WO2017192004A1 - Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same - Google Patents

Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same Download PDF

Info

Publication number
WO2017192004A1
WO2017192004A1 PCT/KR2017/004687 KR2017004687W WO2017192004A1 WO 2017192004 A1 WO2017192004 A1 WO 2017192004A1 KR 2017004687 W KR2017004687 W KR 2017004687W WO 2017192004 A1 WO2017192004 A1 WO 2017192004A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
dimensional printing
printing
cross
dimensional
Prior art date
Application number
PCT/KR2017/004687
Other languages
French (fr)
Korean (ko)
Inventor
안근선
진송완
심진형
윤원수
강동구
Original Assignee
주식회사 티앤알바이오팹
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤알바이오팹, 한국산업기술대학교산학협력단 filed Critical 주식회사 티앤알바이오팹
Priority to JP2018557912A priority Critical patent/JP6898353B2/en
Priority to EP17792906.4A priority patent/EP3453523A4/en
Priority to US16/097,863 priority patent/US11534527B2/en
Priority to CN201780032352.7A priority patent/CN109153182B/en
Priority claimed from KR1020170056273A external-priority patent/KR20170124972A/en
Publication of WO2017192004A1 publication Critical patent/WO2017192004A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00

Definitions

  • the present invention relates to a method for supplying ink to an ink receiving portion of a three-dimensional printing apparatus, a three-dimensional printing method including the method, and a three-dimensional printing apparatus to which the method is applied, and more particularly, to an ink receiving portion provided in the three-dimensional printing apparatus.
  • the present invention relates to a method of providing ink by a three-dimensional printing method and a three-dimensional printing apparatus to which the method is applied. Using the method according to the invention, it is possible to print a highly structured biological tissue shape with high precision.
  • Regenerative medicine and tissue engineering mainly use the method of making three-dimensional tissue structures as a field for repairing or replacing damaged organs, and extrusion printing based bioprinting is one of the most suitable methods for making such three-dimensional tissue structures.
  • Head models used in bioprinting technology are largely divided into ink jet-based printing and extrusion-based printing.
  • various methods using laser, ultrasound, and the like have been proposed, but the first two models are most widely used.
  • the physical properties of the bio inks required by such bio printing techniques vary greatly depending on the printing head models used. Discharge-based printing systems that use fine nozzles and syringes are more effective than jet-based technologies. Viscosity is not limited. As a result, the range of applicable biomaterials becomes much wider than that of inkjet-based printing technology. In addition, it is easy to process the thick layer, it is easy to manufacture the cell structure of the size required by the clinical.
  • the resolution of bioprinting techniques based on extrusion laminated molding developed to date is hundreds of micrometers, but the basic structure of tissues and organs in the human body is tens of micrometers or less. In particular, the diameter of the capillaries that supply nutrients to cells constituting organs or tissues is 3 to 4 micrometers, so it is difficult to implement the current bioprinting technique.
  • multiple inks may be used for bioprinting.
  • the hydrogel and the curing agent are cured together, or when co-culture of several kinds of cells, the function of the cells is improved when the division between heterogeneous cells is used rather than the method of simply mixing and spraying the cells.
  • bioprinting should be performed by spraying multiple inks. According to this conventional method, this problem has been solved by using multiple heads containing heterogeneous materials, but the printing process time increases, which adversely affects cell viability and complicates the system. In order to increase the resolution of the printing technique, a nozzle with a small diameter should be used.
  • At least one ink is supplied to an ink receiving portion by a three-dimensional printing method and three-dimensional by using one ejection, in order to produce a highly precise biological tissue shape of a complex structure using a three-dimensional printing method.
  • the present invention relates to a printing apparatus for producing a printed matter having a three-dimensional pattern by using one ejection containing two or more different inks and a printing method using the same.
  • An object of the present invention is to provide an apparatus for printing a biological tissue shape having a complex structure with high precision and resolution, and a printing method using the same.
  • the present invention is to provide a printing apparatus and printing method that can significantly reduce the shear stress of the cell while heterogeneously printing the desired shape.
  • the present invention relates to a three-dimensional printing method comprising an ink providing step of providing at least one type of ink as an ink printed matter printed by a three-dimensional printing method to a three-dimensional printing ink ejecting member including an ink receiving portion and an ejecting portion.
  • the printing method may be a bioprinting apparatus and method used for manufacturing artificial tissues, organs, and the like.
  • the step of providing at least one type of ink in the space of the ink discharge member including the ink containing portion and the discharge portion, provided in the three-dimensional printing apparatus is applied by applying a physical force to the received ink Discharging ink to a single discharge port to produce an ink discharge, and printing the ink discharge on a substrate.
  • the providing of the ink may include providing at least one ink as an ink substrate printed by a three-dimensional printing method, and when using two or more different inks, another at least one ink may be used in addition to the three-dimensional printing method. It may be an ink layer provided by the providing method. Specifically, the ink filling and the at least one second ink filling the at least one first ink in the ink receiving portion It can be provided as an ink printed matter which is printed and injected by a three-dimensional printing method.
  • the ink printed matter provided to the ink receiving member in the ink providing step may itself have a two-dimensional or three-dimensional pattern, and a fragment of the ink receiving member may also have a pattern. It is particularly useful when the printed material is an artificial organ, because it consists of one or more structures of various materials.
  • the ink ejecting member may include an ink filling and an ink ejection to have a cross-sectional pattern of the same shape as the three-dimensional printed matter. Applying a physical force to the ink contained in the space, discharging ink through a discharge portion and a nozzle connected thereto to produce an ink discharge product having a cross-sectional pattern having the same shape as a print, and printing the ink discharge onto a substrate. It relates to a three-dimensional printing method of a printed matter having a cross-sectional pattern, comprising the step of.
  • the discharge may have a cross-sectional pattern of the same shape as the final printed matter
  • the ratio can be reduced to a ratio of 100: 99 to 100: 0.1, or 100: 50 to 100: 1, 100: 18 to 100: 1.
  • the cross-sectional diameter ratio of the primary ink prints provided by the three-dimensional printing method, or the cross-sectional area ratio, or the cross-sectional diameter ratio of the secondary prints of the primary ink prints may be 100: 99 to 100: 0.1. Or, it may be reduced in a ratio of 100: 50 to 100: 1 and 100: 18 to 100: 1.
  • Another example of the present invention is a three-dimensional printing apparatus of a printed matter having a cross-sectional pattern, and includes an accommodating part for receiving ink for printing in an inner space, and having a single passage positioned below the accommodating part and passing the ink therein and accommodated in the accommodating part.
  • An ink ejecting member comprising an ejecting portion for ejecting ink,
  • the printing apparatus may include a means for applying a physical force to the received ink, and for example, may apply a force using a pressure device or a screw. In order to apply the pressure under the same conditions, The pressure may be performed using a single pressing member, or may be performed by pressing the same pressure using two or more pressing members.
  • the ink contained by applying a physical force is discharged to the discharge portion to produce an ink discharge, and printing the ink discharge on the substrate.
  • the three-dimensional printing method according to the invention it can be produced a printed matter having a cross-sectional pattern.
  • At least one ink may be further provided as an ink layered product by a method other than a three-dimensional printing method.
  • the ink laminated material is provided by the layered method rather than the three-dimensional printing method.
  • the layering method by a method other than the three-dimensional printing method there is a method of layering using a tube or a syringe and the like, and is not particularly limited. Applying the physical force is Im, and a means for pushing the ink supplied to the ink receiving member as part ejection can be performed using a ", can be used, for example the pressure member and the screw or the like.
  • applying the pressure may be performed by using a single pressing member or by using two or more pressing members.
  • the pressure may apply the pressure under the same conditions, and the pressure under the same conditions is a pressure condition under which ink can be discharged to a single discharge port to form a single ink discharge, preferably two or more different inks, or
  • the ink printed matter provided by the three-dimensional printing method and the ink layered material provided by the method other than the three-dimensional printing are ejected to a single ejection opening to form a single ink ejection. It means a pressure condition to have the same shape.
  • the three-dimensional printing method of a printed matter having a cross-sectional pattern according to the present invention can be performed using the ink ejecting member or the three-dimensional printing apparatus including the ink ejecting member according to the present invention.
  • a three-dimensional printing apparatus of a printed matter having a cross-sectional pattern includes an accommodation part accommodating ink so as to have a cross-sectional pattern having the same shape as a printed matter, and a single passage located below the accommodation part. And an ink discharge member including an ejection portion for ejecting ink contained in the accommodation portion, and further comprising a nozzle connected to the discharge portion, and a pressurizing member for applying pressure to the ink contained in the partitioned space.
  • an accommodation part accommodating ink so as to have a cross-sectional pattern having the same shape as a printed matter, and a single passage located below the accommodation part.
  • an ink discharge member including an ejection portion for ejecting ink contained in the accommodation portion, and further comprising a nozzle connected to the discharge portion, and a pressurizing member for applying pressure to the ink contained in the partitioned space.
  • the three-dimensional printing apparatus is a substrate for printing the discharge
  • Additional devices for printing and printing may include components included in conventional three-dimensional printing devices.
  • three-dimensional of a print having a cross-sectional pattern A printing method, providing an ink of an accommodating part of the ink ejecting member, applying pressure to the ink contained in each partitioned space, ejecting ink through the ejecting part, and forming an ink ejection having a cross-sectional pattern having the same shape as a printed matter. Manufacturing, and printing the ink discharge on a substrate.
  • at least one ink may be provided as an ink printed matter printed by a three-dimensional printing method, and at least one ink may be further provided as an ink layered product by a method other than the three-dimensional printing method.
  • the method of manufacturing a printed matter having a cross-sectional pattern using an ink ejecting member or a three-dimensional printing apparatus including the ink ejecting member, and a three-dimensional printing apparatus including the ink ejecting member or the ink ejecting member is a component of the apparatus.
  • the steps of the star and method will be described in detail below.
  • An ink ejecting member has a receiving portion in which ink is received, and a single passage positioned below the receiving portion so as to have a cross-sectional pattern having the same shape as a printed matter, and having a single passage through which the ink passes, and ejecting the ink contained in the receiving portion. And a discharge part.
  • the present invention can print by discharging two or more different inks using one ink ejecting member, so that a single printing head can be used. Printing process time is reduced and little shear force is applied to the ink or cells contained therein. Therefore, when using the ink containing the cells using the printing method or apparatus according to the present invention, there is an advantage that the cell viability is high and the system is simple.
  • the discharge member is a component for supplying ink by pushing the ink under pressure from the outside, which is commonly used in a three-dimensional printing apparatus.
  • the pressure applied to the ink receiving member may vary depending on the concentration of the ink and the size of the nozzle, for example, 0.1 to 700 kPa, 1 to 500 kPa or 1 to 700 kPa. have. If the printing pneumatic is high, too much material is discharged, and if the pneumatic pressure is low, subsequent material may not print and slip into the supporting material.
  • the ink ejecting member has a single passage located below the accommodating portion and has a single passage through which the multiple inks pass, and includes an ejecting portion for ejecting the ink contained in the accommodating portion.
  • the discharge part may have a single passage, and may discharge ink contained in the accommodation part divided into a plurality of spaces by a single channel control method instead of multi channel control.
  • the inner diameter of the discharge port is formed very small.
  • the ink contained in the accommodation portion through the discharge port can be discharged to the outside of the accommodation portion.
  • the ink discharge discharged from the discharge portion has a cross-sectional pattern that is the same as the cross-sectional pattern of the accommodation portion, but may be reduced in size.
  • the three-dimensional printing apparatus may further include a nozzle connected to the discharge end of the discharge member, the ink is discharged through the exposure, the plate is located under the nozzle is discharged from the ' Printing ink is laminated on the plate to produce printed matter.
  • the printed matter having a cross-sectional pattern according to the present invention is preferably a human simulated tissue.
  • a human simulated tissue For example, muscle tissue (bundle structure), bone tissue (lamel lae & canal structure), neural tissue (per ineurium structure), vascular tissue (mul t i_layer structure), spinal cord (spinal cord) tissue and the like.
  • a housing having the same cross-sectional pattern and a discharge part for discharging the same into a single passage may be provided to realize high resolution.
  • the method for printing a living tissue provides a printing ink having an enlarged cross-sectional shape having the same shape and proportion as a printed matter in the accommodating portion, while maintaining a same cross-sectional pattern of the accommodating portion,
  • the pressure can be controlled to pass through the discharge section having a small cross section. It is preferable that the cross-sectional pattern of the discharged ejection is at a level capable of maintaining the same shape as the cross-sectional pattern of the accommodation portion.
  • the meaning of 'same' is defined as a meaning including not only 100% identical but also identical enough to perform substantially the same function.
  • the cross-section maintains the same shape means that only the size of the cross section is reduced but the shape of the original cross-section remains intact. After fabrication, printing of the desired size, ie the actual tissue cells and the tissue cells that correspond to the size, is possible.
  • the viscosity of the printing ink is preferably such that the cross section of the discharged discharged through the nozzle can maintain the same shape as the cross section of the printing material.
  • the cross-section of the printed result is a small size that cannot be achieved with current bioprinting techniques or a microstructure that can significantly reduce survival when printed.
  • muscle tissue (bundle structure), bone tissue (lamel) lae & canal structure), nerve tissue (per ineurium structure), vascular tissue (mul ti-layer structure), spinal cord (spinal cord) tissue, and the like.
  • the cross section of the printing apparatus accommodating portion has a cross-sectional pattern having the same shape as the printed matter, and the cross-sectional pattern of the accommodating portion is the discharge or
  • the ratio of the cross-sectional pattern of the printed matter may be represented by various methods such as the area ratio of the cross section, the diameter ratio, and the like.
  • the cross-sectional diameter ratio of the primary ink prints provided by the three-dimensional printing method is 100: 99 to 100: 0.1. Or 100: 50 to 100: 1, 100: 18 to 100: 1 ratio.
  • the reduction ratio of the secondary prints is that the ink prints provided on the ink receiving member are subjected to two printing processes, and when the reduction ratio is expressed based on the ink prints printed first in the syringe, the syringes are three-dimensional printing.
  • Equation 1 is obtained by subtracting the diameter of the secondary printed matter or ejection of the printing ink ejected through the nozzle from the diameter of the primary ink printed matter provided by the ratio divided by the diameter of the primary ink printed matter provided to the syringe by the three-dimensional printing method. It can be expressed as
  • A is the diameter of the primary ink substrate provided in the syringe by three-dimensional printing
  • B is the diameter of the secondary print of the printing ink
  • a and B are the same length unit.
  • the reduction ratio of the secondary printed matter is directly affected by the cross-sectional diameter of the receiving portion, the fragment diameter of the discharge portion, or the diameter of the nozzle, and can be variously designed by appropriately adjusting to the cross-sectional pattern size of the desired printed matter.
  • the cross-sectional diameter of the printout varies depending on the size of the nozzle, which ranges from 0.1 mm to lmm, and is usually used for printing, such as material properties, pressure, speed of the printing head, and the location of the printing result (printing bed). According to the process Can change.
  • the ratio can be downsized to 99% or 98.7% (200 ⁇ ) from the total diameter (15 ⁇ s) of a particular shape (eg Lobule).
  • the ink provided to the ink ejecting member according to the present invention is preferably a bio ink capable of producing artificial organs or the like.
  • printing may be performed by providing ink to the ink containing portion so as to have a cross-sectional pattern having the same shape as the printed matter.
  • the different inks mean that the inks are different from one or more selected from the group consisting of constituents, constituent contents and physical properties.
  • the term 'bio ink' includes living cells or biomolecules, and is a term used to collectively refer to a material capable of fabricating a structure required for a bioprinting technology.
  • the bio ink of the present invention comprises a liquid, semisolid, or solid composition comprising a plurality of cells.
  • the bio ink should provide a physical environment for three-dimensional processing and a biological environment for the cells to perform the intended function.
  • the supply of nutrients and oxygen necessary for the survival of cells in the ink ejecting member is appropriately performed. It should also be able to protect the cells from the physical stresses that occur during the printing process.
  • the bio ink should have the physical properties required in the printing process such as repeatability of 3D patterning, productivity, and no clogging of the nozzle.
  • the ink according to the present invention is preferably a hydrogel, and thus
  • the ink may include a gelling polymer and may include, for example, one or more selected from the group consisting of gelling polymers, cells, growth factors, and extracellular substrates.
  • the bioink used in the present invention may be, for example, a mixed / non-mixed hydrogel of desired cells, a hydrogel containing a specific growth factor, a hydrogel containing a cell and a growth factor, a cytokine (cytokine). ) Containing hydrogels, different types of hydrogels.
  • Hydrogels include collagen, matrigel, alginate, gelatin and agarose. Decellularized tissue-derived cell ink, hyaluronic acid, fibrin gel, or the like or a compatible hydrogel is suitable.
  • bio-inks diffuse faster at lower viscosities, they are thicker than water (1 cp) and have a viscosity measured at 25 ° C, ranging from 2 cp to 1,000,000 cp, for example 2 cp to 10,000 cp, 5 cp to 1,000,000 cp, 2 to Materials on gels having a viscosity of 500 cps, 5 to 300 cps and the like are suitable.
  • the viscosity of the ink is too low, the shape of the ink printed matter printed by the three-dimensional printing method may collapse or be deformed, and the printed matter and the ink packing may be mixed with the boundary to be broken.
  • the viscosity of the gel-type material used in the method of the present invention preferably has a suitable viscosity so that the printing material can be discharged in the discharge process described later.
  • the inks applicable to the present invention may use various viscosity enhancers to provide a viscosity suitable for ejection. Viscosity of the printing material is such that the cross section of the discharged discharged through the nozzle can maintain the same shape as the cross section of the printing material.
  • the ink viscosity difference between the ink layer and the ink printed matter is less than 5,000cp, for example 0 to 5,000cp, less than 1,000cp, less than 500cp, less than 200cp, less than 150cp, less than lOOcp It may be less than 50cp. If the difference in viscosity of the ink is very large, the shape of the ink printed matter may be deformed by the molecular force of different materials, the same if you want to three-dimensional printing by ejecting When pressure is applied to the ink or the ink receiving member, the ink pattern accommodated in the ink receiving member may collapse due to the difference in viscosity. Therefore, different from each other
  • the difference between the elastic values of the ink filling and the ink printing may be 10,000 Pa or less, for example, 0 to 10,000 Pa. It is preferable that the ink layered matter and the ink printed matter have similar trends in viscosity and elasticity change according to the shear rate and similar viscosity and elasticity values.
  • the gelling polymer used in the different inks is different, for example, the gelling polymer is temperature sensitive like collagen and gelatin, and the other is not temperature sensitive like alginate and fibrin gel, it is necessary to adjust the temperature inside the syringe.
  • the temperature of the ink accommodating member can be appropriately adjusted within the 4 S C to 37 C C temperature range.
  • Naturally derived or synthetic hydrogels in the field of three-dimensional bio printing Although bio inks have been developed and are currently in use, biogels based on hydrogels have been used for physical and biological reasons such as biocompatibility, printing suitability, geometrical precision, and precision.
  • the first extrudable "or" ejection possible ' is the discharge portion, the nozzle (nozzle) or an orifice (for example, one or more holes or tubes) means that can be molded by passing (e.g., under pressure).
  • Densification of the bio ink is derived from growing cells at a suitable density. The cell density required for the bio ink depends on the cell to be used and the tissue or organ to be produced.
  • the present invention also provides a bio ink composition, wherein the bio ink composition further comprises a tissue-derived component.
  • Tissue-derived component means that specific tissues of animals such as cartilage, kidney, heart, liver, muscle, etc. are decellularized and gelled of a substance mainly composed of extracellular matrix. Can be included to enhance.
  • the bio ink composition is a cell culture medium It may further include.
  • the cell culture medium is a concept including any medium suitable for the cells of interest.
  • the ink according to the present invention may include a gelling polymer, and the gelling polymer solution used for such printing may be used in various kinds.
  • the conditions that the polymer solution should have are as follows. First, in order to achieve a three-dimensional printing well, it should be easy to eject to the nozzle with a suitable viscosity, and should not cause problems such as crushing the shape of the object made by rapid curing after discharge. In addition, for manufacturing purposes, it should be possible to create a cell culture environment similar to the tissue in the human body.
  • gelling polymer examples include fucoidan, collagen alginate, chitosan, hyaluronic acid, silk, polyimides, polyamix acid, polycarprolactone, polyetherimide, nylon (nylon) , Polyaramid, polyvinyl alcohol, polyvinylpyrrolidone,
  • Polyaniline polyacrylonitrile, polyethylene oxide, polystyrene, cellulose, polyacrylate, polymethylmethacrylate ), Polylact ic acid (PLA), polyglycol ic acid (PGA), copolymers of polylactic acid and polyglycolic acid (PLGA), poly
  • PEG-DA ⁇ Poly (ethylene oxide) terephthalate-co-butyleneterephthalate KPE0T / PBT), polyphosphoester (PPE), polyphosphazene (PPA), polyanhydride (PA), polyortho Ester ⁇ poly (ortho ester; P0E), poly (propylene fumarate) -diacrylate; PPF-DA ⁇ and polyethylene glycol diacrylates ⁇ poly (ethylene glycol) diacrylate; Out of the group consisting of PEG-DA ⁇ It may be one or more selected or a combination of the above materials. However, the material is not limited to this embodiment.
  • the gelling polymer may be a chemically modified natural polymer, for example, the binding si of GelMA, Alginate / Gel at in, Alginate that combines the chemical at the gel at in and methacrylate (MA) and the photoini ti ator
  • the stock price may include pentapeptide sequencing, Tyr-I le-Gly-Ser-Arg (YIGSR) and alginate in combination with EDC / NHS.
  • the hydrogels including polyethylene glycol, alginate, nitrate, collagen and gelatin have high water content, have excellent biocompatibility, can control mechanical properties, and have excellent biodegradability, and thus are widely used in the preparation of cellular-embedded carriers. Has been used. For this reason, hydrogels are well suited for the manufacture of cell-loaded structures and can be printed directly to obtain various types of tissue regeneration backbones.
  • the gelatin is particularly suitable as the cell carrier because it exhibits temperature-sensitive properties. That is, gelatin has the property of liquefying at 37 ° C and solidifying below room temperature.
  • the gelling polymer may be formed using a physical treatment or a chemical treatment to form a crosslinking ol
  • the crosslinking solution may be used for the chemical treatment
  • a crosslinking solution may be appropriately selected according to the selected gelling polymer.
  • the crosslinking solution may be gypsum; Or hydroxyapatite, apatite carbonate, apatite fluoride, apatite chloride, a-TCP, ⁇ -TCP, calcium metaphosphate, tetracalcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, calcium carbonate, calcium sulfate, EDC ⁇ l-ethyl- (3-3-dimethylaminopropyl) carbodi imide hydrochlor ide ⁇ or a solution of one or more combinations thereof selected from salts thereof.
  • the ratio of collagen concentration in the collagen solution of the liquid form is usually in the range of 0.01 to 30% by weight.
  • the method for producing hydrogels uses ink for normal three-dimensional printing. It can be carried out by applying the manufacturing method used when manufacturing, but is not particularly limited,
  • the bioink according to the present invention may include cells, and applicable cells or tissues are not particularly limited, and may be animal cells or plant cells, or tissues of animals or plants.
  • the cells are stem cells, osteoblasts, myoblasts, myocytes, tenocytes, neuroblasts, fibroblasts, glioblasts, germ cells ( germcells, hepatocytes, renal cells, sertoli cells, chondrocytes, epithelial cells, cardiovascular cells, keratinocytes, smooth muscle cells cells, cardiomyocytes, glial cells, endothelial cells, hormone secreting cells, cotton cells, pancreatic islet cells and neurons. It may be any one or more.
  • the cell type used in the prepared artificial tissue of the present invention may be cultured in any manner known in the art. Cell and tissue culture methods are known in the art.
  • the cells may also be incubated with cell differentiation materials that induce differentiation of the cells along the desired cell line.
  • stem cells are incubated in contact with differentiation medium to produce a range of cell types.
  • differentiation media include, but are not limited to, osteogenic differentiation medium, chondrogenic differentiation medium, adipogenic differentiation medium, neuronal differentiation medium, cardiomyocyte differentiation medium, and enterocyte differentiation medium (e.g., intestine). Incubated in contact with the differentiation medium).
  • the cells may be cultured with growth factors, cytokines and the like.
  • Growth factor refers to a protein, polypeptide, or polypeptide complex comprising a cytokine, produced by a cell and capable of affecting itself and / or various other adjacent or isolated cells.
  • the growth factor is In response to developmental or multiple biochemical or environmental stimuli, it affects the growth and / or differentiation of certain types of cells. Some, but not all, growth factors are hormones.
  • Exemplary growth factors include fibers including insulin, insulin-like growth factor (IGF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and basic FGF (bFGF) Platelet-derived growth factor (PDGF) including blast growth factor (FGF), PDGFM and PDGF-AB, bone morphogenic proteins (BMP), hepatocyte growth factor (HGF), traits including BMP-2 and ⁇ P-7 Transforming growth factor beta (TGF- ⁇ ), epidermal growth factor (EGF), granulocyte-macrophage colony-stimulating factor (GM) including transforming growth factor alpha (TGF- ⁇ ), TGF
  • IGF insulin-like growth factor
  • NGF nerve growth factor
  • VEGF vascular endothelial growth factor
  • KGF ker
  • 'bioprinting' refers to three-dimensional accurate cell deposition (eg, cell solutions, cell-containing gels, cell suspensions, cells) through a methodology compatible with automated computer-assisted, three-dimensional prototyping devices (eg bioprinters). Concentrate, multicellular aggregates, multicellular bodies, etc.). 3D printing can be performed by extruding a biodegradable polymer from a nozzle using a bio-plotter and laminating it on a stage.
  • tissue analogues can be generated by the methods described above.
  • the pattern or stacking arrangement for stacking the bio ink composition may be determined by the size and diameter of the tissue-like organ to be manufactured.
  • the number of cells included in the bio ink used to manufacture tissue-like organs may be controlled according to the type of cells, the content of cell nutrients contained in the bio ink composition, and the like.
  • the type of cells included in the bio ink composition may be variously changed according to the type of tissue-like organ to be prepared according to the above method. Those skilled in the art to which the present invention pertains will be able to select and apply appropriate cells according to the type of tissue-like organs to be prepared through three-dimensional bioprinting.
  • Bio ink composition is sprayed by a three-dimensional bio printer laminated Thereafter, it is possible to promote crosslinking of the bio ink ⁇ composition by heating it, exposing it to ultraviolet rays or adding a crosslinking solution. This crosslinking allows the laminated bio ink composition to be completed into a more rigid structure.
  • An optical initiator may be used to promote the crosslinking.
  • an ink ejecting member having the same cross-sectional pattern as the printed matter but having the same or different cross-sectional pattern
  • at least one ink provided by a three-dimensional printing method is accommodated in a space of the ink ejecting member accommodating portion, It is provided with a single passage through which the ink passes and controls the pressure, for example the piston, to pass through the discharge portion for discharging the ink.
  • a small amount of hydrogel as a support material in the amount of 0.01 mL to 2 mL in advance so as not to pour the bio ink into the container. Thereafter, or without adding hydrogel to the barrel.
  • the filled hydrogel is ejected at the beginning of printing, and then the desired shape is printed. After printing the printed material of the desired shape, the hydrogel filled above will come out.
  • the reason for adding support material (support mater al) at the beginning and the end is to make printing stable.
  • 1, 2, 3, 4, and 5 schematically illustrate a process of providing ink to a ink receiving member by a three-dimensional printing method according to an example of the present invention.
  • the inside of the ink discharge member 10 is divided into a plurality of spaces for accommodating the respective inks 11, 12, 13, and 14.
  • 9 shows a bioprinting apparatus which can be applied to an example of discharging five inks (1, 2, 3, 4, 5) according to one embodiment of the present invention.
  • the cell liquid substance contained in the ink ejecting member 10 is pressed in the A direction and printed through the ejecting portion 20 or the nozzle 80.
  • the ink is ejected to complete the final object 50.
  • the piston 60 is preferably controlled to pass through the nozzle 20 is reduced in size while maintaining the same shape of the cross section of the printing material, the base may be a container containing a liquid material in some cases.
  • the pressure is too high, the load on the nozzle may be increased and damage may occur, or the hydrogel may not be discharged in the form of a thread smoothly and may be discharged in an unbalanced shape, and the pressure may be too weak. In this case, due to the resistance due to the viscosity of the hydrogel may not be smooth discharge from the nozzle.
  • the diameter is too small, the discharge pressure is increased, so that the risks when the pressure is strong may occur the same, and if the diameter is too large, the precision of the three-dimensional shape when manufacturing the scaffold may be reduced.
  • the printing method according to the present invention includes the steps of accommodating ink in the accommodating part, applying a pressure within the range of 0.1 to 700 kPa, 1 to 500 kPa or 1 to 700 kPa, for example, 0. Discharging the ink to the nozzle having an outlet diameter within a range of 1 to 1 mm, and printing the ink while the nozzle moves at a speed within a range of 1 to 700 mm / min by a moving part of a printing apparatus. Can be done.
  • the cell liquid substance contained in the ink discharge member 10 is pressed in the A direction to discharge the printing material to the base 100 through the discharge portion 20 to complete the final object 50.
  • the piston is preferably controlled to pass through the discharge portion 20 is reduced in size only while maintaining the same shape of the cross section of the printing material, in some cases the base may be a container containing a liquid material.
  • the base may be a container containing a liquid material.
  • the volume reduction of the material because there is a limit to the size reduction of the nozzle inner diameter.
  • the volume of material discharged in proportion to the number of multiple inks can be reduced, so that precise jetting is possible compared to the prior art.
  • the area of contact between each material and the inner surface of the nozzle passage is reduced, and the shear force generated is also reduced than when discharging a single material. Therefore, in terms of improving cell activity and printing accuracy, there is an advantageous effect compared to the prior art.
  • FIG. 1 is a schematic diagram illustrating a process of manufacturing a printed matter of a second ink and a layered ink of a first ink according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an ink ejecting member into which a first ink layered product and a spiral second ink printed matter are injected and an ejection obtained therefrom according to an example of the present invention.
  • FIG. 3 is a schematic view showing an ink ejecting member into which a print made of three kinds of ink of crab 1 ink and a spiral shape is injected, and an ejection obtained therefrom according to an example of the present invention.
  • FIG. 4 is ink ejected by a three-dimensional printing method according to an embodiment of the present invention A diagram schematically showing an example of injecting ink into a member.
  • FIG. 5 is a view schematically illustrating a method of injecting the second to seventh inks by a three-dimensional printing method in addition to the filling of the first ink in the ink ejection member according to an embodiment of the present invention.
  • FIG. 6 is a photograph of a syringe and a discharging part provided at the end of the syringe showing a process of manufacturing a print of the crab 1 ink and the crab 2 ink according to Example 1
  • FIG. 7 is a confocal micrograph showing the result of printing using the ejection obtained from the ink ejecting member in which the filling of the first ink and the printed matter of the spiral second ink were injected according to Example 1.
  • FIG. 7 is a confocal micrograph showing the result of printing using the ejection obtained from the ink ejecting member in which the filling of the first ink and the printed matter of the spiral second ink were injected according to Example 1.
  • FIG. 8 is a confocal micrograph showing the result of printing using a syringe in which a layered material of crab 1 ink and a printed material of a second ink are laminated according to Example 2, and an ejection obtained from the syringe.
  • FIG. 9 is a view schematically showing an ink ejecting member having a receiving portion in which five different inks are layered according to an example of the present invention.
  • 10 is a view schematically showing an ink ejecting member according to an embodiment of the present invention.
  • Example 1 A syringe including an ink substrate and an ink layer
  • a 1-gel hydrogel for layering of 3 w / v% sodium alginate was injected into a syringe, which is an ink receiving portion of a 3D printing apparatus.
  • a 3D printing apparatus having a long length nozzle was used.
  • 3 w / v% sodium alginate containing green fluorescent particles was injected as a 12 hydrogel by three-dimensional printing.
  • One example was performed similar to the method illustrated in FIG. 1. The ink shape printed on the syringe was photographed and shown in FIG. 2.
  • the first hydrogel for filling the syringe and the three-dimensional printed giant 12 hydrogel were printed by a three-dimensional printing method using a discharge obtained through a discharge unit by applying pressure, and the nozzle size (nozz le I. D) was 1.0 mm.
  • Printed in three lines. Printed section length is 30 micrometers when using a nozzle with a nozzle size (nozz le I .D) of 1 mm and printed section length when using a nozzle with a nozzle size (nozzl e I .D) of 2 mm Was 70 micrometers.
  • FIG. 3 shows a photograph in which a first hydrogel for supporting and a second hydrogel having a specific shape formed therein by a three-dimensional printing method are formed using a discharge member including an ink receiving unit according to Example 1.
  • FIG. 7 shows the results of confocal microscopy observation of a printed matter produced by a three-dimensional printing method by ejecting the ink containing layer having the first hydrogel and the crab hydrogel layered in accordance with Example 1 under pressure conditions. That is, when the discharged product is observed by fluorescence with a confocal microscope, it is as shown in FIG.
  • the method according to the invention indicates that the ink is printed with high resolution.
  • Example 2 three-dimensional printing using nozzles of various sizes
  • Example 2 Using a three-dimensional printing apparatus using the same ink ejecting member as Example 1, it was confirmed by confocal microscopy that the hydrogel is printed in the nozzle size of 18, 20, 22, 25 and 27 Gauge. Specifically, the nozzle inner diameters of 18, 20, 22, 25, and 27 Gauge were 0.82 mm, 0.63 mm, 0.41 mm, 0.28 mm, and 0.1 mm. The confocal micrograph is shown in FIG. 8.
  • FIG. 8 shows the first hydrogel layered product and the second hydrogel printed matter of the size of the nozzle using the discharge member including the ink containing portion according to Example 2.
  • A is the diameter of the primary ink substrate provided in the syringe by three-dimensional printing method B is the diameter of the secondary substrate of the printing ink
  • a and B are the same length unit.
  • hydrogel was injected into the same syringe as in Example 1.
  • the hydrogel is injected, the syringe, using the future a three-dimensional printing, comprising a long length of the nozzle, the ink printed print each Green, Blue, Red fluorescent particle is a 3 w / v% sodium alginate comprising sequentially It was injected into a syringe, and it was confirmed by confocal microscopy that the obtained RGB hydrogel was printed.
  • FIG. 7 A schematic diagram of a syringe filled with ink prints prepared with the three inks and a manufacturing process thereof are shown in FIG. 7.
  • 3 w / v% sodium alginate was injected into the same syringe as in Example 1, and 3% gelatin, a temperature-sensitive hydrogel, was injected into the alginate pre-injected using a long nozzle using a printing method.
  • Printing the prepared complex hydrogel in 200 Mm calcium chloride induces only alginate gelation and gelatin is present in the ungelled body.
  • the printing structure was placed in a liquid of 37 a C, the gelled alginate remained intact but gelatin melted to form a lumen structure.
  • Example 5 Blood Vessel Fabrication with Cells and Multiple Lumen Structures
  • 3 w / v% sodium alginate was injected into the syringe and smooth muscle was used, using a three-dimensional printing apparatus equipped with a long nozzle.
  • 3% alginate in which the cells are contained at a concentration of at least IX 10 7 Cel ls / mL is injected into the filled 3% alginate, and 3% gelatin embedded at a concentration of at least 1 X 10 7 Cel ls / mL is used for smooth muscle cells.
  • Vascular structures were simulated by a continuous method of injecting the intrinsic alginate.
  • the aorta and the vena cava of the blood vessels are stacked in a four-cylindrical structure. This method enables easy hand printing of quadrilateral blood vessels, as well as size control.
  • the double structure of the cleansing vein and the single structure of the microvessel can be similarly simulated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Mechanical Engineering (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)

Abstract

The present invention relates to a method for filling two or more different kinds of multiple inks in an ink discharge member for three-dimensional printing and to a three-dimensional printing method using the filled inks, the three-dimensional printing method using multiple inks comprising the steps of: producing an ink discharge by allowing the accommodated multiple inks to be discharged under pressure from a single discharge port of a discharge unit; and printing using the ink discharge.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
삼차원 프린팅용 잉크를 공급하는 방법 및 이를 이용한 삼차원 프린팅 방법  3D printing ink supply method and 3D printing method using the same
【기술분야】 Technical Field
본 발명은 삼차원 프린팅 장치의 잉크 수용부에 잉크를 공급하는 방법, 상기 방법을 포함하는 삼차원 프린팅 방법 및 상기 방법이 적용된 삼차원 프린팅 장치에 관한 것으로서, 더욱 자세하게는 삼차원 프린팅 장치에 구비된 잉크 수용부에, 삼차원 프린팅 방법으로 잉크를 제공하는 방법 및 상기 방법이 적용된 삼차원 프린팅 장치에 관한 것이다. 본 발명에 따른 방법을 이용하면, 복잡한 구조의 생체 조직 형상을 높은 정밀도로 인쇄할 수 있다. 【배경기술】  The present invention relates to a method for supplying ink to an ink receiving portion of a three-dimensional printing apparatus, a three-dimensional printing method including the method, and a three-dimensional printing apparatus to which the method is applied, and more particularly, to an ink receiving portion provided in the three-dimensional printing apparatus. The present invention relates to a method of providing ink by a three-dimensional printing method and a three-dimensional printing apparatus to which the method is applied. Using the method according to the invention, it is possible to print a highly structured biological tissue shape with high precision. Background Art
재생의학 및 조직공학은 손상된 장기를 복원하거나 대체하기 위한 분야로서 3차원적 조직 구조체를 만드는 방법을 주로 사용하고 있으며 압출 적층조형 기반의 바이오프린팅은 이러한 3차원적 조직 구조체를 만드는 가장 적합한 방법 중 하나이다. 3D 바이오 프린팅、 기술을 이용하여 인체를 구성하는 조직과 유사한 세포 구조체의 제작을 통하여 필요로 하는 기능성 조직을 재생하려는 연구가 활발히 이루어지고 있다. , Regenerative medicine and tissue engineering mainly use the method of making three-dimensional tissue structures as a field for repairing or replacing damaged organs, and extrusion printing based bioprinting is one of the most suitable methods for making such three-dimensional tissue structures. . There is an active research to regenerate the functional tissues required by the production of cell structures similar to the tissues constituting the human body using 3D bioprinting, technology. ,
바이오 프린팅 기술에 웅용된 헤드 모들은 크게 잉크젯 기반 프린팅 ( ink jet-based pr int ing) 모들과 토출 기반 프린팅 (extrusion-based pr int ing) 모들로 나뉘어 진다. 그 외에도 레이저, 초음파 등을 이용한 다양한 방법들이 제시되었지만, 앞의 두 가지 모들이 가장 널리 사용되고 있다.  Head models used in bioprinting technology are largely divided into ink jet-based printing and extrusion-based printing. In addition, various methods using laser, ultrasound, and the like have been proposed, but the first two models are most widely used.
이러한 바이오 프린팅 기술이 요구하는 바이오 잉크의 물리적 성질은 사용되는 프린팅 헤드 모들에 따라 크게 달라진다. 미세 노즐과 시린지를 이용하는 토출 기반 프린팅 시스템에서는 젯팅 기반 기술에 비하여 재료의 - 점성에 큰 제약을 받지 않는다. 따라서 잉크젯 기반 프린팅 기술에 비해서 응용 가능한 생체 재료의 폭이 훨씬 넓어지게 된다. 또한 두꺼운 층의 가공이 용이하여 임상에서 요구하는 크기의 세포 구조물 제작이 용이하다 . 그러나, 현재까지 개발된 압출 적층 조형 기반의 바이오 프린팅 기법의 해상도는 수백 마이크로미터지만 인체 내 조직이나 장기의 기본 구조는 수십 마이크로미터 이하로 큰 차이가 있다. 특히 장기나 조직을 구성하는 세포에 영양분을 공급하는 모세혈관의 직경은 3 내지 4 마이크로미터이므로 현재의 바이오 프린팅 기법으로는 구현이 어렵다. The physical properties of the bio inks required by such bio printing techniques vary greatly depending on the printing head models used. Discharge-based printing systems that use fine nozzles and syringes are more effective than jet-based technologies. Viscosity is not limited. As a result, the range of applicable biomaterials becomes much wider than that of inkjet-based printing technology. In addition, it is easy to process the thick layer, it is easy to manufacture the cell structure of the size required by the clinical. However, the resolution of bioprinting techniques based on extrusion laminated molding developed to date is hundreds of micrometers, but the basic structure of tissues and organs in the human body is tens of micrometers or less. In particular, the diameter of the capillaries that supply nutrients to cells constituting organs or tissues is 3 to 4 micrometers, so it is difficult to implement the current bioprinting technique.
또한, 바이오 프린팅을 할 때에 다중 잉크를 사용하는 경우가 있다. 예를 들어, 하이드로겔과 경화제를 같이 경화시키는 경우 또는, 여러 종류의 세포를 공배양하는 경우 단순히 세포를 섞어 분사하는 사용하는 방식보다 이종 세포간 구획을 나누어 사용하는 경우 세포의 기능이 향상되는 것으로 알려져 있으므로 다중 잉크를 분사하여 바이오 프린팅을 해야 한다. 이러한 종래 방식에 의하면 다중 재료가 이질적으로 함유된 다중 헤드를 사용하여 이를 해결하고자 하였으나 프린팅 공정 시간이 증가하여 세포 생존율에 악영향을 미치고 시스템이 복잡해지는 단점이 있다. 프린팅 기법의 해상도를 높이기 위해서는 직경이 작은 노즐을 사용하여야 하는데, 직경이 작은 노즐을 사용하게 되면 토출 시에 노즐 안쪽에서 토출되는 재료와 벽면 사이에 전단 응력이 발생하여 세포의 활성을 저하시키는 부작용이 있다. 또한, 전단 웅력에 의하여 세포가 사멸하는 문제가 빈번하게 발생하는 문제가 있기 때문에 노즐의 직경을 무작정 소형화하는 것도 어려운 실정이다.  In addition, multiple inks may be used for bioprinting. For example, when the hydrogel and the curing agent are cured together, or when co-culture of several kinds of cells, the function of the cells is improved when the division between heterogeneous cells is used rather than the method of simply mixing and spraying the cells. As it is known, bioprinting should be performed by spraying multiple inks. According to this conventional method, this problem has been solved by using multiple heads containing heterogeneous materials, but the printing process time increases, which adversely affects cell viability and complicates the system. In order to increase the resolution of the printing technique, a nozzle with a small diameter should be used. When using a nozzle with a small diameter, a shear stress is generated between the material and the wall discharged from the inside of the nozzle during discharging. have. In addition, since the problem of cell death due to shear force occurs frequently, it is also difficult to miniaturize the diameter of the nozzle.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 삼차원 프린팅 방법을 이용하여 복잡한 구조의 생체 조직 형상을 높은 정밀도로 쩨조하기 위하여, 적어도 하나의 잉크는 삼차원 프린팅 방법으로 잉크 수용부에 공급되며, 하나의 토출물을 이용하여 삼차원 패턴을 갖는 인쇄물을 제조하는 잉크 토출 부재 및 이를 이용한 프린팅 방법에 관한 것이다. According to the present invention, at least one ink is supplied to an ink receiving portion by a three-dimensional printing method and three-dimensional by using one ejection, in order to produce a highly precise biological tissue shape of a complex structure using a three-dimensional printing method. An ink ejecting member for producing a printed matter having a pattern, and a printing method using the same.
본 발명은 둘 이상의 상이한 잉크를 포함하는 하나의 토출물을 이용하여 삼차원 패턴을 갖는 인쇄물을 제조하는 프린팅 장치 및 이를 이용한 프린팅 방법에 관한 것이다.  The present invention relates to a printing apparatus for producing a printed matter having a three-dimensional pattern by using one ejection containing two or more different inks and a printing method using the same.
본 발명은 복잡한 구조를 가지는 생체 조직 형상을 높은 정밀도와 해상도로 프린팅하는 장치 및 이를 이용한 프린팅 방법을 제공하는 것을 목적으로 한다. 본 발명은 원하는 형상을 이질적으로 프린팅하는 동시에 세포의 전단응력도 크게 줄여줄 수 있는 프린팅 장치 및 프린팅 방법을 제공하는 것이다.  An object of the present invention is to provide an apparatus for printing a biological tissue shape having a complex structure with high precision and resolution, and a printing method using the same. The present invention is to provide a printing apparatus and printing method that can significantly reduce the shear stress of the cell while heterogeneously printing the desired shape.
【기술적 해결방법】 Technical Solution
본 발명은 잉크 수용부 및 토출부를 포함하는 삼차원 인쇄용 잉크 토출 부재에, 적어도 1종의 잉크를 삼차원 인쇄법으로 인쇄한 잉크 인쇄물로 제공하는 잉크 제공 단계를 포함하는 삼차원 인쇄 방법에 관한 것으로서, 바람직하게는 상기 프린팅 방법은 인공 조직, 장기 등을 제작에 사용되는 바이오 프린팅 장치 및 방법일 수 있다.  The present invention relates to a three-dimensional printing method comprising an ink providing step of providing at least one type of ink as an ink printed matter printed by a three-dimensional printing method to a three-dimensional printing ink ejecting member including an ink receiving portion and an ejecting portion. The printing method may be a bioprinting apparatus and method used for manufacturing artificial tissues, organs, and the like.
본 발명의 또 다른 일 예는, 삼차원 프린팅 장치에 구비된, 잉크 수용부 및 토출부를 포함하는 잉크 토출 부재의 공간에 적어도 1종의 잉크를 제공하는 단계, 상기 수용된 잉크에 물리적인 힘을 가하여 수용된 잉크가 단일 토출구로 토출하여 잉크 토출물을 제조하는 단계 , 및 상기 잉크 토출물을 기판에 인쇄하는 단계를 포함한다.  Another example of the present invention, the step of providing at least one type of ink in the space of the ink discharge member including the ink containing portion and the discharge portion, provided in the three-dimensional printing apparatus, is applied by applying a physical force to the received ink Discharging ink to a single discharge port to produce an ink discharge, and printing the ink discharge on a substrate.
상기 잉크를 제공하는 단계는, 적어도 1종의 잉크를 삼차원 인쇄법으로 인쇄한 잉크 인쇄물로 제공할 수 있으며, 상이한 2종 이상의 잉크를 사용하는 경우 또다른 적어도 1종의 잉크는 삼차원 인쇄법이외의 제공 방법으로 제공되는 잉크 층진물일 수 있다. 구체적으로, 적어도 하나의 제 1 잉크를 잉크 수용부에 충진하는 잉크 충진물과 적어도 하나의 제 2잉크를 삼차원 인쇄법으로 인쇄하여 주입하는 잉크 인쇄물로 제공할 수 있다. The providing of the ink may include providing at least one ink as an ink substrate printed by a three-dimensional printing method, and when using two or more different inks, another at least one ink may be used in addition to the three-dimensional printing method. It may be an ink layer provided by the providing method. Specifically, the ink filling and the at least one second ink filling the at least one first ink in the ink receiving portion It can be provided as an ink printed matter which is printed and injected by a three-dimensional printing method.
상기 잉크 제공 단계에서 잉크 수용 부재에 제공된 잉크 인쇄물은 그 자체로도 이차원 또는 삼차원 패턴을 갖는 것일 수 있으며, 잉크 수용 부재의 단편 또한 패턴을 가질 수 있다. 인쇄물이 인공 장기인 경우, 다양한 재질의 하나 이상의 구조로 이루어져 있으므로 특히 유용하다.  The ink printed matter provided to the ink receiving member in the ink providing step may itself have a two-dimensional or three-dimensional pattern, and a fragment of the ink receiving member may also have a pattern. It is particularly useful when the printed material is an artificial organ, because it consists of one or more structures of various materials.
또한,본 발명의 일예에서,단면 패턴을 갖는 인쇄물의 삼차원 프린팅 방법을 제공하며, 상기 잉크 토출 부재는, 삼차원 인쇄물과 동일한 모양의 단면 패턴을 갖도록 잉크 충진물과 잉크 토출물을 포함할 수 있다. 상기 공간에 수용된 잉크에 물리적인 힘을 가하여, 토출부와 이에 연결된 노즐을 통해 잉크를 토출하여 인쇄물과 동일한 모양의 단면 패턴을 갖는 잉크 토출물을 제조하는 단계, 및 상기 잉크 토출물을 기판에 인쇄하는 단계를 포함하는, 단면 패턴을 갖는 인쇄물의 삼차원 프린팅 방법에 관한 것이다. 상기 단면 패턴을 갖는 인쇄물의 삼차원 프린팅 방법에서, 수용부에서 제공된 잉크에 가압하여 토출부 또는 노즐을 통해 하나의 토출물로 인쇄되며, 상기 토출물은 최종 인쇄물과 동일한 모양의 단면 패턴을 가질 수 있으며, 바람직하게는 수용부에 제공된 잉크의 단면 패턴 (A)에 대한 상기 토출물 또는 최종 인쇄물의 단면 패턴 (B)의 비율 (=B/A)이, 예를 들면 단면의 직경 비율, 또는 단면 면적 비율이 100: 99 내지 100: 0.1,또는 100:50내지 100:1, 100:18내지 100:1비율로 축소될 수 있다. 또한, 삼차원 인쇄방법으로 제공되는 1차 잉크 인쇄물의 단면 직경 비율, 또는 단면 면적을 기준으로, 1차 잉크 인쇄물의 2차 인쇄물의 단면 직경 비율, 또는 단면 면적 비율은, 100: 99내지 100: 0.1,또는 100:50내지 100:1, 100:18 내지 100:1 비율로 축소될 수 있다.  In addition, in one embodiment of the present invention, there is provided a three-dimensional printing method of a printed matter having a cross-sectional pattern, the ink ejecting member may include an ink filling and an ink ejection to have a cross-sectional pattern of the same shape as the three-dimensional printed matter. Applying a physical force to the ink contained in the space, discharging ink through a discharge portion and a nozzle connected thereto to produce an ink discharge product having a cross-sectional pattern having the same shape as a print, and printing the ink discharge onto a substrate. It relates to a three-dimensional printing method of a printed matter having a cross-sectional pattern, comprising the step of. In the three-dimensional printing method of the printed matter having the cross-sectional pattern, it is pressed into the ink provided in the receiving portion is printed as a single discharge through the discharge portion or the nozzle, the discharge may have a cross-sectional pattern of the same shape as the final printed matter Preferably, the ratio (= B / A) of the cross-sectional pattern (B) of the discharge or final printed matter to the cross-sectional pattern (A) of the ink provided in the receiving portion is, for example, the diameter ratio of the cross-section, or the cross-sectional area. The ratio can be reduced to a ratio of 100: 99 to 100: 0.1, or 100: 50 to 100: 1, 100: 18 to 100: 1. Further, the cross-sectional diameter ratio of the primary ink prints provided by the three-dimensional printing method, or the cross-sectional area ratio, or the cross-sectional diameter ratio of the secondary prints of the primary ink prints, may be 100: 99 to 100: 0.1. Or, it may be reduced in a ratio of 100: 50 to 100: 1 and 100: 18 to 100: 1.
본 발명의 또 다른 일예는 단면 패턴을 갖는 인쇄물의 삼차원 프린팅 장치로서, 내부 공간에 인쇄용 잉크가 수용되는 수용부와, 상기 수용부의 하부에 위치하고 상기 잉크가 통과하는 단일 통로를 구비하며 수용부에 수용된 잉크를 토출하는 토출부를 포함하는 잉크 토출 부재,  Another example of the present invention is a three-dimensional printing apparatus of a printed matter having a cross-sectional pattern, and includes an accommodating part for receiving ink for printing in an inner space, and having a single passage positioned below the accommodating part and passing the ink therein and accommodated in the accommodating part. An ink ejecting member comprising an ejecting portion for ejecting ink,
상기 토출부의 말단에 연결된 노즐, 및 상기 수용된 잉크에 물리적인 힘을 가하는 가압부재를 포함하며, 상기 잉크가 단일 통로를 구비한 토출부를 통해 인쇄물과 동일한 모양의 단면 패턴을 갖도록 인쇄되는 삼차원 프린팅 장치에 관한 것이다. 본 발명에 따른 프린팅 장치는 상기 수용된 잉크에 물리적인 힘을 가하는 수단을 포함할 수 있으며, 예를 들면 압력 장치나 스크류 등을 이용하여 힘을 가할 수 있다.또한,동일 조건의 압력을 가하기 위하여,단일 가압부재를 사용하여 압력을 수행하거나, 둘 이상의 가압부재를 사용하여 동일 압력으로 가압하여 수행할 수 있다. 상기 가압부재로 가압하여 각각 상이한 잉크가 단일 통로를 구비한 토출부를 통해 인쇄물과 동일한 모양의 단면 패턴을 갖도록 인쇄할수 있다. 따라서, 본 발명에 따른 프린팅 장치를 이용할 경우, 다양한 단면 패턴을 갖는 인쇄물을 제조할 수 있으며, 특히 복잡한 단면 구조를 가지는 생체 조직 형상을 높은 정밀도와 해상도로 인쇄하여 삼차원 프린팅 방법으로 제조할 수 있으며, 생체조직에 세포를 포함하는 경우, 원하는 형상을 이질적으로 프린팅하는 동시에 세포의 전단응력도 크게 줄여줄 수 있는 장점이 있다. 이하, 본 발명을 더욱 자세히 설명하고자 한다. A nozzle connected to the discharging end; And a pressurizing member for applying a physical force to the contained ink, wherein the ink is printed to have a cross-sectional pattern having the same shape as a printed matter through a discharge portion having a single passage. The printing apparatus according to the present invention may include a means for applying a physical force to the received ink, and for example, may apply a force using a pressure device or a screw. In order to apply the pressure under the same conditions, The pressure may be performed using a single pressing member, or may be performed by pressing the same pressure using two or more pressing members. By pressing with the pressing member, different inks may be printed so as to have a cross-sectional pattern having the same shape as a printed matter through a discharge part having a single passage. Therefore, when using the printing apparatus according to the present invention, it is possible to produce a printed matter having a variety of cross-sectional patterns, in particular can be produced by a three-dimensional printing method by printing a biological tissue shape having a complex cross-sectional structure with high precision and resolution, In the case of including the cells in the biological tissue, there is an advantage that can significantly reduce the shear stress of the cell while heterogeneously printing the desired shape. Hereinafter, the present invention will be described in more detail.
본 발명에 따른 삼차원 프린팅 방법은, 잉크 수용부 및 토출부를 포함하는 삼차원 인쇄용 잉크 토출 부재에, 적어도 1종의 잉크를 삼차원 인쇄법으로 인쇄한 잉크 인쇄물로 제공하는 잉크 제공 단계, 상기 잉크 토출 부재에 물리적인 힘을 가하여 수용된 잉크가 토출부로 토출되어 잉크 토출물을 제조하는 단계, 및 상기 잉크 토출물을 기판에 인쇄하는 단계를 포함한다. 본 발명에 따른 삼차원 프린팅 방법에 따라 단면 패턴을 갖는 인쇄물를 제조할 수 있다.  In the three-dimensional printing method according to the present invention, an ink providing step of providing a three-dimensional printing ink ejecting member including an ink receiving portion and the ejecting portion, at least one ink as an ink printed matter printed by a three-dimensional printing method, to the ink ejecting member The ink contained by applying a physical force is discharged to the discharge portion to produce an ink discharge, and printing the ink discharge on the substrate. According to the three-dimensional printing method according to the invention it can be produced a printed matter having a cross-sectional pattern.
상기 잉크 제공 단계에서, 적어도 1종의 잉크를 삼차원 인쇄법 이외의 방법으로 잉크 층진물로 추가로 제공할 수 있다. 본 명세서에서 잉크 층진물은 삼차원 인쇄법으로 잉크수용 부재에 제공되는 잉크 인쇄물과는 달리 , 삼차원 인쇄법이 아닌 층진 방법에 의해 제공되는 잉크 층진물을 의미하며, 삼차원 인쇄법이외의 방법에 의한 층진 방법의 예로는, 튜브나 주사기 등을 이용하여 층진하는 방법이 있으며 특별히 한정되지 아니한다 . 상기 물리적임 힘을 가하는 것은 잉크 수용부재에 제공된 잉크를 토출부로 밀어내기 위한 수단을 이'용하여 수행할 수 있으며, 예를 들면 압력부재나 스크류 등을 사용할 수 있다. 구체적으로, 상기 압력을 가하는 것은, 단일 가압부재를 사용하여 압력을 수행하거나, 둘 이상의 가압부재를 사용하여 가압하여 수행할 수 있다. 예를 들면, 상기 압력은 동일 조건의 압력을 가할 수 있으며, 동일한 조건의 압력이란 잉크가 단일 토출구로 토출하여 단일 잉크 토출물이 형성될 수 있는 압력 조건이며, 바람직하게는 둘 이상의 상이한 잉크, 또는 삼차원 인쇄법으로 제공된 잉크 인쇄물과 삼차원 인쇄 이외의 방법으로 제공되는 잉크 층진물이 단일 토출구로 토출하여 단일 잉크 토출물이 형성되며, 상가 잉크 토출물 및 이로 제조되는 인쇄물이 목적 대상 인쇄물의 단면 패턴과 동일한 모양을 갖도록 하는 압력 조건을 의미한다. In the ink providing step, at least one ink may be further provided as an ink layered product by a method other than a three-dimensional printing method. In the present specification, unlike the ink prints provided on the ink receiving member by the three-dimensional printing method, the ink laminated material is provided by the layered method rather than the three-dimensional printing method. As an example of the layering method by a method other than the three-dimensional printing method, there is a method of layering using a tube or a syringe and the like, and is not particularly limited. Applying the physical force is Im, and a means for pushing the ink supplied to the ink receiving member as part ejection can be performed using a ", can be used, for example the pressure member and the screw or the like. Specifically, applying the pressure may be performed by using a single pressing member or by using two or more pressing members. For example, the pressure may apply the pressure under the same conditions, and the pressure under the same conditions is a pressure condition under which ink can be discharged to a single discharge port to form a single ink discharge, preferably two or more different inks, or The ink printed matter provided by the three-dimensional printing method and the ink layered material provided by the method other than the three-dimensional printing are ejected to a single ejection opening to form a single ink ejection. It means a pressure condition to have the same shape.
본 발명에 따른 단면 패턴을 갖는 인쇄물의 삼차원 프린팅 방법은, 본 발명에 따른 잉크 토출 부재 또는 상기 잉크 토출 부재를 포함하는 삼차원 프린팅 장치를 이용하여 수행할수 있다.  The three-dimensional printing method of a printed matter having a cross-sectional pattern according to the present invention can be performed using the ink ejecting member or the three-dimensional printing apparatus including the ink ejecting member according to the present invention.
본 발명의 또 다른 일 예에 따른 단면 패턴을 갖는 인쇄물의 삼차원 프린팅 장치는 인쇄물과 동일한 모양의 단면 패턴을 갖도록 잉크가 수용되는 수용부와, 상기 수용부의 하부에 위치하고 상기 잉크가 통과하는 단일 통로를 구비하며 수용부에 수용된 잉크를 토출하는 토출부를 포함하는 잉크 토출 부재를 포함하며, 또한, 추가로 상기 토출부에 연결된 노즐, 및 상기 각 구획된 공간에 수용된 잉크에 압력을 가하는 가압부재를 포함할 수 있다.  According to another embodiment of the present invention, a three-dimensional printing apparatus of a printed matter having a cross-sectional pattern includes an accommodation part accommodating ink so as to have a cross-sectional pattern having the same shape as a printed matter, and a single passage located below the accommodation part. And an ink discharge member including an ejection portion for ejecting ink contained in the accommodation portion, and further comprising a nozzle connected to the discharge portion, and a pressurizing member for applying pressure to the ink contained in the partitioned space. Can be.
또한 상기 삼차원 프린팅 장치는 상기 토출물을 인쇄하는 기판 In addition, the three-dimensional printing apparatus is a substrate for printing the discharge
(pl ate)와 인쇄를 위한 추가 장치는 통상의 삼차원 프린팅 장치에 포함하는 구성요소를 포함할 수 있다. Additional devices for printing and printing may include components included in conventional three-dimensional printing devices.
구체적으로, 본 발명에 따른 단면 패턴을 갖는 인쇄물의 삼차원 프린팅 방법, 상기 잉크 토출 부재의 수용부의 잉크를 제공하는 단계, 상기 각 구획된 공간에 수용된 잉크에 압력을 가하여, 토출부를 통해 잉크를 토출하여, 인쇄물과 동일한 모양의 단면 패턴을 갖는 잉크 토출물을 제조하는 단계, 및 상기 잉크 토출물을 기판에 인쇄하는 단계를 포함한다. 상기 잉크 제공 단계에서 적어도 1종의 잉크를 삼차원 인쇄법으로 인쇄한 잉크 인쇄물로 제공할 수 있으며, 적어도 1종의 잉크를 삼차원 인쇄법 이외의 방법으로 잉크 층진물로 추가로 제공할 수 있다. Specifically, three-dimensional of a print having a cross-sectional pattern according to the present invention A printing method, providing an ink of an accommodating part of the ink ejecting member, applying pressure to the ink contained in each partitioned space, ejecting ink through the ejecting part, and forming an ink ejection having a cross-sectional pattern having the same shape as a printed matter. Manufacturing, and printing the ink discharge on a substrate. In the ink providing step, at least one ink may be provided as an ink printed matter printed by a three-dimensional printing method, and at least one ink may be further provided as an ink layered product by a method other than the three-dimensional printing method.
본 발명에 따른 잉크 토출 부재 또는 상기 잉크 토출 부재를 포함하는 삼차원 프린팅 장치, 및 상기 잉크 토출 부재 또는 상기 잉크 토출 부재를 포함하는 삼차원 프린팅 장치를 이용한 단면 패턴을 갖는 인쇄물의 제조방법은 장치의 구성요소 별 및 방법의 단계별로 이하에서 자세히 설명하고자 한다.  The method of manufacturing a printed matter having a cross-sectional pattern using an ink ejecting member or a three-dimensional printing apparatus including the ink ejecting member, and a three-dimensional printing apparatus including the ink ejecting member or the ink ejecting member is a component of the apparatus. The steps of the star and method will be described in detail below.
본 발명에 따른 잉크 토출 부재는 인쇄물과 동일한 모양의 단면 패턴을 갖도록, 잉크가 수용되는 수용부와, 상기 수용부의 하부에 위치하고 상기 잉크가 통과하는 단일 통로를 구비하며 수용부에 수용된 잉크를 토출하는 토출부를 포함한다.  An ink ejecting member according to the present invention has a receiving portion in which ink is received, and a single passage positioned below the receiving portion so as to have a cross-sectional pattern having the same shape as a printed matter, and having a single passage through which the ink passes, and ejecting the ink contained in the receiving portion. And a discharge part.
본 발명에 따른 잉크 토출 부재를 사용하는 경우, 프린팅이 가능하고 상용화된 수용부의 직경은 매우 크므로 바이오 잉크가 토출되기 때문에 잉크 또는 이에 포함된 세포에 전단웅력이 거의 가해지지 않는다. 또한, 다중 재료가 이질적으로 함유된 다중 헤드를 사용하는 종래 기술에 비해, 본 발명은 하나의 잉크 토출 부재를 사용하여 2이상의 상이한 잉크를 함께 토출하여 인쇄할 수 있으므로, 단일 프린팅 헤드를 사용할 수 있어 프린팅 공정 시간이 감소하고, 잉크 또는 이에 포함된 세포에 전단웅력이 거의 가해지지 않는다. 따라서, 본 발명에 따른 프린팅 방법 또는 장치를 이용하여 세포를 포함하는 잉크를 이용하는 경우, 세포 생존율이 높고 시스템이 단순해지는 장점이 있다.  When the ink ejecting member according to the present invention is used, the shear force is hardly applied to the ink or the cells contained in the ink because the bio ink is ejected because the diameter of the printing portion is commercially available. In addition, compared with the prior art of using multiple heads in which multiple materials are heterogeneously contained, the present invention can print by discharging two or more different inks using one ink ejecting member, so that a single printing head can be used. Printing process time is reduced and little shear force is applied to the ink or cells contained therein. Therefore, when using the ink containing the cells using the printing method or apparatus according to the present invention, there is an advantage that the cell viability is high and the system is simple.
상기 토출 부재는 외부로부터 압력이 가해져 잉크를 밀어냄으로써 잉크를 공급하는 구성요소로서, 통상 삼차원 프린팅 장치에 사용되는 카트리지 또는 시린지 (Syr inge)일 수 있다. 상기 잉크를 토출하여 인쇄를 하기 위하여, 잉크 수용 부재에 가하지는 압력은 잉크의 농도 및 노즐의 크기에 따라 상이할 수 있으나, 예를 들면 0. 1 내지 700kPa , 1 내지 500kPa 또는 1 내지 700kPa 일 수 있다. 상기 인쇄 공압이 높으면 너무 많은 재료가 토출되고, 공압이 적으면 지지하는 재료 안쪽으로 후속 물질이 인쇄 되지 못하고 미끄러질 수 있다. The discharge member is a component for supplying ink by pushing the ink under pressure from the outside, which is commonly used in a three-dimensional printing apparatus. Cartridge or syringe (Syr inge). In order to discharge and print the ink, the pressure applied to the ink receiving member may vary depending on the concentration of the ink and the size of the nozzle, for example, 0.1 to 700 kPa, 1 to 500 kPa or 1 to 700 kPa. have. If the printing pneumatic is high, too much material is discharged, and if the pneumatic pressure is low, subsequent material may not print and slip into the supporting material.
상기 잉크 토출 부재는 상기 수용부의 하부에 위치하고 상기 다중 잉크가 통과하는 단일 통로를 구비하며, 수용부에 수용된 잉크를 토출하는 토출부를 포함한다. 상기 토출부는 단일 통로를 구비하여, 다수의 공간으로 구획된 수용부에 수용된 잉크를 다중 채널 제어가 아닌 단일 채널 제어방식으로 토출할 수 있다.  The ink ejecting member has a single passage located below the accommodating portion and has a single passage through which the multiple inks pass, and includes an ejecting portion for ejecting the ink contained in the accommodating portion. The discharge part may have a single passage, and may discharge ink contained in the accommodation part divided into a plurality of spaces by a single channel control method instead of multi channel control.
상기 토출구의 내경은 매우 작게 형성되어 있다. 상기 토출구를 통해 상기 수용부에 수용되어 있는 잉크는 그 수용부의 외부로 토출 가능하다. 상기 토출부에서 배출된 잉크 토출물은 단면 패턴이 상기 수용부의 단면 패턴과 동일하며, 다만크기가축소될 수 있다.  The inner diameter of the discharge port is formed very small. The ink contained in the accommodation portion through the discharge port can be discharged to the outside of the accommodation portion. The ink discharge discharged from the discharge portion has a cross-sectional pattern that is the same as the cross-sectional pattern of the accommodation portion, but may be reduced in size.
본 발명에 따른 삼차원 프린팅 장치는, 상기 토출 부재의 토출부 끝단에 연결된 노즐을 추가로 포함할 수 있으며, 상기 노출을 통해 잉크가 배출되며, 상기 노즐의 하부에 플레이트가 위치하여 '노즐에서 배출된 인쇄용 잉크가 플레이트 상부에 적층됨으로써 인쇄물을 제조하게 된다. The three-dimensional printing apparatus according to the present invention may further include a nozzle connected to the discharge end of the discharge member, the ink is discharged through the exposure, the plate is located under the nozzle is discharged from the ' Printing ink is laminated on the plate to produce printed matter.
본 발명에 따른 단면 패턴을 갖는 인쇄물은 인체 모사 조직인 것이 바람직하다. 예를 들면, 근육 조직 (bundle 구조), 뼈 조직 ( lamel lae &canal 구조), 신경 조직 (per ineur ium 구조), 혈관 조직 (mul t i_layer 구조), 척수 (spinal cord) 조직 등이 있다.  The printed matter having a cross-sectional pattern according to the present invention is preferably a human simulated tissue. For example, muscle tissue (bundle structure), bone tissue (lamel lae & canal structure), neural tissue (per ineurium structure), vascular tissue (mul t i_layer structure), spinal cord (spinal cord) tissue and the like.
압출 적층 조형 기반의 바이오 프린팅 기법의 해상도를 높이기 위해서는 프린팅 노즐의 직경을 줄이는 것이 필수적인데 노즐의 직경이 작아질수록 노즐 안쪽에서 토출되는 재료와 벽면 사이에 발생하는 전단 웅력에 의하여 세포가 사멸하는 문제가 빈번하게 발생하는 문제가 있기 때문에 노즐의 직경을 무작정 소형화하는 것도 어려운 실정이다. 따라서, 본 발명에 따라 동일한 단면 패턴을 가지는 수용부와 이를 단일 통로로 토출하는 토출부를 구비하여, 높은 해상도를 구현 가능하다. In order to increase the resolution of the extrusion-based bioprinting technique, it is necessary to reduce the diameter of the printing nozzle. As the diameter of the nozzle becomes smaller, the cells are killed by the shear force generated between the material discharged from the nozzle and the wall. Is a problem that occurs frequently, it is also difficult to blindly miniaturize the diameter of the nozzle. Thus According to the present invention, a housing having the same cross-sectional pattern and a discharge part for discharging the same into a single passage may be provided to realize high resolution.
본 발명에 의한 생체 조직을 프린팅하는 방법은 인쇄물의 형상과 비율은 동일하지만 확대된 단면 형상을 가지는 프린팅 잉크를 수용부에 제공하고, 상기 수용부의 단면 패턴이 동일한 형태를 유지하면서, 수용부의 단면보다 작은 단면을 가지는 토출부를 통과하도록 압력을 제어할 수 있다. 토출된 토출물의 단면 패턴이 상기 수용부의 단면 패턴과 동일한 모양을 유지할 수 있는 수준인 것이 바람직하다.  The method for printing a living tissue according to the present invention provides a printing ink having an enlarged cross-sectional shape having the same shape and proportion as a printed matter in the accommodating portion, while maintaining a same cross-sectional pattern of the accommodating portion, The pressure can be controlled to pass through the discharge section having a small cross section. It is preferable that the cross-sectional pattern of the discharged ejection is at a level capable of maintaining the same shape as the cross-sectional pattern of the accommodation portion.
본 발명에 의하면 비교적 용이하게 제조할 수 있는 큰 크기의 인쇄 잉크를 이용하여 복잡하고 크기가 매우 작은 미세구조를 용이하게 인쇄할 수 있는 효과가 있다.  According to the present invention, it is possible to easily print a complicated and very small microstructure using a printing ink of a large size that can be produced relatively easily.
본 명세서에서 '동일 '의 의미는 100% 동일한 것뿐만 아니라, 실질적으로 동일한 기능을 수행할 수 있는 정도로 동일한 것까지도 포함하는 의미로 정의된다. 명세서에서 "단면이 동일한 모양을 유지' '한다 함은, 단면의 크기만 작아질 뿐 원래의 단면의 형태는 그대로 유지하는 것을 의미한다. 그렇게 함으로써 보다 성형하기 용이한 큰 단면을 가지는 프린팅 소재를 먼저 만든 후에 원하는 크기 즉 실제 조직 세포와 크기에 상웅하는 조직 세포의 프린팅이 가능해진다.  In the present specification, the meaning of 'same' is defined as a meaning including not only 100% identical but also identical enough to perform substantially the same function. In the specification, "the cross-section maintains the same shape" means that only the size of the cross section is reduced but the shape of the original cross-section remains intact. After fabrication, printing of the desired size, ie the actual tissue cells and the tissue cells that correspond to the size, is possible.
상기 프린팅 잉크의 점성은 노즐을 통과하여 토출된 토출물의 단면이 상기 프린팅 소재의 단면과 동일한 형태를 유지할 수 있는 수준인 것이 바람직하다.  The viscosity of the printing ink is preferably such that the cross section of the discharged discharged through the nozzle can maintain the same shape as the cross section of the printing material.
프린팅된 결과물의 단면은 현재의 바이오 프린팅 기술로는 구현할 수 없는 정도의 작은 크기이거나 프린팅되었을 때 생존를이 현저하게 낮아질 수 있는 미세 구조이며, 전술한 바와 같이 근육 조직 (bundle 구조), 뼈 조직 ( lamel lae & canal 구조) , 신경 조직 (per ineur ium 구조), 혈관 조직 (mul t i— layer 구조), 척수 (spinal cord) 조직 등이 있다.  The cross-section of the printed result is a small size that cannot be achieved with current bioprinting techniques or a microstructure that can significantly reduce survival when printed. As described above, muscle tissue (bundle structure), bone tissue (lamel) lae & canal structure), nerve tissue (per ineurium structure), vascular tissue (mul ti-layer structure), spinal cord (spinal cord) tissue, and the like.
본 발명에 따른 프린트 장치 수용부의 단면은, 인쇄물과 동일한 모양의 단면 패턴을 가지고, 수용부의 단면 패턴이 상기 토출물 또는 인쇄물의 단면 패턴의 비율이은 단면의 면적비율, 직경비율 등으로 다양한 방법으로 표시될 수 있다. 수용부에 제공된 잉크의 단면 패턴 (A)에 대한 상기 토출물 또는 최종 인쇄물의 단면 패턴 (B)의 비율 (=B/A)이, 예를 들면 단면의 직경 비율, 또는 단면 면적 비율이 100: 99 내지 100 : 0.1, 또는 100: 50내지 100: 1, 100 : 18내지 100 : 1비율로 축소될 수 있다. 또한, 삼차원 인쇄방법으로 제공되는 1차 잉크 인쇄물의 단면 직경 비율, 또는 단면 면적을 기준으로, 1차 잉크 인쇄물의 2차 인쇄물의 단면 직경 비율, 또는 단면 면적 비율은, 100 : 99 내지 100: 0.1 , 또는 100:50 내지 100: 1, 100: 18 내지 100: 1 비율로 축소될 수 있다. 상기 2차 인쇄물의 축소비율은, 하기 잉크 수용부재에 제공된 잉크 인쇄물은 2회의 인쇄과정을 거치게 되며, 시린지 내부에 1차 인쇄된 잉크 인쇄물을 기준으로 축소비율을 표현하는 경우, 삼차원 인쇄법으로 시린지에 제공된 1차 잉크 인쇄물의 직경에서 노즐을 통해 토출된 상기 인쇄 잉크의 2차 인쇄물 또는 토출물의 직경을 뺀 것을, 삼차원 인쇄법으로 시린지에 제공된 1차 잉크 인쇄물의 직경으로 나눈 비율로서 하기 수학식 1과 같이 표현할 수 있다. The cross section of the printing apparatus accommodating portion according to the present invention has a cross-sectional pattern having the same shape as the printed matter, and the cross-sectional pattern of the accommodating portion is the discharge or The ratio of the cross-sectional pattern of the printed matter may be represented by various methods such as the area ratio of the cross section, the diameter ratio, and the like. The ratio (= B / A) of the ejection or the final printed matter to the cross-sectional pattern (A) with respect to the cross-sectional pattern (A) of the ink provided in the accommodation portion is, for example, the diameter ratio of the cross section or the cross-sectional area ratio to 100: 99 to 100: 0.1, or 100: 50 to 100: 1, 100: 18 to 100: 1 ratio can be reduced. Further, the cross-sectional diameter ratio of the primary ink prints provided by the three-dimensional printing method, or the cross-sectional area ratio of the secondary prints of the primary ink prints, or the cross-sectional area ratio based on the cross-sectional area, is 100: 99 to 100: 0.1. Or 100: 50 to 100: 1, 100: 18 to 100: 1 ratio. The reduction ratio of the secondary prints is that the ink prints provided on the ink receiving member are subjected to two printing processes, and when the reduction ratio is expressed based on the ink prints printed first in the syringe, the syringes are three-dimensional printing. Equation 1 is obtained by subtracting the diameter of the secondary printed matter or ejection of the printing ink ejected through the nozzle from the diameter of the primary ink printed matter provided by the ratio divided by the diameter of the primary ink printed matter provided to the syringe by the three-dimensional printing method. It can be expressed as
[수학식 1]  [Equation 1]
잉크 인쇄물와축소비율= -8)/八 X100(%)  Ink Substrate and Reduction Ratio = -8) / 八 X100 (%)
상기 수학식 1에서,  In Equation 1,
A는 삼차원 인쇄법으로 시린지에 제공된 1차 잉크 인쇄물의 직경 A is the diameter of the primary ink substrate provided in the syringe by three-dimensional printing
B는 인쇄 잉크의 2차 인쇄물의 직경이고, B is the diameter of the secondary print of the printing ink,
상기 A 및 B는 동일 길이 단위임.  A and B are the same length unit.
상기 2차 인쇄물의 축소비율은, 수용부의 단면 직경, 토출부의 단편직경, 또는 노즐의 직경 등에 직접적으로 영향을 받으며, 목적하는 인쇄물의 단면 패턴 크기에 맞추어 적절히 조절하여 다양하게 설계할 수 있다. 인쇄물의 단면 직경은 노즐의 크기에 따라 변화되는데, 이 범위는 0.1 瞧 ~ lmm가통상사용할 수 있으며 , 재료의 특성, 압력,프린팅 헤드의 속도, 프린팅 결과물이 놓여지는 위치 (프린팅 베드) 등의 프린팅 공정에 따라 변화할 수 있다. The reduction ratio of the secondary printed matter is directly affected by the cross-sectional diameter of the receiving portion, the fragment diameter of the discharge portion, or the diameter of the nozzle, and can be variously designed by appropriately adjusting to the cross-sectional pattern size of the desired printed matter. The cross-sectional diameter of the printout varies depending on the size of the nozzle, which ranges from 0.1 mm to lmm, and is usually used for printing, such as material properties, pressure, speed of the printing head, and the location of the printing result (printing bed). According to the process Can change.
본 발명의 실시 예에 따르면 비율은 특정 형상 (실시 예: Lobule)의 전체 직경 (15隱)으로 부터 99%또는 98.7% (200 μ ιη)까지 소형화 가능하다. 본 발명의 일예에서, 상기 수학식 1로 표시된 1차 인쇄 잉크의 축소비율(= -8)/八 X 100)은 0.1%이상, 10%이상, 20%이상, 30%이상, 4W이상, 50%이상, 60%이상, 70%이상, 80%이상, 85%이상, 90%이상, 92%이상, 95%이상, 또는 99%이상일 수 있으며, 예를 들면 0. 1내지 99.9%, 50%내지 99%또는 45% 내지 99%일 수 있다. 본 발명에 따른 잉크 토출 부재에 제공되는 잉크는 인공 장기 등을 제조할 수 있는 바이오잉크인 것이 바람직하다. 구체적으로, 인쇄물과 동일한 모양의 단면 패턴을 갖도록, 잉크 수용부에 잉크를 제공하여 프린팅을 수행할 수 있다. 상기 상이한 잉크라 함은 잉크는 구성성분, 구성성분의 함량 및 물성으로 이루어지는 군에서 선택된 1종 이상이 상이한 것을 의미한다.  According to an embodiment of the present invention, the ratio can be downsized to 99% or 98.7% (200 μιη) from the total diameter (15 μs) of a particular shape (eg Lobule). In one embodiment of the present invention, the reduction ratio (= -8) / 八 X 100 of the primary printing ink represented by Equation 1 is 0.1% or more, 10% or more, 20% or more, 30% or more, 4W or more, 50 More than 60%, more than 60%, more than 70%, more than 80%, more than 85%, more than 90%, more than 92%, more than 95%, or more than 99%, for example, from 0.01 to 99.9%, 50% To 99% or 45% to 99%. The ink provided to the ink ejecting member according to the present invention is preferably a bio ink capable of producing artificial organs or the like. Specifically, printing may be performed by providing ink to the ink containing portion so as to have a cross-sectional pattern having the same shape as the printed matter. The different inks mean that the inks are different from one or more selected from the group consisting of constituents, constituent contents and physical properties.
본 명세서에서 '바이오 잉크'는 살아있는 세포 혹은 바이오 분자를 포함하며, 바이오 프린팅 기술에 웅용하여 필요로 하는 구조물을 제작할 수 있는 소재를 통칭하는 용어이다. 본 발명의 바이오 잉크는 복수의 세포를 포함하는 액체, 반고체, 또는 고체 조성물을 포함한다.  In the present specification, the term 'bio ink' includes living cells or biomolecules, and is a term used to collectively refer to a material capable of fabricating a structure required for a bioprinting technology. The bio ink of the present invention comprises a liquid, semisolid, or solid composition comprising a plurality of cells.
따라서 바이오 잉크는 3차원 가공을 위한 물리적 성질과 세포가 목적된 기능을 수행하게 하기 위한 생물학적 환경을 제공하여 주어야 한다. 프린팅 공정이 길어질 때에는 잉크 토출 부재 내에서 세포의 생존에 필요한 영양분과 산소의 공급이 적절히 이루어지는 것이 바람직하다. 또한, 프린팅 과정에서 발생하는 물리적 스트레스로부터 세포를 보호할 수 있어야 한다. 그 외에도 바이오 잉크는 3차원 패터닝의 반복성, 생산성, 노즐의 막힘이 없어야 하는 등 프린팅 공정상에서 필요로 하는 물리적 성질을 가져야 한다.  Therefore, the bio ink should provide a physical environment for three-dimensional processing and a biological environment for the cells to perform the intended function. When the printing process is lengthened, it is preferable that the supply of nutrients and oxygen necessary for the survival of cells in the ink ejecting member is appropriately performed. It should also be able to protect the cells from the physical stresses that occur during the printing process. In addition, the bio ink should have the physical properties required in the printing process such as repeatability of 3D patterning, productivity, and no clogging of the nozzle.
본 발명에 따른 잉크는 하이드로젤인 것이 바람직하며, 이에 상기 잉크는 겔화 고분자를 포함할 수 있으며, 예를 들면 겔화 고분자, 세포, 성장인자, 및 세포외기질로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다. The ink according to the present invention is preferably a hydrogel, and thus The ink may include a gelling polymer and may include, for example, one or more selected from the group consisting of gelling polymers, cells, growth factors, and extracellular substrates.
. 본 발명에서 사용하는 바이오잉크는 예를 들면, 원하는 세포를 흔합한 /비흔합 하이드로 겔, 특정 성장인자 (growth factor)가 함유된 하이드로겔, 세포와 /성장인자가 함유된 하이드로겔, 시토카인 (cytokine)이 함유된 하이드로겔, 서로 다른 종류의 하이드로겔 등. 하이드로겔은 콜라겐, 마트리겔, 알지네이트, 젤라틴, 아가로스. 탈세포화된 조직유래 세포잉크, 히알루론산, 피브린겔 등 혹은 흔합 하이드로겔이 적합하다.  . The bioink used in the present invention may be, for example, a mixed / non-mixed hydrogel of desired cells, a hydrogel containing a specific growth factor, a hydrogel containing a cell and a growth factor, a cytokine (cytokine). ) Containing hydrogels, different types of hydrogels. Hydrogels include collagen, matrigel, alginate, gelatin and agarose. Decellularized tissue-derived cell ink, hyaluronic acid, fibrin gel, or the like or a compatible hydrogel is suitable.
또한 바이오잉크는 저점도 일수록 빠르게 확산 되므로 물 (1 cp)보다 진한 점도로서 25°C 온도에서 측정한 점도가 2 cp 내지 1,000,000 cp, 예를 들면 2cp내지 10,000 cp, 5 cP내지 1,000,000 cP, 2내지 500cp, 5내지 300cp 등의 점도를 가지는 겔 상의 물질이 적합하다. 잉크의 점도가 지나치게 낮을 경우, 삼차원 인쇄법으로 인쇄한 잉크 인쇄물의 형상이 무너지거나 변형될 수 있고, 잉크 인쇄물과 잉크 충진물아흔합되어 경계가무너질 수 있다. 본 발명의 방법에 사용되는 겔 형태의 물질의 점도는 후술하는 토출과정에서 프린팅 소재가 토출될 수 있도록 적절한 점성을 가지는 것이 바람직하다. 본 발명의 일예에 따르면 토출식 삼차원 프린팅 방법을 적용하므로 잉크젯 방식에 비해 비교적 높은 점도의 잉크를 제공하는 것이 바람직하다. 일예에서, 본 발명에 적용 가능한 잉크는 토출에 적절한 점도를 제공하고자, 다양한 점도 증진제를 사용할 수도 있다. 상기 프린팅 소재의 점성은 노즐을 통과하여 토출된 토출물의 단면이 상기 프린팅 소재의 단면과 동일한 형태를 유지할 수 있는 수준이다. In addition, since bio-inks diffuse faster at lower viscosities, they are thicker than water (1 cp) and have a viscosity measured at 25 ° C, ranging from 2 cp to 1,000,000 cp, for example 2 cp to 10,000 cp, 5 cp to 1,000,000 cp, 2 to Materials on gels having a viscosity of 500 cps, 5 to 300 cps and the like are suitable. When the viscosity of the ink is too low, the shape of the ink printed matter printed by the three-dimensional printing method may collapse or be deformed, and the printed matter and the ink packing may be mixed with the boundary to be broken. The viscosity of the gel-type material used in the method of the present invention preferably has a suitable viscosity so that the printing material can be discharged in the discharge process described later. According to one embodiment of the present invention, it is preferable to provide an ink having a relatively high viscosity compared to the inkjet method since the ejection type three-dimensional printing method is applied. In one example, the inks applicable to the present invention may use various viscosity enhancers to provide a viscosity suitable for ejection. Viscosity of the printing material is such that the cross section of the discharged discharged through the nozzle can maintain the same shape as the cross section of the printing material.
상기 잉크 층진물과 잉크 인쇄물의 잉크 점도 차이는, 25°C에서 측정한 점도 차이가 5,000cp이하, 예를 들면 0내지 5,000cp, 1,000 cp이하, 500 cp이하, 200cp이하, 150cp이하, lOOcp이하, 50cp 이하일 수 있다. 잉크의 점도 차이가 매우 크면 서로 다른 물질의 분자력에 의해 잉크 인쇄물의 형상이 변형될 수 있으며, 토출하여 삼차원 인쇄를 하고자 하는 경우 동일 압력을 잉크 또는 잉크 수용 부재에 가할 경우 점도 차이로 인해 잉크수용부재에 수용된 잉크 패턴이 무너질 수 있다. 따라서, 서로 상이한The ink viscosity difference between the ink layer and the ink printed matter, the viscosity difference measured at 25 ° C is less than 5,000cp, for example 0 to 5,000cp, less than 1,000cp, less than 500cp, less than 200cp, less than 150cp, less than lOOcp It may be less than 50cp. If the difference in viscosity of the ink is very large, the shape of the ink printed matter may be deformed by the molecular force of different materials, the same if you want to three-dimensional printing by ejecting When pressure is applied to the ink or the ink receiving member, the ink pattern accommodated in the ink receiving member may collapse due to the difference in viscosity. Therefore, different from each other
2종 이상의 잉크를 사용하는 경우 점도의 차이가 적을수록 바람직하다. When using two or more types of inks, the smaller the difference in viscosity, the better.
상기 잉크 충진물과 잉크 인쇄물의 탄성 값의 차이는, 10 , 000 Pa이하, 예를 들면 0 내지 10 , 000 Pa일 수 있다. 상기 잉크 층진물과 잉크 인쇄물은, 점성과 탄성이 전단속도에 따라 변화되는 추이가 비슷하고 점성 값과 탄성 값이 비슷한 것이 바람직하다.  The difference between the elastic values of the ink filling and the ink printing may be 10,000 Pa or less, for example, 0 to 10,000 Pa. It is preferable that the ink layered matter and the ink printed matter have similar trends in viscosity and elasticity change according to the shear rate and similar viscosity and elasticity values.
또한, 상기 서로 상이한 잉크에 사용되는 겔화 고분자가상이한 경우, 예를들면 겔화 고분자가 콜라겐, 젤라틴과 같이 온도 민감성이 있고 다른 하나가 알지네이트, 피브린 겔처럼 온도민감성이 없다면, 시린지 내부의 온도를 조절할 필요가 있을 수 있다. 예를 들면, 잉크 수용 부재의 온도를 4SC~37CC온도 범위에서 적절히 조절할 수 있다. In addition, when the gelling polymer used in the different inks is different, for example, the gelling polymer is temperature sensitive like collagen and gelatin, and the other is not temperature sensitive like alginate and fibrin gel, it is necessary to adjust the temperature inside the syringe. There can be. For example, the temperature of the ink accommodating member can be appropriately adjusted within the 4 S C to 37 C C temperature range.
삼차원 바이오 프린팅 분야에서 천연유래 또는 합성 하이드로겔. 바이오 잉크가 개발되어 현재 사용되고 있지만, 하이드로겔을 바탕으로 한 바이오 잉크는 생체적합성, 프린팅 적합성, 기하학적 정밀성, 정밀도와 같은 물리적 및 생물학적 측면에서 우수하여 사용되고 있다.  Naturally derived or synthetic hydrogels in the field of three-dimensional bio printing. Although bio inks have been developed and are currently in use, biogels based on hydrogels have been used for physical and biological reasons such as biocompatibility, printing suitability, geometrical precision, and precision.
상기 1압출 가능한 ' 또는 '토출 가능한 '이란 토출부, 노즐 (nozzle) 또는 오리피스 (예, 하나 이상의 구멍 또는 튜브)를 (예를 들어, 압력 하에서)통과시킴으로써 성형될 수 있는 것을 의미한다.또한, 바이오 잉크의 치밀화는 적당한 밀도로 세포를 성장시키는 것으로부터 유도된다. 바이오 잉크에 필요한 세포 밀도는 사용할 세포 및 제조할 조직 또는 장기에 따라 달라진다. The first extrudable "or" ejection possible 'is the discharge portion, the nozzle (nozzle) or an orifice (for example, one or more holes or tubes) means that can be molded by passing (e.g., under pressure). Furthermore, Densification of the bio ink is derived from growing cells at a suitable density. The cell density required for the bio ink depends on the cell to be used and the tissue or organ to be produced.
본 발명은 또한, 상기 바이오 잉크 조성물은 조직유래 성분이 추가로 포함된 것을 특징으로 하는 바이오 잉크 조성물을 제공한다. 조직유래 성분은 연골, 신장, 심장, 간, 근육 등과 같은 동물의 특정조직이 탈세포화 되고 세포외기질을 주성분으로 하는 물질의 겔 (gel )화 된 것을 의미하며, 이는 바이오 잉크 조성물의 조직특이성을 강화하기 위하여 포함될 수 있다. 본 발명에 "있어서 상기 바이오 잉크 조성물은 세포 배양 배지를 추가적으로 포함할 수 있다. 상기 세포 배양 배지는 목적하는 세포에 적합한 임의의 배지를 포함하는 개념이다. The present invention also provides a bio ink composition, wherein the bio ink composition further comprises a tissue-derived component. Tissue-derived component means that specific tissues of animals such as cartilage, kidney, heart, liver, muscle, etc. are decellularized and gelled of a substance mainly composed of extracellular matrix. Can be included to enhance. In the present invention " the bio ink composition is a cell culture medium It may further include. The cell culture medium is a concept including any medium suitable for the cells of interest.
본 발명에 따른 잉크는 겔화 고분자를 포함할 수 있으며, 이러한 프린팅에 사용되는 겔화 고분자 용액은 다양한 종류를 사용할 수 있는데 이러한 고분자 용액이 가져야 할 조건은 다음과 같다. 먼저, 3차원 인쇄가 잘 이루어질 수 있도록 하기 위해서 적당한 점성을 가져 노즐로의 분출이 용이해야 하며, 배출된 후 빠르게 경화됨으로써 만들어지는 대상의 형태가 뭉그러지는 등의 문제가 발생되지 않아야 한다. 또한, 근본적으로 제조 목적상, 인체 내 조직과유사한 세포 배양 환경을 조성할 수 있어야 한다. 상기 겔화 고분자의 예는 푸코이단, 콜라겐 알지네이트, 키토산, 히알루론산, 실크, 폴리이미드 (polyimides), 폴리아믹스 산 (polyamix acid), 폴리카프로락톤 (polycarprolactone), 폴리에테르이미드 (polyetherimide), 나일론 (nylon),폴리아라미드 (polyaramid) ,폴리비닐알콜 (polyvinyl alcohol), 폴리비닐피롤리돈 (polyvinylpyrrolidone),  The ink according to the present invention may include a gelling polymer, and the gelling polymer solution used for such printing may be used in various kinds. The conditions that the polymer solution should have are as follows. First, in order to achieve a three-dimensional printing well, it should be easy to eject to the nozzle with a suitable viscosity, and should not cause problems such as crushing the shape of the object made by rapid curing after discharge. In addition, for manufacturing purposes, it should be possible to create a cell culture environment similar to the tissue in the human body. Examples of the gelling polymer include fucoidan, collagen alginate, chitosan, hyaluronic acid, silk, polyimides, polyamix acid, polycarprolactone, polyetherimide, nylon (nylon) , Polyaramid, polyvinyl alcohol, polyvinylpyrrolidone,
폴리벤질글루타메이트 (poly-benzy卜 glutamate), Poly-benzy 卜 glutamate,
폴리페닐렌테레프탈아마이드 ( po 1 ypheny leneterephthalamide), Polyphenylene terephthalamide (po 1 ypheny leneterephthalamide),
폴리아닐린 (polyani 1 ine), 폴리아크릴로나이트릴 (polyacrylonitri le), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리스티렌 (polystyrene), 셀를로오스 (cellulose), 폴리아크릴레이트 (polyacrylate), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리락산 (polylact ic acid; PLA), 폴리글리콜산 (polyglycol ic acid; PGA), 폴리락산과 폴리글리콜산의 공중합체 (PLGA), 폴리Polyaniline, polyacrylonitrile, polyethylene oxide, polystyrene, cellulose, polyacrylate, polymethylmethacrylate ), Polylact ic acid (PLA), polyglycol ic acid (PGA), copolymers of polylactic acid and polyglycolic acid (PLGA), poly
{폴리 (에틸렌옥사이드)테레프탈레이트 -co-부틸렌테레프탈레이트 KPE0T/PBT ), 폴리포스포에스터 (polyphosphoester; PPE), 폴리포스파젠 (PPA), 폴리안하이드라이드 (Polyanhydride; PA), 폴리오르쏘에스터 {poly(ortho ester ;P0E}, 폴리 (프로필렌푸마레이트) -디아크릴레이트 {polypropylene fumarate)-diacrylate; PPF-DA} 및 폴리에틸렌글라이콜디아크릴레이트 {poly(ethylene glycol) diacrylate; PEG-DA }로 이루어진 그룹 중에서 선택된 1종 이상 또는 상기 재료들의 조합일 수 있다. 하지만, 본 실시예로 재료가 제한 되는 것은 아니다. 또한, 상기 겔화 고분자는 천연 고분자를 화학적 변형한 것을 사용할 수 있으며, 예를 들면 gel at in과 methacrylate (MA)를 화학적을 결합하고 photoini t i ator를 결합한 GelMA, Alginate/Gel at in, Alginate의 binding si te를 주가하기 위해 pentapept ide sequencing Tyr-I le— Gly-Ser— Arg (YIGSR)과 EDC/NHS를 결합한 alginate등을 포함할 수 있다. {Poly (ethylene oxide) terephthalate-co-butyleneterephthalate KPE0T / PBT), polyphosphoester (PPE), polyphosphazene (PPA), polyanhydride (PA), polyortho Ester {poly (ortho ester; P0E), poly (propylene fumarate) -diacrylate; PPF-DA} and polyethylene glycol diacrylates {poly (ethylene glycol) diacrylate; Out of the group consisting of PEG-DA} It may be one or more selected or a combination of the above materials. However, the material is not limited to this embodiment. In addition, the gelling polymer may be a chemically modified natural polymer, for example, the binding si of GelMA, Alginate / Gel at in, Alginate that combines the chemical at the gel at in and methacrylate (MA) and the photoini ti ator The stock price may include pentapeptide sequencing, Tyr-I le-Gly-Ser-Arg (YIGSR) and alginate in combination with EDC / NHS.
특히, 상기 폴리에틸렌글라이콜, 알지네이、트, 콜라겐 및 젤라틴을 비롯한 하이드로겔은 수분 함량이 높고, 생체 적합성이 뛰어나고 기계적 특성을 조절할 수 있고 생분해성이 우수하여 세포가 포매된 담체의 제조에 널리 이용되어 왔다. 이러한 이유 때문에, 하이드로겔은 세포가 탑재된 구조의 제조에 매우 적합하며, 다양한 타입의 조직재생 골격을 얻기 위해 직접 프린트할 수 있다.  In particular, the hydrogels including polyethylene glycol, alginate, nitrate, collagen and gelatin have high water content, have excellent biocompatibility, can control mechanical properties, and have excellent biodegradability, and thus are widely used in the preparation of cellular-embedded carriers. Has been used. For this reason, hydrogels are well suited for the manufacture of cell-loaded structures and can be printed directly to obtain various types of tissue regeneration backbones.
상기 젤라틴은 온도-민감성 특성을 나타내기 때문에 상기 세포 운반물질로서 특히 적합하다. 즉, 젤라틴은 37°C에서 액상화되며 상온 이하에서 고체화되는 특성을 지니고 있다. The gelatin is particularly suitable as the cell carrier because it exhibits temperature-sensitive properties. That is, gelatin has the property of liquefying at 37 ° C and solidifying below room temperature.
상기 겔화 고분자는 물리적 처리 또는 화학적 처리를 이용하여 가교결합올 형성할 수 있으며, 상기 화학적 처리에는 가교 용액을 사용할 수 있으며, 선택된 겔화 고분자에 따라 적절히 가교 용액을 선택하여 사용할 수 있다. 예를 들면, 상기 가교 용액은 석고; 또는 히드록시아파타이트, 탄산 아파타이트, 불화 아파타이트, 염화 아파타이트, a -TCP, β -TCP, 메타인산칼슘, 인산사칼슘, 인산수소칼슴, 인산이수소칼슴, 피로인산칼슘, 탄산칼슘, 황산칼슘, EDC { l-ethyl-(3-3-dimethylaminopropyl ) carbodi imide hydrochlor ide} 또는 이들와 염으로부터 선택되는 1종 이상의 흔합물의 용액일 수 있다.  The gelling polymer may be formed using a physical treatment or a chemical treatment to form a crosslinking ol, the crosslinking solution may be used for the chemical treatment, and a crosslinking solution may be appropriately selected according to the selected gelling polymer. For example, the crosslinking solution may be gypsum; Or hydroxyapatite, apatite carbonate, apatite fluoride, apatite chloride, a-TCP, β-TCP, calcium metaphosphate, tetracalcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, calcium carbonate, calcium sulfate, EDC {l-ethyl- (3-3-dimethylaminopropyl) carbodi imide hydrochlor ide} or a solution of one or more combinations thereof selected from salts thereof.
상기 겔화 고분자 용액을 포함하는 잉크는, 통상 액상 형태의 콜라겐 용액에서의 콜라겐 농도 비율이 0. 1 내지 30중량 % 범위 내로 형성되는 것이 바람직하다. 하이드로젤의 제조방법은 통상의 삼차원 인쇄용으로 잉크를 제조할 때 사용하는 제조방법을 적용하여 수행할 수 있으나 특별히 한정되지 않는다, Ink containing the gelling polymer solution, it is preferable that the ratio of collagen concentration in the collagen solution of the liquid form is usually in the range of 0.01 to 30% by weight. The method for producing hydrogels uses ink for normal three-dimensional printing. It can be carried out by applying the manufacturing method used when manufacturing, but is not particularly limited,
본 발명에 따른 바이오잉크는 세포를 포함할 수 있으며 , 적용 가능한 세포 또는 조직은 특별히 한정되지 않으며, 동물세포 또는 식물세포이거나, 동물 또는 식물의 조직일 수 있다. 상기 세포는 줄기세포 (stem cell), 조골세포 (osteoblast), 근아세포 (myoblast ), 건세포 (tenocyte), 신경아세포 (neuroblast), 섬유아세포 (fibroblast ), 신경교아세포 (gl ioblast ) , 배세포 (germcell), 간세포 (hepatocyte) , 신장세포 (renal cell), 지대세포 (Sertoli cell), 연골세포 (chondrocyte), 상피세포 (epithel ial cell), 심혈관세포, 각질세포 (keratinocyte), 평활근세포 (smooth muscle cell), 심장근세포 (cardiomyocyte), 신경교세포 (glial cell), 내피세포 (endothel ial cell), 호르몬 분비세포, 면멱세포, 췌장섬세포 (pancreatic islet cell) 및 신경세포 (neuron)로 이루어진 군.에서 선택된 어느 하나 이상일 수 있다. 본 발명의 제조된 인공 조직에서 사용되는 세포 유형은 당업계에 공지된 임의의 방식으로 배양될 수 있다. 세포 및 조직 배양 방법은 당업계에 공지되어 있다.  The bioink according to the present invention may include cells, and applicable cells or tissues are not particularly limited, and may be animal cells or plant cells, or tissues of animals or plants. The cells are stem cells, osteoblasts, myoblasts, myocytes, tenocytes, neuroblasts, fibroblasts, glioblasts, germ cells ( germcells, hepatocytes, renal cells, sertoli cells, chondrocytes, epithelial cells, cardiovascular cells, keratinocytes, smooth muscle cells cells, cardiomyocytes, glial cells, endothelial cells, hormone secreting cells, cotton cells, pancreatic islet cells and neurons. It may be any one or more. The cell type used in the prepared artificial tissue of the present invention may be cultured in any manner known in the art. Cell and tissue culture methods are known in the art.
세포는 또한 원하는 세포주를 따라 세포의 분화를 유도하는 세포 분화 물질과 배양될 수도 있다. 예를 들면, 줄기세포는 분화 배지와 접촉하여 인큐베이션 됨으로써 일정 범위의 세포 유형을 생성한다. 다수 유형의 분화 배지가 적당하다. 상기 줄기 세포는 비제한적 예로서 골원성 (osteogenic) 분화 배지, 연골원성 (chondrogenic) 분화 배지, 지방생성 (adipogenic) 분화 배지, 신경 분화 배지, 심근세포 분화 배지, 및 장세포 분화 배지 (예, 장표피)를 포함하는 분화 배지와 접촉하여 인큐베이션 될 수 있다.  The cells may also be incubated with cell differentiation materials that induce differentiation of the cells along the desired cell line. For example, stem cells are incubated in contact with differentiation medium to produce a range of cell types. Many types of differentiation media are suitable. The stem cells include, but are not limited to, osteogenic differentiation medium, chondrogenic differentiation medium, adipogenic differentiation medium, neuronal differentiation medium, cardiomyocyte differentiation medium, and enterocyte differentiation medium (e.g., intestine). Incubated in contact with the differentiation medium).
추가적으로, 세포는 성장인자, 사이토카인 등과 배양될 수 있다. 성장인자는 세포에 의해 생성되고 그 자체 및 /또는 여러 가지의 다른 인접한 또는 동떨어진 세포에게 영향을 줄 수 있는, 사이토카인을 포함하는 단백질, 폴리펩티드, 또는 폴리펩티드 복합체를 지칭한다. 통상, 성장인자는 발생적으로 또는 다수의 생화학적인 또는 환경적인 자극에 반웅하여 특정 유형의 세포의 성장 및 /또는 분화에 영향을 미친다. 전부는 아니지만 일부의 성장인자는 호르몬이다. 예시적 성장인자는 인슬린, 인슬린 유사 성장인자 (IGF), 신경 성장인자 (NGF), 혈관 내피 성장인자 (VEGF), 케라티노사이트 성장인자 (KGF), 기본 FGF(bFGF)를 포함하는 섬유아세포 성장인자 (FGF), PDGFM및 PDGF-AB를 포함하는 혈소판 유래 성장인자 (PDGF), BMP-2 및 腿 P-7등을 포함하는 뼈형성단백질 (BMP), 간세포 성장인자 (HGF), 형질전환 성장인자 알파 (TGF-α), TGF|3-1 및 TGF13-3을 포함하는 형질전환 성장인자 베타 (TGF-β), 표피 성장인자 (EGF), 과립구-대식세포 콜로니-자극인자 (GM-CSF) , 과립구 콜로니-자극인자 (G-CSF),인터류킨 -6(IL-6), IL-8 등이 있다. In addition, the cells may be cultured with growth factors, cytokines and the like. Growth factor refers to a protein, polypeptide, or polypeptide complex comprising a cytokine, produced by a cell and capable of affecting itself and / or various other adjacent or isolated cells. Usually, the growth factor is In response to developmental or multiple biochemical or environmental stimuli, it affects the growth and / or differentiation of certain types of cells. Some, but not all, growth factors are hormones. Exemplary growth factors include fibers including insulin, insulin-like growth factor (IGF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and basic FGF (bFGF) Platelet-derived growth factor (PDGF) including blast growth factor (FGF), PDGFM and PDGF-AB, bone morphogenic proteins (BMP), hepatocyte growth factor (HGF), traits including BMP-2 and 腿 P-7 Transforming growth factor beta (TGF-β), epidermal growth factor (EGF), granulocyte-macrophage colony-stimulating factor (GM) including transforming growth factor alpha (TGF-α), TGF | 3-1 and TGF13-3 -CSF), granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), IL-8, and the like.
본 발명에서의 '바이오 프린팅 '이란 자동화된 컴퓨터 보조의,삼차원 시제품화 장치 (예, 바이오프린터)와 상용되는 방법론을 통해 삼차원의 정확한 세포 침착 (예, 세포 용액, 세포 함유 겔, 세포 현탁액 , 세포 농축물, 다세포 응집체, 다세포체 등)을 이용하는 것을 의미한다. 3D 프린팅은 바이오풀로터 (bio-plotter)를 이용하여 생분해성 고분자를 노즐로부터 압출하여 스테이지에 적층함으로써 수행될 수 있다.  In the present invention, 'bioprinting' refers to three-dimensional accurate cell deposition (eg, cell solutions, cell-containing gels, cell suspensions, cells) through a methodology compatible with automated computer-assisted, three-dimensional prototyping devices (eg bioprinters). Concentrate, multicellular aggregates, multicellular bodies, etc.). 3D printing can be performed by extruding a biodegradable polymer from a nozzle using a bio-plotter and laminating it on a stage.
다양한 종류의 조직 유사기관이 상기한 방법에 의해 생성될 수 있다. 바이오 잉크 조성물을 적층하는 패턴이나 적층 배열은 제조하고자 하는 조직 유사기관의 크기 및 직경 등에 의해 결정될 수 있다. 또한, 조직 유사기관을 제조하기 위해 사용되는 바이오 잉크에 포함되는 세포의 개수는 세포의 종류, 바이오 잉크 조성물에 포함된 세포 영양성분의 함량 등에 따라 조절될 수 있다. 또한, 바이오 잉크 조성물에 포함되는 세포의 종류는 상기 방법에 따라 제조하고자 하는 조직 유사기관의 종류에 따라 다양하게 변경 가능하다. 본 발명이 속하는 기술분야에서 통상의 기술을 가진 자라면 삼차원 바이오 프린팅으로 통해 제조하고자 하는 조직 유사기관의 종류에 따라 적절한 세포를 선택하여 이에 적용할 수 있을 것이다.  Various kinds of tissue analogues can be generated by the methods described above. The pattern or stacking arrangement for stacking the bio ink composition may be determined by the size and diameter of the tissue-like organ to be manufactured. In addition, the number of cells included in the bio ink used to manufacture tissue-like organs may be controlled according to the type of cells, the content of cell nutrients contained in the bio ink composition, and the like. In addition, the type of cells included in the bio ink composition may be variously changed according to the type of tissue-like organ to be prepared according to the above method. Those skilled in the art to which the present invention pertains will be able to select and apply appropriate cells according to the type of tissue-like organs to be prepared through three-dimensional bioprinting.
바이오 잉크 조성물이 삼차원 바이오 프린터에 의해 분사되어 적층된 이후에는 이를 가열하거나, 자외선에 노출시키거나 또는 가교 결합용액을 첨가함으로써 바이오 잉크 ≤성물의 가교결합을 촉진할 수 있다. 이러한 가교결합은 적층된 바이오 잉크 조성물이 보다 단단한 구조물로 완성될 수 있도록 해준다. 상기 가교결합을 촉진하기 위해서 광학 개시제 (photoini t iator )를 사용할 수 있다. Bio ink composition is sprayed by a three-dimensional bio printer laminated Thereafter, it is possible to promote crosslinking of the bio ink ≤ composition by heating it, exposing it to ultraviolet rays or adding a crosslinking solution. This crosslinking allows the laminated bio ink composition to be completed into a more rigid structure. An optical initiator may be used to promote the crosslinking.
인쇄물과 동일한 단면 패턴을 가지나 크기가 동일 또는 상이한 단면 패턴을 가지는 잉크 토출 부재를 제조하고자, 잉크 토출 부재 수용부의 공간에 삼차원 인쇄법으로 제공되는 적어도 1종 이상의 잉크를 수용하고, 상기 수용부의 하부에 위치하고 잉크가 통과하는 단일 통로를 구비하며 잉크를 토출하는 토출부를 통과하도록 압력, 예를 들면 피스톤을 제어한다. 수용부에 바이오잉크가 층진된 후에는, 바이오잉크가 쏟아지지 않도록 미리 지지물질로서 하이드로겔을 0. 1 mL~2 mL 정도 소량 넣어둔 후에 수용부에 넣는 것이 바람직하다. 그 후에 배럴에 하이드로겔을 추가하거나 혹은 추가하지 않는다. 다시 프린팅 하면 인쇄 초기에는 충진된 하이드로겔이 빠져 나오고, 그 후에 원하는 형상이 프린팅 된다. 원하는 형상의 인쇄물의 프린팅이 끝나면 위에 채워둔 하이드로겔이 빠져 나오게 된다. 초기, 후기에 지지물질 (support mater i al )을 넣는 이유는 프린팅이 안정적으로 이루어지도록 하기 위함이다.  In order to manufacture an ink ejecting member having the same cross-sectional pattern as the printed matter but having the same or different cross-sectional pattern, at least one ink provided by a three-dimensional printing method is accommodated in a space of the ink ejecting member accommodating portion, It is provided with a single passage through which the ink passes and controls the pressure, for example the piston, to pass through the discharge portion for discharging the ink. After the bio ink has been layered in the container, it is preferable to put a small amount of hydrogel as a support material in the amount of 0.01 mL to 2 mL in advance so as not to pour the bio ink into the container. Thereafter, or without adding hydrogel to the barrel. When printing again, the filled hydrogel is ejected at the beginning of printing, and then the desired shape is printed. After printing the printed material of the desired shape, the hydrogel filled above will come out. The reason for adding support material (support mater al) at the beginning and the end is to make printing stable.
이하에서는 첨부도면을 참조하여 본 발명에 대해서 자세하게 설명한다.  Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1, 도 2, 도 3, 도 4, 및 도 5에는 본 발명의 일예에 따라 잉크 수용부재에 삼차원 인쇄법으로 잉크를 제공하는 공정을 개략적으로 도시한 도면이다.  1, 2, 3, 4, and 5 schematically illustrate a process of providing ink to a ink receiving member by a three-dimensional printing method according to an example of the present invention.
도 1에는 잉크 토출 부재 (10)의 내부는 각각의 잉크 ( 11, 12 , 13, 14)를 수용하는 복수 개의 공간이 구획되어 있다. 도 9에는 본 발명의 일예에 따라 5가지 잉크 (1, 2, 3, 4, 5)를 토출하는 예에 적용할 수 있는 바이오 프린팅 장치가 도시되어 있다. 잉크 토출 부재 ( 10)에 수용된 세포 액상 물질을 A방향으로 눌러서 토출부 (20) 또는 노즐 (80)을 통해 프린팅 잉크를 토출시켜서 최종 목적물 (50)을 완성한다. 이 때 피스톤 (60)은 프린팅 소재의 단면이 동일한 형태를 유지하면서 크기만 축소되어 노즐 (20)을 통과하도록 제어되는 것이 바람직하며, 경우에 따라 베이스는 액상 물질이 담겨 있는 용기가 될 수도 있다. In FIG. 1, the inside of the ink discharge member 10 is divided into a plurality of spaces for accommodating the respective inks 11, 12, 13, and 14. 9 shows a bioprinting apparatus which can be applied to an example of discharging five inks (1, 2, 3, 4, 5) according to one embodiment of the present invention. The cell liquid substance contained in the ink ejecting member 10 is pressed in the A direction and printed through the ejecting portion 20 or the nozzle 80. The ink is ejected to complete the final object 50. At this time, the piston 60 is preferably controlled to pass through the nozzle 20 is reduced in size while maintaining the same shape of the cross section of the printing material, the base may be a container containing a liquid material in some cases.
상기 압력이 너무 강할 경우 상기 노즐에 걸리는 부하가 커져서 손상이 발생하거나또는 상기 하이드로겔이 부드럽게 쓰레드 (thread) 형태로 배출되지 못하고 덩어리를 지어 불균형한 형상으로 배출될 위험성이 있으며, 상기 압력이 너무 약할 경우 상기 하이드로겔의 점성에 의한 저항 때문에 상기 노즐로부터 원활한 배출이 이루어지지 못할 수 있다. 한편, 상기 직경이 너무 작을 경우 배출 압력이 커져서 상기 압력이 강할 때의 위험성들이 동일하게 발생할 수 있으며, 상기 직경이 너무 클 경우 스캐폴드 제조 시 3차원 형상의 정밀도가 떨어지게 될 수 있다. 상술한 압력 범위 및 직경 범위는 상술한 바와 같은 점들을 모두 고려하여, 상기 하이드로겔의 배출이 적절히 원활하고 용이하게 이루어질 수 있음과 동시에 제조되는 스캐폴드 형상의 정밀도를 적절히 원하는 수준으로 달성할 수 있도록 하는 범위로서 실험적으로 결정된 것이다.  If the pressure is too high, the load on the nozzle may be increased and damage may occur, or the hydrogel may not be discharged in the form of a thread smoothly and may be discharged in an unbalanced shape, and the pressure may be too weak. In this case, due to the resistance due to the viscosity of the hydrogel may not be smooth discharge from the nozzle. On the other hand, if the diameter is too small, the discharge pressure is increased, so that the risks when the pressure is strong may occur the same, and if the diameter is too large, the precision of the three-dimensional shape when manufacturing the scaffold may be reduced. The above-described pressure range and diameter range are all considered as described above, so that the discharge of the hydrogel can be made smoothly and easily, and at the same time, to achieve a desired level of accuracy of the manufactured scaffold shape. It was determined experimentally as a range to do.
예를 들면, 본 발명에 따른 프린팅 방법은, 상기 수용부에 잉크를 수용시키는 단계, 상기 수용부에 0. 1 ~ 700kPa, 1 내지 500kPa 또는 1 내지 700kPa 범위 내의 압력을 가하여 예를 들면, 0. 1 ~ 1 隱 범위 내의 배출구 직경을 가지는 상기 노즐로 상기 잉크를 토출하는 단계, 프린팅 장치의 이동부에 의하여 상기 노즐이 1 ~ 700mm/min 범위 내의 속도로 이동하면서 잉크를 인쇄하는 '단계를 포함하여 이루어질 수 있다.  For example, the printing method according to the present invention includes the steps of accommodating ink in the accommodating part, applying a pressure within the range of 0.1 to 700 kPa, 1 to 500 kPa or 1 to 700 kPa, for example, 0. Discharging the ink to the nozzle having an outlet diameter within a range of 1 to 1 mm, and printing the ink while the nozzle moves at a speed within a range of 1 to 700 mm / min by a moving part of a printing apparatus. Can be done.
다음으로 잉크 토출 부재 ( 10)에 수용된 세포 액상 물질을 A방향으로 눌러서 토출부 (20)을 통해 프린팅 소재를 베이스 (100)로 토출시켜서 최종 목적물 (50)을 완성한다. 이 때 피스톤은 프린팅 소재의 단면이 동일한 형태를 유지하면서 크기만 축소되어 토출부 (20)을 통과하도록 제어되는 것이 바람직하며, 경우에 따라 베이스는 액상 물질이 담겨 있는 용기가 될 수도 있다. 종래 기술에서처럼 하나씩의 재료를 분사하여 바이오 프린팅을 하는 경우에는 토출부의 노즐 내경 크기 감소에 제한이 있기 때문에 재료의 부피 감소에 한계가 있었다. 그러나 본 발명에 의하면 다증 잉크의 개수에 비례하여 토출되는 잉크의 부피를 감소시킬 수 있기 때문에 종래 기술에 비해 정밀한 분사가 가능해진다. 그리고 다중 잉크가 토출부 (20)의 통로를 통과할 때에 각각의 잉크와 토출부 통로의 안쪽면과의 사이에 접촉하는 면적이 감소하므로, 발생하는 전단웅력이 단일 재료를 토출할 때보다 저감된다. 따라서 세포 활성 측면에서 종래 기술에 비해 유리한 효과가 있다. Next, the cell liquid substance contained in the ink discharge member 10 is pressed in the A direction to discharge the printing material to the base 100 through the discharge portion 20 to complete the final object 50. At this time, the piston is preferably controlled to pass through the discharge portion 20 is reduced in size only while maintaining the same shape of the cross section of the printing material, in some cases the base may be a container containing a liquid material. In the case of bioprinting by spraying one material as in the prior art, there is a limit to the volume reduction of the material because there is a limit to the size reduction of the nozzle inner diameter. However, according to the present invention, it is possible to reduce the volume of the ink ejected in proportion to the number of multiply inks, so that precise jetting is possible in comparison with the prior art. When the multiple inks pass through the passage of the ejection section 20, the area of contact between each ink and the inner surface of the ejection section passage is reduced, so that the shear force generated is reduced than when ejecting a single material. . Therefore, there is an advantageous effect compared to the prior art in terms of cell activity.
【발명의 효과】 【Effects of the Invention】
본 발명에 의하면 다중 잉크의 개수에 비례하여 토출되는 재료의 부피를 감소시킬 수 있기 때문에 종래 기술에 비해 정밀한 분사가 가능해진다. 또한, 다중 잉크가 토출부 또는 노즐의 통로를 통과할 때에 각각의 재료와 노즐 통로의 안쪽면과의 사이에 접촉하는 면적이 감소하고, 발생하는 전단웅력도 단일 재료를 토출할 때보다 저감된다. 따라서 세포 활성 및 프린팅 정밀도 향상 측면에서 종래 기술에 비해 유리한 효과가 있다. 【도면의 간단한 설명】  According to the present invention, the volume of material discharged in proportion to the number of multiple inks can be reduced, so that precise jetting is possible compared to the prior art. In addition, when multiple inks pass through the discharge section or the passage of the nozzle, the area of contact between each material and the inner surface of the nozzle passage is reduced, and the shear force generated is also reduced than when discharging a single material. Therefore, in terms of improving cell activity and printing accuracy, there is an advantageous effect compared to the prior art. [Brief Description of Drawings]
도 1은 본 발명의 일예에 따라 제 1잉크의 층진물과 제 2잉크의 인쇄물을 제조하는 과정을 보여주는 개략도이다.  1 is a schematic diagram illustrating a process of manufacturing a printed matter of a second ink and a layered ink of a first ink according to an embodiment of the present invention.
도 2는 본 발명의 일예에 따라 제 1잉크꾀 층진물과 나선 형상의 제 2잉크의 인쇄물이 주입된 잉크 토출 부재 및 이로부터 얻어지는 토출물을 보여주는 개략도이다.  FIG. 2 is a schematic view showing an ink ejecting member into which a first ink layered product and a spiral second ink printed matter are injected and an ejection obtained therefrom according to an example of the present invention.
도 3은 본 발명의 일예에 따라 게 1잉크의 충진물과 나선 형상의 세 가지 종류의 잉크로 제조된 인쇄물이 주입된 잉크 토출 부재 및 이로부터 얻어지는 토출물을 보여주는 개략도이다.  3 is a schematic view showing an ink ejecting member into which a print made of three kinds of ink of crab 1 ink and a spiral shape is injected, and an ejection obtained therefrom according to an example of the present invention.
도 4는 본 발명의 일예에 따라 삼차원 프린팅 방법으로 잉크 토출 부재에 잉크를 주입하는 일예를 개략적으로 보여주는 도면이다. 4 is ink ejected by a three-dimensional printing method according to an embodiment of the present invention A diagram schematically showing an example of injecting ink into a member.
도 5는 본 발명의 일예에 따라 크 토출 부재에 제 1잉크의 충진물에 더하여, 삼차원 프린팅 방법으로 제 2 내지 제 7의 잉크를 주입하는 방법을 개략적으로 보여주는 도면이다.  5 is a view schematically illustrating a method of injecting the second to seventh inks by a three-dimensional printing method in addition to the filling of the first ink in the ink ejection member according to an embodiment of the present invention.
도 6은 실시예 1에 따라 게 1잉크의 층진물과 게 2잉크의 인쇄물을 제조하는 과정을 보여주는 시린지와 시린지 말단에 구비된 토출부의 사진이다ᅳ  FIG. 6 is a photograph of a syringe and a discharging part provided at the end of the syringe showing a process of manufacturing a print of the crab 1 ink and the crab 2 ink according to Example 1
도 7은 실시예 1에 따라 제 1잉크의 충진물과 나선 형상의 제 2잉크의 인쇄물이 주입된 잉크 토출 부재로부터 얻어지는 토출물을 이용하여 인쇄한 결과를 나타내는 공촛점 현미경 사진이다.  FIG. 7 is a confocal micrograph showing the result of printing using the ejection obtained from the ink ejecting member in which the filling of the first ink and the printed matter of the spiral second ink were injected according to Example 1. FIG.
도 8은 실시예 2에 따라 게 1잉크의 층진물과 제 2잉크의 인쇄물이 층진된 시린지와, 상기 시린지로부터 얻어지는 토출물을 이용하여 인쇄한 결과를 나타내는 공촛점 현미경 사진이다.  FIG. 8 is a confocal micrograph showing the result of printing using a syringe in which a layered material of crab 1 ink and a printed material of a second ink are laminated according to Example 2, and an ejection obtained from the syringe.
도 9는 본 발명의 일예에 따른 5가지 상이한 잉크가 층진된 수용부를 갖는 잉크 토출 부재를 개략적으로 도시한 도면이다. 도 10은 본 발명의 일예에 따른 잉크 토출 부재를 개략적으로 도시한 도면이다. , 9 is a view schematically showing an ink ejecting member having a receiving portion in which five different inks are layered according to an example of the present invention. 10 is a view schematically showing an ink ejecting member according to an embodiment of the present invention. ,
【발명의 실시를 위한 형태】 [Form for implementation of invention]
하기 실시예를 들어 본 발명을 더욱 자세히 설명하고자 하나, 본 발명의 보호범위가 하기 실시예로 한정되는 의도는 아니다 실시예 1: 잉크 인쇄물과 잉크 층진물을포함하는 시린지  The present invention will be described in more detail with reference to the following examples, but the scope of protection of the present invention is not intended to be limited to the following examples. Example 1: A syringe including an ink substrate and an ink layer
삼차원 프린팅 장치의 잉크 수용부인 시린지에 3 w/v % Sodium alginate 재질의 층진용 게 1 하이드로겔을 주입하였다 상기 제 1 하이드로겔이 주입된 시린지에, 긴 길이의 노즐을 구비한 삼차원 프린팅 장치를 이용하여, Green형광 파티클이 함유된 3 w/v % sodium alginate를 거 12 하이드로젤로서 삼차원 프린팅 방법으로 주입하였다. 구체적인 제조 과정의 일예는 도 1에 예시된 방법과 유사하게 수행하였다. 시린지에 인쇄된 잉크 형상을사진으로 찍어 도 2에 나타냈다. A 1-gel hydrogel for layering of 3 w / v% sodium alginate was injected into a syringe, which is an ink receiving portion of a 3D printing apparatus. In a syringe into which the first hydrogel was injected, a 3D printing apparatus having a long length nozzle was used. Then, 3 w / v% sodium alginate containing green fluorescent particles was injected as a 12 hydrogel by three-dimensional printing. Of concrete manufacturing process One example was performed similar to the method illustrated in FIG. 1. The ink shape printed on the syringe was photographed and shown in FIG. 2.
상기 시린지에 충진용 제 1 하이드로젤과 삼차원 인쇄된 거 12 하이드로젤을 압력을 가하여 토출부를 통해 얻어지는 토출물을 이용하여 삼차원 프린팅 방법으로 인쇄하였으며, 노즐 크기 (nozz l e I . D)가 1.0 mm을 사용하여 3개 줄로 인쇄하였다. 노즐 크기 (nozz le I .D)가 1 瞧인 노즐을 사용한 경우 인쇄된 단면의 길이가 30마이크로 미터이고, 노즐 크기 (nozzl e I . D)가 2 隱인 노즐을 사용할 경우 인쇄된 단면의 길이가 70 마이크로미터이었다.  The first hydrogel for filling the syringe and the three-dimensional printed giant 12 hydrogel were printed by a three-dimensional printing method using a discharge obtained through a discharge unit by applying pressure, and the nozzle size (nozz le I. D) was 1.0 mm. Printed in three lines. Printed section length is 30 micrometers when using a nozzle with a nozzle size (nozz le I .D) of 1 mm and printed section length when using a nozzle with a nozzle size (nozzl e I .D) of 2 mm Was 70 micrometers.
상기 인쇄물을 공초점 현미경으로 형광 관찰한 결과 녹색 형광 파티클이 함유된 하이드로겔이 프린팅되는 것을 공초점 현미경으로 확인하였다. 상기 현미경 사진을 도 3에 나타냈다. 도 6는 실시예 1에 따라 잉크 수용부를 포함하는 토출부재를 이용하여 지지용 제 1 하이드로겔과 삼차원 프린팅 방법으로 내부에 형성된 특정 형상을 갖는 제 2 하이드를젤이 형성되는 사진올 나타낸다. 도 7은 실시예 1에 따라 얻어진 제 1하이드로겔 및 게 2 하이드로젤이 층진된 잉크 수용부를 압력조건하에 토출하여 삼차원 인쇄방법으로 제조된 인쇄물의 공초점 현미경 관찰한 결과를 나타낸다. 즉, 토출된 결과물을 공초점 현미경으로 형광 관찰하면 도 7의 도면과 같다. 본 발명의 따른 방법으로 높은 해상도로 구분되어 잉크가 인쇄됨을 나타낸다.  As a result of fluorescence observation by the confocal microscope, the printed matter was confirmed by confocal microscopy of the hydrogel containing green fluorescent particles. The micrograph is shown in FIG. 3. FIG. 6 shows a photograph in which a first hydrogel for supporting and a second hydrogel having a specific shape formed therein by a three-dimensional printing method are formed using a discharge member including an ink receiving unit according to Example 1. FIG. FIG. 7 shows the results of confocal microscopy observation of a printed matter produced by a three-dimensional printing method by ejecting the ink containing layer having the first hydrogel and the crab hydrogel layered in accordance with Example 1 under pressure conditions. That is, when the discharged product is observed by fluorescence with a confocal microscope, it is as shown in FIG. The method according to the invention indicates that the ink is printed with high resolution.
"  "
실시예 2 : 다양한크기의 노즐을 이용한삼차원 인쇄  Example 2 three-dimensional printing using nozzles of various sizes
실시예 1과 동일한 잉크 토출 부재를 사용한 삼차원 프린팅 장치를 사용하되 노즐의 크기를 18, 20, 22 , 25 및 27 Gauge로 하이드로겔이 프린팅되는 것을 공초점 현미경으로 확인하였다. 구체적으로 18 , 20, 22 , 25 및 27 Gauge의 각 노즐 내경은 0.82瞧, 0.63隱, 0.41隱, 0.28隱, 및 0. 1mm이었다. 상기 공초점 현미경 사진을 도 8로 나타냈다.  Using a three-dimensional printing apparatus using the same ink ejecting member as Example 1, it was confirmed by confocal microscopy that the hydrogel is printed in the nozzle size of 18, 20, 22, 25 and 27 Gauge. Specifically, the nozzle inner diameters of 18, 20, 22, 25, and 27 Gauge were 0.82 mm, 0.63 mm, 0.41 mm, 0.28 mm, and 0.1 mm. The confocal micrograph is shown in FIG. 8.
도 8은 실시예 2에 따라 잉크 수용부를 포함하는 토출부재를 이용하여 제 1하이드로겔 층진물과 계 2 하이드로겔 인쇄물이 노즐의 크기의 변화에 따른 프린팅 결과물을 보여주는 공초점 현미경 관찰 결과를 나타낸다. 단면도 (Cross-sect ional Vi ew)에 도시된 바와 같이, 잉크 토출 부재의 단면 형상과 같은 형상으로 소형화가 가능하였다. 본 발명의 실시 예에 따르면 비율은 특정 형상 (실시 예: Lobule)의 전체 직경 ( 15 隱)으로 부터 98.7% (200 μ ηι)까지 소형화 가능하였다. 상기 수학식 따라 계산하였다. FIG. 8 shows the first hydrogel layered product and the second hydrogel printed matter of the size of the nozzle using the discharge member including the ink containing portion according to Example 2. FIG. Confocal microscopy results showing the printing results with changes. As shown in the cross-sect ional view, it was possible to miniaturize to the same shape as the cross-sectional shape of the ink discharge member. According to an embodiment of the present invention, the ratio could be downsized to 98.7% (200 μηι) from the total diameter (15 mm 3) of the specific shape (eg Lobule). It was calculated according to the above equation.
[수학식 1]  [Equation 1]
잉크 인쇄물의 축소비율= -^/八 X100(%)  Reduction ratio of ink printed matter =-^ / 八 X100 (%)
상기 수학식 1에서,  In Equation 1,
A는 삼차원 인쇄법으로 시린지에 제공된 1차 잉크 인쇄물의 직경 B는 인쇄 잉크의 2차 인쇄물의 직경이고,  A is the diameter of the primary ink substrate provided in the syringe by three-dimensional printing method B is the diameter of the secondary substrate of the printing ink,
상기 A 및 B는 동일 길이 단위임.  A and B are the same length unit.
[표 1]  TABLE 1
Figure imgf000025_0001
실시예 3 : 2이상의 잉크를포함하는 잉크 인쇄물
Figure imgf000025_0001
Example 3 Ink Prints Containing Two or More Inks
실시예 1과 동일한 시린지에 게 1 하이드로겔을 주입하였다. 상기 하이드로겔이 주입된 '시린지에, 긴 길이의 노즐을 구비한 삼차원 프린팅 장차를 이용하여,각각 Green, Blue , Red형광 파티클이 함유된 3 w/v % sodium alginate를 순차적으로 인쇄한 잉크 인쇄물을 시린지에 주입하였으며, 얻어진 RGB 하이드로겔이 프린팅되는 것을 공초점 현미경으로 확인하였다. 상기 3가지 잉크로 제조된 잉크 인쇄물이 충진된 시린지 및 이의 제조과정의 모식도를 도 7에 나타냈다. 1 hydrogel was injected into the same syringe as in Example 1. The hydrogel is injected, the syringe, using the future a three-dimensional printing, comprising a long length of the nozzle, the ink printed print each Green, Blue, Red fluorescent particle is a 3 w / v% sodium alginate comprising sequentially It was injected into a syringe, and it was confirmed by confocal microscopy that the obtained RGB hydrogel was printed. A schematic diagram of a syringe filled with ink prints prepared with the three inks and a manufacturing process thereof are shown in FIG. 7.
본 발명의 방법에 따르면, 시린지 내부에 하나의 잉크로 잉크 인쇄물을 제조하는 것뿐만 아니라, 2이상의 잉크로 삼차원 인쇄를 수행하여 잉크 인쇄물을 제조할 수 있음을 확인할 수 있으며, 따라서 여러 가지 형태의 조직도 모사할 수 있음을 확인할 수 있다. 실시예 4: 내강 ( lumen) 구조를 갖는 인공 혈관의 제작 According to the method of the present invention, in addition to preparing an ink print with one ink inside the syringe, three-dimensional printing is performed with two or more inks. It can be seen that ink prints can be produced, and thus, various types of tissue can be simulated. Example 4 Fabrication of Artificial Vessels with Lumen Structure
실시예 1과 동일한 시린지에 3 w/v % sodium alginate를 주입하고, 긴 노즐을 이용하여 온도민감성 하이드로겔인 3%젤라틴을 기주입된 알지네이트 내부에 프린팅 방법을 이용하여 주입하였다. 준비된 복합 하이드로겔을 200 Mm의 칼슘클로라이드에 프린팅하면 알지네이트만 겔화가 유도되고 젤라틴은 겔화되지 않은 체 존재하게 된다. 이 프린팅 구조체를 37 a C의 액체에 넣어두면, 겔화된 알지네이트는 그대로 형상을 유지하지만 젤라틴은 녹아내려 내강구조를 형성하였다. 실시예 5: 세포을포함하며 다중 내강구조를 갖는 혈관 제작 실시예 4와 동일한 방법으로, 시린지에 3 w/v % sodium alginate를 주입하고, 긴 길이의 노즐을 구비한 삼차원 프린팅 장치를 이용하여, 평활근 세포가 I X 107 Cel ls/mL이상의 농도로 함유된 3%알지네이트를 상기 충진된 3%알지네이트 안에 주입하고, 혈관내피세포 1 X 107 Cel l s/mL이상의 농도로 내재된 3% 젤라틴을 평활근세포가 내재된 알지네이트에 주입하는 연속적인 방법을 통하여, 혈관 구조를 모사하였다. 3 w / v% sodium alginate was injected into the same syringe as in Example 1, and 3% gelatin, a temperature-sensitive hydrogel, was injected into the alginate pre-injected using a long nozzle using a printing method. Printing the prepared complex hydrogel in 200 Mm calcium chloride induces only alginate gelation and gelatin is present in the ungelled body. When the printing structure was placed in a liquid of 37 a C, the gelled alginate remained intact but gelatin melted to form a lumen structure. Example 5 Blood Vessel Fabrication with Cells and Multiple Lumen Structures In the same manner as in Example 4, 3 w / v% sodium alginate was injected into the syringe and smooth muscle was used, using a three-dimensional printing apparatus equipped with a long nozzle. 3% alginate in which the cells are contained at a concentration of at least IX 10 7 Cel ls / mL is injected into the filled 3% alginate, and 3% gelatin embedded at a concentration of at least 1 X 10 7 Cel ls / mL is used for smooth muscle cells. Vascular structures were simulated by a continuous method of injecting the intrinsic alginate.
특히, 혈관의 대동맥이나 대정맥은 4중 원통 구조로 겹겹히 쌓여 있는데, 이 방법을 통하여 손:쉽게 4중 구조의 혈관을 프린팅 할 수 있을 뿐만 아니라, 크기 조절 또한 가능하다. 뿐만 아니라 세정맥의 2중 구조나 미세혈관의 1중 구조도 마찬가지로 모사할 수 있다.  In particular, the aorta and the vena cava of the blood vessels are stacked in a four-cylindrical structure. This method enables easy hand printing of quadrilateral blood vessels, as well as size control. In addition, the double structure of the cleansing vein and the single structure of the microvessel can be similarly simulated.
[부호의 설명]  [Description of the code]
10: 잉크 토출 부재  10: ink discharge member
20: 토출부  20: discharge part
40 , 50: 잉크 토출물  40, 50 : Ink discharge
80: 잉크 토출구 (노즐) 100 : 플레이트 80 : Ink discharge port (nozzle) 100: plate
이상 첨부 도면을 참고하여 본 발명에 대해서 설명하였지만 본 발명의 권리범위는 후술하는 특허청구범위에 의해 결정되며 전술한 실시예 및 /또는 도면에 제한되는 의도는 아니다. Although the present invention has been described above with reference to the accompanying drawings, the scope of the present invention is determined by the claims below and is not intended to be limited to the embodiments and / or drawings described above.

Claims

【청구의 범위】 [Range of request]
【청구항 1】 [Claim 1]
잉크 수용부 및 토출부를 포함하는 삼차원 인쇄용 잉크 토출 부재에, 적어도 1종의 잉크를 삼차원 인쇄법으로 인쇄한 잉크 인쇄물로 제공하는 잉크 제공 단계,  An ink providing step of providing a three-dimensional printing ink ejecting member including an ink containing portion and an ejecting portion, with at least one ink as an ink printed matter printed by a three-dimensional printing method;
상기 잉크 토출 부재에 물리적 힘을 가하여 수용된 잉크가 토출부로 토출되어 잉크 토출물을 제조하는 단계, 및 상기 잉크 토출물을 기판에 인쇄하는 단계를 포함하는 삼차원 인쇄 방법 .  And applying the physical force to the ink ejecting member to eject the ink into the ejecting portion to produce an ink ejection, and printing the ink ejection on the substrate.
【청구항 2】 [Claim 2]
게 1항에 있어서, 상기 잉크 제공 단계에서 잉크 인쇄물은 이차원 또는 삼차원 패턴을 갖는 것인, 삼차원 인쇄 방법. ' The method of claim 1, wherein the ink print in the ink providing step has a two-dimensional or three-dimensional pattern, three-dimensional printing method. '
【청구항 3】  [Claim 3]
제 1항에 있어서, ,상기 잉크 제공 단계에서, 적어도 1종의 잉크를 삼차원 인쇄법 이외의 방법으로 잉크 층진물로 추가로 제공하는 것인 삼차원 인쇄 방법 . The three-dimensional printing method according to claim 1 , wherein in the ink providing step, at least one ink is further provided as an ink layered material by a method other than the three-dimensional printing method.
【청구항 4】  [Claim 4]
제 1항에 있어서, 상기 잉크 토출 부재에 층진된 잉크의 단면과 잉크 토출물의 단면이 동일한 패턴을 갖는 것인 삼차원 인쇄 방법.  The three-dimensional printing method according to claim 1, wherein a cross section of the ink layered on the ink ejecting member and a cross section of the ink ejection have the same pattern.
【청구항 5】  [Claim 5]
거 U항에 있어서, 상기 잉크는 25°C에서 측정한 점도가 2cp 내지 1 ,000 , 000 cp의 점도를 갖는 것인 방법. The method of claim 5, wherein the ink has a viscosity measured at 25 ° C. of 2 cps to 1,000 cps.
【청구항 6】  [Claim 6]
제 3항에 있어서, 상기 잉크 층진물과 잉크 인쇄물의 잉크 점도 차이는 0 내지 5 , 000 cp인 방법 .  4. The method of claim 3 wherein the ink viscosity difference between the ink deposits and ink prints is between 0 and 5,000 cp.
【청구항 7】  [Claim 7]
게 1항에 있어서, 상기 잉크 층진물과 잉크 인쇄물의 탄성의 차이가 0 내지 10 , 000 Pa 이내인 방법 .  The method according to claim 1, wherein the difference in elasticity of the ink layered product and the ink printed matter is within 0 to 10,000 Pa.
【청구항 8] 거 13항에 있어서, 상기 잉크 제공 단계에서, 상기 잉크 층진물과 잉크 인쇄물은 동시 또는 순차적으로 잉크 토출 부재에 제공하는 것인, 방법. [Claim 8] The method according to claim 13, wherein in the ink providing step, the ink layered matter and the ink printout are provided to the ink ejecting member simultaneously or sequentially.
【청구항 9] [Claim 9]
게 8항에 있어서, 상기 잉크 제공 단계에서, 상기 잉크 층진물을 제공한 후에, 1종의 잉크를 삼차원 인쇄법으로 인쇄하는 잉크 인쇄물을 제공하는 것인 방법 .  The method according to claim 8, wherein in the ink providing step, after providing the ink layered product, an ink printout of printing one ink by three-dimensional printing is provided.
【청구항 10]  [Claim 10]
제 1항에 있어서, 상기 잉크 토출 부재는, 내부 공간에 잉크가 수용되는 잉크 수용부와 상기 수용부의 하부에 위치하고 상기 잉크가 통과하는 단일 통로를 구비하며 수용부에 수용된 잉크를 토출하는 토출부를 포함하는 것인 방법 .  The ink ejecting member of claim 1, wherein the ink ejecting member comprises an ink receiving portion for receiving ink in an inner space, a discharge portion for discharging ink contained in the receiving portion, having a single passage through which the ink passes and positioned below the receiving portion; How to.
【청구항 11】  [Claim 11]
제 1항에 있어서, 상기 잉크 토출 부재에 제공된 잉크의 단면 직경과 토출물의 단면 직경의 비율이 100 :99 내지 100 :0.1 인 방법.  The method according to claim 1, wherein the ratio of the cross-sectional diameter of the ink provided to the ink ejecting member and the cross-sectional diameter of the ejection is 100: 99 to 100: 0.1.
【청구항 12】  [Claim 12]
게 1항에 있어서, 상기 인쇄물은 인공 조직인 것인 방법.  The method of claim 1, wherein the printed material is artificial tissue.
【청구항 13】  [Claim 13]
게 1항에 있어서, 상기 잉크 토출물을 제조하는 단계는, 상기 잉크를 수용하는 단계와 동시에 또는 순차적으로 수행되는 것인 방법.  The method of claim 1, wherein producing the ink ejection is performed simultaneously or sequentially with receiving the ink.
【청구항 14】  [Claim 14]
거 U항에 있어서,상기 잉크는 구성성분,구성성분의 함량 및 물성으로 이루어지는 군에서 선택된 1종 이상이 상이한 것인 방법 .  The method according to claim U, wherein the ink is one or more selected from the group consisting of constituents, constituent contents and physical properties.
[청구항 15】  [Claim 15]
제 1항에 있어서, 상기 잉크는 겔화 고분자를 포함하는 것인 방법 . 【청구항 16】  The method of claim 1, wherein the ink comprises a gelling polymer. [Claim 16]
게 1항에 있어서, 상기 잉크는 겔화 고분자, 세포, 성장인자 및 세포외기질로 이루어지는 군에서 선택된 1종 이상을 포함하는 것인 방법.  The method of claim 1, wherein the ink comprises one or more selected from the group consisting of gelling polymers, cells, growth factors and extracellular matrix.
PCT/KR2017/004687 2016-05-03 2017-05-02 Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same WO2017192004A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018557912A JP6898353B2 (en) 2016-05-03 2017-05-02 A method of supplying ink for three-dimensional printing and a three-dimensional printing method using the same.
EP17792906.4A EP3453523A4 (en) 2016-05-03 2017-05-02 Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same
US16/097,863 US11534527B2 (en) 2016-05-03 2017-05-02 Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same
CN201780032352.7A CN109153182B (en) 2016-05-03 2017-05-02 Method for supplying ink for three-dimensional printing and three-dimensional printing method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0054397 2016-05-03
KR20160054397 2016-05-03
KR1020170056273A KR20170124972A (en) 2016-05-03 2017-05-02 Method of supplying ink composition for three-dimensional printing, and three-dimensional printing method
KR10-2017-0056273 2017-05-02

Publications (1)

Publication Number Publication Date
WO2017192004A1 true WO2017192004A1 (en) 2017-11-09

Family

ID=60203731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004687 WO2017192004A1 (en) 2016-05-03 2017-05-02 Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same

Country Status (1)

Country Link
WO (1) WO2017192004A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280356A (en) * 1999-03-29 2000-10-10 Minolta Co Ltd Apparatus and method for three-dimensional shaping
WO2015066705A1 (en) * 2013-11-04 2015-05-07 University Of Iowa Research Foundation Bioprinter and methods of using same
WO2015077262A1 (en) * 2013-11-19 2015-05-28 Guill Tool & Engineering Coextruded, multilayered and multicomponent 3d printing inputs
KR20160030939A (en) * 2013-06-13 2016-03-21 애스펙트 바이오시스템즈 리미티드 System for additive menufacturing of three-dimensional structure and method for same
KR20160036619A (en) * 2013-07-31 2016-04-04 오가노보, 인크. Automated devices, systems, and methods for the fabrication of tissue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280356A (en) * 1999-03-29 2000-10-10 Minolta Co Ltd Apparatus and method for three-dimensional shaping
KR20160030939A (en) * 2013-06-13 2016-03-21 애스펙트 바이오시스템즈 리미티드 System for additive menufacturing of three-dimensional structure and method for same
KR20160036619A (en) * 2013-07-31 2016-04-04 오가노보, 인크. Automated devices, systems, and methods for the fabrication of tissue
WO2015066705A1 (en) * 2013-11-04 2015-05-07 University Of Iowa Research Foundation Bioprinter and methods of using same
WO2015077262A1 (en) * 2013-11-19 2015-05-28 Guill Tool & Engineering Coextruded, multilayered and multicomponent 3d printing inputs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3453523A4 *

Similar Documents

Publication Publication Date Title
CN109153182B (en) Method for supplying ink for three-dimensional printing and three-dimensional printing method using the same
Wei et al. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review
JP6723374B2 (en) Method and apparatus for producing printed matter having cross-section pattern
Matai et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering
Huang et al. 3D bioprinting and the current applications in tissue engineering
US20110212501A1 (en) 3-dimensional multi-layered hydrogels and methods of making the same
Mehrban et al. 3D bioprinting for tissue engineering: Stem cells in hydrogels
Park et al. Current advances in three-dimensional tissue/organ printing
KR102083788B1 (en) 3D printing system for artificial blood vessel manufacturing and method of manufacturing artificial blood vessel using same
Huh et al. Three-dimensional bioprinting for tissue engineering
KR20130120572A (en) Porous 3 dimensional cell-laden scaffold and producing method thereof
KR102345699B1 (en) Composition of Bio-ink Comprising Human Derived Collagen and Methacrylated Low Molecular Weight Collagen and Method for Producing Tissue-Like Structure Using the Same
Navarro et al. Bioinks for three-dimensional printing in regenerative medicine
WO2017192004A1 (en) Method for supplying inks for three-dimensional printing, and three-dimensional printing method using same
CN114728470B (en) 3D printing system for manufacturing vascular prosthesis and method for manufacturing vascular prosthesis using the same
WO2017171493A1 (en) Method and apparatus for manufacturing printout having cross-sectional pattern
Vishnoi 3D bioprinting of tissue systems
KR102640278B1 (en) Bio ink composition and Method for producing three-dimensional adipose and skin complex Tissue-like structure using the same
Lee et al. 8 3D Printing and
Biswas et al. Introduction of 3D Printing and Different Bioprinting Methods
Lee et al. 3D printing and bioprinting technologies
Sami et al. Pneumatic Extrusion of Biomaterials

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017792906

Country of ref document: EP

Effective date: 20181203