WO2017179784A1 - 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2017179784A1 WO2017179784A1 PCT/KR2016/013184 KR2016013184W WO2017179784A1 WO 2017179784 A1 WO2017179784 A1 WO 2017179784A1 KR 2016013184 W KR2016013184 W KR 2016013184W WO 2017179784 A1 WO2017179784 A1 WO 2017179784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subband
- random access
- subbands
- base station
- extension
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004891 communication Methods 0.000 title claims abstract description 40
- 230000004044 response Effects 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 15
- 239000000969 carrier Substances 0.000 description 13
- 238000013461 design Methods 0.000 description 9
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 6
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000008054 signal transmission Effects 0.000 description 6
- 238000013468 resource allocation Methods 0.000 description 3
- 241000760358 Enodes Species 0.000 description 2
- 108010003272 Hyaluronate lyase Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
- H04W74/0891—Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/26025—Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a signal transmission and reception method and apparatus therefor based on a variable subband configuration in a wireless communication system.
- a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
- E-UMTS Evolved Universal Mobile Telecommunications System
- UMTS Universal Mobile Telecommunications System
- LTE Long Term Evolution
- an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
- the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
- the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
- the base station controls data transmission and reception for a plurality of terminals.
- For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
- the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
- DL downlink
- HARQ Hybrid Automatic Repeat and reQuest
- the core network may be composed of an AG and a network node for user registration of the terminal.
- the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
- Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
- new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
- the present invention proposes a signal transmission / reception method and apparatus therefor based on a variable subband configuration in a wireless communication system.
- a method for a terminal to transmit and receive a signal to and from a base station includes: receiving information on one or more extension subbands from the base station through a basic subband; Transmitting a random access preamble to the base station on a specific extension subband of the base subband or one or more extension subbands; Receiving a random access response corresponding to the random access preamble from the base station through the specific extended subband; And transmitting an uplink signal and receiving a downlink signal through the specific extended subband, wherein the basic subband and the one or more extended subbands include at least one of a subcarrier interval, a scheduling unit time, and a bandwidth.
- One is characterized by a different.
- a terminal in a wireless communication system which is an aspect of the present invention, includes a wireless communication module and a processor, wherein the processor receives information about one or more extension subbands from a base station through a base subband, Transmitting a random access preamble to the base station through a specific subband among a basic subband or one or more extended subbands, and receiving a random access response corresponding to the random access preamble from the base station through the specific extended subband Thereafter, transmission of an uplink signal and reception of a downlink signal are performed through the specific extension subband, and the basic subband and the one or more extension subbands have different subcarrier spacing, scheduling unit time, and bandwidth from each other. It is characterized by.
- the random access preamble when transmitted through the base subband, information indicating the specific extended subband among the one or more extension subbands is transmitted together with the random access preamble.
- the random access preamble when the random access preamble is transmitted through the base subband, the random access preamble may include information indicating the specific extension subband among the one or more extension subbands.
- the specific extended subband may be selected among the one or more extended subbands.
- the specific extended subband is selected based on characteristics of the uplink signal and the downlink signal.
- a synchronization signal may be received through the basic subband, and synchronization with the base station may be obtained based on the synchronization signal.
- the terminal may transmit and receive a signal more efficiently through a variable subband configuration.
- FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
- FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
- FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
- 5 is a diagram illustrating a structure of a downlink radio frame used in the LTE system.
- FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
- FIG. 7 is a conceptual diagram illustrating carrier aggregation.
- FIG 8 illustrates an example of applying a variable subband configuration according to the first embodiment of the present invention.
- FIG. 10 shows an example in which a PRACH region of a TDD system is configured according to Method 2 of the third embodiment of the present invention.
- FIG. 11 shows an example of configuring a PRACH region of an FDD system according to Method 1 of the third embodiment of the present invention.
- FIG. 13 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
- RRH remote radio head
- TP transmission point
- RP reception point
- relay and the like.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
- the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
- the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
- the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
- the physical channel utilizes time and frequency as radio resources.
- the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the RLC layer of the second layer supports reliable data transmission.
- the function of the RLC layer may be implemented as a functional block inside the MAC.
- the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
- IPv4 Packet Data Convergence Protocol
- the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
- the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
- RB means a service provided by the second layer for data transmission between the terminal and the network.
- the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
- the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
- the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
- BCH broadcast channel
- PCH paging channel
- SCH downlink shared channel
- Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
- the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
- RAC random access channel
- SCH uplink shared channel
- BCCH broadcast control channel
- PCCH paging control channel
- CCCH common control channel
- MCCH multicast control channel
- MTCH multicast. Traffic Channel
- FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
- the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- DL RS downlink reference signal
- the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
- PDSCH physical downlink control channel
- PDCCH physical downlink control channel
- the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
- RACH random access procedure
- the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
- PRACH physical random access channel
- a contention resolution procedure may be additionally performed.
- the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
- Control Channel (PUCCH) transmission (S308) may be performed.
- the terminal receives downlink control information (DCI) through the PDCCH.
- DCI downlink control information
- the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
- the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
- the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
- FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
- a radio frame has a length of 10 ms (327200 ⁇ T s ) and is composed of 10 equally sized subframes.
- Each subframe has a length of 1 ms and consists of two slots.
- Each slot has a length of 0.5 ms (15360 x T s ).
- the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
- Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
- the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
- FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
- a subframe consists of 14 OFDM symbols.
- the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
- R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
- the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
- the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
- Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
- the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
- the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
- the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
- One REG is composed of four resource elements (REs).
- the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
- the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
- QPSK Quadrature Phase Shift Keying
- the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
- the PHICH consists of one REG and is scrambled cell-specifically.
- ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
- BPSK binary phase shift keying
- a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
- the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
- the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
- the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
- n is indicated by the PCFICH as an integer of 1 or more.
- the PDCCH consists of one or more CCEs.
- the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
- PCH paging channel
- DL-SCH downlink-shared channel
- Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
- Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
- a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format. It is assumed that information about data transmitted using information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
- RTI Radio Network Temporary Identity
- the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
- the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
- FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
- an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
- the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
- the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel status, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
- the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
- FIG. 7 is a conceptual diagram illustrating carrier aggregation.
- Carrier aggregation includes a plurality of frequency blocks or (logically) cells in which a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
- a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
- uplink resources or component carriers
- downlink resources or component carriers
- the entire system bandwidth has a bandwidth of up to 100 MHz as a logical band.
- the entire system band includes five component carriers, each component carrier having a bandwidth of up to 20 MHz.
- a component carrier includes one or more contiguous subcarriers that are physically contiguous.
- each component carrier has the same bandwidth, but this is only an example and each component carrier may have a different bandwidth.
- each component carrier is shown as being adjacent to each other in the frequency domain, the figure is shown in a logical concept, each component carrier may be physically adjacent to each other, or may be separated.
- the center frequency may be used differently for each component carrier or may use one common common carrier for component carriers that are physically adjacent to each other. For example, in FIG. 7, if all component carriers are physically adjacent to each other, center carrier A may be used. In addition, assuming that the component carriers are not physically adjacent to each other, the center carrier A, the center carrier B, and the like may be used separately for each component carrier.
- the component carrier may correspond to the system band of the legacy system.
- provision of backward compatibility and system design may be facilitated in a wireless communication environment in which an evolved terminal and a legacy terminal coexist.
- each component carrier may correspond to a system band of the LTE system.
- the component carrier may have any one of 1.25, 2.5, 5, 10 or 20 Mhz bandwidth.
- the frequency band used for communication with each terminal is defined in component carrier units.
- UE A may use the entire system band 100 MHz and performs communication using all five component carriers.
- Terminals B 1 to B 5 may use only 20 MHz bandwidth and perform communication using one component carrier.
- Terminals C 1 and C 2 may use a 40 MHz bandwidth and perform communication using two component carriers, respectively.
- the two component carriers may or may not be logically / physically adjacent to each other.
- UE C 1 represents a case of using two component carriers which are not adjacent
- UE C 2 represents a case of using two adjacent component carriers.
- one downlink component carrier and one uplink component carrier are used, whereas in the LTE-A system, a plurality of component carriers may be used as shown in FIG. 8.
- a downlink component carrier or a combination of a corresponding downlink component carrier and a corresponding uplink component carrier may be referred to as a cell, and a correspondence relationship between the downlink component carrier and the uplink component carrier may be indicated through system information. Can be.
- a method of scheduling a data channel by the control channel may be classified into a conventional linked carrier scheduling method and a cross carrier scheduling method.
- a control channel transmitted through a specific component carrier schedules only a data channel through the specific component carrier. That is, a downlink grant / uplink grant transmitted to a PDCCH region of a downlink component carrier of a specific component carrier (or a specific cell) may be scheduled only for a PDSCH / PUSCH of a cell to which the corresponding downlink component carrier belongs. That is, a search space, which is an area for attempting to detect a downlink grant / uplink grant, exists in a PDCCH region of a cell where a PDSCH / PUSCH, which is a scheduled target, is located.
- a control channel transmitted through a primary component carrier (Crimary CC) using a carrier indicator field (CIF) is transmitted through the primary component carrier or transmitted through another component carrier.
- Schedule the channel In other words, a monitored cell (Monitored Cell or Monitored CC) of cross-carrier scheduling is set, and the downlink grant / uplink grant transmitted in the PDCCH region of the monitored cell is configured to use the PDSCH / PUSCH of the cell configured to be scheduled in the corresponding cell.
- Schedule That is, the search area for the plurality of component carriers is present in the PDCCH area of the monitored cell.
- the PCell is configured by transmitting system information among the plurality of cells, initial access attempt, and transmission of uplink control information.
- the PCell is a downlink primary component carrier and an uplink primary component carrier corresponding thereto. It is composed.
- a communication service in an environment in which a plurality of terminals are concentrated in a specific region such as a sensor is classified as mMTC (massive machine-type communication).
- Vehicle to everything (V2X) is also considered as a differentiated service.
- the 5G air interface is considering various design methods as it must support various services.
- different waveforms, multiple access schemes, numerology eg, sub-carrier spacing, transmit time interval (TTI), bandwidth, etc.
- numerology eg, sub-carrier spacing, transmit time interval (TTI), bandwidth, etc.
- Different signal / channel design schemes may be applied based on subframe duration.
- a method of dividing and setting time / frequency resources corresponding to each case is strongly considered.
- N1 subbands having different physical layer design schemes are defined within a specific downlink component carrier (CC), and different physical layer design schemes are defined within an uplink component carrier.
- N subbands having N are defined.
- Each subband aims for an optimized design approach to meet different requirements (e.g., latency, spectral efficiency, UE battery efficiency, coverage, etc.) Apply different physical layer design methods.
- N1 N2.
- a frequency resource region ratio and some numerology of individual subbands in the uplink and the downlink may be assumed to be the same.
- the terminal should perform communication in a subband suitable for the service characteristic, and the simplest method may be a communication in the corresponding subband from the base station access.
- the subband configuration may be variably set according to various situations such as traffic or service requirements. Suggest a solution.
- the present invention proposes a physical layer frame, a signal, a channel configuration, and a random access scheme of a terminal for variable subband configuration.
- the downlink component carrier and the first subband of the uplink component carrier have the following characteristics.
- the base waveform, basic multiple access scheme and basic numerology defined for the frequency domain to which the component carrier belongs are applied.
- the basic numerology includes at least a subcarrier interval and a transmission time interval (TTI).
- TTI may be a subframe that is a scheduling unit time of the current LTE system, and may be replaced with a slot or a mini slot.
- the mini slot is a slot having a shorter length for low latency.
- the downlink first subband includes a predefined frequency resource region of a corresponding component carrier, and transmits a synchronization signal and a broadcast channel and / or a common control channel at a specific period in the predefined frequency resource region.
- the predefined frequency resource region may be several to several tens of resource blocks (RBs) positioned up and down with respect to a center frequency center.
- System information is broadcast in a cell through a broadcast and / or common control channel, and the system information includes frequency domain information from the first subband for the downlink to the N1 subband and the first sub for the uplink. Frequency domain information from the band to the N2th subband is included. This information may be common information for uplink and downlink.
- the terminal may be signaled specifically by dividing it into usable subbands and unusable subbands.
- the terminal may be signaled specifically by dividing it into usable subbands and unusable subbands.
- the terminal may be signaled specifically by dividing the available time / frequency resources and unavailable time / frequency resources
- the frequency domain information may be set differently for each time domain.
- a specific subband may be defined to exist only for a certain period P in a specific period T.
- N1 may be 3 and N1 may be defined as 2 in the remaining time domain.
- subbands that exist only in a specific time domain may be useful in some mMTC services, such as sensors, when communication is performed only at a predetermined time of day.
- the frequency domain of each subband in a component carrier in a time domain in which a specific subband exists and a non-existent time domain may vary, and the contents may be defined by a predetermined rule or set as separate information. .
- the system information may include at least one of waveforms, multiple access schemes, and numerology-related information of the second subband for the downlink to the N1 subbands and the second subband for the uplink to the N2 subbands.
- This information may be common information for uplink and downlink.
- time domain information in which the corresponding information is valid may be included.
- subcarrier spacing information and TTI information of the second subband may be included, and this information may indicate that the information is valid only in a specific subframe index or a specific frame index.
- the subcarrier spacing and TTI included in the basic numerology are applied to the subband.
- FIG 8 illustrates an example of applying a variable subband configuration according to the first embodiment of the present invention.
- the second subband is set to be valid only at frame index # 0 to frame index # 7. Additionally, a base set of subbands 2 from frame index # 8 to frame index # 10 may mean that the attributes of the base set of subband 1 are the same.
- system information may include gap information for resolving frequency interference between consecutively located subbands, which may differ between subbands.
- the system information includes configuration information on a PRACH region, which is a physical channel for the UE to perform a random access request, and the PRACH region configuration is set only for the first subband or for each subband. Can be. The two cases will be described later.
- the terminal transmits a scanning signal for determining a sector or beam region to be used for data transmission in the downlink first subband.
- the second subband to the N1 subband for the downlink component carrier and the second subband to the N2 subband for the uplink component carrier, the waveform set through the system information transmitted in the first subband are applied.
- the basic numerology here includes at least subcarrier spacing and TTI.
- the terminal is a downlink from the downlink synchronization signal and the broadcast channel (and / or common control channel) transmitted in the basic waveform and the basic subcarrier interval in the predefined resource region of the downlink component carrier It is proposed to acquire time / frequency synchronization and system information, and to thereby obtain subband configuration information.
- the predefined frequency resource region may be several to several tens of resource blocks (RBs) positioned up and down with respect to a center frequency center.
- frequency domain information of the N1 / N2 subband is obtained from the first subband of the corresponding downlink / uplink component carrier from the system information.
- time domain information on a specific subband may be obtained.
- the frequency domain of each subband in a component carrier may be different, and these contents may be defined by a predetermined rule or set as separate information. have.
- At least one of waveforms, multiple access techniques, and numerology related information of the N1 / N2 subbands is obtained from the second subband of the downlink / uplink component carrier from the system information.
- time domain information in which the corresponding information is valid may be obtained.
- the UE obtains time / frequency synchronization for the N1 subband from the downlink second subband from the time / frequency synchronization value obtained from the first subband.
- the terminal determines a preferred sector or beam region through a signal transmitted in the downlink first subband, and feeds back corresponding information to the base station.
- a terminal that obtains system information from a base station and performs a random access procedure for accessing a base station, uplink synchronization, or a scheduling request (SR) may be configured as one of the following methods 1 and 2. Suggest to follow the process.
- the UE transmits a preamble through a PRACH region defined in a first subband of an uplink component carrier, but prefers subband information to receive a random access response from a base station (according to a subband, for example, according to a desired service characteristic). Index) together.
- Preferred subband information may be explicitly delivered to the base station in the form of individual fields, or implicitly transmitted by time / frequency resource location and / or sequence group information of the preamble.
- the operation may be performed by the basic TTI until the PRACH transmission, and then the operation may be performed by the TTI set in the preferred subband.
- the UE selects an uplink subband (according to a desired service characteristic) and transmits a preamble through a PRACH region defined in the corresponding subband.
- an operation may be performed with a TTI set in a preferred subband from a PRACH transmission time.
- FIG. 9 shows an example in which a PRACH region of a TDD system is configured according to Method 1 of the third embodiment of the present invention.
- FIG. 9 assumes a case where the PRACH region is located only in the uplink first subband.
- one component carrier is divided into three subbands (eg, subbands 1 to 3), and subband 2 has the smallest TTI (or the smallest subframe length).
- subband 2 has the smallest TTI (or the smallest subframe length).
- the base station transmits the response message for the random access request through the downlink subband 2 preferred by the terminal, and subsequent uplink and downlink transmissions are performed through the subband 2, which is the preferred subband, to be shortened compared to the subband 1. Perform an operation based on a shorted TTI (or shortened subframe length).
- 10 shows an example in which a PRACH region of a TDD system is configured according to Method 2 of the third embodiment of the present invention. Especially. 10 assumes that a PRACH region is located in all uplink subbands.
- one component carrier is divided into three subbands (eg, subbands 1 to 3), and subband 2 has the smallest TTI (or the smallest subframe length). If a specific UE wants to receive the URLLC service, it acquires downlink synchronization and system information in subband 1, and then transmits a preamble through a PRACH set in subband 2 of its own preference.
- the base station transmits the response message for the random access request through the subband 2 preferred by the terminal, and subsequent uplink and downlink transmission is performed through the subband 2. Accordingly, an operation based on a shortened TTI (or shortened subframe length) is performed as compared to subband 1.
- FIG. 11 shows an example of configuring a PRACH region of an FDD system according to Method 1 of the third embodiment of the present invention.
- the operation of FIG. 11 is the same as that of FIG. 9 except for transmitting the PRACH in the first subband in the uplink component carrier.
- FIG. 12 shows an example in which a PRACH region of an FDD system is configured according to Method 2 of the third embodiment of the present invention.
- the operation of FIG. 12 is the same as that of FIG. 10 except that the PRACH is transmitted in the preferred subband (ie, subband 2) of the uplink component carrier.
- the random access response message may include a TA (timing advance) value for uplink synchronization.
- the TA value may be applied to all uplink subbands in common.
- system information in the present invention does not mean only the MIB (System Information Block) and SIB (System Information Block) in the LTE system, but may be defined as any upper layer message.
- FIG. 13 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- the communication device 1300 includes a processor 1310, a memory 1320, an RF module 1330, a display module 1340, and a user interface module 1350.
- the communication device 1300 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1300 may further include necessary modules. In addition, some modules in the communication device 1300 may be classified into more granular modules.
- the processor 1310 is configured to perform an operation according to an embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1310 may refer to the contents described with reference to FIGS. 1 to 12.
- the memory 1320 is connected to the processor 1310 and stores an operating system, an application, program code, data, and the like.
- the RF module 1330 is connected to the processor 1310 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1330 performs analog conversion, amplification, filtering and frequency up conversion, or a reverse process thereof.
- the display module 1340 is connected to the processor 1310 and displays various information.
- the display module 1340 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
- the user interface module 1350 is connected to the processor 1310 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
- each component or feature is to be considered optional unless stated otherwise.
- Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
- Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 출원에서는 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법이 개시된다. 구체적으로, 상기 방법은, 기본 서브밴드를 통하여 상기 기지국으로부터 하나 이상의 확장 서브밴드들에 관한 정보를 수신하는 단계; 상기 기본 서브밴드 또는 하나 이상의 확장 서브밴드들 중 특정 확장 서브밴드를 통하여 상기 기지국으로 랜덤 액세스 프리앰블을 송신하는 단계; 상기 특정 확장 서브밴드를 통하여 상기 기지국으로부터 상기 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답을 수신하는 단계; 및 상기 특정 확장 서브밴드를 통하여 상향링크 신호의 송신 및 하향링크 신호의 수신을 수행하는 단계를 포함하고, 상기 기본 서브밴드 및 상기 하나 이상의 확장 서브밴드들은, 부반송파 간격, 스케줄링 단위 시간 및 대역폭 중 적어도 하나가 서로 다른 것을 특징으로 한다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증가, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법은, 기본 서브밴드를 통하여 상기 기지국으로부터 하나 이상의 확장 서브밴드들에 관한 정보를 수신하는 단계; 상기 기본 서브밴드 또는 하나 이상의 확장 서브밴드들 중 특정 확장 서브밴드를 통하여 상기 기지국으로 랜덤 액세스 프리앰블을 송신하는 단계; 상기 특정 확장 서브밴드를 통하여 상기 기지국으로부터 상기 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답을 수신하는 단계; 및 상기 특정 확장 서브밴드를 통하여 상향링크 신호의 송신 및 하향링크 신호의 수신을 수행하는 단계를 포함하고, 상기 기본 서브밴드 및 상기 하나 이상의 확장 서브밴드들은, 부반송파 간격, 스케줄링 단위 시간 및 대역폭 중 적어도 하나가 서로 다른 것을 특징으로 한다.
또한, 본 발명의 일 양상인 무선 통신 시스템에서의 단말은, 무선 통신 모듈 및 프로세서를 포함하고, 상기 프로세서는, 기본 서브밴드를 통하여 기지국으로부터 하나 이상의 확장 서브밴드들에 관한 정보를 수신하고, 상기 기본 서브밴드 또는 하나 이상의 확장 서브밴드들 중 특정 확장 서브밴드를 통하여 상기 기지국으로 랜덤 액세스 프리앰블을 송신하며, 상기 특정 확장 서브밴드를 통하여 상기 기지국으로부터 상기 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답을 수신한 후 상기 특정 확장 서브밴드를 통하여 상향링크 신호의 송신 및 하향링크 신호의 수신을 수행하고, 상기 기본 서브밴드 및 상기 하나 이상의 확장 서브밴드들은, 부반송파 간격, 스케줄링 단위 시간 및 대역폭 중 적어도 하나가 서로 다른 것을 특징으로 한다.
바람직하게는, 상기 랜덤 액세스 프리앰블이 상기 기본 서브밴드를 통하여 송신되는 경우, 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 지시하는 정보를 상기 랜덤 액세스 프리앰블과 함께 송신하는 것을 특징으로 한다.
또는, 상기 랜덤 액세스 프리앰블이 상기 기본 서브밴드를 통하여 송신되는 경우, 상기 랜덤 액세스 프리앰블은 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 지시하는 정보를 포함할 수도 있다.
또는, 상기 랜덤 액세스 프리앰블이 상기 특정 확장 서브밴드를 통하여 송신되는 경우, 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 선택될 수 있다. 이 경우, 상기 특정 확장 서브밴드는, 상기 상향링크 신호와 상기 하향링크 신호의 특성에 기반하여 선택되는 것을 특징으로 한다.
추가적으로, 상기 기본 서브밴드를 통하여 동기 신호를 수신할 수 있고, 상기 동기 신호에 기반하여 상기 기지국과의 동기를 획득할 수 있다.
본 발명의 실시예에 따르면 단말은 가변적 서브밴드 구성을 통하여 보다 효율적으로 신호를 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7는 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
도 8은 본 발명의 제 1 실시예에 따라 가변적 서브밴드 구성을 적용한 예이다.
도 9는 본 발명의 제 3 실시예의 방법 1에 따라 TDD 시스템의 PRACH 영역이 구성된 예를 도시한다.
도 10은 본 발명의 제 3 실시예의 방법 2에 따라 TDD 시스템의 PRACH 영역이 구성된 예를 도시한다.
도 11은 본 발명의 제 3 실시예의 방법 1에 따라 FDD 시스템의 PRACH 영역이 구성된 예를 도시한다.
도 12는 본 발명의 제 3 실시예의 방법 2에 따라 FDD 시스템의 PRACH 영역이 구성된 예를 도시한다.
도 13은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 랜덤 액세스 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 랜덤 액세스 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송 형식 정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하에서는 반송파 집성(carrier aggregation) 기법에 관하여 설명한다. 도 7는 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
반송파 집성은 무선 통신 시스템이 보다 넓은 주파수 대역을 사용하기 위하여, 단말이 상향링크 자원(또는 콤포넌트 반송파) 및/또는 하향링크 자원(또는 콤포넌트 반송파)으로 구성된 주파수 블록 또는 (논리적 의미의) 셀을 복수 개 사용하여 하나의 커다란 논리 주파수 대역으로 사용하는 방법을 의미한다. 이하에서는 설명의 편의를 위하여 콤포넌트 반송파라는 용어로 통일하도록 한다.
도 7를 참조하면, 전체 시스템 대역(System Bandwidth; System BW)은 논리 대역으로서 최대 100 MHz의 대역폭을 가진다. 전체 시스템 대역은 다섯 개의 콤포넌트 반송파를 포함하고, 각각의 콤포넌트 반송파는 최대 20 MHz의 대역폭을 가진다. 콤포넌트 반송파는 물리적으로 연속된 하나 이상의 연속된 부반송파를 포함한다. 도 7에서는 각각의 콤포넌트 반송파가 모두 동일한 대역폭을 가지는 것으로 도시하였으나, 이는 예시일 뿐이며 각각의 콤포넌트 반송파는 서로 다른 대역폭을 가질 수 있다. 또한, 각각의 콤포넌트 반송파는 주파수 영역에서 서로 인접하고 있는 것으로 도시되었으나, 상기 도면은 논리적인 개념에서 도시한 것으로서, 각각의 콤포넌트 반송파는 물리적으로 서로 인접할 수도 있고, 떨어져 있을 수도 있다.
중심 반송파(Center frequency)는 각각의 콤포넌트 반송파에 대해 서로 다르게 사용하거나 물리적으로 인접된 콤포넌트 반송파에 대해 공통된 하나의 중심 반송파를 사용할 수도 있다. 일 예로, 도 7에서 모든 콤포넌트 반송파가 물리적으로 인접하고 있다고 가정하면 중심 반송파 A를 사용할 수 있다. 또한, 각각의 콤포넌트 반송파가 물리적으로 인접하고 있지 않은 경우를 가정하면 각각의 콤포넌트 반송파에 대해서 별도로 중심 반송파 A, 중심 반송파 B 등을 사용할 수 있다.
본 명세서에서 콤포넌트 반송파는 레거시 시스템의 시스템 대역에 해당될 수 있다. 콤포넌트 반송파를 레거시 시스템을 기준으로 정의함으로써 진화된 단말과 레거시 단말이 공존하는 무선 통신 환경에서 역지원성(backward compatibility)의 제공 및 시스템 설계가 용이해질 수 있다. 일 예로, LTE-A 시스템이 반송파 집성을 지원하는 경우에 각각의 콤포넌트 반송파는 LTE 시스템의 시스템 대역에 해당될 수 있다. 이 경우, 콤포넌트 반송파는 1.25, 2.5, 5, 10 또는 20 Mhz 대역폭 중에서 어느 하나를 가질 수 있다.
반송파 집성으로 전체 시스템 대역을 확장한 경우에 각 단말과의 통신에 사용되는 주파수 대역은 콤포넌트 반송파 단위로 정의된다. 단말 A는 전체 시스템 대역인 100 MHz를 사용할 수 있고 다섯 개의 콤포넌트 반송파를 모두 사용하여 통신을 수행한다. 단말 B1~B5는 20 MHz 대역폭만을 사용할 수 있고 하나의 콤포넌트 반송파를 사용하여 통신을 수행한다. 단말 C1 및 C2는 40 MHz 대역폭을 사용할 수 있고 각각 두 개의 콤포넌트 반송파를 이용하여 통신을 수행한다. 상기 두 개의 콤포넌트 반송파는 논리/물리적으로 인접하거나 인접하지 않을 수 있다. 단말 C1은 인접하지 않은 두 개의 콤포넌트 반송파를 사용하는 경우를 나타내고, 단말 C2는 인접한 두 개의 콤포넌트 반송파를 사용하는 경우를 나타낸다.
LTE 시스템의 경우 1개의 하향링크 콤포넌트 반송파와 1개의 상향링크 콤포넌트 반송파를 사용하는 반면, LTE-A 시스템의 경우 도 8과 같이 여러 개의 콤포넌트 반송파들이 사용될 수 있다. 하향링크 콤포넌트 반송파 또는 해당 하향링크 콤포넌트 반송파와 이에 대응하는 상향링크 콤포넌트 반송파의 조합을 셀 (Cell)이라고 지칭할 수 있고, 하향링크 콤포넌트 반송파 와 상향링크 콤포넌트 반송파의 대응 관계는 시스템 정보를 통하여 지시될 수 있다.
이때 제어 채널이 데이터 채널을 스케줄링하는 방식은 기존의 링크 반송파 스케줄링 (Linked carrier scheduling) 방식과 크로스 반송파 스케줄링 (Cross carrier scheduling) 방식으로 구분될 수 있다.
보다 구체적으로, 링크 반송파 스케줄링은 단일 콤포넌트 반송파를 사용하는 기존 LTE 시스템과 같이 특정 콤포넌트 반송파를 통하여 전송되는 제어 채널은 상기 특정 콤포넌트 반송파를 통하여 데이터 채널만을 스케줄링 한다. 즉, 특정 콤포넌트 반송파 (또는 특정 셀)의 하향링크 콤포넌트 반송파의 PDCCH 영역으로 전송되는 하향링크 그랜트/상향링크 그랜트는 해당 하향링크 콤포넌트 반송파가 속한 셀의 PDSCH/PUSCH에 대하여만 스케줄링이 가능하다. 즉, 하향링크 그랜트/상향링크 그랜트를 검출 시도하는 영역인 검색 영역(Search Space)은 스케줄링 되는 대상인 PDSCH/PUSCH가 위치하는 셀의 PDCCH영역에 존재한다.
한편, 크로스 반송파 스케줄링은 반송파 지시자 필드(Carrier Indicator Field; CIF)를 이용하여 주 콤포넌트 반송파(Primary CC)를 통하여 전송되는 제어 채널이 상기 주 콤포넌트 반송파를 통하여 전송되는 혹은 다른 콤포넌트 반송파를 통하여 전송되는 데이터 채널을 스케줄링 한다. 다시 말해, 크로스 반송파 스케줄링의 모니터링되는 셀(Monitored Cell 또는 Monitored CC)이 설정되고, 모니터링되는 셀의 PDCCH영역에서 전송되는 하향링크 그랜트/상향링크 그랜트는 해당 셀에서 스케줄링 받도록 설정된 셀의 PDSCH/PUSCH를 스케줄링한다. 즉, 복수의 콤포넌트 반송파에 대한 검색 영역이 모니터링되는 셀의 PDCCH영역에 존재하게 된다. 상기 복수의 셀들 중 시스템 정보가 전송되거나 초기 접속(Initial Access) 시도, 상향링크 제어 정보의 전송을 의하여 상기 PCell이 설정되는 것이며, PCell은 하향링크 주 콤포넌트 반송파와 이에 대응되는 상향링크 주 콤포넌트 반송파로 구성된다.
현재 셀룰러 시스템은 4세대 (4G)를 거쳐 5세대 (5G)로 진화하고 있다. 5세대 통신의 활용에 있어서 기존의 스마트폰 기반 모바일 광대역 (mobile broadband) 서비스에 대한 진화(enhanced mobile broadband: eMBB) 뿐만 아니라, 헬스케어, 재난 안전, 차량 통신, 공장 제어, 로봇 제어 등과 같은 다양한 IoT (internet of things) 응용 서비스를 지원하기 위한 요구사항이 정의되고 있다. IoT응용 서비스 지원에 있어 기존에 중시되던 데이터 속도보다도 얼마나 짧은 시간 안에 얼마나 신뢰도가 높은 데이터를 전송할 것인지가 더욱 중요해지고 있다. 이러한 유형의 서비스를 3GPP에서는 URLLC(ultra-reliable low latency communication)으로 명명하였다. 또한, 센서와 같이 특정 지역에 다수의 단말이 밀집하여 존재하는 환경에서의 통신 서비스를 mMTC (massive machine-type communication)으로 분류하였다. 또한 차량 통신 (V2X: vehicle to everything) 역시 차별화된 서비스로 고려되고 있다.
5G 무선 인터페이스 (air interface)는 다양한 서비스를 지원해야 하는 만큼 다양한 설계 방식을 고려하고 있다. 특히, 물리계층 설계 관점에서는 케이스 별로 서로 다른 파형 (waveform), 다중 접속 기법 (multiple access scheme), numerology (예를 들어, 부반송파 간격 (sub-carrier spacing), TTI (transmit time interval), 대역폭 (bandwidth) 서브프레임 길이 (subframe duration) 등) 기반으로 서로 다른 신호/채널 설계 방식이 적용될 수 있다. 다양한 케이스 별로 독립적인 설계 방식을 적용하기 위해, 각 케이스에 해당하는 시간/주파수 자원 (time/frequency resource)를 구분해서 설정하는 방식이 유력하게 고려되고 있다.
구체적으로, 특정 하향링크 콤포넌트 반송파(CC) 내에 서로 다른 물리 계층 설계 방식(numerology, 파형, 다중 접속 기법 등)을 갖는 N1개의 서브 밴드가 정의되며, 상향링크 콤포넌트 반송파 내에 서로 다른 물리계층 설계 방식을 갖는 N2개의 서브 밴드가 정의된다. 각각의 서브밴드는 서로 다른 요구 사항 (예를 들어, 레이턴시 (latency), 스펙트럼 효율 (spectral efficiency), UE 배터리 효율 (battery efficiency), 커버리지 (coverage) 등)을 만족시키기 위해 최적화된 설계 방식을 지향하여 서로 다른 물리계층 설계 방식을 적용한다. 케이스 별로 상향링크와 하향링크 서브밴드 각각 페어링 (pairing) 관계로 맵핑된다는 관점에서 N1=N2로 가정하고 설계할 수도 있다.
또한, TDD 시스템의 경우나 FDD 시스템임에도 불구하고 상향링크 콤포넌트 반송파와 하향링크 콤포넌트 반송파간 일대일로 짝 관계가 이루어지는 경우, 상향링크와 하향링크에서 개별 서브밴드의 주파수 자원 영역 비율 및 일부 numerology (예를 들어, 부반송파 간격, TTI, 서브프레임 길이 등)은 동일하게 가정할 수도 있다.
상술한 프레임 구조 상에서 단말은 서비스 특성에 맞는 서브밴드에서 통신을 수행하여야 하며, 가장 간단한 방법은 기지국 접속 시부터 해당 서브밴드에서 통신을 수행하면 된다. 그러나 기지국에서 특정 서브밴드를 항상 특정 서비스를 위해 고정적으로 할당하는 방식은 주파수 자원 사용의 효율 측면에서 바람직하지 않으므로, 본 발명에서는 서브밴드 구성을 트래픽이나 서비스 요구사항 등 여러 상황에 맞추어 가변적으로 설정하기 위한 방안을 제안한다. 또한 본 발명에서는 가변적인 서브밴드 설정을 위한 물리계층 프레임, 신호, 채널 구성 및 단말의 임의 접속 기법을 제안한다.
<제 1 실시예>
본 발명의 제 1 실시예에서는, 하향링크 콤포넌트 반송파와 상향링크 콤포넌트 반송파의 제 1 서브밴드는 아래 특징을 갖는 것을 제안한다.
1) 해당 콤포넌트 반송파가 속한 주파수 영역에 대해 정의된 기본 (base) 파형, 기본 다중 접속 기법 및 기본 numerology를 적용한다. 여기서 기본 numerology는 적어도 부반송파 간격 및 TTI (Transmission Time Interval)를 포함한다. 특히, TTI의 경우, 현재 LTE 시스템의 스케줄링 단위 시간인 서브프레임일 수 있고, 슬롯 또는 미니 슬롯으로 대체될 수도 있다. 여기서 미니 슬롯이란 로우 레이턴시 (low latency)을 위하여 단축된 길이의 슬롯으로서 최근 표준화 회의를 통하여 제안되었다.
2) 하향링크 제 1 서브밴드는 해당 콤포넌트 반송파의 미리 정의된 주파수 자원 영역을 포함하여 존재하며, 상기 미리 정의된 주파수 자원 영역에서 특정 주기로 동기 신호 및 브로드캐스트 채널 및/또는 공통 제어 채널을 전송한다. 상기 미리 정의된 주파수 자원 영역은 중심 주파수 중심으로 상하로 위치한 수~수십 RB (resource block)일 수 있다.
브로드캐스트 및/또는 공통 제어 채널을 통해서 시스템 정보가 셀 내에 방송 (broadcast)하며, 시스템 정보에는 하향링크에 대한 제 1 서브밴드부터 제 N1 서브밴드까지의 주파수 영역 정보 및 상향링크에 대한 제 1 서브밴드부터 제 N2 서브밴드까지의 주파수 영역 정보가 포함되는 특징을 갖는다. 본 정보는 상향링크와 하향링크에 대해 공통 정보일 수 있다.
특징적으로, 상기 서브밴드 정보를 전달함에 있어, 사용 가능한 서브밴드와 사용 불가능한 서브밴드로 구분하여 단말 특정하게 시그널링할 수도 있다. 또한, 이를 시간 영역까지 확장하여, 사용 가능한 시간/주파수 자원과 사용 불가능한 시간/주파수 자원으로 구분하여 단말 특정하게 시그널링할 수 있다
추가적으로 상기 주파수 영역 정보 정보는 시간 영역별로 다르게 설정될 수 있다. 예를 들어, 특정 서브밴드는 특정 주기 T 로 일정 기간 P 동안만 존재하도록 정의할 수 있다. 보다 구체적인 예로, 시간 영역에 대한 조건이 nT<t≤P+nT (단, n은 0보다 큰 정수)인 경우 N1은 3이고, 나머지 시간 영역에서는 N1이 2로 정의될 수 있다. 이와 같이, 특정 시간 영역에서만 존재하는 서브밴드는 센서와 같은 일부 mMTC서비스에서 하루 중 정해진 시간대에만 통신이 이루어지는 서비스인 경우 유용할 수 있다. 또한, 특정 서브밴드가 존재하는 시간 영역과 존재하지 않는 시간 영역에서의 콤포넌트 반송파 내 각 서브밴드의 주파수 영역은 달라질 수 있으며, 이러한 내용은 정해진 규칙에 의해 정의되거나, 별도의 정보로서 설정될 수 있다.
상기 시스템 정보에는 하향링크에 대한 제 2 서브밴드부터 제 N1 서브밴드 및 상향링크에 대한 제 2 서브밴드부터 제 N2 서브밴드의 파형, 다중 접속 기법 및 numerology관련 정보 중 적어도 하나가 포함될 수 있다. 본 정보는 상향링크와 하향링크에 대해 공통 정보일 수 있다. 추가로 해당 정보가 유효한 시간 영역 정보가 포함될 수 있다.
구체적인 예로, 제 2 서브밴드의 부반송파 간격 정보와 TTI 정보가 포함되며, 해당 정보는 특정 서브프레임 인덱스 또는 특정 프레임 인덱스에서만 유효함을 지시할 수 있다. 해당 정보가 유효하지 않은 서브프레임 또는 프레임에 대해서는 해당 서브밴드에 대해 기본 numerology에 포함된 부반송파 간격 및 TTI를 적용하도록 정의한다.
도 8은 본 발명의 제 1 실시예에 따라 가변적 서브밴드 구성을 적용한 예이다.
도 8을 참고하면, 제 2 서브밴드는 프레임 인덱스 #0 내지 프레임 인덱스 #7에서만 유효하도록 설정된 것을 알 수 있다. 추가적으로, 프레임 인덱스 #8 내지 프레임 인덱스 #10에서 서브밴드 2의 기본 세트 (base set)는 서브밴드 1의 기본 세트와 속성이 동일하다는 것을 의미할 수 있다.
또한, 상기 시스템 정보에는 연속적으로 위치한 서브밴드 간의 주파수 간섭을 해소하기 위한 간극 (gap) 정보가 포함될 수 있고, 이는 서브밴드간 다를 수 있다. 또한, 상기 시스템 정보에는 단말이 랜덤 액세스 요청을 수행하기 위한 물리 채널인 PRACH 영역에 대한 설정 정보가 포함되며, PRACH 영역 설정은 ①제 1 서브밴드에 대해서만 설정하거나, ②각각의 서브밴드에 대해 설정할 수 있다. 상기 두 경우에 대해서는 후술한다.
또한, 셀 내에 복수의 섹터 혹은 복수의 빔 영역이 정의되는 경우, 단말이 데이터 전송에 사용할 섹터 혹은 빔 영역을 결정하기 위한 스캐닝 신호를 하향링크 제 1 서브밴드에서 전송한다.
3) 또한, 하향링크 콤포넌트 반송파에 대한 제 2 서브밴드부터 제 N1 서브밴드 및 상향링크 콤포넌트 반송파에 대한 제 2 서브밴드부터 제 N2 서브밴드는, 제1 서브밴드에서 전송되는 시스템 정보를 통해 설정된 파형, 다중 접속 기법 및 numerology를 적용한다. 여기서 기본 numerology는 적어도 부반송파 간격 및 TTI를 포함한다.
<제 2 실시예>
본 발명의 제 2 실시예에서는, 단말이 하향링크 콤포넌트 반송파의 미리 정의된 자원 영역에 기본 파형 및 기본 부반송파 간격으로 전송된 하향링크 동기 신호와 브로드캐스트 채널 (및/또는 공통 제어 채널)로부터 하향링크 시간/주파수 동기 및 시스템 정보를 획득하며, 이를 통해 서브밴드 구성 정보를 획득하는 것을 제안한다. 상기 미리 정의된 주파수 자원 영역은 중심 주파수 중심으로 상하로 위치한 수~수십 RB(resource block)일 수 있다.
구체적으로, 시스템 정보로부터 해당 하향링크/상향링크 콤포넌트 반송파의 제 1 서브밴드부터 제 N1/N2서브밴드의 주파수 영역 정보를 획득한다. 이 경우, 특정 서브밴드에 대한 시간 영역 정보를 획득할 수 있다. 특히, 특정 서브밴드가 존재하는 시간 영역과 존재하지 않는 시간 영역에 대하여, 콤포넌트 반송파 내 각 서브밴드의 주파수 영역은 달라질 수 있으며, 이러한 내용은 정해진 규칙에 의해 정의되거나, 별도의 정보로서 설정 받을 수 있다.
또한, 시스템 정보로부터 하향링크/상향링크 콤포넌트 반송파의 제 2 서브밴드부터 제 N1/N2 서브밴드의 파형, 다중 접속 기법, 및 numerology 관련 정보 중 적어도 하나를 획득한다. 추가로 해당 정보가 유효한 시간 영역 정보를 획득할 수 있다. 또한, 시스템 정보로부터 연속적으로 위치한 서브밴드 간의 간극 정보를 획득할 수 있다.
추가적으로, 단말은 하향링크 제 2 서브밴드부터 제 N1 서브밴드에 대한 시간/주파수 동기를 제 1 서브밴드로부터 획득한 시간/주파수 동기값으로부터 획득한다.
만약, 해당 셀 내에 복수의 섹터 혹은 복수의 빔 영역이 정의되는 경우, 단말은 하향링크 제 1 서브밴드에서 전송되는 신호를 통해 선호하는 섹터 혹은 빔 영역을 결정하고, 해당 정보를 기지국에 피드백한다.
<제 3 실시예>
본 발명의 제 3 실시예에서는, 기지국으로부터 시스템 정보를 획득하고 기지국 접속, 상향링크 동기화, 혹은 SR (scheduling request) 등을 위해 랜덤 액세스 절차를 수행하고자 하는 단말은 다음 방법 1 및 방법 2 중 하나의 과정을 따르는 것을 제안한다.
방법 1.
단말은 상향링크 콤포넌트 반송파의 제 1 서브밴드에 정의된 PRACH 영역을 통해 프리앰블을 전송하되, (원하는 서비스 특성에 따라) 기지국으로부터 랜덤 액세스 응답을 수신하고자 하는 선호 서브밴드 정보 (예를 들어, 서브밴드 인덱스)를 함께 전달한다. 선호 서브밴드 정보는 개별 필드 형태로 명시적으로 기지국에 전달되거나, 프리앰블의 시간/주파수 자원 위치 및/또는 시퀀스 그룹 정보에 의해 암묵적으로 전달될 수 있다. 방법 1 적용 시 PRACH 전송 시까지는 기본 TTI로 동작이 수행되고, 그 이후에는 선호 서브밴드에 설정된 TTI로 동작이 수행될 수 있다.
방법 2.
단말은 (원하는 서비스 특성에 따라) 상향링크 서브밴드를 선택하여 해당 서브밴드에서 정의된 PRACH 영역을 통해 프리앰블을 전송한다. 방법 2 적용 시 PRACH 전송 시점부터 선호 서브밴드에 설정된 TTI로 동작이 수행될 수 있다.
상기 방법 1 및 방법 2에 관하여 도면을 참고하여 구체적으로 설명한다.
도 9는 본 발명의 제 3 실시예의 방법 1에 따라 TDD 시스템의 PRACH 영역이 구성된 예를 도시한다. 특히, 도 9는 PRACH 영역이 상향링크 제 1 서브밴드에만 위치하는 경우를 가정한다.
도 9를 참조하면, 하나의 콤포넌트 반송파가 세 개의 서브밴드 (예를 들어, 서브밴드 1 내지 서브밴드 3)로 나뉘고, 서브밴드 2이 가장 작은 TTI (또는 가장 작은 서브프레임 길이)를 갖는다. 만약 특정 단말이 URLLC 서비스를 받고자 하면, 서브밴드 1에서 하향링크 동기 및 시스템 정보를 획득한 후, 서브밴드 1의 PRACH를 통해 프리앰블을 전송한다. 이 때 상술한 바와 같이 명시적으로 혹은 암묵적으로 선호 서브밴드 정보 (즉, 서브밴드 2)를 기지국에 함께 전달한다.
기지국은 이러한 랜덤 액세스 요청에 대한 응답 메시지를 단말이 선호하는 하향링크 서브밴드 2을 통해 전달하며 후속하는 상향링크 및 하향링크 전송은 선호 서브밴드인 서브밴드 2을 통해 수행하여 서브밴드 1에 비하여 단축된(shorter) TTI (또는 단축된 서브프레임 길이)에 기반한 동작을 수행한다.
도 10은 본 발명의 제 3 실시예의 방법 2에 따라 TDD 시스템의 PRACH 영역이 구성된 예를 도시한다. 특히. 도 10은 PRACH 영역이 상향링크 모든 서브밴드에 위치하는 경우를 가정한다.
도 10을 참고하면, 하나의 콤포넌트 반송파가 세 개의 서브밴드 (예를 들어, 서브밴드 1 내지 서브밴드 3)로 나뉘고, 서브밴드 2이 가장 작은 TTI (또는 가장 작은 서브프레임 길이)를 갖는다. 만약 특정 단말이 URLLC 서비스를 받고자 하면 서브밴드 1에서 하향링크 동기 및 시스템 정보를 획득 후 자신이 선호하는 서브밴드 2에서 설정된 PRACH를 통해 프리앰블을 전송한다.
기지국은 이러한 랜덤 액세스 요청에 대한 응답 메시지를 단말이 선호하는 서브밴드 2을 통해 전달하고, 후속하는 상향링크 및 하향링크 전송은 서브밴드 2을 통해 수행한다. 따라서, 서브밴드 1에 비하여 단축된 TTI (또는 단축된 서브프레임 길이)에 기반한 동작을 수행한다.
도 11은 본 발명의 제 3 실시예의 방법 1에 따라 FDD 시스템의 PRACH 영역이 구성된 예를 도시한다. 특히, 도 11의 동작은 상향링크 콤포넌트 반송파에서의 제 1 서브밴드에서 PRACH를 전송하는 것을 제외하고는 도 9의 경우와 동일하다.
도 12는 본 발명의 제 3 실시예의 방법 2에 따라 FDD 시스템의 PRACH 영역이 구성된 예를 도시한다. 특히, 도 12의 동작은 상향링크 콤포넌트 반송파의 선호 서브밴드 (즉, 서브밴드 2)에서 PRACH를 전송하는 것을 제외하고는 도 10의 경우와 동일하다.
상기 예시들에서 랜덤 액세스 응답 메시지에는 상향링크 동기를 맞추기 위한 TA (timing advance) 값이 포함될 수 있다. 상기 TA 값은 모든 상향링크 서브밴드에 공통으로 적용될 수 있다.
추가적으로, 본 발명에서의 시스템 정보는 LTE 시스템에서의 MIB (Master Information Block), SIB (System Information Block)만을 의미하는 것은 아니며, 임의의 상위 계층 메시지로서 정의될 수 있다.
도 13은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 13를 참조하면, 통신 장치(1300)는 프로세서(1310), 메모리(1320), RF 모듈(1330), 디스플레이 모듈(1340) 및 사용자 인터페이스 모듈(1350)을 포함한다.
통신 장치(1300)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1300)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1300)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1310)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1310)의 자세한 동작은 도 1 내지 도 12에 기재된 내용을 참조할 수 있다.
메모리(1320)는 프로세서(1310)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1330)은 프로세서(1310)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1330)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1340)은 프로세서(1310)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1340)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1350)은 프로세서(1310)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital 신호 processors), DSPDs(digital 신호 processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (12)
- 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법에 있어서,기본 서브밴드를 통하여 상기 기지국으로부터 하나 이상의 확장 서브밴드들에 관한 정보를 수신하는 단계;상기 기본 서브밴드 또는 하나 이상의 확장 서브밴드들 중 특정 확장 서브밴드를 통하여 상기 기지국으로 랜덤 액세스 프리앰블을 송신하는 단계;상기 특정 확장 서브밴드를 통하여 상기 기지국으로부터 상기 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답을 수신하는 단계; 및상기 특정 확장 서브밴드를 통하여 상향링크 신호의 송신 및 하향링크 신호의 수신을 수행하는 단계를 포함하고,상기 기본 서브밴드 및 상기 하나 이상의 확장 서브밴드들은,부반송파 간격, 스케줄링 단위 시간 및 대역폭 중 적어도 하나가 서로 다른 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 랜덤 액세스 프리앰블이 상기 기본 서브밴드를 통하여 송신되는 경우, 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 지시하는 정보를 상기 랜덤 액세스 프리앰블과 함께 송신하는 단계를 더 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 랜덤 액세스 프리앰블이 상기 기본 서브밴드를 통하여 송신되는 경우, 상기 랜덤 액세스 프리앰블은 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 지시하는 정보를 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 랜덤 액세스 프리앰블이 상기 특정 확장 서브밴드를 통하여 송신되는 경우, 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 선택하는 단계를 더 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 4 항에 있어서,상기 특정 확장 서브밴드는,상기 상향링크 신호와 상기 하향링크 신호의 특성에 기반하여 선택되는 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 기본 서브밴드를 통하여 동기 신호를 수신하는 단계; 및상기 동기 신호에 기반하여 상기 기지국과의 동기를 획득하는 단계를 더 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 무선 통신 시스템에서의 단말로서,무선 통신 모듈; 및기본 서브밴드를 통하여 기지국으로부터 하나 이상의 확장 서브밴드들에 관한 정보를 수신하고, 상기 기본 서브밴드 또는 하나 이상의 확장 서브밴드들 중 특정 확장 서브밴드를 통하여 상기 기지국으로 랜덤 액세스 프리앰블을 송신하며, 상기 특정 확장 서브밴드를 통하여 상기 기지국으로부터 상기 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답을 수신한 후 상기 특정 확장 서브밴드를 통하여 상향링크 신호의 송신 및 하향링크 신호의 수신을 수행하는 프로세서를 포함하고,상기 기본 서브밴드 및 상기 하나 이상의 확장 서브밴드들은,부반송파 간격, 스케줄링 단위 시간 및 대역폭 중 적어도 하나가 서로 다른 것을 특징으로 하는,단말.
- 제 7 항에 있어서,상기 프로세서는,상기 랜덤 액세스 프리앰블이 상기 기본 서브밴드를 통하여 송신되는 경우, 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 지시하는 정보를 상기 랜덤 액세스 프리앰블과 함께 송신하는 것을 특징으로 하는,단말.
- 제 7 항에 있어서,상기 랜덤 액세스 프리앰블이 상기 기본 서브밴드를 통하여 송신되는 경우, 상기 랜덤 액세스 프리앰블은 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 지시하는 정보를 포함하는 것을 특징으로 하는,단말.
- 제 7 항에 있어서,상기 프로세서는,상기 랜덤 액세스 프리앰블이 상기 특정 확장 서브밴드를 통하여 송신되는 경우, 상기 하나 이상의 확장 서브밴드들 중 상기 특정 확장 서브밴드를 선택하는 것을 특징으로 하는,단말.
- 제 10 항에 있어서,상기 특정 확장 서브밴드는,상기 상향링크 신호와 상기 하향링크 신호의 특성에 기반하여 선택되는 것을 특징으로 하는,단말.
- 제 7 항에 있어서,상기 프로세서는,상기 기본 서브밴드를 통하여 수신한 동기 신호에 기반하여 상기 기지국과의 동기를 획득하는 것을 특징으로 하는,단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/093,878 US11076433B2 (en) | 2016-04-14 | 2016-11-16 | Dynamic subband-based signal transceiving method and apparatus therefor in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662322768P | 2016-04-14 | 2016-04-14 | |
US62/322,768 | 2016-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179784A1 true WO2017179784A1 (ko) | 2017-10-19 |
Family
ID=60042671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/013184 WO2017179784A1 (ko) | 2016-04-14 | 2016-11-16 | 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11076433B2 (ko) |
WO (1) | WO2017179784A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109699087A (zh) * | 2017-10-20 | 2019-04-30 | 维沃移动通信有限公司 | 随机接入的方法、设备及终端 |
WO2019157731A1 (zh) * | 2018-02-14 | 2019-08-22 | 华为技术有限公司 | 一种随机接入方法及其装置 |
WO2022031802A1 (en) * | 2020-08-05 | 2022-02-10 | Google Llc | Availability checks for alternative radio access technologies or resources |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112018075324B1 (pt) * | 2016-06-08 | 2022-11-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Métodos em um nó de rede e em um equipamento de usuário, nó de rede, e, equipamento de usuário |
CN111935814B (zh) * | 2016-07-18 | 2021-11-16 | 中兴通讯股份有限公司 | 同步信号的发送、接收方法及装置、传输系统 |
CN109891772B (zh) | 2016-11-03 | 2022-10-04 | 康维达无线有限责任公司 | Nr中的帧结构 |
EP3542502B1 (en) * | 2016-11-17 | 2021-04-14 | Telefonaktiebolaget LM Ericsson (PUBL) | Numerology-dependent downlink control channel mapping |
US20180160405A1 (en) * | 2016-12-02 | 2018-06-07 | Qualcomm Incorporated | Rate matching and signaling |
EP3337244A1 (en) * | 2016-12-19 | 2018-06-20 | Gemalto M2M GmbH | Method for data transmission in a cellular network with reconfigurable radio frame structure settings |
EP3563600B1 (en) * | 2017-01-20 | 2021-03-10 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Separate configuration of numerology-associated resources |
CN110612760B (zh) * | 2017-05-02 | 2023-12-05 | 株式会社Ntt都科摩 | 基站装置 |
US11792840B2 (en) * | 2018-07-24 | 2023-10-17 | Koninklijke Kpn N.V. | Reliable low latency communication over shared resources |
US11627608B2 (en) * | 2019-12-31 | 2023-04-11 | Qualcomm Incorporated | Indicating system timing information in high band communications |
US20230396399A1 (en) * | 2020-10-28 | 2023-12-07 | Beijing Xiaomi Mobile Software Co., Ltd. | Information transmission method, communication device and storage medium |
EP4344505A4 (en) * | 2022-02-25 | 2024-08-28 | Zte Corp | FLEXIBLE SUBBAND CONFIGURATION AND METHOD AND DEVICE FOR USE |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013012213A2 (ko) * | 2011-07-15 | 2013-01-24 | 엘지전자 주식회사 | 가변 대역폭을 지원하는 통신 방법 및 무선기기 |
US20140098761A1 (en) * | 2012-10-05 | 2014-04-10 | Interdigital Patent Holdings, Inc. | Method and apparatus for enhancing coverage of machine type communication (mtc) devices |
WO2015005724A1 (ko) * | 2013-07-12 | 2015-01-15 | 엘지전자 주식회사 | 가변 대역폭을 지원하는 통신 방법 및 무선기기 |
US20150103761A1 (en) * | 2012-03-09 | 2015-04-16 | Alcatel Lucent | Method and apparatus for random access in a system wherein user equipment with different operating bandwidths coexist |
US20150245378A1 (en) * | 2011-09-23 | 2015-08-27 | Samsung Electronics Co., Ltd. | System access method and apparatus of a narrowband terminal in a wireless communication system supporting wideband and narrowband terminals |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100640461B1 (ko) * | 2003-07-30 | 2006-10-30 | 삼성전자주식회사 | 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 채널 할당 장치 및 방법 |
US8223872B1 (en) * | 2007-04-04 | 2012-07-17 | Marvell International Ltd. | Reuse of a matrix equalizer for the purpose of transmit beamforming in a wireless MIMO communication system |
WO2012058648A2 (en) * | 2010-10-29 | 2012-05-03 | Neocific, Inc. | Transmission of synchronization and control signals in a broadband wireless system |
-
2016
- 2016-11-16 WO PCT/KR2016/013184 patent/WO2017179784A1/ko active Application Filing
- 2016-11-16 US US16/093,878 patent/US11076433B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013012213A2 (ko) * | 2011-07-15 | 2013-01-24 | 엘지전자 주식회사 | 가변 대역폭을 지원하는 통신 방법 및 무선기기 |
US20150245378A1 (en) * | 2011-09-23 | 2015-08-27 | Samsung Electronics Co., Ltd. | System access method and apparatus of a narrowband terminal in a wireless communication system supporting wideband and narrowband terminals |
US20150103761A1 (en) * | 2012-03-09 | 2015-04-16 | Alcatel Lucent | Method and apparatus for random access in a system wherein user equipment with different operating bandwidths coexist |
US20140098761A1 (en) * | 2012-10-05 | 2014-04-10 | Interdigital Patent Holdings, Inc. | Method and apparatus for enhancing coverage of machine type communication (mtc) devices |
WO2015005724A1 (ko) * | 2013-07-12 | 2015-01-15 | 엘지전자 주식회사 | 가변 대역폭을 지원하는 통신 방법 및 무선기기 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109699087A (zh) * | 2017-10-20 | 2019-04-30 | 维沃移动通信有限公司 | 随机接入的方法、设备及终端 |
EP3700281A4 (en) * | 2017-10-20 | 2020-10-28 | Vivo Mobile Communication Co., Ltd. | RANDOM ACCESS PROCESS AND DEVICE, AND TERMINAL |
CN109699087B (zh) * | 2017-10-20 | 2021-06-18 | 维沃移动通信有限公司 | 随机接入的方法、设备及终端 |
US11343855B2 (en) | 2017-10-20 | 2022-05-24 | Vivo Mobile Communication Co., Ltd. | Method and device for random access and terminal |
WO2019157731A1 (zh) * | 2018-02-14 | 2019-08-22 | 华为技术有限公司 | 一种随机接入方法及其装置 |
WO2022031802A1 (en) * | 2020-08-05 | 2022-02-10 | Google Llc | Availability checks for alternative radio access technologies or resources |
Also Published As
Publication number | Publication date |
---|---|
US11076433B2 (en) | 2021-07-27 |
US20190090284A1 (en) | 2019-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017179784A1 (ko) | 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치 | |
WO2010117225A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2018080184A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 센싱 방법 및 이를 위한 장치 | |
US9295047B2 (en) | Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same | |
WO2010126259A2 (ko) | 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2010117239A2 (ko) | 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2011083983A2 (ko) | 반송파 집성을 지원하는 무선 통신 시스템에서 하향링크 신호 수신 방법 및 이를 위한 장치 | |
WO2017155324A1 (ko) | 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치 | |
WO2016003229A1 (ko) | 무선 통신 시스템에서 비면허 대역을 통한 신호 송수신 방법 및 이를 위한 장치 | |
WO2012169756A2 (ko) | 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치 | |
WO2011025195A2 (ko) | 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치 | |
WO2012150772A2 (ko) | 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치 | |
WO2017171390A1 (ko) | 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치 | |
WO2018169342A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치 | |
WO2012150773A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2012144763A2 (ko) | 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치 | |
WO2017069559A1 (ko) | 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치 | |
WO2012150793A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2013095041A1 (ko) | 무선 통신 시스템에서 무선 자원 동적 변경에 기반한 신호 송수신 방법 및 이를 위한 장치 | |
KR20120109502A (ko) | 무선 통신 시스템에서 상향링크 신호 송신 방법 및 이를 위한 장치 | |
WO2017176088A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치 | |
WO2013024997A2 (ko) | 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치 | |
WO2016171457A1 (ko) | 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치 | |
WO2018164450A1 (ko) | 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치 | |
WO2013137582A1 (ko) | 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16898746 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16898746 Country of ref document: EP Kind code of ref document: A1 |