では、エネルギー効率の観点から、空調負荷の低下に伴い通水量を減らして、冷温水の搬送動力の軽減を狙う空調システムが普及している。
The indoor unit has a flow rate adjustment valve on the inflow side of the cold / hot water (inlet side of the heat exchanger), and reduces the air conditioning capacity by reducing the amount of cold / warm water flow as the room temperature approaches the set temperature. Thereby, for example, the cold / hot water flowing into the indoor unit at 7 ° C. rises to a temperature higher than 12 ° C. and returns to the heat source unit. Thus, in recent years, from the viewpoint of energy efficiency, air-conditioning systems that reduce the amount of water flow as the air-conditioning load decreases and aim at reducing the transport power of cold / hot water have become widespread.
ところで、冷房運転において、室内機で熱交換された冷温水の温度が20℃以上に上昇すると、室内機の熱交換器に大きな温度分布が生じてしまう。より詳細には、熱交換器の通水経路において入口付近では室内の空気を7℃に近い温度まで冷却するが、出口付近では20℃までしか冷却することができず、熱交換後の空気は、7℃の空気と20℃の空気が混合された状態となる。
By the way, in the cooling operation, if the temperature of the cold / hot water heat-exchanged in the indoor unit rises to 20 ° C. or higher, a large temperature distribution is generated in the heat exchanger of the indoor unit. More specifically, in the water flow path of the heat exchanger, indoor air is cooled to a temperature close to 7 ° C. near the inlet, but can be cooled only to 20 ° C. near the outlet, and the air after heat exchange is 7 ° C. air and 20 ° C. air are mixed.
このような状態において、室内の空気が高湿度であると、20℃の空気に含まれていた水蒸気が7℃の空気との混合によって一時的に凝結し、水滴となって室内に放出される現象(いわゆる露飛び)が発生する虞がある。また、室内機の吹出口において7℃付近の空気が吹出されている部分に、間欠的に20℃の空気が触れることでその吹出口近傍に結露が生じ、室内床面に滴下する現象(いわゆる露垂れ)が発生する虞がある。
In such a state, if the indoor air has a high humidity, the water vapor contained in the air at 20 ° C. is temporarily condensed by mixing with the air at 7 ° C. to be discharged into the room as water droplets. There is a possibility that a phenomenon (so-called dewdrop) may occur. In addition, when air at around 7 ° C. is blown intermittently at a part where air at about 7 ° C. is blown out at the outlet of the indoor unit, condensation occurs near the outlet and drops onto the floor of the room (so-called There is a risk of dripping).
本発明は、上記課題を解決するためになされたものであり、露垂れや、露飛びの発生を防止することが可能な空調システム等を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioning system or the like that can prevent the occurrence of dew dripping or dew jumping.
上記目的を達成するため、本発明に係る空調システムは、
熱源機と、中継機と、前記中継機と接続される第1室内機及び第2室内機とを備え、
前記中継機は、
前記熱源機からの水を前記第1室内機及び前記第2室内機に並行して導く並列流路と、
前記水を前記第1室内機及び前記第2室内機に予め定めた順序で導く直列流路と、
前記水の流路を前記並列流路から前記直列流路へ、及び、前記直列流路から前記並列流路へ切り替える切替手段と、を備える。 In order to achieve the above object, an air conditioning system according to the present invention includes:
A heat source unit, a relay unit, and a first indoor unit and a second indoor unit connected to the relay unit,
The repeater is
A parallel flow path for guiding water from the heat source unit in parallel to the first indoor unit and the second indoor unit;
A series flow path for guiding the water to the first indoor unit and the second indoor unit in a predetermined order;
Switching means for switching the flow path of the water from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path.
熱源機と、中継機と、前記中継機と接続される第1室内機及び第2室内機とを備え、
前記中継機は、
前記熱源機からの水を前記第1室内機及び前記第2室内機に並行して導く並列流路と、
前記水を前記第1室内機及び前記第2室内機に予め定めた順序で導く直列流路と、
前記水の流路を前記並列流路から前記直列流路へ、及び、前記直列流路から前記並列流路へ切り替える切替手段と、を備える。 In order to achieve the above object, an air conditioning system according to the present invention includes:
A heat source unit, a relay unit, and a first indoor unit and a second indoor unit connected to the relay unit,
The repeater is
A parallel flow path for guiding water from the heat source unit in parallel to the first indoor unit and the second indoor unit;
A series flow path for guiding the water to the first indoor unit and the second indoor unit in a predetermined order;
Switching means for switching the flow path of the water from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path.
本発明によれば、中継機が、熱源機からの水を第1室内機及び第2室内機に並行して導く並列流路と、熱源機からの水を第1室内機及び第2室内機に予め定めた順序で導く直列流路と、水の流路を並列流路から直列流路へ、及び、直列流路から並列流路へ切り替える切替手段と、を備えるため、第1室内機及び第2室内機において、露垂れや、露飛びの発生を防止することが可能となる。
According to the present invention, the relay unit guides the water from the heat source unit to the first indoor unit and the second indoor unit in parallel, and the water from the heat source unit to the first indoor unit and the second indoor unit. And a switching means for switching the flow path of water from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path. In the second indoor unit, it is possible to prevent dew dripping and occurrence of dew jumping.
以下、本発明の実施形態について図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明の実施形態に係る空調システムの構成を示す図である。この空調システムは、オフィスビル等の建物の空調を冷水又は温水(以下、冷温水という。)によって行うシステムであり、熱源機1と、中継機2と、複数の室内機3(室内機3a、室内機3b)と、温度センサ4と、リモコン5とから構成される。
FIG. 1 is a diagram showing a configuration of an air conditioning system according to an embodiment of the present invention. This air conditioning system is a system that performs air conditioning of a building such as an office building with cold water or hot water (hereinafter referred to as cold / hot water), and includes a heat source unit 1, a relay unit 2, and a plurality of indoor units 3 (indoor units 3a, An indoor unit 3b), a temperature sensor 4, and a remote controller 5 are included.
熱源機1は、配管6を介して中継機2と接続し、ヒートポンプにより温調した冷温水を中継機2に送出する。図2に示すように、熱源機1は、圧縮機10と、四方弁11と、第1熱交換器12と、膨張弁13と、第2熱交換器14と、ファン15と、ポンプ16と、制御基板17とを備える。圧縮機10、四方弁11、第1熱交換器12、膨張弁13及び第2熱交換器14は、環状に接続され、これにより、CO2やHFC(ハイドロフルオロカーボン)等の冷媒を循環させるための冷媒回路(冷凍サイクル回路ともいう。)が形成されている。
The heat source device 1 is connected to the relay device 2 via the pipe 6, and sends cold / hot water whose temperature is controlled by a heat pump to the relay device 2. As shown in FIG. 2, the heat source device 1 includes a compressor 10, a four-way valve 11, a first heat exchanger 12, an expansion valve 13, a second heat exchanger 14, a fan 15, and a pump 16. The control board 17 is provided. The compressor 10, the four-way valve 11, the first heat exchanger 12, the expansion valve 13, and the second heat exchanger 14 are connected in an annular shape so that a refrigerant such as CO 2 or HFC (hydrofluorocarbon) is circulated. The refrigerant circuit (also referred to as a refrigeration cycle circuit) is formed.
圧縮機10は、冷媒を圧縮して温度及び圧力を上昇させる。圧縮機10は、駆動周波数に応じて容量(単位当たりの送り出し量)を変化させることができるインバータ回路を備える。圧縮機10は、制御基板17からの指令に従って駆動周波数を変更する。
The compressor 10 compresses the refrigerant to increase the temperature and pressure. The compressor 10 includes an inverter circuit that can change a capacity (a delivery amount per unit) according to a driving frequency. The compressor 10 changes the drive frequency according to a command from the control board 17.
四方弁11は、冷媒の循環方向を切り替えるための弁である。四方弁11は、冷房運転の際には、図2の実線で示すように切り替えられる。これにより、圧縮機10、四方弁11、第1熱交換器12、膨張弁13及び第2熱交換器14の順序で冷媒が循環する。一方、暖房運転の際には、四方弁11は、破線で示すように切り替えられる。これにより、圧縮機10、四方弁11、第2熱交換器14、膨張弁13及び第1熱交換器12の順序で冷媒が循環する。
The four-way valve 11 is a valve for switching the refrigerant circulation direction. The four-way valve 11 is switched as shown by the solid line in FIG. 2 during the cooling operation. Accordingly, the refrigerant circulates in the order of the compressor 10, the four-way valve 11, the first heat exchanger 12, the expansion valve 13, and the second heat exchanger 14. On the other hand, during the heating operation, the four-way valve 11 is switched as indicated by a broken line. Accordingly, the refrigerant circulates in the order of the compressor 10, the four-way valve 11, the second heat exchanger 14, the expansion valve 13, and the first heat exchanger 12.
第1熱交換器12は、外気と冷媒との間の熱交換を行う、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。
The first heat exchanger 12 is a fin-and-tube heat exchanger of a cross fin type configured by, for example, a heat transfer tube and a large number of fins, which exchange heat between the outside air and the refrigerant.
ファン15は、例えば、DCファンモータ等によって駆動される遠心ファンや多翼ファン等であり、外気を第1熱交換器12に供給する。ファン15の回転数、即ち、第1熱交換器12に供給する外気の流量は、制御基板17からの指令に従って変更される。
The fan 15 is, for example, a centrifugal fan or a multiblade fan driven by a DC fan motor or the like, and supplies outside air to the first heat exchanger 12. The rotational speed of the fan 15, that is, the flow rate of the outside air supplied to the first heat exchanger 12 is changed according to a command from the control board 17.
膨張弁13は、冷媒の流量を調整するための流量調整弁であり、例えば、ステッピングモータ(図示せず)によって絞りの開度を調整可能な電子膨張弁である。この他にも、膨張弁13として、受圧部にダイアフラムを採用した機械式膨張弁やキャピラリチューブ等を採用してもよい。膨張弁13の開度は、制御基板17からの指令に従って変更される。
The expansion valve 13 is a flow rate adjustment valve for adjusting the flow rate of the refrigerant, and is, for example, an electronic expansion valve capable of adjusting the opening of the throttle by a stepping motor (not shown). In addition, as the expansion valve 13, a mechanical expansion valve, a capillary tube, or the like that employs a diaphragm for the pressure receiving portion may be employed. The opening degree of the expansion valve 13 is changed according to a command from the control board 17.
第2熱交換器14は、プレート式あるいは二重管式などの熱交換器であり、冷媒と冷温水との間の熱交換を行う。
The second heat exchanger 14 is a plate-type or double-tube type heat exchanger, and performs heat exchange between the refrigerant and the cold / hot water.
ポンプ16は、第2熱交換器14により熱交換された冷温水を中継機2に搬送する。ポンプ16は、インバータ回路を備え、制御基板17からの指令に従って駆動回転数が変更される。これにより、中継機2に搬送する冷温水の流量、即ち、通水量を変化させることができる。
The pump 16 conveys the cold / hot water heat-exchanged by the 2nd heat exchanger 14 to the relay machine 2. FIG. The pump 16 includes an inverter circuit, and the drive rotational speed is changed in accordance with a command from the control board 17. Thereby, the flow volume of the cold / hot water conveyed to the relay machine 2, ie, the amount of water flow, can be changed.
制御基板17は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信インタフェース、読み書き可能な不揮発性の半導体メモリなど(何れも図示せず)を含んで構成される。制御基板17は、圧縮機10、四方弁11、膨張弁13、ファン15、ポンプ16のそれぞれと図示しない通信線を介して通信可能に接続する。また、制御基板17は、図示しない通信線を介して、図3に示す中継機2の制御基板28と通信可能に接続する。
The control board 17 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication interface, a readable / writable nonvolatile semiconductor memory, and the like (none of which are shown). The The control board 17 is communicably connected to the compressor 10, the four-way valve 11, the expansion valve 13, the fan 15, and the pump 16 via a communication line (not shown). Further, the control board 17 is communicably connected to the control board 28 of the repeater 2 shown in FIG. 3 via a communication line (not shown).
制御基板17は、中継機2から運転開始の指令を受けると、運転モードの種別(冷房運転、暖房運転)に応じて、四方弁11を制御して冷媒の循環方向を切り替える。また、制御基板17は、中継機2に供給する冷温水が、運転モードに応じた予め定めた設定温度となるように、圧縮機10、膨張弁13、ファン15のそれぞれを制御する。本実施形態では、制御基板17は、中継機2に供給する冷温水が、冷房運転の場合では7℃、暖房運転の場合では45℃となるように上記の各構成部を制御する。
When the control board 17 receives a command to start operation from the repeater 2, the control board 17 controls the four-way valve 11 and switches the refrigerant circulation direction according to the type of operation mode (cooling operation or heating operation). Moreover, the control board 17 controls each of the compressor 10, the expansion valve 13, and the fan 15 so that the cold / hot water supplied to the relay machine 2 becomes preset temperature according to the operation mode. In the present embodiment, the control board 17 controls each of the above components so that the cool / warm water supplied to the relay unit 2 is 7 ° C. in the cooling operation and 45 ° C. in the heating operation.
また、制御基板17は、冷房運転又は暖房運転の間、中継機2から通知される通水量に関する情報に基づいてポンプ16を制御することで中継機2に搬送する冷温水の流量を調整する。
Further, the control board 17 adjusts the flow rate of the cold / warm water conveyed to the relay unit 2 by controlling the pump 16 based on the information on the water flow amount notified from the relay unit 2 during the cooling operation or the heating operation.
中継機2は、熱源機1と配管6を介して接続すると共に、配管7a、配管7bを介して室内機3a、室内機3bと接続する。中継機2は、熱源機1から供給された冷温水を中継して室内機3a及び室内機3bに供給する。
The relay unit 2 is connected to the heat source unit 1 through the pipe 6 and to the indoor unit 3a and the indoor unit 3b through the pipe 7a and the pipe 7b. The relay unit 2 relays the cold / hot water supplied from the heat source unit 1 and supplies it to the indoor unit 3a and the indoor unit 3b.
図3に示すように、中継機2は、流量調整弁20,21と、開閉弁22~25と、温度センサ26a,26b,27と、制御基板28とを備える。流量調整弁20,21は、制御基板28からの指令に従って、室内機3a、室内機3bに供給する冷温水の流量を変化させる。開閉弁22~25は、制御基板28からの指令に従って開放又は閉止される。流量調整弁20,21と開閉弁22~25は、本発明における切替手段を構成する。
As shown in FIG. 3, the repeater 2 includes flow rate adjusting valves 20 and 21, on-off valves 22 to 25, temperature sensors 26a, 26b, and 27, and a control board 28. The flow rate adjusting valves 20 and 21 change the flow rate of the cold / hot water supplied to the indoor unit 3a and the indoor unit 3b in accordance with a command from the control board 28. The on-off valves 22 to 25 are opened or closed according to a command from the control board 28. The flow rate adjusting valves 20 and 21 and the on-off valves 22 to 25 constitute switching means in the present invention.
温度センサ26aは、室内機3aから出水される冷温水の温度(室内機3aの出口温度)を計測する。温度センサ26bは、室内機3bから出水される冷温水の温度(室内機3bの出口温度)を計測する。温度センサ27は、中継機2から入水した冷温水の温度(入口温度)を計測する。温度センサ26a,26b,27は、各々計測した温度を示すデータを予め定めたタイミング(例えば、一定時間毎)で制御基板28に送信する。
The temperature sensor 26a measures the temperature of the cold / hot water discharged from the indoor unit 3a (the outlet temperature of the indoor unit 3a). The temperature sensor 26b measures the temperature of the cold / hot water discharged from the indoor unit 3b (the outlet temperature of the indoor unit 3b). The temperature sensor 27 measures the temperature (inlet temperature) of cold / hot water that has entered from the relay unit 2. The temperature sensors 26a, 26b, and 27 transmit data indicating the measured temperatures to the control board 28 at a predetermined timing (for example, every predetermined time).
制御基板28は、CPU、ROM、RAM、通信インタフェース、読み書き可能な不揮発性の半導体メモリなど(何れも図示せず)を含んで構成される。制御基板28は、流量調整弁20,21、開閉弁22~25、温度センサ26a,26b,27のそれぞれと図示しない通信線を介して通信可能に接続すると共に、上述したように熱源機1の制御基板17と図示しない通信線を介して通信可能に接続する。また、制御基板28は、図1に示すように通信線8を介して、室内の空気温度(室温)を計測する温度センサ4と通信可能に接続し、通信線9を介してリモコン5と通信可能に接続する。
The control board 28 includes a CPU, a ROM, a RAM, a communication interface, a readable / writable non-volatile semiconductor memory, and the like (all not shown). The control board 28 is communicably connected to each of the flow rate adjusting valves 20 and 21, the on-off valves 22 to 25, and the temperature sensors 26a, 26b, and 27 via a communication line (not shown), and as described above, The control board 17 is communicably connected via a communication line (not shown). Further, as shown in FIG. 1, the control board 28 is communicably connected to the temperature sensor 4 that measures the indoor air temperature (room temperature) via the communication line 8 and communicates with the remote controller 5 via the communication line 9. Connect as possible.
制御基板28は、ユーザによってリモコン5を介して運転開始の操作が行われると、室内機3a、室内機3bに運転開始を指令すると共に、熱源機1に冷房運転又は暖房運転の開始を指令する。また、制御基板28は、流量調整弁20,21、開閉弁22~25を制御して、室内機3a、室内機3bへの冷温水の供給を開始する。中継機2の動作の詳細については後述する。
When an operation for starting operation is performed by the user via the remote controller 5, the control board 28 instructs the indoor unit 3a and the indoor unit 3b to start operation, and also instructs the heat source unit 1 to start cooling operation or heating operation. . In addition, the control board 28 controls the flow rate adjusting valves 20 and 21 and the on-off valves 22 to 25 to start supplying cold / hot water to the indoor unit 3a and the indoor unit 3b. Details of the operation of the repeater 2 will be described later.
室内機3a(例えば、第1室内機)と室内機3b(例えば、第2室内機)は、いわゆるファンコイルユニットと呼ばれる空調機であり、双方が有する機能は同一である。図3に示すように、室内機3a(3b)は、熱交換器30a(30b)と、ファン31a(31b)と、制御基板32a(32b)とを備える。
The indoor unit 3a (for example, the first indoor unit) and the indoor unit 3b (for example, the second indoor unit) are so-called fan coil units and have the same functions. As shown in FIG. 3, the indoor unit 3a (3b) includes a heat exchanger 30a (30b), a fan 31a (31b), and a control board 32a (32b).
熱交換器30a(30b)は、中継機2から供給された冷温水と室内の空気との間の熱交換を行う。ファン31a(31b)は、熱交換後の空気を室内へ送出する。制御基板32a(32b)は、CPU、ROM、RAM、通信インタフェース、読み書き可能な不揮発性の半導体メモリなど(何れも図示せず)を含んで構成される。制御基板32a(32b)は、中継機2の制御基板28からの指令に従い、ファン31a(31b)の駆動を開始し、又は、停止する。
The heat exchanger 30a (30b) performs heat exchange between the cold / hot water supplied from the relay 2 and the indoor air. The fan 31a (31b) sends the air after heat exchange into the room. The control board 32a (32b) includes a CPU, a ROM, a RAM, a communication interface, a readable / writable nonvolatile semiconductor memory, and the like (all not shown). The control board 32a (32b) starts or stops driving the fan 31a (31b) in accordance with a command from the control board 28 of the repeater 2.
続いて、上記のように構成される本実施形態における空調システムの運転動作について、冷房運転の場合を例にして説明する。
Subsequently, the operation of the air conditioning system in the present embodiment configured as described above will be described by taking the case of the cooling operation as an example.
ユーザによりリモコン5を介して冷房運転の開始操作が行われると、リモコン5は、運転の開始を示す情報と、運転モードの種別(ここでは、冷房運転)と、設定温度(目標温度)とを含む制御データを中継機2の制御基板28に送信する。
When the user performs a cooling operation start operation via the remote controller 5, the remote controller 5 obtains information indicating the start of operation, the type of operation mode (here, cooling operation), and the set temperature (target temperature). The included control data is transmitted to the control board 28 of the repeater 2.
制御基板28は、リモコン5からの上記の制御データを受信すると、運転の開始を示す情報と、運転モードの種別とを含む制御データを熱源機1の制御基板17に送信する。これにより、熱源機1は、7℃の冷水を生成し、中継機2に供給を開始する。
When the control board 28 receives the control data from the remote controller 5, the control board 28 transmits control data including information indicating the start of operation and the type of operation mode to the control board 17 of the heat source unit 1. Thereby, the heat source unit 1 generates 7 ° C. cold water and starts supplying the relay unit 2 with the cold water.
また、制御基板28は、リモコン5からの上記の制御データを受信すると、運転の開始を示す情報を含む制御データを室内機3a、室内機3bの制御基板32a,32bに送信する。これにより、室内機3a、室内機3bは、ファン31a,31bの駆動を開始する。
Further, when receiving the control data from the remote controller 5, the control board 28 transmits control data including information indicating the start of operation to the control boards 32a and 32b of the indoor unit 3a and the indoor unit 3b. Thereby, the indoor unit 3a and the indoor unit 3b start driving the fans 31a and 31b.
制御基板28は、温度センサ27により計測される冷水の温度(入口温度)と、温度センサ26a、温度センサ26bにより計測される冷水の温度(室内機3a、室内機3bの出口温度)と、温度センサ4により計測される室温と、ユーザにより設定された目標温度とに基づいて、室内機3a、室内機3bに通水する冷水の流量を調整する。
The control board 28 includes the temperature of the cold water (inlet temperature) measured by the temperature sensor 27, the temperature of the cold water (outlet temperature of the indoor units 3a and 3b) measured by the temperature sensor 26a and the temperature sensor 26b, and the temperature. Based on the room temperature measured by the sensor 4 and the target temperature set by the user, the flow rate of cold water passing through the indoor unit 3a and the indoor unit 3b is adjusted.
より詳細には、制御基板28は、室内機3aの出口温度と入口温度の温度差(第1出入口温度差)と、室内機3bの出口温度と入口温度の温度差(第2出入口温度差)のそれぞれが、室温(Tr[℃])と目標温度(Ts[℃])との温度偏差(ΔTa[K]=Tr-Ts)によって決定される目標値となるように、流量調整弁20,21の絞り開度を調整する。図4に、目標値(ΔTw[K])と、温度偏差(ΔTa[K])との関係を示す。
More specifically, the control board 28 includes a temperature difference between the outlet temperature and the inlet temperature of the indoor unit 3a (first inlet / outlet temperature difference), and a temperature difference between the outlet temperature and the inlet temperature of the indoor unit 3b (second inlet / outlet temperature difference). Each of the flow rate adjusting valves 20, 20 is set to a target value determined by a temperature deviation (ΔTa [K] = Tr−Ts) between the room temperature (Tr [° C.]) and the target temperature (Ts [° C.]). The throttle opening of 21 is adjusted. FIG. 4 shows the relationship between the target value (ΔTw [K]) and the temperature deviation (ΔTa [K]).
図4に示すように、冷房運転の開始時は、室温が目標温度よりも1K以上高い場合が通常であるため、ΔTwは5[K]に決定される。冷房運転が継続され、室温が目標温度に近づくにつれて、ΔTwは更新される。図4に示すように、ΔTa=0[K]ではΔTw=9[K]となり、ΔTa=-1[K]ではΔTw=13[K]となる。
As shown in FIG. 4, at the start of the cooling operation, since the room temperature is usually higher than the target temperature by 1K or more, ΔTw is determined to be 5 [K]. As the cooling operation is continued and the room temperature approaches the target temperature, ΔTw is updated. As shown in FIG. 4, when ΔTa = 0 [K], ΔTw = 9 [K], and when ΔTa = −1 [K], ΔTw = 13 [K].
制御基板28は、上記のような冷水の通水流量の調整に加え、ΔTwに基づいて、室内機3a、室内機3bに通水するための冷水の流路の切り替えを行う。中継機2は、熱源機1からの冷水を室内機3a及び室内機3bに並行して導く並列流路(図5参照)と、熱源機1からの冷水を室内機3a及び室内機3bに予め定めた順序で導く直列流路(図6参照)とが切り替え可能となるように構成されている。
The control board 28 switches the flow path of the cold water for passing through the indoor unit 3a and the indoor unit 3b based on ΔTw in addition to the adjustment of the flow rate of the cold water as described above. The relay unit 2 has a parallel flow path (see FIG. 5) for guiding cold water from the heat source unit 1 to the indoor unit 3a and the indoor unit 3b in parallel, and cold water from the heat source unit 1 to the indoor unit 3a and the indoor unit 3b in advance. The serial flow path (see FIG. 6) guided in a predetermined order can be switched.
図7は、ΔTw[K]と、制御基板28によって選択される流路との関係を示す図である。図7から、ΔTw=5[K]、即ち、室温が高く、目標温度との温度差が大きい場合、並列流路が選択されることが判る。また、室内が十分に冷却されてΔTw=10[K]になると直列流路が選択されることが判る。
FIG. 7 is a diagram showing the relationship between ΔTw [K] and the flow path selected by the control board 28. From FIG. 7, it can be seen that when ΔTw = 5 [K], that is, the room temperature is high and the temperature difference from the target temperature is large, the parallel flow path is selected. It can also be seen that the series flow path is selected when the room is sufficiently cooled and ΔTw = 10 [K].
(並列流路での冷房運転)
冷房運転の開始時(即ち、ΔTa>1[K])では、ΔTw=5[K]となり、制御基板28は、並列流路を選択する。この際、制御基板28は、開閉弁22,23を開放し、開閉弁24,25を閉止する制御を行う。これにより、図5に示すように、中継機2に流入する冷水は、流量調整弁20,21により分流され、それぞれ室内機3a、室内機3bに送られる。分流された冷水は、それぞれ室内機3a、室内機3bにて室内の空気と熱交換した後、中継機2で合流して熱源機1に戻される。 (Cooling operation in parallel flow path)
At the start of the cooling operation (that is, ΔTa> 1 [K]), ΔTw = 5 [K], and thecontrol board 28 selects the parallel flow path. At this time, the control board 28 performs control to open the on-off valves 22 and 23 and close the on-off valves 24 and 25. Accordingly, as shown in FIG. 5, the cold water flowing into the relay unit 2 is diverted by the flow rate adjusting valves 20 and 21, and sent to the indoor unit 3a and the indoor unit 3b, respectively. The divided cold water exchanges heat with indoor air in the indoor unit 3a and the indoor unit 3b, respectively, and then joins in the relay unit 2 and returns to the heat source unit 1.
冷房運転の開始時(即ち、ΔTa>1[K])では、ΔTw=5[K]となり、制御基板28は、並列流路を選択する。この際、制御基板28は、開閉弁22,23を開放し、開閉弁24,25を閉止する制御を行う。これにより、図5に示すように、中継機2に流入する冷水は、流量調整弁20,21により分流され、それぞれ室内機3a、室内機3bに送られる。分流された冷水は、それぞれ室内機3a、室内機3bにて室内の空気と熱交換した後、中継機2で合流して熱源機1に戻される。 (Cooling operation in parallel flow path)
At the start of the cooling operation (that is, ΔTa> 1 [K]), ΔTw = 5 [K], and the
ここで、流量調整弁20は、制御基板28により、温度センサ27と温度センサ26aで計測された冷水の温度差(第1出入口温度差)がΔTwになるように制御される。同様に、流量調整弁21は、制御基板28により、温度センサ27と温度センサ26bで計測された冷水の温度差(第2出入口温度差)がΔTwになるように制御される。
Here, the flow rate adjustment valve 20 is controlled by the control board 28 so that the temperature difference (first inlet / outlet temperature difference) of the cold water measured by the temperature sensor 27 and the temperature sensor 26a becomes ΔTw. Similarly, the flow rate adjusting valve 21 is controlled by the control board 28 so that the temperature difference (second inlet / outlet temperature difference) of the cold water measured by the temperature sensor 27 and the temperature sensor 26b becomes ΔTw.
制御基板28は、流量調整弁20,21の上記の制御結果を、通水量に関する情報として熱源機1の制御基板17に通知する。これにより、熱源機1のポンプ16は、流量調整弁20,21における前後差圧が一定となるように回転数が調整される。
The control board 28 notifies the control board 17 of the heat source apparatus 1 of the control results of the flow rate adjusting valves 20 and 21 as information on the water flow rate. Thereby, the rotation speed of the pump 16 of the heat source device 1 is adjusted so that the differential pressure across the flow rate adjusting valves 20 and 21 is constant.
上記のような制御の下で冷房運転が継続されると、室温は低下し、やがてΔTaが1[K]を下回るようになる。これに伴い、ΔTwは、5[K]から6[K]、7[K]というように上昇していく。これにより、通水する冷水の流量が減少するため、室内機3a、室内機3bの冷却能力も徐々に低下することになる。
When the cooling operation is continued under the control as described above, the room temperature decreases and eventually ΔTa becomes less than 1 [K]. Along with this, ΔTw increases from 5 [K] to 6 [K] and 7 [K]. Thereby, since the flow volume of the cold water to flow through decreases, the cooling capacity of the indoor unit 3a and the indoor unit 3b also gradually decreases.
(直列流路での冷房運転)
室温が低下し続け、これに伴いΔTwが上昇し続けて、10[K]に達すると、図7に示すように、制御基板28は、並列流路から直列流路に切り替える制御を行う。具体的には、制御基板28は、流量調整弁21と開閉弁22を閉止し、開閉弁25を開放する制御を行う。これにより、図6に示すように、中継機2に流入する冷水は、流量調整弁20を経由して、先ず室内機3aに送られる。 (Cooling operation in series flow path)
When the room temperature continues to decrease and ΔTw continues to increase and reaches 10 [K], thecontrol board 28 performs control to switch from the parallel flow path to the serial flow path as shown in FIG. Specifically, the control board 28 performs control to close the flow rate adjustment valve 21 and the on-off valve 22 and open the on-off valve 25. Thereby, as shown in FIG. 6, the cold water flowing into the relay unit 2 is first sent to the indoor unit 3 a via the flow rate adjustment valve 20.
室温が低下し続け、これに伴いΔTwが上昇し続けて、10[K]に達すると、図7に示すように、制御基板28は、並列流路から直列流路に切り替える制御を行う。具体的には、制御基板28は、流量調整弁21と開閉弁22を閉止し、開閉弁25を開放する制御を行う。これにより、図6に示すように、中継機2に流入する冷水は、流量調整弁20を経由して、先ず室内機3aに送られる。 (Cooling operation in series flow path)
When the room temperature continues to decrease and ΔTw continues to increase and reaches 10 [K], the
室内機3aの熱交換器30aで室内の空気と熱交換した冷水は、開閉弁25を経由して室内機3bに流入する。室内機3bの熱交換器30bで室内の空気と熱交換した冷水は、開閉弁23を経由して熱源機1に戻される。なお、直列流路での運転時では、制御基板28は、温度センサ27と温度センサ26bとの温度差(ΔTw)に基づいて流量調整弁20の絞り開度を調整して、通水する冷水の流量を調整する。
Cold water that has exchanged heat with indoor air in the heat exchanger 30a of the indoor unit 3a flows into the indoor unit 3b via the on-off valve 25. The cold water that has exchanged heat with the indoor air by the heat exchanger 30 b of the indoor unit 3 b is returned to the heat source unit 1 via the on-off valve 23. During operation in the series flow path, the control board 28 adjusts the throttle opening degree of the flow rate adjustment valve 20 based on the temperature difference (ΔTw) between the temperature sensor 27 and the temperature sensor 26b, and passes cold water. Adjust the flow rate.
図8は、中継機2の制御基板28によって実行される空調制御処理の手順を示すフローチャートである。この空調制御処理は、リモコン5を介して、ユーザにより冷房運転開始又は暖房運転開始の操作が行われることで開始され、ユーザにより運転停止の操作が行われることで終了する。
FIG. 8 is a flowchart showing the procedure of the air conditioning control process executed by the control board 28 of the repeater 2. This air conditioning control process is started by the user performing an operation for starting the cooling operation or starting the heating operation via the remote controller 5 and ends when the operation for stopping the operation is performed by the user.
制御基板28は、室内機3a、室内機3bに運転開始を指令する(ステップS101)。これにより、室内機3a、室内機3bのファン31a,31bが駆動を開始する。
The control board 28 commands the indoor unit 3a and the indoor unit 3b to start operation (step S101). Accordingly, the fans 31a and 31b of the indoor unit 3a and the indoor unit 3b start to drive.
また、制御基板28は、熱源機1に冷房運転又は暖房運転の開始を指令する(ステップS102)。これにより、熱源機1は、冷房運転では7℃の冷水を生成し、暖房運転では45℃の温水を生成して中継機2に供給を開始する。
Further, the control board 28 commands the heat source unit 1 to start a cooling operation or a heating operation (step S102). Thereby, the heat source device 1 generates cold water of 7 ° C. in the cooling operation, generates hot water of 45 ° C. in the heating operation, and starts supplying the relay device 2.
制御基板28は、開閉弁22,23を開放し、開閉弁24,25を閉止して、並列流路(図5参照)にて室内機3a、室内機3bへの通水制御を行う(ステップS103)。
The control board 28 opens the on-off valves 22 and 23, closes the on-off valves 24 and 25, and performs water flow control to the indoor units 3a and 3b through the parallel flow path (see FIG. 5) (step). S103).
やがて、上述した目標値(ΔTw)が予め定めた値(例えば、冷房運転では10[K])に達すると、制御基板28は、直列流路への切り替えが必要であると判定し(ステップS104;YES)、流量調整弁21と開閉弁22を閉止し、開閉弁25を開放して、直列流路(図6参照)にて室内機3a、室内機3bへの通水制御を行う(ステップS105)。
Eventually, when the target value (ΔTw) described above reaches a predetermined value (for example, 10 [K] in the cooling operation), the control board 28 determines that switching to the serial flow path is necessary (step S104). YES), the flow rate adjusting valve 21 and the on-off valve 22 are closed, the on-off valve 25 is opened, and water flow control to the indoor unit 3a and the indoor unit 3b is performed through the series flow path (see FIG. 6) (step) S105).
そして、ΔTwが予め定めた値(例えば、冷房運転では8[K])まで下降すると、制御基板28は、並列流路への切り替えが必要であると判定し(ステップS106;YES)、流量調整弁21と開閉弁22を開放し、開閉弁25を閉止して、並列流路(図5参照)にて室内機3a、室内機3bへの通水制御を行う(ステップS103)。以降、ユーザによる運転停止の操作が行われるまで、制御基板28は、上述したステップS103~S106の処理を繰り返し実行する。
When ΔTw decreases to a predetermined value (for example, 8 [K] in the cooling operation), the control board 28 determines that switching to the parallel flow path is necessary (step S106; YES), and adjusts the flow rate. The valve 21 and the on-off valve 22 are opened, the on-off valve 25 is closed, and water flow control to the indoor unit 3a and the indoor unit 3b is performed through the parallel flow path (see FIG. 5) (step S103). Thereafter, the control board 28 repeatedly executes the processes of steps S103 to S106 described above until the operation for stopping the operation is performed by the user.
以上説明したように、本発明の実施形態に係る空調システムでは、中継機2は、熱源機1へ戻る冷温水と、熱源機1から流入する冷温水との温度差が予め定めた閾値(10[K])以上になると、並列流路から直列流路に切り替えて、室内機3a、室内機3bへの通水制御を行う。これにより、1台の室内機における温度分布を10[K]以下に抑えることができ、いわゆる露垂れや、露飛びの発生を防止することが可能となる。
As described above, in the air conditioning system according to the embodiment of the present invention, the relay device 2 is configured such that the temperature difference between the cold / warm water returning to the heat source device 1 and the cold / warm water flowing from the heat source device 1 is a predetermined threshold (10 [K]) If it becomes above, it switches from a parallel flow path to a serial flow path, and water flow control to the indoor unit 3a and the indoor unit 3b is performed. Thereby, the temperature distribution in one indoor unit can be suppressed to 10 [K] or less, and it is possible to prevent so-called dew dripping and occurrence of dew jumping.
室内機3a、室内機3bは、運転開始の指令を受けると、運転モードの種別にかかわらず、ファン31a,31bを一定の回転数で駆動させるという簡易な構成を備えていればよい。このため、室内機3a、室内機3bとして、専用の空調機ではなく、一般に流通するファンコイルユニットの空調機を採用でき、汎用性に優れる。
The indoor unit 3a and the indoor unit 3b only need to have a simple configuration that, when receiving an operation start command, drives the fans 31a and 31b at a constant rotation speed regardless of the type of operation mode. For this reason, as the indoor unit 3a and the indoor unit 3b, an air conditioner of a generally distributed fan coil unit can be adopted instead of a dedicated air conditioner, and the versatility is excellent.
なお、本発明は、上記実施形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。
In addition, this invention is not limited to the said embodiment, Of course, the various change in the range which does not deviate from the summary of this invention is possible.
例えば、中継機2は、直列流路での空調運転において、上流側の室内機(室内機3a)の送風能力を下流側の室内機(室内機3b)よりも低下させる制御を行ってもよい。以下、この制御について説明する。
For example, the relay unit 2 may perform control to lower the air blowing capability of the upstream indoor unit (indoor unit 3a) than the downstream indoor unit (indoor unit 3b) in the air conditioning operation in the series flow path. . Hereinafter, this control will be described.
直列流路での空調運転では、室内の空気と冷温水との温度差は、上流側の室内機(室内機3a)の方が、下流側の室内機(室内機3b)よりも大きくなることから、空調能力も室内機3aの方が大きくなる。そうすると、室内の空気に温度分布が生じて、ユーザに不快感を与えてしまう虞がある。そこで、室内機3aの送風能力を低下させることで、室内機3aと室内機3bの空調能力の差を小さくする。
In the air conditioning operation in the series flow path, the temperature difference between the indoor air and the cold / hot water is larger in the upstream indoor unit (indoor unit 3a) than in the downstream indoor unit (indoor unit 3b). Therefore, the air conditioning capacity of the indoor unit 3a is larger. If it does so, temperature distribution will arise in indoor air and there exists a possibility of giving a user discomfort. Then, the difference of the air-conditioning capability of the indoor unit 3a and the indoor unit 3b is made small by reducing the ventilation capability of the indoor unit 3a.
具体的には、中継機2の制御基板28は、室内機3a、室内機3bに運転開始を指令する際、上流側の室内機である室内機3aについては、運転の開始を示す情報に加え、送風能力の低下を指示する情報を含めた制御データ送信する。これにより、室内機3aは、ファン31aを通常より能力を低下させて駆動させ、送風能力を低下させることができる。
Specifically, when the control board 28 of the relay unit 2 instructs the indoor unit 3a and the indoor unit 3b to start operation, the indoor unit 3a that is the upstream indoor unit is added to the information indicating the start of operation. Then, control data including information instructing a decrease in the blowing capacity is transmitted. Thereby, the indoor unit 3a can drive the fan 31a with a lower capacity than usual to reduce the blowing capacity.
一般に、上記のように送風能力を低下させると熱交換の効率が向上するため、冷房運転では、並列流路での運転よりも潜熱処理能力(潜熱比)を増大させる効果が得られる。このような効果は、冷房負荷は比較的高くはないものの湿度が高い梅雨の期間に特に有効となる。
Generally, since the efficiency of heat exchange is improved when the air blowing capacity is reduced as described above, the cooling operation has an effect of increasing the latent heat treatment capacity (latent heat ratio) as compared with the operation in the parallel flow path. Such an effect is particularly effective during the rainy season when the cooling load is not relatively high but the humidity is high.
また、中継機2は、直列流路において、室内機3a、室内機3bの何れを上流側にするか、空調負荷の状況等に応じて、適宜、選択できるようにしてもよい。
Further, the relay unit 2 may be able to appropriately select either the indoor unit 3a or the indoor unit 3b on the upstream side in the series flow path according to the condition of the air conditioning load or the like.
図9は、室内機3bを上流側に選択した場合の直列流路を示す図である。この場合、制御基板28は、流量調整弁20と開閉弁23,25を閉止し、開閉弁22,24を開放する制御を行う。これにより、中継機2に流入する冷温水は、流量調整弁21を経由して、先ず室内機3bに送られる。
FIG. 9 is a diagram showing a series flow path when the indoor unit 3b is selected on the upstream side. In this case, the control board 28 performs control to close the flow rate adjusting valve 20 and the on-off valves 23 and 25 and to open the on-off valves 22 and 24. Thereby, the cold / hot water flowing into the relay unit 2 is first sent to the indoor unit 3b via the flow rate adjustment valve 21.
室内機3bの熱交換器30bで室内の空気と熱交換した冷温水は、開閉弁24を経由して室内機3aに流入する。室内機3aの熱交換器30aで室内の空気と熱交換した冷温水は、開閉弁22を経由して熱源機1に戻される。なお、この直列流路での運転時では、制御基板28は、温度センサ27と温度センサ26aとの温度差(ΔTw)に基づいて流量調整弁21の絞り開度を調整して、通水する冷温水の流量を調整する。
The cold / hot water that has exchanged heat with the indoor air in the heat exchanger 30b of the indoor unit 3b flows into the indoor unit 3a via the on-off valve 24. The cold / hot water that has exchanged heat with the indoor air by the heat exchanger 30 a of the indoor unit 3 a is returned to the heat source unit 1 via the on-off valve 22. During operation in this series flow path, the control board 28 adjusts the throttle opening of the flow rate adjustment valve 21 based on the temperature difference (ΔTw) between the temperature sensor 27 and the temperature sensor 26a, and allows water to flow. Adjust the flow rate of cold / hot water.
例えば、図10に示すように、オフィスビルの1室のペリメータゾーンに室内機3aが設置され、インテリアゾーンに室内機3bが設置されているケースを想定する。このような状況においては、冬期の夜間では、外壁や窓からの熱損失によってペリメータゾーンの暖房負荷が高くなる。そこで、中継機2は、室内機3aを上流側とした直列流路で通水制御を行う。これにより、熱源機1から供給される45℃の温水で、ペリメータゾーンが暖房され、40℃程度まで温度低下した温水でインテリアゾーンが暖房される。
For example, as shown in FIG. 10, a case is assumed in which an indoor unit 3a is installed in one perimeter zone of an office building and an indoor unit 3b is installed in an interior zone. In such a situation, at nighttime in winter, the heating load of the perimeter zone increases due to heat loss from the outer walls and windows. Therefore, the relay unit 2 performs water flow control through a series flow path with the indoor unit 3a on the upstream side. As a result, the perimeter zone is heated with the 45 ° C. hot water supplied from the heat source unit 1, and the interior zone is heated with the hot water whose temperature has dropped to about 40 ° C.
一方、冬期の昼間において日射の影響がある場合には、ペリメータゾーンの暖房負荷が低くなるので、室内機3bを上流側に選択する。これにより、45℃の温水でインテリアゾーンが暖房され、40℃程度の温水でペリメータゾーンが暖房される。
On the other hand, when there is an influence of solar radiation in the daytime in winter, the heating load of the perimeter zone becomes low, so the indoor unit 3b is selected upstream. Thereby, the interior zone is heated with hot water of 45 ° C., and the perimeter zone is heated with hot water of about 40 ° C.
このように、各室内機が担う空調対象空間における空調負荷の状況に応じて、上流側と下流側を選択するため、室内で局所的な暖め過ぎや冷やし過ぎを抑制することができる。
Thus, since the upstream side and the downstream side are selected according to the condition of the air conditioning load in the air conditioning target space that each indoor unit bears, local overheating and overcooling in the room can be suppressed.
また、空調システムを、図11に示すように、熱源機1に、中継機2と同等の機能を有する中継機2a,2bを直列に接続し、中継機2bに室内機3a、室内機3bを接続し、中継機2aに室内機3cを接続する構成にしてもよい。室内機3cは、輻射パネルである。この構成において、空調運転が開始されると、中継機2aは、熱源機1からの冷温水を中継機2bから室内機3cの順に導く直列流路にて通水制御を行い、中継機2bは、中継機2aからの冷温水を室内機3aから室内機3bの順に導く直列流路にて通水制御を行う。
In addition, as shown in FIG. 11, the air conditioning system is connected to the heat source unit 1 in series with relay units 2a and 2b having functions equivalent to those of the relay unit 2, and the relay unit 2b includes the indoor unit 3a and the indoor unit 3b. The indoor unit 3c may be connected to the relay unit 2a. The indoor unit 3c is a radiation panel. In this configuration, when the air-conditioning operation is started, the relay 2a performs water flow control in a serial flow path that guides the cold / hot water from the heat source unit 1 in the order of the relay 2b to the indoor unit 3c, and the relay 2b Then, water flow control is performed in a series flow path that guides the cold / hot water from the relay unit 2a in the order of the indoor unit 3a to the indoor unit 3b.
上記の構成において冷房運転の場合、熱源機1から7℃で流入する冷水の温度は、室内機3aで12℃程度まで上昇し、さらに、室内機3bで17℃程度まで上昇した後、室内機3c(輻射パネル)に流入して室内をさらに冷却する。
In the case of the cooling operation in the above configuration, the temperature of the cold water flowing from the heat source unit 1 at 7 ° C. rises to about 12 ° C. in the indoor unit 3a, and further rises to about 17 ° C. in the indoor unit 3b. It flows into 3c (radiation panel) and the room is further cooled.
これにより、熱源機1へ戻る冷水の温度は室温に近くなる。即ち、熱源機1が生成した冷水から取り出せる冷却熱量を最大限利用できる。この場合、室内機3cに流入する段階で室内の空気の露点以上になるように冷水の流量を調整することで、室内機3cに結露が発生しないようにすることができる。
This causes the temperature of the cold water returning to the heat source unit 1 to be close to room temperature. That is, the amount of cooling heat that can be extracted from the cold water generated by the heat source device 1 can be utilized to the maximum extent. In this case, it is possible to prevent condensation from occurring in the indoor unit 3c by adjusting the flow rate of the cold water so that the dew point of the indoor air becomes equal to or higher than the dew point of the indoor air when it flows into the indoor unit 3c.
本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能である。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
The present invention can be variously modified and modified without departing from the spirit and scope of the broad sense. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
本発明は、水方式で建物内の空調を行う空調システムに好適に採用され得る。
The present invention can be suitably employed in an air conditioning system that performs air conditioning in a building using a water system.
1 熱源機、2,2a,2b 中継機、3a~3c 室内機、4,26a,26b,27 温度センサ、5 リモコン、6,7a,7b 配管、8,9 通信線、10 圧縮機、11 四方弁、12 第1熱交換器、13 膨張弁、14 第2熱交換器、15 ファン、16 ポンプ、17,28,32a,32b 制御基板、20,21 流量調整弁、22~25 開閉弁、30a,30b 熱交換器、31a,31b ファン
1 heat source machine, 2, 2a, 2b relay machine, 3a-3c indoor unit, 4, 26a, 26b, 27 temperature sensor, 5 remote control, 6, 7a, 7b piping, 8, 9 communication line, 10 compressor, 11 four-way Valve, 12 1st heat exchanger, 13 Expansion valve, 14 2nd heat exchanger, 15 Fan, 16 Pump, 17, 28, 32a, 32b Control board, 20, 21 Flow control valve, 22-25 Open / close valve, 30a 30b heat exchanger, 31a, 31b fan
Claims (8)
- 熱源機と、中継機と、前記中継機と接続される第1室内機及び第2室内機とを備え、
前記中継機は、
前記熱源機からの水を前記第1室内機及び前記第2室内機に並行して導く並列流路と、
前記水を前記第1室内機及び前記第2室内機に予め定めた順序で導く直列流路と、
前記水の流路を前記並列流路から前記直列流路へ、及び、前記直列流路から前記並列流路へ切り替える切替手段と、を備える、空調システム。 A heat source unit, a relay unit, and a first indoor unit and a second indoor unit connected to the relay unit,
The repeater is
A parallel flow path for guiding water from the heat source unit in parallel to the first indoor unit and the second indoor unit;
A series flow path for guiding the water to the first indoor unit and the second indoor unit in a predetermined order;
An air conditioning system comprising: switching means for switching the water flow path from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path. - 前記中継機は、前記熱源機へ戻る水と前記熱源機から流入する水との温度差が予め定めた閾値以上になると、前記流路を前記並列流路から前記直列流路へ切り替える、請求項1に記載の空調システム。 The relay unit switches the flow path from the parallel flow path to the series flow path when a temperature difference between water returning to the heat source machine and water flowing in from the heat source machine is equal to or greater than a predetermined threshold. 1. The air conditioning system according to 1.
- 前記中継機は、前記第1室内機と前記第2室内機の内、前記直列流路にて先に前記水が導かれる方の送風能力を他方の送風能力より低下させる、請求項1又は2に記載の空調システム。 The said relay machine lowers the ventilation capacity | capacitance of the direction by which the said water is previously guide | induced in the said serial flow path among the said 1st indoor unit and the said 2nd indoor unit from the other ventilation capacity. The air conditioning system described in.
- 前記中継機は、前記第1室内機及び前記第2室内機のそれぞれに対応する空調対象空間の空調負荷に応じて、前記直列流路にて前記水を導く際の順序を決定する、請求項1から3の何れか1項に記載の空調システム。 The said relay machine determines the order at the time of guiding the said water in the said serial flow path according to the air-conditioning load of the space for air conditioning corresponding to each of the said 1st indoor unit and the said 2nd indoor unit. The air conditioning system according to any one of 1 to 3.
- 熱源機からの水を第1室内機及び第2室内機に並行して導く並列流路と、
前記水を前記第1室内機及び前記第2室内機に予め定めた順序で導く直列流路と、
前記水の流路を前記並列流路から前記直列流路へ、及び、前記直列流路から前記並列流路へ切り替える切替手段と、を備える、中継機。 A parallel flow path for guiding water from the heat source unit to the first indoor unit and the second indoor unit in parallel;
A series flow path for guiding the water to the first indoor unit and the second indoor unit in a predetermined order;
And a switching unit that switches the flow path of the water from the parallel flow path to the serial flow path and from the serial flow path to the parallel flow path. - 前記熱源機へ戻る水と前記熱源機から流入する水との温度差が予め定めた閾値以上になると、前記流路を前記並列流路から前記直列流路へ切り替える、請求項5に記載の中継機。 The relay according to claim 5, wherein the flow path is switched from the parallel flow path to the serial flow path when a temperature difference between water returning to the heat source machine and water flowing in from the heat source machine is equal to or greater than a predetermined threshold. Machine.
- 前記第1室内機と前記第2室内機の内、前記直列流路にて先に前記水が導かれる方の送風能力を他方の送風能力より低下させる、請求項5又は6に記載の中継機。 The repeater according to claim 5 or 6, wherein the air blowing capacity of the first indoor unit and the second indoor unit to which the water is first introduced through the series flow path is lower than the other air blowing capacity. .
- 前記第1室内機及び前記第2室内機のそれぞれに対応する空調対象空間の空調負荷に応じて、前記直列流路にて前記水を導く際の順序を決定する、請求項5から7の何れか1項に記載の中継機。 Any of the Claims 5-7 which determine the order at the time of guiding the said water in the said serial flow path according to the air-conditioning load of the air-conditioning object space corresponding to each of the said 1st indoor unit and the said 2nd indoor unit. The repeater according to item 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/067054 WO2017212571A1 (en) | 2016-06-08 | 2016-06-08 | Air-conditioning system and relay unit |
JP2018522223A JP6545378B2 (en) | 2016-06-08 | 2016-06-08 | Air conditioning system and relay unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/067054 WO2017212571A1 (en) | 2016-06-08 | 2016-06-08 | Air-conditioning system and relay unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017212571A1 true WO2017212571A1 (en) | 2017-12-14 |
Family
ID=60578493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067054 WO2017212571A1 (en) | 2016-06-08 | 2016-06-08 | Air-conditioning system and relay unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6545378B2 (en) |
WO (1) | WO2017212571A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019167249A1 (en) * | 2018-03-02 | 2019-09-06 | 三菱電機株式会社 | Air conditioner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102494941B1 (en) * | 2022-06-17 | 2023-02-06 | 고려대학교 산학협력단 | Heat pump system for preventing freezing of heat exchanger |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5724453U (en) * | 1980-07-15 | 1982-02-08 | ||
WO2009133644A1 (en) * | 2008-04-30 | 2009-11-05 | 三菱電機株式会社 | Air conditioner |
JP2014000946A (en) * | 2012-05-23 | 2014-01-09 | Denso Corp | Thermal management system for vehicle |
WO2016013194A1 (en) * | 2014-07-23 | 2016-01-28 | 株式会社デンソー | Refrigeration cycle device |
-
2016
- 2016-06-08 WO PCT/JP2016/067054 patent/WO2017212571A1/en active Application Filing
- 2016-06-08 JP JP2018522223A patent/JP6545378B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5724453U (en) * | 1980-07-15 | 1982-02-08 | ||
WO2009133644A1 (en) * | 2008-04-30 | 2009-11-05 | 三菱電機株式会社 | Air conditioner |
JP2014000946A (en) * | 2012-05-23 | 2014-01-09 | Denso Corp | Thermal management system for vehicle |
WO2016013194A1 (en) * | 2014-07-23 | 2016-01-28 | 株式会社デンソー | Refrigeration cycle device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019167249A1 (en) * | 2018-03-02 | 2019-09-06 | 三菱電機株式会社 | Air conditioner |
JPWO2019167249A1 (en) * | 2018-03-02 | 2021-01-07 | 三菱電機株式会社 | Air conditioner |
JP7034250B2 (en) | 2018-03-02 | 2022-03-11 | 三菱電機株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017212571A1 (en) | 2018-09-20 |
JP6545378B2 (en) | 2019-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5657110B2 (en) | Temperature control system and air conditioning system | |
JPWO2016002071A1 (en) | Air conditioning ventilator | |
JP2012030699A5 (en) | ||
JP2012141113A (en) | Air conditioning/water heating device system | |
CN109094330B (en) | Automobile air conditioner warm air system and control method | |
WO2020161805A1 (en) | Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner | |
JP4327296B2 (en) | Air conditioning system | |
WO2020261982A1 (en) | Air conditioning system | |
WO2017212571A1 (en) | Air-conditioning system and relay unit | |
JP6906865B2 (en) | Air conditioning system | |
JP2017089950A (en) | Air Conditioning System | |
JP6907653B2 (en) | Air conditioning system | |
JP6408539B2 (en) | Air conditioning system | |
JP6945741B2 (en) | Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner | |
WO2020129153A1 (en) | Air conditioning device | |
JP7089963B2 (en) | Control device, air conditioning system and control method | |
JP7199529B2 (en) | Control device, air environment adjustment system, air environment adjustment method, program, and recording medium | |
JP4939799B2 (en) | Air conditioner | |
JP3834042B2 (en) | Air conditioning control method and air conditioning system | |
JP2002228294A (en) | Method and device for cooling engine and refrigerating device | |
JP6389859B2 (en) | Air conditioning system | |
JP7399321B2 (en) | Chiller system and air conditioner with chiller system | |
WO2023148854A1 (en) | Heat-exchange-type ventilation device | |
JP3299415B2 (en) | Refrigerant circulation type air conditioning system | |
JP6467271B2 (en) | Hot water heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018522223 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16904606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16904606 Country of ref document: EP Kind code of ref document: A1 |