WO2017115405A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2017115405A1
WO2017115405A1 PCT/JP2015/086478 JP2015086478W WO2017115405A1 WO 2017115405 A1 WO2017115405 A1 WO 2017115405A1 JP 2015086478 W JP2015086478 W JP 2015086478W WO 2017115405 A1 WO2017115405 A1 WO 2017115405A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
electrode
electron
emitting device
Prior art date
Application number
PCT/JP2015/086478
Other languages
French (fr)
Japanese (ja)
Inventor
泰裕 高橋
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/086478 priority Critical patent/WO2017115405A1/en
Publication of WO2017115405A1 publication Critical patent/WO2017115405A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting device.
  • An organic EL element is one of the light sources of a light emitting device.
  • the organic EL element has a configuration in which an organic layer is disposed between a first electrode serving as an anode and a second electrode serving as a cathode.
  • the organic layer has, in order from the first electrode side, a configuration in which at least one of a hole injection layer and a hole transport layer, a light emitting layer, and at least one of an electron injection layer and an electron transport layer are stacked in this order (hereinafter, A light emitting unit). Holes are supplied to the light emitting layer via a hole injection layer (or hole transport layer), and electrons are supplied via an electron injection layer (or electron transport layer). Then, light is generated by combining holes and electrons in the light emitting layer.
  • an electron blocking layer and a hole blocking layer may be provided in the organic layer.
  • the electron blocking layer is provided between the hole injection layer (or hole transport layer) and the light emitting layer
  • the hole blocking layer is provided between the electron injection layer (or electron transport layer) and the light emitting layer.
  • Patent Document 2 describes that two light emitting units are stacked and a carrier generation layer is disposed between the two light emitting units.
  • the carrier generation layer has a configuration in which an electron transport layer and an electron extraction layer are stacked.
  • an electron blocking layer may be provided between the hole injection layer (or hole transport layer) and the light emitting layer in order to prevent electrons from penetrating the light emitting layer.
  • an electron blocking layer is provided between the hole injection layer (or the hole transport layer) and the light emitting layer, while suppressing the shortening of the lifetime of the light emitting device as an example. Can be mentioned.
  • the invention according to claim 1 is a first electrode that is an anode; A second electrode which is a cathode; An organic layer positioned between the first electrode and the second electrode; With The organic layer is A light emitting layer; A first functional layer that is located between the first electrode and the light emitting layer and includes a material that moves holes; A second functional layer that is located between the first functional layer and the light emitting layer and includes a material that inhibits electron movement; A third functional layer including a material that is located between the first functional layer and the second functional layer and to which electrons move; A light emitting device having
  • FIG. 1 is a plan view of a light emitting device according to Example 1.
  • FIG. It is the figure which removed the 2nd electrode from FIG. It is the figure which removed the organic layer and the insulating layer from FIG.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • 6 is a plan view of a light emitting device according to Example 2.
  • FIG. 8 is a sectional view taken along line BB in FIG. It is CC sectional drawing of FIG. FIG. 8 is a DD sectional view of FIG. 7.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the embodiment.
  • the light emitting device 10 according to the embodiment includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the first electrode 110 is an anode
  • the second electrode 130 is a cathode.
  • the organic layer 120 is located between the first electrode 110 and the second electrode 130, and includes a light emitting layer 125, a hole injection layer 121 (first functional layer), an electron blocking layer 124 (second functional layer), and an electron. It has a drawing layer 123 (third functional layer).
  • the hole injection layer 121 is located between the first electrode 110 and the light emitting layer 125 and includes a material that moves holes.
  • the electron blocking layer 124 includes a material that is located between the hole injection layer 121 and the light emitting layer 125 and inhibits the movement of electrons.
  • the electron extraction layer 123 includes a material that is located between the hole injection layer 121 and the electron inhibition layer 124 and moves electrons. Details will be described below.
  • the light emitting device 10 includes a light emitting unit 140.
  • the light emitting unit 140 includes the first electrode 110, the organic layer 120, and the second electrode 130 described above.
  • the light emitting unit 140 may be a bottom emission type light emitting unit or a top emission type light emitting unit.
  • the light emitting unit 140 is formed on one surface of the substrate 100.
  • the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin, and the surface of the substrate 100 opposite to the first electrode 110. Is the light extraction surface of the light emitting device 10.
  • the substrate 100 may be formed of the above-described translucent material or may be formed of a material that does not have translucency.
  • the substrate 100 is, for example, a polygon such as a rectangle. Further, the substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed.
  • an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
  • At least one of the first electrode 110 and the second electrode 130 is a transparent electrode having optical transparency.
  • the first electrode 110 is a transparent electrode.
  • the second electrode 130 is a transparent electrode. Note that both the first electrode 110 and the second electrode 130 may be transparent electrodes.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide) or the like. is there.
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
  • the non-transparent electrode is selected from, for example, a first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from the first group.
  • This electrode is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may have a structure in which a metal layer and a transparent conductive layer are laminated in this order.
  • the organic layer 120 includes a hole injection layer 121, a hole transport layer 122, an electron extraction layer 123, an electron inhibition layer 124, a light emitting layer 125, a hole inhibition layer 126, an electron transport layer 127, and an electron injection layer 128. ing. However, one of the hole injection layer 121 and the hole transport layer 122 may not be formed. One of the electron transport layer 127 and the electron injection layer 128 may not be formed. Further, the hole blocking layer 126 may not be formed.
  • the hole injection layer 121 and the hole transport layer 122 are formed using a material that moves holes (an organic material having a hole mobility).
  • this material include porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triaryls.
  • PEDOT PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.
  • Examples of the triarylamine derivative include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • the thickness of the hole injection layer 121 is, for example, not less than 5 nm and not more than 100 nm.
  • the thickness of the hole transport layer 122 is, for example, 1 nm or more and 100 nm or less.
  • the electron-inhibiting layer 124 is provided in order to prevent electrons that have penetrated the light-emitting layer 125 from reaching the hole-transporting layer 122 and the hole-injecting layer 121.
  • the electron inhibition layer 124 is in contact with the light emitting layer 125.
  • the electron-inhibiting layer 124 can be formed using, for example, at least one of the above-described materials through which holes move (hole-moving organic material).
  • the thickness of the electron inhibition layer 124 is, for example, not less than 5 nm and not more than 20 nm.
  • the electron extraction layer 123 is in contact with the electron inhibition layer 124, and is provided for extracting charges accumulated in the electron inhibition layer 124 from the electron inhibition layer 124.
  • the thickness of the electron extraction layer 123 is, for example, not less than 0.1 nm and not more than 5 nm.
  • the electron extraction layer 123 is formed using a material (electron mobility organic material) in which electrons accumulated in the electron inhibition layer 124 can move, for example, a material having a high electron affinity or a material having a strong acceptor property. .
  • a material constituting the electron extraction layer 123 an organic cyanide compound having an aromatic ring represented by the following chemical formula (1) is exemplified.
  • the organic cyanide compound having an aromatic ring is, for example, hexaazatriphenylene represented by the following chemical formula (2).
  • R1 to R6 are cyano group (—CN), sulfone group (—SO 2 R ′), sulfoxide group (—SOR ′), sulfonamide group (—SO 2 NR ′ 2 ), respectively.
  • R1 to R6 may be different from each other.
  • R1 to R6 is a cyano group.
  • R ′ is an alkyl group having 1 to 60 carbon atoms, an aryl group, or a heterocyclic group that is substituted or unsubstituted with an amine group, an amide group, an ether group, or an ester group.
  • the light emitting layer 125 is formed using a material that emits light in association with recombination of electrons and holes.
  • the light emitting layer 125 may have any color of light emission. For this reason, the material of the light emitting layer 125 may be anything as long as it is a light emitting organic material.
  • the hole-inhibiting layer 126 is in contact with the surface of the light-emitting layer 125 opposite to the electron-inhibiting layer 124, and the holes penetrate the light-emitting layer 125 and reach the electron-transporting layer 127 or the electron-injecting layer 128. Suppress.
  • the hole-inhibiting layer 126 is formed using, for example, a material that can move electrons (an electron-transporting organic material).
  • the thickness of the hole blocking layer 126 is, for example, not less than 1 nm and not more than 20 nm.
  • the electron transport layer 127 is formed using a material (electron mobility organic material) through which electrons move.
  • materials include nitrogen-containing aromatic heterocyclic derivatives, aromatic hydrocarbon ring derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, and silole derivatives.
  • the thickness of the electron transport layer 127 is, for example, not less than 5 nm and not more than 100 nm.
  • the electron injection layer 128 is formed using, for example, an alkaline earth metal compound such as LiF, a metal oxide typified by aluminum oxide, or a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • the thickness of the electron injection layer 128 is, for example, not less than 0.1 nm and not more than 10 nm.
  • Each layer constituting the organic layer 120 is formed by a vapor deposition method or a coating method such as an inkjet method, a printing method, or a spray method. Each layer may be formed using the same method, or at least one layer may be formed using a method different from the others.
  • the first electrode 110 is formed on the substrate 100.
  • a hole injection layer 121, a hole transport layer 122, an electron extraction layer 123, an electron inhibition layer 124, a light emitting layer 125, a hole inhibition layer 126, an electron transport layer 127, and an electron injection layer 128 are formed in this order.
  • the second electrode 130 is formed on the electron injection layer 128.
  • FIG. 2 shows that the driving voltage, the luminance, the external quantum efficiency, and the luminance of the light emitting device 10 (samples 1 and 2) according to the embodiment and the light emitting device 10 according to the comparative example (comparative examples 1 to 3) are half. It is the table
  • the first electrode 110 is made of ITO having a thickness of 70 nm
  • the second electrode 130 is made of Al having a thickness of 100 nm.
  • CuPc having a thickness of 30 nm and 10 vol% ⁇ having a thickness of 30 nm are sequentially provided.
  • Ir (cn-pimc) 3 mCBP with a thickness of 5 nm, Alq3 with a thickness of 30 nm, and LiF with a thickness of 1 nm were used.
  • NPB having a thickness of 9.5 nm is used as the hole transport layer 122
  • HAT-CN having a thickness of 0.5 nm is used as the electron extraction layer 123
  • a thickness of 5 nm is used as the electron inhibition layer 124.
  • TCTA was used.
  • Sample 2 has the same structure as Sample 1 except that the thickness of HAT-CN as the electron extraction layer 123 is 1 nm.
  • Sample 3 had the same structure as Sample 1 except that HAT-CN having a thickness of 2.5 nm was used as the electron extraction layer 123.
  • the thickness of the NPB as the hole transport layer 122 was 15 nm, and the electron extraction layer 123 and the electron inhibition layer 124 were not provided.
  • the thickness of NPB as the hole transport layer 122 was 10 nm, the electron extraction layer 123 was not provided, and a TCTA with a thickness of 5 nm as the electron inhibition layer 124 was formed.
  • the peak wavelength of the emission spectrum was around 460 nm. This means that the emission color of the light emitting device 10 hardly changes even when the electron extraction layer 123 is provided.
  • the lifetime of the light emitting device 10 is longer than that of Comparative Examples 1 and 2.
  • the thickness of the electron extraction layer 123 is thin, for example, 2 nm or less.
  • the thickness of the electron extraction layer 123 is more preferably 1.5 nm or less, and further preferably 1 nm or less.
  • the electron inhibition layer 124 is formed between the hole injection layer 121 and the hole transport layer 122 and the light emitting layer 125. For this reason, it can suppress that the electron supplied to the light emitting layer 125 from the 2nd electrode 130 side penetrates the light emitting layer 125. FIG. Thereby, the luminous efficiency of the organic layer 120 is improved. On the other hand, if electrons penetrating the light emitting layer 125 accumulate in the electron inhibition layer 124, the electron inhibition layer 124 may deteriorate. On the other hand, in this embodiment, the electron extraction layer 123 is provided between the hole transport layer 122 and the hole transport layer 122 and the electron inhibition layer 124.
  • FIG. 3 is a plan view of the light emitting device 10 according to the first embodiment.
  • FIG. 4 is a view in which the second electrode 130 is removed from FIG.
  • FIG. 5 is a diagram in which the organic layer 120 and the insulating layer 150 are removed from FIG. 6 is a cross-sectional view taken along the line AA in FIG.
  • the light emitting device 10 according to the present embodiment is a lighting device, and a light emitting unit 140 is formed on almost the entire surface of the substrate 100.
  • the first electrode 110, the first terminal 112, and the second terminal 132 are formed on one surface of the substrate 100.
  • the first terminal 112 and the second terminal 132 have a layer formed using the same material as the first electrode 110. This layer is formed in the same process as the first electrode 110.
  • a layer formed of the same material as the first electrode 110 in the first terminal 112 is integrated with the first electrode 110.
  • the second terminal 132 is separated from the first electrode 110.
  • first terminal 112 and the second terminal 132 are located on opposite sides of the first electrode 110.
  • the substrate 100 is rectangular.
  • the first terminal 112 is formed along one side of the substrate 100
  • the second terminal 132 is formed along the side opposite to the first terminal 112 among the four sides of the substrate 100.
  • the region where the organic layer 120 is to be formed in the substrate 100 is surrounded by the insulating layer 150.
  • the insulating layer 150 is formed using a photosensitive material such as polyimide, and is formed in a predetermined shape through exposure and development processes.
  • the insulating layer 150 is formed after the first electrode 110 is formed and before the organic layer 120 is formed. However, the insulating layer 150 may not be formed.
  • the organic layer 120 is formed inside a region surrounded by the insulating layer 150.
  • the configuration of the organic layer 120 is as shown in the embodiment.
  • a second electrode 130 is formed on the organic layer 120. A part of the second electrode 130 extends over the second terminal 132 across the insulating layer 150.
  • the organic layer 120 has the configuration shown in the embodiment. For this reason, it can suppress that the lifetime of an illuminating device becomes short, improving the luminous efficiency of an illuminating device.
  • FIG. 7 is a plan view of the light emitting device 10 according to the second embodiment.
  • FIG. 8 is a view in which the partition 170, the second electrode 130, the organic layer 120, and the insulating layer 150 are removed from
  • FIG. 9 is a sectional view taken along the line BB in FIG. 7
  • FIG. 10 is a sectional view taken along the line CC in FIG. 7
  • FIG. 11 is a sectional view taken along the line DD in FIG.
  • the light emitting device 10 is a display, and includes a substrate 100, a first electrode 110, a light emitting unit 140, an insulating layer 150, a plurality of openings 152, a plurality of openings 154, a plurality of lead wires 114, an organic layer 120, a first layer. It has two electrodes 130, a plurality of lead wires 134, and a plurality of partition walls 170.
  • the first electrode 110 extends in a line shape in the first direction (Y direction in FIG. 7). The end portion of the first electrode 110 is connected to the lead wiring 114.
  • the lead wiring 114 is a wiring that connects the first electrode 110 to the first terminal 112.
  • one end side of the lead wiring 114 is connected to the first electrode 110, and the other end side of the lead wiring 114 is the first terminal 112.
  • the first electrode 110 and the lead-out wiring 114 are integrated.
  • a conductor layer 180 is formed on the first terminal 112 and the lead wiring 114.
  • the conductor layer 180 is formed using a metal having a lower resistance than that of the first electrode 110, such as Al or Ag.
  • a part of the lead wiring 114 is covered with an insulating layer 150.
  • the insulating layer 150 is formed on and between the plurality of first electrodes 110 as shown in FIGS. 7 and 9 to 11.
  • a plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150.
  • the plurality of second electrodes 130 extend in parallel to each other in a direction intersecting the first electrode 110 (for example, a direction orthogonal to the X direction in FIG. 7).
  • a partition wall 170 which will be described in detail later, extends between the plurality of second electrodes 130.
  • the opening 152 is located at the intersection of the first electrode 110 and the second electrode 130 in plan view.
  • the plurality of openings 152 are arranged to form a matrix.
  • the opening 154 is located in a region overlapping with one end side of each of the plurality of second electrodes 130 in plan view.
  • the openings 154 are arranged along one side of the matrix formed by the openings 152. When viewed in a direction along this one side (for example, the Y direction in FIG. 7, that is, the direction along the first electrode 110), the openings 154 are arranged at a predetermined interval. A part of the lead wiring 134 is exposed from the opening 154.
  • the lead wiring 134 is connected to the second electrode 130 through the opening 154.
  • the lead wiring 134 is a wiring that connects the second electrode 130 to the second terminal 132, and has a layer made of the same material as the first electrode 110. One end side of the lead wiring 134 is located below the opening 154, and the other end side of the lead wiring 134 is led out of the insulating layer 150. In the example shown in the figure, the other end side of the lead-out wiring 134 is the second terminal 132. A conductor layer 180 is also formed on the second terminal 132 and the lead wiring 134. A part of the lead wiring 134 is covered with an insulating layer 150.
  • the organic layer 120 is formed in the region overlapping with the opening 152.
  • the configuration of the organic layer 120 is as shown in the embodiment.
  • the light emitting unit 140 is located in each of the regions overlapping with the opening 152.
  • each layer constituting the organic layer 120 is shown to protrude to the outside of the opening 152.
  • the organic layer 120 may be continuously formed between adjacent openings 152 in the direction in which the partition 170 extends, or may not be formed continuously. Good. However, as shown in FIG. 11, the organic layer 120 is not formed in the opening 154.
  • the second electrode 130 extends in the second direction (X direction in FIG. 7) intersecting the first direction.
  • a partition wall 170 is formed between the adjacent second electrodes 130.
  • the partition wall 170 extends in parallel to the second electrode 130, that is, in the second direction.
  • the base of the partition 170 is, for example, the insulating layer 150.
  • the partition 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin other than a polyimide resin, for example, an inorganic material such as an epoxy resin, an acrylic resin, or silicon dioxide.
  • the partition wall 170 has a trapezoidal cross-sectional shape (reverse trapezoid). That is, the width of the upper surface of the partition wall 170 is larger than the width of the lower surface of the partition wall 170. Therefore, if the partition wall 170 is formed before the second electrode 130, the second electrode 130 is formed on one surface side of the substrate 100 by using an evaporation method or a sputtering method. Can be formed collectively.
  • the partition wall 170 also has a function of dividing the organic layer 120.
  • the first electrode 110 and the lead wires 114 and 134 are formed on the substrate 100. These forming methods are the same as the method of forming the first electrode 110 in the embodiment.
  • the conductor layer 180 is formed on the lead wiring 114, on the first terminal 112, on the lead wiring 134, and on the second terminal 132.
  • the insulating layer 150 is formed, and further the partition 170 is formed.
  • the organic layer 120 and the second electrode 130 are formed.
  • the organic layer 120 has the configuration shown in the embodiment. For this reason, it can suppress that the lifetime of a display becomes short, improving the luminous efficiency of a display.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A first electrode (110) is an anode, and a second electrode (130) is a cathode. An organic layer (120) has a light emitting layer (125), hole injection layer (121: first functional layer), electron inhibition layer (124: second functional layer), and electron extraction layer (123: third functional layer). The hole injection layer (121) is positioned between the first electrode (110) and the light emitting layer (125), and contains a material wherein holes move. The electron inhibition layer (124) is positioned between the hole injection layer (121) and the light emitting layer (125), and contains a material that inhibits moving of electrons. The electron extraction layer (123) is positioned between the hole injection layer (121) and the electron inhibition layer (124), and contains a material wherein electrons move.

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 発光装置の光源の一つに、有機EL素子がある。有機EL素子は、陽極となる第1電極と陰極となる第2電極の間に有機層を配置した構成を有している。有機層は、第1電極側から順に、正孔注入層及び正孔輸送層の少なくとも一つ、発光層、並びに電子注入層及び電子輸送層の少なくとも一つを、この順に重ねた構成(以下、発光ユニットと記載)を有している。発光層には、正孔注入層(又は正孔輸送層)を介して正孔が供給され、電子注入層(又は電子輸送層)を介して電子が供給される。そして、発光層において正孔および電子が結合することにより、光が発生する。 An organic EL element is one of the light sources of a light emitting device. The organic EL element has a configuration in which an organic layer is disposed between a first electrode serving as an anode and a second electrode serving as a cathode. The organic layer has, in order from the first electrode side, a configuration in which at least one of a hole injection layer and a hole transport layer, a light emitting layer, and at least one of an electron injection layer and an electron transport layer are stacked in this order (hereinafter, A light emitting unit). Holes are supplied to the light emitting layer via a hole injection layer (or hole transport layer), and electrons are supplied via an electron injection layer (or electron transport layer). Then, light is generated by combining holes and electrons in the light emitting layer.
 ここで、発光層に供給されたキャリアが結合せずに発光層を突き抜けることがある。この場合、発光装置の発光効率が低下する。これを抑制するために、例えば特許文献1に記載されているように、電子阻止層及び正孔阻止層を有機層内に設けることがある。電子阻止層は正孔注入層(又は正孔輸送層)と発光層の間に設けられ、正孔阻止層は電子注入層(又は電子輸送層)と発光層の間に設けられる。 Here, carriers supplied to the light emitting layer may penetrate through the light emitting layer without being combined. In this case, the light emission efficiency of the light emitting device decreases. In order to suppress this, for example, as described in Patent Document 1, an electron blocking layer and a hole blocking layer may be provided in the organic layer. The electron blocking layer is provided between the hole injection layer (or hole transport layer) and the light emitting layer, and the hole blocking layer is provided between the electron injection layer (or electron transport layer) and the light emitting layer.
 なお、特許文献2には、発光ユニットを2つ重ね、これら2つの発光ユニットの間にキャリア発生層を配置することが記載されている。キャリア発生層は、電子輸送層及び電子引抜層を重ねた構成を有している。 Note that Patent Document 2 describes that two light emitting units are stacked and a carrier generation layer is disposed between the two light emitting units. The carrier generation layer has a configuration in which an electron transport layer and an electron extraction layer are stacked.
特開2015-60728号公報Japanese Patent Laid-Open No. 2015-60728 特開2011-113888号公報JP 2011-113888 A
 上記したように、電子が発光層を突き抜けることを抑制するために、正孔注入層(又は正孔輸送層)と発光層の間に電子阻止層を設けることがある。本発明者が検討した結果、電子阻止層を設けると電子阻止層に電子が溜まり、有機層を劣化させる可能性があることが判明した。この場合、発光装置の寿命が短くなってしまう。 As described above, an electron blocking layer may be provided between the hole injection layer (or hole transport layer) and the light emitting layer in order to prevent electrons from penetrating the light emitting layer. As a result of investigations by the present inventors, it has been found that when an electron blocking layer is provided, electrons accumulate in the electron blocking layer and may deteriorate the organic layer. In this case, the lifetime of the light emitting device is shortened.
 本発明が解決しようとする課題としては、正孔注入層(又は正孔輸送層)と発光層の間に電子阻止層を設けつつ、発光装置の寿命が短くなることを抑制することが一例として挙げられる。 As an example of the problem to be solved by the present invention, an electron blocking layer is provided between the hole injection layer (or the hole transport layer) and the light emitting layer, while suppressing the shortening of the lifetime of the light emitting device as an example. Can be mentioned.
 請求項1に記載の発明は、陽極である第1電極と、
 陰極である第2電極と、
 前記第1電極と前記第2電極の間に位置する有機層と、
を備え、
 前記有機層は、
  発光層と、
  前記第1電極と前記発光層の間に位置していて正孔が移動する材料を含む第1機能層と、
 前記第1機能層と前記発光層の間に位置していて電子の移動を阻害する材料を含む第2機能層と、
  前記第1機能層と前記第2機能層の間に位置していて電子が移動する材料を含む第3機能層と、
を有する発光装置である。
The invention according to claim 1 is a first electrode that is an anode;
A second electrode which is a cathode;
An organic layer positioned between the first electrode and the second electrode;
With
The organic layer is
A light emitting layer;
A first functional layer that is located between the first electrode and the light emitting layer and includes a material that moves holes;
A second functional layer that is located between the first functional layer and the light emitting layer and includes a material that inhibits electron movement;
A third functional layer including a material that is located between the first functional layer and the second functional layer and to which electrons move;
A light emitting device having
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on embodiment. 実施形態に係る発光装置と、比較例に係る発光装置のそれぞれにおける、駆動電圧、輝度、外部量子効率、及び輝度が半分になるまでの時間(寿命)を示した表である。It is the table | surface which showed the time (life) until drive voltage, a brightness | luminance, external quantum efficiency, and a brightness | luminance become half in each of the light-emitting device which concerns on embodiment, and the light-emitting device which concerns on a comparative example. 実施例1に係る発光装置の平面図である。1 is a plan view of a light emitting device according to Example 1. FIG. 図3から第2電極を取り除いた図である。It is the figure which removed the 2nd electrode from FIG. 図4から有機層及び絶縁層を取り除いた図である。It is the figure which removed the organic layer and the insulating layer from FIG. 図3のA-A断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 実施例2に係る発光装置の平面図である。6 is a plan view of a light emitting device according to Example 2. FIG. 図7から隔壁、第2電極、有機層、及び絶縁層を取り除いた図である。It is the figure which removed the partition, the 2nd electrode, the organic layer, and the insulating layer from FIG. 図7のB-B断面図である。FIG. 8 is a sectional view taken along line BB in FIG. 図7のC-C断面図である。It is CC sectional drawing of FIG. 図7のD-D断面図である。FIG. 8 is a DD sectional view of FIG. 7.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(実施形態)
 図1は、実施形態に係る発光装置10の構成を示す断面図である。実施形態に係る発光装置10は、第1電極110、有機層120、及び第2電極130を有している。第1電極110は陽極であり、第2電極130は陰極である。有機層120は第1電極110と第2電極130の間に位置しており、発光層125、正孔注入層121(第1機能層)、電子阻害層124(第2機能層)、及び電子引抜層123(第3機能層)を有している。正孔注入層121は第1電極110と発光層125の間に位置していて正孔が移動する材料を含んでいる。電子阻害層124は正孔注入層121と発光層125の間に位置していて電子の移動を阻害する材料を含む。電子引抜層123は正孔注入層121と電子阻害層124の間に位置していて電子が移動する材料を含む。以下、詳細に説明する。
(Embodiment)
FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the embodiment. The light emitting device 10 according to the embodiment includes a first electrode 110, an organic layer 120, and a second electrode 130. The first electrode 110 is an anode, and the second electrode 130 is a cathode. The organic layer 120 is located between the first electrode 110 and the second electrode 130, and includes a light emitting layer 125, a hole injection layer 121 (first functional layer), an electron blocking layer 124 (second functional layer), and an electron. It has a drawing layer 123 (third functional layer). The hole injection layer 121 is located between the first electrode 110 and the light emitting layer 125 and includes a material that moves holes. The electron blocking layer 124 includes a material that is located between the hole injection layer 121 and the light emitting layer 125 and inhibits the movement of electrons. The electron extraction layer 123 includes a material that is located between the hole injection layer 121 and the electron inhibition layer 124 and moves electrons. Details will be described below.
 発光装置10は発光部140を備えている。発光部140は、上記した第1電極110、有機層120、及び第2電極130を有している。発光部140は、ボトムエミッション型の発光部であってもよいし、トップエミッション型の発光部であってもよい。発光部140は、基板100の一面に形成されている。 The light emitting device 10 includes a light emitting unit 140. The light emitting unit 140 includes the first electrode 110, the organic layer 120, and the second electrode 130 described above. The light emitting unit 140 may be a bottom emission type light emitting unit or a top emission type light emitting unit. The light emitting unit 140 is formed on one surface of the substrate 100.
 発光装置10がボトムエミッション型である場合、基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されており、基板100のうち第1電極110とは逆側の面が発光装置10の光取出面になっている。一方、発光装置10がトップエミッション型である場合、基板100は上述した透光性の材料で形成されていてもよいし、透光性を有さない材料で形成されていてもよい。基板100は、例えば矩形などの多角形である。また、基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特に基板100をガラス材料で可撓性を持たせる場合、基板100の厚さは、例えば200μm以下である。基板100を樹脂材料で可撓性を持たせる場合は、基板100の材料として、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを含ませて形成されている。また、基板100が樹脂材料を含む場合、水分が基板100を透過することを抑制するために、基板100の少なくとも発光面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されている。 When the light emitting device 10 is a bottom emission type, the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin, and the surface of the substrate 100 opposite to the first electrode 110. Is the light extraction surface of the light emitting device 10. On the other hand, when the light emitting device 10 is a top emission type, the substrate 100 may be formed of the above-described translucent material or may be formed of a material that does not have translucency. The substrate 100 is, for example, a polygon such as a rectangle. Further, the substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 is made of a glass material and has flexibility, the thickness of the substrate 100 is, for example, 200 μm or less. In the case where the substrate 100 is made of a resin material and is flexible, the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed. In the case where the substrate 100 includes a resin material, an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
 第1電極110及び第2電極130の少なくとも一方は、光透過性を有する透明電極である。例えば発光装置10がボトムエミッション型の発光装置である場合、少なくとも第1電極110は透明電極である。一方、発光装置10がトップエミッション型の発光装置である場合、少なくとも第2電極130は透明電極である。なお、第1電極110及び第2電極130の双方が透明電極であってもよい。 At least one of the first electrode 110 and the second electrode 130 is a transparent electrode having optical transparency. For example, when the light emitting device 10 is a bottom emission type light emitting device, at least the first electrode 110 is a transparent electrode. On the other hand, when the light emitting device 10 is a top emission type light emitting device, at least the second electrode 130 is a transparent electrode. Note that both the first electrode 110 and the second electrode 130 may be transparent electrodes.
 透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよいし、薄い金属電極であってもよい。 The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide) or the like. is there. The thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method. The first electrode 110 may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
 第1電極110及び第2電極130のうち透光性を有していない電極は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この電極は、例えばスパッタリング法又は蒸着法を用いて形成される。 Of the first electrode 110 and the second electrode 130, the non-transparent electrode is selected from, for example, a first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from the first group. This electrode is formed using, for example, a sputtering method or a vapor deposition method.
 なお、発光装置10がトップエミッション型の発光装置である場合、第1電極110は、金属層と透明導電層をこの順に積層した構造であってもよい。 When the light emitting device 10 is a top emission type light emitting device, the first electrode 110 may have a structure in which a metal layer and a transparent conductive layer are laminated in this order.
 有機層120は、正孔注入層121、正孔輸送層122、電子引抜層123、電子阻害層124、発光層125、正孔阻害層126、電子輸送層127、及び電子注入層128を有している。ただし、正孔注入層121及び正孔輸送層122の一方は形成されていなくてもよい。また、電子輸送層127及び電子注入層128の一方は形成されていなくてもよい。また、正孔阻害層126は形成されていなくてもよい。 The organic layer 120 includes a hole injection layer 121, a hole transport layer 122, an electron extraction layer 123, an electron inhibition layer 124, a light emitting layer 125, a hole inhibition layer 126, an electron transport layer 127, and an electron injection layer 128. ing. However, one of the hole injection layer 121 and the hole transport layer 122 may not be formed. One of the electron transport layer 127 and the electron injection layer 128 may not be formed. Further, the hole blocking layer 126 may not be formed.
 正孔注入層121及び正孔輸送層122は、正孔が移動する材料(正孔移動性の有機材料)を用いて形成されている。この材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、ポリビニルカルバゾール、芳香族アミンを主鎖若しくは側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。なお、正孔注入層121の厚さは例えば5nm以上100nm以下である。また、正孔輸送層122の厚さは例えば1nm以上100nm以下である。 The hole injection layer 121 and the hole transport layer 122 are formed using a material that moves holes (an organic material having a hole mobility). Examples of this material include porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triaryls. Polymer materials or oligomers in which amine derivatives, carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines are introduced into the main chain or side chain , Polysilane, conductive polymer or oligomer (eg PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.) And the like. Examples of the triarylamine derivative include a benzidine type typified by α-NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part. The thickness of the hole injection layer 121 is, for example, not less than 5 nm and not more than 100 nm. The thickness of the hole transport layer 122 is, for example, 1 nm or more and 100 nm or less.
 電子阻害層124は、発光層125を突き抜けた電子が正孔輸送層122や正孔注入層121に到達することを抑制するために設けられている。電子阻害層124は、発光層125に接している。電子阻害層124は、例えば、上記した正孔が移動する材料(正孔移動性の有機材料)の少なくとも一つを用いて形成することができる。電子阻害層124の厚さは、例えば5nm以上20nm以下である。 The electron-inhibiting layer 124 is provided in order to prevent electrons that have penetrated the light-emitting layer 125 from reaching the hole-transporting layer 122 and the hole-injecting layer 121. The electron inhibition layer 124 is in contact with the light emitting layer 125. The electron-inhibiting layer 124 can be formed using, for example, at least one of the above-described materials through which holes move (hole-moving organic material). The thickness of the electron inhibition layer 124 is, for example, not less than 5 nm and not more than 20 nm.
 電子引抜層123は電子阻害層124に接しており、電子阻害層124に溜まった電荷を電子阻害層124から引き抜くために設けられている。電子引抜層123の厚さは、例えば0.1nm以上5nm以下である。電子引抜層123は、電子阻害層124に溜まった電子が移動することができる材料(電子移動性の有機材料)、例えば電子親和力が大きい材料、または強いアクセプタ性を有する材料を用いて形成される。電子引抜層123を構成する材料としては、下記の化学式(1)で示される、芳香環を有する有機シアン化合物が例示される。芳香環を有する有機シアン化合物は、例えば下記の化学式(2)で示される、ヘキサアザトリフェニレンである。ただし、電子引抜層123には、他の電子輸送性の材料を用いることもできる。なお、化学式(1)において、R1~R6は、それぞれシアノ基(-CN)、スルホン基(-SOR')、スルホキシド基(-SOR')、スルホンアミド基 (-SONR')、スルホネート基(-SOR')、ニトロ基(-NO)、またはトリフルオロメタン(-CF)基のいずれかである。R1~R6は互いに異なっていてもよい。そして、R1~R6のうち少なく とも一つの置換基がシアノ基である。また、R'は、アミン基、アミド基、エーテル基、もしくはエステル基で置換されているかまたは非置換である炭素数1~60のアルキル基、アリール基、または複素環基である。 The electron extraction layer 123 is in contact with the electron inhibition layer 124, and is provided for extracting charges accumulated in the electron inhibition layer 124 from the electron inhibition layer 124. The thickness of the electron extraction layer 123 is, for example, not less than 0.1 nm and not more than 5 nm. The electron extraction layer 123 is formed using a material (electron mobility organic material) in which electrons accumulated in the electron inhibition layer 124 can move, for example, a material having a high electron affinity or a material having a strong acceptor property. . As a material constituting the electron extraction layer 123, an organic cyanide compound having an aromatic ring represented by the following chemical formula (1) is exemplified. The organic cyanide compound having an aromatic ring is, for example, hexaazatriphenylene represented by the following chemical formula (2). However, other electron transporting materials can be used for the electron extraction layer 123. In the chemical formula (1), R1 to R6 are cyano group (—CN), sulfone group (—SO 2 R ′), sulfoxide group (—SOR ′), sulfonamide group (—SO 2 NR ′ 2 ), respectively. , A sulfonate group (—SO 3 R ′), a nitro group (—NO 2 ), or a trifluoromethane (—CF 3 ) group. R1 to R6 may be different from each other. And at least one substituent of R1 to R6 is a cyano group. R ′ is an alkyl group having 1 to 60 carbon atoms, an aryl group, or a heterocyclic group that is substituted or unsubstituted with an amine group, an amide group, an ether group, or an ester group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 発光層125は、電子と正孔の再結合に伴って発光する材料を用いて形成されている。発光層125の発光色は何色であってもよい。このため、発光層125の材料は発光性の有機材料であれば何であってもよい。 The light emitting layer 125 is formed using a material that emits light in association with recombination of electrons and holes. The light emitting layer 125 may have any color of light emission. For this reason, the material of the light emitting layer 125 may be anything as long as it is a light emitting organic material.
 正孔阻害層126は、発光層125のうち電子阻害層124とは逆側の面に接しており、正孔が発光層125を突き抜けて電子輸送層127又は電子注入層128に到達することを抑制する。正孔阻害層126は、例えば電子が移動することができる材料(電子移動性の有機材料)を用いて形成される。正孔阻害層126の厚さは、例えば1nm以上20nm以下である。 The hole-inhibiting layer 126 is in contact with the surface of the light-emitting layer 125 opposite to the electron-inhibiting layer 124, and the holes penetrate the light-emitting layer 125 and reach the electron-transporting layer 127 or the electron-injecting layer 128. Suppress. The hole-inhibiting layer 126 is formed using, for example, a material that can move electrons (an electron-transporting organic material). The thickness of the hole blocking layer 126 is, for example, not less than 1 nm and not more than 20 nm.
 電子輸送層127は、電子が移動する材料(電子移動性の有機材料)を用いて形成されている。このような材料としては、例えば、含窒素芳香族複素環誘導体、芳香族炭化水素環誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体が挙げられる。電子輸送層127の厚さは、例えば5nm以上100nm以下である。 The electron transport layer 127 is formed using a material (electron mobility organic material) through which electrons move. Examples of such materials include nitrogen-containing aromatic heterocyclic derivatives, aromatic hydrocarbon ring derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, and silole derivatives. The thickness of the electron transport layer 127 is, for example, not less than 5 nm and not more than 100 nm.
 電子注入層128は、例えばLiFなどのアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、又はリチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体を用いて形成される。電子注入層128の厚さは、例えば0.1nm以上10nm以下である。 The electron injection layer 128 is formed using, for example, an alkaline earth metal compound such as LiF, a metal oxide typified by aluminum oxide, or a metal complex typified by lithium 8-hydroxyquinolate (Liq). The thickness of the electron injection layer 128 is, for example, not less than 0.1 nm and not more than 10 nm.
 有機層120を構成する各層は、蒸着法、又はインクジェット法、印刷法、又はスプレー法などの塗布法によって形成される。各層は互いに同一の方法を用いて形成されていてもよいし、少なくとも一つの層が、他とは異なる方法を用いて形成されていてもよい。 Each layer constituting the organic layer 120 is formed by a vapor deposition method or a coating method such as an inkjet method, a printing method, or a spray method. Each layer may be formed using the same method, or at least one layer may be formed using a method different from the others.
 次に、発光装置10の製造方法について説明する。まず、基板100の上に第1電極110を形成する。次いで、正孔注入層121、正孔輸送層122、電子引抜層123、電子阻害層124、発光層125、正孔阻害層126、電子輸送層127、及び電子注入層128を、この順に形成する。次いで、電子注入層128の上に第2電極130を形成する。 Next, a method for manufacturing the light emitting device 10 will be described. First, the first electrode 110 is formed on the substrate 100. Next, a hole injection layer 121, a hole transport layer 122, an electron extraction layer 123, an electron inhibition layer 124, a light emitting layer 125, a hole inhibition layer 126, an electron transport layer 127, and an electron injection layer 128 are formed in this order. . Next, the second electrode 130 is formed on the electron injection layer 128.
 図2は、実施形態に係る発光装置10(試料1,2)と、比較例に係る発光装置10(比較例1~3)のそれぞれにおける、駆動電圧、輝度、外部量子効率、及び輝度が半分になるまでの時間(寿命)を示した表である。外部量子効率及び輝度は、電流密度が2.5mA/cmのときの測定値である。また、寿命は、初期の輝度を1000cd/mとなるときの発光条件における測定値である。いずれの発光装置10においても、第1電極110は厚さ70nmのITOとして、第2電極130は厚さ100nmのAlとした。また、有機層120の正孔注入層121、発光層125、正孔阻害層126、電子輸送層127、及び電子注入層128として、順に厚さが30nmのCuPc、厚さが30nmの10vol%‐Ir(cn-pimc)3、厚さが5nmのmCBP、厚さが30nmのAlq3、及び厚さが1nmのLiFを用いた。 FIG. 2 shows that the driving voltage, the luminance, the external quantum efficiency, and the luminance of the light emitting device 10 (samples 1 and 2) according to the embodiment and the light emitting device 10 according to the comparative example (comparative examples 1 to 3) are half. It is the table | surface which showed time (life) until it becomes. External quantum efficiency and brightness are measured values when the current density is 2.5 mA / cm 2 . The lifetime is a measured value under the light emission conditions when the initial luminance is 1000 cd / m 2 . In any of the light emitting devices 10, the first electrode 110 is made of ITO having a thickness of 70 nm, and the second electrode 130 is made of Al having a thickness of 100 nm. In addition, as the hole injection layer 121, the light emitting layer 125, the hole blocking layer 126, the electron transport layer 127, and the electron injection layer 128 of the organic layer 120, CuPc having a thickness of 30 nm and 10 vol% − having a thickness of 30 nm are sequentially provided. Ir (cn-pimc) 3, mCBP with a thickness of 5 nm, Alq3 with a thickness of 30 nm, and LiF with a thickness of 1 nm were used.
 そして、試料1では、正孔輸送層122として厚さが9.5nmのNPBを用い、電子引抜層123として厚さが0.5nmのHAT-CNを用い、電子阻害層124として厚さが5nmのTCTAを用いた。また、試料2では、電子引抜層123としてのHAT-CNの厚さを1nmとした点を除いて、試料1と同じ構造とした。また、試料3では、電子引抜層123として厚さが2.5nmのHAT-CNを用いた点を除いて、試料1と同じ構造とした。 In Sample 1, NPB having a thickness of 9.5 nm is used as the hole transport layer 122, HAT-CN having a thickness of 0.5 nm is used as the electron extraction layer 123, and a thickness of 5 nm is used as the electron inhibition layer 124. TCTA was used. Sample 2 has the same structure as Sample 1 except that the thickness of HAT-CN as the electron extraction layer 123 is 1 nm. Sample 3 had the same structure as Sample 1 except that HAT-CN having a thickness of 2.5 nm was used as the electron extraction layer 123.
 一方、比較例1では、正孔輸送層122としてのNPBの厚さを15nmとして、電子引抜層123及び電子阻害層124を設けなかった。また、比較例2では、正孔輸送層122としてのNPBの厚さを10nmとして、電子引抜層123を設けず、電子阻害層124としての厚さが5nmのTCTAを形成した。 On the other hand, in Comparative Example 1, the thickness of the NPB as the hole transport layer 122 was 15 nm, and the electron extraction layer 123 and the electron inhibition layer 124 were not provided. In Comparative Example 2, the thickness of NPB as the hole transport layer 122 was 10 nm, the electron extraction layer 123 was not provided, and a TCTA with a thickness of 5 nm as the electron inhibition layer 124 was formed.
 なお、いずれの発光装置10においても、発光スペクトルのピーク波長は460nm付近であった。これは、電子引抜層123を設けても発光装置10の発光色はほとんど変化しないことを意味する。 In any of the light emitting devices 10, the peak wavelength of the emission spectrum was around 460 nm. This means that the emission color of the light emitting device 10 hardly changes even when the electron extraction layer 123 is provided.
 実施形態に係る試料1~3では、いずれも発光装置10の寿命が比較例1,2と比較して長くなった。ただし、電子引抜層123が相対的に厚い試料3は、駆動電圧が挙がり、外部量子効率が低下してしまう。このため、電子引抜層123の厚さは薄いのが好ましく、たとえば2nm以下であるのが好ましい。なお、電子引抜層123の厚さは、さらに好ましくは1.5nm以下、さらに好ましくは1nm以下である。 In all of the samples 1 to 3 according to the embodiment, the lifetime of the light emitting device 10 is longer than that of Comparative Examples 1 and 2. However, in the sample 3 in which the electron extraction layer 123 is relatively thick, the driving voltage is raised and the external quantum efficiency is lowered. For this reason, it is preferable that the thickness of the electron extraction layer 123 is thin, for example, 2 nm or less. The thickness of the electron extraction layer 123 is more preferably 1.5 nm or less, and further preferably 1 nm or less.
 以上、本実施形態によれば、正孔注入層121及び正孔輸送層122と、発光層125の間には電子阻害層124が形成されている。このため、第2電極130側から発光層125に供給された電子が発光層125を突き抜けることを抑制できる。これにより、有機層120の発光効率は向上する。一方、電子阻害層124に発光層125を突き抜けた電子が蓄積すると、電子阻害層124が劣化する恐れがある。これに対して本実施形態では、正孔輸送層122及び正孔輸送層122と電子阻害層124の間には、電子引抜層123が設けられている。このため、電子阻害層124に蓄積した電子は、電子引抜層123に引き抜かれ、その後、正孔輸送層122や正孔注入層121に移動する。このため、電子阻害層124が劣化することを抑制できる。このように、本実施形態によれば、電子阻害層124を設けつつ、発光装置10の寿命が短くなることを抑制することができる。 As described above, according to the present embodiment, the electron inhibition layer 124 is formed between the hole injection layer 121 and the hole transport layer 122 and the light emitting layer 125. For this reason, it can suppress that the electron supplied to the light emitting layer 125 from the 2nd electrode 130 side penetrates the light emitting layer 125. FIG. Thereby, the luminous efficiency of the organic layer 120 is improved. On the other hand, if electrons penetrating the light emitting layer 125 accumulate in the electron inhibition layer 124, the electron inhibition layer 124 may deteriorate. On the other hand, in this embodiment, the electron extraction layer 123 is provided between the hole transport layer 122 and the hole transport layer 122 and the electron inhibition layer 124. For this reason, electrons accumulated in the electron inhibition layer 124 are extracted to the electron extraction layer 123 and then move to the hole transport layer 122 and the hole injection layer 121. For this reason, it can suppress that the electron inhibition layer 124 deteriorates. Thus, according to the present embodiment, it is possible to suppress the lifetime of the light emitting device 10 from being shortened while providing the electron inhibition layer 124.
(実施例1)
 図3は、実施例1に係る発光装置10の平面図である。図4は図3から第2電極130を取り除いた図である。図5は図4から有機層120及び絶縁層150を取り除いた図である。図6は、図3のA-A断面図である。本実施例に係る発光装置10は照明装置であり、基板100のほぼ全面に発光部140が形成されている。
Example 1
FIG. 3 is a plan view of the light emitting device 10 according to the first embodiment. FIG. 4 is a view in which the second electrode 130 is removed from FIG. FIG. 5 is a diagram in which the organic layer 120 and the insulating layer 150 are removed from FIG. 6 is a cross-sectional view taken along the line AA in FIG. The light emitting device 10 according to the present embodiment is a lighting device, and a light emitting unit 140 is formed on almost the entire surface of the substrate 100.
 詳細には、基板100の一面には第1電極110、第1端子112、及び第2端子132が形成されている。第1端子112及び第2端子132は、第1電極110と同じ材料を用いて形成された層を有している。この層は、第1電極110と同一の工程で形成される。また、第1端子112のうち第1電極110と同様の材料で形成されている層は、第1電極110と一体になっている。一方、第2端子132は第1電極110から分離している。 Specifically, the first electrode 110, the first terminal 112, and the second terminal 132 are formed on one surface of the substrate 100. The first terminal 112 and the second terminal 132 have a layer formed using the same material as the first electrode 110. This layer is formed in the same process as the first electrode 110. In addition, a layer formed of the same material as the first electrode 110 in the first terminal 112 is integrated with the first electrode 110. On the other hand, the second terminal 132 is separated from the first electrode 110.
 また、第1端子112及び第2端子132は、第1電極110を挟んで互いに逆側に位置している。本図に示す例では基板100は矩形である。そして、第1端子112は基板100の一辺に沿って形成されており、第2端子132は、基板100の4辺のうち第1端子112とは逆側の辺に沿って形成されている。 In addition, the first terminal 112 and the second terminal 132 are located on opposite sides of the first electrode 110. In the example shown in the figure, the substrate 100 is rectangular. The first terminal 112 is formed along one side of the substrate 100, and the second terminal 132 is formed along the side opposite to the first terminal 112 among the four sides of the substrate 100.
 基板100のうち有機層120が形成されるべき領域は、絶縁層150によって囲まれている。絶縁層150は、例えばポリイミドなどの感光性の材料を用いて形成されており、露光及び現像工程を経て、所定の形状に形成される。絶縁層150は、第1電極110が形成された後、かつ有機層120が形成される前に形成される。ただし、絶縁層150は形成されていなくてもよい。 The region where the organic layer 120 is to be formed in the substrate 100 is surrounded by the insulating layer 150. The insulating layer 150 is formed using a photosensitive material such as polyimide, and is formed in a predetermined shape through exposure and development processes. The insulating layer 150 is formed after the first electrode 110 is formed and before the organic layer 120 is formed. However, the insulating layer 150 may not be formed.
 有機層120は、絶縁層150で囲まれた領域の内側に形成されている。有機層120の構成は、実施形態に示した通りである。また、有機層120の上には第2電極130が形成されている。第2電極130の一部は、絶縁層150をまたいで第2端子132の上まで延在している。 The organic layer 120 is formed inside a region surrounded by the insulating layer 150. The configuration of the organic layer 120 is as shown in the embodiment. A second electrode 130 is formed on the organic layer 120. A part of the second electrode 130 extends over the second terminal 132 across the insulating layer 150.
 本実施例によれば、有機層120は実施形態に示した構成を有している。このため、照明装置の発光効率を向上させつつ、照明装置の寿命が短くなることを抑制することができる。 According to this example, the organic layer 120 has the configuration shown in the embodiment. For this reason, it can suppress that the lifetime of an illuminating device becomes short, improving the luminous efficiency of an illuminating device.
(実施例2)
 図7は、実施例2に係る発光装置10の平面図である。図8は、図7から隔壁170、第2電極130、有機層120、及び絶縁層150を取り除いた図である。図9は図7のB-B断面図であり、図10は図7のC-C断面図であり、図11は図7のD-D断面図である。
(Example 2)
FIG. 7 is a plan view of the light emitting device 10 according to the second embodiment. FIG. 8 is a view in which the partition 170, the second electrode 130, the organic layer 120, and the insulating layer 150 are removed from FIG. 9 is a sectional view taken along the line BB in FIG. 7, FIG. 10 is a sectional view taken along the line CC in FIG. 7, and FIG. 11 is a sectional view taken along the line DD in FIG.
 実施例2に係る発光装置10はディスプレイであり、基板100、第1電極110、発光部140、絶縁層150、複数の開口152、複数の開口154、複数の引出配線114、有機層120、第2電極130、複数の引出配線134、及び複数の隔壁170を有している。 The light emitting device 10 according to the second embodiment is a display, and includes a substrate 100, a first electrode 110, a light emitting unit 140, an insulating layer 150, a plurality of openings 152, a plurality of openings 154, a plurality of lead wires 114, an organic layer 120, a first layer. It has two electrodes 130, a plurality of lead wires 134, and a plurality of partition walls 170.
 第1電極110は、第1方向(図7におけるY方向)にライン状に延在している。そして第1電極110の端部は、引出配線114に接続している。 The first electrode 110 extends in a line shape in the first direction (Y direction in FIG. 7). The end portion of the first electrode 110 is connected to the lead wiring 114.
 引出配線114は、第1電極110を第1端子112に接続する配線である。本図に示す例では、引出配線114の一端側は第1電極110に接続しており、引出配線114の他端側は第1端子112となっている。本図に示す例において、第1電極110及び引出配線114は一体になっている。そして第1端子112の上及び引出配線114の上には、導体層180が形成されている。導体層180は、第1電極110よりも抵抗の低い金属、例えばAl又はAgを用いて形成されている。なお、引出配線114の一部は絶縁層150によって覆われている。 The lead wiring 114 is a wiring that connects the first electrode 110 to the first terminal 112. In the example shown in the drawing, one end side of the lead wiring 114 is connected to the first electrode 110, and the other end side of the lead wiring 114 is the first terminal 112. In the example shown in the figure, the first electrode 110 and the lead-out wiring 114 are integrated. A conductor layer 180 is formed on the first terminal 112 and the lead wiring 114. The conductor layer 180 is formed using a metal having a lower resistance than that of the first electrode 110, such as Al or Ag. A part of the lead wiring 114 is covered with an insulating layer 150.
 絶縁層150は、図7、及び図9~図11に示すように、複数の第1電極110上及びその間の領域に形成されている。絶縁層150には、複数の開口152及び複数の開口154が形成されている。複数の第2電極130は、第1電極110と交差する方向(例えば直交する方向:図7におけるX方向)に互いに平行に延在している。そして、複数の第2電極130の間には、詳細を後述する隔壁170が延在している。開口152は、平面視で第1電極110と第2電極130の交点に位置している。そして、複数の開口152はマトリクスを構成するように配置されている。 The insulating layer 150 is formed on and between the plurality of first electrodes 110 as shown in FIGS. 7 and 9 to 11. A plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150. The plurality of second electrodes 130 extend in parallel to each other in a direction intersecting the first electrode 110 (for example, a direction orthogonal to the X direction in FIG. 7). A partition wall 170, which will be described in detail later, extends between the plurality of second electrodes 130. The opening 152 is located at the intersection of the first electrode 110 and the second electrode 130 in plan view. The plurality of openings 152 are arranged to form a matrix.
 開口154は、平面視で複数の第2電極130のそれぞれの一端側と重なる領域に位置している。また開口154は、開口152が構成するマトリクスの一辺に沿って配置されている。そしてこの一辺に沿う方向(例えば図7におけるY方向、すなわち第1電極110に沿う方向)で見た場合、開口154は、所定の間隔で配置されている。開口154からは、引出配線134の一部分が露出している。そして、引出配線134は、開口154を介して第2電極130に接続している。 The opening 154 is located in a region overlapping with one end side of each of the plurality of second electrodes 130 in plan view. The openings 154 are arranged along one side of the matrix formed by the openings 152. When viewed in a direction along this one side (for example, the Y direction in FIG. 7, that is, the direction along the first electrode 110), the openings 154 are arranged at a predetermined interval. A part of the lead wiring 134 is exposed from the opening 154. The lead wiring 134 is connected to the second electrode 130 through the opening 154.
 引出配線134は、第2電極130を第2端子132に接続する配線であり、第1電極110と同一の材料からなる層を有している。引出配線134の一端側は開口154の下に位置しており、引出配線134の他端側は、絶縁層150の外部に引き出されている。そして本図に示す例では、引出配線134の他端側が第2端子132となっている。そして、第2端子132の上及び引出配線134の上にも、導体層180が形成されている。なお、引出配線134の一部は絶縁層150によって覆われている。 The lead wiring 134 is a wiring that connects the second electrode 130 to the second terminal 132, and has a layer made of the same material as the first electrode 110. One end side of the lead wiring 134 is located below the opening 154, and the other end side of the lead wiring 134 is led out of the insulating layer 150. In the example shown in the figure, the other end side of the lead-out wiring 134 is the second terminal 132. A conductor layer 180 is also formed on the second terminal 132 and the lead wiring 134. A part of the lead wiring 134 is covered with an insulating layer 150.
 開口152と重なる領域には、有機層120が形成されている。有機層120の構成は、実施形態に示したとおりである。そして、発光部140は、開口152と重なる領域それぞれに位置していることになる。 In the region overlapping with the opening 152, the organic layer 120 is formed. The configuration of the organic layer 120 is as shown in the embodiment. The light emitting unit 140 is located in each of the regions overlapping with the opening 152.
 なお、図9及び図10に示す例では、有機層120を構成する各層は、いずれも開口152の外側まではみ出している場合を示している。そして図7に示すように、有機層120は、隔壁170が延在する方向において、隣り合う開口152の間にも連続して形成されていてもよいし、連続して形成していなくてもよい。ただし、図11に示すように、有機層120は、開口154には形成されていない。 In the example shown in FIGS. 9 and 10, each layer constituting the organic layer 120 is shown to protrude to the outside of the opening 152. As shown in FIG. 7, the organic layer 120 may be continuously formed between adjacent openings 152 in the direction in which the partition 170 extends, or may not be formed continuously. Good. However, as shown in FIG. 11, the organic layer 120 is not formed in the opening 154.
 第2電極130は、図7、図9~図11に示すように、第1方向と交わる第2方向(図7におけるX方向)に延在している。そして隣り合う第2電極130の間には、隔壁170が形成されている。隔壁170は、第2電極130と平行すなわち第2方向に延在している。隔壁170の下地は、例えば絶縁層150である。隔壁170は、例えばポリイミド系樹脂などの感光性の樹脂であり、露光及び現像されることによって、所望のパターンに形成されている。なお、隔壁170はポリイミド系樹脂以外の樹脂、例えばエポキシ系樹脂やアクリル系樹脂、二酸化珪素等の無機材料で構成されていても良い。 As shown in FIGS. 7 and 9 to 11, the second electrode 130 extends in the second direction (X direction in FIG. 7) intersecting the first direction. A partition wall 170 is formed between the adjacent second electrodes 130. The partition wall 170 extends in parallel to the second electrode 130, that is, in the second direction. The base of the partition 170 is, for example, the insulating layer 150. The partition 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed. The partition wall 170 may be made of a resin other than a polyimide resin, for example, an inorganic material such as an epoxy resin, an acrylic resin, or silicon dioxide.
 隔壁170は、断面が台形の上下を逆にした形状(逆台形)になっている。すなわち隔壁170の上面の幅は、隔壁170の下面の幅よりも大きい。このため、隔壁170を第2電極130より前に形成しておくと、蒸着法やスパッタリング法を用いて、第2電極130を基板100の一面側に形成することで、複数の第2電極130を一括で形成することができる。また、隔壁170は、有機層120を分断する機能も有している。 The partition wall 170 has a trapezoidal cross-sectional shape (reverse trapezoid). That is, the width of the upper surface of the partition wall 170 is larger than the width of the lower surface of the partition wall 170. Therefore, if the partition wall 170 is formed before the second electrode 130, the second electrode 130 is formed on one surface side of the substrate 100 by using an evaporation method or a sputtering method. Can be formed collectively. The partition wall 170 also has a function of dividing the organic layer 120.
 次に、本実施例における発光装置10の製造方法を説明する。まず、基板100上に第1電極110、引出配線114,134を形成する。これらの形成方法は、実施形態において第1電極110を形成する方法と同様である。 Next, a method for manufacturing the light emitting device 10 in this embodiment will be described. First, the first electrode 110 and the lead wires 114 and 134 are formed on the substrate 100. These forming methods are the same as the method of forming the first electrode 110 in the embodiment.
 次いで、引出配線114の上、第1端子112の上、引出配線134の上、及び第2端子132の上に、導体層180を形成する。次いで、絶縁層150を形成し、さらに隔壁170を形成する。次いで有機層120及び第2電極130を形成する。 Next, the conductor layer 180 is formed on the lead wiring 114, on the first terminal 112, on the lead wiring 134, and on the second terminal 132. Next, the insulating layer 150 is formed, and further the partition 170 is formed. Next, the organic layer 120 and the second electrode 130 are formed.
 本実施例によれば、有機層120は実施形態に示した構成を有している。このため、ディスプレイの発光効率を向上させつつ、ディスプレイの寿命が短くなることを抑制することができる。 According to this example, the organic layer 120 has the configuration shown in the embodiment. For this reason, it can suppress that the lifetime of a display becomes short, improving the luminous efficiency of a display.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (6)

  1.  陽極である第1電極と、
     陰極である第2電極と、
     前記第1電極と前記第2電極の間に位置する有機層と、
    を備え、
     前記有機層は、
      発光層と、
      前記第1電極と前記発光層の間に位置していて正孔が移動する材料を含む第1機能層と、
     前記第1機能層と前記発光層の間に位置していて電子の移動を阻害する材料を含む第2機能層と、
      前記第1機能層と前記第2機能層の間に位置していて電子が移動する材料を含む第3機能層と、
    を有する発光装置。
    A first electrode that is an anode;
    A second electrode which is a cathode;
    An organic layer positioned between the first electrode and the second electrode;
    With
    The organic layer is
    A light emitting layer;
    A first functional layer that is located between the first electrode and the light emitting layer and includes a material that moves holes;
    A second functional layer that is located between the first functional layer and the light emitting layer and includes a material that inhibits electron movement;
    A third functional layer including a material that is located between the first functional layer and the second functional layer and to which electrons move;
    A light emitting device.
  2.  請求項1に記載の発光装置において、
     前記第3機能層は前記第2機能層に接している発光装置。
    The light-emitting device according to claim 1.
    The light emitting device in which the third functional layer is in contact with the second functional layer.
  3.  請求項2に記載の発光装置において、
     前記第2機能層は前記発光層に接している発光装置。
    The light-emitting device according to claim 2.
    The light emitting device in which the second functional layer is in contact with the light emitting layer.
  4.  請求項1~3のいずれか一項に記載の発光装置において、
     前記第3機能層の厚さは0.1nm以上5nm以下である発光装置。
    The light emitting device according to any one of claims 1 to 3,
    The thickness of the said 3rd functional layer is 0.1 nm or more and 5 nm or less.
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記電子が移動する材料は芳香環を有する有機シアン化合物である発光装置。
    The light emitting device according to any one of claims 1 to 4,
    The light emitting device, wherein the material through which the electron moves is an organic cyanide compound having an aromatic ring.
  6.  請求項5に記載の発光装置において、
     前記有機シアン化合物はヘキサアザトリフェニレンである発光装置。
    The light emitting device according to claim 5.
    The light emitting device, wherein the organic cyanide compound is hexaazatriphenylene.
PCT/JP2015/086478 2015-12-28 2015-12-28 Light emitting device WO2017115405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086478 WO2017115405A1 (en) 2015-12-28 2015-12-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086478 WO2017115405A1 (en) 2015-12-28 2015-12-28 Light emitting device

Publications (1)

Publication Number Publication Date
WO2017115405A1 true WO2017115405A1 (en) 2017-07-06

Family

ID=59225000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086478 WO2017115405A1 (en) 2015-12-28 2015-12-28 Light emitting device

Country Status (1)

Country Link
WO (1) WO2017115405A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123611A (en) * 2005-10-28 2007-05-17 Sanyo Electric Co Ltd Organic electroluminescence element and organic electroluminescence display
JP2007173779A (en) * 2005-12-20 2007-07-05 Samsung Sdi Co Ltd Organic electroluminescent display element and manufacturing method thereof
JP2011216861A (en) * 2010-04-01 2011-10-27 Samsung Mobile Display Co Ltd Organic light emitting diode device
JP2013191649A (en) * 2012-03-13 2013-09-26 Idemitsu Kosan Co Ltd Organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123611A (en) * 2005-10-28 2007-05-17 Sanyo Electric Co Ltd Organic electroluminescence element and organic electroluminescence display
JP2007173779A (en) * 2005-12-20 2007-07-05 Samsung Sdi Co Ltd Organic electroluminescent display element and manufacturing method thereof
JP2011216861A (en) * 2010-04-01 2011-10-27 Samsung Mobile Display Co Ltd Organic light emitting diode device
JP2013191649A (en) * 2012-03-13 2013-09-26 Idemitsu Kosan Co Ltd Organic electroluminescent element

Similar Documents

Publication Publication Date Title
JP6089280B2 (en) Organic electroluminescence device
KR101453874B1 (en) White organic light emitting device
JP6816102B2 (en) Manufacturing method of light emitting device
JP4975766B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP6060361B2 (en) Organic light emitting device
JPWO2004077889A1 (en) Organic electroluminescence device
JP2008053556A (en) Organic electroluminescent element
JP2008124268A (en) Organic electroluminescence element
JP5458554B2 (en) Organic electroluminescence device and display device
JP5735819B2 (en) Organic electroluminescence device
US11251391B2 (en) Light emitting diode and electroluminescent display device including the same
JP2019160417A (en) Display device
JP4915651B2 (en) Organic electroluminescence device
TW201326362A (en) Green organic light-emitting diode and flat panel display device including the same
JP6816101B2 (en) Manufacturing method of light emitting device
JP4915652B2 (en) Organic electroluminescence device
JP2019033192A (en) Light emitter and display device including light emitter
TWI629814B (en) Organic light emitting device, display device and lighting device
JP2022031471A (en) Light-emitting device
JP5102522B2 (en) Organic electroluminescence device
WO2017115405A1 (en) Light emitting device
JP2019153659A (en) Light emitting element and display device including the same
JP6688814B2 (en) Light emitting device
JP2013191276A (en) Organic electroluminescent element
JP2008124269A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15912071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15912071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP