WO2017134784A1 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2017134784A1
WO2017134784A1 PCT/JP2016/053276 JP2016053276W WO2017134784A1 WO 2017134784 A1 WO2017134784 A1 WO 2017134784A1 JP 2016053276 W JP2016053276 W JP 2016053276W WO 2017134784 A1 WO2017134784 A1 WO 2017134784A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
surface sealing
light
solar cell
cell module
Prior art date
Application number
PCT/JP2016/053276
Other languages
English (en)
French (fr)
Inventor
高好 松田
清俊 田中
慎治 中園
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017565340A priority Critical patent/JPWO2017134784A1/ja
Priority to CN201680054758.0A priority patent/CN108604610A/zh
Priority to PCT/JP2016/053276 priority patent/WO2017134784A1/ja
Priority to TW105115459A priority patent/TWI624956B/zh
Publication of WO2017134784A1 publication Critical patent/WO2017134784A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module that converts light energy into electric power and a method for manufacturing the same.
  • a surface sealing material of ethylene vinyl acetate copolymer is arranged on a light-transmitting substrate such as a glass substrate, and the photovoltaic elements are arranged.
  • a technique has been proposed in which an ethylene vinyl acetate copolymer back surface sealing material and a back sheet are disposed and laminated.
  • ethylene vinyl acetate copolymer has been used as a sealing material for solar cell modules.
  • a glass substrate, a surface sealing material, a photovoltaic element, a back surface sealing material, and a back sheet are laminated in this order.
  • the back surface sealing material is a member necessary for ensuring the insulation performance of the photovoltaic element.
  • An example of the sealing material is disclosed in Patent Document 1.
  • the electrode in the photovoltaic element includes a plurality of types of metal components, the oxidation of the electrode caused by the acid generated from the sealing material due to the sealing material including the reducing component. Is suppressed.
  • the sealing material contains a reducing component, the cost of the conventional solar cell module is high.
  • the amount of silver constituting the electrode is large, the cost of the conventional solar cell module is high.
  • the present invention has been made in view of the above, and an object thereof is to obtain a highly reliable solar cell module that can be manufactured at low cost.
  • the present invention provides a light-transmitting substrate that transmits light, and light incident on the light-transmitting substrate that is outside the light-transmitting substrate and transmits the light.
  • a surface sealing material that is located on the side and composed of an olefin-based resin, and an electrode that is located on the side opposite to the side on which the light-transmitting substrate is located with respect to the surface sealing material
  • a photovoltaic element having a light-receiving-surface-side electrode containing 75% or more of silver and 0.001% or more and 25% or less of aluminum in a molar ratio to components other than the glass component, and the photovoltaic element
  • the back surface sealing material positioned on the side opposite to the side where the surface sealing material is positioned as a reference, and the side opposite to the side where the photovoltaic element is positioned based on the back surface sealing material And a back sheet.
  • the figure which shows the cross section of the solar cell module of Embodiment 1 typically.
  • FIG. The figure which shows typically the side surface of the cooling conveyor used for the manufacturing method of the solar cell module of Embodiment 1.
  • FIG. The figure which shows the relationship between the heating time and sealing material temperature in the lamination process of the lamination press step which performs a lamination process and a bridge
  • FIG. 1 is a diagram schematically showing a cross section of the solar cell module 10 of the first embodiment.
  • a solar cell module 10 includes a light-transmitting substrate 1 that transmits light, and a surface that is located outside the light-transmitting substrate 1 and on the side through which light incident on the light-transmitting substrate 1 is transmitted.
  • the sealing material 2, the photovoltaic element 3 positioned on the side opposite to the side where the light-transmitting substrate 1 is positioned with respect to the surface sealing material 2, and the surface sealing material 2 based on the photovoltaic element 3 It has the back surface sealing material 4 located on the opposite side to the side where it is located, and the back sheet 5 located on the opposite side to the side where the photovoltaic element 3 is located with respect to the back surface sealing material 4. That is, the solar cell module 10 is a laminated body in which the light transmissive substrate 1, the front surface sealing material 2, the photovoltaic element 3, the back surface sealing material 4, and the back sheet 5 are stacked in this order.
  • the light transmissive substrate 1 is a glass substrate.
  • the light transmissive substrate 1 is not limited to a glass substrate as long as it has a function of transmitting light.
  • the light transmissive substrate 1 may be a resin plate that transmits light. Sunlight is incident on the surface of the light transmissive substrate 1, and the incident light passes through the light transmissive substrate 1 and the surface sealing material 2 to reach the photovoltaic element 3. Energy is converted into electric power.
  • the surface sealing material 2 is composed of an olefin resin.
  • the olefin resin is, for example, a polypropylene resin or a polyethylene resin. More specifically, the surface sealing material 2 is a polyolefin resin that does not generate an acid, a silane coupling agent and a cross-linking agent added to each other, and a plurality of light-transmitting thermosetting resins. This is a laminate of sheets.
  • the polyolefin-based resin may be replaced with a light-transmitting resin that does not generate an acid.
  • the polyolefin resin may be replaced with a polypropylene resin or a polycarbonate polyurethane resin.
  • the olefin resin constituting the surface sealing material 2 is added with a crosslinking agent that improves part or all of weather resistance, strength, and adhesiveness.
  • the adhesiveness means the adhesiveness between the light-transmitting substrate 1 and the surface sealing material 2 and the adhesiveness between the surface sealing material 2 and the photovoltaic element 3.
  • the crosslinking method is, for example, a method of generating radicals by heat.
  • the olefin-based resin constituting the surface sealing material 2 is preferably a resin to which an ultraviolet absorber is added in order to improve light resistance. In order to improve the output of the solar cell module 10, it is preferable that the amount of the ultraviolet absorber added is small.
  • Photovoltaic element 3 has light receiving surface side electrode 31 containing 75% or more of silver and 0.001% or more and 25% or less of aluminum in a molar ratio to the components constituting the electrode excluding the glass component.
  • the light receiving surface side electrode 31 is composed of metal particles and glass. Said component ratio is a component ratio of silver and aluminum when the glass component is excluded from the components constituting the light receiving surface side electrode 31.
  • the photovoltaic element 3 also has a back side electrode 32, depending on the structure of the photovoltaic element 3, the back side electrode 32 contains 75% or more of silver and 0.001% or more and 25% or less of aluminum in a molar ratio. It is not always necessary to include it.
  • the photovoltaic element 3 is configured to extract electric power by the light receiving surface side electrode 31 and the back surface side electrode 32.
  • the light-receiving surface side electrode 31 is composed of a plurality of photovoltaic elements 3, and the electrodes of the plurality of photovoltaic elements 3 are electrically connected by solder.
  • solder is used to connect a plurality of electrodes included in the photovoltaic element 3.
  • Sn—Ag—Cu alloy solder having a melting point of 219 ° C. or Pb—Sn alloy solder having a melting point of 183 ° C. is used.
  • the material constituting the light receiving surface side electrode 31 is Cu, Au, Pt, Fe, Pd, Mn, Mo, S, C, O, N, P, Ni, Cr, Co, Zn , Sn, Pb, Si, W, Mg, Ti, Sc, In, Sb, Te, Cd, Se, Ir, K, Li, Na, and P may include some or all impurities. In the present invention, even if the impurities are contained, the light-receiving surface side electrode 31 contains 75% or more of silver and 0.001% or more and 25% or less of aluminum in a molar ratio.
  • the photovoltaic element 3 has the light receiving surface side electrode 31 containing 75% or more of silver and 0.001% or more and 25% or less of aluminum in molar ratio.
  • the ratio of silver and aluminum contained in the light receiving surface side electrode 31 will be described. Since the standard monopolar potential of silver is + 0.799V, whereas the standard monopolar potential of aluminum is ⁇ 1.676V, aluminum is likely to be oxidized prior to silver.
  • the light receiving surface side electrode 31 contains aluminum, oxidation of silver contained in the light receiving surface side electrode 31 is suppressed, and as a result, the resistance of the light receiving surface side electrode 31 is hardly increased. Therefore, it is preferable that the light receiving surface side electrode 31 contains aluminum.
  • the aluminum content ratio will be described. If the deterioration of the light-receiving surface side electrode is delayed only for the period until the light-receiving surface-side electrode not containing aluminum, that is, the light-receiving surface-side electrode composed only of silver is deteriorated, the reliability of the solar cell module is improved. Since silver is +1 and aluminum is +3, it is difficult to ensure the conductivity of silver when the aluminum content in the light-receiving surface side electrode exceeds 1/4 times the molar ratio. .
  • the standard unipolar potential of silver is more than the valence of the base aluminum, that is, three times or more of aluminum.
  • the aluminum having a low standard monopolar potential is not more than the valence of silver, that is, not more than 1 times that of silver.
  • the amount of aluminum is less than 0.001% in terms of molar ratio, the effect of suppressing the oxidation of silver contained in the light receiving surface side electrode 31 is weakened. That is, it is preferable that the light receiving surface side electrode 31 included in the photovoltaic element 3 contains 75% or more of silver and 0.001% or more and 25% or less of aluminum in terms of molar ratio.
  • a solar cell of a crystalline solar cell for example, a solar cell of a crystalline solar cell can be used.
  • the crystalline solar cell is, for example, a single crystal silicon solar cell or a polycrystalline silicon solar cell. Crystalline solar cells are not limited to single crystal silicon solar cells or polycrystalline silicon solar cells.
  • the back surface sealing material 4 is made of an olefin resin.
  • the olefin resin is, for example, a polypropylene resin or a polyethylene resin.
  • the back surface sealing material 4 is preferably white.
  • the reason why the back surface sealing material 4 is preferably white is that most of the light transmitted through the light-transmitting substrate 1, the front surface sealing material 2, and the photovoltaic element 3 and further reaches the back surface sealing material 4 is white. Since it is reflected by the white back surface sealing material 4 and is returned to the photovoltaic device 3 without being absorbed by the back surface sealing material 4, it is effective without wasting much of the light transmitted through the photovoltaic device 3. This is because the power generation efficiency can be improved.
  • the back sheet 5 is formed by laminating a plurality of films composed of a part or all of polyethylene terephthalate resin (PET), PET or aluminum foil on which silica is deposited, and polyvinyl fluoride (PVF). Component. That is, each of the plurality of films is constituted by a part or all of polyethylene terephthalate resin, silica-deposited PET or aluminum foil, and polyvinyl fluoride, and any one of them according to the specifications. Single or combinations thereof can be used.
  • the back sheet 5 has a function of protecting the photovoltaic element 3 from moisture. In order to prevent moisture from permeating into the solar cell module, PET or aluminum foil on which silica is deposited is necessary.
  • the surface of the back sheet 5 that is in contact with the back surface sealing material 4 has high adhesion, and is firmly adhered to the back surface sealing material 4.
  • the outermost film among the plurality of films constituting the back sheet 5 is preferably a film made of a highly weather-resistant resin.
  • the solar cell module 10 of Embodiment 1 is a back sheet that is firmly adhered to the back surface sealing material 4 and the front surface sealing material 2 and the back surface sealing material 4 that are made of an olefin resin that does not generate acid. 5, the reliability of the solar cell module 10 can be ensured over a long period of time without using the reducing agent used for the sealing material of the conventional solar cell module. Can be manufactured at low cost.
  • the photovoltaic element 3 since the photovoltaic element 3 has the light receiving surface side electrode 31 containing 75% or more of silver and 0.001% or more and 25% or less of aluminum in molar ratio, the light receiving surface side electrode While ensuring the electrical conductivity of the silver which comprises 31, the oxidation of silver can be suppressed. Therefore, the reliability of the solar cell module 10 can be ensured for a long time, and the amount of expensive silver used can be suppressed, so that it can be manufactured at a low cost.
  • the back surface sealing material 4 is preferably an olefin resin, but is not necessarily an olefin resin.
  • the back surface sealing material 4 is preferably an olefin resin, but is not necessarily an olefin resin.
  • acetic acid which causes silver oxidation, is generated by the addition of light, water, and heat.
  • a photovoltaic device is present. This is because acetic acid is not generated on the back surface of No. 3, and silver is not easily oxidized.
  • a method for manufacturing the solar cell module 10 of Embodiment 1 will be described.
  • a light transmissive substrate 1, a front surface sealing material 2, a photovoltaic element 3, a back surface sealing material 4 and a back sheet 5 are stacked in this order to form a stacked structure 10 ⁇ / b> S.
  • the lamination press step which heats the laminated structure 10S and presses the heated laminated structure 10S is executed. Thereafter, the laminated structure 10S is cooled and cured to form the solar cell module 10 shown in FIG.
  • FIG. 2 is a diagram schematically showing a cross section of a laminating apparatus used in the method for manufacturing solar cell module 10 of the first embodiment.
  • the laminating apparatus has a process chamber 101 and a chamber vacuum pump 102.
  • the process chamber 101 has a heater 101H for heating the laminated structure 10S, a hot plate 101g for heating the laminated structure 10S, a first chamber 101a located below, and a press function and located above. It has the 2nd chamber 101b and the conveyance sheet
  • FIG. 3 is a diagram schematically showing a side surface of the cooling conveyor 103 used in the method for manufacturing the solar cell module 10 of the first embodiment.
  • the cooling conveyor 103 is provided on the downstream side of the laminating apparatus shown in FIG. 2, and cools the laminated structure 10S discharged from the process chamber 101 after the pressurizing process is executed in the laminating apparatus.
  • the cooling conveyor 103 includes a transfer conveyor 131 and a plurality of rollers 132.
  • the cooling conveyor 103 may be composed of a conveyance sheet and a conveyance chain.
  • a laminating press step is executed, and there are roughly two methods for laminating press step.
  • the first method the light-transmissive substrate 1, the front surface sealing material 2, the photovoltaic element 3, the back surface sealing material 4 and the back sheet 5 are integrated by heating and pressing to form the laminated structure 10S.
  • the light-transmissive substrate 1, the front surface sealing material 2, the photovoltaic element 3, the back surface sealing material 4, and the back sheet 5 are integrated by heating and pressing to form the laminated structure 10S.
  • the surface sealing material 2 and the back surface sealing material 4 are continuously heated to crosslink the surface sealing material 2 and the back surface sealing material 4.
  • FIG. 4 is a diagram showing the relationship between the heating time and the sealing material temperature in the laminating process of the laminating press step in which the laminating process and the crosslinking process are performed separately.
  • FIG. 5 is a diagram showing the relationship between the heating time and the sealing material temperature in the crosslinking process of the laminating press step in which the laminating process and the crosslinking process are performed separately.
  • FIG. 6 is a diagram showing the relationship between the heating time and the sealing material temperature in the laminating press step in which the laminating step and the crosslinking step are performed together. 4 and 5 correspond to the first method, and FIG. 6 corresponds to the second method.
  • a sealing material made of an olefin resin is more elastic than a sealing material made of an ethylene vinyl acetate copolymer resin, so the temperature at the time of performing a laminating press step is controlled. This is very important.
  • the laminate press step is 20 ° C. lower than the melting points of the front surface sealing material 2 and the back surface sealing material 4. Run at a temperature above the temperature.
  • the surface sealing material 2 and the back surface sealing material 4 can be prevented from generating gas, a good appearance of the solar cell module 10 can be obtained, and energy consumption can also be suppressed.
  • pressing is performed at a temperature lower than 20 ° C. lower than the melting point of the front surface sealing material 2 and the rear surface sealing material 4, air bubbles enter the front surface sealing material 2 and the back surface sealing material 4, and the moisture resistance and reliability of the solar cell module 10. There is a high possibility that the quality and appearance quality will deteriorate. In addition, cell cracking during pressing is significantly increased.
  • the electrodes of the plurality of photovoltaic elements 3 are electrically connected by solder.
  • solder When a Sn—Ag—Cu based alloy solder having a melting point of 219 ° C. or a Pb—Sn based solder having a melting point of 183 ° C. is used, when the heating is performed for a long time in the laminate press step, the solder is removed from the solar cell. It becomes a factor which diffuses to the whole module 10 and reduces the output of the solar cell module 10.
  • the laminating press step it is necessary to execute the laminating press step at a temperature below the melting point of the solder used when connecting the electrodes of the photovoltaic element 3. More preferably, the laminating press step is performed at a temperature equal to or lower than the melting point of the front surface sealing material 2 and the back surface sealing material 4.
  • the lamination press step is performed at a temperature of 20 ° C. lower than the melting point of surface sealing material 2 and back surface sealing material 4, and It is performed at a temperature below the melting point of the solder used when connecting the electrodes of the power element 3.
  • the laminating press step is performed at a temperature below the melting point of the front surface sealing material 2 and the back surface sealing material 4.
  • the manufacturing of the solar cell module 10 does not require a reducing agent that has been conventionally required, and also includes a front surface sealing material 2 and a rear surface sealing material 4 that are made of an olefin resin that does not generate acid.
  • the photovoltaic element 3 has the light-receiving surface side electrode 31 containing 75% or more of silver and 0.001% or more and 25% or less of aluminum in a molar ratio, so that it is a low-cost and highly reliable solar cell. Module 10 can be manufactured.
  • the solar cell module 10 when the back surface sealing material 4 is white, most of the light that has reached the back surface sealing material 4 returns to the photovoltaic device 3. It is possible to effectively use most of the light transmitted through the light source without wasting it. Thereby, the power generation efficiency of the solar cell module 10 is high.
  • Comparative Example 1 A white glass light-transmitting substrate 1 having a size of 250 mm ⁇ 250 mm ⁇ 3.2 mm was prepared. Using a surface sealing material 2 made of an ethylene vinyl acetate copolymer, a silver electrode not containing aluminum is used for the light receiving surface side electrode 31 of the photovoltaic element 3, and a silver electrode not containing aluminum is used for the back side electrode 32.
  • the solder for connecting the electrodes of the photovoltaic element 3 was Pb—Sn alloy solder (melting point: 183 ° C.), and the back surface sealing material 4 made of white ethylene vinyl acetate copolymer was used.
  • As the back sheet 5 a sheet obtained by laminating and integrating a plurality of films made of PET and PVF on which polyethylene terephthalate resin and silica were deposited was cut into a size of 270 mm ⁇ 270 mm.
  • the light transmissive substrate 1, the front surface sealing material 2, the photovoltaic element 3, the back surface sealing material 4 and the back sheet 5 are laminated, and vacuum is applied at a hot plate temperature of 160 ° C. using the laminating apparatus shown in FIG. Pulling was performed for 5 minutes, the pressure during pressing was set to 50 kPa, and the pressing time was set to 5 minutes to perform the laminating process. Thereby, it pressed in the state whose temperature of the surface sealing material 2 and the back surface sealing material 4 is 78 degreeC.
  • the cross-linking process was performed by holding the laminated structure 10S subjected to the laminating process in a curing furnace at 150 ° C. for 30 minutes.
  • Example 1 Using the surface sealing material 2 made of a transparent polyethylene resin having a melting point of 95 ° C., the light receiving surface side electrode 31 of the photovoltaic element 3 has a molar ratio of 99.5% silver and 0.5% aluminum. Is used, and an electrode containing 99.5% silver and 0.5% aluminum is used as the back electrode 32, and a white polyethylene resin having a melting point of 95 ° C. is used as the back sealing material 4 In the same manner as in Comparative Example 1, a back sheet 5 integrated by laminating a plurality of films composed of PET and PVF on which polyethylene terephthalate resin and silica were deposited was used.
  • Example 2 is the same as Example 1 except that an ethylene-vinyl acetate copolymer resin having a melting point of 72 ° C. is used as the back surface sealing material 4.
  • Example 3 An electrode containing 75% silver and 25% aluminum in molar ratio is used for the light receiving surface side electrode 31 of the photovoltaic element 3, and 75% silver and 25% aluminum in molar ratio are used for the back side electrode 32. The electrode containing was used. The rest is the same as in the second embodiment.
  • Example 4 An electrode containing 99.999% silver and 0.001% aluminum in molar ratio is used for the light-receiving surface side electrode 31 of the photovoltaic element 3, and 99.999% in molar ratio is used for the back surface side electrode 32. An electrode containing silver and 0.001% aluminum was used. The rest is the same as in the second embodiment.
  • Table 1 shows the specifications of Comparative Example 1 and Examples 1 to 4.
  • FIG. 7 is a diagram showing the results of the above-described deterioration acceleration test.
  • the Pm deterioration rate (%) in FIG. 7 means the deterioration rate of the maximum output.
  • an electrode containing silver and aluminum is used for the light receiving surface side electrode 31 of the photovoltaic element 3, and a polyethylene resin that is an olefin resin is used for the surface sealing material 2.
  • 2 and the back surface sealing material 4 are pressed at a temperature 20 ° C. or more lower than the melting point of the back surface sealing material 4, and the temperature after the pressing is sealed within a range below the melting point of the solder, so It can be manufactured. Further, even when an ethylene vinyl acetate copolymer resin is used for the back surface sealing material 4, the long-term reliability is not greatly affected.
  • the light-receiving surface side electrode 31 of the photovoltaic element 3 does not have a great influence on long-term reliability in a range containing 75% or more of silver and 0.001% or more and 25% or less of aluminum in a molar ratio. I understand.
  • FIG. 8 is a diagram showing the relationship between the temperature of the sealing material composed of the ethylene-vinyl acetate copolymer and the probability of cracking of the cells in the solar cell module when the solar cell module is press-pressed with a laminating apparatus.
  • FIG. 9 is a diagram showing the relationship between the temperature of the sealing material composed of polyethylene when the solar cell module is press-pressed by a laminating apparatus and the probability of cell cracking in the solar cell module.
  • the probability of cell cracking of the solar cell module 10 is reduced by laminating and pressing at a temperature 20 ° C. lower than the melting point of the front surface sealing material 2 and the back surface sealing material 4. It can be seen that the productivity is very high. Therefore, the laminating press step is performed at a temperature that is 20 ° C. lower than the melting point of the front surface sealing material 2 and the back surface sealing material 4.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 10 solar cell module 10S laminated structure, 1 light transmissive substrate, 2 surface sealing material, 3 photovoltaic element, 4 back surface sealing material, 5 back sheet, 31 light receiving surface side electrode, 101 process chamber, 101H heater , 101a 1st chamber, 101b 2nd chamber, 101c conveying sheet, 101g hot plate, 102 chamber vacuum pump, 103 cooling conveyor.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール10は、光を透過させる光透過性基板1と、光透過性基板1の外部であって光透過性基板1に入射した光が透過する側に位置していて、オレフィン系樹脂によって構成されている表面封止材2と、表面封止材2を基準として光透過性基板1が位置する側と反対側に位置していて、電極を構成する成分のうちガラス成分を除く成分にモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極31を有する光起電力素子3と、光起電力素子3を基準として表面封止材2が位置する側と反対側に位置している裏面封止材4と、裏面封止材4を基準として光起電力素子3が位置する側と反対側に位置しているバックシート5とを備える。

Description

太陽電池モジュール及びその製造方法
 本発明は、光エネルギを電力に変換する太陽電池モジュール及びその製造方法に関する。
 従来、太陽電池モジュールの実装技術において、ガラス基板などの光透過性基板の上にエチレン酢酸ビニル共重合体の表面封止材を配置して光起電力素子を並べ、光起電力素子の上にエチレン酢酸ビニル共重合体の裏面封止材とバックシートとを配置してラミネートする技術が提案されている。
 太陽電池モジュールの封止材料には、従来からエチレン酢酸ビニル共重合体が使用されている。太陽電池モジュールの製造時には、ガラス基板、表面封止材、光起電力素子、裏面封止材及びバックシートをこの順に積層する。裏面封止材は、光起電力素子の絶縁性能を担保するために必要な部材である。封止材の例は、特許文献1に開示されている。
 従来の太陽電池モジュールでは、光起電力素子における電極が複数種の金属成分を含んでいるものの、封止材が還元成分を含んでいることにより、封止材から発生する酸により起こる電極の酸化が抑制される。
特表2013-511156号公報
 しかしながら、従来の太陽電池モジュールでは、封止材が還元成分を含んでいるため、従来の太陽電池モジュールのコストは高い。加えて、電極を構成する銀の使用量が多いため、従来の太陽電池モジュールのコストは高い。
 本発明は、上記に鑑みてなされたものであって、低コストで製造でき、かつ信頼性の高い太陽電池モジュールを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、光を透過させる光透過性基板と、前記光透過性基板の外部であって前記光透過性基板に入射した光が透過する側に位置していて、オレフィン系樹脂によって構成されている表面封止材と、前記表面封止材を基準として前記光透過性基板が位置する側と反対側に位置していて、電極を構成する成分のうちガラス成分を除く成分にモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極を有する光起電力素子と、前記光起電力素子を基準として前記表面封止材が位置する側と反対側に位置している裏面封止材と、前記裏面封止材を基準として前記光起電力素子が位置する側と反対側に位置しているバックシートとを備えることを特徴とする。
 本発明によれば、低コストで製造することができ、かつ信頼性の高い太陽電池モジュールを得ることができるという効果を奏する。
実施の形態1の太陽電池モジュールの断面を模式的に示す図 実施の形態1の太陽電池モジュールの製造方法に用いられるラミネート装置の断面を模式的に示す図 実施の形態1の太陽電池モジュールの製造方法に用いられる冷却コンベアの側面を模式的に示す図 ラミネート工程と架橋工程とを別個に行うラミネートプレスステップのラミネート工程における加熱時間と封止材温度との関係を示す図 ラミネート工程と架橋工程とを別個に行うラミネートプレスステップの架橋工程における加熱時間と封止材温度との関係を示す図 ラミネート工程と架橋工程とを一括して行うラミネートプレスステップにおける加熱時間と封止材温度との関係を示す図 温度が85℃で湿度が85%という高温高湿の環境において劣化加速試験を行った結果を示す図 太陽電池モジュールをラミネート装置で圧着プレスする際のエチレン酢酸ビニル共重合体によって構成される封止材の温度と太陽電池モジュール内のセルの割れの確率との関係を示す図 太陽電池モジュールをラミネート装置で圧着プレスする際のポリエチレンによって構成される封止材の温度と太陽電池モジュール内のセルの割れの確率との関係を示す図
 以下に、本発明の実施の形態にかかる太陽電池モジュール及びその製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、本発明の要旨を逸脱しない範囲において実施の形態の一部を変更することは可能である。図面では、実施の形態の理解を容易にするため、各構成要素の縮尺は実際とは異なる場合がある。
実施の形態1.
 図1は、実施の形態1の太陽電池モジュール10の断面を模式的に示す図である。図1に示す通り、太陽電池モジュール10は、光を透過させる光透過性基板1と、光透過性基板1の外部であって光透過性基板1に入射した光が透過する側に位置する表面封止材2と、表面封止材2を基準として光透過性基板1が位置する側と反対側に位置する光起電力素子3と、光起電力素子3を基準として表面封止材2が位置する側と反対側に位置する裏面封止材4と、裏面封止材4を基準として光起電力素子3が位置する側と反対側に位置するバックシート5とを有する。すなわち、太陽電池モジュール10は、光透過性基板1、表面封止材2、光起電力素子3、裏面封止材4及びバックシート5がこの順で積層された積層体である。
 光透過性基板1は、ガラス基板である。光透過性基板1は、光を透過させる機能を有するものであればガラス基板に限定されない。光透過性基板1は、光を透過させる樹脂板であってもよい。光透過性基板1の表面には太陽光が入射し、入射した光は光透過性基板1及び表面封止材2を透過して光起電力素子3に到達し、光起電力素子3において光エネルギが電力に変換される。
 表面封止材2は、オレフィン系樹脂によって構成されている。オレフィン系樹脂は、例えばポリプロピレン樹脂又はポリエチレン樹脂である。より具体的には、表面封止材2は、酸が発生しないポリオレフィン系樹脂にシランカップリング剤及び架橋剤が添加されたものであって透光性を有する熱硬化性樹脂によって構成される複数のシートの積層体である。ポリオレフィン系樹脂は、酸が発生しない光透過性樹脂に置き換えられてもよい。ポリオレフィン系樹脂は、ポリプロピレン樹脂又はポリカーボネートポリウレタン系樹脂に置き換えられてもよい。
 表面封止材2を構成するオレフィン系樹脂は、耐候性、強度及び接着性の一部又は全部を向上させる架橋剤が添加されたものであることが好ましい。接着性とは、光透過性基板1と表面封止材2との接着性と、表面封止材2と光起電力素子3との接着性とを意味する。架橋の方法は、例えば熱によりラジカルを生成する方法である。加えて、表面封止材2を構成するオレフィン系樹脂は、耐光性を向上させるために紫外線吸収剤が添加されたものであることが好ましい。太陽電池モジュール10の出力を向上させるためには、紫外線吸収剤の添加量は少ないことが好ましい。
 光起電力素子3は、電極を構成する成分のうちガラス成分を除く成分にモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極31を有する。受光面側電極31は、金属粒子とガラスとにより構成される。上記の成分比は、受光面側電極31を構成する成分のうちガラス成分を除いた場合の銀とアルミニウムとの成分比である。光起電力素子3は裏面側電極32も有するが、光起電力素子3の構造によっては、裏面側電極32はモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを必ずしも含む必要はない。光起電力素子3は受光面側電極31と裏面側電極32とによって電力を取り出すように構成されている。太陽電池モジュール10では、受光面側電極31は複数の光起電力素子3よって構成されており、複数の光起電力素子3の電極は半田によって電気的に接続されている。このように、光起電力素子3に含まれる複数の電極を接続するために半田が用いられている。例えば、融点が219℃であるSn-Ag-Cu系合金の半田、又は、融点が183℃であるPb-Sn系合金の半田が用いられる。
 なお、受光面側電極31を構成する材料として、銀とアルミニウム以外に、Cu、Au、Pt、Fe、Pd、Mn、Mo、S、C、O、N、P、Ni、Cr、Co、Zn、Sn、Pb、Si、W、Mg、Ti、Sc、In、Sb、Te、Cd、Se、Ir、K、Li、Na及びPの一部又は全部の不純物が含まれてもよい。本発明では、上記不純物が含まれる場合であっても、受光面側電極31にはモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとが含まれる。
 上述の通り、光起電力素子3は、モル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極31を有する。以下に、受光面側電極31に含まれる銀とアルミニウムとの割合について説明する。銀の標準単極電位が+0.799Vであるのに対してアルミニウムの標準単極電位が-1.676Vであるため、アルミニウムは銀より先に酸化され易い。受光面側電極31がアルミニウムを含むことにより、受光面側電極31に含まれる銀の酸化が抑制され、その結果、受光面側電極31の抵抗が上昇しにくくなる。そのため、受光面側電極31がアルミニウムを含むことが好ましい。
 次に、アルミニウムの含有比について説明する。アルミニウムが含まれていない受光面側電極、すなわち銀のみによって構成される受光面側電極が劣化するまでにかかる期間だけ受光面側電極の劣化が遅れれば太陽電池モジュールの信頼性は高くなる。銀が+1価であり、アルミニウムが+3価であるため、受光面側電極におけるアルミニウムの含有率がモル比で全体の1/4倍を超えると、銀の導電率を確保することが困難である。そのため、銀よりも標準単極電位が卑なアルミニウムと銀とによって受光面側電極31を構成する場合、銀については標準単極電位が卑なアルミニウムの価数倍以上、つまりアルミニウムの3倍以上にすると共に、標準単極電位が卑なアルミニウムについては銀の価数倍以下、つまり銀の1倍以下にすることが好ましい。また、アルミニウムの量がモル比で0.001%より少なくなると、受光面側電極31に含まれる銀の酸化を抑制する効果が弱まる。すなわち、光起電力素子3に含まれる受光面側電極31は、モル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含むことが好ましい。
 光起電力素子3を構成する太陽電池セルは、例えば結晶系太陽電池の太陽電池セルを用いることができる。結晶系太陽電池セルは、例えば単結晶シリコン太陽電池セル又は多結晶シリコン太陽電池セルである。結晶系太陽電池セルは、単結晶シリコン太陽電池セル又は多結晶シリコン太陽電池セルに限定されない。
 裏面封止材4は、オレフィン系樹脂によって構成されている。オレフィン系樹脂は、例えばポリプロピレン樹脂又はポリエチレン樹脂である。裏面封止材4は白色であることが好ましい。裏面封止材4が白色であることが好ましい理由は、光透過性基板1、表面封止材2及び光起電力素子3を透過してさらに裏面封止材4に到達した光の多くが白色の裏面封止材4に吸収されることなく白色の裏面封止材4で反射されて光起電力素子3に戻るので、光起電力素子3を透過した光の多くを無駄にすることなく有効利用することができ、ひいては発電効率を高めることができるからである。
 バックシート5は、ポリエチレンテレフタレート樹脂(PET)と、シリカが蒸着されたPET又はアルミニウム箔と、ポリフッ化ビニル(PVF)との一部又は全部によって構成されている複数のフィルムが積層されて一体化された構成要素である。つまり、複数のフィルムのそれぞれは、ポリエチレンテレフタレート樹脂と、シリカが蒸着されたPET又はアルミニウム箔と、ポリフッ化ビニルとの一部又は全部によって構成されており、仕様に合わせてそれらのうちのいずれか単独又はそれらの組合せを使用できる。バックシート5は、光起電力素子3を湿気から保護する機能を有している。なお、水分を太陽電池モジュール内部に透過させないようにするためにはシリカが蒸着されたPET又はアルミニウム箔が必要である。バックシート5の裏面封止材4と接する面は高い密着性を持っていて裏面封止材4に対して強固に密着している。バックシート5を構成する複数のフィルムのうちの最も外側のものは、対候性が高い樹脂によって構成されたフィルムであることが好ましい。
 実施の形態1の太陽電池モジュール10は、酸が発生しないオレフィン系樹脂によって構成されている表面封止材2及び裏面封止材4と、裏面封止材4に対して強固に密着するバックシート5とを有するので、従来の太陽電池モジュールの封止材に用いられていた還元剤が使用されなくても、太陽電池モジュール10の信頼性を長期にわたって担保することが可能となると共に、還元剤を使用する必要がないため低コストで製造できる。加えて、太陽電池モジュール10では、光起電力素子3がモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極31を有するので、受光面側電極31を構成する銀の導電率を確保すると共に、銀の酸化を抑制することができる。そのため、太陽電池モジュール10の信頼性を長期にわたって担保することが可能となると共に、高価な銀の使用量を抑制することができるため低コストで製造できる。
 実施の形態1の光起電力素子3の裏面側電極32にモル比で75%以上の銀と0.001%以上25%以下のアルミニウムの電極を使用することが好ましいが、必ずしも使用する必要はない。また、裏面封止材4はオレフィン系樹脂であることが好ましいが、必ずしもオレフィン系樹脂である必要はない。例えば、裏面封止材4にエチレン酢酸ビニル共重合体を使用しても問題は無い。それは、銀の酸化を起こす原因である酢酸が、光、水及び熱が加わることにより発生するためであり、裏面側に酢酸が発生しやすいエチレン酢酸ビニル共重合体があっても光起電力素子3の裏面には紫外線が入射しにくいため酢酸が発生せず、銀の酸化が起こりにくいからである。
 次に、実施の形態1の太陽電池モジュール10の製造方法について説明する。まず、図1に示すように、光透過性基板1、表面封止材2、光起電力素子3、裏面封止材4及びバックシート5をこの順で積層して積層構造体10Sを形成する。そして、積層構造体10Sを加熱し、加熱された積層構造体10Sをプレスするラミネートプレスステップを実行する。その後、積層構造体10Sを冷却して硬化させ、図1に示す太陽電池モジュール10を形成する。
 図2は、実施の形態1の太陽電池モジュール10の製造方法に用いられるラミネート装置の断面を模式的に示す図である。ラミネート装置は、プロセスチャンバ101と、チャンバ真空ポンプ102とを有する。プロセスチャンバ101は、積層構造体10Sを加熱するためのヒータ101Hと、積層構造体10Sを加熱する熱板101gと、下方に位置する第1チャンバ101aと、プレスする機能を持つと共に上方に位置する第2チャンバ101bと、積層構造体10Sを製造工程の下流側に搬送するための搬送シート101cとを有する。
 図3は、実施の形態1の太陽電池モジュール10の製造方法に用いられる冷却コンベア103の側面を模式的に示す図である。冷却コンベア103は、図2に示すラミネート装置の下流側に設けられるものであって、ラミネート装置において加圧処理が実行された後にプロセスチャンバ101から排出された積層構造体10Sを冷却する。冷却コンベア103は、搬送コンベア131と複数個のローラ132とを有する。冷却コンベア103は、搬送シート及び搬送チェーンで構成されていてもよい。
 図2に示すラミネート装置ではラミネートプレスステップが実行されるが、ラミネートプレスステップには、大きく分けて2つの方法がある。一つ目の方法は、光透過性基板1、表面封止材2、光起電力素子3、裏面封止材4及びバックシート5を加熱及びプレスすることにより一体化して積層構造体10Sを形成するラミネート工程と、形成された積層構造体10Sをキュア炉(図示せず)、すなわちオーブンに入れて加熱し表面封止材2及び裏面封止材4を架橋する架橋工程とを含む。二つ目の方法は、光透過性基板1、表面封止材2、光起電力素子3、裏面封止材4及びバックシート5を加熱及びプレスすることにより一体化して積層構造体10Sを形成するラミネート工程を行う際に、表面封止材2及び裏面封止材4に熱を加え続けて表面封止材2及び裏面封止材4を架橋する方法である。
 図4は、ラミネート工程と架橋工程とを別個に行うラミネートプレスステップのラミネート工程における加熱時間と封止材温度との関係を示す図である。図5は、ラミネート工程と架橋工程とを別個に行うラミネートプレスステップの架橋工程における加熱時間と封止材温度との関係を示す図である。図6は、ラミネート工程と架橋工程とを一括して行うラミネートプレスステップにおける加熱時間と封止材温度との関係を示す図である。図4及び図5は一つ目の方法に対応しており、図6は二つ目の方法に対応している。
 一般的に、オレフィン系樹脂によって構成されている封止材はエチレン酢酸ビニル共重合体樹脂によって構成されている封止材よりも高弾性であるため、ラミネートプレスステップを行う際の温度をコントロールすることが重要である。光起電力素子3の破損(セル割れと言う)及び封止材中の気泡の発生を抑制するために、ラミネートプレスステップを、表面封止材2及び裏面封止材4の融点から20℃低い温度以上の温度で実行する。
 表面封止材2及び裏面封止材4の融点より20℃低い温度以上でかつ表面封止材2及び裏面封止材4の融点以下の温度の範囲内でプレスすることで、表面封止材2及び裏面封止材4からのガスの発生を抑制することができ、太陽電池モジュール10の良好な外観も得られ、かつエネルギ消費量も抑えることができる。表面封止材2及び裏面封止材4の融点より20℃低い温度未満でプレスすると、表面封止材2及び裏面封止材4に気泡が入ってしまい、太陽電池モジュール10の耐湿性、信頼性及び外観品質が低下する可能性が高くなる。また、プレス時のセル割れも著しく増加する。
 また、太陽電池モジュール10における光起電力素子3では、複数の光発電素子3の電極が半田によって電気的に接続されている。融点が219℃であるSn-Ag-Cu系合金の半田又は融点が183℃であるPb-Sn系の半田が使用される場合、ラミネートプレスステップにおいて長時間の加熱を行うと、半田が太陽電池モジュール10の全体に拡散して太陽電池モジュール10の出力を低下させる要因となる。
 そのため、ラミネートプレスステップを、光起電力素子3の電極を接続する際に用いられる半田の融点以下の温度で実行する必要がある。ラミネートプレスステップを、表面封止材2及び裏面封止材4の融点以下の温度で実行することがより好ましい。
 上述の通り、実施の形態1の太陽電池モジュール10の製造方法では、ラミネートプレスステップを、表面封止材2及び裏面封止材4の融点から20℃低い温度以上の温度であって、光起電力素子3の電極を接続する際に用いられる半田の融点以下の温度で実行する。好ましくは、ラミネートプレスステップを、表面封止材2及び裏面封止材4の融点以下の温度で実行する。これにより、表面封止材2及び裏面封止材4に気泡が混入したり、プレス時のセル割れが増加したり、半田が太陽電池モジュール10の全体に拡散したりすることを抑制することができ、その結果、太陽電池モジュール10の出力を高く維持することができ、かつ外観品質が低下することを防止できる。加えて、太陽電池モジュール10の製造には、従来必要とされていた還元剤を必要としない上に、酸が発生しないオレフィン系樹脂によって構成されている表面封止材2及び裏面封止材4を用い、光起電力素子3は、モル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極31を有するので、低コストで信頼性の高い太陽電池モジュール10を製造することができる。
 上述した実施の形態1の太陽電池モジュール10において、裏面封止材4が白色である場合、裏面封止材4に到達した光の多くが光起電力素子3に戻るので、光起電力素子3を透過した光の多くを無駄にすることなく有効利用することができる。これにより、太陽電池モジュール10の発電効率は高い。
 以下に、実施例について説明する。
比較例1.
 大きさが250mm×250mm×3.2mmである白板ガラスの光透過性基板1を準備した。エチレン酢酸ビニル共重合体による表面封止材2を用い、光起電力素子3が有する受光面側電極31にアルミニウムを含まない銀電極を用い、裏面側電極32にアルミニウムを含まない銀電極を用い、光起電力素子3の電極を接続する半田にはPb-Sn系合金の半田(融点:183℃)を使用し、白色エチレン酢酸ビニル共重合体による裏面封止材4を用いた。バックシート5には、ポリエチレンテレフタレート樹脂とシリカが蒸着されたPETとPVFとによって構成されている複数のフィルムを積層一体化したシートを270mm×270mmの大きさに裁断したものを用いた。
 そして、光透過性基板1、表面封止材2、光起電力素子3、裏面封止材4及びバックシート5を積層し、図2に示すラミネート装置を用い、熱板温度160℃にて真空引きを5分間行い、プレス時の圧力を50kPaとすると共にプレス時間を5分としてラミネート工程を行った。これにより表面封止材2及び裏面封止材4の温度が78℃である状態でプレスを行った。
 ラミネート工程を行った積層構造体10Sを150℃のキュア炉の中で30分間保持して架橋工程を行った。
実施例1.
 融点が95℃である透明ポリエチレン樹脂によって構成された表面封止材2を用い、光起電力素子3が有する受光面側電極31にモル比で99.5%の銀と0.5%のアルミニウムとを含む電極を用い、裏面側電極32にモル比で99.5%の銀と0.5%のアルミニウムとを含む電極を用い、融点が95℃である白色ポリエチレン樹脂を裏面封止材4に用い、比較例1と同様に、ポリエチレンテレフタレート樹脂とシリカが蒸着されたPETとPVFとによって構成されている複数のフィルムを積層することによって一体化したバックシート5を用いた。ラミネートプレスステップでは、比較例1と同様に表面封止材2及び裏面封止材4の融点より20℃低い温度以上の78℃の温度でプレスし、プレス後の架橋工程は、半田の融点以下の150℃のキュア炉の中で30分間保持して行った。それ以外は比較例1と同じである。
実施例2.
 裏面封止材4として融点が72℃であるエチレン酢酸ビニル共重合体樹脂を用いた以外は実施例1と同じである。
実施例3.
 光起電力素子3が有する受光面側電極31にモル比で75%の銀と25%のアルミニウムとを含む電極を用いると共に、裏面側電極32にモル比で75%の銀と25%のアルミニウムとを含む電極を用いた。それ以外は実施例2と同じである。
実施例4.
 光起電力素子3が有する受光面側電極31にモル比で99.999%の銀と0.001%のアルミニウムとを含む電極を用いると共に、裏面側電極32にモル比で99.999%の銀と0.001%のアルミニウムとを含む電極を用いた。それ以外は実施例2と同じである。
 表1、に比較例1及び実施例1から4の仕様を示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1の太陽電池モジュールと実施例1から4の太陽電池モジュールとについて、温度が85℃で湿度が85%という高温高湿の環境において劣化加速試験を行った。図7は、前述の劣化加速試験を行った結果を示す図である。図7におけるPm劣化率(%)は、最大出力の劣化率を意味する。
 図7から理解できる通り、光起電力素子3が有する受光面側電極31に銀とアルミニウムとを含む電極を用い、表面封止材2にオレフィン系樹脂であるポリエチレン樹脂を用い、表面封止材2及び裏面封止材4の融点より20℃低い温度以上の温度でプレスし、プレス後の温度を半田の融点以下の範囲で封止することで長期にわたって信頼性に優れた太陽電池モジュール10を製造することが可能となる。また、裏面封止材4にエチレン酢酸ビニル共重合体樹脂を用いた場合でも、長期信頼性には大きな影響を与えていない。さらに、光起電力素子3の受光面側電極31は、モル比で75%以上の銀と0.001%以上25%以下のアルミニウムを含む範囲において長期信頼性には大きな影響を与えていないことがわかる。
 図8は、太陽電池モジュールをラミネート装置で圧着プレスする際のエチレン酢酸ビニル共重合体によって構成される封止材の温度と太陽電池モジュール内のセルの割れの確率との関係を示す図である。図9は、太陽電池モジュールをラミネート装置で圧着プレスする際のポリエチレンによって構成される封止材の温度と太陽電池モジュール内のセルの割れの確率との関係を示す図である。図8及び図9に示すように、表面封止材2及び裏面封止材4の融点より20℃低い温度以上の温度でラミネートプレスすることで、太陽電池モジュール10のセル割れの確率は低下し、生産性が非常に高くなることが分かる。そのため、ラミネートプレスステップを、表面封止材2及び裏面封止材4の融点から20℃低い温度以上の温度で実行する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 10 太陽電池モジュール、10S 積層構造体、1 光透過性基板、2 表面封止材、3 光起電力素子、4 裏面封止材、5 バックシート、31 受光面側電極、101 プロセスチャンバ、101H ヒータ、101a 第1チャンバ、101b 第2チャンバ、101c 搬送シート、101g 熱板、102 チャンバ真空ポンプ、103 冷却コンベア。

Claims (7)

  1.  光を透過させる光透過性基板と、
     前記光透過性基板の外部であって前記光透過性基板に入射した光が透過する側に位置していて、オレフィン系樹脂によって構成されている表面封止材と、
     前記表面封止材を基準として前記光透過性基板が位置する側と反対側に位置していて、電極を構成する成分のうちガラス成分を除く成分にモル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極を有する光起電力素子と、
     前記光起電力素子を基準として前記表面封止材が位置する側と反対側に位置している裏面封止材と、
     前記裏面封止材を基準として前記光起電力素子が位置する側と反対側に位置しているバックシートと
     を備えることを特徴とする太陽電池モジュール。
  2.  前記オレフィン系樹脂はポリプロピレン樹脂又はポリエチレン樹脂であることを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記裏面封止材はオレフィン系樹脂又はエチレン酢酸ビニル共重合体によって構成されていることを特徴とする請求項1に記載の太陽電池モジュール。
  4.  前記バックシートが、ポリエチレンテレフタレート樹脂と、シリカが蒸着されたポリエチレンテレフタレート又はアルミニウム箔と、ポリフッ化ビニルとの一部又は全部によって構成されている複数のフィルムが積層されて一体化されていることを特徴とする請求項1に記載の太陽電池モジュール。
  5.  光を透過させる光透過性基板の外部であって前記光透過性基板に入射した光が透過する側に、オレフィン系樹脂によって構成されている表面封止材を配置して前記光透過性基板と前記表面封止材とを積層する表面封止材積層ステップと、
     前記表面封止材を基準として前記光透過性基板が位置する側と反対側に、モル比で75%以上の銀と0.001%以上25%以下のアルミニウムとを含む受光面側電極を有する光起電力素子を配置して前記表面封止材と前記光起電力素子とを積層する光起電力素子積層ステップと、
     前記光起電力素子を基準として前記表面封止材が位置する側と反対側に、オレフィン系樹脂又はエチレン酢酸ビニル共重合体によって構成されている裏面封止材を配置して前記光起電力素子と前記裏面封止材とを積層する裏面封止材積層ステップと、
     前記裏面封止材を基準として前記光起電力素子が位置する側と反対側に、ポリエチレンテレフタレート樹脂と、シリカが蒸着されたポリエチレンテレフタレート又はアルミニウム箔と、ポリフッ化ビニルとの一部又は全部によって構成されている複数のフィルムが積層されて一体化されたバックシートを配置して前記裏面封止材と前記バックシートとを積層するバックシート積層ステップと、
     積層された前記光透過性基板、前記表面封止材、前記光起電力素子、前記裏面封止材及び前記バックシートをラミネートすると共にプレスするラミネートプレスステップとを含み、
     前記ラミネートプレスステップを、前記表面封止材及び前記裏面封止材の融点から20℃低い温度以上の温度であって、かつ前記光起電力素子の電極を接続する際に用いられる半田の融点以下の温度で実行する
     ことを特徴とする太陽電池モジュールの製造方法。
  6.  前記オレフィン系樹脂はポリプロピレン樹脂又はポリエチレン樹脂であることを特徴とする請求項5に記載の太陽電池モジュールの製造方法。
  7.  前記ラミネートプレスステップを、前記表面封止材及び前記裏面封止材の融点から20℃低い温度以上の温度であって、かつ前記表面封止材及び前記裏面封止材の融点以下の温度で実行することを特徴とする請求項5又は6に記載の太陽電池モジュールの製造方法。
PCT/JP2016/053276 2016-02-03 2016-02-03 太陽電池モジュール及びその製造方法 WO2017134784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017565340A JPWO2017134784A1 (ja) 2016-02-03 2016-02-03 太陽電池モジュール及びその製造方法
CN201680054758.0A CN108604610A (zh) 2016-02-03 2016-02-03 太阳能电池模块及其制造方法
PCT/JP2016/053276 WO2017134784A1 (ja) 2016-02-03 2016-02-03 太陽電池モジュール及びその製造方法
TW105115459A TWI624956B (zh) 2016-02-03 2016-05-19 Solar battery module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053276 WO2017134784A1 (ja) 2016-02-03 2016-02-03 太陽電池モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2017134784A1 true WO2017134784A1 (ja) 2017-08-10

Family

ID=59500699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053276 WO2017134784A1 (ja) 2016-02-03 2016-02-03 太陽電池モジュール及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2017134784A1 (ja)
CN (1) CN108604610A (ja)
TW (1) TWI624956B (ja)
WO (1) WO2017134784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230327046A1 (en) * 2022-08-30 2023-10-12 Suzhou Xiaoniu Automation Equipment Co., Ltd Photovoltaic (pv) module and method for fabricating the same, and solar cell module and solar cell string

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313744A (ja) * 2005-04-14 2006-11-16 E I Du Pont De Nemours & Co 導電性厚膜組成物、電極、およびそれから形成される半導体デバイス
JP2010226041A (ja) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp 太陽電池モジュール
JP2014530482A (ja) * 2011-09-09 2014-11-17 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー 銀製の太陽電池接点
JP2015115513A (ja) * 2013-12-13 2015-06-22 三菱樹脂株式会社 太陽電池用封止材
JP2015130406A (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
JP2015165515A (ja) * 2011-07-29 2015-09-17 ギガ ソーラー マテリアルズ コーポレーション 太陽電池およびその電極

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4359308B2 (ja) * 2004-04-28 2009-11-04 中島硝子工業株式会社 太陽電池モジュールの製造方法
JP2010275415A (ja) * 2009-05-28 2010-12-09 Tosoh Corp ポリオレフィン樹脂組成物フィルム、及びこれを用いた太陽電池用封止フィルム、これを用いた太陽電池
CN103053029B (zh) * 2010-08-05 2016-08-03 三菱电机株式会社 太阳能电池模块以及太阳能电池模块的制造方法
JP2012038956A (ja) * 2010-08-09 2012-02-23 Kaneka Corp 薄膜太陽電池モジュール
CN102122681A (zh) * 2010-12-16 2011-07-13 江西赛维Ldk太阳能高科技有限公司 一种太阳能电池片的连接方法
JP2012222067A (ja) * 2011-04-06 2012-11-12 Kaneka Corp 太陽電池モジュール、および太陽電池モジュール製造法
JP2013038269A (ja) * 2011-08-09 2013-02-21 Hitachi High-Technologies Corp 太陽電池モジュールの封止方法および太陽電池モジュールの封止装置
JP6112426B2 (ja) * 2012-03-09 2017-04-12 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法
JP2014090160A (ja) * 2012-10-04 2014-05-15 Toppan Printing Co Ltd 太陽電池モジュール
KR101358513B1 (ko) * 2012-10-16 2014-02-07 현대중공업 주식회사 도금전극을 가지는 태양전지의 접착력 개선 구조 및 그 방법
JP6255669B2 (ja) * 2012-10-24 2018-01-10 大日本印刷株式会社 封止材シート
JP6093209B2 (ja) * 2013-03-13 2017-03-08 三菱電機株式会社 太陽電池モジュール及びその製造方法
JP6286986B2 (ja) * 2013-09-26 2018-03-07 大日本印刷株式会社 太陽電池モジュール用の封止材マスターバッチ及びその製造方法
US9666731B2 (en) * 2013-10-21 2017-05-30 Samsung Sdi Co., Ltd. Composition for solar cell electrodes, electrode fabricated using the same, and solar cell having the electrode
JP2015159189A (ja) * 2014-02-24 2015-09-03 旭化成株式会社 太陽電池樹脂封止シート
WO2015147213A1 (ja) * 2014-03-26 2015-10-01 新日鉄住金マテリアルズ株式会社 導電体及び太陽電池用インターコネクター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313744A (ja) * 2005-04-14 2006-11-16 E I Du Pont De Nemours & Co 導電性厚膜組成物、電極、およびそれから形成される半導体デバイス
JP2010226041A (ja) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp 太陽電池モジュール
JP2015165515A (ja) * 2011-07-29 2015-09-17 ギガ ソーラー マテリアルズ コーポレーション 太陽電池およびその電極
JP2014530482A (ja) * 2011-09-09 2014-11-17 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー 銀製の太陽電池接点
JP2015115513A (ja) * 2013-12-13 2015-06-22 三菱樹脂株式会社 太陽電池用封止材
JP2015130406A (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230327046A1 (en) * 2022-08-30 2023-10-12 Suzhou Xiaoniu Automation Equipment Co., Ltd Photovoltaic (pv) module and method for fabricating the same, and solar cell module and solar cell string
US11876146B2 (en) * 2022-08-30 2024-01-16 Suzhou Xiaoniu Automation Equipment Co., Ltd Photovoltaic (PV) module and method for fabricating the same, and solar cell module and solar cell string

Also Published As

Publication number Publication date
JPWO2017134784A1 (ja) 2018-04-12
TW201729430A (zh) 2017-08-16
TWI624956B (zh) 2018-05-21
CN108604610A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP2915327B2 (ja) 太陽電池モジュール及びその製造方法
KR101215694B1 (ko) 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
JP6201157B2 (ja) 太陽電池モジュールの製造方法
US8829333B2 (en) Solar cell module and method for manufacturing same
JP2010177670A (ja) 光起電モジュール
CN103022201A (zh) 晶硅太阳能电池模块及其制造方法
JP6709996B2 (ja) 太陽電池モジュールの製造方法、及び太陽電池モジュールの製造装置
JP2002039631A (ja) 光熱ハイブリッドパネル及びそれを用いたハイブリッドパネル本体及び光熱ハイブリッドパネルの製造方法
JP2009238959A (ja) 圧着装置及び太陽電池モジュールの製造方法
US9627567B2 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
JPH11112007A (ja) 太陽電池モジュール及びその製造方法
WO2017134784A1 (ja) 太陽電池モジュール及びその製造方法
JP2014229754A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
US20170025559A1 (en) Photovoltaic element with optically functional conversion layer for improving the conversion of the incident light and method for producing said photovoltaic element
US11430900B2 (en) Wavelength-selective specularly reflecting photovoltaic module and manufacture thereof
JP2005236217A (ja) 太陽電池モジュール用封止材及びこれを用いた太陽電池モジュールの製造方法
JP2002016273A (ja) 太陽電池モジュールの製造方法
CN110299419A (zh) 一种新型太阳能柔性组件的覆膜工艺
WO2021095217A1 (ja) 太陽電池パネル、太陽電池モジュール、太陽電池パネルの製造方法および太陽電池モジュールの製造方法
CN217983362U (zh) 光伏组件
TWI746034B (zh) 太陽能電池單元、其製備方法及含彼之太陽能電池模組
JP2016082140A (ja) 太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2016207891A (ja) 太陽電池モジュールの製造方法
KR20200086571A (ko) 표면 실장형 태양광 모듈 제조 방법
JP2017139334A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889271

Country of ref document: EP

Kind code of ref document: A1