WO2017154679A1 - Method and device for separating solids from fluidized layer - Google Patents

Method and device for separating solids from fluidized layer Download PDF

Info

Publication number
WO2017154679A1
WO2017154679A1 PCT/JP2017/007884 JP2017007884W WO2017154679A1 WO 2017154679 A1 WO2017154679 A1 WO 2017154679A1 JP 2017007884 W JP2017007884 W JP 2017007884W WO 2017154679 A1 WO2017154679 A1 WO 2017154679A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
belt
fluidized
solid matter
diameter
Prior art date
Application number
PCT/JP2017/007884
Other languages
French (fr)
Japanese (ja)
Inventor
斉 井上
Original Assignee
特定非営利活動法人 Apex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特定非営利活動法人 Apex filed Critical 特定非営利活動法人 Apex
Priority to JP2018504399A priority Critical patent/JP6914539B2/en
Publication of WO2017154679A1 publication Critical patent/WO2017154679A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation

Definitions

  • the present invention relates to a method and apparatus for effectively separating solids from a fluidized bed.
  • the present invention provides a method and apparatus for separating solids present in a fluidized bed and having a particle size larger than that of a fluidized medium and having a smaller particle density.
  • a biomass fluidized-bed gasifier for example, in a biomass fluidized-bed gasifier, char produced as a by-product with gas is separated from the fluidized medium and extracted, and then reduced to produce renewable energy. It is possible to suppress the increase in carbon dioxide concentration in the atmosphere by carbon fixation and to achieve sustainable production of biomass.
  • the present invention can be applied to other uses that remove solids having a particle size larger than that of the fluid medium and a smaller particle density.
  • biomass energy in particular, is positioned as the top of natural energy because it has a large abundance and is relatively easy to convert to fuel.
  • Biomass energy utilization technologies include direct combustion, thermochemical conversion technology, and biochemical conversion technology, but direct combustion has limited efficiency, especially for small-scale processes. There is a problem that only limited biomass such as starch can be used as a raw material. On the other hand, according to thermochemical conversion, biomass including cellulosic compounds can be used as a whole, and high-efficiency energy can be used even on a small scale.
  • Patent Document 1 Japanese Patent No. 4259777. According to this technique, it is possible to efficiently gasify an organic material while suppressing tar formation under a relatively mild temperature condition of 400 ° C. to 750 ° C.
  • the inventor of the present invention uses, in such a technique, a material having a high heat transfer property such as a metal as a partition wall between the gasification reaction zone and the regeneration zone, so that radiation, conduction, and conduction from the regeneration zone to the gasification reaction zone can be achieved.
  • a material having a high heat transfer property such as a metal as a partition wall between the gasification reaction zone and the regeneration zone, so that radiation, conduction, and conduction from the regeneration zone to the gasification reaction zone can be achieved.
  • Patent Document 2 Japanese Patent No. 4549918.
  • the biomass into which clay is charged is surrounded.
  • the generated tar is adsorbed and decomposed, there is an advantage that unpulverized biomass can be input as it is.
  • the shear stress of the clay particles used as a catalyst in the present invention is small, a large char having a shape almost the same as that of the input biomass can be obtained.
  • the present invention is for solving the above-mentioned technical problem, and in particular, when the diameter of the substance constituting the fluidized medium is different from the diameter of the solid matter in the fluidized bed to be separated, the bubble fluidized bed And a method and apparatus for effectively separating and recovering the solid matter.
  • the solids recovery method separates relatively coarse solids present in the fluidized bed from the fluidized medium and continuously carries them out of the fluidized bed apparatus.
  • the gap is smaller than the diameter of the solid matter and larger than the diameter of the substance constituting the fluidized medium of the fluidized bed, and has a diameter that allows the fluidized medium to pass through and selectively capture the solid matter.
  • a part of the belt-like conveying means having a trapping zone having a large number of gaps is installed in the fluidized bed apparatus and continuously circulated so that the solid matter is continuously separated and carried out of the fluidized bed apparatus. It is characterized by that.
  • the trapping band refers to a strip-shaped mechanism that traps the solid matter, and can be provided integrally with the transport surface of the strip-shaped transport means.
  • the fluidized bed is a bubble fluidized bed.
  • the belt-like conveying means is a belt-like conveyor, and the belt-like conveying means moves horizontally near the upper end of the dense phase portion of the fluidized bed for a certain interval. .
  • the solid matter in the fluidized bed, is obtained by making a difference between the superficial velocity of the fluidized bed at the position where the belt-like conveying means is arranged and the superficial velocity of the other fluidized bed portions. Is preferably guided to the capture surface of the belt-like transport means.
  • the belt-like transport means may include a collector for separating and collecting the solid matter instead of the trapping zone.
  • the collector includes a plurality of blades, and the distance between the blades is smaller than the diameter of the solid material and larger than the diameter of the substance forming the fluidized medium of the fluidized bed. It is preferable that a plurality of the collectors are provided on the belt-like conveying means in such a manner that solids can be captured.
  • the solid matter induced in the vicinity of the fluidized bed at the position where the belt-like transport means is disposed is captured by the collector, and the trapped solid matter is caused by the circulation movement of the belt-like transport means and the collector. It is preferable that the fluidized bed is scraped up and then continuously separated and carried out of the fluidized bed apparatus.
  • the above method is introduced into a fluidized bed gasification process of biomass.
  • the solid matter to be separated usually consists of biomass-derived char.
  • an apparatus is an apparatus for separating a relatively coarse solid present in a fluidized bed from a fluidized medium and continuously carrying it out of the fluidized bed apparatus.
  • a belt-like conveying means having a trapping zone having a plurality of gaps smaller than the diameter of the substance forming the fluidized medium of the fluidized bed and having a diameter through which the fluidized medium passes and the solid matter is selectively captured
  • a power means for introducing a part of the belt-like transport means into the fluidized bed apparatus and continuously circulating it, and fluidizing the solid matter selectively captured by the belt-like transport means It is characterized by being continuously separated and carried out of the apparatus.
  • the fluidized bed is preferably a bubble fluidized bed.
  • the belt-like transport means comprises a belt-like conveyor, and the belt-like transport means moves horizontally near the upper end of the dense phase portion of the fluidized bed for a certain interval. It is preferable to be provided.
  • a chain conveyor can be used as an example of such a belt-shaped conveyor.
  • the apparatus according to the present invention further comprises an apparatus for making a difference between the superficial velocity of the fluidized bed at the position where the belt-like transport means is disposed and the superficial velocity of the other fluidized bed portions in the fluidized bed.
  • the solid material is guided to the capturing surface of the belt-like transport unit.
  • the belt-like transport means may include a collector for separating and collecting the solid matter instead of the trapping zone.
  • the collector includes a plurality of blades, and the distance between the blades is smaller than the diameter of the solid material and larger than the diameter of the substance forming the fluidized medium of the fluidized bed. It is preferable that a plurality of the collectors are provided on the belt-like conveying means in such a manner that solids can be captured.
  • the solid matter induced in the vicinity of the fluidized bed at the position where the belt-like conveying means is arranged is captured by the collector, and is scraped up from the fluidized bed with the circulation movement of the belt-like conveying means and the collector, Next, it is preferable to continuously separate and carry out the fluidized bed apparatus.
  • the solid matter recovery apparatus according to the present invention is introduced or incorporated into a fluidized bed gasification apparatus for biomass.
  • the solid matter to be separated by the apparatus according to the present invention is usually made of biomass-derived char.
  • the above-described solid material recovery technology according to the present invention can be suitably applied to, for example, biomass gasification technology already developed by the present inventors.
  • a gasification reaction zone in the presence of a gasifying agent under temperature rising conditions.
  • the organic material is converted into a useful gas for the production of gas / liquid fuel by fluid contact with a gasification accelerator composed of clay having a catalytic function and / or a heat medium function.
  • a gasification accelerator composed of clay having a catalytic function and / or a heat medium function.
  • Patent Document 2 Japanese Patent No. 45499178
  • a material having a high heat transfer property such as a metal is used as a partition wall between the gasification reaction zone and the regeneration zone, so that the regeneration zone is changed to the gasification reaction zone.
  • the heat transfer by radiation, conduction and convection is performed, the temperature of the regeneration zone can be reduced as compared with the case where there is no heat transfer, and the automatic temperature control function of the apparatus can be enhanced.
  • the solids recovery technology according to the present invention can be suitably applied to the biomass gasification technology described above, but is not limited thereto, and the biomass gas generated as a by-product of the solids to be separated is not limited thereto. It can be widely applied to the technology.
  • the white arrow indicates the flow of the fluid medium and the solid matter to be separated in the fluidized bed. It is a typical elevational view of the fluidized bed portion of the solid matter separation device according to the present invention. Open arrows indicate the flow of the fluidized medium in the fluidized bed, and solid arrows indicate the flow of the gasifying agent before being introduced into the fluidized bed. It is a typical side view of the whole solid substance separator by this invention. It is a typical top view of the solid substance separation device by another embodiment of the present invention. The white arrow indicates the flow of the fluid medium and the solid matter to be separated in the fluidized bed.
  • solids present in the bubble fluidized bed can be carried out of the fluidized bed while being separated from the fluidized medium.
  • a gas fluidization zone 3 and a regeneration zone 2 are provided, and a bubble fluidized bed is formed using a clay having a catalytic function and / or a heat medium function as a gasification accelerator between them.
  • a gas in which an organic substance containing biomass 6 is introduced into the gasification reaction zone 3 and gasified in the presence of a gasifying agent and a gasification accelerator, and adsorption by-products such as carbon are deposited on the surface.
  • the regeneration accelerator 2 is led to the regeneration zone 2, and the adsorption by-products attached to the gasification accelerator in the regeneration zone 2 are removed by combustion or by partial combustion and carbonaceous gasification reaction, and thus regenerated.
  • the biomass gasification apparatus 1 of the system in which the gasification accelerator in the heated state is recirculated to the gasification reaction zone 3 it is adjacent to the vicinity of the upper end of a part of the dense fluidized bed in the gasification reaction zone 3, Fluid medium
  • the belt-shaped conveyor 4 having a large number of gaps smaller than the diameter of the separation target char and smaller than the diameter of the separation target char and disposed horizontally, and solids transferred by the conveyor outside the fluidized bed
  • a separation device for the char 7 comprising a discharge device for discharging is installed.
  • the clay having the action of adsorbing and decomposing tar surrounds the biomass charged into the gasification reaction zone. Since the shear stress of clay is small, the char 7 produced from large-diameter biomass is also large-diameter. Therefore, the fluid medium and the char 7 can be separated by the difference in diameter by the conveyor 4 installed as described above.
  • the separated char 7 is moved horizontally to a position not accompanied by scattering of particles from the fluidized bed by the continuous movement of the conveyor 4, and then installed in the vertical direction.
  • the chute 12 drops and is discharged to the outside through a blocking mechanism with the outside such as the double damper 13.
  • the scattered particles can be returned to the original fluidized bed by providing buffer zones 10a and 10b in which the bottom plate is inclined toward the fluidized bed at a position near the fluidized bed where the particles are scattered.
  • the lower belt speed of the belt-like conveyor 4 is set lower than that of the adjacent fluidized bed 8 so that the belt-like conveyor as shown in FIG. 4 can generate a circulating flow that pushes solids present in the fluidized bed 8 adjacent to the belt 4 onto the trapping belt of the belt-like conveyor 4.
  • the probability that the solid matter is captured by the belt-like conveyor 4 is increased, and the solid matter can be more efficiently separated.
  • the bottom plate of the fluidized bed at the bottom of the belt-like conveyor 4 is adjacent to the belt-like conveying means 4 by inclining it deeper toward the adjacent fluidized bed 8. It is possible to make it easier to generate a circulating flow that pushes the solid matter (char 7) present in the fluidized bed 8 onto the trapping zone of the belt-like conveying means 4. By generating the circulating flow more effectively in this way, there is a high possibility that the solid material 7 will be guided on the trapping surface of the belt-like transport means 4, and the solid material can be more efficiently separated. .
  • the driving unit of the belt-like transport unit 4 can be disposed at a position isolated from the fluidized bed 8.
  • the drive unit is not easily affected by heat and moisture, the risk of failure can be reduced, and the durability of the device itself can be improved. This is also advantageous.
  • the belt-like transport means 4 can be provided with a collector 14 for separating and capturing solid matter instead of the trapping band.
  • the collector 14 includes a plurality of blades, and the distance between the blades is smaller than the diameter of the solid matter and larger than the diameter of the substance forming the fluidized medium of the fluidized bed. It is preferable that a plurality of the collectors 14 are provided in such a manner that the solid material can be captured by the belt-like conveying means.
  • the solid material induced in the vicinity of the fluidized bed at the position where the belt-like conveying means is disposed is captured by the collector, and is scraped up from the fluidized bed by the circulation movement of the belt-like conveying means and the collector, and then the fluidized bed. It can be continuously separated and carried out of the apparatus.
  • Example of generation of large diameter char In a biomass gasification apparatus 1 having a gasification reaction zone 3 and a regeneration zone 2 in which a deformed ellipse having a length of 2.1 m, a width of 1.6 m, and a height of 3 m is divided by a partition wall, Gasification was performed using 20 to 45 cm of biomass 6, which was obtained by dividing the production oil palm empty bunch into a quarter.
  • As the clay catalyst to be added Indonesian clay having an average particle diameter of 450 ⁇ m was used.
  • the main operating conditions are an air ratio of 0.1, a gasifier temperature of 690 ° C., a steam / biomass ratio of 0.82, and a biomass input rate of 252 kg (wet weight) / hour.
  • the gas of higher heating value 8.29MJ / Nm 3 is, 196 nm 3 / time obtained, the cold gas efficiency is 43.2%, the tar concentration in the product gas was 136 mg / Nm 3.
  • a char 7 containing the carbon content of 20 to 25% of the carbon content in the input biomass and maintaining the outer shape of the input empty cell piece was obtained.
  • Example 1 In the internal circulation type bubbling fluidized bed cold model in which the gasification reaction zone 3 and the regeneration zone 2 are separated from each other by the partition, the solids are separated as shown in FIGS. 1, 2 and 3 adjacent to the gasification reaction zone 3.
  • -A belt-shaped conveyor for recovery (equipped with a trapping band having a number of diamond-shaped gaps of 2 cm in the horizontal direction and 3.5 cm in the vertical direction) was installed.
  • the air was introduced and fluidized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

The present invention pertains to a feature of a fluidized layer, and in particular, provides a method and device for efficiently separating solids from a bubble fluidized layer. Specifically, the solids separation method according to the present invention separates relatively coarse solids present in a fluidized layer from a fluid medium and continuously carries the solids out to the exterior of a fluidized layer device, wherein the solid separation method is characterized in that a part of a belt-shaped conveyance means is installed in or adjacent to the fluidized layer and is continuously circulated to continuously carry the solids out to the exterior of the fluidized layer device, the belt-shaped transportation means having: a capturing belt having gaps that are smaller than the diameter of the solids and larger than the diameter of the substance constituting the fluid medium of the fluidized layer, the size of the gaps enabling the fluid medium to pass and the solids to be selectively captured; or a collector having similarly sized gaps.

Description

流動層から固形物を分離する方法および装置Method and apparatus for separating solids from a fluidized bed
 本発明は、流動層から固形物を効果的に分離する方法および装置に関するものである。 The present invention relates to a method and apparatus for effectively separating solids from a fluidized bed.
 更に具体的には、本発明は、流動層内に存在する、流動媒体よりも粒径が大きく、且つ、粒子密度の小さい固形物を分離する方法および装置を提供するものである。本発明による方法および装置によると、例えば、バイオマスの流動層ガス化装置において、ガスとともに副生するチャーを、流動媒体と分離して抜出した上で土壌還元し、再生可能エネルギーを生産するとともに、炭素固定による大気中の二酸化炭素濃度の増大抑制およびバイオマスの持続可能な生産を図ることが可能となる。またそれにとどまらず、流動媒体より粒径が大きく、且つ、粒子密度の小さい固形物を除去する他の用途にも応用が可能である。 More specifically, the present invention provides a method and apparatus for separating solids present in a fluidized bed and having a particle size larger than that of a fluidized medium and having a smaller particle density. According to the method and apparatus of the present invention, for example, in a biomass fluidized-bed gasifier, char produced as a by-product with gas is separated from the fluidized medium and extracted, and then reduced to produce renewable energy. It is possible to suppress the increase in carbon dioxide concentration in the atmosphere by carbon fixation and to achieve sustainable production of biomass. In addition, the present invention can be applied to other uses that remove solids having a particle size larger than that of the fluid medium and a smaller particle density.
 近年、地球の温暖化を防止し、また、石炭や石油などの有限な化石燃料資源の枯渇を避けるため、再生可能な自然エネルギー利用技術を開発し、それを広範に普及させることが世界的な緊急課題となっている。自然エネルギーの中でも特にバイオマスエネルギーは、賦存量が大きく、また燃料への転換が比較的容易であることなどから、自然エネルギーの筆頭と位置付けられることが多い。 In recent years, it has become a global practice to develop renewable energy technology and widely disseminate it in order to prevent global warming and avoid depletion of finite fossil fuel resources such as coal and oil. It is an urgent issue. Among natural energies, biomass energy, in particular, is positioned as the top of natural energy because it has a large abundance and is relatively easy to convert to fuel.
 バイオマスのエネルギー利用技術には、直接燃焼、熱化学的変換技術、生化学的変換技術があるが、直接燃焼は特に小規模プロセスの場合効率に限界があり、また生化学的変換では、糖質やでんぷん質などの限られたバイオマスしか原料にできないという問題がある。一方、熱化学的変換によれば、セルロース系化合物を含め、バイオマスを全体として利用でき、かつ小規模でも高効率のエネルギー利用が可能となる。 Biomass energy utilization technologies include direct combustion, thermochemical conversion technology, and biochemical conversion technology, but direct combustion has limited efficiency, especially for small-scale processes. There is a problem that only limited biomass such as starch can be used as a raw material. On the other hand, according to thermochemical conversion, biomass including cellulosic compounds can be used as a whole, and high-efficiency energy can be used even on a small scale.
 しかし、既存の熱化学的変換技術においては、無触媒のガス化は、低温ではタールが生成するため、高温にする必要があり、装置材料の熱的負担の増加と熱効率の低下がさけられない。また、ガス化剤の一部または全部として空気を用いて部分燃焼させる方式では、生成ガスが低発熱量・低品質のガスとなる。それを避けるためにガス化剤をスチームのみとした外熱式のガス化炉を用いることが提案されているが、このような外燃式ガス化炉は熱効率が低く、また熱伝達の問題から、規模や構造にも制約がある。触媒を用いた場合、ガス化温度を下げることはできるものの、一般に触媒は高価であり、またすみやかに劣化ないし失活してしまう、という問題があった。 However, in the existing thermochemical conversion technology, non-catalytic gasification generates tar at low temperatures, so it is necessary to increase the temperature, and an increase in the thermal burden on the equipment material and a decrease in thermal efficiency cannot be avoided. . In addition, in the method of partial combustion using air as part or all of the gasifying agent, the generated gas becomes a low calorific value / low quality gas. In order to avoid this, it has been proposed to use an externally heated gasifier with only the gasifying agent as steam. However, such an externally heated gasifier has low thermal efficiency and heat transfer problems. There are also restrictions on scale and structure. When a catalyst is used, although the gasification temperature can be lowered, the catalyst is generally expensive, and there is a problem that it is quickly deteriorated or deactivated.
 これらの問題を解決するべく、既に本発明者らは、バイオマスを含む有機物系原料を、ガス化反応ゾーンにおいて、昇温条件下、ガス化剤の存在下において、触媒機能および/または熱媒体機能を有する粘土からなるガス化促進剤と流動接触させることによって、前記有機物系原料を気体・液体燃料製造のための有用ガスに転換する技術を開発している(特許文献1:特許第4259777号)。この技術によれば、400℃~750℃の比較的温和な温度条件下において、タールの生成を抑制しつつ、有機物系原料を効率的にガス化することができる。 In order to solve these problems, the present inventors have already made use of an organic material containing biomass as a catalyst and / or a heat medium function in a gasification reaction zone in a temperature rising condition and in the presence of a gasifying agent. A technology for converting the organic raw material into a useful gas for producing a gas / liquid fuel by fluid contact with a gasification accelerator made of clay having a catalyst has been developed (Patent Document 1: Japanese Patent No. 4259777). . According to this technique, it is possible to efficiently gasify an organic material while suppressing tar formation under a relatively mild temperature condition of 400 ° C. to 750 ° C.
 さらに本発明者は、そのような技術において、ガス化反応ゾーンと再生ゾーンとの隔壁として金属等の熱伝達性の高い材料を用いることによって、再生ゾーンからガス化反応ゾーンへの放射、伝導ならびに対流による熱伝達を行い、前記熱伝達がない場合と比べて再生ゾーンの温度を低減することができ、かつ装置の自動温度調整機能を高めることができることを特徴とするバイオマスのガス化方法を開発している(特許文献2:特許第4549918号)。 Furthermore, the inventor of the present invention uses, in such a technique, a material having a high heat transfer property such as a metal as a partition wall between the gasification reaction zone and the regeneration zone, so that radiation, conduction, and conduction from the regeneration zone to the gasification reaction zone can be achieved. Developed a biomass gasification method that conducts heat transfer by convection and can reduce the temperature of the regeneration zone compared to the case without heat transfer and enhance the automatic temperature control function of the device (Patent Document 2: Japanese Patent No. 4549918).
 一般に、バイオマスをガス化する際、原料のバイオマスのサイズが大きいと、バイオマス内部の昇温速度が小さくなり、タールの発生が増大するという問題があるため、一般には、ガス化装置に投入するに先立ち、バイオマスを細かく粉砕する必要がある。 Generally, when biomass is gasified, if the size of the raw material biomass is large, there is a problem that the rate of temperature rise inside the biomass decreases and tar generation increases. Prior to this, the biomass must be finely crushed.
 この点において、本発明者の前述の発明による、触媒機能および/または熱媒体機能を有する粘土粒子をガス化促進剤と流動接触させることによってガス化する方法では、粘土が投入されたバイオマスを包囲して、発生したタールを吸着・分解することから、未粉砕のバイオマスを、そのまま投入できる利点がある。また、該発明において触媒として利用する粘土粒子のせん断応力が小さいため、投入したバイオマスとほぼ同様の形状をした、大型のチャーが得られる。 In this regard, in the method of gasifying a clay particle having a catalytic function and / or a heat medium function by fluid contact with a gasification accelerator according to the above-described invention of the present inventors, the biomass into which clay is charged is surrounded. Thus, since the generated tar is adsorbed and decomposed, there is an advantage that unpulverized biomass can be input as it is. In addition, since the shear stress of the clay particles used as a catalyst in the present invention is small, a large char having a shape almost the same as that of the input biomass can be obtained.
 このチャーを流動層から分離して抜出し土壌還元すれば、それだけ地球温暖化の原因である炭素を固定することになる。また、チャーは、バイオマスに由来するミネラルに富み、チッソ固定菌等の有用な微生物の繁殖を促し、さらに土壌の透水性・保水性を改善することから、土壌改良効果が大きく、植物の持続的な生育を助けることにもなる。すなわち、再生可能エネルギーの生産とともに、炭素固定と、植物の持続可能な生産をはかれることになる。伝統的な炭焼き工程から得られる炭も従来より土壌改良のために用いられてきたが、そのような伝統的な炭焼きでは、炭を生成する際に発生するエネルギー(有用ガス)を廃棄している。したがって、この点においても上述した先行発明は、いずれも発生したエネルギー(有用ガス)を発電に利用することができる点で、まさにバイオマス資源を余すところなく利用するものである。 ¡If this char is separated from the fluidized bed, extracted and reduced in soil, the carbon that causes global warming will be fixed. Char is rich in minerals derived from biomass, promotes the growth of useful microorganisms such as chisso-fixing bacteria, and improves the water permeability and water retention of the soil. It will also help the growth. In other words, along with the production of renewable energy, carbon fixation and sustainable production of plants will be promoted. Charcoal obtained from the traditional charcoal baking process has also been used for soil improvement from the past, but in such traditional charcoal burning, the energy (useful gas) generated when generating charcoal is discarded. . Therefore, in this respect as well, the above-described prior inventions can utilize the generated energy (useful gas) for power generation, and use the biomass resources.
 このようにバイオマスのエネルギー利用の副産物としてのチャーを有効に利用するためには、流動層から固形物であるチャーを抜き出す方法が必要となる。従来の、流動層から固形物を抜き出す方法としては、特開2004-138378「不燃物抜出システムおよび流動層炉システム」(特許文献3)や特開平08-028842「流動層ごみ焼却炉における不燃物排出方法及び装置」(特許文献4)などが提案されているが、これらの技術はいずれも、流動層の炉底に沈み込む、流動媒体より粒子密度の大きい固形物を抜き出しの対象としている。バイオマス由来のチャーのように、粒子密度が比較的小さく、気泡流動層の濃厚相上部に浮遊して存在する固形物を効果的に分離する技術はいまだ開発されていない。 Thus, in order to effectively use char as a by-product of biomass energy utilization, a method of extracting char that is a solid from a fluidized bed is required. Conventional methods for extracting solids from a fluidized bed include Japanese Patent Application Laid-Open No. 2004-138378 “Noncombustible Material Extraction System and Fluidized Bed Furnace System” (Patent Document 3) and Japanese Patent Application Laid-Open No. 08-028842 “Noncombustible in Fluidized Bed Waste Incinerator”. Material discharge method and apparatus "(Patent Document 4) and the like have been proposed. However, all of these technologies are intended to extract solids that sink into the furnace bottom of the fluidized bed and have a particle density higher than that of the fluidized medium. . No technology has yet been developed to effectively separate solids that are relatively small in particle density and float above the dense phase of the bubble fluidized bed, such as char derived from biomass.
登録特許第4259777号Registered Patent No. 4259777 登録特許第4549918号Patent No. 4549918 特開2004-138378号JP 2004-138378 A 特開平08-028842号Japanese Patent Application Laid-Open No. 08-028842
 本発明は、上述の技術的課題を解決するためのものであり、特に、流動媒体を構成する物質の径と、分離対象となる流動層内の固形物の径が異なる場合に、気泡流動層から、当該固形物を効果的に分離し回収する方法ならびに装置を提供する。 The present invention is for solving the above-mentioned technical problem, and in particular, when the diameter of the substance constituting the fluidized medium is different from the diameter of the solid matter in the fluidized bed to be separated, the bubble fluidized bed And a method and apparatus for effectively separating and recovering the solid matter.
 上述した技術的課題を解決するために、本発明に係る固形物の回収方法は、流動層内に存在する比較的粗大な固形物を、流動媒体から分離し流動層装置外に連続的に搬出する方法であって、前記固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい間隙であって、前記流動媒体が通過しかつ前記固形物が選択的に捕捉される径の間隙を多数持った捕捉帯を有する帯状搬送手段の一部を前記流動層装置内に設置し、連続的に循環させることによって、前記固形物を流動層装置外に連続的に分離し搬出するようにしたことを特徴としている。ここで、捕捉帯とは、前記固形物を捕捉する帯状機構のことをいい、帯状搬送手段の搬送面と一体化して設けることができる。 In order to solve the technical problem described above, the solids recovery method according to the present invention separates relatively coarse solids present in the fluidized bed from the fluidized medium and continuously carries them out of the fluidized bed apparatus. The gap is smaller than the diameter of the solid matter and larger than the diameter of the substance constituting the fluidized medium of the fluidized bed, and has a diameter that allows the fluidized medium to pass through and selectively capture the solid matter. A part of the belt-like conveying means having a trapping zone having a large number of gaps is installed in the fluidized bed apparatus and continuously circulated so that the solid matter is continuously separated and carried out of the fluidized bed apparatus. It is characterized by that. Here, the trapping band refers to a strip-shaped mechanism that traps the solid matter, and can be provided integrally with the transport surface of the strip-shaped transport means.
 本発明の好ましい態様においては、上記流動層が気泡流動層からなる。 In a preferred embodiment of the present invention, the fluidized bed is a bubble fluidized bed.
 更に、本発明の好ましい態様においては、上記帯状搬送手段がベルト状のコンベアからなり、該帯状搬送手段は、前記流動層の濃厚相部上端付近を一定区間水平に移動するようにすることが好ましい。 Furthermore, in a preferred aspect of the present invention, it is preferable that the belt-like conveying means is a belt-like conveyor, and the belt-like conveying means moves horizontally near the upper end of the dense phase portion of the fluidized bed for a certain interval. .
 また、本発明においては、前記流動層内において、前記帯状搬送手段が配置される位置の流動層の空塔速度とそれ以外の流動層部位の空塔速度に差異をつけることによって、前記固形物が前記帯状搬送手段の捕捉面に誘導されるようにすることが好ましい。 Further, in the present invention, in the fluidized bed, the solid matter is obtained by making a difference between the superficial velocity of the fluidized bed at the position where the belt-like conveying means is arranged and the superficial velocity of the other fluidized bed portions. Is preferably guided to the capture surface of the belt-like transport means.
 また、本発明の他の好ましい態様においては、前記帯状搬送手段は、前記捕捉帯に代わり、前記固形物の分離・回収用のコレクターを備えていてもよい。該コレクターは複数の刃を備え、該刃の間隔は、該固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい。該コレクターは、該帯状搬送手段に、固形物を捕捉可能な態様で、複数個備えられることが好ましい。本発明において、該帯状搬送手段が配置された位置の流動層付近に誘導された固形物が該コレクターにより捕捉され、該捕捉された固形物が、該帯状搬送手段と該コレクターの循環運動にともない流動層から掻き上げられ、ついで流動層装置外に連続的に分離・搬出されることが好ましい。 In another preferred embodiment of the present invention, the belt-like transport means may include a collector for separating and collecting the solid matter instead of the trapping zone. The collector includes a plurality of blades, and the distance between the blades is smaller than the diameter of the solid material and larger than the diameter of the substance forming the fluidized medium of the fluidized bed. It is preferable that a plurality of the collectors are provided on the belt-like conveying means in such a manner that solids can be captured. In the present invention, the solid matter induced in the vicinity of the fluidized bed at the position where the belt-like transport means is disposed is captured by the collector, and the trapped solid matter is caused by the circulation movement of the belt-like transport means and the collector. It is preferable that the fluidized bed is scraped up and then continuously separated and carried out of the fluidized bed apparatus.
 さらにまた、本発明の好ましい態様においては、上記方法が、バイオマスの流動層ガス化プロセスに導入される。 Furthermore, in a preferred embodiment of the present invention, the above method is introduced into a fluidized bed gasification process of biomass.
 なお、本発明においては、分離対象である前記固形物は、通常の場合、バイオマス由来のチャーからなる。 In the present invention, the solid matter to be separated usually consists of biomass-derived char.
 一方、本発明に係る装置は、流動層内に存在する比較的粗大な固形物を、流動媒体から分離し流動層装置外に連続的に搬出するための装置であって、前記固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい間隙であって、前記流動媒体が通過しかつ前記固形物が選択的に捕捉される径の間隙を多数持つ捕捉帯を有する帯状搬送手段と、前記帯状搬送手段の一部を前記流動層装置内に導入し、連続的に循環させるための動力手段とを有し、前記帯状搬送手段によって選択的に捕捉された前記固形物を流動層装置外に連続的に分離し搬出するようにしたことを特徴としている。 On the other hand, an apparatus according to the present invention is an apparatus for separating a relatively coarse solid present in a fluidized bed from a fluidized medium and continuously carrying it out of the fluidized bed apparatus. A belt-like conveying means having a trapping zone having a plurality of gaps smaller than the diameter of the substance forming the fluidized medium of the fluidized bed and having a diameter through which the fluidized medium passes and the solid matter is selectively captured And a power means for introducing a part of the belt-like transport means into the fluidized bed apparatus and continuously circulating it, and fluidizing the solid matter selectively captured by the belt-like transport means It is characterized by being continuously separated and carried out of the apparatus.
 上記本発明に係る装置において、前記流動層は、好ましくは気泡流動層である。 In the apparatus according to the present invention, the fluidized bed is preferably a bubble fluidized bed.
 さらに、本発明に係る装置の好ましい態様においては、前記帯状搬送手段がベルト状のコンベアからなり、さらに該帯状搬送手段が、前記流動層の濃厚相部上端付近を一定区間水平に移動するように設けられていることが好ましい。また、そのようなベルト状のコンベアの例として、チェーンコンベアを用いることができる。 Furthermore, in a preferred aspect of the apparatus according to the present invention, the belt-like transport means comprises a belt-like conveyor, and the belt-like transport means moves horizontally near the upper end of the dense phase portion of the fluidized bed for a certain interval. It is preferable to be provided. Moreover, a chain conveyor can be used as an example of such a belt-shaped conveyor.
 さらに本発明に係る装置においては、前記流動層内において、前記帯状搬送手段が配置される位置の流動層の空塔速度とそれ以外の流動層部位の空塔速度に差異をつける装置をさらに具備し、前記固形物が前記帯状搬送手段の捕捉面に誘導されるようにすることが好ましい。 Furthermore, the apparatus according to the present invention further comprises an apparatus for making a difference between the superficial velocity of the fluidized bed at the position where the belt-like transport means is disposed and the superficial velocity of the other fluidized bed portions in the fluidized bed. However, it is preferable that the solid material is guided to the capturing surface of the belt-like transport unit.
 また、本発明に係る他の好ましい態様の装置においては、前記帯状搬送手段は、前記捕捉帯に代わり、前記固形物の分離・回収用のコレクターを備えていてもよい。該コレクターは複数の刃を備え、該刃の間隔は、該固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい。該コレクターは、該帯状搬送手段に、固形物を捕捉可能な態様で、複数個備えられることが好ましい。本発明において、該帯状搬送手段が配置された位置の流動層付近に誘導された固形物が、該コレクターにより捕捉され、該帯状搬送手段と該コレクターの循環運動にともない流動層から掻き上げられ、ついで流動層装置外に連続的に分離・搬出されることが好ましい。 Further, in another preferred aspect of the apparatus according to the present invention, the belt-like transport means may include a collector for separating and collecting the solid matter instead of the trapping zone. The collector includes a plurality of blades, and the distance between the blades is smaller than the diameter of the solid material and larger than the diameter of the substance forming the fluidized medium of the fluidized bed. It is preferable that a plurality of the collectors are provided on the belt-like conveying means in such a manner that solids can be captured. In the present invention, the solid matter induced in the vicinity of the fluidized bed at the position where the belt-like conveying means is arranged is captured by the collector, and is scraped up from the fluidized bed with the circulation movement of the belt-like conveying means and the collector, Next, it is preferable to continuously separate and carry out the fluidized bed apparatus.
 また、本発明に係る固形物回収装置は、バイオマスの流動層ガス化装置に導入ないし組み込まれることが好ましい。 Moreover, it is preferable that the solid matter recovery apparatus according to the present invention is introduced or incorporated into a fluidized bed gasification apparatus for biomass.
 なお、本発明に係る装置による分離対象である前記固形物は、通常の場合、バイオマス由来のチャーからなる。 The solid matter to be separated by the apparatus according to the present invention is usually made of biomass-derived char.
 上記の本発明に係る固形物の回収技術は、たとえば本発明者が既に開発したバイオマスのガス化技術に好適に適用され得る。たとえば、前述した特許文献1(特許第4259777号)に記載のバイオマスのガス化技術においては、バイオマスを含む有機物系原料を、ガス化反応ゾーンにおいて、昇温条件下、ガス化剤の存在下において、触媒機能および/または熱媒体機能を有する粘土からなるガス化促進剤と流動接触させることによって、前記有機物系原料を気体・液体燃料製造のための有用ガスに転換され、この技術によれば、400℃~750℃の比較的温和な温度条件下において、タールの生成をともなうことなく、有機物系原料を効率的にガス化することができる。 The above-described solid material recovery technology according to the present invention can be suitably applied to, for example, biomass gasification technology already developed by the present inventors. For example, in the biomass gasification technology described in Patent Document 1 (Patent No. 4259777) described above, an organic material containing biomass is used in a gasification reaction zone in the presence of a gasifying agent under temperature rising conditions. The organic material is converted into a useful gas for the production of gas / liquid fuel by fluid contact with a gasification accelerator composed of clay having a catalytic function and / or a heat medium function. According to this technology, Under a relatively mild temperature condition of 400 ° C. to 750 ° C., the organic material can be efficiently gasified without generating tar.
 さらに特許文献2(特許第4549918号)に記載の方法においては、ガス化反応ゾーンと再生ゾーンとの隔壁として金属等の熱伝達性の高い材料を用いることによって、再生ゾーンからガス化反応ゾーンへの放射、伝導ならびに対流による熱伝達を行い、前記熱伝達がない場合と比べて再生ゾーンの温度を低減することができ、かつ装置の自動温度調整機能を高めることができる。 Further, in the method described in Patent Document 2 (Japanese Patent No. 4549918), a material having a high heat transfer property such as a metal is used as a partition wall between the gasification reaction zone and the regeneration zone, so that the regeneration zone is changed to the gasification reaction zone. The heat transfer by radiation, conduction and convection is performed, the temperature of the regeneration zone can be reduced as compared with the case where there is no heat transfer, and the automatic temperature control function of the apparatus can be enhanced.
 本発明に係る固形物の回収技術は、上述したバイオマスのガス化技術に好適に適用され得るが、これらに限定されるものではなく、分離されるべき固形物が副生物として生成するバイオマスのガス化技術に広く適用され得る。 The solids recovery technology according to the present invention can be suitably applied to the biomass gasification technology described above, but is not limited thereto, and the biomass gas generated as a by-product of the solids to be separated is not limited thereto. It can be widely applied to the technology.
本発明による固形物分離装置の模式的な平面図である。白抜きの矢印は流動層内の流動媒体と分離対象固形物の流れを示す。It is a typical top view of the solid separation device by the present invention. The white arrow indicates the flow of the fluid medium and the solid matter to be separated in the fluidized bed. 本発明による固形物分離装置の流動層部分の模式的な立面図である。白抜きの矢印は流動層内の流動媒体の流れを示し、実線の矢印は、流動層に導入される以前のガス化剤の流れを示す。It is a typical elevational view of the fluidized bed portion of the solid matter separation device according to the present invention. Open arrows indicate the flow of the fluidized medium in the fluidized bed, and solid arrows indicate the flow of the gasifying agent before being introduced into the fluidized bed. 本発明による固形物分離装置全体の模式的な側面図である。It is a typical side view of the whole solid substance separator by this invention. 本発明の別の実施形態による固形物分離装置の模式的な平面図である。白抜きの矢印は流動層内の流動媒体と分離対象固形物の流れを示す。It is a typical top view of the solid substance separation device by another embodiment of the present invention. The white arrow indicates the flow of the fluid medium and the solid matter to be separated in the fluidized bed. 本発明の別の実施形態による固形物分離装置の流動層部分の模式的な立面図である。白抜きの矢印は流動層内の流動媒体の流れを示し、実線の矢印は、流動層に導入される以前のガス化剤の流れを示す。It is a typical elevation view of a fluidized bed portion of a solids separation device according to another embodiment of the present invention. Open arrows indicate the flow of the fluidized medium in the fluidized bed, and solid arrows indicate the flow of the gasifying agent before being introduced into the fluidized bed. 本発明の別の実施形態による固形物分離装置全体の模式的な側面図である。It is a typical side view of the whole solid-state separator by another embodiment of this invention.
 以下、本発明を実施するための例示的な形態について、以下に添付の図面を用いて説明する。図面は単なる例示に過ぎず、本願発明の請求の範囲は、これらの形態ないし態様に限定されるものではない。 Hereinafter, exemplary embodiments for carrying out the present invention will be described with reference to the accompanying drawings. The drawings are merely examples, and the scope of the claims of the present invention is not limited to these forms or embodiments.
 本発明によれば、気泡流動層内に存在する固形物を、流動媒体から分別しつつ、流動層の外部に搬出し得る。具体例として、図1、2に示すように、ガス化反応ゾーン3と再生ゾーン2を備え、両者の間を触媒機能および/または熱媒体機能を有する粘土をガス化促進剤として気泡流動層を成す状態で循環させ、ガス化反応ゾーン3にバイオマス6を含む有機物を投入してガス化剤とガス化促進剤の存在下でガス化させ、炭素分などの吸着副生物が表面に沈着したガス化促進剤を再生ゾーン2に導いて、前記再生ゾーン2においてガス化促進剤に付着した吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去し、このようにして再生された加熱状態のガス化促進剤を前記ガス化反応ゾーン3に再循環させる方式のバイオマスガス化装置1において、ガス化反応ゾーン3の気泡流動層の一部の濃厚相部上端付近に隣接させて、流動媒体の粒径よりは大きく、分離対象チャーの径よりは小さい多数の間隙を持つ捕捉帯を有し、水平に配置された、ベルト状のコンベア4と、そのコンベアにより移送された固形物を流動層外部に排出する排出装置から成る、チャー7の分離装置を設置する。 According to the present invention, solids present in the bubble fluidized bed can be carried out of the fluidized bed while being separated from the fluidized medium. As a specific example, as shown in FIGS. 1 and 2, a gas fluidization zone 3 and a regeneration zone 2 are provided, and a bubble fluidized bed is formed using a clay having a catalytic function and / or a heat medium function as a gasification accelerator between them. A gas in which an organic substance containing biomass 6 is introduced into the gasification reaction zone 3 and gasified in the presence of a gasifying agent and a gasification accelerator, and adsorption by-products such as carbon are deposited on the surface. The regeneration accelerator 2 is led to the regeneration zone 2, and the adsorption by-products attached to the gasification accelerator in the regeneration zone 2 are removed by combustion or by partial combustion and carbonaceous gasification reaction, and thus regenerated. In the biomass gasification apparatus 1 of the system in which the gasification accelerator in the heated state is recirculated to the gasification reaction zone 3, it is adjacent to the vicinity of the upper end of a part of the dense fluidized bed in the gasification reaction zone 3, Fluid medium The belt-shaped conveyor 4 having a large number of gaps smaller than the diameter of the separation target char and smaller than the diameter of the separation target char and disposed horizontally, and solids transferred by the conveyor outside the fluidized bed A separation device for the char 7 comprising a discharge device for discharging is installed.
 粘土をガス化促進剤とするバイオマスの流動層ガス化装置では、タールの吸着分解作用を持った粘土が、ガス化反応ゾーンに投入されたバイオマスを包囲するため、大径のバイオマス6を未粉砕で投入でき、粘土のせん断応力は小さいため、大径のバイオマスから生成するチャー7も大径である。したがって、上記のように設置されたコンベア4により、流動媒体とチャー7を、その径の違いにより分離することができる。 In the biomass fluidized bed gasifier using clay as a gasification accelerator, the clay having the action of adsorbing and decomposing tar surrounds the biomass charged into the gasification reaction zone. Since the shear stress of clay is small, the char 7 produced from large-diameter biomass is also large-diameter. Therefore, the fluid medium and the char 7 can be separated by the difference in diameter by the conveyor 4 installed as described above.
 分離されたチャー7は、図3に示すように、コンベア4の連続的な運動により、流動層からの粒子の飛散を伴わない程度の位置まで水平に運ばれ、ついで、垂直方向に設置されたシュート12により、落下し、ダブルダンパー13等の外部との遮断機構を経て、外部に排出される。一方、流動層に近接した、粒子の飛散をともなう位置には、底板が流動層に向けて傾斜した緩衝ゾーン10a、10bを設けることによって、飛散した粒子を元の流動層に戻すことができる。 As shown in FIG. 3, the separated char 7 is moved horizontally to a position not accompanied by scattering of particles from the fluidized bed by the continuous movement of the conveyor 4, and then installed in the vertical direction. The chute 12 drops and is discharged to the outside through a blocking mechanism with the outside such as the double damper 13. On the other hand, the scattered particles can be returned to the original fluidized bed by providing buffer zones 10a and 10b in which the bottom plate is inclined toward the fluidized bed at a position near the fluidized bed where the particles are scattered.
 本発明の好ましい一実施形態においては、ベルト状のコンベア4の下部の空塔速度を、隣接する流動層8の空塔速度よりも低くすることにより、図2に示されるようにベルト状のコンベア4に隣接する流動層8内に存在する固形物をベルト状のコンベア4の捕捉帯上に押し出す循環流を発生させることができる。このような循環流を発生させることにより、固形物がベルト状のコンベア4に捕獲される確率が高くなり、より効率的に固形物の分離を行うことができる。 In a preferred embodiment of the present invention, the lower belt speed of the belt-like conveyor 4 is set lower than that of the adjacent fluidized bed 8 so that the belt-like conveyor as shown in FIG. 4 can generate a circulating flow that pushes solids present in the fluidized bed 8 adjacent to the belt 4 onto the trapping belt of the belt-like conveyor 4. By generating such a circulating flow, the probability that the solid matter is captured by the belt-like conveyor 4 is increased, and the solid matter can be more efficiently separated.
 本発明の別の好ましい実施形態において、例えば、ベルト状のコンベア4の下部の流動層の底板を、隣接する流動層8に向けて深くなるように傾斜させることによって、帯状搬送手段4に隣接する流動層8内に存在する固形物(チャー7)を帯状搬送手段4の捕捉帯上に押し出す循環流を、より発生させやすくすることができる。このように循環流をより効果的に発生させることにより、固形物7が帯状搬送手段4の捕捉面上に誘導される可能性が高くなり、より効率的に固形物の分離を行うことができる。 In another preferred embodiment of the present invention, for example, the bottom plate of the fluidized bed at the bottom of the belt-like conveyor 4 is adjacent to the belt-like conveying means 4 by inclining it deeper toward the adjacent fluidized bed 8. It is possible to make it easier to generate a circulating flow that pushes the solid matter (char 7) present in the fluidized bed 8 onto the trapping zone of the belt-like conveying means 4. By generating the circulating flow more effectively in this way, there is a high possibility that the solid material 7 will be guided on the trapping surface of the belt-like transport means 4, and the solid material can be more efficiently separated. .
 また、本発明の他の好ましい実施形態においては、帯状搬送手段4の駆動部を流動層8から隔離された位置に配置することができる。このように駆動部を流動層から離れた場所に配置することにより、駆動部が熱や湿気による影響を受けにくく、故障のリスクを低減させることができ装置自体の耐久性を向上させることができる点でも有利である。 Further, in another preferred embodiment of the present invention, the driving unit of the belt-like transport unit 4 can be disposed at a position isolated from the fluidized bed 8. By disposing the drive unit in a place away from the fluidized bed in this way, the drive unit is not easily affected by heat and moisture, the risk of failure can be reduced, and the durability of the device itself can be improved. This is also advantageous.
 また、本発明の他の好ましい実施形態においては、図4~6に示すように、帯状搬送手段4は、前記捕捉帯に代わり、固形物を分離・捕捉するためのコレクター14を備えることができる。該コレクター14は複数の刃を備え、該刃の間隔は、該固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい間隔である。該コレクター14は、該帯状搬送手段に固形物を捕捉可能な態様で、複数個備えられることが好ましい。これにより、該帯状搬送手段が配置された位置の流動層付近に誘導された固形物を、該コレクターにより捕捉し、該帯状搬送手段と該コレクターの循環運動によって流動層から掻き上げ、ついで流動層装置外に連続的に分離・搬出することができる。 In another preferred embodiment of the present invention, as shown in FIGS. 4 to 6, the belt-like transport means 4 can be provided with a collector 14 for separating and capturing solid matter instead of the trapping band. . The collector 14 includes a plurality of blades, and the distance between the blades is smaller than the diameter of the solid matter and larger than the diameter of the substance forming the fluidized medium of the fluidized bed. It is preferable that a plurality of the collectors 14 are provided in such a manner that the solid material can be captured by the belt-like conveying means. As a result, the solid material induced in the vicinity of the fluidized bed at the position where the belt-like conveying means is disposed is captured by the collector, and is scraped up from the fluidized bed by the circulation movement of the belt-like conveying means and the collector, and then the fluidized bed. It can be continuously separated and carried out of the apparatus.
 また本発明の他の実施形態において、上述した実施形態の内の一部または全部を組み合わせることができる。 Also, in other embodiments of the present invention, some or all of the above-described embodiments can be combined.
 本発明による固形物分離装置により固形物が分離される実施例について、以下、具体的に説明する。 Examples in which solids are separated by the solids separator according to the present invention will be specifically described below.
大径のチャーの生成例
 長さ2.1m、幅1.6m、高さ3mの変形楕円形を隔壁で区切ったガス化反応ゾーン3と再生ゾーン2を備えたバイオマスガス化装置1において、スマトラ産アブラヤシ空房を4分の1に分割した、20~45cmのバイオマス6を原料にガス化を行った。投入する粘土触媒としては、平均粒径450μmのインドネシア産粘土を用いた。主な運転条件は、空気比0.1、ガス化炉の温度690℃、スチーム/バイオマス比0.82、バイオマス投入速度252kg(湿重量)/時である。この時、高位発熱量8.29MJ/Nmのガスが、196Nm/時得られ、冷ガス効率は43.2%、生成ガス中のタール濃度は136mg/Nmであった。この時、投入したバイオマス中の炭素分の20~25%の炭素分を含む、投入した空房片の外形を保ったチャー7が得られた。
Example of generation of large diameter char In a biomass gasification apparatus 1 having a gasification reaction zone 3 and a regeneration zone 2 in which a deformed ellipse having a length of 2.1 m, a width of 1.6 m, and a height of 3 m is divided by a partition wall, Gasification was performed using 20 to 45 cm of biomass 6, which was obtained by dividing the production oil palm empty bunch into a quarter. As the clay catalyst to be added, Indonesian clay having an average particle diameter of 450 μm was used. The main operating conditions are an air ratio of 0.1, a gasifier temperature of 690 ° C., a steam / biomass ratio of 0.82, and a biomass input rate of 252 kg (wet weight) / hour. At this time, the gas of higher heating value 8.29MJ / Nm 3 is, 196 nm 3 / time obtained, the cold gas efficiency is 43.2%, the tar concentration in the product gas was 136 mg / Nm 3. At this time, a char 7 containing the carbon content of 20 to 25% of the carbon content in the input biomass and maintaining the outer shape of the input empty cell piece was obtained.
流動媒体からの固形物の分離
(実施例1)
 ガス化反応ゾーン3と再生ゾーン2が隔壁を隔てて存在する内部循環型気泡流動層コールドモデルの、ガス化反応ゾーン3に隣接して、図1、2および3に示すように固形物の分離・回収用のベルト状のコンベア(横方向2cm、縦方向3.5cmのひし形の間隙を多数有する捕捉帯を装備)を設置した。この装置に、平均粒子径200μmの粘土粒子を充填し、流動層8をUo-Umf=0.15m/s、ベルト状のコンベア下部を0.06m/s(2Umf)の空塔速度になるように空気を導入して流動させた。そこに、直径3cm、長さ5~10cmの炭を導入して運転したところ、9割以上の炭が、ベルト状のコンベアにより系外に排出された。一方、炭を粉砕して、長径1cm以下の塊として投入したところ、排出される炭は見られなかった。
Separation of solids from fluid medium (Example 1)
In the internal circulation type bubbling fluidized bed cold model in which the gasification reaction zone 3 and the regeneration zone 2 are separated from each other by the partition, the solids are separated as shown in FIGS. 1, 2 and 3 adjacent to the gasification reaction zone 3. -A belt-shaped conveyor for recovery (equipped with a trapping band having a number of diamond-shaped gaps of 2 cm in the horizontal direction and 3.5 cm in the vertical direction) was installed. This apparatus is filled with clay particles with an average particle diameter of 200 μm, and the fluidized bed 8 has a superficial velocity of Uo-Umf = 0.15 m / s and the lower part of the belt-shaped conveyor is 0.06 m / s (2 Umf). The air was introduced and fluidized. There, when charcoal with a diameter of 3 cm and a length of 5-10 cm was introduced and operated, over 90% of the charcoal was discharged out of the system by a belt-shaped conveyor. On the other hand, when charcoal was pulverized and charged as a lump having a major axis of 1 cm or less, no charcoal was discharged.
(実施例2)
 ガス化反応ゾーン3と再生ゾーン2が隔壁を隔てて存在する内部循環型気泡流動層コールドモデルの、ガス化反応ゾーン3に隣接して、図4、5および6に示すように固形物の分離・回収用のコレクター付チェーンコンベア4(コレクターの刃の間隔:1.5cm)を設置した。この装置に、平均粒子径350μmの粘度粒子を充填し、流動層Uo-Umf=0.10m/s、コンベア下部を0.15m/s(1.5Umf)の空塔速度になるように空気を導入して流動させた。そこに、直径3cm、長さ5~10cmの炭を導入して運転したところ、9割以上の炭が、コンベアにより系外に排出された。一方、炭を粉砕して、長径1cm以下の塊として投入したところ、排出される炭は見られなかった。
(Example 2)
In the internal circulation type bubbling fluidized bed cold model in which the gasification reaction zone 3 and the regeneration zone 2 exist with a partition wall therebetween, adjacent to the gasification reaction zone 3, as shown in FIGS. -A chain conveyor 4 with a collector for collection (interval between collector blades: 1.5 cm) was installed. Viscosity particles with an average particle diameter of 350 μm are packed into this device, and air is supplied so that the fluidized bed Uo-Umf = 0.10 m / s and the lower part of the conveyor have an empty speed of 0.15 m / s (1.5 Umf). It was introduced and allowed to flow. There, when charcoal with a diameter of 3 cm and a length of 5-10 cm was introduced and operated, over 90% of the charcoal was discharged out of the system by the conveyor. On the other hand, when charcoal was pulverized and charged as a lump having a major axis of 1 cm or less, no charcoal was discharged.
 1 バイオマスガス化装置
 2 再生ゾーン
 3 ガス化反応ゾーン
 4 ベルト状のコンベア
 5 流動媒体
 6 バイオマス
 7 チャー
 8 流動層
 9 ガス化剤
 10a 緩衝ゾーン
 10b 緩衝ゾーン
 11 駆動部
 12 シュート
 13 ダブルダンパー
 14 コレクター
DESCRIPTION OF SYMBOLS 1 Biomass gasifier 2 Regeneration zone 3 Gasification reaction zone 4 Belt-shaped conveyor 5 Fluid medium 6 Biomass 7 Char 8 Fluidized bed 9 Gasifying agent 10a Buffer zone 10b Buffer zone 11 Drive part 12 Chute 13 Double damper 14 Collector

Claims (16)

  1.  流動層内に存在する比較的粗大な固形物を、流動媒体から分離し流動層装置外に連続的に搬出する方法であって、前記固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい間隙であって、前記流動媒体が通過しかつ前記固形物が選択的に捕捉される径の間隙を多数持つ捕捉帯を有する帯状搬送手段の一部を前記流動層装置内に設置し、連続的に循環させることによって、前記固形物を流動層装置外に連続的に分離し搬出するようにしたことを特徴とする、方法。 A method of separating a relatively coarse solid present in a fluidized bed from a fluidized medium and continuously carrying it out of a fluidized bed apparatus, wherein the substance forming the fluidized medium of the fluidized bed is smaller than the diameter of the solids A part of the belt-like transport means having a gap larger than the diameter of the trapping zone having a large number of gaps having a diameter through which the fluid medium passes and the solid matter is selectively trapped is installed in the fluidized bed apparatus. The solid material is continuously circulated and separated from the fluidized bed apparatus so as to be carried out.
  2.  前記帯状搬送手段に、前記捕捉帯に代わり、固形物を分離・捕捉するコレクターを備え、前記コレクターの刃の間隔は、前記固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい、請求項1に記載の方法。 Instead of the trapping belt, the strip-shaped transport means is provided with a collector for separating and trapping solid matter, and the distance between the blades of the collector is smaller than the diameter of the solid matter and the diameter of the substance forming the fluidized medium of the fluidized bed. The method of claim 1, wherein the method is large.
  3.  前記流動層が気泡流動層である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the fluidized bed is a bubble fluidized bed.
  4.  前記帯状搬送手段がチェーンコンベアからなる、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the belt-like transport means is a chain conveyor.
  5.  前記帯状搬送手段が、前記気泡流動層またはそれに隣接する流動層の濃厚相部上端付近を一定区間水平に移動するようにした、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the belt-like conveying means moves horizontally in the vicinity of the upper end of the dense phase portion of the bubble fluidized bed or the fluidized bed adjacent thereto.
  6.  前記流動層装置内において、前記帯状搬送手段が配置される位置の流動層の空塔速度とそれ以外の流動層部位の空塔速度に差異をつけることによって、前記固形物が前記帯状搬送手段の捕捉面上に誘導されるようにした、請求項1~5のいずれか一項に記載の方法。 In the fluidized bed apparatus, the solid matter is separated from the belt-like conveying means by differentiating the superficial velocity of the fluidized bed at the position where the belt-like conveying means is arranged and the superficial velocity of the other fluidized bed part. The method according to any one of claims 1 to 5, wherein the method is guided on a capture surface.
  7.  バイオマスの流動層ガス化プロセスに導入される、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, which is introduced into a fluidized bed gasification process of biomass.
  8.  分離対象である前記固形物が、バイオマス由来のチャーである、請求項7に記載の方法。 The method according to claim 7, wherein the solid matter to be separated is char derived from biomass.
  9.  流動層内に存在する比較的粗大な固形物を、流動媒体から分離し流動層装置外に連続的に搬出するための装置であって、
     前記固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい間隙であって、前記流動媒体が通過しかつ前記固形物が選択的に捕捉される径の間隙を多数持つ捕捉帯を有する帯状搬送手段と、
     前記帯状搬送手段の一部を前記流動層装置内に導入し、連続的に循環させるための動力手段とを有し、
     前記帯状搬送手段によって選択的に捕捉された前記固形物を流動層装置外に連続的に分離し搬出するようにしたことを特徴とする、装置。
    An apparatus for separating relatively coarse solids present in a fluidized bed from a fluidized medium and continuously carrying out of the fluidized bed apparatus,
    A trapping zone having a number of gaps smaller than the diameter of the solid matter and larger than the diameter of the substance forming the fluidized medium of the fluidized bed, wherein the fluidized medium passes therethrough and the solid matter is selectively captured. A belt-shaped conveying means having
    A power means for introducing a part of the belt-like conveying means into the fluidized bed apparatus and continuously circulating it;
    The apparatus is characterized in that the solid matter selectively captured by the belt-like conveying means is continuously separated and carried out of the fluidized bed apparatus.
  10.  前記帯状搬送手段が、前記捕捉帯に代わり、固形物を分離・捕捉するコレクターを備え、前記コレクターの刃の間隔は、前記固形物の径より小さく前記流動層の流動媒体をなす物質の径より大きい、請求項9に記載の装置。 The belt-like conveying means includes a collector that separates and captures solid matter instead of the trapping zone, and the interval between the collector blades is smaller than the diameter of the solid matter and is smaller than the diameter of the substance forming the fluidized medium of the fluidized bed. The apparatus of claim 9, wherein the apparatus is large.
  11.  前記流動層が気泡流動層である、請求項10に記載の装置。 The apparatus according to claim 10, wherein the fluidized bed is a bubble fluidized bed.
  12.  前記帯状搬送手段がチェーンコンベアからなる、請求項9~11のいずれか一項に記載の装置。 The apparatus according to any one of claims 9 to 11, wherein the belt-shaped transport means is a chain conveyor.
  13.  前記帯状搬送手段が、前記流動層の濃厚相部上端付近を一定区間水平に移動するように設けられている、請求項9~12のいずれか一項に記載の装置。 The apparatus according to any one of claims 9 to 12, wherein the belt-like transport means is provided so as to move horizontally in a certain section near the upper end of the dense phase portion of the fluidized bed.
  14.  前記流動層内において、前記帯状搬送手段が配置される位置の流動層の空塔速度とそれ以外の流動層部位の空塔速度に差異をつける装置をさらに具備し、前記固形物が前記帯状搬送手段の捕捉面上に誘導されるようにした、請求項9~13のいずれか一項に記載の装置。 In the fluidized bed, the apparatus further comprises a device that makes a difference between the superficial velocity of the fluidized bed at the position where the belt-like transport means is arranged and the superficial velocity of the other fluidized-bed portions, and the solid matter is transported in the beltlike manner. A device according to any one of claims 9 to 13, adapted to be guided on a capture surface of the means.
  15.  バイオマスの流動層ガス化装置に導入される、請求項9~14のいずれか一項に記載の装置。 The apparatus according to any one of claims 9 to 14, which is introduced into a fluidized bed gasification apparatus for biomass.
  16.  分離対象である前記固形物が、バイオマス由来のチャーである、請求項15に記載の装置。 The apparatus according to claim 15, wherein the solid matter to be separated is char derived from biomass.
PCT/JP2017/007884 2016-03-07 2017-02-28 Method and device for separating solids from fluidized layer WO2017154679A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504399A JP6914539B2 (en) 2016-03-07 2017-02-28 Methods and equipment for separating solids from fluidized beds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043736 2016-03-07
JP2016043736 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017154679A1 true WO2017154679A1 (en) 2017-09-14

Family

ID=59789287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007884 WO2017154679A1 (en) 2016-03-07 2017-02-28 Method and device for separating solids from fluidized layer

Country Status (2)

Country Link
JP (1) JP6914539B2 (en)
WO (1) WO2017154679A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154179A (en) * 1975-02-14 1975-12-11
JPS5792685A (en) * 1980-12-02 1982-06-09 Ishikawajima Harima Heavy Ind Treatment residue discharger for fluidized bed type furnace
JPS5815806U (en) * 1981-07-24 1983-01-31 バブコツク日立株式会社 Fluidized bed combustion equipment
JPS60170512U (en) * 1984-04-17 1985-11-12 バブコツク日立株式会社 Fluidized bed combustion equipment
JPS6217510A (en) * 1985-07-13 1987-01-26 Babcock Hitachi Kk Fluidized bed furnace
JPH0828842A (en) * 1994-07-15 1996-02-02 Kawasaki Heavy Ind Ltd Non-combustible discharge method and apparatus in fluidized refuse incinerator
JP2003041268A (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method for gasifying biomass
JP2004138378A (en) * 2002-09-26 2004-05-13 Ebara Corp Noncombustible extraction system and fluidized bed furnace system
JP2006291134A (en) * 2005-04-14 2006-10-26 Hitoshi Inoue Gasification method for biomass
JP2016000379A (en) * 2014-06-11 2016-01-07 永田エンジニアリング株式会社 Foreign matter separation device of fluidized bed incinerator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154179A (en) * 1975-02-14 1975-12-11
JPS5792685A (en) * 1980-12-02 1982-06-09 Ishikawajima Harima Heavy Ind Treatment residue discharger for fluidized bed type furnace
JPS5815806U (en) * 1981-07-24 1983-01-31 バブコツク日立株式会社 Fluidized bed combustion equipment
JPS60170512U (en) * 1984-04-17 1985-11-12 バブコツク日立株式会社 Fluidized bed combustion equipment
JPS6217510A (en) * 1985-07-13 1987-01-26 Babcock Hitachi Kk Fluidized bed furnace
JPH0828842A (en) * 1994-07-15 1996-02-02 Kawasaki Heavy Ind Ltd Non-combustible discharge method and apparatus in fluidized refuse incinerator
JP2003041268A (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method for gasifying biomass
JP2004138378A (en) * 2002-09-26 2004-05-13 Ebara Corp Noncombustible extraction system and fluidized bed furnace system
JP2006291134A (en) * 2005-04-14 2006-10-26 Hitoshi Inoue Gasification method for biomass
JP2016000379A (en) * 2014-06-11 2016-01-07 永田エンジニアリング株式会社 Foreign matter separation device of fluidized bed incinerator

Also Published As

Publication number Publication date
JP6914539B2 (en) 2021-08-04
JPWO2017154679A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP2851411B1 (en) Gasification apparatus
CN101613615B (en) Method and system for decoupling and upgrading coal
CN102212399A (en) Thermal pyrolysis combination method and device
US9828247B2 (en) Process and apparatus for cleaning raw product gas
WO2015010448A1 (en) Method for preparing hydrogen-rich gas by gasification of solid organic substance and steam
CN105419877B (en) Two sections of pyrolysis gasification systems of solid waste based on fluid bed and moving bed
FR2960940A1 (en) CHEMICAL LOOP COMBUSTION PROCESS WITH A REACTION ZONE INTEGRATING A GAS-SOLID SEPARATION AREA AND INSTALLATION USING SUCH A METHOD
CN101108970A (en) Method for manufacturing wet fuel by rapid common thermal decomposition of biomass and coal
CN103881761A (en) Coal pyrolysis gasification poly-generation device and process based on circulating fluidized bed
CN108531220A (en) A kind of system and method for biomass microwave pyrolysis high yield gas
JP2019065160A (en) Biomass gasifier
EP3031880A1 (en) Dry distillation reactor and method for raw material of hydrocarbon with solid heat carrier
US10851319B2 (en) Gasification system and method
Kaur et al. Commercial or pilot-scale pyrolysis units for conversion of biomass to bio-oils: state of the art
Kim et al. Bubbling fluidized bed biomass gasification using a two-stage process at 600° C: A way to avoid bed agglomeration
TW201741446A (en) Biomass gasifier device
CN106336907B (en) Cyclone pyrolysis high-flux circulating gasification device and process
WO2017154679A1 (en) Method and device for separating solids from fluidized layer
CN101475815B (en) Dry distillation method for oil shale material and fluidized bed dry distillation apparatus
CN101451069A (en) Cyclone separating device group, fluidized bed apparatus and oil-shale dry distillation method
CN1730617A (en) Fuild bed composite circle coal gasification method and apparatus
KR102063372B1 (en) A Bio oil manufacturing system using oxy-fuel combustion energy recovery device and circulating fluidized bed fast pyrolysis device and method for manufacturing Bio oil using the same
Kim et al. How to Avoid Bed Agglomeration in the Bubbling Fluidized Bed Biomass Gasification: Two-Stage Gasification at 600 C
JP2011219627A (en) Gasification treatment method of composite raw material comprising tire by shaft-type pyrolyzing furnace and apparatus used therefor
CN204174160U (en) A kind of novel pyrolytic reactor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763019

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763019

Country of ref document: EP

Kind code of ref document: A1