WO2017104164A1 - 駐車支援方法および装置 - Google Patents

駐車支援方法および装置 Download PDF

Info

Publication number
WO2017104164A1
WO2017104164A1 PCT/JP2016/072494 JP2016072494W WO2017104164A1 WO 2017104164 A1 WO2017104164 A1 WO 2017104164A1 JP 2016072494 W JP2016072494 W JP 2016072494W WO 2017104164 A1 WO2017104164 A1 WO 2017104164A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
parking frame
vehicle
group
parked
Prior art date
Application number
PCT/JP2016/072494
Other languages
English (en)
French (fr)
Inventor
直樹 古城
朋子 黒飛
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MX2018007134A priority Critical patent/MX2018007134A/es
Priority to CA3008378A priority patent/CA3008378A1/en
Priority to CN201680072772.3A priority patent/CN108367722B/zh
Priority to RU2018124452A priority patent/RU2713958C2/ru
Priority to BR112018012312-9A priority patent/BR112018012312B1/pt
Priority to US16/061,762 priority patent/US10435074B2/en
Priority to JP2017556346A priority patent/JP6741022B2/ja
Priority to KR1020187019937A priority patent/KR20180094055A/ko
Priority to EP16875151.9A priority patent/EP3392093B1/en
Publication of WO2017104164A1 publication Critical patent/WO2017104164A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0275Parking aids, e.g. instruction means by overlaying a vehicle path based on present steering angle over an image without processing that image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • B60R2021/01345Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems using mechanical sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/10Automatic or semi-automatic parking aid systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the present invention relates to a parking assistance method and apparatus.
  • a group of reflection points that are determined to be the same object are extracted from the output of a radar device mounted on the vehicle, and the group of reflection points exists at intervals of two or more.
  • a plurality of target parking positions are set in the space by dividing the space of the interval (see, for example, Patent Document 1).
  • the problem to be solved by the present invention is to provide a parking support method and apparatus capable of appropriately setting a parking frame.
  • the present invention sets a virtual parking frame group in which a parking frame group including a plurality of parking frames is virtualized, aligns the virtual parking frame group with respect to a recognized parked vehicle, and performs the alignment.
  • the said subject is solved by estimating a group as a parking frame group provided with a some parking frame.
  • the configuration of the parking frame group is virtualized, and the virtual parking frame group is aligned with the parked vehicle. Therefore, there is an error in the setting of the parking frame depending on the position of the parked vehicle within the parking frame. It is possible to suppress the occurrence, and there is an effect that the parking frame can be set appropriately.
  • FIG. 7A, FIG. 7B, and FIG. 7C It is a figure for demonstrating the production
  • FIG. 1 is a block diagram showing a configuration of a parking support apparatus 100 according to an embodiment of the present invention.
  • the parking assistance apparatus 100 according to the present embodiment is mounted on a vehicle and supports an operation of moving (parking) the vehicle to a parking space.
  • the parking assistance device 100 of the present embodiment includes a distance sensor group 10, a moving distance sensor 20, a steering angle sensor 30, a main switch 40, a parking assistance ECU (Electronic control unit) 50, and a vehicle control ECU 60.
  • the parking assist device 100 also includes a hardware group mounted on a normal vehicle such as an engine control ECU (not shown) and a power assist ECU for steering. These components are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other.
  • CAN Controller Area Network
  • the distance sensor group 10 includes, for example, a front distance sensor 11, a right side distance sensor 12, and a left side distance sensor 13, as illustrated.
  • the front distance sensor 11 is installed in the front bumper of the vehicle or in the vicinity thereof, detects polar coordinates (distance and azimuth) of a group of reflection points P0 (see FIG. 3) in an object existing in front of the host vehicle, and notifies the parking assistance ECU 50.
  • the right side distance sensor 12 is installed on the right side of the vehicle (for example, on the right side of the front end of the vehicle), detects polar coordinates of a group of reflection points P0 on an object existing on the right side of the host vehicle, and outputs the detected polar coordinates to the parking assistance ECU 50. To do.
  • the left-side distance sensor 13 is installed on the left side of the vehicle (for example, on the left side of the front end of the vehicle), detects polar coordinates of a group of reflection points P0 on an object existing on the left side of the host vehicle, and outputs the detected polar coordinates to the parking assistance ECU 50. To do.
  • each sensor of the distance sensor group 10 a laser scanner, a radar, a stereo camera, and the like can be exemplified, and any sensor that can detect polar coordinates of the group of reflection points P0 on the object can be appropriately selected. Further, the detection area of the distance sensor group 10 is set so that polar coordinates of a group of reflection points P0 in a plurality of parked vehicles existing at least on the left and right of the course of the host vehicle can be detected.
  • the movement distance sensor 20 calculates the movement amount of the own vehicle and outputs it to the parking assistance ECU 50.
  • the movement distance sensor 20 can be configured using, for example, a rotation speed sensor that detects the rotation speed of the wheel of the host vehicle.
  • the steering angle sensor 30 is installed inside the steering column, for example, detects the rotation angle of the steering wheel, and outputs it to the parking assist ECU 50.
  • the main switch 40 is a switch operated by the user to instruct the start of parking assistance, and outputs an off signal to the parking assistance ECU 50 when not operated, and sends an on signal to the parking assistance ECU 50 when operated. Output.
  • the main switch 40 is installed at an arbitrary position that can be operated by the driver, for example, around the instrument panel of the host vehicle or around the steering wheel.
  • the main switch 40 may be a software switch provided on the screen of the navigation device, a software switch provided on the screen of a mobile terminal such as a smartphone that can communicate with the vehicle via a network, or the like.
  • the parking assistance ECU 50 is a controller that controls the parking assistance device 100 in an integrated manner.
  • the parking assistance ECU 50 includes a ROM 52 that stores a parking assistance program, a CPU 51 that functions as the parking assistance device 100 according to the present embodiment, and an accessible memory by executing the program stored in the ROM 52. And a RAM 53 that functions as a device.
  • the parking assistance ECU 50 receives detection information from the distance sensor group 10, the moving distance sensor 20, the steering angle sensor 30, and the main switch 40, and executes a parking assistance process described later, and then the target vehicle speed and the target steering angle of the host vehicle. Are calculated and output to the vehicle control ECU 60.
  • the vehicle control ECU 60 is a controller that performs drive control of the vehicle.
  • the vehicle control ECU 60 functions as a ROM 61 that stores a vehicle drive control program, a CPU 61 that functions as a vehicle control device, and an accessible storage device by executing the program stored in the ROM 62. And a RAM 63.
  • the vehicle control ECU 60 receives the target vehicle speed and the target steering angle of the vehicle from the parking assist ECU 50, and performs drive control of the vehicle in cooperation with the engine control ECU, the power assist ECU of the steering, and the like.
  • FIG. 2 is a block diagram for explaining the function of the parking assist ECU 50.
  • the parking assist ECU 50 includes a parked vehicle recognition unit 501, a vehicle representative point calculation unit 502, a vehicle group selection unit 503, a parking frame width / angle calculation unit 504, and a virtual parking frame group generation unit. 505, virtual parking frame group position setting unit 506, selection candidate calculation unit 507, parking space calculation unit 508, parking availability determination unit 509, parking target position calculation unit 510, parking route calculation unit 511, A search route calculation unit 512 and a vehicle control command value calculation unit 513 are provided.
  • the parked vehicle recognition unit 501 recognizes a parked vehicle based on a reflection point position information group (hereinafter referred to as a point group) input from the distance sensor group 10 as a polar coordinate group.
  • the parked vehicle recognition unit 501 first integrates the point groups input from the front distance sensor 11, the right side distance sensor 12, and the left side distance sensor 13 by converting the polar coordinates to the xy plane coordinates, and then, Clustering is performed to extract a group of adjacent points.
  • FIG. 3 is a plan view showing a state where recognition processing of a parked vehicle is executed in a parallel parking type parking lot.
  • the parked vehicle is extracted as an L-shaped point group by the parked vehicle recognition unit 501.
  • the parked vehicle recognition unit 501 outputs information on the extracted group of point groups to the vehicle representative point calculation unit 502 when the group of points extracted by clustering is L-shaped.
  • a recognition method of a parked vehicle it is not restricted to the above-mentioned method, Other well-known methods can be used.
  • the vehicle representative point calculation unit 502 calculates the representative point P1 of each parked vehicle based on the point cloud information input from the parked vehicle recognition unit 501.
  • the vehicle representative point calculation unit 502 first extracts a straight line representing the front surface of a parked vehicle parked rearward or the rear surface of a parked vehicle parked forward, and then parked the center point of the extracted straight line. Calculated as the representative point P1 of the vehicle.
  • one of the pair of L-shaped straight lines is a straight line indicating the front surface of the parked vehicle parked rearward or the rear surface of the parked vehicle parked forward
  • the other straight line represents the side surface of the parked vehicle. It becomes the straight line shown.
  • FIG. 3 in the situation where the vector indicating the direction of the host vehicle and the vector indicating the direction of the parked vehicle are at right angles, the front of the parked vehicle parked backward or the parked vehicle parked forward
  • the rear surface falls within a range from 45 ° on the left side to 45 ° on the right side with respect to the vector indicating the direction of the host vehicle.
  • the vehicle representative point calculation unit 502 sets a straight line that falls in a range from 45 ° on the left side to 45 ° on the right side with respect to the vector indicating the direction of the host vehicle, in front of or in front of a parked vehicle parked backward. It is extracted as a straight line indicating the rear surface of the parked parked vehicle. Then, the vehicle representative point calculation unit 502 calculates the center point of the extracted straight line as the representative point P1 of the parked vehicle and outputs it to the vehicle group selection unit 503.
  • the vehicle representative point calculation unit 502 calculates not only the position of the representative point P1 of the parked vehicle but also the direction based on the direction of the straight line indicating the front or rear surface of the parked vehicle and the straight line indicating the side of the parked vehicle.
  • the information on the position and orientation of the representative point P1 of the parked vehicle is output to the vehicle group selection unit 503.
  • the center center of gravity may be set.
  • the vehicle group selection unit 503 is a parking frame group composed of a series of parallel parking frames whose directions coincide with each other based on the position and orientation information of the representative point P1 of each parked vehicle input from the vehicle representative point calculation unit 502. Select a group of parked vehicles. Then, the vehicle group selection unit 503 obtains information on the position and orientation of the representative point P1 of each parked vehicle belonging to the selected parked vehicle group, the parking frame width / angle calculation unit 504, the parking space calculation unit 508, and the search route. It outputs to the calculation part 512.
  • parked vehicles that exist in parking frames with different orientations are classified into different parked vehicle groups. If there are parked vehicle groups on the left and right of the subject vehicle that is being searched, the directions of the left and right parked vehicle groups are Since they differ by 180 °, the left and right parked vehicle groups are classified into different parked vehicle groups.
  • the method of classifying the parked vehicle group is not limited to this. For example, according to whether or not the distance between the parked vehicles is within a predetermined distance (for example, a distance between three parked vehicles), the parked vehicle group is further classified, or an object that is not a vehicle between the parked vehicles May be classified into separate parked vehicle groups with the object as a boundary.
  • a predetermined distance for example, a distance between three parked vehicles
  • the vehicle group selection unit 503 may sequentially execute a process of classifying the parked vehicle group every time information on the representative point P1 of each parked vehicle is input from the vehicle representative point calculation unit 502. For example, a process of classifying a parked vehicle group after continuously inputting (tracking) parked vehicle information and superimposing time-series information may be executed. Specifically, the amount of movement of the host vehicle (so-called odometry) is calculated based on the detection information input from the movement distance sensor 20 and the steering angle sensor 30, and the parking until the previous time is calculated based on the calculation result. Information on the representative point P1 of the vehicle and information on the representative point P1 of the current parked vehicle are integrated.
  • information on the representative point P1 of the parked vehicle that has been input until the previous time but not input this time is also used.
  • the calculation process of the parking frame width described later can be executed using information on many parked vehicles that are not included in the detection range of the distance sensor group 10, the stability of the result of the calculation process of the parking frame width can be performed. Increase.
  • the parking frame width / angle calculation unit 504 calculates the width and angle of the parking frame based on the position and orientation information of the parked vehicle group of the same classification input from the vehicle group selection unit 503, and determines whether the parking frame is acceptable or not. Output to.
  • FIG. 4 is a diagram for explaining the relationship between the width width of the parking frame and the distance d between unit representative points. As shown in this figure, the width width of the parking frame and the distance d between the representative points P1 of the two parked vehicles existing in the adjacent parking frames (hereinafter referred to as the unit representative point distance) d substantially coincide with each other.
  • FIG. 5 is a diagram for explaining the relationship between the width width of the parking frame and the distance D between the representative points when there is an empty parking frame between the parallel parked vehicles.
  • the distance D between representative points is approximately an integer multiple of the distance d between unit representative points ( ⁇ the width of the parking frame width). That is, the distance D between the representative points of two parked vehicles existing in adjacent parking frames is one time the distance d between unit representative points, and between the representative points of two adjacent parked vehicles across one parking frame. The distance D is twice the distance d between unit representative points, and the distance D between the representative points of two parked vehicles adjacent to each other across the two parking frames is three times the distance d between unit representative points.
  • the parking frame width / angle calculation unit 504 calculates the width of the parking frame using the unit representative point distance d. Specifically, first, an assumed value dx is set for the distance d between unit representative points.
  • the assumed value dx is a value corresponding to a realistic parking frame width (for example, 2.2 m to 3.3 m).
  • an error de between the representative point distance D and the assumed value dx is calculated.
  • a remainder dr when the distance D between the representative points is divided by the assumed value dx is calculated.
  • the error de is calculated by the following equation (1).
  • the sum de_sum of the errors de calculated for each representative point distance D is calculated.
  • the assumed value dx that minimizes the total sum de_sum of the errors is determined as the value of the unit representative point distance d.
  • four parked vehicles V1 to V4 are selected as a parked vehicle group by the vehicle group selection unit 503, the distance D12 between the representative points of the parked vehicle V1 and the parked vehicle V2, and the parked vehicle V2 and the parked vehicle.
  • the residual dr for the distances D12 and D23 between the representative points is dx ⁇ 1/2 or less
  • the error for the distance D23 between the representative points 0.0 m.
  • a straight line connecting a plurality of representative points P1 (hereinafter referred to as a front line) may be applied by a method such as RANSC (random sample consensus), and the distance between the representative points P1 on the front line may be used.
  • RANSC random sample consensus
  • the width width of the parking frame is calculated.
  • the width direction of the parking frame is inclined at a predetermined angle ⁇ with respect to the arrangement direction of the parking frame (the extending direction of the front line).
  • it is preferable to calculate the width of the parking frame as width d when it can be estimated that the parallel parking method is not angled.
  • the depth dimension of the parking frame is calculated by a method similar to the method for calculating the width width of the parking frame described above.
  • the parking frame width / angle calculation unit 504 calculates the average value of the direction of the parked vehicle group of the same classification input from the vehicle group selection unit 503 and the angle ⁇ between the front line and the parking frame. The angle is output to the virtual parking frame group generation unit 505 as an angle.
  • the parking frame width / angle calculation unit 504 outputs the calculated value of ⁇ to the virtual parking frame group generation unit 505 as the angle of the parking frame.
  • the width and angle of a parking frame may be calculated based on the position and direction of a parked vehicle group
  • detailed information on the parking lot including information on the width and angle of the parking frame is used as map information. It may be included and held, or information on the width and angle of the parking frame may be acquired through a network.
  • the virtual parking frame group generation unit 505 generates a virtual parking frame group obtained by virtually imagining a series of parking frames based on the parking frame width width and the angle ⁇ input from the parking frame width / angle calculation unit 504 (see FIGS. 7A to 7C). ) Is generated.
  • FIG. 7A is a diagram illustrating a virtual parking frame group corresponding to a parking frame group of a parallel parking method that is not angled
  • FIG. 7B is a virtual parking frame group corresponding to a parking frame group of a parallel parking method that is angled
  • FIG. 7C is a diagram illustrating a virtual parking frame group corresponding to a parking frame group of a parallel parking method.
  • the virtual parking frame group is formed by arranging a plurality of virtual parking frames having the same width, depth, and angle dimensions along a predetermined straight line.
  • the virtual parking frame group corresponding to the parking frame group of a parallel parking system becomes a ladder-like (ladder-like) frame.
  • the width of the virtual parking frame of the virtual parking frame group shown in FIGS. 7A and 7B is the width width input from the parking frame width / angle calculating unit 504, and the angle of the virtual parking frame of the virtual parking frame group shown in FIG. 7B Is the angle ⁇ input from the parking frame width / angle calculation unit 504.
  • the depth (length in the direction orthogonal to the width direction) of the virtual parking frame of the virtual parking frame group shown in FIGS. 7A and 7B is a value set in advance according to the length of a general parking frame. is there.
  • the width and angle of the virtual parking frame are the width width and the angle ⁇ calculated by the parking frame width / angle calculation unit 504, they may be set in advance. In this case, detailed information of the parking frame group including the width and angle of the parking frame is included and held in the map information, and the width and angle of the parking frame held are set as the width and angle of the virtual parking frame. May be set. Or you may acquire the information of the width and angle of a virtual parking frame through a network. Thereby, as shown in FIG. 8, the parallel parking method (see FIG. 7A) without the angle, the parallel parking method with angle (see FIG. 7B), and the parking method that does not correspond to the parallel parking method (see FIG. 7C). It becomes possible to generate a virtual parking frame group corresponding to the parking frame group.
  • the number of virtual parking frames included in the virtual parking frame group may be the number of frames in which all parked vehicles of the parked vehicle group selected by the vehicle group selecting unit 503 can be parked, as shown in FIG.
  • the number of frames that can be parked by all parked vehicles included in the parked vehicle group is two. Thereby, the parking frame which exists in the space which is not pinched
  • the virtual parking frame group position setting unit 506 sets the position of the virtual parking frame group generated by the virtual parking frame group generation unit 505 according to the position of the parked vehicle in the parked vehicle group selected by the vehicle group selection unit 503.
  • FIG. 10A is a diagram for explaining a method for setting the position of the virtual parking frame group of the parallel parking method without an angle
  • FIG. 10B is a method of setting the position of the virtual parking frame group of the parallel parking method with an angle. It is a figure for demonstrating.
  • the virtual parking frame group position setting unit 506 slightly moves the front part of the virtual parking frame group to the near side with respect to the front line calculated by the parking frame width / angle calculation unit 504. Offset.
  • the offset amount at this time may be set so that all the parked vehicles in the parked vehicle group fall inside the virtual parking frame group, or may be a preset value.
  • the virtual parking frame group position setting unit 506 sets the position of the virtual parking frame group in the left-right direction (the arrangement direction of the parking frames), first, the initial position is set.
  • the representative point P1 of the parked vehicle located at the left end of the parked vehicle group is matched with the center line in the width direction of the virtual parking frame located second from the left end of the virtual parking frame group. Just do it.
  • the representative point P1 of the parked vehicle located at the rear end of the parked vehicle group and the second position from the rear end of the virtual parking frame group is just to make the depth direction center line of a virtual parking frame correspond.
  • the virtual parking frame group position setting unit 506 calculates an offset amount Os between the horizontal position of the virtual parking frame group set as the initial position and the optimal horizontal position of the virtual parking frame group, and The position of the virtual parking frame group is determined by moving the virtual parking frame group in the left-right direction by the offset amount Os.
  • the offset amount Os first, for all parked vehicles, the offset amount Os ′ between the position of the representative point P1 and the center line in the vehicle width direction of the virtual parking frame closest to the position is calculated. Next, an average value of the calculated offset amount Os ′ is calculated and output as the offset amount Os.
  • the distance between the position of the representative point P1 of the parked vehicle and the center line in the width direction of the virtual parking frame closest to the position is The offset amount is Os ′.
  • the distance between the position of the representative point P1 of the parked vehicle and the center line in the depth direction of the virtual parking frame closest to the position is set as the offset amount Os ′. To do. Further, in the case of the parking system parking lot shown in FIG. 8, the distance between the center position of the parked vehicle and the center position of the virtual parking frame closest to the position is calculated and calculated for all parked vehicles. The position of the virtual parking frame group may be optimized so that the error in the distance is minimized.
  • the virtual parking frame group generation unit 505 generates a virtual parking frame group, and the virtual parking frame group position setting unit 506 sets the position of the virtual parking frame group, thereby parking the parking lot. Estimate the composition of the frame group.
  • the selection candidate calculation unit 507 is a parking frame that is a candidate for selecting a parking target position from among the parking frames included in the parking frame group whose configuration is estimated by the virtual parking frame group generation unit 505 and the virtual parking frame group position setting unit 506. Is calculated and output to the parking availability determination unit 509.
  • the selection candidate parking frame is a parking frame included in the parking frame group, and is a parking frame that does not overlap the position of the parked vehicle recognized by the parked vehicle recognition unit 501.
  • the parking space calculation unit 508 calculates a space in which no object exists around the host vehicle (that is, a parking space) and determines whether parking is possible. Output to the unit 509.
  • a so-called Grid map (a lattice map obtained by dividing a space into a grid) indicating whether each space is empty or filled is used.
  • An example is a calculation method.
  • the parking space calculation unit 508 extracts a parking space based on the front line information of the parked vehicle group input from the parking frame width / angle calculation unit 504 and the calculated Grid map, for example.
  • the Grid map includes information that each space is not detected by the distance sensor group 10 in addition to the information that each space is open (open) or filled (occupied). Keep it. That is, the Grid map referred to by the parking availability determination unit 509 has three values of open, occupied, and unknown.
  • the parking possibility determination unit 509 determines whether or not parking is possible by comparing the parking space of the selection candidate output from the selection candidate calculation unit 507 with the parking space output from the parking space calculation unit 508. The determination result is output to the vehicle control command value calculation unit 513.
  • determining whether parking is possible it may be determined that parking is possible only when the entire area of each parking frame is “open”, or “unknown” instead of “open” unless it is “occupied”. Even if it is, it may be determined that parking is possible. Even if it is not “occupied”, it is possible to prevent parking delays by determining that it is possible to park even if it is “unknown”. It becomes possible to realize parking.
  • the information about the width of the parking frame input from the parking frame width / angle calculation unit 504, the information about the parking space input from the parking space calculation unit 508, and the information about the vehicle width v_width of the host vehicle may be determined whether or not parking is possible. Specifically, as described below, it may be determined whether or not parking is possible.
  • the parking permission / inhibition determining unit 509 compares the vehicle width v_width of the host vehicle with the width of the parking frame, and determines that the host vehicle cannot be parked in the parking space when the following equation (3) is satisfied. To do. v_width ⁇ width + width_threshold (3)
  • the width_threshold is a value set in advance in order to secure a space necessary for getting on and off the own vehicle in the parking space.
  • width_threshold may be set to a small value when there is no need to consider getting on and off of people such as in the case of automatic driving.
  • the parking availability determination unit 509 calculates the width area_width when the parking space is projected onto the front line, and when the condition of the following expression (4) is satisfied, the vehicle cannot be parked in the parking space. to decide. That is, the parking possibility determination unit 509 determines whether there is a sufficient width of the parking space. v_width ⁇ area_width + width_threshold (4)
  • the parking target position calculation unit 510 selects one of the selection candidate parking frames that the parking availability determination unit 509 determines to be able to park, and corrects the position of the selected parking frame. And the parking target position calculation part 510 calculates the parking target position in the corrected parking frame.
  • a method of selecting one of the plurality of selection candidate parking frames for example, a method of selecting the closest parking frame from the host vehicle can be exemplified.
  • a method of using the position of the representative point P1 of the parked vehicle can be exemplified as in the method of setting the position of the virtual parking frame group by the virtual parking frame group position setting unit 506. That is, when there are parked vehicles on the left and right of the selected parking frame, the vehicle width direction center of the parking frame closest to the position of the representative point P1 and the position for each of these two parked vehicles. An offset amount Os ′ with the line is calculated. Then, the selected parking frame is moved by the average value of the offset amount Os ′.
  • the position of the representative point P1 and the parking frame closest to the position for each of the two parked vehicles adjacent to the parking frame are selected.
  • An offset amount Os ′ with respect to the center line in the vehicle width direction is calculated. Then, the selected parking frame is moved by the average value of the offset amount Os ′.
  • the parking route calculation unit 511 calculates a parking route to the target parking position input from the parking target position calculation unit 510.
  • the calculation method of the parking route is not particularly limited, and various known methods can be used.
  • the search route calculation unit 512 uses the information on the front line input from the parking frame width / angle calculation unit 504 to calculate a travel route for searching for a parking space when parking is not possible. For example, a basic travel line is created by offsetting the front line toward the travel path side of the vehicle, and a route for traveling along the basic travel line from the current position of the host vehicle is generated. In this case, the host vehicle travels along the row of parking frames.
  • the parking control is input from the parking route calculation unit 511.
  • a vehicle control command value for traveling along the route is calculated. If parking is impossible, a vehicle control command value for traveling along the searched route input from the searched route calculation unit 512 is calculated. Then, vehicle control command value calculation unit 513 outputs the calculated vehicle control value to vehicle control ECU 60.
  • the vehicle control command value include a target vehicle speed and a target steering angle, but other command values such as the acceleration of the host vehicle may be included.
  • the vehicle control value calculation method is not particularly limited, and various known methods can be used.
  • FIG. 11 is a flowchart showing a control procedure of parking support processing executed by the parking support device 100 according to the present embodiment.
  • parking assistance processing is started, and the process proceeds to step S101.
  • step S101 detection information is input from the distance sensor group 10, the moving distance sensor 20, and the steering angle sensor 30 to the parking assist ECU 50.
  • step S ⁇ b> 102 the parked vehicle recognition unit 501 recognizes the parked vehicle based on the point cloud information input from the distance sensor group 10 as a polar coordinate group.
  • step S103 the vehicle representative point calculation unit 502 calculates the representative point P1 of each parked vehicle based on the point cloud information input from the parked vehicle recognition unit 501.
  • step S ⁇ b> 104 the vehicle group selection unit 503 performs a series of parking frames whose orientations and the like match based on the position and orientation information of the representative point P ⁇ b> 1 of each parked vehicle input from the vehicle representative point calculation unit 502. Select a group of parked vehicles.
  • step S105 the parking frame width / angle calculation unit 504 determines the parking frame width width and angle ⁇ based on the information on the position and orientation of the same class of parked vehicle groups input from the vehicle group selection unit 503. And the front line.
  • step S106 the virtual parking frame group generation unit 505 generates a virtual parking frame group, and the virtual parking frame group position setting unit 506 sets the position of the virtual parking frame group, thereby Estimate the configuration.
  • step S107 the vehicle group selection unit 503 collates the parking frame group having the configuration estimated in step S106 with the parked vehicle group selected in step S104, and the position of the representative point P1 is the most relative to the position. It is determined whether or not the offset amount with respect to the center line of the nearby parking frame is a predetermined value or more. If the offset amount is less than the predetermined value, the process proceeds to step S108, and if the offset amount is greater than the predetermined value, the process proceeds to step S121.
  • step S121 the vehicle group selection unit 503 classifies the parked vehicle group selected in step S104 into a plurality of parked vehicle groups. Then, the process returns to step S105.
  • FIG. 12 is a diagram showing a specific example in which a parked vehicle group is classified into two parked vehicle groups. As shown in this figure, first, as an initial setting, the position of the representative point P1 of the parked vehicle at the left end (or right end) of the parked vehicle group and the center line in the width direction of the parking frame closest to the position. Match. Next, an offset amount Os ′ between the position of the representative point P1 and the center line in the width direction of the parking frame closest to the position is calculated for all parked vehicles.
  • the parked vehicle group is classified into two parked vehicle groups at a position where the offset amount Os ′ is greater than or equal to a predetermined position, that is, a position where the offset amount Os ′ increases rapidly.
  • the position of the representative point P1 of the last (or top) parked vehicle in the parked vehicle group and the depth direction of the parking frame closest to the position Match the position with the center line.
  • the offset amount Os ′ between the position of the representative point P1 and the depth direction center line of the parking frame closest to the position is calculated for all parked vehicles.
  • step S ⁇ b> 108 the parking permission / inhibition determination unit 509 checks the parking space of the selection candidate output from the selection candidate calculation unit 507 with the parking available space output from the parking space calculation unit 508. To determine whether parking is possible. If it is determined that parking is possible, the process proceeds to step S109. If it is determined that parking is impossible, the process proceeds to step S131.
  • step S131 the search route calculation unit 512 calculates a travel route for searching for a parking space using the front line information input from the parking frame width / angle calculation unit 504.
  • step S132 the vehicle control command value calculation unit 513 calculates a vehicle control command value for traveling along the search travel route input from the search route calculation unit 512, and the vehicle control ECU 60 performs the vehicle control command. Vehicle drive control is executed in accordance with the vehicle control command value input from the value calculation unit 513.
  • step S109 the parking target position calculation unit 510 selects one of the selection candidate parking frames that the parking availability determination unit 509 determines to be able to park, and corrects the position of the selected parking frame. And the parking target position calculation part 510 calculates the parking target position in the corrected parking frame.
  • step S110 the parking route calculation unit 511 calculates a parking route to the target parking position input from the parking target position calculation unit 510.
  • step S111 the vehicle control command value calculation unit 513 calculates a vehicle control command value for traveling along the parking route input from the parking route calculation unit 511, and the vehicle control ECU 60 calculates the vehicle control command value. Vehicle drive control is executed in accordance with the vehicle control command value input from the calculation unit 513. This completes the parking assistance process.
  • the width of the parking frame is set wider than the actual width by a margin space. Therefore, between the left and right parked vehicles, the position of the center line in the vehicle width direction of the parking frame is set to be shifted to the left and right from the actual position. In particular, when the left and right parked vehicles are located on the left side or the right side in the parking frame, the error in the setting position of the parking frame sandwiched between the parked vehicles becomes large.
  • the recognition information of the parked vehicle is acquired, and the virtual parked frame group is set and the parked vehicle is aligned. And the virtual parking frame group which aligned with respect to the recognized parked vehicle is estimated as a parking frame group.
  • the width of the parking frame sandwiched between the parked vehicles can be set appropriately according to the actual width, regardless of the existence of a spare space, and the position of the parking frame is set appropriately according to the actual position. it can.
  • FIG. 14 there may be a parking frame that is not sandwiched between parked vehicles.
  • one virtual frame is provided on each side of the parked vehicle group.
  • a virtual parking frame group in which a plurality of virtual parking frames having the same width and depth dimensions are arranged in parallel or in a column along a predetermined straight line.
  • a distance D between representative points that is a distance between adjacent representative points P1 is calculated, and the representative points
  • the width of the parking frame is calculated based on the distance D, and the calculated width of the parking frame is set as the width of the virtual parking frame (see FIG. 5).
  • the representative point P1 is set to the center line in the vehicle width direction of the parked vehicle, and the alignment of the center line in the width direction of the virtual parking frame with respect to the representative point P1 is performed.
  • the virtual parking frame group is aligned with the parked vehicle group (see FIGS. 10A and 10B). Thereby, the position of the left-right direction (arrangement direction of a virtual parking frame) of the virtual parking frame group of a parallel parking system can be set.
  • the parked vehicle group is further classified into a plurality of parked vehicle groups (see FIG. 12). Thereby, even when the parking frame group is divided into left and right with an obstacle such as a pillar as a boundary, the parking frame group can be estimated appropriately.
  • a distance D between representative points that is a distance between adjacent representative points P1 is calculated, and the representative points
  • the depth of the parking frame is calculated based on the distance D, and the calculated depth of the parking frame is set as the width of the virtual parking frame.
  • the representative point P1 is set to the depth direction center line of the parked vehicle, and the depth direction center line of the operating frame is aligned with the representative point P1.
  • the virtual parking frame group is aligned with the parked vehicle group.
  • the offset amount Os between the position of the representative point P1 and the estimated position of the center line in the depth direction of the parking frame closest to the position is further classified into a plurality of parked vehicle groups. Thereby, even when the parking frame group is divided back and forth with an obstacle such as a pillar as a boundary, the parking frame group can be estimated appropriately.
  • the orientations of the plurality of parked vehicles are calculated from the recognition information input from the distance sensor group 10, and the calculated orientations of the parked vehicles and the plurality of representative points are calculated.
  • an inclination angle ⁇ with respect to the front line of the virtual parking frame is calculated (see FIGS. 6 and 10B).
  • a parking frame in which no recognized parked vehicle exists is selected from the plurality of parking frames included in the estimated parking frame group. Extracted as a selection candidate parking frame. Thereby, even if the parked vehicle on the front side hides the parking space on the far side so that it is not detected by the distance sensor group 10 (so-called occlusion), the parking frame of the selection candidate from the estimated parking frame group Can be extracted.
  • the estimation of the parking frame group minimizes the position error of the parked vehicle within the parking frame and estimates the true value of the parking frame. To be done. However, even if the parking frame group is estimated correctly, if there is a parked vehicle parked on the left and right of the parking frame on which the host vehicle is parked, the host vehicle may be parked on the left side. Natural judgment of the driver. Therefore, in the parking assistance method and the parking assistance device 100 according to the present embodiment, the position of the candidate parking frame is corrected based on the position of the representative point P1 of the parked vehicle existing in the estimated parking frame group. Thereby, the setting of the target parking position according to the surrounding situation becomes possible.
  • a space where no object exists is extracted, and parking in the parking frame of the selection candidate is determined depending on whether or not this space overlaps the parking frame of the selection candidate. Determine whether or not.
  • the parking frame in which the object which is not recognized as a parked vehicle exists can be excluded from selection candidates, and appropriate parking assistance becomes possible.
  • one of the selection candidate parking frames determined to be parking is set as the parking target position, and the parking route to the parking target position is set. And the host vehicle is controlled to travel along the parking route. Thereby, automatic parking can be performed without requiring a driver's operation.
  • a search route for searching and driving in the parking lot is generated, and when it is determined that parking in the candidate parking frame is impossible, the vehicle travels along the search route.
  • running for detecting a parking possible space to a target parking position can be performed automatically, without requiring a driver
  • the “parking support device 100” in the above embodiment corresponds to an example of the “parking support device” in the present invention
  • the “parking support ECU 50” in the above embodiment corresponds to an example of the “parking support controller” in the present invention. .
  • “Representative point P1” in the above-described embodiment corresponds to an example of “representative point” in the present invention
  • “distance between representative points D” in the above-described embodiment corresponds to an example of “distance between representative points” in the present invention
  • the “front line” in the above-described embodiment corresponds to an example of the “predetermined straight line” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

駐車車両の認識情報を取得し、複数の駐車枠を備える駐車枠群を仮想した仮想駐車枠群を設定し、認識された駐車車両に対して仮想駐車枠群の位置合わせを行い、位置合わせを行った仮想駐車枠群を、複数の駐車枠を備える駐車枠群と推定する。仮想駐車枠群は、所定の直線に沿って並列又は縦列で配された複数の同寸法の仮想駐車枠を備える。

Description

駐車支援方法および装置
 本発明は、駐車支援方法および装置に関するものである。
 車両に搭載される駐車支援装置として、車両に搭載されたレーダー装置の出力から、同一物体と判断される一群の反射点を抽出し、この一群の反射点が2台分以上の間隔をもって存在する場合、当該間隔の空間を分割して当該空間に複数の目標駐車位置を設定することが行われている(例えば、特許文献1参照)。
特開2013-220802号公報
 特許文献1に記載の駐車支援装置では、駐車車両の間に存在する2台分以上の間隔の空間を単純に分割するのみであることから、駐車車両が駐車枠内の左寄り又は右寄りに位置している場合等には、駐車車両の間に複数の駐車枠を適切に設定できないことがあるという課題がある。
 本発明が解決しようとする課題は、駐車枠を適切に設定できる駐車支援方法および装置を提供することである。
 本発明は、複数の駐車枠を備える駐車枠群を仮想した仮想駐車枠群を設定し、認識された駐車車両に対して仮想駐車枠群の位置合わせを行い、位置合わせを行った仮想駐車枠群を、複数の駐車枠を備える駐車枠群と推定することにより、上記課題を解決する。
 本発明によれば、駐車枠群の構成を仮想したうえでその仮想した駐車枠群を駐車車両に対して位置合わせするので、駐車車両の駐車枠内での位置によって駐車枠の設定に誤差が生じることを抑制でき、駐車枠を適切に設定できるという効果を奏する。
本発明の一実施形態に係る駐車支援装置の構成を示すブロック図である。 駐車支援ECUの機能を説明するためのブロック図である。 並列駐車方式の駐車場において駐車車両の認識処理を実行している状態を示す平面図である。 駐車枠の幅と単位代表点間距離との関係を説明するための図である。 並列の駐車車両の間に空車状態の駐車枠が存在する場合における駐車枠の幅と代表点間距離との関係を説明するための図である。 角度付きの並列駐車方式の場合における駐車枠の幅と駐車枠のフロントラインに対する傾斜角度との関係を説明するための図である。 並列駐車方式の仮想駐車枠群を示す図である。 角度付きの並列駐車方式の仮想駐車枠群を示す図である。 縦列駐車方式の仮想駐車枠群を示す図である。 図7A、図7B、図7Cに示す駐車方式以外の仮想駐車枠群を示す図である。 仮想駐車枠群の生成方法を説明するための図である。 角度付きではない並列駐車方式に対応する仮想駐車枠群の位置の設定方法を説明するための図である。 角度付きの並列駐車方式に対応する仮想駐車枠群の位置の設定方法を説明するための図である。 本実施形態に係る駐車支援装置が実行する駐車支援処理の制御手順を示すフローチャートである。 駐車車両群を2つの駐車車両群に分類する場合の具体例を示す図である。 駐車枠群の推定方法の比較例を説明するための図である。 駐車枠群の推定方法の比較例を説明するための図である。
 図1は、本発明の一実施形態に係る駐車支援装置100の構成を示すブロック図である。本実施形態に係る駐車支援装置100は、車両に搭載され、当該車両を駐車スペースに移動させる(駐車させる)動作を支援する。本実施形態の駐車支援装置100は、距離センサ群10と、移動距離センサ20と、操舵角センサ30と、メインスイッチ40と、駐車支援ECU(Electronic control unit)50と、車両制御ECU60とを備える。なお、駐車支援装置100は、不図示のエンジン制御ECUやステアリングのパワーアシストECU等の通常車両に搭載されているハードウェア群も備える。これらの各構成は、相互に情報の授受を行うためにCAN(Controller Area Network)やその他の車載LANによって接続されている。
 距離センサ群10は、例えば、図示するように、前方距離センサ11と、右側方距離センサ12と、左側方距離センサ13とを備える。前方距離センサ11は、車両のフロントバンパー又はその近傍に設置され、自車両の前方に存在する物体における一群の反射点P0(図3参照)の極座標(距離及び方位)を検知して駐車支援ECU50に出力する。右側方距離センサ12は、車両の右側方(例えば、車両の前端右側部)に設置され、自車両の右側方に存在する物体における一群の反射点P0の極座標を検知して駐車支援ECU50に出力する。左側方距離センサ13は、車両の左側方(例えば、車両の前端左側部)に設置され、自車両の左側方に存在する物体における一群の反射点P0の極座標を検知して駐車支援ECU50に出力する。
 距離センサ群10の各センサとしては、レーザスキャナ、レーダー、及びステレオカメラ等を例示することができ、物体における一群の反射点P0の極座標を検出できるものであれば、適宜選択できる。また、距離センサ群10の検出領域は、少なくとも自車両の進路の左右に存在する複数の駐車車両における一群の反射点P0の極座標を検知できるように設定されている。
 移動距離センサ20は、自車両の移動量を算出して駐車支援ECU50に出力する。移動距離センサ20は、例えば、自車両の車輪の回転数を検出する回転数センサ等を用いて構成することができる。
 操舵角センサ30は、例えば、ステアリングコラムの内部に設置され、ステアリングホイールの回転角を検出して駐車支援ECU50に出力する。
 メインスイッチ40は、駐車支援の開始を指示するためにユーザに操作されるスイッチであり、操作されていない状態ではオフ信号を駐車支援ECU50に出力し、操作されるとオン信号を駐車支援ECU50に出力する。このメインスイッチ40は、例えば、自車両のインストルメントパネルの周辺やステアリングホイールの周辺等、運転者によって操作可能な任意の位置に設置される。なお、メインスイッチ40は、ナビゲーション装置の画面に設けられるソフトウェアスイッチや、ネットワークを介して車両と通信可能なスマートフォン等の携帯端末の画面に設けられるソフトウェアスイッチ等にしてもよい。
 駐車支援ECU50は、駐車支援装置100を統括的に制御するコントローラである。駐車支援ECU50は、駐車支援プログラムが格納されたROM52と、このROM52に格納されたプログラムを実行することで、本実施形態の駐車支援装置100として機能する動作回路としてのCPU51と、アクセス可能な記憶装置として機能するRAM53とを備える。この駐車支援ECU50は、距離センサ群10、移動距離センサ20、操舵角センサ30、メインスイッチ40から検出情報が入力され、後述する駐車支援処理を実行した後に、自車両の目標車速と目標操舵角とを算出して車両制御ECU60に出力する。
 車両制御ECU60は、車両の駆動制御を行うコントローラである。車両制御ECU60は、車両駆動制御プログラムが格納されたROM62と、このROM62に格納されたプログラムを実行することで、車両制御装置として機能する動作回路としてのCPU61と、アクセス可能な記憶装置として機能するRAM63とを備える。この車両制御ECU60は、駐車支援ECU50から車両の目標車速と目標操舵角とが入力され、エンジン制御ECUやステアリングのパワーアシストECU等と連携して、車両の駆動制御を行う。
 図2は、駐車支援ECU50の機能を説明するためのブロック図である。この図に示すように、駐車支援ECU50は、駐車車両認識部501と、車両代表点算出部502と、車両群選定部503と、駐車枠幅・角度算出部504と、仮想駐車枠群生成部505と、仮想駐車枠群位置設定部506と、選択候補算出部507と、駐車可能空間算出部508と、駐車可否判断部509と、駐車目標位置算出部510と、駐車経路算出部511と、探索経路算出部512と、車両制御指令値算出部513とを備える。
 駐車車両認識部501は、距離センサ群10から極座標群として入力された反射点位置情報群(以下、点群という)に基づいて、駐車車両を認識する。駐車車両認識部501は、まず、前方距離センサ11、右側方距離センサ12、及び左側方距離センサ13から入力された点群を、極座標からxy平面座標に座標変換して統合し、次に、クラスタリングを行って近接した一群の点群を抽出する。
 図3は、並列駐車方式の駐車場において駐車車両の認識処理を実行している状態を示す平面図である。この図に示すように、並列駐車方式の駐車場に駐車車両が存在する場合、駐車車両は、駐車車両認識部501により、L字状の点群として抽出される。図2に戻り、駐車車両認識部501は、クラスタリングを行って抽出した一群の点群がL字状になっている場合に、抽出した一群の点群の情報を車両代表点算出部502に出力する。なお、駐車車両の認識方法としては、上述の方法には限られず、他の公知の方法を用いることができる。
 車両代表点算出部502は、駐車車両認識部501から入力された点群の情報に基づいて、各駐車車両の代表点P1を算出する。車両代表点算出部502は、まず、後向きで駐車している駐車車両の前面または前向きで駐車している駐車車両の後面を表す直線を抽出し、次に、抽出した直線の中心点を、駐車車両の代表点P1として算出する。
 ここで、L字状の一対の直線の一方は、後向きで駐車している駐車車両の前面または前向きで駐車している駐車車両の後面を示す直線となり、他方の直線は、駐車車両の側面を示す直線となる。図3に示すように、自車両の向きを示すベクトルと駐車車両の向きを示すベクトルとが直角になる状況では、後向きで駐車している駐車車両の前面または前向きで駐車している駐車車両の後面が、自車両の向きを示すベクトルに対して左側に45°から右側に45°までの範囲に入る。そこで、車両代表点算出部502は、自車両の向きを示すベクトルに対して左側に45°から右側に45°までの範囲に入る直線を、後向きで駐車している駐車車両の前面または前向きで駐車している駐車車両の後面を示す直線として抽出する。そして、車両代表点算出部502は、抽出した直線の中心点を、駐車車両の代表点P1として算出して車両群選定部503に出力する。
 ここで、車両代表点算出部502は、駐車車両の前面または後面を示す直線及び駐車車両の側面を示す直線の向きに基づいて、駐車車両の代表点P1の位置のみならず向きも算出して、駐車車両の代表点P1の位置及び向きの情報を車両群選定部503に出力する。なお、駐車車両の代表点P1は、駐車車両の前面または後面の中心に設定することは必須ではなく、複数の駐車車両について同じ位置に設定すればよく、例えば、駐車車両の前方の左右端や中心(重心)等に設定してもよい。
 車両群選定部503は、車両代表点算出部502から入力された各駐車車両の代表点P1の位置及び向きの情報に基づいて、向きが一致する一連の並列された駐車枠からなる駐車枠群に存在する駐車車両群を選定する。そして、車両群選定部503は、選定した駐車車両群に属する各駐車車両の代表点P1の位置及び向きの情報を、駐車枠幅・角度算出部504、駐車可能空間算出部508、及び探索経路算出部512に出力する。ここで、向きが異なる駐車枠に存在する駐車車両は、異なる駐車車両群に分類されるところ、探索走行中の自車両の左右に駐車車両群が存在する場合、左右の駐車車両群の向きは180°異なるので、左右の駐車車両群は、異なる駐車車両群に分類される。
 なお、駐車車両群を分類する方法はこれに限られない。例えば、駐車車両の間隔が所定距離(例えば、間に3台の駐車車両が入る距離)以内であるか否かで、さらに駐車車両群を細かく分類したり、駐車車両の間に車両ではない物体が認識された場合には、その物体を境に別々の駐車車両群に分類したりしてもよい。
 また、車両群選定部503は、車両代表点算出部502から各駐車車両の代表点P1の情報が入力される度に逐次、駐車車両群を分類する処理を実行してもいいが、これには限られず、例えば、駐車車両の情報を継続的に入力(トラッキング)して時系列の情報を重ね合せたうえで駐車車両群を分類する処理を実行してもよい。具体的には、移動距離センサ20と操舵角センサ30とから入力された検出情報に基づいて、自車両の移動量(所謂、オドメトリ)を算出し、その算出結果に基づいて、前回までの駐車車両の代表点P1の情報と、今回の駐車車両の代表点P1の情報とを統合する。ここで、前回までは入力されたが今回は入力されなかった駐車車両の代表点P1の情報も用いる。これにより、距離センサ群10の検出範囲には含まれない多くの駐車車両の情報を用いて後述の駐車枠の幅の算出処理を実行できるので、駐車枠の幅の算出処理の結果の安定性が増す。
 駐車枠幅・角度算出部504は、車両群選定部503から入力された同一分類の駐車車両群の位置と向きの情報に基づいて、駐車枠の幅及び角度を算出して駐車可否判断部509に出力する。
 図4は、駐車枠の幅widthと単位代表点間距離dとの関係を説明するための図である。この図に示すように、駐車枠の幅widthと、隣り合う駐車枠に存在する2台の駐車車両の代表点P1の距離(以下、単位代表点間距離という)dとは、概ね一致する。
 図5は、並列された駐車車両の間に空車状態の駐車枠が存在する場合における駐車枠の幅widthと代表点間距離Dとの関係を説明するための図である。この図に示すように、代表点間距離Dは、単位代表点間距離d(≒駐車枠の幅width)の略整数倍になる。即ち、隣り合う駐車枠に存在する2台の駐車車両の代表点間距離Dは、単位代表点間距離dの1倍、1つの駐車枠を挟んで隣り合う2台の駐車車両の代表点間距離Dは、単位代表点間距離dの2倍、2つの駐車枠を挟んで隣り合う2台の駐車車両の代表点間距離Dは、単位代表点間距離dの3倍となる。
 そこで、駐車枠幅・角度算出部504は、単位代表点間距離dを用いて駐車枠の幅widthを算出する。具体的には、まず、単位代表点間距離dに仮定値dxを設定する。この仮定値dxは、現実的な駐車枠の幅(例えば、2.2m~3.3m)に相当する値とする。
 次に、算出された全ての代表点間距離Dについて、代表点間距離Dと仮定値dxとの誤差deを算出する。この誤差deを算出するにあたり、まず、代表点間距離Dを仮定値dxで除算した場合の剰余drを算出する。そして、剰余drがdx×1/2より大きい場合には、誤差deを下記(1)式により算出する。一方、剰余drがdx×1/2以下である場合には、誤差deを下記(2)式により算出する。
de=dx-dr …(1)
de=dr    …(2)
 次に、それぞれの代表点間距離Dについて算出した誤差deの総和de_sumを算出する。そして、この誤差の総和de_sumが最小となる仮定値dxを、単位代表点間距離dの値に決定する。
 図5に示すように、V1~V4の4台の駐車車両が車両群選定部503により駐車車両群として選定され、駐車車両V1と駐車車両V2との代表点間距離D12、駐車車両V2と駐車車両V3との代表点間距離D23、駐車車両V3と駐車車両V4との代表点間距離D34が、それぞれD12=6.2m、D23=9.3m、D34=2.8mである状況について検討する。
 まず、単位代表点間距離dの仮定値をdx=3.0mとした場合について検討する。この場合、代表点間距離D12についての剰余はdr=0.2m、代表点間距離D23についての剰余はdr=0.3m、代表点間距離D34についての剰余はdr=2.8mとなる。ここで、代表点間距離D12、D23についての剰余drは、dx×1/2以下となるので、代表点間距離D12についての誤差はde=0.2m、代表点間距離D23についての誤差はde=0.3mとなる。一方、代表点間距離D34についての剰余drは、dx×1/2より大きくなるので、代表点間距離D34についての誤差は、de=3.0-2.8=0.2mとなる。従って、誤差の総和はde_sum=0.7mとなる。
 次に、単位代表点間距離dの仮定値をdx=3.1mとした場合について検討する。この場合、代表点間距離D12についての剰余はdr=0.0m、代表点間距離D23についての剰余はdr=0.0m、代表点間距離D34についての剰余はdr=2.8mとなる。ここで、代表点間距離D12、D23についての剰余drは、dx×1/2以下となるので、代表点間距離D12についての誤差はde=0.0m、代表点間距離D23についての誤差はde=0.0mとなる。一方、代表点間距離D34についての剰余drは、dx×1/2より大きくなるので、代表点間距離D34についての誤差は、de=3.1-2.8=0.3mとなる。従って、誤差の総和はde_sum=0.3mとなる。
 次に、単位代表点間距離dの仮定値をdx=3.2mとした場合について検討する。この場合、代表点間距離D12についての剰余はdr=3.0m、代表点間距離D23についての剰余はdr=2.9m、代表点間距離D34についての剰余はdr=2.8mとなる。ここで、全ての剰余drがdx×1/2より大きくなるので、代表点間距離D12についての誤差はde=3.2-3.0=0.2m、代表点間距離D23についての誤差はde=3.2-2.9=0.3m、代表点間距離D34についての誤差はde=3.2-2.8=0.4mとなる。従って、誤差の総和はde_sum=0.9mとなる。
 仮定値をdx=2.2~2.9、3.3mとした場合については、記載を省略するが、誤差の総和de_sumが0.3mを下回るものは無かった。以上により、誤差の総和de_sumが最小になるのは、単位代表点間距離dの仮定値をdx=3.1mとした場合であるので、単位代表点間距離dの最適値は、3.1mとなる。
 なお、駐車枠の幅widthを算出するのに代表点間距離Dを用いる方法を説明したが、これには限られない。例えば、RANSC(random sample consensus)等の手法により、複数の代表点P1を結ぶ直線(以下、フロントラインという)を当てはめ、フロントライン上での代表点P1の間の距離を用いてもよい。
 次に、駐車枠の幅widthを算出する。図5に示すように、角度付きではない並列駐車方式の場合には、駐車枠の幅方向と駐車枠の配列方向とが一致するので、駐車枠の幅をwidth=dと算出する。一方、図6に示すように、角度付きの並列駐車方式の場合には、駐車枠の幅方向が駐車枠の配列方向(フロントラインの延在方向)に対して所定角度αで傾斜するので、駐車枠の幅を、width=d×sinαと算出する。
 なお、角度付きではない並列駐車方式の場合には、α=90°となり、駐車枠の幅は、width=d×sin90°=dとなるので、角度付きの並列駐車方式の場合と同様に、駐車枠の幅を、width=d×sinαと算出することもできる。しかしながら、駐車車両の向きの検出には誤差を伴うので、角度付きではない並列駐車方式と推定できる場合には、駐車枠の幅をwidth=dと算出することが好ましい。
 なお、縦列駐車方式の駐車場の場合には、駐車枠の奥行寸法を、上述の駐車枠の幅widthの算出方法と同様の方法により算出する。
 図2に戻り、駐車枠幅・角度算出部504は、車両群選定部503から入力された同一分類の駐車車両群の向きの平均値と、フロントラインとの角度αを算出し、駐車枠の角度として仮想駐車枠群生成部505に出力する。ここで、角度付きではない並列駐車方式の場合、駐車枠幅・角度算出部504は、駐車枠の角度をα=90°もしくは0°として仮想駐車枠群生成部505に出力する。一方、角度付きの並列駐車方式の場合、駐車枠幅・角度算出部504は、αの算出値を駐車枠の角度として仮想駐車枠群生成部505に出力する。
 なお、駐車枠の幅と角度とを、駐車車両群の位置と向きとに基づいて算出するように取得したが、駐車枠の幅と角度との情報を含む駐車場の詳細情報を地図情報に含めて保持しておいたり、駐車枠の幅と角度との情報を、ネットワークを通じて取得したりしてもよい。
 仮想駐車枠群生成部505は、駐車枠幅・角度算出部504から入力された駐車枠の幅width及び角度αに基づいて、一連の駐車枠を仮想した仮想駐車枠群(図7A~C参照)を生成する。
 図7Aは、角度付きではない並列駐車方式の駐車枠群に対応する仮想駐車枠群を示す図であり、図7Bは、角度付きの並列駐車方式の駐車枠群に対応する仮想駐車枠群を示す図であり、図7Cは、縦列駐車方式の駐車枠群に対応する仮想駐車枠群を示す図である。これらの図に示すように、仮想駐車枠群は、幅、奥行き、及び角度の寸法が等しい複数の仮想駐車枠が、所定の直線に沿って並んだものである。ここで、図7Aに示すように、並列駐車方式の駐車枠群に対応する仮想駐車枠群は、ラダー状(梯子状)の枠となる。
 図7A及び図7Bに示す仮想駐車枠群の仮想駐車枠の幅は、駐車枠幅・角度算出部504から入力された幅widthであり、図7Bに示す仮想駐車枠群の仮想駐車枠の角度は、駐車枠幅・角度算出部504から入力された角度αである。また、図7A及び図7Bに示す仮想駐車枠群の仮想駐車枠の奥行(幅方向に対して直交する方向の長さ)は、一般的な駐車枠の長さに応じて予め設定した値である。
 なお、仮想駐車枠の幅と角度とを、駐車枠幅・角度算出部504により算出された幅widthと角度αとしたが、予め設定された値としてもよい。この場合、駐車枠の幅と角度とを含む駐車枠群の詳細情報を地図情報に含めて保持しておき、保持している駐車枠の幅と角度とを、仮想駐車枠の幅と角度とに設定してもよい。又は、仮想駐車枠の幅と角度との情報を、ネットワークを通じて取得してもよい。それにより、図8に示すように、角度付きではない並列駐車方式(図7A参照)、角度付きの並列駐車方式(図7B参照)、及び縦列駐車方式(図7C参照)に該当しない駐車方式の駐車枠群に対応する仮想駐車枠群を生成することが可能となる。
 仮想駐車枠群に含まれる仮想駐車枠の数は、車両群選定部503により選定された駐車車両群の全ての駐車車両が駐車可能な枠数とすればよいが、図9に示すように、駐車車両群の左右に1枠ずつ加えることにより、駐車車両群に含まれる全ての駐車車両が駐車可能な枠数に2を加えた数にすることが好ましい。それにより、駐車車両に挟まれない空間に存在する駐車枠を推定することができる。
 仮想駐車枠群位置設定部506は、仮想駐車枠群生成部505により生成された仮想駐車枠群の位置を、車両群選定部503により選定された駐車車両群の駐車車両の位置に応じて設定する。図10Aは、角度付きではない並列駐車方式の仮想駐車枠群の位置の設定方法を説明するための図であり、図10Bは、角度付きの並列駐車方式の仮想駐車枠群の位置の設定方法を説明するための図である。図10Aに示すように、まず、仮想駐車枠群位置設定部506は、仮想駐車枠群の前部を、駐車枠幅・角度算出部504で算出されたフロントラインに対して僅かに手前側にオフセットさせる。この際のオフセット量は、駐車車両群の全ての駐車車両が仮想駐車枠群の内側に入るように設定してもよく、あるいは、予め設定した値でもよい。
 次に、仮想駐車枠群位置設定部506は、仮想駐車枠群の左右方向(駐車枠の配列方向)の位置を設定するところ、まず、初期位置を設定する。この初期位置の設定においては、例えば、駐車車両群の左端に位置する駐車車両の代表点P1と、仮想駐車枠群の左端から2番目に位置する仮想駐車枠の幅方向中心線とを一致させればよい。
 なお、縦列駐車方式の仮想駐車枠群の初期位置の設定においては、例えば、駐車車両群の後端に位置する駐車車両の代表点P1と、仮想駐車枠群の後端から2番目に位置する仮想駐車枠の奥行方向中心線とを一致させればよい。
 次に、仮想駐車枠群位置設定部506は、初期位置に設定された仮想駐車枠群の左右方向の位置と、仮想駐車枠群の左右方向の最適位置とのオフセット量Osを算出し、そのオフセット量Osの分だけ、仮想駐車枠群を左右方向に移動させることにより、仮想駐車枠群の位置を決定する。オフセット量Osの算出処理では、まず、全ての駐車車両について、代表点P1の位置と、当該位置に対して最も近い仮想駐車枠の車幅方向中心線とのオフセット量Os´を算出する。次に、算出されたオフセット量Os´の平均値を算出して上記オフセット量Osとして出力する。
 ここで、角度付きではない並列駐車方式の仮想駐車枠群の場合は、駐車車両の代表点P1の位置と、当該位置に対して最も近い仮想駐車枠の幅方向中心線との距離を、上記オフセット量Os´とする。一方、図10Bに示すように角度付きの並列駐車方式の仮想駐車枠群の場合は、上記オフセット量Os´を、Os´=x/sinαとする。なお、xは、代表点P1の位置と、当該位置に対して最も近い仮想駐車枠の幅方向中心線との距離である。
 また、縦列駐車方式の仮想駐車枠群の場合は、駐車車両の代表点P1の位置と、当該位置に対して最も近い仮想駐車枠の奥行方向中心線との距離を、上記オフセット量Os´とする。さらに、図8に示す駐車方式の駐車場の場合は、全ての駐車車両について、駐車車両の中心の位置と、当該位置に対して最も近い仮想駐車枠の中心位置との距離を算出し、算出した距離の誤差が最小となるように、仮想駐車枠群の位置を最適化すればよい。
 以上のように、駐車支援ECU50では、仮想駐車枠群生成部505が、仮想駐車枠群を生成し、仮想駐車枠群位置設定部506が、仮想駐車枠群の位置を設定することにより、駐車枠群の構成を推定する。
 選択候補算出部507は、仮想駐車枠群生成部505及び仮想駐車枠群位置設定部506により構成が推定された駐車枠群に含まれる駐車枠の中から、駐車目標位置の選択候補の駐車枠を算出して駐車可否判断部509に出力する。ここで、選択候補の駐車枠は、駐車枠群に含まれる駐車枠であって、駐車車両認識部501により認識された駐車車両の位置と重ならない駐車枠である。
 駐車可能空間算出部508は、距離センサ群10から入力される点群の情報に基づいて、自車両の周囲に存在する物体が存在しない空間(即ち、駐車可能空間)を算出して駐車可否判断部509に出力する。駐車可能空間を検出する方法としては、例えば、SLAM(Simultaneous Localization And Mapping)技術を用いて、各空間が空いているか埋まっているかを示す所謂Grid map(空間を格子状に区切った格子地図)を算出する方法等を例示できる。
 駐車可能空間算出部508は、例えば、駐車枠幅・角度算出部504から入力された駐車車両群のフロントラインの情報と、算出したGrid mapとに基づいて、駐車可能空間を抽出する。ここで、Grid mapには、各空間が空いているか(open)、埋まっているか(occupied)という情報に加えて、各空間が、距離センサ群10により検知されていない(unknown)という情報を含めておく。即ち、駐車可否判断部509により参照されるGrid mapは、open、occupied、unknownの3値を有する。
 駐車可否判断部509は、選択候補算出部507から出力された選択候補の駐車枠の夫々に対して、駐車可能空間算出部508から出力された駐車可能空間と照合して駐車の可否を判断し、判断結果を車両制御指令値算出部513に出力する。
 ここで、駐車の可否の判断においては、各駐車枠の全領域が「open」である場合のみ駐車可能と判断してもよいし、「occupied」でさえなければ「open」ではなく「unknown」であったとしても駐車可能と判断してもよい。「occupied」でさえなければ「unknown」であったとしても駐車可能と判断することにより、前向き駐車を行う場合に、駐車可能の判断が遅れることを防止でき、人間が運転するような自然な前向き駐車を実現することが可能になる。
 また、駐車枠幅・角度算出部504から入力された駐車枠の幅widthの情報と、駐車可能空間算出部508から入力された駐車可能空間の情報と、自車両の車幅v_widthの情報とに基づいて、駐車の可否を判断してもよい。具体的には以下に説明するように、駐車の可否を判断すればよい。
 まず、駐車可否判断部509は、自車両の車幅v_widthと駐車枠の幅widthとを比較し、下記(3)式の条件を満たす場合に、駐車可能空間における自車両の駐車を不可と判断する。
v_width<width+width_threshold …(3)
なお、width_thresholdは、自車両に乗降するのに必要なスペースを駐車可能空間に確保するために、予め設定される値である。ここで、自動運転の場合等、人の乗降を考慮する必要がない場合には、width_thresholdを小さく設定してもよい。
 次に、駐車可否判断部509は、駐車可能空間をフロントラインに投影した場合の幅area_widthを算出し、下記(4)式の条件を満たす場合に、駐車可能空間における自車両の駐車を不可と判断する。即ち、駐車可否判断部509は、駐車可能空間の幅が十分に存在するか否かを判断する。
v_width<area_width+width_threshold …(4)
 駐車目標位置算出部510は、駐車可否判断部509が駐車可能と判断した選択候補の駐車枠の中から1つを選択し、選択した駐車枠の位置を修正する。そして、駐車目標位置算出部510は、修正した駐車枠における駐車目標位置を算出する。複数の選択候補の駐車枠の中から1つを選択する方法としては、例えば、自車両から一番近い駐車枠を選択する方法を例示できる。
 選択した駐車枠の位置を修正する方法としては、仮想駐車枠群位置設定部506による仮想駐車枠群の位置の設定方法と同様に、駐車車両の代表点P1の位置を用いる方法を例示できる。即ち、選択した駐車枠の左右に駐車車両が存在する場合は、これらの2台の駐車車両の夫々に対して、代表点P1の位置と当該位置に対して最も近い駐車枠の車幅方向中心線とのオフセット量Os´を算出する。そして、オフセット量Os´の平均値の分だけ、選択した駐車枠を移動させる。また、駐車枠群の端の駐車枠が選択された場合は、当該駐車枠の隣の2台の駐車車両の夫々に対して、代表点P1の位置と当該位置に対して最も近い駐車枠の車幅方向中心線とのオフセット量Os´を算出する。そして、オフセット量Os´の平均値の分だけ、選択した駐車枠を移動させる。
 駐車目標位置の算出方法としては、選択された駐車可能区間の中央奥側に設定する方法を例示できる。
 駐車経路算出部511は、駐車目標位置算出部510から入力された目標駐車位置への駐車経路を算出する。駐車経路の算出方法としては、特に限定されるものではなく、公知の様々な方法を用いることができる。
 探索経路算出部512は、駐車枠幅・角度算出部504から入力されたフロントラインの情報を用いて、駐車できなかった場合に駐車可能空間を探索するための走行経路を算出する。例えば、フロントラインを車両の走行路側にオフセットさせた基本走行ラインを作成し、現在の自車両の位置から基本走行ラインに沿って走行する経路を生成する。この場合、自車両は、駐車枠の列に沿って走行する。
 車両制御指令値算出部513は、駐車可否判断部509から入力された駐車可能空間における自車両の駐車の可否の情報に基づいて、駐車可能な場合は、駐車経路算出部511から入力された駐車経路に沿って走行するための車両制御指令値を算出し、駐車不能な場合は、探索経路算出部512から入力された探索経路に沿って走行するための車両制御指令値を算出する。そして、車両制御指令値算出部513は、算出した車両制御値を、車両制御ECU60に出力する。この車両制御指令値としては、例えば、目標車速と目標操舵角とを例示できるが、自車両の加速度等の他の指令値を含めてもよい。なお、車両制御値の算出方法としては、特に限定されるものではなく、公知の様々な方法を用いることができる。
 図11は、本実施形態に係る駐車支援装置100が実行する駐車支援処理の制御手順を示すフローチャートである。メインスイッチ40から駐車支援ECU50にON信号が入力されると駐車支援処理が開始され、ステップS101に進む。
 ステップS101では、距離センサ群10、移動距離センサ20、及び操舵角センサ30から検出情報が、駐車支援ECU50に入力される。次に、ステップS102では、駐車車両認識部501が、距離センサ群10から極座標群として入力された点群の情報に基づいて、駐車車両を認識する。
 次に、ステップS103では、車両代表点算出部502が、駐車車両認識部501から入力された点群の情報に基づいて、各駐車車両の代表点P1を算出する。次に、ステップS104では、車両群選定部503が、車両代表点算出部502から入力された各駐車車両の代表点P1の位置及び向きの情報に基づいて、向き等が一致する一連の駐車枠に存在する駐車車両群を選定する。
 次に、ステップS105では、駐車枠幅・角度算出部504が、車両群選定部503から入力された同一分類の駐車車両群の位置と向きの情報に基づいて、駐車枠の幅width及び角度αとフロントラインとを算出する。次に、ステップS106では、仮想駐車枠群生成部505が、仮想駐車枠群を生成し、仮想駐車枠群位置設定部506が、仮想駐車枠群の位置を設定することにより、駐車枠群の構成を推定する。
 ステップS107では、車両群選定部503が、ステップS106において推定された構成の駐車枠群と、ステップS104において選定された駐車車両群とを照合し、代表点P1の位置と当該位置に対して最も近い駐車枠の中心線とのオフセット量が所定値以上であるか否かを判定する。このオフセット量が所定値未満である場合にはステップS108に進み、オフセット量が所定値以上である場合にはステップS121に進む。
 ステップS121では、車両群選定部503が、ステップS104において選定した駐車車両群を複数の駐車車両群に分類する。そして、ステップS105に戻る。
 図12は、駐車車両群を2つの駐車車両群に分類する場合の具体例を示す図である。この図に示すように、まず、初期設定として、駐車車両群の左端(又は右端)の駐車車両の代表点P1の位置と、当該位置に対して最も近い駐車枠の幅方向中心線との位置を一致させる。次に、全ての駐車車両に対して、代表点P1の位置と、当該位置に対して最も近い駐車枠の幅方向中心線とのオフセット量Os´を算出する。
 ここで、例えば、図12に示すように、柱等の障害物が介在することにより、駐車枠群が分断される等、駐車枠群の構成に変動がある場合には、その変動があった位置を境に、オフセット量Os´が急増する。そこで、オフセット量Os´が所定位置以上となる位置、即ちオフセット量Os´が急増する位置を境に、駐車車両群を2つの駐車車両群に分類する。
 なお、縦列駐車方式の駐車枠群の場合は、初期設定において、駐車車両群の最後尾(又は先頭)の駐車車両の代表点P1の位置と、当該位置に対して最も近い駐車枠の奥行方向中心線との位置を一致させる。次に、全ての駐車車両に対して、代表点P1の位置と、当該位置に対して最も近い駐車枠の奥行方向中心線とのオフセット量Os´を算出する。
 次に、ステップS108では、駐車可否判断部509が、選択候補算出部507から出力された選択候補の駐車枠の夫々に対して、駐車可能空間算出部508から出力された駐車可能空間と照合して駐車の可否を判定する。駐車可能と判定された場合には、ステップS109に進み、駐車不能と判定された場合には、ステップS131に進む。
 ステップS131では、探索経路算出部512が、駐車枠幅・角度算出部504から入力されたフロントラインの情報を用いて、駐車可能空間を探索するための走行経路を算出する。次に、ステップS132では、車両制御指令値算出部513が探索経路算出部512から入力された探索走行経路に沿って走行するための車両制御指令値を算出し、車両制御ECU60が、車両制御指令値算出部513から入力された車両制御指令値に応じて車両の駆動制御を実行する。
 一方、ステップS109では、駐車目標位置算出部510が、駐車可否判断部509が駐車可能と判断した選択候補の駐車枠の中から1つを選択し、選択した駐車枠の位置を修正する。そして、駐車目標位置算出部510は、修正した駐車枠における駐車目標位置を算出する。
 次に、ステップS110では、駐車経路算出部511が、駐車目標位置算出部510から入力された目標駐車位置への駐車経路を算出する。次に、ステップS111では、車両制御指令値算出部513が駐車経路算出部511から入力された駐車経路に沿って走行するための車両制御指令値を算出し、車両制御ECU60が、車両制御指令値算出部513から入力された車両制御指令値に応じて車両の駆動制御を実行する。以上で、駐車支援処理を終了する。
 ところで、図13に示すように、駐車枠内には、駐車枠と駐車車両との間の余裕スペースが存在するところ、左右の駐車車両に挟まれた駐車可能空間を単純に分割するのみでは、駐車枠の幅が実際の幅よりも余裕スペースの分だけ広く設定される。そのため、左右の駐車車両の間では、駐車枠の車幅方向中心線の位置が、実際の位置よりも左右にずれて設定される。特に、左右の駐車車両が駐車枠内で左寄り又は右寄りに位置している場合には、駐車車両に挟まれた駐車枠の設定位置の誤差は大きくなる。
 それに対して、本実施形態に係る駐車支援方法及び駐車支援装置100では、駐車車両の認識情報を取得し、仮想駐車枠群を設定して認識された駐車車両に対して位置合わせを行う。そして、認識された駐車車両に対して位置合わせを行った仮想駐車枠群を駐車枠群と推定する。それにより、余裕スペースの存在にかかわらず、駐車車両に挟まれた駐車枠の幅を実際の幅に即して適切に設定でき、当該駐車枠の位置を実際の位置に即して適切に設定できる。
 また、図14に示すように、駐車車両に挟まれない駐車枠が存在する場合があるが、本実施形態に係る駐車支援方法及び駐車支援装置100では、駐車車両群の両側に1枠ずつ仮想駐車枠を加えた仮想駐車枠群を設定することにより、駐車車両に挟まれない駐車枠についても推定できる(図9参照)。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、幅及び奥行の寸法が共通する複数の仮想駐車枠が所定の直線に沿って並列又は縦列で配されてなる仮想駐車枠群を設定する。これにより、角度付きではない並列駐車方式の駐車枠群(図7A参照)と、角度付きの並列駐車方式の駐車枠群(図7B参照)と、縦列駐車方式の駐車枠群を推定できる。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、並列駐車方式の仮想駐車枠群を設定する場合、隣り合う代表点P1の距離である代表点間距離Dを算出し、代表点間距離Dに基づいて駐車枠の幅を算出し、算出した駐車枠の幅を仮想駐車枠の幅とする(図5参照)。これにより、各駐車場の駐車枠の幅が既知でない場合であっても、並列駐車方式の仮想駐車枠群を設定でき、並列駐車方式の駐車枠群を推定できる。
 また、並列駐車方式の仮想駐車枠群を設定する場合、代表点P1を、駐車車両の車幅方向中心線に設定し、代表点P1に対して仮想駐車枠の幅方向中心線の位置合わせを行うことにより、駐車車両群に対して仮想駐車枠群の位置合わせを行う(図10A及び図10B参照)。これにより、並列駐車方式の仮想駐車枠群の左右方向(仮想駐車枠の配列方向)の位置を設定できる。
 また、並列駐車方式の駐車枠群を推定する場合、駐車枠群を推定した後、代表点P1の位置と当該位置に対して最も近い駐車枠の幅方向中心線の推定位置とのオフセット量Os´が所定値以上である場合に、駐車車両群をさらに複数の駐車車両群に分類する(図12参照)。これにより、柱等の障害物を境に駐車枠群が左右に分断されている場合にも、適切に駐車枠群を推定できる。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、縦列駐車方式の仮想駐車枠群を設定する場合、隣り合う代表点P1の距離である代表点間距離Dを算出し、代表点間距離Dに基づいて駐車枠の奥行を算出し、算出した駐車枠の奥行を仮想駐車枠の幅とする。これにより、各駐車場の駐車枠の奥行が既知でない場合であっても、縦列駐車方式の仮想駐車枠群を設定でき、縦列駐車方式の駐車枠群を推定できる。
 また、縦列駐車方式の仮想駐車枠群を設定する場合、代表点P1を、駐車車両の奥行方向中心線に設定し、代表点P1に対して稼働枠の奥行方向中心線の位置合わせを行うことにより、駐車車両群に対して仮想駐車枠群の位置合わせを行う。これにより、縦列駐車方式の仮想駐車枠群の前後方向(仮想駐車枠の配列方向)の位置を設定できる。
 また、縦列駐車方式の駐車枠群を推定する場合、駐車枠群を推定した後、代表点P1の位置と当該位置に対して最も近い駐車枠の奥行方向中心線の推定位置とのオフセット量Os´が所定値以上である場合に、駐車車両群をさらに複数の駐車車両群に分類する。これにより、柱等の障害物を境に駐車枠群が前後に分断されている場合にも、適切に駐車枠群を推定できる。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、距離センサ群10から入力された認識情報から複数の駐車車両の向きを算出し、算出した駐車車両の向きと、複数の代表点P1の位置とに基づいて、仮想駐車枠のフロントラインに対する傾斜角度αを算出する(図6及び図10B参照)。これにより、角度付きの並列駐車方式の仮想駐車枠群における仮想駐車枠の角度を適切に設定でき、角度付きの並列駐車方式の駐車枠群を適切に設定できる。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、推定された駐車枠群に含まれる複数の駐車枠の中から、認識された駐車車両が存在しない駐車枠を、目標駐車位置の選択候補の駐車枠として抽出する。これにより、手前側の駐車車両が奥側の駐車空間を隠して距離センサ群10に検出されないようにしている状態(所謂オクルージョン)であっても、推定された駐車枠群から選択候補の駐車枠を抽出することができる。
 ここで、駐車車両は駐車枠の中心に対してずれている場合が多いところ、駐車枠群の推定は、駐車車両の駐車枠内での位置の誤差を最小化して駐車枠の真値を推定する目的で行われる。しかしながら、仮に正しく駐車枠群の推定が行われたとしても、自車両が駐車する駐車枠の左右に左寄りに駐車している駐車車両が存在する場合には、自車両も左寄りに駐車させるのが運転手の自然な判断となる。そこで、本実施形態に係る駐車支援方法及び駐車支援装置100では、選択候補の駐車枠の位置を、推定された駐車枠群に存在する駐車車両の代表点P1の位置に基づいて修正する。これにより、周囲の状況に応じた目標駐車位置の設定が可能になる。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、物体が存在しない空間を抽出し、この空間と、選択候補の駐車枠とが重なり合うか否かにより、選択候補の駐車枠における駐車の可否を判定する。これにより、駐車車両とは認識されていない物体が存在する駐車枠を選択候補から排除することができ、適切な駐車支援が可能になる。
 また、本実施形態に係る駐車支援方法及び駐車支援装置100では、駐車可能と判定された選択候補の駐車枠のうちの一つを駐車目標位置に設定して、この駐車目標位置への駐車経路を生成し、この駐車経路に沿って走行するように自車両を制御する。これにより、運転者の操作を要することなく、自動駐車を実行できる。
 また、複数の代表点P1の位置に基づいて、駐車場内を探索走行するための探索経路を生成し、選択候補の駐車枠における駐車が不可と判断した場合に、上記の探索経路に沿って走行するように自車両を制御する。これにより、駐車可能空間を検出するための探索走行から目標駐車位置に至るまでの走行を、運転者の操作を要することなく、自動で実行できる。
 上述の実施形態における「駐車支援装置100」は本発明における「駐車支援装置」の一例に相当し、上述の実施形態における「駐車支援ECU50」は本発明における「駐車支援コントローラ」の一例に相当する。
 上述の実施形態における「代表点P1」が本発明における「代表点」の一例に相当し、上述の実施形態における「代表点間距離D」が本発明における「代表点間距離」の一例に相当し、上述の実施形態における「フロントライン」が本発明における「所定の直線」の一例に相当する。
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態において開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、上述の実施形態では、自車両に備えられた距離センサを前提して説明したが、必ずしもそれに限らず、本実施形態は、駐車場に備えられたセンサや、他車両に備えられたセンサや、ユーザが携帯するカメラを前提としたものでもよい。そのような場合は、駐車枠群の情報を外部から取得して、駐車枠群における駐車状態を把握するようにしてもよい。
50 駐車支援コントローラ
100 駐車支援装置

Claims (15)

  1.  駐車車両の認識情報を取得し、
     複数の駐車枠を備える駐車枠群を仮想した仮想駐車枠群を設定し、
     認識された前記駐車車両に対して前記仮想駐車枠群の位置合わせを行い、
     前記位置合わせを行った前記仮想駐車枠群を、複数の駐車枠を備える駐車枠群と推定する駐車支援方法。
  2.  請求項1に記載の駐車支援方法であって、
     前記仮想駐車枠群は、所定の直線に沿って並列又は縦列で配された複数の同寸法の仮想駐車枠を備える駐車支援方法。
  3.  請求項2に記載の駐車支援方法であって、
     並列の複数の前記駐車車両からなる並列駐車車両群を前記認識情報から抽出し、
     前記並列駐車車両群に含まれる複数の前記駐車車両の代表点を抽出し、
     隣り合う前記代表点の距離である代表点間距離を算出し、
     前記代表点間距離に基づいて、並列の複数の前記仮想駐車枠の夫々の幅を算出する駐車支援方法。
  4.  請求項3に記載の駐車支援方法であって、
     前記代表点を、前記駐車車両の車幅方向中心に設定し、
     前記代表点に対して前記仮想駐車枠の幅方向中心の位置合わせを行うことにより、前記並列駐車車両群に対して前記仮想駐車枠群の位置合わせを行う駐車支援方法。
  5.  請求項4に記載の駐車支援方法であって、
     前記駐車枠群を推定した後、前記代表点の位置と当該位置に対して最も近い駐車枠の幅方向中心の位置との距離が所定値以上である場合に、前記並列駐車車両群をさらに複数の前記並列駐車車両群に分類し、分類した複数の前記並列駐車車両群について、再度、前記駐車枠群の推定を行う駐車支援方法。
  6.  請求項2~5の何れか1項に記載の駐車支援方法であって、
     縦列の複数の前記駐車車両からなる縦列駐車車両群を前記認識情報から抽出し、
     前記縦列駐車車両群に含まれる複数の前記駐車車両の代表点を抽出し、
     隣り合う前記代表点の距離である代表点間距離を算出し、
     前記代表点間距離に基づいて、縦列の複数の前記仮想駐車枠の夫々の奥行を算出する駐車支援方法。
  7.  請求項6に記載の駐車支援方法であって、
     前記代表点を、前記駐車車両の車両前後方向中心に設定し、
     前記代表点に対して前記仮想駐車枠の奥行方向中心の位置合わせを行うことにより、前記縦列駐車車両群に対して前記仮想駐車枠群の位置合わせを行う駐車支援方法。
  8.  請求項7に記載の駐車支援方法であって、
     前記駐車枠群を推定した後、前記代表点の位置と当該位置に対して最も近い駐車枠の奥行方向中心線の推定位置との距離が所定値以上である場合に、前記縦列駐車車両群をさらに複数の前記縦列駐車車両群に分類し、分類した複数の前記縦列駐車車両群について、再度、前記駐車枠群の推定を行う駐車支援方法。
  9.  請求項2~8の何れか1項に記載の駐車支援方法であって、
     前記認識情報から複数の前記駐車車両の向きを算出し、
     算出した前記駐車車両の向きと、複数の前記代表点の位置とに基づいて、前記仮想駐車枠の前記所定の直線に対する角度を算出する駐車支援方法。
  10.  請求項1~9の何れか1項に記載の駐車支援方法であって、
     推定された前記駐車枠群に含まれる複数の前記駐車枠の中から、認識された前記駐車車両が存在しない前記駐車枠を、駐車枠の選択候補として抽出する駐車支援方法。
  11.  請求項10に記載の駐車支援方法であって、
     推定された前記駐車枠群に存在する前記駐車車両の前記代表点の位置に基づいて、前記駐車枠の選択候補の位置を修正する駐車支援方法。
  12.  請求項10又は11に記載の駐車支援方法であって、
     物体が存在しない空間を抽出し、
     前記空間と重なり合う前記駐車枠の選択候補を駐車可能と判定する駐車支援方法。
  13.  請求項12に記載の駐車支援方法であって、
     駐車可能と判定された前記駐車枠の選択候補のうちの一つを駐車目標位置に設定し、
     前記駐車目標位置への駐車経路を生成し、
     前記駐車経路に沿って走行するように自車両を制御する駐車支援方法。
  14.  請求項12又は13に記載の駐車支援方法であって、
     前記代表点の位置に基づいて、駐車場内を探索走行するための探索経路を生成し、
     前記駐車枠の選択候補における駐車が不可である場合に、前記探索経路に沿って走行するように自車両を制御する駐車支援方法。
  15.  駐車支援機能を有する駐車支援コントローラを備える駐車支援装置であって、
     前記駐車支援コントローラは、
     駐車車両の認識情報を取得し、
     複数の駐車枠を備える駐車枠群を仮想した仮想駐車枠群を設定し、
     認識された前記駐車車両に対して前記仮想駐車枠群の位置合わせを行い、
     前記位置合わせを行った前記仮想駐車枠群を、複数の駐車枠を備える駐車枠群と推定する駐車支援装置。
PCT/JP2016/072494 2015-12-17 2016-08-01 駐車支援方法および装置 WO2017104164A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2018007134A MX2018007134A (es) 2015-12-17 2016-08-01 Metodo y dispositivo de ayuda al estacionamiento.
CA3008378A CA3008378A1 (en) 2015-12-17 2016-08-01 Parking support method and device
CN201680072772.3A CN108367722B (zh) 2015-12-17 2016-08-01 停车辅助方法及装置
RU2018124452A RU2713958C2 (ru) 2015-12-17 2016-08-01 Способ и устройство содействия при парковке
BR112018012312-9A BR112018012312B1 (pt) 2015-12-17 2016-08-01 Método e dispositivo de ajuda para estacionar
US16/061,762 US10435074B2 (en) 2015-12-17 2016-08-01 Parking support method and device
JP2017556346A JP6741022B2 (ja) 2015-12-17 2016-08-01 駐車支援方法および装置
KR1020187019937A KR20180094055A (ko) 2015-12-17 2016-08-01 주차 지원 방법 및 장치
EP16875151.9A EP3392093B1 (en) 2015-12-17 2016-08-01 Parking support method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015246111 2015-12-17
JP2015-246111 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017104164A1 true WO2017104164A1 (ja) 2017-06-22

Family

ID=59056077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072494 WO2017104164A1 (ja) 2015-12-17 2016-08-01 駐車支援方法および装置

Country Status (10)

Country Link
US (1) US10435074B2 (ja)
EP (1) EP3392093B1 (ja)
JP (1) JP6741022B2 (ja)
KR (1) KR20180094055A (ja)
CN (1) CN108367722B (ja)
BR (1) BR112018012312B1 (ja)
CA (1) CA3008378A1 (ja)
MX (1) MX2018007134A (ja)
RU (1) RU2713958C2 (ja)
WO (1) WO2017104164A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011675A (ja) * 2018-07-20 2020-01-23 株式会社デンソーテン 画像処理装置および画像処理方法
JP2020147059A (ja) * 2019-03-11 2020-09-17 クラリオン株式会社 駐車支援装置及び駐車支援方法
WO2020230193A1 (ja) * 2019-05-10 2020-11-19 三菱電機株式会社 駐車形態判定装置
WO2021070489A1 (ja) * 2019-10-11 2021-04-15 株式会社デンソー 車両用周辺監視装置及び車両用周辺監視方法
CN112840224A (zh) * 2018-10-11 2021-05-25 罗伯特·博世有限公司 用于确定停车位的占用状态的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677474B2 (ja) * 2015-09-29 2020-04-08 日立オートモティブシステムズ株式会社 周辺認識装置
CN109074743A (zh) * 2016-04-28 2018-12-21 日产自动车株式会社 停车辅助方法及装置
JP6854095B2 (ja) * 2016-07-01 2021-04-07 フォルシアクラリオン・エレクトロニクス株式会社 駐車支援装置
JP6761708B2 (ja) * 2016-09-05 2020-09-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 駐車位置特定方法、駐車位置学習方法、駐車位置特定システム、駐車位置学習装置およびプログラム
DE112018002071T5 (de) * 2017-07-11 2020-01-02 Hitachi Automotive Systems, Ltd. Parkassistenzvorrichtung
US11364992B2 (en) * 2018-10-23 2022-06-21 The Boeing Company Aligning aircraft with runway centerline during takeoff
CN111845716B (zh) * 2019-04-26 2024-04-05 现代摩比斯株式会社 停车辅助装置和方法、及车辆
KR20210008259A (ko) * 2019-07-12 2021-01-21 현대자동차주식회사 주차 제어 장치, 그를 포함한 시스템 및 그 방법
JP7212317B2 (ja) * 2019-10-11 2023-01-25 トヨタ自動車株式会社 車両駐車支援装置
DE102019216363A1 (de) * 2019-10-24 2021-04-29 Robert Bosch Gmbh Verfahren zum Bereitstellen eines Signals zur Ansteuerung eines zumindest teilautomatisierten Fahrzeugs
JP6975766B2 (ja) * 2019-12-13 2021-12-01 本田技研工業株式会社 駐車支援装置、駐車支援方法及びプログラム
CN111951603A (zh) * 2020-08-20 2020-11-17 华人运通(上海)自动驾驶科技有限公司 空闲车位获取方法、共享方法、车辆及服务器
JP2023017466A (ja) * 2021-07-26 2023-02-07 株式会社Subaru 駐車支援装置
US20230169781A1 (en) * 2021-11-30 2023-06-01 Texas Instruments Incorporated Free space detection and park-able free space detection for occupancy grids using sensor measurements
JP2023097021A (ja) * 2021-12-27 2023-07-07 本田技研工業株式会社 制御装置、及び移動体
DE102022203973A1 (de) 2022-04-25 2023-10-26 Continental Autonomous Mobility Germany GmbH Verfahren zur Bestimmung von Parklückeneigenschaften
CN116758775B (zh) * 2023-04-13 2024-06-18 湖南易联达科技有限公司 一种车位状态判定方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196408A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 駐車支援装置及び方法
JP2013220802A (ja) 2012-04-19 2013-10-28 Toyota Motor Corp 駐車支援装置、駐車支援方法、及び駐車支援プログラム
JP2014104855A (ja) * 2012-11-27 2014-06-09 Nissan Motor Co Ltd 車両用加速抑制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759878B2 (ja) * 2001-08-10 2011-08-31 日産自動車株式会社 車両用駐車支援装置
JP3991731B2 (ja) * 2002-03-14 2007-10-17 日産自動車株式会社 車両用駐車方向設定装置
US7085634B2 (en) * 2003-04-11 2006-08-01 Toyota Jidosha Kabushiki Kaisha Parking assist apparatus and parking assist method for vehicle
JP4461920B2 (ja) * 2004-06-23 2010-05-12 株式会社デンソー 駐車支援装置
JP4428390B2 (ja) * 2007-02-15 2010-03-10 トヨタ自動車株式会社 駐車支援装置及び駐車支援方法
JP2009096306A (ja) * 2007-10-16 2009-05-07 Hiroshima Industrial Promotion Organization 駐車支援方法
JP5440867B2 (ja) * 2010-06-18 2014-03-12 アイシン精機株式会社 駐車支援装置
JP2012119755A (ja) * 2010-11-29 2012-06-21 Panasonic Corp 運転支援表示装置
CN102938064B (zh) * 2012-11-23 2015-06-17 南京大学 基于LiDAR数据与正射影像的停车场结构提取方法
US8957786B2 (en) * 2013-05-21 2015-02-17 Ford Global Technologies, Llc Enhanced alignment method for park assist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196408A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 駐車支援装置及び方法
JP2013220802A (ja) 2012-04-19 2013-10-28 Toyota Motor Corp 駐車支援装置、駐車支援方法、及び駐車支援プログラム
JP2014104855A (ja) * 2012-11-27 2014-06-09 Nissan Motor Co Ltd 車両用加速抑制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392093A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011675A (ja) * 2018-07-20 2020-01-23 株式会社デンソーテン 画像処理装置および画像処理方法
JP7116613B2 (ja) 2018-07-20 2022-08-10 株式会社デンソーテン 画像処理装置および画像処理方法
CN112840224A (zh) * 2018-10-11 2021-05-25 罗伯特·博世有限公司 用于确定停车位的占用状态的方法
JP2020147059A (ja) * 2019-03-11 2020-09-17 クラリオン株式会社 駐車支援装置及び駐車支援方法
JP7398196B2 (ja) 2019-03-11 2023-12-14 フォルシアクラリオン・エレクトロニクス株式会社 駐車支援装置及び駐車支援方法
WO2020230193A1 (ja) * 2019-05-10 2020-11-19 三菱電機株式会社 駐車形態判定装置
WO2021070489A1 (ja) * 2019-10-11 2021-04-15 株式会社デンソー 車両用周辺監視装置及び車両用周辺監視方法
JP2021064136A (ja) * 2019-10-11 2021-04-22 株式会社デンソー 車両用周辺監視装置及び車両用周辺監視方法
CN114555420A (zh) * 2019-10-11 2022-05-27 株式会社电装 车辆用周边监视装置以及车辆用周边监视方法
JP7298435B2 (ja) 2019-10-11 2023-06-27 株式会社デンソー 車両用周辺監視装置及び車両用周辺監視方法

Also Published As

Publication number Publication date
CA3008378A1 (en) 2017-06-22
US20180370566A1 (en) 2018-12-27
CN108367722B (zh) 2020-08-18
MX2018007134A (es) 2018-08-15
JPWO2017104164A1 (ja) 2018-11-08
EP3392093A1 (en) 2018-10-24
JP6741022B2 (ja) 2020-08-19
EP3392093A4 (en) 2019-04-17
BR112018012312A2 (ja) 2018-12-04
RU2018124452A3 (ja) 2020-01-21
US10435074B2 (en) 2019-10-08
KR20180094055A (ko) 2018-08-22
RU2713958C2 (ru) 2020-02-11
CN108367722A (zh) 2018-08-03
EP3392093B1 (en) 2021-07-21
RU2018124452A (ru) 2020-01-21
BR112018012312B1 (pt) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2017104164A1 (ja) 駐車支援方法および装置
WO2017104163A1 (ja) 駐車支援方法および装置
JP6720715B2 (ja) 駐車支援方法および装置
JP5782708B2 (ja) 走行支援装置
US8515612B2 (en) Route planning method, route planning device and autonomous mobile device
WO2017187592A1 (ja) 駐車支援方法および装置
US11347227B2 (en) Autonomous mobile apparatus
KR20190113918A (ko) 운전 지원 방법 및 운전 지원 장치
US10508912B2 (en) Road surface shape measuring device, measuring method, and non-transitory computer-readable medium
BR112019004631B1 (pt) Aparelho e método de assistência de estacionamento
JP2012242263A (ja) 移動体位置検出装置
JP6369180B2 (ja) 先行車後退可能性判断装置
US9587950B2 (en) Carrier
JP2018169268A (ja) 経路生成装置、経路生成方法、及び経路生成プログラム
JP2011204149A (ja) 自車位置認識装置
JP2020140477A (ja) 自律走行体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556346

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007134

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3008378

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012312

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187019937

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019937

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018124452

Country of ref document: RU

Ref document number: 2016875151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875151

Country of ref document: EP

Effective date: 20180717

ENP Entry into the national phase

Ref document number: 112018012312

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180615